VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 24760

Last change on this file since 24760 was 24463, checked in by vboxsync, 15 years ago

CPUM: Enabled the last bit of live migration code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 167.6 KB
Line 
1/* $Id: CPUM.cpp 24463 2009-11-06 16:22:42Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_cpum CPUM - CPU Monitor / Manager
23 *
24 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
25 * also responsible for lazy FPU handling and some of the context loading
26 * in raw mode.
27 *
28 * There are three CPU contexts, the most important one is the guest one (GC).
29 * When running in raw-mode (RC) there is a special hyper context for the VMM
30 * part that floats around inside the guest address space. When running in
31 * raw-mode, CPUM also maintains a host context for saving and restoring
32 * registers accross world switches. This latter is done in cooperation with the
33 * world switcher (@see pg_vmm).
34 *
35 * @see grp_cpum
36 */
37
38/*******************************************************************************
39* Header Files *
40*******************************************************************************/
41#define LOG_GROUP LOG_GROUP_CPUM
42#include <VBox/cpum.h>
43#include <VBox/cpumdis.h>
44#include <VBox/pgm.h>
45#include <VBox/pdm.h>
46#include <VBox/mm.h>
47#include <VBox/selm.h>
48#include <VBox/dbgf.h>
49#include <VBox/patm.h>
50#include <VBox/hwaccm.h>
51#include <VBox/ssm.h>
52#include "CPUMInternal.h"
53#include <VBox/vm.h>
54
55#include <VBox/param.h>
56#include <VBox/dis.h>
57#include <VBox/err.h>
58#include <VBox/log.h>
59#include <iprt/assert.h>
60#include <iprt/asm.h>
61#include <iprt/string.h>
62#include <iprt/mp.h>
63#include <iprt/cpuset.h>
64
65
66/*******************************************************************************
67* Defined Constants And Macros *
68*******************************************************************************/
69/** The current saved state version. */
70#define CPUM_SAVED_STATE_VERSION 11
71/** The saved state version of 3.0 and 3.1 trunk before the teleportation
72 * changes. */
73#define CPUM_SAVED_STATE_VERSION_VER3_0 10
74/** The saved state version for the 2.1 trunk before the MSR changes. */
75#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
76/** The saved state version of 2.0, used for backwards compatibility. */
77#define CPUM_SAVED_STATE_VERSION_VER2_0 8
78/** The saved state version of 1.6, used for backwards compatability. */
79#define CPUM_SAVED_STATE_VERSION_VER1_6 6
80
81
82/*******************************************************************************
83* Structures and Typedefs *
84*******************************************************************************/
85
86/**
87 * What kind of cpu info dump to perform.
88 */
89typedef enum CPUMDUMPTYPE
90{
91 CPUMDUMPTYPE_TERSE,
92 CPUMDUMPTYPE_DEFAULT,
93 CPUMDUMPTYPE_VERBOSE
94} CPUMDUMPTYPE;
95/** Pointer to a cpu info dump type. */
96typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
97
98
99/*******************************************************************************
100* Internal Functions *
101*******************************************************************************/
102static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
103static int cpumR3CpuIdInit(PVM pVM);
104static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
105static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
106static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
107static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113
114
115/**
116 * Initializes the CPUM.
117 *
118 * @returns VBox status code.
119 * @param pVM The VM to operate on.
120 */
121VMMR3DECL(int) CPUMR3Init(PVM pVM)
122{
123 LogFlow(("CPUMR3Init\n"));
124
125 /*
126 * Assert alignment and sizes.
127 */
128 AssertCompileMemberAlignment(VM, cpum.s, 32);
129 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
130 AssertCompileSizeAlignment(CPUMCTX, 64);
131 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
132 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
133 AssertCompileMemberAlignment(VM, cpum, 64);
134 AssertCompileMemberAlignment(VM, aCpus, 64);
135 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
136 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
137
138 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
139 pVM->cpum.s.ulOffCPUMCPU = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
140 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.ulOffCPUMCPU == (uintptr_t)&pVM->aCpus[0].cpum);
141
142 /* Calculate the offset from CPUMCPU to CPUM. */
143 for (VMCPUID i = 0; i < pVM->cCpus; i++)
144 {
145 PVMCPU pVCpu = &pVM->aCpus[i];
146
147 /*
148 * Setup any fixed pointers and offsets.
149 */
150 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
151 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
152
153 pVCpu->cpum.s.ulOffCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
154 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.ulOffCPUM == (uintptr_t)&pVM->cpum);
155 }
156
157 /*
158 * Check that the CPU supports the minimum features we require.
159 */
160 if (!ASMHasCpuId())
161 {
162 Log(("The CPU doesn't support CPUID!\n"));
163 return VERR_UNSUPPORTED_CPU;
164 }
165 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
166 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
167
168 /* Setup the CR4 AND and OR masks used in the switcher */
169 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
170 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
171 {
172 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
173 /* No FXSAVE implies no SSE */
174 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
175 pVM->cpum.s.CR4.OrMask = 0;
176 }
177 else
178 {
179 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
180 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
181 }
182
183 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
184 {
185 Log(("The CPU doesn't support MMX!\n"));
186 return VERR_UNSUPPORTED_CPU;
187 }
188 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
189 {
190 Log(("The CPU doesn't support TSC!\n"));
191 return VERR_UNSUPPORTED_CPU;
192 }
193 /* Bogus on AMD? */
194 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
195 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
196
197 /*
198 * Detech the host CPU vendor.
199 * (The guest CPU vendor is re-detected later on.)
200 */
201 uint32_t uEAX, uEBX, uECX, uEDX;
202 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
203 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
204 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
205
206 /*
207 * Setup hypervisor startup values.
208 */
209
210 /*
211 * Register saved state data item.
212 */
213 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
214 NULL, cpumR3LiveExec, NULL,
215 NULL, cpumR3SaveExec, NULL,
216 NULL, cpumR3LoadExec, NULL);
217 if (RT_FAILURE(rc))
218 return rc;
219
220 /*
221 * Register info handlers.
222 */
223 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
224 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
225 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
227 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
228 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
229
230 /*
231 * Initialize the Guest CPUID state.
232 */
233 rc = cpumR3CpuIdInit(pVM);
234 if (RT_FAILURE(rc))
235 return rc;
236 CPUMR3Reset(pVM);
237 return VINF_SUCCESS;
238}
239
240
241/**
242 * Initializes the per-VCPU CPUM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
248{
249 LogFlow(("CPUMR3InitCPU\n"));
250 return VINF_SUCCESS;
251}
252
253
254/**
255 * Detect the CPU vendor give n the
256 *
257 * @returns The vendor.
258 * @param uEAX EAX from CPUID(0).
259 * @param uEBX EBX from CPUID(0).
260 * @param uECX ECX from CPUID(0).
261 * @param uEDX EDX from CPUID(0).
262 */
263static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
264{
265 if ( uEAX >= 1
266 && uEBX == X86_CPUID_VENDOR_AMD_EBX
267 && uECX == X86_CPUID_VENDOR_AMD_ECX
268 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
269 return CPUMCPUVENDOR_AMD;
270
271 if ( uEAX >= 1
272 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
273 && uECX == X86_CPUID_VENDOR_INTEL_ECX
274 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
275 return CPUMCPUVENDOR_INTEL;
276
277 /** @todo detect the other buggers... */
278 return CPUMCPUVENDOR_UNKNOWN;
279}
280
281
282/**
283 * Fetches overrides for a CPUID leaf.
284 *
285 * @returns VBox status code.
286 * @param pLeaf The leaf to load the overrides into.
287 * @param pCfgNode The CFGM node containing the overrides
288 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
289 * @param iLeaf The CPUID leaf number.
290 */
291static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
292{
293 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
294 if (pLeafNode)
295 {
296 uint32_t u32;
297 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
298 if (RT_SUCCESS(rc))
299 pLeaf->eax = u32;
300 else
301 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
302
303 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
304 if (RT_SUCCESS(rc))
305 pLeaf->ebx = u32;
306 else
307 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
308
309 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
310 if (RT_SUCCESS(rc))
311 pLeaf->ecx = u32;
312 else
313 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
314
315 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
316 if (RT_SUCCESS(rc))
317 pLeaf->edx = u32;
318 else
319 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
320
321 }
322 return VINF_SUCCESS;
323}
324
325
326/**
327 * Load the overrides for a set of CPUID leafs.
328 *
329 * @returns VBox status code.
330 * @param paLeafs The leaf array.
331 * @param cLeafs The number of leafs.
332 * @param uStart The start leaf number.
333 * @param pCfgNode The CFGM node containing the overrides
334 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
335 */
336static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
337{
338 for (uint32_t i = 0; i < cLeafs; i++)
339 {
340 int rc = cpumR3CpuIdFetchLeafOverride(&paLeafs[i], pCfgNode, uStart + i);
341 if (RT_FAILURE(rc))
342 return rc;
343 }
344
345 return VINF_SUCCESS;
346}
347
348/**
349 * Init a set of host CPUID leafs.
350 *
351 * @returns VBox status code.
352 * @param paLeafs The leaf array.
353 * @param cLeafs The number of leafs.
354 * @param uStart The start leaf number.
355 * @param pCfgNode The /CPUM/HostCPUID/ node.
356 */
357static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeafs, uint32_t cLeafs, PCFGMNODE pCfgNode)
358{
359 /* Using the ECX variant for all of them can't hurt... */
360 for (uint32_t i = 0; i < cLeafs; i++)
361 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeafs[i].eax, &paLeafs[i].ebx, &paLeafs[i].ecx, &paLeafs[i].edx);
362
363 /* Load CPUID leaf override; we currently don't care if the caller
364 specifies features the host CPU doesn't support. */
365 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeafs, cLeafs, pCfgNode);
366}
367
368
369/**
370 * Initializes the emulated CPU's cpuid information.
371 *
372 * @returns VBox status code.
373 * @param pVM The VM to operate on.
374 */
375static int cpumR3CpuIdInit(PVM pVM)
376{
377 PCPUM pCPUM = &pVM->cpum.s;
378 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
379 uint32_t i;
380 int rc;
381
382 /*
383 * Get the host CPUIDs and redetect the guest CPU vendor (could've been overridden).
384 */
385 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
386 * Overrides the host CPUID leaf values used for calculating the guest CPUID
387 * leafs. This can be used to preserve the CPUID values when moving a VM to
388 * a different machine. Another use is restricting (or extending) the
389 * feature set exposed to the guest. */
390 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
391 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
392 AssertRCReturn(rc, rc);
393 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
394 AssertRCReturn(rc, rc);
395 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
396 AssertRCReturn(rc, rc);
397
398 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
399 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
400
401 /*
402 * Only report features we can support.
403 */
404 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
405 | X86_CPUID_FEATURE_EDX_VME
406 | X86_CPUID_FEATURE_EDX_DE
407 | X86_CPUID_FEATURE_EDX_PSE
408 | X86_CPUID_FEATURE_EDX_TSC
409 | X86_CPUID_FEATURE_EDX_MSR
410 //| X86_CPUID_FEATURE_EDX_PAE - not implemented yet.
411 | X86_CPUID_FEATURE_EDX_MCE
412 | X86_CPUID_FEATURE_EDX_CX8
413 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
414 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
415 //| X86_CPUID_FEATURE_EDX_SEP
416 | X86_CPUID_FEATURE_EDX_MTRR
417 | X86_CPUID_FEATURE_EDX_PGE
418 | X86_CPUID_FEATURE_EDX_MCA
419 | X86_CPUID_FEATURE_EDX_CMOV
420 | X86_CPUID_FEATURE_EDX_PAT
421 | X86_CPUID_FEATURE_EDX_PSE36
422 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
423 | X86_CPUID_FEATURE_EDX_CLFSH
424 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
425 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
426 | X86_CPUID_FEATURE_EDX_MMX
427 | X86_CPUID_FEATURE_EDX_FXSR
428 | X86_CPUID_FEATURE_EDX_SSE
429 | X86_CPUID_FEATURE_EDX_SSE2
430 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
431 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
432 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
433 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
434 | 0;
435 pCPUM->aGuestCpuIdStd[1].ecx &= 0
436 | X86_CPUID_FEATURE_ECX_SSE3
437 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
438 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
439 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
440 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
441 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
442 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
443 //| X86_CPUID_FEATURE_ECX_SSSE3 - no SSSE3 support
444 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
445 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
446 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
447 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
448 /* ECX Bit 21 - x2APIC support - not yet. */
449 // | X86_CPUID_FEATURE_ECX_X2APIC
450 /* ECX Bit 23 - POPCNT instruction. */
451 //| X86_CPUID_FEATURE_ECX_POPCNT
452 | 0;
453
454 /* ASSUMES that this is ALWAYS the AMD define feature set if present. */
455 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
456 | X86_CPUID_AMD_FEATURE_EDX_VME
457 | X86_CPUID_AMD_FEATURE_EDX_DE
458 | X86_CPUID_AMD_FEATURE_EDX_PSE
459 | X86_CPUID_AMD_FEATURE_EDX_TSC
460 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
461 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
462 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
463 | X86_CPUID_AMD_FEATURE_EDX_CX8
464 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
465 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
466 //| X86_CPUID_AMD_FEATURE_EDX_SEP
467 | X86_CPUID_AMD_FEATURE_EDX_MTRR
468 | X86_CPUID_AMD_FEATURE_EDX_PGE
469 | X86_CPUID_AMD_FEATURE_EDX_MCA
470 | X86_CPUID_AMD_FEATURE_EDX_CMOV
471 | X86_CPUID_AMD_FEATURE_EDX_PAT
472 | X86_CPUID_AMD_FEATURE_EDX_PSE36
473 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
474 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
475 | X86_CPUID_AMD_FEATURE_EDX_MMX
476 | X86_CPUID_AMD_FEATURE_EDX_FXSR
477 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
478 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
479 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
480 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
481 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
482 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
483 | 0;
484 pCPUM->aGuestCpuIdExt[1].ecx &= 0
485 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
486 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
487 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
488 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
489 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
490 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
491 //| X86_CPUID_AMD_FEATURE_ECX_ABM
492 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
493 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
494 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
495 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
496 //| X86_CPUID_AMD_FEATURE_ECX_IBS
497 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
498 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
499 //| X86_CPUID_AMD_FEATURE_ECX_WDT
500 | 0;
501
502 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false); AssertRCReturn(rc, rc);
503 if (pCPUM->fSyntheticCpu)
504 {
505 const char szVendor[13] = "VirtualBox ";
506 const char szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
507
508 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
509
510 /* Limit the nr of standard leaves; 5 for monitor/mwait */
511 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
512
513 /* 0: Vendor */
514 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)szVendor)[0];
515 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)szVendor)[2];
516 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)szVendor)[1];
517
518 /* 1.eax: Version information. family : model : stepping */
519 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
520
521 /* Leaves 2 - 4 are Intel only - zero them out */
522 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
523 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
524 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
525
526 /* Leaf 5 = monitor/mwait */
527
528 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
529 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
530 /* AMD only - set to zero. */
531 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
532
533 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
534 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
535
536 /* 0x800000002-4: Processor Name String Identifier. */
537 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)szProcessor)[0];
538 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)szProcessor)[1];
539 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)szProcessor)[2];
540 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)szProcessor)[3];
541 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)szProcessor)[4];
542 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)szProcessor)[5];
543 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)szProcessor)[6];
544 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)szProcessor)[7];
545 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)szProcessor)[8];
546 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)szProcessor)[9];
547 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)szProcessor)[10];
548 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)szProcessor)[11];
549
550 /* 0x800000005-7 - reserved -> zero */
551 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
552 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
553 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
554
555 /* 0x800000008: only the max virtual and physical address size. */
556 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
557 }
558
559 /*
560 * Hide HTT, multicode, SMP, whatever.
561 * (APIC-ID := 0 and #LogCpus := 0)
562 */
563 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
564#ifdef VBOX_WITH_MULTI_CORE
565 if ( pVM->cCpus > 1
566 && pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC)
567 {
568 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
569 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
570 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
571 }
572#endif
573
574 /* Cpuid 2:
575 * Intel: Cache and TLB information
576 * AMD: Reserved
577 * Safe to expose
578 */
579
580 /* Cpuid 3:
581 * Intel: EAX, EBX - reserved
582 * ECX, EDX - Processor Serial Number if available, otherwise reserved
583 * AMD: Reserved
584 * Safe to expose
585 */
586 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
587 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
588
589 /* Cpuid 4:
590 * Intel: Deterministic Cache Parameters Leaf
591 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
592 * AMD: Reserved
593 * Safe to expose, except for EAX:
594 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
595 * Bits 31-26: Maximum number of processor cores in this physical package**
596 * Note: These SMP values are constant regardless of ECX
597 */
598 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
599 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
600#ifdef VBOX_WITH_MULTI_CORE
601 if ( pVM->cCpus > 1
602 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
603 {
604 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
605 /* One logical processor with possibly multiple cores. */
606 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
607 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
608 }
609#endif
610
611 /* Cpuid 5: Monitor/mwait Leaf
612 * Intel: ECX, EDX - reserved
613 * EAX, EBX - Smallest and largest monitor line size
614 * AMD: EDX - reserved
615 * EAX, EBX - Smallest and largest monitor line size
616 * ECX - extensions (ignored for now)
617 * Safe to expose
618 */
619 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
620 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
621
622 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
623
624 /*
625 * Determine the default.
626 *
627 * Intel returns values of the highest standard function, while AMD
628 * returns zeros. VIA on the other hand seems to returning nothing or
629 * perhaps some random garbage, we don't try to duplicate this behavior.
630 */
631 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10,
632 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
633 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
634
635 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
636 * Safe to pass on to the guest.
637 *
638 * Intel: 0x800000005 reserved
639 * 0x800000006 L2 cache information
640 * AMD: 0x800000005 L1 cache information
641 * 0x800000006 L2/L3 cache information
642 */
643
644 /* Cpuid 0x800000007:
645 * AMD: EAX, EBX, ECX - reserved
646 * EDX: Advanced Power Management Information
647 * Intel: Reserved
648 */
649 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
650 {
651 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
652
653 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
654
655 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
656 {
657 /* Only expose the TSC invariant capability bit to the guest. */
658 pCPUM->aGuestCpuIdExt[7].edx &= 0
659 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
660 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
661 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
662 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
663 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
664 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
665 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
666 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
667#if 1
668 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer Linux kernels blindly assume
669 * that the AMD performance counters work if this is set for 64 bits guests. (can't really find a CPUID feature bit for them though)
670 */
671#else
672 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
673#endif
674 | 0;
675 }
676 else
677 pCPUM->aGuestCpuIdExt[7].edx = 0;
678 }
679
680 /* Cpuid 0x800000008:
681 * AMD: EBX, EDX - reserved
682 * EAX: Virtual/Physical address Size
683 * ECX: Number of cores + APICIdCoreIdSize
684 * Intel: EAX: Virtual/Physical address Size
685 * EBX, ECX, EDX - reserved
686 */
687 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
688 {
689 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
690 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
691 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
692 * NC (0-7) Number of cores; 0 equals 1 core */
693 pCPUM->aGuestCpuIdExt[8].ecx = 0;
694#ifdef VBOX_WITH_MULTI_CORE
695 if ( pVM->cCpus > 1
696 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
697 {
698 /* Legacy method to determine the number of cores. */
699 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
700 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
701
702 }
703#endif
704 }
705
706 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
707 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
708 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
709 * This option corrsponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
710 */
711 bool fNt4LeafLimit;
712 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
713 if (fNt4LeafLimit)
714 pCPUM->aGuestCpuIdStd[0].eax = 3;
715
716 /*
717 * Limit it the number of entries and fill the remaining with the defaults.
718 *
719 * The limits are masking off stuff about power saving and similar, this
720 * is perhaps a bit crudely done as there is probably some relatively harmless
721 * info too in these leaves (like words about having a constant TSC).
722 */
723 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
724 pCPUM->aGuestCpuIdStd[0].eax = 5;
725
726 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
727 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
728
729 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
730 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
731 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
732 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
733 : 0;
734 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt); i++)
735 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
736
737 /*
738 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
739 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
740 * of processors from (cpuid(4).eax >> 26) + 1.
741 */
742 if (pVM->cCpus == 1)
743 pCPUM->aGuestCpuIdStd[4].eax = 0;
744
745 /*
746 * Centaur stuff (VIA).
747 *
748 * The important part here (we think) is to make sure the 0xc0000000
749 * function returns 0xc0000001. As for the features, we don't currently
750 * let on about any of those... 0xc0000002 seems to be some
751 * temperature/hz/++ stuff, include it as well (static).
752 */
753 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
754 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
755 {
756 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
757 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
758 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
759 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
760 i++)
761 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
762 }
763 else
764 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
765 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
766
767
768 /*
769 * Load CPUID overrides from configuration.
770 * Note: Kind of redundant now, but allows unchanged overrides
771 */
772 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
773 * Overrides the CPUID leaf values. */
774 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
775 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
776 AssertRCReturn(rc, rc);
777 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
778 AssertRCReturn(rc, rc);
779 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
780 AssertRCReturn(rc, rc);
781
782 /*
783 * Check if PAE was explicitely enabled by the user.
784 */
785 bool fEnable;
786 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
787 if (fEnable)
788 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
789
790 /*
791 * Log the cpuid and we're good.
792 */
793 RTCPUSET OnlineSet;
794 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
795 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
796 LogRel(("************************* CPUID dump ************************\n"));
797 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
798 LogRel(("\n"));
799 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
800 LogRel(("******************** End of CPUID dump **********************\n"));
801 return VINF_SUCCESS;
802}
803
804
805
806
807/**
808 * Applies relocations to data and code managed by this
809 * component. This function will be called at init and
810 * whenever the VMM need to relocate it self inside the GC.
811 *
812 * The CPUM will update the addresses used by the switcher.
813 *
814 * @param pVM The VM.
815 */
816VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
817{
818 LogFlow(("CPUMR3Relocate\n"));
819 for (VMCPUID i = 0; i < pVM->cCpus; i++)
820 {
821 /*
822 * Switcher pointers.
823 */
824 PVMCPU pVCpu = &pVM->aCpus[i];
825 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
826 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
827 }
828}
829
830
831/**
832 * Terminates the CPUM.
833 *
834 * Termination means cleaning up and freeing all resources,
835 * the VM it self is at this point powered off or suspended.
836 *
837 * @returns VBox status code.
838 * @param pVM The VM to operate on.
839 */
840VMMR3DECL(int) CPUMR3Term(PVM pVM)
841{
842 CPUMR3TermCPU(pVM);
843 return 0;
844}
845
846
847/**
848 * Terminates the per-VCPU CPUM.
849 *
850 * Termination means cleaning up and freeing all resources,
851 * the VM it self is at this point powered off or suspended.
852 *
853 * @returns VBox status code.
854 * @param pVM The VM to operate on.
855 */
856VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
857{
858#ifdef VBOX_WITH_CRASHDUMP_MAGIC
859 for (VMCPUID i = 0; i < pVM->cCpus; i++)
860 {
861 PVMCPU pVCpu = &pVM->aCpus[i];
862 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
863
864 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
865 pVCpu->cpum.s.uMagic = 0;
866 pCtx->dr[5] = 0;
867 }
868#endif
869 return 0;
870}
871
872VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
873{
874 /* @todo anything different for VCPU > 0? */
875 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
876
877 /*
878 * Initialize everything to ZERO first.
879 */
880 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
881 memset(pCtx, 0, sizeof(*pCtx));
882 pVCpu->cpum.s.fUseFlags = fUseFlags;
883
884 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
885 pCtx->eip = 0x0000fff0;
886 pCtx->edx = 0x00000600; /* P6 processor */
887 pCtx->eflags.Bits.u1Reserved0 = 1;
888
889 pCtx->cs = 0xf000;
890 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
891 pCtx->csHid.u32Limit = 0x0000ffff;
892 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
893 pCtx->csHid.Attr.n.u1Present = 1;
894 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
895
896 pCtx->dsHid.u32Limit = 0x0000ffff;
897 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
898 pCtx->dsHid.Attr.n.u1Present = 1;
899 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
900
901 pCtx->esHid.u32Limit = 0x0000ffff;
902 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
903 pCtx->esHid.Attr.n.u1Present = 1;
904 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
905
906 pCtx->fsHid.u32Limit = 0x0000ffff;
907 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
908 pCtx->fsHid.Attr.n.u1Present = 1;
909 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
910
911 pCtx->gsHid.u32Limit = 0x0000ffff;
912 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
913 pCtx->gsHid.Attr.n.u1Present = 1;
914 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
915
916 pCtx->ssHid.u32Limit = 0x0000ffff;
917 pCtx->ssHid.Attr.n.u1Present = 1;
918 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
919 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
920
921 pCtx->idtr.cbIdt = 0xffff;
922 pCtx->gdtr.cbGdt = 0xffff;
923
924 pCtx->ldtrHid.u32Limit = 0xffff;
925 pCtx->ldtrHid.Attr.n.u1Present = 1;
926 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
927
928 pCtx->trHid.u32Limit = 0xffff;
929 pCtx->trHid.Attr.n.u1Present = 1;
930 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
931
932 pCtx->dr[6] = X86_DR6_INIT_VAL;
933 pCtx->dr[7] = X86_DR7_INIT_VAL;
934
935 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
936 pCtx->fpu.FCW = 0x37f;
937
938 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
939 pCtx->fpu.MXCSR = 0x1F80;
940
941 /* Init PAT MSR */
942 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
943
944 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
945 * The Intel docs don't mention it.
946 */
947 pCtx->msrEFER = 0;
948}
949
950/**
951 * Resets the CPU.
952 *
953 * @returns VINF_SUCCESS.
954 * @param pVM The VM handle.
955 */
956VMMR3DECL(void) CPUMR3Reset(PVM pVM)
957{
958 for (VMCPUID i = 0; i < pVM->cCpus; i++)
959 {
960 CPUMR3ResetCpu(&pVM->aCpus[i]);
961
962#ifdef VBOX_WITH_CRASHDUMP_MAGIC
963 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
964
965 /* Magic marker for searching in crash dumps. */
966 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
967 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
968 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
969#endif
970 }
971}
972
973
974/**
975 * Called both in pass 0 and the final pass.
976 *
977 * @param pVM The VM handle.
978 * @param pSSM The saved state handle.
979 */
980static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
981{
982 /*
983 * Save all the CPU ID leaves here so we can check them for compatability
984 * upon loading.
985 */
986 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
987 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
988
989 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
990 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
991
992 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
993 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
994
995 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
996
997 /*
998 * Save a good portion of the raw CPU IDs as well as they may come in
999 * handy when validating features for raw mode.
1000 */
1001 CPUMCPUID aRawStd[16];
1002 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1003 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1004 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1005 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1006
1007 CPUMCPUID aRawExt[32];
1008 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1009 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1010 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1011 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1012}
1013
1014
1015/**
1016 * Loads the CPU ID leaves saved by pass 0.
1017 *
1018 * @returns VBox status code.
1019 * @param pVM The VM handle.
1020 * @param pSSM The saved state handle.
1021 * @param uVersion The format version.
1022 */
1023static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1024{
1025 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1026
1027 /*
1028 * Define a bunch of macros for simplifying the code.
1029 */
1030 /* Generic expression + failure message. */
1031#define CPUID_CHECK_RET(expr, fmt) \
1032 do { \
1033 if (!(expr)) \
1034 { \
1035 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadict macros sucks */ \
1036 if (fStrictCpuIdChecks) \
1037 { \
1038 int rc = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1039 RTStrFree(pszMsg); \
1040 return rc; \
1041 } \
1042 LogRel(("CPUM: %s\n", pszMsg)); \
1043 RTStrFree(pszMsg); \
1044 } \
1045 } while (0)
1046#define CPUID_CHECK_WRN(expr, fmt) \
1047 do { \
1048 if (!(expr)) \
1049 LogRel(fmt); \
1050 } while (0)
1051
1052 /* For comparing two values and bitch if they differs. */
1053#define CPUID_CHECK2_RET(what, host, saved) \
1054 do { \
1055 if ((host) != (saved)) \
1056 { \
1057 if (fStrictCpuIdChecks) \
1058 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1059 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1060 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1061 } \
1062 } while (0)
1063#define CPUID_CHECK2_WRN(what, host, saved) \
1064 do { \
1065 if ((host) != (saved)) \
1066 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1067 } while (0)
1068
1069 /* For checking raw cpu features (raw mode). */
1070#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1071 do { \
1072 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1073 { \
1074 if (fStrictCpuIdChecks) \
1075 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1076 N_(#bit " mismatch: host=%d saved=%d"), \
1077 aHostRaw##set [1].reg & (bit), aRaw##set [1].reg & (bit) ); \
1078 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1079 aHostRaw##set [1].reg & (bit), aRaw##set [1].reg & (bit) )); \
1080 } \
1081 } while (0)
1082#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1083 do { \
1084 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1085 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1086 aHostRaw##set [1].reg & (bit), aRaw##set [1].reg & (bit) )); \
1087 } while (0)
1088#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1089
1090 /* For checking guest features. */
1091#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1092 do { \
1093 if ( (aGuestCpuId##set [1].reg & bit) \
1094 && !(aHostRaw##set [1].reg & bit) \
1095 && !(aHostOverride##set [1].reg & bit) \
1096 && !(aGuestOverride##set [1].reg & bit) \
1097 ) \
1098 { \
1099 if (fStrictCpuIdChecks) \
1100 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1101 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1102 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1103 } \
1104 } while (0)
1105#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1106 do { \
1107 if ( (aGuestCpuId##set [1].reg & bit) \
1108 && !(aHostRaw##set [1].reg & bit) \
1109 && !(aHostOverride##set [1].reg & bit) \
1110 && !(aGuestOverride##set [1].reg & bit) \
1111 ) \
1112 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1113 } while (0)
1114#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1115 do { \
1116 if ( (aGuestCpuId##set [1].reg & bit) \
1117 && !(aHostRaw##set [1].reg & bit) \
1118 && !(aHostOverride##set [1].reg & bit) \
1119 && !(aGuestOverride##set [1].reg & bit) \
1120 ) \
1121 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1122 } while (0)
1123#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1124
1125 /* For checking guest features if AMD guest CPU. */
1126#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1127 do { \
1128 if ( (aGuestCpuId##set [1].reg & bit) \
1129 && fGuestAmd \
1130 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1131 && !(aHostOverride##set [1].reg & bit) \
1132 && !(aGuestOverride##set [1].reg & bit) \
1133 ) \
1134 { \
1135 if (fStrictCpuIdChecks) \
1136 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1137 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1138 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1139 } \
1140 } while (0)
1141#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1142 do { \
1143 if ( (aGuestCpuId##set [1].reg & bit) \
1144 && fGuestAmd \
1145 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1146 && !(aHostOverride##set [1].reg & bit) \
1147 && !(aGuestOverride##set [1].reg & bit) \
1148 ) \
1149 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1150 } while (0)
1151#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1152 do { \
1153 if ( (aGuestCpuId##set [1].reg & bit) \
1154 && fGuestAmd \
1155 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1156 && !(aHostOverride##set [1].reg & bit) \
1157 && !(aGuestOverride##set [1].reg & bit) \
1158 ) \
1159 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1160 } while (0)
1161#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1162
1163 /* For checking AMD features which have a corresponding bit in the standard
1164 range. (Intel defines very few bits in the extended feature sets.) */
1165#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1166 do { \
1167 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1168 && !(fHostAmd \
1169 ? aHostRawExt[1].reg & (ExtBit) \
1170 : aHostRawStd[1].reg & (StdBit)) \
1171 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1172 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1173 ) \
1174 { \
1175 if (fStrictCpuIdChecks) \
1176 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1177 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1178 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1179 } \
1180 } while (0)
1181#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1182 do { \
1183 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1184 && !(fHostAmd \
1185 ? aHostRawExt[1].reg & (ExtBit) \
1186 : aHostRawStd[1].reg & (StdBit)) \
1187 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1188 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1189 ) \
1190 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1191 } while (0)
1192#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1193 do { \
1194 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1195 && !(fHostAmd \
1196 ? aHostRawExt[1].reg & (ExtBit) \
1197 : aHostRawStd[1].reg & (StdBit)) \
1198 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1199 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1200 ) \
1201 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1202 } while (0)
1203#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1204
1205 /*
1206 * Load them into stack buffers first.
1207 */
1208 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1209 uint32_t cGuestCpuIdStd;
1210 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1211 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1212 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1213 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1214
1215 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1216 uint32_t cGuestCpuIdExt;
1217 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1218 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1219 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1220 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1221
1222 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1223 uint32_t cGuestCpuIdCentaur;
1224 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1225 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1226 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1227 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1228
1229 CPUMCPUID GuestCpuIdDef;
1230 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1231 AssertRCReturn(rc, rc);
1232
1233 CPUMCPUID aRawStd[16];
1234 uint32_t cRawStd;
1235 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1236 if (cRawStd > RT_ELEMENTS(aRawStd))
1237 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1238 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1239
1240 CPUMCPUID aRawExt[32];
1241 uint32_t cRawExt;
1242 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1243 if (cRawExt > RT_ELEMENTS(aRawExt))
1244 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1245 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1246 AssertRCReturn(rc, rc);
1247
1248 /*
1249 * Note that we support restoring less than the current amount of standard
1250 * leaves because we've been allowed more is newer version of VBox.
1251 *
1252 * So, pad new entries with the default.
1253 */
1254 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1255 aGuestCpuIdStd[i] = GuestCpuIdDef;
1256
1257 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1258 aGuestCpuIdExt[i] = GuestCpuIdDef;
1259
1260 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1261 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1262
1263 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1264 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1265
1266 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1267 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1268
1269 /*
1270 * Get the raw CPU IDs for the current host.
1271 */
1272 CPUMCPUID aHostRawStd[16];
1273 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1274 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1275
1276 CPUMCPUID aHostRawExt[32];
1277 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1278 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1279
1280 /*
1281 * Get the host and guest overrides so we don't reject the state because
1282 * some feature was enabled thru these interfaces.
1283 * Note! We currently only need the feature leafs, so skip rest.
1284 */
1285 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1286 CPUMCPUID aGuestOverrideStd[2];
1287 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1288 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1289
1290 CPUMCPUID aGuestOverrideExt[2];
1291 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1292 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1293
1294 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1295 CPUMCPUID aHostOverrideStd[2];
1296 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1297 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1298
1299 CPUMCPUID aHostOverrideExt[2];
1300 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1301 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1302
1303 /*
1304 * This can be skipped.
1305 */
1306 bool fStrictCpuIdChecks;
1307 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, false);
1308
1309
1310
1311 /*
1312 * For raw-mode we'll require that the CPUs are very similar since we don't
1313 * intercept CPUID instructions for user mode applications.
1314 */
1315 if (!HWACCMIsEnabled(pVM))
1316 {
1317 /* CPUID(0) */
1318 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1319 && aHostRawStd[0].ecx == aRawStd[0].ecx
1320 && aHostRawStd[0].edx == aRawStd[0].edx,
1321 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1322 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1323 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1324 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1325 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1326 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1327
1328 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1329
1330 /* CPUID(1).eax */
1331 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1332 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1333 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1334
1335 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1336 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1337 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1338
1339 /* CPUID(1).ecx */
1340 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1341 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1342 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1343 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1344 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1345 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1346 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1347 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1348 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1349 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1350 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1351 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1352 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1353 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1354 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1355 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1356 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1357 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1358 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1359 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1360 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1361 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1362 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1363 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1364 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1365 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1366 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1367 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1368 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1369 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1370 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1371 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1372
1373 /* CPUID(1).edx */
1374 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1375 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1376 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1377 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1378 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1379 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1380 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1381 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1382 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1383 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1384 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1385 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1386 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1387 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1388 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1389 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1390 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1391 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1392 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1393 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1394 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1395 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1396 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1397 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1398 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1399 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1400 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1401 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1402 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1403 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1404 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1405 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1406
1407 /* CPUID(2) - config, mostly about caches. ignore. */
1408 /* CPUID(3) - processor serial number. ignore. */
1409 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1410 /* CPUID(5) - mwait/monitor config. ignore. */
1411 /* CPUID(6) - power management. ignore. */
1412 /* CPUID(7) - ???. ignore. */
1413 /* CPUID(8) - ???. ignore. */
1414 /* CPUID(9) - DCA. ignore for now. */
1415 /* CPUID(a) - PeMo info. ignore for now. */
1416 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1417
1418 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1419 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1420 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1421 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1422 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1423 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1424 {
1425 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1426 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1427 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1428 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1429 }
1430
1431 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1432 Note! Intel have/is marking many of the fields here as reserved. We
1433 will verify them as if it's an AMD CPU. */
1434 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1435 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1436 (N_("Extended leafs was present on saved state host, but is missing on the current\n")));
1437 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1438 {
1439 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1440 && aHostRawExt[0].ecx == aRawExt[0].ecx
1441 && aHostRawExt[0].edx == aRawExt[0].edx,
1442 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1443 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1444 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1445 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1446
1447 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1448 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1449 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1450 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1451 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1452 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1453
1454 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1455 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1456 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1457 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1458
1459 /* CPUID(0x80000001).ecx */
1460 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1461 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1462 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1463 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1464 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1465 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1466 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1467 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1468 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1469 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1470 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1471 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1472 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1473 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1474 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1475 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1476 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1477 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1478 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1479 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1480 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1481 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1482 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1483 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1484 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1485 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1486 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1487 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1488 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1489 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1490 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1491 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1492
1493 /* CPUID(0x80000001).edx */
1494 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1495 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1496 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1497 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1498 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1499 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1500 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1501 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1502 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1503 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1504 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1505 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1506 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1507 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1508 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1509 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1510 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1511 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1512 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1513 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1514 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1515 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1516 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1517 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1518 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1519 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1520 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1521 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1522 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1523 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1524 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1525 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1526
1527 /** @todo verify the rest as well. */
1528 }
1529 }
1530
1531
1532
1533 /*
1534 * Verify that we can support the features already exposed to the guest on
1535 * this host.
1536 *
1537 * Most of the features we're emulating requires intercepting instruction
1538 * and doing it the slow way, so there is no need to warn when they aren't
1539 * present in the host CPU. Thus we use IGN instead of EMU on these.
1540 *
1541 * Trailing comments:
1542 * "EMU" - Possible to emulate, could be lots of work and very slow.
1543 * "EMU?" - Can this be emulated?
1544 */
1545 /* CPUID(1).ecx */
1546 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1547 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1548 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1549 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1550 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1551 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1552 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1553 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1554 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1555 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1556 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1557 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1558 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1559 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1560 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1561 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1562 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1563 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1564 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1565 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1566 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1567 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1568 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1569 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1570 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1571 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1572 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1573 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1574 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1575 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1576 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1577 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1578
1579 /* CPUID(1).edx */
1580 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1581 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1582 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1583 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1584 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1585 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1586 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1587 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1588 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1589 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1590 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1591 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1592 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1593 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1594 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1595 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1596 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1597 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1598 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1599 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1600 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1601 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1602 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1603 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1604 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1605 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1606 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1607 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1608 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1609 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1610 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1611 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1612
1613 /* CPUID(0x80000000). */
1614 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1615 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1616 {
1617 /** @todo deal with no 0x80000001 on the host. */
1618 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1619 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1620
1621 /* CPUID(0x80000001).ecx */
1622 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1623 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1624 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1625 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1626 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1627 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1628 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1629 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1630 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1631 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1632 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1633 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1634 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1635 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1636 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1637 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1638 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1639 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1640 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1641 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1642 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1643 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1644 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1645 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1646 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1647 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1648 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1649 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1650 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1651 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1652 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1653 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1654
1655 /* CPUID(0x80000001).edx */
1656 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1657 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1658 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1659 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1660 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1661 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1662 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1663 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1664 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1665 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1666 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1667 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1668 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1669 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1670 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1671 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1672 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1673 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1674 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1675 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1676 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1677 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1678 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1679 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1680 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1681 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1682 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1683 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1684 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1685 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1686 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1687 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1688 }
1689
1690 /*
1691 * We're good, commit the CPU ID leaves.
1692 */
1693 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1694 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1695 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1696 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1697
1698#undef CPUID_CHECK_RET
1699#undef CPUID_CHECK_WRN
1700#undef CPUID_CHECK2_RET
1701#undef CPUID_CHECK2_WRN
1702#undef CPUID_RAW_FEATURE_RET
1703#undef CPUID_RAW_FEATURE_WRN
1704#undef CPUID_RAW_FEATURE_IGN
1705#undef CPUID_GST_FEATURE_RET
1706#undef CPUID_GST_FEATURE_WRN
1707#undef CPUID_GST_FEATURE_EMU
1708#undef CPUID_GST_FEATURE_IGN
1709#undef CPUID_GST_FEATURE2_RET
1710#undef CPUID_GST_FEATURE2_WRN
1711#undef CPUID_GST_FEATURE2_EMU
1712#undef CPUID_GST_FEATURE2_IGN
1713#undef CPUID_GST_AMD_FEATURE_RET
1714#undef CPUID_GST_AMD_FEATURE_WRN
1715#undef CPUID_GST_AMD_FEATURE_EMU
1716#undef CPUID_GST_AMD_FEATURE_IGN
1717
1718 return VINF_SUCCESS;
1719}
1720
1721
1722/**
1723 * Pass 0 live exec callback.
1724 *
1725 * @returns VINF_SSM_DONT_CALL_AGAIN.
1726 * @param pVM The VM handle.
1727 * @param pSSM The saved state handle.
1728 * @param uPass The pass (0).
1729 */
1730static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1731{
1732 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1733 cpumR3SaveCpuId(pVM, pSSM);
1734 return VINF_SSM_DONT_CALL_AGAIN;
1735}
1736
1737
1738/**
1739 * Execute state save operation.
1740 *
1741 * @returns VBox status code.
1742 * @param pVM VM Handle.
1743 * @param pSSM SSM operation handle.
1744 */
1745static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1746{
1747 /*
1748 * Save.
1749 */
1750 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1751 {
1752 PVMCPU pVCpu = &pVM->aCpus[i];
1753
1754 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1755 }
1756
1757 SSMR3PutU32(pSSM, pVM->cCpus);
1758 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1759 {
1760 PVMCPU pVCpu = &pVM->aCpus[i];
1761
1762 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1763 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1764 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1765 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1766 }
1767
1768 cpumR3SaveCpuId(pVM, pSSM);
1769 return VINF_SUCCESS;
1770}
1771
1772
1773/**
1774 * Load a version 1.6 CPUMCTX structure.
1775 *
1776 * @returns VBox status code.
1777 * @param pVM VM Handle.
1778 * @param pCpumctx16 Version 1.6 CPUMCTX
1779 */
1780static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1781{
1782#define CPUMCTX16_LOADREG(RegName) \
1783 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1784
1785#define CPUMCTX16_LOADDRXREG(RegName) \
1786 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1787
1788#define CPUMCTX16_LOADHIDREG(RegName) \
1789 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1790 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1791 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1792
1793#define CPUMCTX16_LOADSEGREG(RegName) \
1794 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1795 CPUMCTX16_LOADHIDREG(RegName);
1796
1797 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1798
1799 CPUMCTX16_LOADREG(rax);
1800 CPUMCTX16_LOADREG(rbx);
1801 CPUMCTX16_LOADREG(rcx);
1802 CPUMCTX16_LOADREG(rdx);
1803 CPUMCTX16_LOADREG(rdi);
1804 CPUMCTX16_LOADREG(rsi);
1805 CPUMCTX16_LOADREG(rbp);
1806 CPUMCTX16_LOADREG(esp);
1807 CPUMCTX16_LOADREG(rip);
1808 CPUMCTX16_LOADREG(rflags);
1809
1810 CPUMCTX16_LOADSEGREG(cs);
1811 CPUMCTX16_LOADSEGREG(ds);
1812 CPUMCTX16_LOADSEGREG(es);
1813 CPUMCTX16_LOADSEGREG(fs);
1814 CPUMCTX16_LOADSEGREG(gs);
1815 CPUMCTX16_LOADSEGREG(ss);
1816
1817 CPUMCTX16_LOADREG(r8);
1818 CPUMCTX16_LOADREG(r9);
1819 CPUMCTX16_LOADREG(r10);
1820 CPUMCTX16_LOADREG(r11);
1821 CPUMCTX16_LOADREG(r12);
1822 CPUMCTX16_LOADREG(r13);
1823 CPUMCTX16_LOADREG(r14);
1824 CPUMCTX16_LOADREG(r15);
1825
1826 CPUMCTX16_LOADREG(cr0);
1827 CPUMCTX16_LOADREG(cr2);
1828 CPUMCTX16_LOADREG(cr3);
1829 CPUMCTX16_LOADREG(cr4);
1830
1831 CPUMCTX16_LOADDRXREG(0);
1832 CPUMCTX16_LOADDRXREG(1);
1833 CPUMCTX16_LOADDRXREG(2);
1834 CPUMCTX16_LOADDRXREG(3);
1835 CPUMCTX16_LOADDRXREG(4);
1836 CPUMCTX16_LOADDRXREG(5);
1837 CPUMCTX16_LOADDRXREG(6);
1838 CPUMCTX16_LOADDRXREG(7);
1839
1840 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
1841 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
1842 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
1843 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
1844
1845 CPUMCTX16_LOADREG(ldtr);
1846 CPUMCTX16_LOADREG(tr);
1847
1848 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
1849
1850 CPUMCTX16_LOADREG(msrEFER);
1851 CPUMCTX16_LOADREG(msrSTAR);
1852 CPUMCTX16_LOADREG(msrPAT);
1853 CPUMCTX16_LOADREG(msrLSTAR);
1854 CPUMCTX16_LOADREG(msrCSTAR);
1855 CPUMCTX16_LOADREG(msrSFMASK);
1856 CPUMCTX16_LOADREG(msrKERNELGSBASE);
1857
1858 CPUMCTX16_LOADHIDREG(ldtr);
1859 CPUMCTX16_LOADHIDREG(tr);
1860
1861#undef CPUMCTX16_LOADSEGREG
1862#undef CPUMCTX16_LOADHIDREG
1863#undef CPUMCTX16_LOADDRXREG
1864#undef CPUMCTX16_LOADREG
1865}
1866
1867
1868/**
1869 * Execute state load operation.
1870 *
1871 * @returns VBox status code.
1872 * @param pVM VM Handle.
1873 * @param pSSM SSM operation handle.
1874 * @param uVersion Data layout version.
1875 * @param uPass The data pass.
1876 */
1877static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1878{
1879 /*
1880 * Validate version.
1881 */
1882 if ( uVersion != CPUM_SAVED_STATE_VERSION
1883 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
1884 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
1885 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1886 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
1887 {
1888 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
1889 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1890 }
1891
1892 if (uPass == SSM_PASS_FINAL)
1893 {
1894 /*
1895 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
1896 * really old SSM file versions.)
1897 */
1898 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1899 SSMR3SetGCPtrSize(pSSM, sizeof(RTGCPTR32));
1900 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
1901 SSMR3SetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
1902
1903 /*
1904 * Restore.
1905 */
1906 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1907 {
1908 PVMCPU pVCpu = &pVM->aCpus[i];
1909 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
1910 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
1911
1912 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1913 pVCpu->cpum.s.Hyper.cr3 = uCR3;
1914 pVCpu->cpum.s.Hyper.esp = uESP;
1915 }
1916
1917 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
1918 {
1919 CPUMCTX_VER1_6 cpumctx16;
1920 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
1921 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
1922
1923 /* Save the old cpumctx state into the new one. */
1924 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
1925
1926 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
1927 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
1928 }
1929 else
1930 {
1931 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
1932 {
1933 uint32_t cCpus;
1934 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
1935 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
1936 VERR_SSM_UNEXPECTED_DATA);
1937 }
1938 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
1939 || pVM->cCpus == 1,
1940 ("cCpus=%u\n", pVM->cCpus),
1941 VERR_SSM_UNEXPECTED_DATA);
1942
1943 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1944 {
1945 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
1946 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
1947 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
1948 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
1949 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
1950 }
1951 }
1952 }
1953
1954 /*
1955 * Guest CPUIDs.
1956 */
1957 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
1958 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
1959
1960 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
1961 * actually required. */
1962
1963 /*
1964 * Restore the CPUID leaves.
1965 *
1966 * Note that we support restoring less than the current amount of standard
1967 * leaves because we've been allowed more is newer version of VBox.
1968 */
1969 uint32_t cElements;
1970 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1971 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
1972 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1973 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
1974
1975 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1976 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
1977 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1978 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1979
1980 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
1981 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
1982 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1983 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1984
1985 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1986
1987 /*
1988 * Check that the basic cpuid id information is unchanged.
1989 */
1990 /** @todo we should check the 64 bits capabilities too! */
1991 uint32_t au32CpuId[8] = {0};
1992 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
1993 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
1994 uint32_t au32CpuIdSaved[8];
1995 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
1996 if (RT_SUCCESS(rc))
1997 {
1998 /* Ignore CPU stepping. */
1999 au32CpuId[4] &= 0xfffffff0;
2000 au32CpuIdSaved[4] &= 0xfffffff0;
2001
2002 /* Ignore APIC ID (AMD specs). */
2003 au32CpuId[5] &= ~0xff000000;
2004 au32CpuIdSaved[5] &= ~0xff000000;
2005
2006 /* Ignore the number of Logical CPUs (AMD specs). */
2007 au32CpuId[5] &= ~0x00ff0000;
2008 au32CpuIdSaved[5] &= ~0x00ff0000;
2009
2010 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2011 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2012 | X86_CPUID_FEATURE_ECX_VMX
2013 | X86_CPUID_FEATURE_ECX_SMX
2014 | X86_CPUID_FEATURE_ECX_EST
2015 | X86_CPUID_FEATURE_ECX_TM2
2016 | X86_CPUID_FEATURE_ECX_CNTXID
2017 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2018 | X86_CPUID_FEATURE_ECX_PDCM
2019 | X86_CPUID_FEATURE_ECX_DCA
2020 | X86_CPUID_FEATURE_ECX_X2APIC
2021 );
2022 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2023 | X86_CPUID_FEATURE_ECX_VMX
2024 | X86_CPUID_FEATURE_ECX_SMX
2025 | X86_CPUID_FEATURE_ECX_EST
2026 | X86_CPUID_FEATURE_ECX_TM2
2027 | X86_CPUID_FEATURE_ECX_CNTXID
2028 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2029 | X86_CPUID_FEATURE_ECX_PDCM
2030 | X86_CPUID_FEATURE_ECX_DCA
2031 | X86_CPUID_FEATURE_ECX_X2APIC
2032 );
2033
2034 /* Make sure we don't forget to update the masks when enabling
2035 * features in the future.
2036 */
2037 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2038 ( X86_CPUID_FEATURE_ECX_DTES64
2039 | X86_CPUID_FEATURE_ECX_VMX
2040 | X86_CPUID_FEATURE_ECX_SMX
2041 | X86_CPUID_FEATURE_ECX_EST
2042 | X86_CPUID_FEATURE_ECX_TM2
2043 | X86_CPUID_FEATURE_ECX_CNTXID
2044 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2045 | X86_CPUID_FEATURE_ECX_PDCM
2046 | X86_CPUID_FEATURE_ECX_DCA
2047 | X86_CPUID_FEATURE_ECX_X2APIC
2048 )));
2049 /* do the compare */
2050 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2051 {
2052 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2053 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2054 "Saved=%.*Rhxs\n"
2055 "Real =%.*Rhxs\n",
2056 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2057 sizeof(au32CpuId), au32CpuId));
2058 else
2059 {
2060 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2061 "Saved=%.*Rhxs\n"
2062 "Real =%.*Rhxs\n",
2063 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2064 sizeof(au32CpuId), au32CpuId));
2065 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2066 }
2067 }
2068 }
2069
2070 return rc;
2071}
2072
2073
2074/**
2075 * Formats the EFLAGS value into mnemonics.
2076 *
2077 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2078 * @param efl The EFLAGS value.
2079 */
2080static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2081{
2082 /*
2083 * Format the flags.
2084 */
2085 static const struct
2086 {
2087 const char *pszSet; const char *pszClear; uint32_t fFlag;
2088 } s_aFlags[] =
2089 {
2090 { "vip",NULL, X86_EFL_VIP },
2091 { "vif",NULL, X86_EFL_VIF },
2092 { "ac", NULL, X86_EFL_AC },
2093 { "vm", NULL, X86_EFL_VM },
2094 { "rf", NULL, X86_EFL_RF },
2095 { "nt", NULL, X86_EFL_NT },
2096 { "ov", "nv", X86_EFL_OF },
2097 { "dn", "up", X86_EFL_DF },
2098 { "ei", "di", X86_EFL_IF },
2099 { "tf", NULL, X86_EFL_TF },
2100 { "nt", "pl", X86_EFL_SF },
2101 { "nz", "zr", X86_EFL_ZF },
2102 { "ac", "na", X86_EFL_AF },
2103 { "po", "pe", X86_EFL_PF },
2104 { "cy", "nc", X86_EFL_CF },
2105 };
2106 char *psz = pszEFlags;
2107 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2108 {
2109 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2110 if (pszAdd)
2111 {
2112 strcpy(psz, pszAdd);
2113 psz += strlen(pszAdd);
2114 *psz++ = ' ';
2115 }
2116 }
2117 psz[-1] = '\0';
2118}
2119
2120
2121/**
2122 * Formats a full register dump.
2123 *
2124 * @param pVM VM Handle.
2125 * @param pCtx The context to format.
2126 * @param pCtxCore The context core to format.
2127 * @param pHlp Output functions.
2128 * @param enmType The dump type.
2129 * @param pszPrefix Register name prefix.
2130 */
2131static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2132{
2133 /*
2134 * Format the EFLAGS.
2135 */
2136 uint32_t efl = pCtxCore->eflags.u32;
2137 char szEFlags[80];
2138 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2139
2140 /*
2141 * Format the registers.
2142 */
2143 switch (enmType)
2144 {
2145 case CPUMDUMPTYPE_TERSE:
2146 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2147 pHlp->pfnPrintf(pHlp,
2148 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2149 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2150 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2151 "%sr14=%016RX64 %sr15=%016RX64\n"
2152 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2153 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2154 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2155 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2156 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2157 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2158 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2159 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2160 else
2161 pHlp->pfnPrintf(pHlp,
2162 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2163 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2164 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2165 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2166 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2167 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2168 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2169 break;
2170
2171 case CPUMDUMPTYPE_DEFAULT:
2172 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2173 pHlp->pfnPrintf(pHlp,
2174 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2175 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2176 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2177 "%sr14=%016RX64 %sr15=%016RX64\n"
2178 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2179 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2180 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2181 ,
2182 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2183 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2184 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2185 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2186 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2187 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2188 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2189 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2190 else
2191 pHlp->pfnPrintf(pHlp,
2192 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2193 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2194 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2195 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2196 ,
2197 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2198 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2199 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2200 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2201 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2202 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2203 break;
2204
2205 case CPUMDUMPTYPE_VERBOSE:
2206 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2207 pHlp->pfnPrintf(pHlp,
2208 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2209 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2210 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2211 "%sr14=%016RX64 %sr15=%016RX64\n"
2212 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2213 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2214 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2215 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2216 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2217 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2218 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2219 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2220 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2221 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2222 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2223 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2224 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2225 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2226 ,
2227 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2228 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2229 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2230 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2231 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2232 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2233 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2234 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2235 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2236 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2237 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2238 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2239 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2240 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2241 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2242 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2243 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2244 else
2245 pHlp->pfnPrintf(pHlp,
2246 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2247 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2248 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2249 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2250 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2251 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2252 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2253 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2254 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2255 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2256 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2257 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2258 ,
2259 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2260 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2261 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2262 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2263 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2264 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2265 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2266 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2267 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2268 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2269 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2270 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2271
2272 pHlp->pfnPrintf(pHlp,
2273 "FPU:\n"
2274 "%sFCW=%04x %sFSW=%04x %sFTW=%02x\n"
2275 "%sres1=%02x %sFOP=%04x %sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x\n"
2276 "%sFPUDP=%04x %sDS=%04x %sRsvrd2=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2277 ,
2278 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW,
2279 pszPrefix, pCtx->fpu.huh1, pszPrefix, pCtx->fpu.FOP, pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2280 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2,
2281 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK);
2282
2283 pHlp->pfnPrintf(pHlp,
2284 "MSR:\n"
2285 "%sEFER =%016RX64\n"
2286 "%sPAT =%016RX64\n"
2287 "%sSTAR =%016RX64\n"
2288 "%sCSTAR =%016RX64\n"
2289 "%sLSTAR =%016RX64\n"
2290 "%sSFMASK =%016RX64\n"
2291 "%sKERNELGSBASE =%016RX64\n",
2292 pszPrefix, pCtx->msrEFER,
2293 pszPrefix, pCtx->msrPAT,
2294 pszPrefix, pCtx->msrSTAR,
2295 pszPrefix, pCtx->msrCSTAR,
2296 pszPrefix, pCtx->msrLSTAR,
2297 pszPrefix, pCtx->msrSFMASK,
2298 pszPrefix, pCtx->msrKERNELGSBASE);
2299 break;
2300 }
2301}
2302
2303
2304/**
2305 * Display all cpu states and any other cpum info.
2306 *
2307 * @param pVM VM Handle.
2308 * @param pHlp The info helper functions.
2309 * @param pszArgs Arguments, ignored.
2310 */
2311static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2312{
2313 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2314 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2315 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2316 cpumR3InfoHost(pVM, pHlp, pszArgs);
2317}
2318
2319
2320/**
2321 * Parses the info argument.
2322 *
2323 * The argument starts with 'verbose', 'terse' or 'default' and then
2324 * continues with the comment string.
2325 *
2326 * @param pszArgs The pointer to the argument string.
2327 * @param penmType Where to store the dump type request.
2328 * @param ppszComment Where to store the pointer to the comment string.
2329 */
2330static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2331{
2332 if (!pszArgs)
2333 {
2334 *penmType = CPUMDUMPTYPE_DEFAULT;
2335 *ppszComment = "";
2336 }
2337 else
2338 {
2339 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2340 {
2341 pszArgs += 5;
2342 *penmType = CPUMDUMPTYPE_VERBOSE;
2343 }
2344 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2345 {
2346 pszArgs += 5;
2347 *penmType = CPUMDUMPTYPE_TERSE;
2348 }
2349 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2350 {
2351 pszArgs += 7;
2352 *penmType = CPUMDUMPTYPE_DEFAULT;
2353 }
2354 else
2355 *penmType = CPUMDUMPTYPE_DEFAULT;
2356 *ppszComment = RTStrStripL(pszArgs);
2357 }
2358}
2359
2360
2361/**
2362 * Display the guest cpu state.
2363 *
2364 * @param pVM VM Handle.
2365 * @param pHlp The info helper functions.
2366 * @param pszArgs Arguments, ignored.
2367 */
2368static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2369{
2370 CPUMDUMPTYPE enmType;
2371 const char *pszComment;
2372 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2373
2374 /* @todo SMP support! */
2375 PVMCPU pVCpu = VMMGetCpu(pVM);
2376 if (!pVCpu)
2377 pVCpu = &pVM->aCpus[0];
2378
2379 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2380
2381 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2382 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2383}
2384
2385
2386/**
2387 * Display the current guest instruction
2388 *
2389 * @param pVM VM Handle.
2390 * @param pHlp The info helper functions.
2391 * @param pszArgs Arguments, ignored.
2392 */
2393static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2394{
2395 char szInstruction[256];
2396 /* @todo SMP support! */
2397 PVMCPU pVCpu = VMMGetCpu(pVM);
2398 if (!pVCpu)
2399 pVCpu = &pVM->aCpus[0];
2400
2401 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2402 if (RT_SUCCESS(rc))
2403 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2404}
2405
2406
2407/**
2408 * Display the hypervisor cpu state.
2409 *
2410 * @param pVM VM Handle.
2411 * @param pHlp The info helper functions.
2412 * @param pszArgs Arguments, ignored.
2413 */
2414static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2415{
2416 CPUMDUMPTYPE enmType;
2417 const char *pszComment;
2418 /* @todo SMP */
2419 PVMCPU pVCpu = &pVM->aCpus[0];
2420
2421 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2422 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2423 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2424 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2425}
2426
2427
2428/**
2429 * Display the host cpu state.
2430 *
2431 * @param pVM VM Handle.
2432 * @param pHlp The info helper functions.
2433 * @param pszArgs Arguments, ignored.
2434 */
2435static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2436{
2437 CPUMDUMPTYPE enmType;
2438 const char *pszComment;
2439 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2440 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2441
2442 /*
2443 * Format the EFLAGS.
2444 */
2445 /* @todo SMP */
2446 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2447#if HC_ARCH_BITS == 32
2448 uint32_t efl = pCtx->eflags.u32;
2449#else
2450 uint64_t efl = pCtx->rflags;
2451#endif
2452 char szEFlags[80];
2453 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2454
2455 /*
2456 * Format the registers.
2457 */
2458#if HC_ARCH_BITS == 32
2459# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2460 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2461# endif
2462 {
2463 pHlp->pfnPrintf(pHlp,
2464 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2465 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2466 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2467 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2468 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2469 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2470 ,
2471 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2472 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2473 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2474 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2475 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2476 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2477 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2478 }
2479# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2480 else
2481# endif
2482#endif
2483#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2484 {
2485 pHlp->pfnPrintf(pHlp,
2486 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2487 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2488 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2489 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2490 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2491 "r14=%016RX64 r15=%016RX64\n"
2492 "iopl=%d %31s\n"
2493 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2494 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2495 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2496 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2497 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2498 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2499 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2500 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2501 ,
2502 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2503 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2504 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2505 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2506 pCtx->r11, pCtx->r12, pCtx->r13,
2507 pCtx->r14, pCtx->r15,
2508 X86_EFL_GET_IOPL(efl), szEFlags,
2509 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2510 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2511 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2512 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2513 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2514 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2515 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2516 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2517 }
2518#endif
2519}
2520
2521
2522/**
2523 * Get L1 cache / TLS associativity.
2524 */
2525static const char *getCacheAss(unsigned u, char *pszBuf)
2526{
2527 if (u == 0)
2528 return "res0 ";
2529 if (u == 1)
2530 return "direct";
2531 if (u >= 256)
2532 return "???";
2533
2534 RTStrPrintf(pszBuf, 16, "%d way", u);
2535 return pszBuf;
2536}
2537
2538
2539/**
2540 * Get L2 cache soociativity.
2541 */
2542const char *getL2CacheAss(unsigned u)
2543{
2544 switch (u)
2545 {
2546 case 0: return "off ";
2547 case 1: return "direct";
2548 case 2: return "2 way ";
2549 case 3: return "res3 ";
2550 case 4: return "4 way ";
2551 case 5: return "res5 ";
2552 case 6: return "8 way "; case 7: return "res7 ";
2553 case 8: return "16 way";
2554 case 9: return "res9 ";
2555 case 10: return "res10 ";
2556 case 11: return "res11 ";
2557 case 12: return "res12 ";
2558 case 13: return "res13 ";
2559 case 14: return "res14 ";
2560 case 15: return "fully ";
2561 default:
2562 return "????";
2563 }
2564}
2565
2566
2567/**
2568 * Display the guest CpuId leaves.
2569 *
2570 * @param pVM VM Handle.
2571 * @param pHlp The info helper functions.
2572 * @param pszArgs "terse", "default" or "verbose".
2573 */
2574static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2575{
2576 /*
2577 * Parse the argument.
2578 */
2579 unsigned iVerbosity = 1;
2580 if (pszArgs)
2581 {
2582 pszArgs = RTStrStripL(pszArgs);
2583 if (!strcmp(pszArgs, "terse"))
2584 iVerbosity--;
2585 else if (!strcmp(pszArgs, "verbose"))
2586 iVerbosity++;
2587 }
2588
2589 /*
2590 * Start cracking.
2591 */
2592 CPUMCPUID Host;
2593 CPUMCPUID Guest;
2594 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2595
2596 pHlp->pfnPrintf(pHlp,
2597 " RAW Standard CPUIDs\n"
2598 " Function eax ebx ecx edx\n");
2599 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2600 {
2601 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2602 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2603
2604 pHlp->pfnPrintf(pHlp,
2605 "Gst: %08x %08x %08x %08x %08x%s\n"
2606 "Hst: %08x %08x %08x %08x\n",
2607 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2608 i <= cStdMax ? "" : "*",
2609 Host.eax, Host.ebx, Host.ecx, Host.edx);
2610 }
2611
2612 /*
2613 * If verbose, decode it.
2614 */
2615 if (iVerbosity)
2616 {
2617 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2618 pHlp->pfnPrintf(pHlp,
2619 "Name: %.04s%.04s%.04s\n"
2620 "Supports: 0-%x\n",
2621 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2622 }
2623
2624 /*
2625 * Get Features.
2626 */
2627 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2628 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2629 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2630 if (cStdMax >= 1 && iVerbosity)
2631 {
2632 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2633 uint32_t uEAX = Guest.eax;
2634
2635 pHlp->pfnPrintf(pHlp,
2636 "Family: %d \tExtended: %d \tEffective: %d\n"
2637 "Model: %d \tExtended: %d \tEffective: %d\n"
2638 "Stepping: %d\n"
2639 "Type: %d\n"
2640 "APIC ID: %#04x\n"
2641 "Logical CPUs: %d\n"
2642 "CLFLUSH Size: %d\n"
2643 "Brand ID: %#04x\n",
2644 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2645 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2646 ASMGetCpuStepping(uEAX),
2647 (uEAX >> 12) & 3,
2648 (Guest.ebx >> 24) & 0xff,
2649 (Guest.ebx >> 16) & 0xff,
2650 (Guest.ebx >> 8) & 0xff,
2651 (Guest.ebx >> 0) & 0xff);
2652 if (iVerbosity == 1)
2653 {
2654 uint32_t uEDX = Guest.edx;
2655 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2656 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2657 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2658 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2659 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2660 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2661 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2662 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2663 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2664 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2665 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2666 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2667 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2668 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2669 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2670 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2671 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2672 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2673 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2674 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2675 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2676 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2677 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2678 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2679 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2680 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2681 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2682 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2683 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2684 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2685 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2686 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2687 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2688 pHlp->pfnPrintf(pHlp, "\n");
2689
2690 uint32_t uECX = Guest.ecx;
2691 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2692 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2693 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2694 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2695 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2696 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2697 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2698 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2699 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2700 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2701 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2702 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2703 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2704 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2705 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2706 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2707 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2708 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2709 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " 17");
2710 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2711 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4_1");
2712 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4_2");
2713 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2714 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2715 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2716 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " 24");
2717 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2718 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2719 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2720 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2721 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2722 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2723 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2724 pHlp->pfnPrintf(pHlp, "\n");
2725 }
2726 else
2727 {
2728 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2729
2730 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2731 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2732 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2733 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2734
2735 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2736 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
2737 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
2738 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
2739 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
2740 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
2741 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
2742 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
2743 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
2744 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
2745 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
2746 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
2747 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
2748 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
2749 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
2750 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
2751 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
2752 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
2753 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
2754 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
2755 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
2756 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
2757 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
2758 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
2759 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
2760 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
2761 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
2762 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
2763 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
2764 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
2765 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
2766 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
2767 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
2768
2769 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
2770 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
2771 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
2772 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
2773 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
2774 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
2775 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
2776 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
2777 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
2778 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
2779 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
2780 pHlp->pfnPrintf(pHlp, "FMA = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
2781 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
2782 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
2783 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
2784 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
2785 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
2786 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
2787 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
2788 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
2789 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
2790 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
2791 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
2792 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
2793 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
2794 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
2795 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
2796 }
2797 }
2798 if (cStdMax >= 2 && iVerbosity)
2799 {
2800 /** @todo */
2801 }
2802
2803 /*
2804 * Extended.
2805 * Implemented after AMD specs.
2806 */
2807 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
2808
2809 pHlp->pfnPrintf(pHlp,
2810 "\n"
2811 " RAW Extended CPUIDs\n"
2812 " Function eax ebx ecx edx\n");
2813 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
2814 {
2815 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
2816 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2817
2818 pHlp->pfnPrintf(pHlp,
2819 "Gst: %08x %08x %08x %08x %08x%s\n"
2820 "Hst: %08x %08x %08x %08x\n",
2821 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2822 i <= cExtMax ? "" : "*",
2823 Host.eax, Host.ebx, Host.ecx, Host.edx);
2824 }
2825
2826 /*
2827 * Understandable output
2828 */
2829 if (iVerbosity)
2830 {
2831 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
2832 pHlp->pfnPrintf(pHlp,
2833 "Ext Name: %.4s%.4s%.4s\n"
2834 "Ext Supports: 0x80000000-%#010x\n",
2835 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2836 }
2837
2838 if (iVerbosity && cExtMax >= 1)
2839 {
2840 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
2841 uint32_t uEAX = Guest.eax;
2842 pHlp->pfnPrintf(pHlp,
2843 "Family: %d \tExtended: %d \tEffective: %d\n"
2844 "Model: %d \tExtended: %d \tEffective: %d\n"
2845 "Stepping: %d\n"
2846 "Brand ID: %#05x\n",
2847 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2848 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2849 ASMGetCpuStepping(uEAX),
2850 Guest.ebx & 0xfff);
2851
2852 if (iVerbosity == 1)
2853 {
2854 uint32_t uEDX = Guest.edx;
2855 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2856 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2857 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2858 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2859 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2860 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2861 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2862 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2863 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2864 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2865 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2866 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2867 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
2868 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2869 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2870 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2871 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2872 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2873 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2874 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
2875 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
2876 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
2877 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
2878 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
2879 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2880 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2881 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
2882 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
2883 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
2884 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
2885 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
2886 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
2887 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
2888 pHlp->pfnPrintf(pHlp, "\n");
2889
2890 uint32_t uECX = Guest.ecx;
2891 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2892 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
2893 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
2894 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
2895 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
2896 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
2897 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
2898 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
2899 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
2900 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
2901 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
2902 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
2903 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
2904 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
2905 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
2906 for (unsigned iBit = 5; iBit < 32; iBit++)
2907 if (uECX & RT_BIT(iBit))
2908 pHlp->pfnPrintf(pHlp, " %d", iBit);
2909 pHlp->pfnPrintf(pHlp, "\n");
2910 }
2911 else
2912 {
2913 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2914
2915 uint32_t uEdxGst = Guest.edx;
2916 uint32_t uEdxHst = Host.edx;
2917 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
2918 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
2919 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
2920 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
2921 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
2922 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
2923 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
2924 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
2925 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
2926 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
2927 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
2928 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
2929 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
2930 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
2931 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
2932 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
2933 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
2934 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
2935 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
2936 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
2937 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
2938 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
2939 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
2940 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
2941 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
2942 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
2943 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
2944 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
2945 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
2946 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
2947 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
2948 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
2949 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
2950
2951 uint32_t uEcxGst = Guest.ecx;
2952 uint32_t uEcxHst = Host.ecx;
2953 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
2954 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
2955 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
2956 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
2957 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
2958 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
2959 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
2960 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
2961 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
2962 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
2963 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
2964 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
2965 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
2966 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
2967 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
2968 }
2969 }
2970
2971 if (iVerbosity && cExtMax >= 2)
2972 {
2973 char szString[4*4*3+1] = {0};
2974 uint32_t *pu32 = (uint32_t *)szString;
2975 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
2976 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
2977 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
2978 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
2979 if (cExtMax >= 3)
2980 {
2981 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
2982 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
2983 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
2984 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
2985 }
2986 if (cExtMax >= 4)
2987 {
2988 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
2989 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
2990 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
2991 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
2992 }
2993 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
2994 }
2995
2996 if (iVerbosity && cExtMax >= 5)
2997 {
2998 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
2999 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3000 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3001 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3002 char sz1[32];
3003 char sz2[32];
3004
3005 pHlp->pfnPrintf(pHlp,
3006 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3007 "TLB 2/4M Data: %s %3d entries\n",
3008 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3009 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3010 pHlp->pfnPrintf(pHlp,
3011 "TLB 4K Instr/Uni: %s %3d entries\n"
3012 "TLB 4K Data: %s %3d entries\n",
3013 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3014 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3015 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3016 "L1 Instr Cache Lines Per Tag: %d\n"
3017 "L1 Instr Cache Associativity: %s\n"
3018 "L1 Instr Cache Size: %d KB\n",
3019 (uEDX >> 0) & 0xff,
3020 (uEDX >> 8) & 0xff,
3021 getCacheAss((uEDX >> 16) & 0xff, sz1),
3022 (uEDX >> 24) & 0xff);
3023 pHlp->pfnPrintf(pHlp,
3024 "L1 Data Cache Line Size: %d bytes\n"
3025 "L1 Data Cache Lines Per Tag: %d\n"
3026 "L1 Data Cache Associativity: %s\n"
3027 "L1 Data Cache Size: %d KB\n",
3028 (uECX >> 0) & 0xff,
3029 (uECX >> 8) & 0xff,
3030 getCacheAss((uECX >> 16) & 0xff, sz1),
3031 (uECX >> 24) & 0xff);
3032 }
3033
3034 if (iVerbosity && cExtMax >= 6)
3035 {
3036 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3037 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3038 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3039
3040 pHlp->pfnPrintf(pHlp,
3041 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3042 "L2 TLB 2/4M Data: %s %4d entries\n",
3043 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3044 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3045 pHlp->pfnPrintf(pHlp,
3046 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3047 "L2 TLB 4K Data: %s %4d entries\n",
3048 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3049 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3050 pHlp->pfnPrintf(pHlp,
3051 "L2 Cache Line Size: %d bytes\n"
3052 "L2 Cache Lines Per Tag: %d\n"
3053 "L2 Cache Associativity: %s\n"
3054 "L2 Cache Size: %d KB\n",
3055 (uEDX >> 0) & 0xff,
3056 (uEDX >> 8) & 0xf,
3057 getL2CacheAss((uEDX >> 12) & 0xf),
3058 (uEDX >> 16) & 0xffff);
3059 }
3060
3061 if (iVerbosity && cExtMax >= 7)
3062 {
3063 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3064
3065 pHlp->pfnPrintf(pHlp, "APM Features: ");
3066 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3067 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3068 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3069 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3070 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3071 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3072 for (unsigned iBit = 6; iBit < 32; iBit++)
3073 if (uEDX & RT_BIT(iBit))
3074 pHlp->pfnPrintf(pHlp, " %d", iBit);
3075 pHlp->pfnPrintf(pHlp, "\n");
3076 }
3077
3078 if (iVerbosity && cExtMax >= 8)
3079 {
3080 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3081 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3082
3083 pHlp->pfnPrintf(pHlp,
3084 "Physical Address Width: %d bits\n"
3085 "Virtual Address Width: %d bits\n",
3086 (uEAX >> 0) & 0xff,
3087 (uEAX >> 8) & 0xff);
3088 pHlp->pfnPrintf(pHlp,
3089 "Physical Core Count: %d\n",
3090 (uECX >> 0) & 0xff);
3091 }
3092
3093
3094 /*
3095 * Centaur.
3096 */
3097 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3098
3099 pHlp->pfnPrintf(pHlp,
3100 "\n"
3101 " RAW Centaur CPUIDs\n"
3102 " Function eax ebx ecx edx\n");
3103 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3104 {
3105 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3106 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3107
3108 pHlp->pfnPrintf(pHlp,
3109 "Gst: %08x %08x %08x %08x %08x%s\n"
3110 "Hst: %08x %08x %08x %08x\n",
3111 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3112 i <= cCentaurMax ? "" : "*",
3113 Host.eax, Host.ebx, Host.ecx, Host.edx);
3114 }
3115
3116 /*
3117 * Understandable output
3118 */
3119 if (iVerbosity)
3120 {
3121 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3122 pHlp->pfnPrintf(pHlp,
3123 "Centaur Supports: 0xc0000000-%#010x\n",
3124 Guest.eax);
3125 }
3126
3127 if (iVerbosity && cCentaurMax >= 1)
3128 {
3129 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3130 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3131 uint32_t uEdxHst = Host.edx;
3132
3133 if (iVerbosity == 1)
3134 {
3135 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3136 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3137 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3138 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3139 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3140 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3141 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3142 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3143 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3144 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3145 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3146 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3147 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3148 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3149 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3150 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3151 for (unsigned iBit = 14; iBit < 32; iBit++)
3152 if (uEdxGst & RT_BIT(iBit))
3153 pHlp->pfnPrintf(pHlp, " %d", iBit);
3154 pHlp->pfnPrintf(pHlp, "\n");
3155 }
3156 else
3157 {
3158 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3159 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3160 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3161 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3162 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3163 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3164 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3165 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3166 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3167 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3168 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3169 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3170 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3171 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3172 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3173 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3174 for (unsigned iBit = 14; iBit < 32; iBit++)
3175 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3176 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3177 pHlp->pfnPrintf(pHlp, "\n");
3178 }
3179 }
3180}
3181
3182
3183/**
3184 * Structure used when disassembling and instructions in DBGF.
3185 * This is used so the reader function can get the stuff it needs.
3186 */
3187typedef struct CPUMDISASSTATE
3188{
3189 /** Pointer to the CPU structure. */
3190 PDISCPUSTATE pCpu;
3191 /** The VM handle. */
3192 PVM pVM;
3193 /** The VMCPU handle. */
3194 PVMCPU pVCpu;
3195 /** Pointer to the first byte in the segemnt. */
3196 RTGCUINTPTR GCPtrSegBase;
3197 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3198 RTGCUINTPTR GCPtrSegEnd;
3199 /** The size of the segment minus 1. */
3200 RTGCUINTPTR cbSegLimit;
3201 /** Pointer to the current page - R3 Ptr. */
3202 void const *pvPageR3;
3203 /** Pointer to the current page - GC Ptr. */
3204 RTGCPTR pvPageGC;
3205 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3206 PGMPAGEMAPLOCK PageMapLock;
3207 /** Whether the PageMapLock is valid or not. */
3208 bool fLocked;
3209 /** 64 bits mode or not. */
3210 bool f64Bits;
3211} CPUMDISASSTATE, *PCPUMDISASSTATE;
3212
3213
3214/**
3215 * Instruction reader.
3216 *
3217 * @returns VBox status code.
3218 * @param PtrSrc Address to read from.
3219 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3220 * @param pu8Dst Where to store the bytes.
3221 * @param cbRead Number of bytes to read.
3222 * @param uDisCpu Pointer to the disassembler cpu state.
3223 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3224 */
3225static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3226{
3227 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3228 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3229 Assert(cbRead > 0);
3230 for (;;)
3231 {
3232 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3233
3234 /* Need to update the page translation? */
3235 if ( !pState->pvPageR3
3236 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3237 {
3238 int rc = VINF_SUCCESS;
3239
3240 /* translate the address */
3241 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3242 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3243 && !HWACCMIsEnabled(pState->pVM))
3244 {
3245 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3246 if (!pState->pvPageR3)
3247 rc = VERR_INVALID_POINTER;
3248 }
3249 else
3250 {
3251 /* Release mapping lock previously acquired. */
3252 if (pState->fLocked)
3253 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3254 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3255 pState->fLocked = RT_SUCCESS_NP(rc);
3256 }
3257 if (RT_FAILURE(rc))
3258 {
3259 pState->pvPageR3 = NULL;
3260 return rc;
3261 }
3262 }
3263
3264 /* check the segemnt limit */
3265 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3266 return VERR_OUT_OF_SELECTOR_BOUNDS;
3267
3268 /* calc how much we can read */
3269 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3270 if (!pState->f64Bits)
3271 {
3272 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3273 if (cb > cbSeg && cbSeg)
3274 cb = cbSeg;
3275 }
3276 if (cb > cbRead)
3277 cb = cbRead;
3278
3279 /* read and advance */
3280 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3281 cbRead -= cb;
3282 if (!cbRead)
3283 return VINF_SUCCESS;
3284 pu8Dst += cb;
3285 PtrSrc += cb;
3286 }
3287}
3288
3289
3290/**
3291 * Disassemble an instruction and return the information in the provided structure.
3292 *
3293 * @returns VBox status code.
3294 * @param pVM VM Handle
3295 * @param pVCpu VMCPU Handle
3296 * @param pCtx CPU context
3297 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3298 * @param pCpu Disassembly state
3299 * @param pszPrefix String prefix for logging (debug only)
3300 *
3301 */
3302VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3303{
3304 CPUMDISASSTATE State;
3305 int rc;
3306
3307 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3308 State.pCpu = pCpu;
3309 State.pvPageGC = 0;
3310 State.pvPageR3 = NULL;
3311 State.pVM = pVM;
3312 State.pVCpu = pVCpu;
3313 State.fLocked = false;
3314 State.f64Bits = false;
3315
3316 /*
3317 * Get selector information.
3318 */
3319 if ( (pCtx->cr0 & X86_CR0_PE)
3320 && pCtx->eflags.Bits.u1VM == 0)
3321 {
3322 if (CPUMAreHiddenSelRegsValid(pVM))
3323 {
3324 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3325 State.GCPtrSegBase = pCtx->csHid.u64Base;
3326 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3327 State.cbSegLimit = pCtx->csHid.u32Limit;
3328 pCpu->mode = (State.f64Bits)
3329 ? CPUMODE_64BIT
3330 : pCtx->csHid.Attr.n.u1DefBig
3331 ? CPUMODE_32BIT
3332 : CPUMODE_16BIT;
3333 }
3334 else
3335 {
3336 DBGFSELINFO SelInfo;
3337
3338 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3339 if (RT_FAILURE(rc))
3340 {
3341 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3342 return rc;
3343 }
3344
3345 /*
3346 * Validate the selector.
3347 */
3348 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3349 if (RT_FAILURE(rc))
3350 {
3351 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3352 return rc;
3353 }
3354 State.GCPtrSegBase = SelInfo.GCPtrBase;
3355 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3356 State.cbSegLimit = SelInfo.cbLimit;
3357 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3358 }
3359 }
3360 else
3361 {
3362 /* real or V86 mode */
3363 pCpu->mode = CPUMODE_16BIT;
3364 State.GCPtrSegBase = pCtx->cs * 16;
3365 State.GCPtrSegEnd = 0xFFFFFFFF;
3366 State.cbSegLimit = 0xFFFFFFFF;
3367 }
3368
3369 /*
3370 * Disassemble the instruction.
3371 */
3372 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3373 pCpu->apvUserData[0] = &State;
3374
3375 uint32_t cbInstr;
3376#ifndef LOG_ENABLED
3377 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3378 if (RT_SUCCESS(rc))
3379 {
3380#else
3381 char szOutput[160];
3382 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3383 if (RT_SUCCESS(rc))
3384 {
3385 /* log it */
3386 if (pszPrefix)
3387 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3388 else
3389 Log(("%s", szOutput));
3390#endif
3391 rc = VINF_SUCCESS;
3392 }
3393 else
3394 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3395
3396 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3397 if (State.fLocked)
3398 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3399
3400 return rc;
3401}
3402
3403#ifdef DEBUG
3404
3405/**
3406 * Disassemble an instruction and dump it to the log
3407 *
3408 * @returns VBox status code.
3409 * @param pVM VM Handle
3410 * @param pVCpu VMCPU Handle
3411 * @param pCtx CPU context
3412 * @param pc GC instruction pointer
3413 * @param pszPrefix String prefix for logging
3414 *
3415 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3416 */
3417VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3418{
3419 DISCPUSTATE Cpu;
3420 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3421}
3422
3423
3424/**
3425 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3426 *
3427 * @internal
3428 */
3429VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3430{
3431 /* @todo SMP support!! */
3432 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3433}
3434
3435#endif /* DEBUG */
3436
3437/**
3438 * API for controlling a few of the CPU features found in CR4.
3439 *
3440 * Currently only X86_CR4_TSD is accepted as input.
3441 *
3442 * @returns VBox status code.
3443 *
3444 * @param pVM The VM handle.
3445 * @param fOr The CR4 OR mask.
3446 * @param fAnd The CR4 AND mask.
3447 */
3448VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3449{
3450 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3451 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3452
3453 pVM->cpum.s.CR4.OrMask &= fAnd;
3454 pVM->cpum.s.CR4.OrMask |= fOr;
3455
3456 return VINF_SUCCESS;
3457}
3458
3459
3460/**
3461 * Gets a pointer to the array of standard CPUID leaves.
3462 *
3463 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3464 *
3465 * @returns Pointer to the standard CPUID leaves (read-only).
3466 * @param pVM The VM handle.
3467 * @remark Intended for PATM.
3468 */
3469VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3470{
3471 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3472}
3473
3474
3475/**
3476 * Gets a pointer to the array of extended CPUID leaves.
3477 *
3478 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3479 *
3480 * @returns Pointer to the extended CPUID leaves (read-only).
3481 * @param pVM The VM handle.
3482 * @remark Intended for PATM.
3483 */
3484VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3485{
3486 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3487}
3488
3489
3490/**
3491 * Gets a pointer to the array of centaur CPUID leaves.
3492 *
3493 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3494 *
3495 * @returns Pointer to the centaur CPUID leaves (read-only).
3496 * @param pVM The VM handle.
3497 * @remark Intended for PATM.
3498 */
3499VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3500{
3501 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3502}
3503
3504
3505/**
3506 * Gets a pointer to the default CPUID leaf.
3507 *
3508 * @returns Pointer to the default CPUID leaf (read-only).
3509 * @param pVM The VM handle.
3510 * @remark Intended for PATM.
3511 */
3512VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3513{
3514 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3515}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette