VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 21327

Last change on this file since 21327 was 21327, checked in by vboxsync, 15 years ago

cpumR3Load: ignore some advanced capability bits, that we don't expose to the guest

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 118.7 KB
Line 
1/* $Id: CPUM.cpp 21327 2009-07-07 12:48:59Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum CPUM - CPU Monitor / Manager
23 *
24 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
25 * also responsible for lazy FPU handling and some of the context loading
26 * in raw mode.
27 *
28 * There are three CPU contexts, the most important one is the guest one (GC).
29 * When running in raw-mode (RC) there is a special hyper context for the VMM
30 * part that floats around inside the guest address space. When running in
31 * raw-mode, CPUM also maintains a host context for saving and restoring
32 * registers accross world switches. This latter is done in cooperation with the
33 * world switcher (@see pg_vmm).
34 *
35 * @see grp_cpum
36 */
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#define LOG_GROUP LOG_GROUP_CPUM
42#include <VBox/cpum.h>
43#include <VBox/cpumdis.h>
44#include <VBox/pgm.h>
45#include <VBox/pdm.h>
46#include <VBox/mm.h>
47#include <VBox/selm.h>
48#include <VBox/dbgf.h>
49#include <VBox/patm.h>
50#include <VBox/hwaccm.h>
51#include <VBox/ssm.h>
52#include "CPUMInternal.h"
53#include <VBox/vm.h>
54
55#include <VBox/param.h>
56#include <VBox/dis.h>
57#include <VBox/err.h>
58#include <VBox/log.h>
59#include <iprt/assert.h>
60#include <iprt/asm.h>
61#include <iprt/string.h>
62#include <iprt/mp.h>
63#include <iprt/cpuset.h>
64
65
66/*******************************************************************************
67* Defined Constants And Macros *
68*******************************************************************************/
69/** The saved state version. */
70#define CPUM_SAVED_STATE_VERSION 10
71/** The saved state version for the 2.1 trunk before the MSR changes. */
72#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
73/** The saved state version of 2.0, used for backwards compatibility. */
74#define CPUM_SAVED_STATE_VERSION_VER2_0 8
75/** The saved state version of 1.6, used for backwards compatability. */
76#define CPUM_SAVED_STATE_VERSION_VER1_6 6
77
78
79/*******************************************************************************
80* Structures and Typedefs *
81*******************************************************************************/
82
83/**
84 * What kind of cpu info dump to perform.
85 */
86typedef enum CPUMDUMPTYPE
87{
88 CPUMDUMPTYPE_TERSE,
89 CPUMDUMPTYPE_DEFAULT,
90 CPUMDUMPTYPE_VERBOSE
91
92} CPUMDUMPTYPE;
93/** Pointer to a cpu info dump type. */
94typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static int cpumR3CpuIdInit(PVM pVM);
101static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM);
102static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
103static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
104static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
105static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
106static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
107static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109
110
111/**
112 * Initializes the CPUM.
113 *
114 * @returns VBox status code.
115 * @param pVM The VM to operate on.
116 */
117VMMR3DECL(int) CPUMR3Init(PVM pVM)
118{
119 LogFlow(("CPUMR3Init\n"));
120
121 /*
122 * Assert alignment and sizes.
123 */
124 AssertCompileMemberAlignment(VM, cpum.s, 32);
125 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
126 AssertCompileSizeAlignment(CPUMCTX, 64);
127 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
128 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
129 AssertCompileMemberAlignment(VM, cpum, 64);
130 AssertCompileMemberAlignment(VM, aCpus, 64);
131 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
132 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
133
134 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
135 pVM->cpum.s.ulOffCPUMCPU = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
136 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.ulOffCPUMCPU == (uintptr_t)&pVM->aCpus[0].cpum);
137
138 /* Calculate the offset from CPUMCPU to CPUM. */
139 for (unsigned i=0;i<pVM->cCPUs;i++)
140 {
141 PVMCPU pVCpu = &pVM->aCpus[i];
142
143 /*
144 * Setup any fixed pointers and offsets.
145 */
146 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
147 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
148
149 pVCpu->cpum.s.ulOffCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
150 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.ulOffCPUM == (uintptr_t)&pVM->cpum);
151 }
152
153 /*
154 * Check that the CPU supports the minimum features we require.
155 */
156 if (!ASMHasCpuId())
157 {
158 Log(("The CPU doesn't support CPUID!\n"));
159 return VERR_UNSUPPORTED_CPU;
160 }
161 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
162 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
163
164 /* Setup the CR4 AND and OR masks used in the switcher */
165 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
166 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
167 {
168 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
169 /* No FXSAVE implies no SSE */
170 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
171 pVM->cpum.s.CR4.OrMask = 0;
172 }
173 else
174 {
175 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
176 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
177 }
178
179 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
180 {
181 Log(("The CPU doesn't support MMX!\n"));
182 return VERR_UNSUPPORTED_CPU;
183 }
184 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
185 {
186 Log(("The CPU doesn't support TSC!\n"));
187 return VERR_UNSUPPORTED_CPU;
188 }
189 /* Bogus on AMD? */
190 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
191 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
192
193 /*
194 * Setup hypervisor startup values.
195 */
196
197 /*
198 * Register saved state data item.
199 */
200 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
201 NULL, cpumR3Save, NULL,
202 NULL, cpumR3Load, NULL);
203 if (RT_FAILURE(rc))
204 return rc;
205
206 /* Query the CPU manufacturer. */
207 uint32_t uEAX, uEBX, uECX, uEDX;
208 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
209 if ( uEAX >= 1
210 && uEBX == X86_CPUID_VENDOR_AMD_EBX
211 && uECX == X86_CPUID_VENDOR_AMD_ECX
212 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
213 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_AMD;
214 else if ( uEAX >= 1
215 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
216 && uECX == X86_CPUID_VENDOR_INTEL_ECX
217 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
218 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_INTEL;
219 else /** @todo Via */
220 pVM->cpum.s.enmCPUVendor = CPUMCPUVENDOR_UNKNOWN;
221
222 /*
223 * Register info handlers.
224 */
225 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
226 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
227 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
228 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
229 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
230 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
231
232 /*
233 * Initialize the Guest CPU state.
234 */
235 rc = cpumR3CpuIdInit(pVM);
236 if (RT_FAILURE(rc))
237 return rc;
238 CPUMR3Reset(pVM);
239 return VINF_SUCCESS;
240}
241
242
243/**
244 * Initializes the per-VCPU CPUM.
245 *
246 * @returns VBox status code.
247 * @param pVM The VM to operate on.
248 */
249VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
250{
251 LogFlow(("CPUMR3InitCPU\n"));
252 return VINF_SUCCESS;
253}
254
255
256/**
257 * Initializes the emulated CPU's cpuid information.
258 *
259 * @returns VBox status code.
260 * @param pVM The VM to operate on.
261 */
262static int cpumR3CpuIdInit(PVM pVM)
263{
264 PCPUM pCPUM = &pVM->cpum.s;
265 uint32_t i;
266
267 /*
268 * Get the host CPUIDs.
269 */
270 for (i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
271 ASMCpuId_Idx_ECX(i, 0,
272 &pCPUM->aGuestCpuIdStd[i].eax, &pCPUM->aGuestCpuIdStd[i].ebx,
273 &pCPUM->aGuestCpuIdStd[i].ecx, &pCPUM->aGuestCpuIdStd[i].edx);
274 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
275 ASMCpuId(0x80000000 + i,
276 &pCPUM->aGuestCpuIdExt[i].eax, &pCPUM->aGuestCpuIdExt[i].ebx,
277 &pCPUM->aGuestCpuIdExt[i].ecx, &pCPUM->aGuestCpuIdExt[i].edx);
278 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
279 ASMCpuId(0xc0000000 + i,
280 &pCPUM->aGuestCpuIdCentaur[i].eax, &pCPUM->aGuestCpuIdCentaur[i].ebx,
281 &pCPUM->aGuestCpuIdCentaur[i].ecx, &pCPUM->aGuestCpuIdCentaur[i].edx);
282
283
284 /*
285 * Only report features we can support.
286 */
287 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
288 | X86_CPUID_FEATURE_EDX_VME
289 | X86_CPUID_FEATURE_EDX_DE
290 | X86_CPUID_FEATURE_EDX_PSE
291 | X86_CPUID_FEATURE_EDX_TSC
292 | X86_CPUID_FEATURE_EDX_MSR
293 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
294 | X86_CPUID_FEATURE_EDX_MCE
295 | X86_CPUID_FEATURE_EDX_CX8
296 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
297 /** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
298 //| X86_CPUID_FEATURE_EDX_SEP
299 | X86_CPUID_FEATURE_EDX_MTRR
300 | X86_CPUID_FEATURE_EDX_PGE
301 | X86_CPUID_FEATURE_EDX_MCA
302 | X86_CPUID_FEATURE_EDX_CMOV
303 | X86_CPUID_FEATURE_EDX_PAT
304 | X86_CPUID_FEATURE_EDX_PSE36
305 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
306 | X86_CPUID_FEATURE_EDX_CLFSH
307 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
308 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
309 | X86_CPUID_FEATURE_EDX_MMX
310 | X86_CPUID_FEATURE_EDX_FXSR
311 | X86_CPUID_FEATURE_EDX_SSE
312 | X86_CPUID_FEATURE_EDX_SSE2
313 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
314 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
315 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
316 //| X86_CPUID_FEATURE_EDX_PBE - no pneding break enabled.
317 | 0;
318 pCPUM->aGuestCpuIdStd[1].ecx &= 0
319 | X86_CPUID_FEATURE_ECX_SSE3
320 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
321 | ((pVM->cCPUs == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
322 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
323 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
324 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
325 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
326 //| X86_CPUID_FEATURE_ECX_SSSE3 - no SSSE3 support
327 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
328 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
329 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
330 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
331 /* ECX Bit 21 - x2APIC support - not yet. */
332 // | X86_CPUID_FEATURE_ECX_X2APIC
333 /* ECX Bit 23 - POPCOUNT instruction. */
334 //| X86_CPUID_FEATURE_ECX_POPCOUNT
335 | 0;
336
337 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
338 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
339 | X86_CPUID_AMD_FEATURE_EDX_VME
340 | X86_CPUID_AMD_FEATURE_EDX_DE
341 | X86_CPUID_AMD_FEATURE_EDX_PSE
342 | X86_CPUID_AMD_FEATURE_EDX_TSC
343 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
344 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
345 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
346 | X86_CPUID_AMD_FEATURE_EDX_CX8
347 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
348 /** @note we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
349 //| X86_CPUID_AMD_FEATURE_EDX_SEP
350 | X86_CPUID_AMD_FEATURE_EDX_MTRR
351 | X86_CPUID_AMD_FEATURE_EDX_PGE
352 | X86_CPUID_AMD_FEATURE_EDX_MCA
353 | X86_CPUID_AMD_FEATURE_EDX_CMOV
354 | X86_CPUID_AMD_FEATURE_EDX_PAT
355 | X86_CPUID_AMD_FEATURE_EDX_PSE36
356 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
357 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
358 | X86_CPUID_AMD_FEATURE_EDX_MMX
359 | X86_CPUID_AMD_FEATURE_EDX_FXSR
360 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
361 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
362 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
363 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
364 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
365 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
366 | 0;
367 pCPUM->aGuestCpuIdExt[1].ecx &= 0
368 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
369 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
370 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
371 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
372 /** Note: This could prevent migration from AMD to Intel CPUs! */
373 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
374 //| X86_CPUID_AMD_FEATURE_ECX_ABM
375 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
376 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
377 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
378 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
379 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
380 //| X86_CPUID_AMD_FEATURE_ECX_WDT
381 | 0;
382
383 /*
384 * Hide HTT, multicode, SMP, whatever.
385 * (APIC-ID := 0 and #LogCpus := 0)
386 */
387 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
388#ifdef VBOX_WITH_MULTI_CORE
389 if (pVM->cCPUs > 1)
390 {
391 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
392 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCPUs << 16);
393 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
394 }
395#endif
396
397 /* Cpuid 2:
398 * Intel: Cache and TLB information
399 * AMD: Reserved
400 * Safe to expose
401 */
402
403 /* Cpuid 3:
404 * Intel: EAX, EBX - reserved
405 * ECX, EDX - Processor Serial Number if available, otherwise reserved
406 * AMD: Reserved
407 * Safe to expose
408 */
409 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
410 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
411
412 /* Cpuid 4:
413 * Intel: Deterministic Cache Parameters Leaf
414 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
415 * AMD: Reserved
416 * Safe to expose, except for EAX:
417 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
418 * Bits 31-26: Maximum number of processor cores in this physical package**
419 * @Note These SMP values are constant regardless of ECX
420 */
421 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
422 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
423#ifdef VBOX_WITH_MULTI_CORE
424 if ( pVM->cCPUs > 1
425 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_INTEL)
426 {
427 AssertReturn(pVM->cCPUs <= 64, VERR_TOO_MANY_CPUS);
428 /* One logical processor with possibly multiple cores. */
429 pCPUM->aGuestCpuIdStd[4].eax |= (pVM->cCPUs << 26); /* 6 bits only -> 64 cores! */
430 }
431#endif
432
433 /* Cpuid 5: Monitor/mwait Leaf
434 * Intel: ECX, EDX - reserved
435 * EAX, EBX - Smallest and largest monitor line size
436 * AMD: EDX - reserved
437 * EAX, EBX - Smallest and largest monitor line size
438 * ECX - extensions (ignored for now)
439 * Safe to expose
440 */
441 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
442 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
443
444 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
445
446 /*
447 * Determine the default.
448 *
449 * Intel returns values of the highest standard function, while AMD
450 * returns zeros. VIA on the other hand seems to returning nothing or
451 * perhaps some random garbage, we don't try to duplicate this behavior.
452 */
453 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
454 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
455 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
456
457 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
458 * Safe to pass on to the guest.
459 *
460 * Intel: 0x800000005 reserved
461 * 0x800000006 L2 cache information
462 * AMD: 0x800000005 L1 cache information
463 * 0x800000006 L2/L3 cache information
464 */
465
466 /* Cpuid 0x800000007:
467 * AMD: EAX, EBX, ECX - reserved
468 * EDX: Advanced Power Management Information
469 * Intel: Reserved
470 */
471 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
472 {
473 Assert(pVM->cpum.s.enmCPUVendor != CPUMCPUVENDOR_INVALID);
474
475 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
476
477 if (pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD)
478 {
479 /* Only expose the TSC invariant capability bit to the guest. */
480 pCPUM->aGuestCpuIdExt[7].edx &= 0
481 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
482 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
483 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
484 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
485 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
486 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
487 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
488 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
489#if 1
490 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer Linux kernels blindly assume
491 * that the AMD performance counters work if this is set for 64 bits guests. (can't really find a CPUID feature bit for them though)
492 */
493#else
494 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
495#endif
496 | 0;
497 }
498 else
499 pCPUM->aGuestCpuIdExt[7].edx = 0;
500 }
501
502 /* Cpuid 0x800000008:
503 * AMD: EBX, EDX - reserved
504 * EAX: Virtual/Physical address Size
505 * ECX: Number of cores + APICIdCoreIdSize
506 * Intel: EAX: Virtual/Physical address Size
507 * EBX, ECX, EDX - reserved
508 */
509 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
510 {
511 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
512 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
513 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
514 * NC (0-7) Number of cores; 0 equals 1 core */
515 pCPUM->aGuestCpuIdExt[8].ecx = 0;
516#ifdef VBOX_WITH_MULTI_CORE
517 if ( pVM->cCPUs > 1
518 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD)
519 {
520 /* Legacy method to determine the number of cores. */
521 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
522 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCPUs - 1); /* NC: Number of CPU cores - 1; 8 bits */
523
524 }
525#endif
526 }
527
528 /*
529 * Limit it the number of entries and fill the remaining with the defaults.
530 *
531 * The limits are masking off stuff about power saving and similar, this
532 * is perhaps a bit crudely done as there is probably some relatively harmless
533 * info too in these leaves (like words about having a constant TSC).
534 */
535#if 0
536 /** @todo NT4 installation regression - investigate */
537 /** Note from Intel manuals:
538 * CPUID leaves > 3 < 80000000 are visible only when
539 * IA32_MISC_ENABLES.BOOT_NT4[bit 22] = 0 (default).
540 *
541 */
542 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
543 pCPUM->aGuestCpuIdStd[0].eax = 5;
544#else
545 if (pCPUM->aGuestCpuIdStd[0].eax > 2)
546 pCPUM->aGuestCpuIdStd[0].eax = 2;
547#endif
548 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
549 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
550
551 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
552 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
553 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
554 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
555 : 0;
556 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
557 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
558
559 /*
560 * Workaround for missing cpuid(0) patches: If we miss to patch a cpuid(0).eax then
561 * Linux tries to determine the number of processors from (cpuid(4).eax >> 26) + 1.
562 * We currently don't support more than 1 processor.
563 */
564 pCPUM->aGuestCpuIdStd[4].eax = 0;
565
566 /*
567 * Centaur stuff (VIA).
568 *
569 * The important part here (we think) is to make sure the 0xc0000000
570 * function returns 0xc0000001. As for the features, we don't currently
571 * let on about any of those... 0xc0000002 seems to be some
572 * temperature/hz/++ stuff, include it as well (static).
573 */
574 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
575 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
576 {
577 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
578 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
579 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
580 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
581 i++)
582 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
583 }
584 else
585 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
586 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
587
588
589 /*
590 * Load CPUID overrides from configuration.
591 */
592 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
593 * Overloads the CPUID leaf values. */
594 PCPUMCPUID pCpuId = &pCPUM->aGuestCpuIdStd[0];
595 uint32_t cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdStd);
596 for (i=0;; )
597 {
598 while (cElements-- > 0)
599 {
600 PCFGMNODE pNode = CFGMR3GetChildF(CFGMR3GetRoot(pVM), "CPUM/CPUID/%RX32", i);
601 if (pNode)
602 {
603 uint32_t u32;
604 int rc = CFGMR3QueryU32(pNode, "eax", &u32);
605 if (RT_SUCCESS(rc))
606 pCpuId->eax = u32;
607 else
608 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
609
610 rc = CFGMR3QueryU32(pNode, "ebx", &u32);
611 if (RT_SUCCESS(rc))
612 pCpuId->ebx = u32;
613 else
614 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
615
616 rc = CFGMR3QueryU32(pNode, "ecx", &u32);
617 if (RT_SUCCESS(rc))
618 pCpuId->ecx = u32;
619 else
620 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
621
622 rc = CFGMR3QueryU32(pNode, "edx", &u32);
623 if (RT_SUCCESS(rc))
624 pCpuId->edx = u32;
625 else
626 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
627 }
628 pCpuId++;
629 i++;
630 }
631
632 /* next */
633 if ((i & UINT32_C(0xc0000000)) == 0)
634 {
635 pCpuId = &pCPUM->aGuestCpuIdExt[0];
636 cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
637 i = UINT32_C(0x80000000);
638 }
639 else if ((i & UINT32_C(0xc0000000)) == UINT32_C(0x80000000))
640 {
641 pCpuId = &pCPUM->aGuestCpuIdCentaur[0];
642 cElements = RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
643 i = UINT32_C(0xc0000000);
644 }
645 else
646 break;
647 }
648
649 /* Check if PAE was explicitely enabled by the user. */
650 bool fEnable = false;
651 int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable);
652 if (RT_SUCCESS(rc) && fEnable)
653 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
654
655 /*
656 * Log the cpuid and we're good.
657 */
658 RTCPUSET OnlineSet;
659 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
660 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
661 LogRel(("************************* CPUID dump ************************\n"));
662 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
663 LogRel(("\n"));
664 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
665 LogRel(("******************** End of CPUID dump **********************\n"));
666 return VINF_SUCCESS;
667}
668
669
670
671
672/**
673 * Applies relocations to data and code managed by this
674 * component. This function will be called at init and
675 * whenever the VMM need to relocate it self inside the GC.
676 *
677 * The CPUM will update the addresses used by the switcher.
678 *
679 * @param pVM The VM.
680 */
681VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
682{
683 LogFlow(("CPUMR3Relocate\n"));
684 for (unsigned i=0;i<pVM->cCPUs;i++)
685 {
686 PVMCPU pVCpu = &pVM->aCpus[i];
687 /*
688 * Switcher pointers.
689 */
690 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
691 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
692 }
693}
694
695
696/**
697 * Terminates the CPUM.
698 *
699 * Termination means cleaning up and freeing all resources,
700 * the VM it self is at this point powered off or suspended.
701 *
702 * @returns VBox status code.
703 * @param pVM The VM to operate on.
704 */
705VMMR3DECL(int) CPUMR3Term(PVM pVM)
706{
707 CPUMR3TermCPU(pVM);
708 return 0;
709}
710
711
712/**
713 * Terminates the per-VCPU CPUM.
714 *
715 * Termination means cleaning up and freeing all resources,
716 * the VM it self is at this point powered off or suspended.
717 *
718 * @returns VBox status code.
719 * @param pVM The VM to operate on.
720 */
721VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
722{
723#ifdef VBOX_WITH_CRASHDUMP_MAGIC
724 for (unsigned i=0;i<pVM->cCPUs;i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
728
729 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
730 pVCpu->cpum.s.uMagic = 0;
731 pCtx->dr[5] = 0;
732 }
733#endif
734 return 0;
735}
736
737VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
738{
739 /* @todo anything different for VCPU > 0? */
740 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
741
742 /*
743 * Initialize everything to ZERO first.
744 */
745 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
746 memset(pCtx, 0, sizeof(*pCtx));
747 pVCpu->cpum.s.fUseFlags = fUseFlags;
748
749 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
750 pCtx->eip = 0x0000fff0;
751 pCtx->edx = 0x00000600; /* P6 processor */
752 pCtx->eflags.Bits.u1Reserved0 = 1;
753
754 pCtx->cs = 0xf000;
755 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
756 pCtx->csHid.u32Limit = 0x0000ffff;
757 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
758 pCtx->csHid.Attr.n.u1Present = 1;
759 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
760
761 pCtx->dsHid.u32Limit = 0x0000ffff;
762 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
763 pCtx->dsHid.Attr.n.u1Present = 1;
764 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
765
766 pCtx->esHid.u32Limit = 0x0000ffff;
767 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
768 pCtx->esHid.Attr.n.u1Present = 1;
769 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
770
771 pCtx->fsHid.u32Limit = 0x0000ffff;
772 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
773 pCtx->fsHid.Attr.n.u1Present = 1;
774 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
775
776 pCtx->gsHid.u32Limit = 0x0000ffff;
777 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
778 pCtx->gsHid.Attr.n.u1Present = 1;
779 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
780
781 pCtx->ssHid.u32Limit = 0x0000ffff;
782 pCtx->ssHid.Attr.n.u1Present = 1;
783 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
784 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
785
786 pCtx->idtr.cbIdt = 0xffff;
787 pCtx->gdtr.cbGdt = 0xffff;
788
789 pCtx->ldtrHid.u32Limit = 0xffff;
790 pCtx->ldtrHid.Attr.n.u1Present = 1;
791 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
792
793 pCtx->trHid.u32Limit = 0xffff;
794 pCtx->trHid.Attr.n.u1Present = 1;
795 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
796
797 pCtx->dr[6] = X86_DR6_INIT_VAL;
798 pCtx->dr[7] = X86_DR7_INIT_VAL;
799
800 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
801 pCtx->fpu.FCW = 0x37f;
802
803 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
804 pCtx->fpu.MXCSR = 0x1F80;
805
806 /* Init PAT MSR */
807 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
808
809 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
810 * The Intel docs don't mention it.
811 */
812 pCtx->msrEFER = 0;
813}
814
815/**
816 * Resets the CPU.
817 *
818 * @returns VINF_SUCCESS.
819 * @param pVM The VM handle.
820 */
821VMMR3DECL(void) CPUMR3Reset(PVM pVM)
822{
823 for (unsigned i=0;i<pVM->cCPUs;i++)
824 {
825 CPUMR3ResetCpu(&pVM->aCpus[i]);
826
827#ifdef VBOX_WITH_CRASHDUMP_MAGIC
828 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
829
830 /* Magic marker for searching in crash dumps. */
831 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
832 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
833 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
834#endif
835 }
836}
837
838
839/**
840 * Execute state save operation.
841 *
842 * @returns VBox status code.
843 * @param pVM VM Handle.
844 * @param pSSM SSM operation handle.
845 */
846static DECLCALLBACK(int) cpumR3Save(PVM pVM, PSSMHANDLE pSSM)
847{
848 /*
849 * Save.
850 */
851 for (unsigned i=0;i<pVM->cCPUs;i++)
852 {
853 PVMCPU pVCpu = &pVM->aCpus[i];
854
855 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
856 }
857
858 SSMR3PutU32(pSSM, pVM->cCPUs);
859 for (unsigned i=0;i<pVM->cCPUs;i++)
860 {
861 PVMCPU pVCpu = &pVM->aCpus[i];
862
863 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
864 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
865 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
866 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
867 }
868
869 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
870 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
871
872 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
873 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
874
875 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
876 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
877
878 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
879
880 /* Add the cpuid for checking that the cpu is unchanged. */
881 uint32_t au32CpuId[8] = {0};
882 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
883 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
884 return SSMR3PutMem(pSSM, &au32CpuId[0], sizeof(au32CpuId));
885}
886
887
888/**
889 * Load a version 1.6 CPUMCTX structure.
890 *
891 * @returns VBox status code.
892 * @param pVM VM Handle.
893 * @param pCpumctx16 Version 1.6 CPUMCTX
894 */
895static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
896{
897#define CPUMCTX16_LOADREG(RegName) \
898 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
899
900#define CPUMCTX16_LOADDRXREG(RegName) \
901 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
902
903#define CPUMCTX16_LOADHIDREG(RegName) \
904 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
905 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
906 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
907
908#define CPUMCTX16_LOADSEGREG(RegName) \
909 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
910 CPUMCTX16_LOADHIDREG(RegName);
911
912 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
913
914 CPUMCTX16_LOADREG(rax);
915 CPUMCTX16_LOADREG(rbx);
916 CPUMCTX16_LOADREG(rcx);
917 CPUMCTX16_LOADREG(rdx);
918 CPUMCTX16_LOADREG(rdi);
919 CPUMCTX16_LOADREG(rsi);
920 CPUMCTX16_LOADREG(rbp);
921 CPUMCTX16_LOADREG(esp);
922 CPUMCTX16_LOADREG(rip);
923 CPUMCTX16_LOADREG(rflags);
924
925 CPUMCTX16_LOADSEGREG(cs);
926 CPUMCTX16_LOADSEGREG(ds);
927 CPUMCTX16_LOADSEGREG(es);
928 CPUMCTX16_LOADSEGREG(fs);
929 CPUMCTX16_LOADSEGREG(gs);
930 CPUMCTX16_LOADSEGREG(ss);
931
932 CPUMCTX16_LOADREG(r8);
933 CPUMCTX16_LOADREG(r9);
934 CPUMCTX16_LOADREG(r10);
935 CPUMCTX16_LOADREG(r11);
936 CPUMCTX16_LOADREG(r12);
937 CPUMCTX16_LOADREG(r13);
938 CPUMCTX16_LOADREG(r14);
939 CPUMCTX16_LOADREG(r15);
940
941 CPUMCTX16_LOADREG(cr0);
942 CPUMCTX16_LOADREG(cr2);
943 CPUMCTX16_LOADREG(cr3);
944 CPUMCTX16_LOADREG(cr4);
945
946 CPUMCTX16_LOADDRXREG(0);
947 CPUMCTX16_LOADDRXREG(1);
948 CPUMCTX16_LOADDRXREG(2);
949 CPUMCTX16_LOADDRXREG(3);
950 CPUMCTX16_LOADDRXREG(4);
951 CPUMCTX16_LOADDRXREG(5);
952 CPUMCTX16_LOADDRXREG(6);
953 CPUMCTX16_LOADDRXREG(7);
954
955 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
956 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
957 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
958 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
959
960 CPUMCTX16_LOADREG(ldtr);
961 CPUMCTX16_LOADREG(tr);
962
963 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
964
965 CPUMCTX16_LOADREG(msrEFER);
966 CPUMCTX16_LOADREG(msrSTAR);
967 CPUMCTX16_LOADREG(msrPAT);
968 CPUMCTX16_LOADREG(msrLSTAR);
969 CPUMCTX16_LOADREG(msrCSTAR);
970 CPUMCTX16_LOADREG(msrSFMASK);
971 CPUMCTX16_LOADREG(msrKERNELGSBASE);
972
973 CPUMCTX16_LOADHIDREG(ldtr);
974 CPUMCTX16_LOADHIDREG(tr);
975
976#undef CPUMCTX16_LOADSEGREG
977#undef CPUMCTX16_LOADHIDREG
978#undef CPUMCTX16_LOADDRXREG
979#undef CPUMCTX16_LOADREG
980}
981
982
983/**
984 * Execute state load operation.
985 *
986 * @returns VBox status code.
987 * @param pVM VM Handle.
988 * @param pSSM SSM operation handle.
989 * @param u32Version Data layout version.
990 */
991static DECLCALLBACK(int) cpumR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
992{
993 /*
994 * Validate version.
995 */
996 if ( u32Version != CPUM_SAVED_STATE_VERSION
997 && u32Version != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
998 && u32Version != CPUM_SAVED_STATE_VERSION_VER2_0
999 && u32Version != CPUM_SAVED_STATE_VERSION_VER1_6)
1000 {
1001 AssertMsgFailed(("cpuR3Load: Invalid version u32Version=%d!\n", u32Version));
1002 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1003 }
1004
1005 /* Set the size of RTGCPTR for SSMR3GetGCPtr. */
1006 if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
1007 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1008 else if (u32Version <= CPUM_SAVED_STATE_VERSION)
1009 SSMR3SetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1010
1011 /*
1012 * Restore.
1013 */
1014 for (unsigned i=0;i<pVM->cCPUs;i++)
1015 {
1016 PVMCPU pVCpu = &pVM->aCpus[i];
1017 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1018 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
1019
1020 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1021 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1022 pVCpu->cpum.s.Hyper.esp = uESP;
1023 }
1024
1025 if (u32Version == CPUM_SAVED_STATE_VERSION_VER1_6)
1026 {
1027 CPUMCTX_VER1_6 cpumctx16;
1028 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
1029 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
1030
1031 /* Save the old cpumctx state into the new one. */
1032 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
1033
1034 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
1035 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
1036 }
1037 else
1038 {
1039 if (u32Version >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1040 {
1041 int rc = SSMR3GetU32(pSSM, &pVM->cCPUs);
1042 AssertRCReturn(rc, rc);
1043 }
1044
1045 if ( !pVM->cCPUs
1046 || pVM->cCPUs > VMM_MAX_CPU_COUNT
1047 || ( u32Version == CPUM_SAVED_STATE_VERSION_VER2_0
1048 && pVM->cCPUs != 1))
1049 {
1050 AssertMsgFailed(("Unexpected number of VMCPUs (%d)\n", pVM->cCPUs));
1051 return VERR_SSM_UNEXPECTED_DATA;
1052 }
1053
1054 for (unsigned i=0;i<pVM->cCPUs;i++)
1055 {
1056 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
1057 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
1058 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
1059 if (u32Version == CPUM_SAVED_STATE_VERSION)
1060 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
1061 }
1062 }
1063
1064
1065 uint32_t cElements;
1066 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1067 /* Support old saved states with a smaller standard cpuid array. */
1068 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
1069 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1070 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
1071
1072 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1073 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
1074 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1075 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1076
1077 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1078 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
1079 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1080 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1081
1082 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1083
1084 /*
1085 * Check that the basic cpuid id information is unchanged.
1086 * @todo we should check the 64 bits capabilities too!
1087 */
1088 uint32_t au32CpuId[8] = {0};
1089 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
1090 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
1091 uint32_t au32CpuIdSaved[8];
1092 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
1093 if (RT_SUCCESS(rc))
1094 {
1095 /* Ignore CPU stepping. */
1096 au32CpuId[4] &= 0xfffffff0;
1097 au32CpuIdSaved[4] &= 0xfffffff0;
1098
1099 /* Ignore APIC ID (AMD specs). */
1100 au32CpuId[5] &= ~0xff000000;
1101 au32CpuIdSaved[5] &= ~0xff000000;
1102
1103 /* Ignore the number of Logical CPUs (AMD specs). */
1104 au32CpuId[5] &= ~0x00ff0000;
1105 au32CpuIdSaved[5] &= ~0x00ff0000;
1106
1107 /* Ignore some advanced capability bits, that we don't expose to the guest. */
1108 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
1109 | X86_CPUID_FEATURE_ECX_VMX
1110 | X86_CPUID_FEATURE_ECX_SMX
1111 | X86_CPUID_FEATURE_ECX_EST
1112 | X86_CPUID_FEATURE_ECX_TM2
1113 | X86_CPUID_FEATURE_ECX_CNTXID
1114 | X86_CPUID_FEATURE_ECX_TPRUPDATE
1115 | X86_CPUID_FEATURE_ECX_PDCM
1116 | X86_CPUID_FEATURE_ECX_DCA
1117 | X86_CPUID_FEATURE_ECX_X2APIC
1118 | X86_CPUID_FEATURE_ECX_POPCOUNT
1119 | X86_CPUID_FEATURE_ECX_MOVBE
1120 | X86_CPUID_FEATURE_ECX_XSAVE
1121 | X86_CPUID_FEATURE_ECX_OSXSAVE
1122 );
1123 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
1124 | X86_CPUID_FEATURE_ECX_VMX
1125 | X86_CPUID_FEATURE_ECX_SMX
1126 | X86_CPUID_FEATURE_ECX_EST
1127 | X86_CPUID_FEATURE_ECX_TM2
1128 | X86_CPUID_FEATURE_ECX_CNTXID
1129 | X86_CPUID_FEATURE_ECX_TPRUPDATE
1130 | X86_CPUID_FEATURE_ECX_PDCM
1131 | X86_CPUID_FEATURE_ECX_DCA
1132 | X86_CPUID_FEATURE_ECX_X2APIC
1133 | X86_CPUID_FEATURE_ECX_POPCOUNT
1134 | X86_CPUID_FEATURE_ECX_MOVBE
1135 | X86_CPUID_FEATURE_ECX_XSAVE
1136 | X86_CPUID_FEATURE_ECX_OSXSAVE
1137 );
1138
1139 /* Make sure we don't forget to update the masks when enabling
1140 * features in the future.
1141 */
1142 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
1143 ( X86_CPUID_FEATURE_ECX_DTES64
1144 | X86_CPUID_FEATURE_ECX_VMX
1145 | X86_CPUID_FEATURE_ECX_SMX
1146 | X86_CPUID_FEATURE_ECX_EST
1147 | X86_CPUID_FEATURE_ECX_TM2
1148 | X86_CPUID_FEATURE_ECX_CNTXID
1149 | X86_CPUID_FEATURE_ECX_TPRUPDATE
1150 | X86_CPUID_FEATURE_ECX_PDCM
1151 | X86_CPUID_FEATURE_ECX_DCA
1152 | X86_CPUID_FEATURE_ECX_X2APIC
1153 | X86_CPUID_FEATURE_ECX_POPCOUNT
1154 | X86_CPUID_FEATURE_ECX_MOVBE
1155 | X86_CPUID_FEATURE_ECX_XSAVE
1156 | X86_CPUID_FEATURE_ECX_OSXSAVE
1157 )));
1158 /* do the compare */
1159 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
1160 {
1161 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
1162 LogRel(("cpumR3Load: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
1163 "Saved=%.*Rhxs\n"
1164 "Real =%.*Rhxs\n",
1165 sizeof(au32CpuIdSaved), au32CpuIdSaved,
1166 sizeof(au32CpuId), au32CpuId));
1167 else
1168 {
1169 LogRel(("cpumR3Load: CpuId mismatch!\n"
1170 "Saved=%.*Rhxs\n"
1171 "Real =%.*Rhxs\n",
1172 sizeof(au32CpuIdSaved), au32CpuIdSaved,
1173 sizeof(au32CpuId), au32CpuId));
1174 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
1175 }
1176 }
1177 }
1178
1179 return rc;
1180}
1181
1182
1183/**
1184 * Formats the EFLAGS value into mnemonics.
1185 *
1186 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
1187 * @param efl The EFLAGS value.
1188 */
1189static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
1190{
1191 /*
1192 * Format the flags.
1193 */
1194 static const struct
1195 {
1196 const char *pszSet; const char *pszClear; uint32_t fFlag;
1197 } s_aFlags[] =
1198 {
1199 { "vip",NULL, X86_EFL_VIP },
1200 { "vif",NULL, X86_EFL_VIF },
1201 { "ac", NULL, X86_EFL_AC },
1202 { "vm", NULL, X86_EFL_VM },
1203 { "rf", NULL, X86_EFL_RF },
1204 { "nt", NULL, X86_EFL_NT },
1205 { "ov", "nv", X86_EFL_OF },
1206 { "dn", "up", X86_EFL_DF },
1207 { "ei", "di", X86_EFL_IF },
1208 { "tf", NULL, X86_EFL_TF },
1209 { "nt", "pl", X86_EFL_SF },
1210 { "nz", "zr", X86_EFL_ZF },
1211 { "ac", "na", X86_EFL_AF },
1212 { "po", "pe", X86_EFL_PF },
1213 { "cy", "nc", X86_EFL_CF },
1214 };
1215 char *psz = pszEFlags;
1216 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
1217 {
1218 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
1219 if (pszAdd)
1220 {
1221 strcpy(psz, pszAdd);
1222 psz += strlen(pszAdd);
1223 *psz++ = ' ';
1224 }
1225 }
1226 psz[-1] = '\0';
1227}
1228
1229
1230/**
1231 * Formats a full register dump.
1232 *
1233 * @param pVM VM Handle.
1234 * @param pCtx The context to format.
1235 * @param pCtxCore The context core to format.
1236 * @param pHlp Output functions.
1237 * @param enmType The dump type.
1238 * @param pszPrefix Register name prefix.
1239 */
1240static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
1241{
1242 /*
1243 * Format the EFLAGS.
1244 */
1245 uint32_t efl = pCtxCore->eflags.u32;
1246 char szEFlags[80];
1247 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1248
1249 /*
1250 * Format the registers.
1251 */
1252 switch (enmType)
1253 {
1254 case CPUMDUMPTYPE_TERSE:
1255 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1256 pHlp->pfnPrintf(pHlp,
1257 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1258 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1259 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1260 "%sr14=%016RX64 %sr15=%016RX64\n"
1261 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1262 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1263 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1264 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1265 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1266 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1267 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1268 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
1269 else
1270 pHlp->pfnPrintf(pHlp,
1271 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1272 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1273 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
1274 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1275 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1276 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1277 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
1278 break;
1279
1280 case CPUMDUMPTYPE_DEFAULT:
1281 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1282 pHlp->pfnPrintf(pHlp,
1283 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1284 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1285 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1286 "%sr14=%016RX64 %sr15=%016RX64\n"
1287 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1288 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1289 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
1290 ,
1291 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1292 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1293 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1294 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1295 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1296 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
1297 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1298 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
1299 else
1300 pHlp->pfnPrintf(pHlp,
1301 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1302 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1303 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
1304 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
1305 ,
1306 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1307 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1308 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
1309 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
1310 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1311 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
1312 break;
1313
1314 case CPUMDUMPTYPE_VERBOSE:
1315 if (CPUMIsGuestIn64BitCodeEx(pCtx))
1316 pHlp->pfnPrintf(pHlp,
1317 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
1318 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
1319 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
1320 "%sr14=%016RX64 %sr15=%016RX64\n"
1321 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
1322 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1323 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1324 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1325 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1326 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1327 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
1328 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
1329 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
1330 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
1331 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1332 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1333 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1334 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
1335 ,
1336 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
1337 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
1338 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
1339 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1340 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
1341 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
1342 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
1343 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
1344 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
1345 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
1346 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1347 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1348 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1349 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1350 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
1351 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
1352 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1353 else
1354 pHlp->pfnPrintf(pHlp,
1355 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
1356 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
1357 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
1358 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
1359 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
1360 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
1361 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
1362 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
1363 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
1364 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1365 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
1366 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
1367 ,
1368 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
1369 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
1370 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
1371 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
1372 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
1373 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
1374 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
1375 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
1376 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
1377 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
1378 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
1379 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1380
1381 pHlp->pfnPrintf(pHlp,
1382 "FPU:\n"
1383 "%sFCW=%04x %sFSW=%04x %sFTW=%02x\n"
1384 "%sres1=%02x %sFOP=%04x %sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x\n"
1385 "%sFPUDP=%04x %sDS=%04x %sRsvrd2=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
1386 ,
1387 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW,
1388 pszPrefix, pCtx->fpu.huh1, pszPrefix, pCtx->fpu.FOP, pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
1389 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2,
1390 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK);
1391
1392 pHlp->pfnPrintf(pHlp,
1393 "MSR:\n"
1394 "%sEFER =%016RX64\n"
1395 "%sPAT =%016RX64\n"
1396 "%sSTAR =%016RX64\n"
1397 "%sCSTAR =%016RX64\n"
1398 "%sLSTAR =%016RX64\n"
1399 "%sSFMASK =%016RX64\n"
1400 "%sKERNELGSBASE =%016RX64\n",
1401 pszPrefix, pCtx->msrEFER,
1402 pszPrefix, pCtx->msrPAT,
1403 pszPrefix, pCtx->msrSTAR,
1404 pszPrefix, pCtx->msrCSTAR,
1405 pszPrefix, pCtx->msrLSTAR,
1406 pszPrefix, pCtx->msrSFMASK,
1407 pszPrefix, pCtx->msrKERNELGSBASE);
1408 break;
1409 }
1410}
1411
1412
1413/**
1414 * Display all cpu states and any other cpum info.
1415 *
1416 * @param pVM VM Handle.
1417 * @param pHlp The info helper functions.
1418 * @param pszArgs Arguments, ignored.
1419 */
1420static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1421{
1422 cpumR3InfoGuest(pVM, pHlp, pszArgs);
1423 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
1424 cpumR3InfoHyper(pVM, pHlp, pszArgs);
1425 cpumR3InfoHost(pVM, pHlp, pszArgs);
1426}
1427
1428
1429/**
1430 * Parses the info argument.
1431 *
1432 * The argument starts with 'verbose', 'terse' or 'default' and then
1433 * continues with the comment string.
1434 *
1435 * @param pszArgs The pointer to the argument string.
1436 * @param penmType Where to store the dump type request.
1437 * @param ppszComment Where to store the pointer to the comment string.
1438 */
1439static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
1440{
1441 if (!pszArgs)
1442 {
1443 *penmType = CPUMDUMPTYPE_DEFAULT;
1444 *ppszComment = "";
1445 }
1446 else
1447 {
1448 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
1449 {
1450 pszArgs += 5;
1451 *penmType = CPUMDUMPTYPE_VERBOSE;
1452 }
1453 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
1454 {
1455 pszArgs += 5;
1456 *penmType = CPUMDUMPTYPE_TERSE;
1457 }
1458 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
1459 {
1460 pszArgs += 7;
1461 *penmType = CPUMDUMPTYPE_DEFAULT;
1462 }
1463 else
1464 *penmType = CPUMDUMPTYPE_DEFAULT;
1465 *ppszComment = RTStrStripL(pszArgs);
1466 }
1467}
1468
1469
1470/**
1471 * Display the guest cpu state.
1472 *
1473 * @param pVM VM Handle.
1474 * @param pHlp The info helper functions.
1475 * @param pszArgs Arguments, ignored.
1476 */
1477static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1478{
1479 CPUMDUMPTYPE enmType;
1480 const char *pszComment;
1481 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1482
1483 /* @todo SMP support! */
1484 PVMCPU pVCpu = VMMGetCpu(pVM);
1485 if (!pVCpu)
1486 pVCpu = &pVM->aCpus[0];
1487
1488 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
1489
1490 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1491 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
1492}
1493
1494
1495/**
1496 * Display the current guest instruction
1497 *
1498 * @param pVM VM Handle.
1499 * @param pHlp The info helper functions.
1500 * @param pszArgs Arguments, ignored.
1501 */
1502static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1503{
1504 char szInstruction[256];
1505 /* @todo SMP support! */
1506 PVMCPU pVCpu = VMMGetCpu(pVM);
1507 if (!pVCpu)
1508 pVCpu = &pVM->aCpus[0];
1509
1510 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
1511 if (RT_SUCCESS(rc))
1512 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
1513}
1514
1515
1516/**
1517 * Display the hypervisor cpu state.
1518 *
1519 * @param pVM VM Handle.
1520 * @param pHlp The info helper functions.
1521 * @param pszArgs Arguments, ignored.
1522 */
1523static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1524{
1525 CPUMDUMPTYPE enmType;
1526 const char *pszComment;
1527 /* @todo SMP */
1528 PVMCPU pVCpu = &pVM->aCpus[0];
1529
1530 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1531 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
1532 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
1533 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
1534}
1535
1536
1537/**
1538 * Display the host cpu state.
1539 *
1540 * @param pVM VM Handle.
1541 * @param pHlp The info helper functions.
1542 * @param pszArgs Arguments, ignored.
1543 */
1544static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1545{
1546 CPUMDUMPTYPE enmType;
1547 const char *pszComment;
1548 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
1549 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
1550
1551 /*
1552 * Format the EFLAGS.
1553 */
1554 /* @todo SMP */
1555 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
1556#if HC_ARCH_BITS == 32
1557 uint32_t efl = pCtx->eflags.u32;
1558#else
1559 uint64_t efl = pCtx->rflags;
1560#endif
1561 char szEFlags[80];
1562 cpumR3InfoFormatFlags(&szEFlags[0], efl);
1563
1564 /*
1565 * Format the registers.
1566 */
1567#if HC_ARCH_BITS == 32
1568# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1569 if (!(pCtx->efer & MSR_K6_EFER_LMA))
1570# endif
1571 {
1572 pHlp->pfnPrintf(pHlp,
1573 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
1574 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
1575 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
1576 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
1577 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
1578 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
1579 ,
1580 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
1581 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
1582 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
1583 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
1584 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
1585 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
1586 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
1587 }
1588# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
1589 else
1590# endif
1591#endif
1592#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
1593 {
1594 pHlp->pfnPrintf(pHlp,
1595 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
1596 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
1597 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
1598 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
1599 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
1600 "r14=%016RX64 r15=%016RX64\n"
1601 "iopl=%d %31s\n"
1602 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
1603 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
1604 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
1605 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
1606 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
1607 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
1608 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
1609 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
1610 ,
1611 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
1612 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
1613 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
1614 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
1615 pCtx->r11, pCtx->r12, pCtx->r13,
1616 pCtx->r14, pCtx->r15,
1617 X86_EFL_GET_IOPL(efl), szEFlags,
1618 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
1619 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
1620 pCtx->cr4, pCtx->ldtr, pCtx->tr,
1621 pCtx->dr0, pCtx->dr1, pCtx->dr2,
1622 pCtx->dr3, pCtx->dr6, pCtx->dr7,
1623 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
1624 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
1625 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
1626 }
1627#endif
1628}
1629
1630
1631/**
1632 * Get L1 cache / TLS associativity.
1633 */
1634static const char *getCacheAss(unsigned u, char *pszBuf)
1635{
1636 if (u == 0)
1637 return "res0 ";
1638 if (u == 1)
1639 return "direct";
1640 if (u >= 256)
1641 return "???";
1642
1643 RTStrPrintf(pszBuf, 16, "%d way", u);
1644 return pszBuf;
1645}
1646
1647
1648/**
1649 * Get L2 cache soociativity.
1650 */
1651const char *getL2CacheAss(unsigned u)
1652{
1653 switch (u)
1654 {
1655 case 0: return "off ";
1656 case 1: return "direct";
1657 case 2: return "2 way ";
1658 case 3: return "res3 ";
1659 case 4: return "4 way ";
1660 case 5: return "res5 ";
1661 case 6: return "8 way "; case 7: return "res7 ";
1662 case 8: return "16 way";
1663 case 9: return "res9 ";
1664 case 10: return "res10 ";
1665 case 11: return "res11 ";
1666 case 12: return "res12 ";
1667 case 13: return "res13 ";
1668 case 14: return "res14 ";
1669 case 15: return "fully ";
1670 default:
1671 return "????";
1672 }
1673}
1674
1675
1676/**
1677 * Display the guest CpuId leaves.
1678 *
1679 * @param pVM VM Handle.
1680 * @param pHlp The info helper functions.
1681 * @param pszArgs "terse", "default" or "verbose".
1682 */
1683static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1684{
1685 /*
1686 * Parse the argument.
1687 */
1688 unsigned iVerbosity = 1;
1689 if (pszArgs)
1690 {
1691 pszArgs = RTStrStripL(pszArgs);
1692 if (!strcmp(pszArgs, "terse"))
1693 iVerbosity--;
1694 else if (!strcmp(pszArgs, "verbose"))
1695 iVerbosity++;
1696 }
1697
1698 /*
1699 * Start cracking.
1700 */
1701 CPUMCPUID Host;
1702 CPUMCPUID Guest;
1703 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
1704
1705 pHlp->pfnPrintf(pHlp,
1706 " RAW Standard CPUIDs\n"
1707 " Function eax ebx ecx edx\n");
1708 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
1709 {
1710 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
1711 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1712
1713 pHlp->pfnPrintf(pHlp,
1714 "Gst: %08x %08x %08x %08x %08x%s\n"
1715 "Hst: %08x %08x %08x %08x\n",
1716 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1717 i <= cStdMax ? "" : "*",
1718 Host.eax, Host.ebx, Host.ecx, Host.edx);
1719 }
1720
1721 /*
1722 * If verbose, decode it.
1723 */
1724 if (iVerbosity)
1725 {
1726 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
1727 pHlp->pfnPrintf(pHlp,
1728 "Name: %.04s%.04s%.04s\n"
1729 "Supports: 0-%x\n",
1730 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
1731 }
1732
1733 /*
1734 * Get Features.
1735 */
1736 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
1737 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
1738 pVM->cpum.s.aGuestCpuIdStd[0].edx);
1739 if (cStdMax >= 1 && iVerbosity)
1740 {
1741 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
1742 uint32_t uEAX = Guest.eax;
1743
1744 pHlp->pfnPrintf(pHlp,
1745 "Family: %d \tExtended: %d \tEffective: %d\n"
1746 "Model: %d \tExtended: %d \tEffective: %d\n"
1747 "Stepping: %d\n"
1748 "APIC ID: %#04x\n"
1749 "Logical CPUs: %d\n"
1750 "CLFLUSH Size: %d\n"
1751 "Brand ID: %#04x\n",
1752 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
1753 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
1754 ASMGetCpuStepping(uEAX),
1755 (Guest.ebx >> 24) & 0xff,
1756 (Guest.ebx >> 16) & 0xff,
1757 (Guest.ebx >> 8) & 0xff,
1758 (Guest.ebx >> 0) & 0xff);
1759 if (iVerbosity == 1)
1760 {
1761 uint32_t uEDX = Guest.edx;
1762 pHlp->pfnPrintf(pHlp, "Features EDX: ");
1763 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
1764 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
1765 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
1766 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
1767 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
1768 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
1769 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
1770 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
1771 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
1772 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
1773 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
1774 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
1775 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
1776 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
1777 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
1778 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
1779 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
1780 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
1781 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
1782 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
1783 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
1784 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
1785 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
1786 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
1787 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
1788 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
1789 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
1790 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
1791 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
1792 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
1793 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
1794 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
1795 pHlp->pfnPrintf(pHlp, "\n");
1796
1797 uint32_t uECX = Guest.ecx;
1798 pHlp->pfnPrintf(pHlp, "Features ECX: ");
1799 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
1800 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " 1");
1801 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " 2");
1802 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
1803 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
1804 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
1805 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " 6");
1806 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
1807 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
1808 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " 9");
1809 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
1810 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
1811 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " 12");
1812 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
1813 for (unsigned iBit = 14; iBit < 32; iBit++)
1814 if (uECX & RT_BIT(iBit))
1815 pHlp->pfnPrintf(pHlp, " %d", iBit);
1816 pHlp->pfnPrintf(pHlp, "\n");
1817 }
1818 else
1819 {
1820 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1821
1822 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
1823 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
1824 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
1825 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
1826
1827 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
1828 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
1829 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
1830 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
1831 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
1832 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
1833 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
1834 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
1835 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
1836 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
1837 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
1838 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
1839 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
1840 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
1841 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
1842 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
1843 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
1844 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
1845 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
1846 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
1847 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
1848 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
1849 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
1850 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
1851 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
1852 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
1853 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
1854 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
1855 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
1856 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
1857 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
1858 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
1859 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
1860
1861 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
1862 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
1863 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
1864 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
1865 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
1866 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
1867 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
1868 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
1869 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
1870 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
1871 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
1872 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved2, EcxHost.u2Reserved2);
1873 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
1874 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
1875 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
1876 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
1877 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
1878 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
1879 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
1880 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
1881 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
1882 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
1883 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved4, EcxHost.u2Reserved4);
1884 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
1885 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
1886 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
1887 }
1888 }
1889 if (cStdMax >= 2 && iVerbosity)
1890 {
1891 /** @todo */
1892 }
1893
1894 /*
1895 * Extended.
1896 * Implemented after AMD specs.
1897 */
1898 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
1899
1900 pHlp->pfnPrintf(pHlp,
1901 "\n"
1902 " RAW Extended CPUIDs\n"
1903 " Function eax ebx ecx edx\n");
1904 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
1905 {
1906 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
1907 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
1908
1909 pHlp->pfnPrintf(pHlp,
1910 "Gst: %08x %08x %08x %08x %08x%s\n"
1911 "Hst: %08x %08x %08x %08x\n",
1912 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
1913 i <= cExtMax ? "" : "*",
1914 Host.eax, Host.ebx, Host.ecx, Host.edx);
1915 }
1916
1917 /*
1918 * Understandable output
1919 */
1920 if (iVerbosity)
1921 {
1922 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
1923 pHlp->pfnPrintf(pHlp,
1924 "Ext Name: %.4s%.4s%.4s\n"
1925 "Ext Supports: 0x80000000-%#010x\n",
1926 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
1927 }
1928
1929 if (iVerbosity && cExtMax >= 1)
1930 {
1931 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
1932 uint32_t uEAX = Guest.eax;
1933 pHlp->pfnPrintf(pHlp,
1934 "Family: %d \tExtended: %d \tEffective: %d\n"
1935 "Model: %d \tExtended: %d \tEffective: %d\n"
1936 "Stepping: %d\n"
1937 "Brand ID: %#05x\n",
1938 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
1939 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
1940 ASMGetCpuStepping(uEAX),
1941 Guest.ebx & 0xfff);
1942
1943 if (iVerbosity == 1)
1944 {
1945 uint32_t uEDX = Guest.edx;
1946 pHlp->pfnPrintf(pHlp, "Features EDX: ");
1947 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
1948 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
1949 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
1950 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
1951 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
1952 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
1953 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
1954 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
1955 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
1956 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
1957 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
1958 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
1959 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
1960 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
1961 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
1962 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
1963 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
1964 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
1965 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
1966 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
1967 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
1968 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
1969 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
1970 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
1971 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
1972 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
1973 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
1974 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
1975 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
1976 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
1977 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
1978 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
1979 pHlp->pfnPrintf(pHlp, "\n");
1980
1981 uint32_t uECX = Guest.ecx;
1982 pHlp->pfnPrintf(pHlp, "Features ECX: ");
1983 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
1984 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
1985 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
1986 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
1987 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
1988 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
1989 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
1990 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
1991 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
1992 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
1993 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
1994 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
1995 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
1996 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
1997 for (unsigned iBit = 5; iBit < 32; iBit++)
1998 if (uECX & RT_BIT(iBit))
1999 pHlp->pfnPrintf(pHlp, " %d", iBit);
2000 pHlp->pfnPrintf(pHlp, "\n");
2001 }
2002 else
2003 {
2004 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2005
2006 uint32_t uEdxGst = Guest.edx;
2007 uint32_t uEdxHst = Host.edx;
2008 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2009 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
2010 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
2011 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
2012 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
2013 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
2014 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
2015 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
2016 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
2017 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
2018 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
2019 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
2020 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
2021 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
2022 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
2023 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
2024 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
2025 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
2026 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
2027 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
2028 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
2029 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
2030 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
2031 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
2032 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
2033 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
2034 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
2035 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
2036 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
2037 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
2038 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
2039 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
2040 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
2041
2042 uint32_t uEcxGst = Guest.ecx;
2043 uint32_t uEcxHst = Host.ecx;
2044 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
2045 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
2046 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
2047 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
2048 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
2049 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
2050 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
2051 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
2052 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
2053 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
2054 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
2055 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
2056 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
2057 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
2058 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
2059 }
2060 }
2061
2062 if (iVerbosity && cExtMax >= 2)
2063 {
2064 char szString[4*4*3+1] = {0};
2065 uint32_t *pu32 = (uint32_t *)szString;
2066 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
2067 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
2068 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
2069 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
2070 if (cExtMax >= 3)
2071 {
2072 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
2073 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
2074 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
2075 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
2076 }
2077 if (cExtMax >= 4)
2078 {
2079 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
2080 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
2081 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
2082 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
2083 }
2084 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
2085 }
2086
2087 if (iVerbosity && cExtMax >= 5)
2088 {
2089 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
2090 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
2091 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
2092 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
2093 char sz1[32];
2094 char sz2[32];
2095
2096 pHlp->pfnPrintf(pHlp,
2097 "TLB 2/4M Instr/Uni: %s %3d entries\n"
2098 "TLB 2/4M Data: %s %3d entries\n",
2099 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
2100 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
2101 pHlp->pfnPrintf(pHlp,
2102 "TLB 4K Instr/Uni: %s %3d entries\n"
2103 "TLB 4K Data: %s %3d entries\n",
2104 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
2105 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
2106 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
2107 "L1 Instr Cache Lines Per Tag: %d\n"
2108 "L1 Instr Cache Associativity: %s\n"
2109 "L1 Instr Cache Size: %d KB\n",
2110 (uEDX >> 0) & 0xff,
2111 (uEDX >> 8) & 0xff,
2112 getCacheAss((uEDX >> 16) & 0xff, sz1),
2113 (uEDX >> 24) & 0xff);
2114 pHlp->pfnPrintf(pHlp,
2115 "L1 Data Cache Line Size: %d bytes\n"
2116 "L1 Data Cache Lines Per Tag: %d\n"
2117 "L1 Data Cache Associativity: %s\n"
2118 "L1 Data Cache Size: %d KB\n",
2119 (uECX >> 0) & 0xff,
2120 (uECX >> 8) & 0xff,
2121 getCacheAss((uECX >> 16) & 0xff, sz1),
2122 (uECX >> 24) & 0xff);
2123 }
2124
2125 if (iVerbosity && cExtMax >= 6)
2126 {
2127 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
2128 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
2129 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
2130
2131 pHlp->pfnPrintf(pHlp,
2132 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
2133 "L2 TLB 2/4M Data: %s %4d entries\n",
2134 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
2135 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
2136 pHlp->pfnPrintf(pHlp,
2137 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
2138 "L2 TLB 4K Data: %s %4d entries\n",
2139 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
2140 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
2141 pHlp->pfnPrintf(pHlp,
2142 "L2 Cache Line Size: %d bytes\n"
2143 "L2 Cache Lines Per Tag: %d\n"
2144 "L2 Cache Associativity: %s\n"
2145 "L2 Cache Size: %d KB\n",
2146 (uEDX >> 0) & 0xff,
2147 (uEDX >> 8) & 0xf,
2148 getL2CacheAss((uEDX >> 12) & 0xf),
2149 (uEDX >> 16) & 0xffff);
2150 }
2151
2152 if (iVerbosity && cExtMax >= 7)
2153 {
2154 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
2155
2156 pHlp->pfnPrintf(pHlp, "APM Features: ");
2157 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
2158 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
2159 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
2160 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
2161 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
2162 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
2163 for (unsigned iBit = 6; iBit < 32; iBit++)
2164 if (uEDX & RT_BIT(iBit))
2165 pHlp->pfnPrintf(pHlp, " %d", iBit);
2166 pHlp->pfnPrintf(pHlp, "\n");
2167 }
2168
2169 if (iVerbosity && cExtMax >= 8)
2170 {
2171 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
2172 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
2173
2174 pHlp->pfnPrintf(pHlp,
2175 "Physical Address Width: %d bits\n"
2176 "Virtual Address Width: %d bits\n",
2177 (uEAX >> 0) & 0xff,
2178 (uEAX >> 8) & 0xff);
2179 pHlp->pfnPrintf(pHlp,
2180 "Physical Core Count: %d\n",
2181 (uECX >> 0) & 0xff);
2182 }
2183
2184
2185 /*
2186 * Centaur.
2187 */
2188 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
2189
2190 pHlp->pfnPrintf(pHlp,
2191 "\n"
2192 " RAW Centaur CPUIDs\n"
2193 " Function eax ebx ecx edx\n");
2194 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
2195 {
2196 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
2197 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2198
2199 pHlp->pfnPrintf(pHlp,
2200 "Gst: %08x %08x %08x %08x %08x%s\n"
2201 "Hst: %08x %08x %08x %08x\n",
2202 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2203 i <= cCentaurMax ? "" : "*",
2204 Host.eax, Host.ebx, Host.ecx, Host.edx);
2205 }
2206
2207 /*
2208 * Understandable output
2209 */
2210 if (iVerbosity)
2211 {
2212 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
2213 pHlp->pfnPrintf(pHlp,
2214 "Centaur Supports: 0xc0000000-%#010x\n",
2215 Guest.eax);
2216 }
2217
2218 if (iVerbosity && cCentaurMax >= 1)
2219 {
2220 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2221 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
2222 uint32_t uEdxHst = Host.edx;
2223
2224 if (iVerbosity == 1)
2225 {
2226 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
2227 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
2228 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
2229 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
2230 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
2231 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
2232 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
2233 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
2234 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
2235 /* possibly indicating MM/HE and MM/HE-E on older chips... */
2236 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
2237 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
2238 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
2239 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
2240 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
2241 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
2242 for (unsigned iBit = 14; iBit < 32; iBit++)
2243 if (uEdxGst & RT_BIT(iBit))
2244 pHlp->pfnPrintf(pHlp, " %d", iBit);
2245 pHlp->pfnPrintf(pHlp, "\n");
2246 }
2247 else
2248 {
2249 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2250 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
2251 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
2252 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
2253 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
2254 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
2255 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
2256 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
2257 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
2258 /* possibly indicating MM/HE and MM/HE-E on older chips... */
2259 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
2260 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
2261 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
2262 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
2263 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
2264 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
2265 for (unsigned iBit = 14; iBit < 32; iBit++)
2266 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
2267 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
2268 pHlp->pfnPrintf(pHlp, "\n");
2269 }
2270 }
2271}
2272
2273
2274/**
2275 * Structure used when disassembling and instructions in DBGF.
2276 * This is used so the reader function can get the stuff it needs.
2277 */
2278typedef struct CPUMDISASSTATE
2279{
2280 /** Pointer to the CPU structure. */
2281 PDISCPUSTATE pCpu;
2282 /** The VM handle. */
2283 PVM pVM;
2284 /** The VMCPU handle. */
2285 PVMCPU pVCpu;
2286 /** Pointer to the first byte in the segemnt. */
2287 RTGCUINTPTR GCPtrSegBase;
2288 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
2289 RTGCUINTPTR GCPtrSegEnd;
2290 /** The size of the segment minus 1. */
2291 RTGCUINTPTR cbSegLimit;
2292 /** Pointer to the current page - R3 Ptr. */
2293 void const *pvPageR3;
2294 /** Pointer to the current page - GC Ptr. */
2295 RTGCPTR pvPageGC;
2296 /** The lock information that PGMPhysReleasePageMappingLock needs. */
2297 PGMPAGEMAPLOCK PageMapLock;
2298 /** Whether the PageMapLock is valid or not. */
2299 bool fLocked;
2300 /** 64 bits mode or not. */
2301 bool f64Bits;
2302} CPUMDISASSTATE, *PCPUMDISASSTATE;
2303
2304
2305/**
2306 * Instruction reader.
2307 *
2308 * @returns VBox status code.
2309 * @param PtrSrc Address to read from.
2310 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
2311 * @param pu8Dst Where to store the bytes.
2312 * @param cbRead Number of bytes to read.
2313 * @param uDisCpu Pointer to the disassembler cpu state.
2314 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
2315 */
2316static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
2317{
2318 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
2319 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
2320 Assert(cbRead > 0);
2321 for (;;)
2322 {
2323 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
2324
2325 /* Need to update the page translation? */
2326 if ( !pState->pvPageR3
2327 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
2328 {
2329 int rc = VINF_SUCCESS;
2330
2331 /* translate the address */
2332 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
2333 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
2334 && !HWACCMIsEnabled(pState->pVM))
2335 {
2336 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
2337 if (!pState->pvPageR3)
2338 rc = VERR_INVALID_POINTER;
2339 }
2340 else
2341 {
2342 /* Release mapping lock previously acquired. */
2343 if (pState->fLocked)
2344 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
2345 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
2346 pState->fLocked = RT_SUCCESS_NP(rc);
2347 }
2348 if (RT_FAILURE(rc))
2349 {
2350 pState->pvPageR3 = NULL;
2351 return rc;
2352 }
2353 }
2354
2355 /* check the segemnt limit */
2356 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
2357 return VERR_OUT_OF_SELECTOR_BOUNDS;
2358
2359 /* calc how much we can read */
2360 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
2361 if (!pState->f64Bits)
2362 {
2363 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
2364 if (cb > cbSeg && cbSeg)
2365 cb = cbSeg;
2366 }
2367 if (cb > cbRead)
2368 cb = cbRead;
2369
2370 /* read and advance */
2371 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
2372 cbRead -= cb;
2373 if (!cbRead)
2374 return VINF_SUCCESS;
2375 pu8Dst += cb;
2376 PtrSrc += cb;
2377 }
2378}
2379
2380
2381/**
2382 * Disassemble an instruction and return the information in the provided structure.
2383 *
2384 * @returns VBox status code.
2385 * @param pVM VM Handle
2386 * @param pVCpu VMCPU Handle
2387 * @param pCtx CPU context
2388 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
2389 * @param pCpu Disassembly state
2390 * @param pszPrefix String prefix for logging (debug only)
2391 *
2392 */
2393VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
2394{
2395 CPUMDISASSTATE State;
2396 int rc;
2397
2398 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
2399 State.pCpu = pCpu;
2400 State.pvPageGC = 0;
2401 State.pvPageR3 = NULL;
2402 State.pVM = pVM;
2403 State.pVCpu = pVCpu;
2404 State.fLocked = false;
2405 State.f64Bits = false;
2406
2407 /*
2408 * Get selector information.
2409 */
2410 if ( (pCtx->cr0 & X86_CR0_PE)
2411 && pCtx->eflags.Bits.u1VM == 0)
2412 {
2413 if (CPUMAreHiddenSelRegsValid(pVM))
2414 {
2415 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
2416 State.GCPtrSegBase = pCtx->csHid.u64Base;
2417 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
2418 State.cbSegLimit = pCtx->csHid.u32Limit;
2419 pCpu->mode = (State.f64Bits)
2420 ? CPUMODE_64BIT
2421 : pCtx->csHid.Attr.n.u1DefBig
2422 ? CPUMODE_32BIT
2423 : CPUMODE_16BIT;
2424 }
2425 else
2426 {
2427 DBGFSELINFO SelInfo;
2428
2429 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
2430 if (RT_FAILURE(rc))
2431 {
2432 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
2433 return rc;
2434 }
2435
2436 /*
2437 * Validate the selector.
2438 */
2439 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
2440 if (RT_FAILURE(rc))
2441 {
2442 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
2443 return rc;
2444 }
2445 State.GCPtrSegBase = SelInfo.GCPtrBase;
2446 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
2447 State.cbSegLimit = SelInfo.cbLimit;
2448 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
2449 }
2450 }
2451 else
2452 {
2453 /* real or V86 mode */
2454 pCpu->mode = CPUMODE_16BIT;
2455 State.GCPtrSegBase = pCtx->cs * 16;
2456 State.GCPtrSegEnd = 0xFFFFFFFF;
2457 State.cbSegLimit = 0xFFFFFFFF;
2458 }
2459
2460 /*
2461 * Disassemble the instruction.
2462 */
2463 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
2464 pCpu->apvUserData[0] = &State;
2465
2466 uint32_t cbInstr;
2467#ifndef LOG_ENABLED
2468 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
2469 if (RT_SUCCESS(rc))
2470 {
2471#else
2472 char szOutput[160];
2473 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
2474 if (RT_SUCCESS(rc))
2475 {
2476 /* log it */
2477 if (pszPrefix)
2478 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
2479 else
2480 Log(("%s", szOutput));
2481#endif
2482 rc = VINF_SUCCESS;
2483 }
2484 else
2485 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
2486
2487 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
2488 if (State.fLocked)
2489 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
2490
2491 return rc;
2492}
2493
2494#ifdef DEBUG
2495
2496/**
2497 * Disassemble an instruction and dump it to the log
2498 *
2499 * @returns VBox status code.
2500 * @param pVM VM Handle
2501 * @param pVCpu VMCPU Handle
2502 * @param pCtx CPU context
2503 * @param pc GC instruction pointer
2504 * @param pszPrefix String prefix for logging
2505 *
2506 * @deprecated Use DBGFR3DisasInstrCurrentLog().
2507 */
2508VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
2509{
2510 DISCPUSTATE Cpu;
2511 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
2512}
2513
2514
2515/**
2516 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
2517 *
2518 * @internal
2519 */
2520VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
2521{
2522 /* @todo SMP support!! */
2523 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
2524}
2525
2526#endif /* DEBUG */
2527
2528/**
2529 * API for controlling a few of the CPU features found in CR4.
2530 *
2531 * Currently only X86_CR4_TSD is accepted as input.
2532 *
2533 * @returns VBox status code.
2534 *
2535 * @param pVM The VM handle.
2536 * @param fOr The CR4 OR mask.
2537 * @param fAnd The CR4 AND mask.
2538 */
2539VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
2540{
2541 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
2542 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
2543
2544 pVM->cpum.s.CR4.OrMask &= fAnd;
2545 pVM->cpum.s.CR4.OrMask |= fOr;
2546
2547 return VINF_SUCCESS;
2548}
2549
2550
2551/**
2552 * Gets a pointer to the array of standard CPUID leafs.
2553 *
2554 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
2555 *
2556 * @returns Pointer to the standard CPUID leafs (read-only).
2557 * @param pVM The VM handle.
2558 * @remark Intended for PATM.
2559 */
2560VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
2561{
2562 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
2563}
2564
2565
2566/**
2567 * Gets a pointer to the array of extended CPUID leafs.
2568 *
2569 * CPUMGetGuestCpuIdExtMax() give the size of the array.
2570 *
2571 * @returns Pointer to the extended CPUID leafs (read-only).
2572 * @param pVM The VM handle.
2573 * @remark Intended for PATM.
2574 */
2575VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
2576{
2577 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
2578}
2579
2580
2581/**
2582 * Gets a pointer to the array of centaur CPUID leafs.
2583 *
2584 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
2585 *
2586 * @returns Pointer to the centaur CPUID leafs (read-only).
2587 * @param pVM The VM handle.
2588 * @remark Intended for PATM.
2589 */
2590VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
2591{
2592 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
2593}
2594
2595
2596/**
2597 * Gets a pointer to the default CPUID leaf.
2598 *
2599 * @returns Pointer to the default CPUID leaf (read-only).
2600 * @param pVM The VM handle.
2601 * @remark Intended for PATM.
2602 */
2603VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
2604{
2605 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
2606}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette