VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 30581

Last change on this file since 30581 was 30493, checked in by vboxsync, 14 years ago

Demoted some PGM apis to internal only.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 187.3 KB
Line 
1/* $Id: CPUM.cpp 30493 2010-06-29 11:59:47Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers accross world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/cpum.h>
39#include <VBox/cpumdis.h>
40#include <VBox/pgm.h>
41#include <VBox/mm.h>
42#include <VBox/selm.h>
43#include <VBox/dbgf.h>
44#include <VBox/patm.h>
45#include <VBox/hwaccm.h>
46#include <VBox/ssm.h>
47#include "CPUMInternal.h"
48#include <VBox/vm.h>
49
50#include <VBox/param.h>
51#include <VBox/dis.h>
52#include <VBox/err.h>
53#include <VBox/log.h>
54#include <iprt/assert.h>
55#include <iprt/asm-amd64-x86.h>
56#include <iprt/string.h>
57#include <iprt/mp.h>
58#include <iprt/cpuset.h>
59#include <include/internal/pgm.h>
60
61/*******************************************************************************
62* Defined Constants And Macros *
63*******************************************************************************/
64/** The current saved state version. */
65#define CPUM_SAVED_STATE_VERSION 12
66/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
67 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
68#define CPUM_SAVED_STATE_VERSION_VER3_2 11
69/** The saved state version of 3.0 and 3.1 trunk before the teleportation
70 * changes. */
71#define CPUM_SAVED_STATE_VERSION_VER3_0 10
72/** The saved state version for the 2.1 trunk before the MSR changes. */
73#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
74/** The saved state version of 2.0, used for backwards compatibility. */
75#define CPUM_SAVED_STATE_VERSION_VER2_0 8
76/** The saved state version of 1.6, used for backwards compatability. */
77#define CPUM_SAVED_STATE_VERSION_VER1_6 6
78
79
80/*******************************************************************************
81* Structures and Typedefs *
82*******************************************************************************/
83
84/**
85 * What kind of cpu info dump to perform.
86 */
87typedef enum CPUMDUMPTYPE
88{
89 CPUMDUMPTYPE_TERSE,
90 CPUMDUMPTYPE_DEFAULT,
91 CPUMDUMPTYPE_VERBOSE
92} CPUMDUMPTYPE;
93/** Pointer to a cpu info dump type. */
94typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
101static int cpumR3CpuIdInit(PVM pVM);
102static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
103static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
104static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
106static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
107static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113
114
115/**
116 * Initializes the CPUM.
117 *
118 * @returns VBox status code.
119 * @param pVM The VM to operate on.
120 */
121VMMR3DECL(int) CPUMR3Init(PVM pVM)
122{
123 LogFlow(("CPUMR3Init\n"));
124
125 /*
126 * Assert alignment and sizes.
127 */
128 AssertCompileMemberAlignment(VM, cpum.s, 32);
129 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
130 AssertCompileSizeAlignment(CPUMCTX, 64);
131 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
132 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
133 AssertCompileMemberAlignment(VM, cpum, 64);
134 AssertCompileMemberAlignment(VM, aCpus, 64);
135 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
136 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
137
138 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
139 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
140 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
141
142 /* Calculate the offset from CPUMCPU to CPUM. */
143 for (VMCPUID i = 0; i < pVM->cCpus; i++)
144 {
145 PVMCPU pVCpu = &pVM->aCpus[i];
146
147 /*
148 * Setup any fixed pointers and offsets.
149 */
150 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
151 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
152
153 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
154 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
155 }
156
157 /*
158 * Check that the CPU supports the minimum features we require.
159 */
160 if (!ASMHasCpuId())
161 {
162 Log(("The CPU doesn't support CPUID!\n"));
163 return VERR_UNSUPPORTED_CPU;
164 }
165 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
166 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
167
168 /* Setup the CR4 AND and OR masks used in the switcher */
169 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
170 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
171 {
172 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
173 /* No FXSAVE implies no SSE */
174 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
175 pVM->cpum.s.CR4.OrMask = 0;
176 }
177 else
178 {
179 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
180 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
181 }
182
183 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
184 {
185 Log(("The CPU doesn't support MMX!\n"));
186 return VERR_UNSUPPORTED_CPU;
187 }
188 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
189 {
190 Log(("The CPU doesn't support TSC!\n"));
191 return VERR_UNSUPPORTED_CPU;
192 }
193 /* Bogus on AMD? */
194 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
195 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
196
197 /*
198 * Detech the host CPU vendor.
199 * (The guest CPU vendor is re-detected later on.)
200 */
201 uint32_t uEAX, uEBX, uECX, uEDX;
202 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
203 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
204 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
205
206 /*
207 * Setup hypervisor startup values.
208 */
209
210 /*
211 * Register saved state data item.
212 */
213 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
214 NULL, cpumR3LiveExec, NULL,
215 NULL, cpumR3SaveExec, NULL,
216 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
217 if (RT_FAILURE(rc))
218 return rc;
219
220 /*
221 * Register info handlers.
222 */
223 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
224 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
225 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
227 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
228 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
229
230 /*
231 * Initialize the Guest CPUID state.
232 */
233 rc = cpumR3CpuIdInit(pVM);
234 if (RT_FAILURE(rc))
235 return rc;
236 CPUMR3Reset(pVM);
237 return VINF_SUCCESS;
238}
239
240
241/**
242 * Initializes the per-VCPU CPUM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
248{
249 LogFlow(("CPUMR3InitCPU\n"));
250 return VINF_SUCCESS;
251}
252
253
254/**
255 * Detect the CPU vendor give n the
256 *
257 * @returns The vendor.
258 * @param uEAX EAX from CPUID(0).
259 * @param uEBX EBX from CPUID(0).
260 * @param uECX ECX from CPUID(0).
261 * @param uEDX EDX from CPUID(0).
262 */
263static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
264{
265 if ( uEAX >= 1
266 && uEBX == X86_CPUID_VENDOR_AMD_EBX
267 && uECX == X86_CPUID_VENDOR_AMD_ECX
268 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
269 return CPUMCPUVENDOR_AMD;
270
271 if ( uEAX >= 1
272 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
273 && uECX == X86_CPUID_VENDOR_INTEL_ECX
274 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
275 return CPUMCPUVENDOR_INTEL;
276
277 /** @todo detect the other buggers... */
278 return CPUMCPUVENDOR_UNKNOWN;
279}
280
281
282/**
283 * Fetches overrides for a CPUID leaf.
284 *
285 * @returns VBox status code.
286 * @param pLeaf The leaf to load the overrides into.
287 * @param pCfgNode The CFGM node containing the overrides
288 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
289 * @param iLeaf The CPUID leaf number.
290 */
291static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
292{
293 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
294 if (pLeafNode)
295 {
296 uint32_t u32;
297 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
298 if (RT_SUCCESS(rc))
299 pLeaf->eax = u32;
300 else
301 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
302
303 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
304 if (RT_SUCCESS(rc))
305 pLeaf->ebx = u32;
306 else
307 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
308
309 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
310 if (RT_SUCCESS(rc))
311 pLeaf->ecx = u32;
312 else
313 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
314
315 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
316 if (RT_SUCCESS(rc))
317 pLeaf->edx = u32;
318 else
319 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
320
321 }
322 return VINF_SUCCESS;
323}
324
325
326/**
327 * Load the overrides for a set of CPUID leaves.
328 *
329 * @returns VBox status code.
330 * @param paLeaves The leaf array.
331 * @param cLeaves The number of leaves.
332 * @param uStart The start leaf number.
333 * @param pCfgNode The CFGM node containing the overrides
334 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
335 */
336static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
337{
338 for (uint32_t i = 0; i < cLeaves; i++)
339 {
340 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
341 if (RT_FAILURE(rc))
342 return rc;
343 }
344
345 return VINF_SUCCESS;
346}
347
348/**
349 * Init a set of host CPUID leaves.
350 *
351 * @returns VBox status code.
352 * @param paLeaves The leaf array.
353 * @param cLeaves The number of leaves.
354 * @param uStart The start leaf number.
355 * @param pCfgNode The /CPUM/HostCPUID/ node.
356 */
357static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
358{
359 /* Using the ECX variant for all of them can't hurt... */
360 for (uint32_t i = 0; i < cLeaves; i++)
361 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
362
363 /* Load CPUID leaf override; we currently don't care if the user
364 specifies features the host CPU doesn't support. */
365 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
366}
367
368
369/**
370 * Initializes the emulated CPU's cpuid information.
371 *
372 * @returns VBox status code.
373 * @param pVM The VM to operate on.
374 */
375static int cpumR3CpuIdInit(PVM pVM)
376{
377 PCPUM pCPUM = &pVM->cpum.s;
378 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
379 uint32_t i;
380 int rc;
381
382#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
383 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
384 { \
385 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
386 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
387 }
388#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
389 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
390 { \
391 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
392 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
393 }
394
395 /*
396 * Read the configuration.
397 */
398 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
399 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
400 * completely overridden by VirtualBox custom strings. Some
401 * CPUID information is withheld, like the cache info. */
402 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
403 AssertRCReturn(rc, rc);
404
405 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
406 * When non-zero CPUID features that could cause portability issues will be
407 * stripped. The higher the value the more features gets stripped. Higher
408 * values should only be used when older CPUs are involved since it may
409 * harm performance and maybe also cause problems with specific guests. */
410 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
411 AssertRCReturn(rc, rc);
412
413 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_INTERNAL_ERROR_2);
414
415 /*
416 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
417 * been overridden).
418 */
419 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
420 * Overrides the host CPUID leaf values used for calculating the guest CPUID
421 * leaves. This can be used to preserve the CPUID values when moving a VM
422 * to a different machine. Another use is restricting (or extending) the
423 * feature set exposed to the guest. */
424 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
425 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
426 AssertRCReturn(rc, rc);
427 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
428 AssertRCReturn(rc, rc);
429 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
430 AssertRCReturn(rc, rc);
431
432 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
433 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
434
435 /*
436 * Determine the default leaf.
437 *
438 * Intel returns values of the highest standard function, while AMD
439 * returns zeros. VIA on the other hand seems to returning nothing or
440 * perhaps some random garbage, we don't try to duplicate this behavior.
441 */
442 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
443 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
444 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
445
446
447 /* Cpuid 1 & 0x80000001:
448 * Only report features we can support.
449 *
450 * Note! When enabling new features the Synthetic CPU and Portable CPUID
451 * options may require adjusting (i.e. stripping what was enabled).
452 */
453 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
454 | X86_CPUID_FEATURE_EDX_VME
455 | X86_CPUID_FEATURE_EDX_DE
456 | X86_CPUID_FEATURE_EDX_PSE
457 | X86_CPUID_FEATURE_EDX_TSC
458 | X86_CPUID_FEATURE_EDX_MSR
459 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
460 | X86_CPUID_FEATURE_EDX_MCE
461 | X86_CPUID_FEATURE_EDX_CX8
462 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
463 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
464 //| X86_CPUID_FEATURE_EDX_SEP
465 | X86_CPUID_FEATURE_EDX_MTRR
466 | X86_CPUID_FEATURE_EDX_PGE
467 | X86_CPUID_FEATURE_EDX_MCA
468 | X86_CPUID_FEATURE_EDX_CMOV
469 | X86_CPUID_FEATURE_EDX_PAT
470 | X86_CPUID_FEATURE_EDX_PSE36
471 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
472 | X86_CPUID_FEATURE_EDX_CLFSH
473 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
474 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
475 | X86_CPUID_FEATURE_EDX_MMX
476 | X86_CPUID_FEATURE_EDX_FXSR
477 | X86_CPUID_FEATURE_EDX_SSE
478 | X86_CPUID_FEATURE_EDX_SSE2
479 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
480 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
481 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
482 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
483 | 0;
484 pCPUM->aGuestCpuIdStd[1].ecx &= 0
485 | X86_CPUID_FEATURE_ECX_SSE3
486 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
487 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
488 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
489 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
490 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
491 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
492 | X86_CPUID_FEATURE_ECX_SSSE3
493 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
494 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
495 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
496 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
497 /* ECX Bit 21 - x2APIC support - not yet. */
498 // | X86_CPUID_FEATURE_ECX_X2APIC
499 /* ECX Bit 23 - POPCNT instruction. */
500 //| X86_CPUID_FEATURE_ECX_POPCNT
501 | 0;
502 if (pCPUM->u8PortableCpuIdLevel > 0)
503 {
504 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
505 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
506 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
507 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
508 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
509 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
510 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
511
512 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
513 | X86_CPUID_FEATURE_EDX_PSN
514 | X86_CPUID_FEATURE_EDX_DS
515 | X86_CPUID_FEATURE_EDX_ACPI
516 | X86_CPUID_FEATURE_EDX_SS
517 | X86_CPUID_FEATURE_EDX_TM
518 | X86_CPUID_FEATURE_EDX_PBE
519 )));
520 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
521 | X86_CPUID_FEATURE_ECX_DTES64
522 | X86_CPUID_FEATURE_ECX_CPLDS
523 | X86_CPUID_FEATURE_ECX_VMX
524 | X86_CPUID_FEATURE_ECX_SMX
525 | X86_CPUID_FEATURE_ECX_EST
526 | X86_CPUID_FEATURE_ECX_TM2
527 | X86_CPUID_FEATURE_ECX_CNTXID
528 | X86_CPUID_FEATURE_ECX_FMA
529 | X86_CPUID_FEATURE_ECX_CX16
530 | X86_CPUID_FEATURE_ECX_TPRUPDATE
531 | X86_CPUID_FEATURE_ECX_PDCM
532 | X86_CPUID_FEATURE_ECX_DCA
533 | X86_CPUID_FEATURE_ECX_MOVBE
534 | X86_CPUID_FEATURE_ECX_AES
535 | X86_CPUID_FEATURE_ECX_POPCNT
536 | X86_CPUID_FEATURE_ECX_XSAVE
537 | X86_CPUID_FEATURE_ECX_OSXSAVE
538 | X86_CPUID_FEATURE_ECX_AVX
539 )));
540 }
541
542 /* Cpuid 0x80000001:
543 * Only report features we can support.
544 *
545 * Note! When enabling new features the Synthetic CPU and Portable CPUID
546 * options may require adjusting (i.e. stripping what was enabled).
547 *
548 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
549 */
550 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
551 | X86_CPUID_AMD_FEATURE_EDX_VME
552 | X86_CPUID_AMD_FEATURE_EDX_DE
553 | X86_CPUID_AMD_FEATURE_EDX_PSE
554 | X86_CPUID_AMD_FEATURE_EDX_TSC
555 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
556 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
557 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
558 | X86_CPUID_AMD_FEATURE_EDX_CX8
559 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
560 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
561 //| X86_CPUID_AMD_FEATURE_EDX_SEP
562 | X86_CPUID_AMD_FEATURE_EDX_MTRR
563 | X86_CPUID_AMD_FEATURE_EDX_PGE
564 | X86_CPUID_AMD_FEATURE_EDX_MCA
565 | X86_CPUID_AMD_FEATURE_EDX_CMOV
566 | X86_CPUID_AMD_FEATURE_EDX_PAT
567 | X86_CPUID_AMD_FEATURE_EDX_PSE36
568 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
569 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
570 | X86_CPUID_AMD_FEATURE_EDX_MMX
571 | X86_CPUID_AMD_FEATURE_EDX_FXSR
572 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
573 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
574 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
575 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
576 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
577 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
578 | 0;
579 pCPUM->aGuestCpuIdExt[1].ecx &= 0
580 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
581 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
582 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
583 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
584 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
585 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
586 //| X86_CPUID_AMD_FEATURE_ECX_ABM
587 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
588 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
589 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
590 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
591 //| X86_CPUID_AMD_FEATURE_ECX_IBS
592 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
593 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
594 //| X86_CPUID_AMD_FEATURE_ECX_WDT
595 | 0;
596 if (pCPUM->u8PortableCpuIdLevel > 0)
597 {
598 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
599 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
600 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
601 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
602 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
603 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
604 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
605
606 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
607 | X86_CPUID_AMD_FEATURE_ECX_SVM
608 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
609 | X86_CPUID_AMD_FEATURE_ECX_CR8L
610 | X86_CPUID_AMD_FEATURE_ECX_ABM
611 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
612 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
613 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
614 | X86_CPUID_AMD_FEATURE_ECX_OSVW
615 | X86_CPUID_AMD_FEATURE_ECX_IBS
616 | X86_CPUID_AMD_FEATURE_ECX_SSE5
617 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
618 | X86_CPUID_AMD_FEATURE_ECX_WDT
619 | UINT32_C(0xffffc000)
620 )));
621 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
622 | X86_CPUID_AMD_FEATURE_EDX_SEP
623 | RT_BIT(18)
624 | RT_BIT(19)
625 | RT_BIT(21)
626 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
627 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
628 | RT_BIT(28)
629 )));
630 }
631
632 /*
633 * Apply the Synthetic CPU modifications. (TODO: move this up)
634 */
635 if (pCPUM->fSyntheticCpu)
636 {
637 static const char s_szVendor[13] = "VirtualBox ";
638 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
639
640 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
641
642 /* Limit the nr of standard leaves; 5 for monitor/mwait */
643 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
644
645 /* 0: Vendor */
646 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
647 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
648 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
649
650 /* 1.eax: Version information. family : model : stepping */
651 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
652
653 /* Leaves 2 - 4 are Intel only - zero them out */
654 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
655 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
656 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
657
658 /* Leaf 5 = monitor/mwait */
659
660 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
661 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
662 /* AMD only - set to zero. */
663 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
664
665 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
666 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
667
668 /* 0x800000002-4: Processor Name String Identifier. */
669 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
670 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
671 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
672 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
673 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
674 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
675 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
676 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
677 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
678 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
679 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
680 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
681
682 /* 0x800000005-7 - reserved -> zero */
683 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
684 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
685 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
686
687 /* 0x800000008: only the max virtual and physical address size. */
688 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
689 }
690
691 /*
692 * Hide HTT, multicode, SMP, whatever.
693 * (APIC-ID := 0 and #LogCpus := 0)
694 */
695 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
696#ifdef VBOX_WITH_MULTI_CORE
697 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
698 && pVM->cCpus > 1)
699 {
700 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
701 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
702 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
703 }
704#endif
705
706 /* Cpuid 2:
707 * Intel: Cache and TLB information
708 * AMD: Reserved
709 * Safe to expose; restrict the number of calls to 1 for the portable case.
710 */
711 if ( pCPUM->u8PortableCpuIdLevel > 0
712 && pCPUM->aGuestCpuIdStd[0].eax >= 2
713 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
714 {
715 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
716 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
717 }
718
719 /* Cpuid 3:
720 * Intel: EAX, EBX - reserved (transmeta uses these)
721 * ECX, EDX - Processor Serial Number if available, otherwise reserved
722 * AMD: Reserved
723 * Safe to expose
724 */
725 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
726 {
727 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
728 if (pCPUM->u8PortableCpuIdLevel > 0)
729 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
730 }
731
732 /* Cpuid 4:
733 * Intel: Deterministic Cache Parameters Leaf
734 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
735 * AMD: Reserved
736 * Safe to expose, except for EAX:
737 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
738 * Bits 31-26: Maximum number of processor cores in this physical package**
739 * Note: These SMP values are constant regardless of ECX
740 */
741 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
742 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
743#ifdef VBOX_WITH_MULTI_CORE
744 if ( pVM->cCpus > 1
745 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
746 {
747 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
748 /* One logical processor with possibly multiple cores. */
749 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
750 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
751 }
752#endif
753
754 /* Cpuid 5: Monitor/mwait Leaf
755 * Intel: ECX, EDX - reserved
756 * EAX, EBX - Smallest and largest monitor line size
757 * AMD: EDX - reserved
758 * EAX, EBX - Smallest and largest monitor line size
759 * ECX - extensions (ignored for now)
760 * Safe to expose
761 */
762 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
763 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
764
765 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
766 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
767 * Expose MWAIT extended features to the guest. For now we expose
768 * just MWAIT break on interrupt feature (bit 1).
769 */
770 bool fMWaitExtensions;
771 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
772 if (fMWaitExtensions)
773 {
774 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
775 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
776 it shall be part of our power management virtualization model */
777#if 0
778 /* MWAIT sub C-states */
779 pCPUM->aGuestCpuIdStd[5].edx =
780 (0 << 0) /* 0 in C0 */ |
781 (2 << 4) /* 2 in C1 */ |
782 (2 << 8) /* 2 in C2 */ |
783 (2 << 12) /* 2 in C3 */ |
784 (0 << 16) /* 0 in C4 */
785 ;
786#endif
787 }
788 else
789 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
790
791 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
792 * Safe to pass on to the guest.
793 *
794 * Intel: 0x800000005 reserved
795 * 0x800000006 L2 cache information
796 * AMD: 0x800000005 L1 cache information
797 * 0x800000006 L2/L3 cache information
798 */
799
800 /* Cpuid 0x800000007:
801 * AMD: EAX, EBX, ECX - reserved
802 * EDX: Advanced Power Management Information
803 * Intel: Reserved
804 */
805 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
806 {
807 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
808
809 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
810
811 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
812 {
813 /* Only expose the TSC invariant capability bit to the guest. */
814 pCPUM->aGuestCpuIdExt[7].edx &= 0
815 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
816 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
817 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
818 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
819 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
820 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
821 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
822 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
823#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
824 * Linux kernels blindly assume that the AMD performance counters work
825 * if this is set for 64 bits guests. (Can't really find a CPUID feature
826 * bit for them though.) */
827 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
828#endif
829 | 0;
830 }
831 else
832 pCPUM->aGuestCpuIdExt[7].edx = 0;
833 }
834
835 /* Cpuid 0x800000008:
836 * AMD: EBX, EDX - reserved
837 * EAX: Virtual/Physical/Guest address Size
838 * ECX: Number of cores + APICIdCoreIdSize
839 * Intel: EAX: Virtual/Physical address Size
840 * EBX, ECX, EDX - reserved
841 */
842 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
843 {
844 /* Only expose the virtual and physical address sizes to the guest. (EAX completely) */
845 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
846 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
847 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
848 * NC (0-7) Number of cores; 0 equals 1 core */
849 pCPUM->aGuestCpuIdExt[8].ecx = 0;
850#ifdef VBOX_WITH_MULTI_CORE
851 if ( pVM->cCpus > 1
852 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
853 {
854 /* Legacy method to determine the number of cores. */
855 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
856 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
857
858 }
859#endif
860 }
861
862 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
863 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
864 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
865 * This option corrsponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
866 */
867 bool fNt4LeafLimit;
868 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
869 if (fNt4LeafLimit)
870 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
871
872 /*
873 * Limit it the number of entries and fill the remaining with the defaults.
874 *
875 * The limits are masking off stuff about power saving and similar, this
876 * is perhaps a bit crudely done as there is probably some relatively harmless
877 * info too in these leaves (like words about having a constant TSC).
878 */
879 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
880 pCPUM->aGuestCpuIdStd[0].eax = 5;
881 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
882 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
883
884 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
885 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
886 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
887 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
888 : 0;
889 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
890 i++)
891 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
892
893 /*
894 * Centaur stuff (VIA).
895 *
896 * The important part here (we think) is to make sure the 0xc0000000
897 * function returns 0xc0000001. As for the features, we don't currently
898 * let on about any of those... 0xc0000002 seems to be some
899 * temperature/hz/++ stuff, include it as well (static).
900 */
901 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
902 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
903 {
904 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
905 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
906 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
907 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
908 i++)
909 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
910 }
911 else
912 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
913 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
914
915
916 /*
917 * Load CPUID overrides from configuration.
918 * Note: Kind of redundant now, but allows unchanged overrides
919 */
920 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
921 * Overrides the CPUID leaf values. */
922 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
923 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
924 AssertRCReturn(rc, rc);
925 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
926 AssertRCReturn(rc, rc);
927 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
928 AssertRCReturn(rc, rc);
929
930 /*
931 * Check if PAE was explicitely enabled by the user.
932 */
933 bool fEnable;
934 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
935 if (fEnable)
936 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
937
938 /*
939 * Log the cpuid and we're good.
940 */
941 RTCPUSET OnlineSet;
942 LogRel(("Logical host processors: %d, processor active mask: %016RX64\n",
943 (int)RTMpGetCount(), RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
944 LogRel(("************************* CPUID dump ************************\n"));
945 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
946 LogRel(("\n"));
947 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
948 LogRel(("******************** End of CPUID dump **********************\n"));
949
950#undef PORTABLE_DISABLE_FEATURE_BIT
951#undef PORTABLE_CLEAR_BITS_WHEN
952
953 return VINF_SUCCESS;
954}
955
956
957/**
958 * Applies relocations to data and code managed by this
959 * component. This function will be called at init and
960 * whenever the VMM need to relocate it self inside the GC.
961 *
962 * The CPUM will update the addresses used by the switcher.
963 *
964 * @param pVM The VM.
965 */
966VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
967{
968 LogFlow(("CPUMR3Relocate\n"));
969 for (VMCPUID i = 0; i < pVM->cCpus; i++)
970 {
971 /*
972 * Switcher pointers.
973 */
974 PVMCPU pVCpu = &pVM->aCpus[i];
975 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
976 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
977
978 }
979}
980
981
982/**
983 * Apply late CPUM property changes based on the fHWVirtEx setting
984 *
985 * @param pVM The VM to operate on.
986 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
987 */
988VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
989{
990 /*
991 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
992 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
993 * of processors from (cpuid(4).eax >> 26) + 1.
994 *
995 * Note: this code is obsolete, but let's keep it here for reference.
996 * Purpose is valid when we artifically cap the max std id to less than 4.
997 */
998 if (!fHWVirtExEnabled)
999 {
1000 Assert(pVM->cpum.s.aGuestCpuIdStd[4].eax == 0);
1001 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1002 }
1003}
1004
1005/**
1006 * Terminates the CPUM.
1007 *
1008 * Termination means cleaning up and freeing all resources,
1009 * the VM it self is at this point powered off or suspended.
1010 *
1011 * @returns VBox status code.
1012 * @param pVM The VM to operate on.
1013 */
1014VMMR3DECL(int) CPUMR3Term(PVM pVM)
1015{
1016 CPUMR3TermCPU(pVM);
1017 return 0;
1018}
1019
1020
1021/**
1022 * Terminates the per-VCPU CPUM.
1023 *
1024 * Termination means cleaning up and freeing all resources,
1025 * the VM it self is at this point powered off or suspended.
1026 *
1027 * @returns VBox status code.
1028 * @param pVM The VM to operate on.
1029 */
1030VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
1031{
1032#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1033 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1034 {
1035 PVMCPU pVCpu = &pVM->aCpus[i];
1036 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1037
1038 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1039 pVCpu->cpum.s.uMagic = 0;
1040 pCtx->dr[5] = 0;
1041 }
1042#endif
1043 return 0;
1044}
1045
1046
1047/**
1048 * Resets a virtual CPU.
1049 *
1050 * Used by CPUMR3Reset and CPU hot plugging.
1051 *
1052 * @param pVCpu The virtual CPU handle.
1053 */
1054VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1055{
1056 /** @todo anything different for VCPU > 0? */
1057 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1058
1059 /*
1060 * Initialize everything to ZERO first.
1061 */
1062 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1063 memset(pCtx, 0, sizeof(*pCtx));
1064 pVCpu->cpum.s.fUseFlags = fUseFlags;
1065
1066 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1067 pCtx->eip = 0x0000fff0;
1068 pCtx->edx = 0x00000600; /* P6 processor */
1069 pCtx->eflags.Bits.u1Reserved0 = 1;
1070
1071 pCtx->cs = 0xf000;
1072 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
1073 pCtx->csHid.u32Limit = 0x0000ffff;
1074 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
1075 pCtx->csHid.Attr.n.u1Present = 1;
1076 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1077
1078 pCtx->dsHid.u32Limit = 0x0000ffff;
1079 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
1080 pCtx->dsHid.Attr.n.u1Present = 1;
1081 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1082
1083 pCtx->esHid.u32Limit = 0x0000ffff;
1084 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
1085 pCtx->esHid.Attr.n.u1Present = 1;
1086 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1087
1088 pCtx->fsHid.u32Limit = 0x0000ffff;
1089 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
1090 pCtx->fsHid.Attr.n.u1Present = 1;
1091 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1092
1093 pCtx->gsHid.u32Limit = 0x0000ffff;
1094 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
1095 pCtx->gsHid.Attr.n.u1Present = 1;
1096 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1097
1098 pCtx->ssHid.u32Limit = 0x0000ffff;
1099 pCtx->ssHid.Attr.n.u1Present = 1;
1100 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
1101 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1102
1103 pCtx->idtr.cbIdt = 0xffff;
1104 pCtx->gdtr.cbGdt = 0xffff;
1105
1106 pCtx->ldtrHid.u32Limit = 0xffff;
1107 pCtx->ldtrHid.Attr.n.u1Present = 1;
1108 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1109
1110 pCtx->trHid.u32Limit = 0xffff;
1111 pCtx->trHid.Attr.n.u1Present = 1;
1112 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
1113
1114 pCtx->dr[6] = X86_DR6_INIT_VAL;
1115 pCtx->dr[7] = X86_DR7_INIT_VAL;
1116
1117 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
1118 pCtx->fpu.FCW = 0x37f;
1119
1120 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
1121 pCtx->fpu.MXCSR = 0x1F80;
1122
1123 /* Init PAT MSR */
1124 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1125
1126 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1127 * The Intel docs don't mention it.
1128 */
1129 pCtx->msrEFER = 0;
1130}
1131
1132
1133/**
1134 * Resets the CPU.
1135 *
1136 * @returns VINF_SUCCESS.
1137 * @param pVM The VM handle.
1138 */
1139VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1140{
1141 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1142 {
1143 CPUMR3ResetCpu(&pVM->aCpus[i]);
1144
1145#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1146 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1147
1148 /* Magic marker for searching in crash dumps. */
1149 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1150 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1151 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1152#endif
1153 }
1154}
1155
1156
1157/**
1158 * Called both in pass 0 and the final pass.
1159 *
1160 * @param pVM The VM handle.
1161 * @param pSSM The saved state handle.
1162 */
1163static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1164{
1165 /*
1166 * Save all the CPU ID leaves here so we can check them for compatability
1167 * upon loading.
1168 */
1169 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1170 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1171
1172 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1173 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1174
1175 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1176 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1177
1178 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1179
1180 /*
1181 * Save a good portion of the raw CPU IDs as well as they may come in
1182 * handy when validating features for raw mode.
1183 */
1184 CPUMCPUID aRawStd[16];
1185 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1186 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1187 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1188 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1189
1190 CPUMCPUID aRawExt[32];
1191 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1192 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1193 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1194 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1195}
1196
1197
1198/**
1199 * Loads the CPU ID leaves saved by pass 0.
1200 *
1201 * @returns VBox status code.
1202 * @param pVM The VM handle.
1203 * @param pSSM The saved state handle.
1204 * @param uVersion The format version.
1205 */
1206static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1207{
1208 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1209
1210 /*
1211 * Define a bunch of macros for simplifying the code.
1212 */
1213 /* Generic expression + failure message. */
1214#define CPUID_CHECK_RET(expr, fmt) \
1215 do { \
1216 if (!(expr)) \
1217 { \
1218 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadict macros sucks */ \
1219 if (fStrictCpuIdChecks) \
1220 { \
1221 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1222 RTStrFree(pszMsg); \
1223 return rcCpuid; \
1224 } \
1225 LogRel(("CPUM: %s\n", pszMsg)); \
1226 RTStrFree(pszMsg); \
1227 } \
1228 } while (0)
1229#define CPUID_CHECK_WRN(expr, fmt) \
1230 do { \
1231 if (!(expr)) \
1232 LogRel(fmt); \
1233 } while (0)
1234
1235 /* For comparing two values and bitch if they differs. */
1236#define CPUID_CHECK2_RET(what, host, saved) \
1237 do { \
1238 if ((host) != (saved)) \
1239 { \
1240 if (fStrictCpuIdChecks) \
1241 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1242 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1243 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1244 } \
1245 } while (0)
1246#define CPUID_CHECK2_WRN(what, host, saved) \
1247 do { \
1248 if ((host) != (saved)) \
1249 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1250 } while (0)
1251
1252 /* For checking raw cpu features (raw mode). */
1253#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1254 do { \
1255 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1256 { \
1257 if (fStrictCpuIdChecks) \
1258 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1259 N_(#bit " mismatch: host=%d saved=%d"), \
1260 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1261 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1262 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1263 } \
1264 } while (0)
1265#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1266 do { \
1267 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1268 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1269 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1270 } while (0)
1271#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1272
1273 /* For checking guest features. */
1274#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1275 do { \
1276 if ( (aGuestCpuId##set [1].reg & bit) \
1277 && !(aHostRaw##set [1].reg & bit) \
1278 && !(aHostOverride##set [1].reg & bit) \
1279 && !(aGuestOverride##set [1].reg & bit) \
1280 ) \
1281 { \
1282 if (fStrictCpuIdChecks) \
1283 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1284 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1285 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1286 } \
1287 } while (0)
1288#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1289 do { \
1290 if ( (aGuestCpuId##set [1].reg & bit) \
1291 && !(aHostRaw##set [1].reg & bit) \
1292 && !(aHostOverride##set [1].reg & bit) \
1293 && !(aGuestOverride##set [1].reg & bit) \
1294 ) \
1295 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1296 } while (0)
1297#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1298 do { \
1299 if ( (aGuestCpuId##set [1].reg & bit) \
1300 && !(aHostRaw##set [1].reg & bit) \
1301 && !(aHostOverride##set [1].reg & bit) \
1302 && !(aGuestOverride##set [1].reg & bit) \
1303 ) \
1304 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1305 } while (0)
1306#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1307
1308 /* For checking guest features if AMD guest CPU. */
1309#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1310 do { \
1311 if ( (aGuestCpuId##set [1].reg & bit) \
1312 && fGuestAmd \
1313 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1314 && !(aHostOverride##set [1].reg & bit) \
1315 && !(aGuestOverride##set [1].reg & bit) \
1316 ) \
1317 { \
1318 if (fStrictCpuIdChecks) \
1319 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1320 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1321 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1322 } \
1323 } while (0)
1324#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1325 do { \
1326 if ( (aGuestCpuId##set [1].reg & bit) \
1327 && fGuestAmd \
1328 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1329 && !(aHostOverride##set [1].reg & bit) \
1330 && !(aGuestOverride##set [1].reg & bit) \
1331 ) \
1332 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1333 } while (0)
1334#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1335 do { \
1336 if ( (aGuestCpuId##set [1].reg & bit) \
1337 && fGuestAmd \
1338 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1339 && !(aHostOverride##set [1].reg & bit) \
1340 && !(aGuestOverride##set [1].reg & bit) \
1341 ) \
1342 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1343 } while (0)
1344#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1345
1346 /* For checking AMD features which have a corresponding bit in the standard
1347 range. (Intel defines very few bits in the extended feature sets.) */
1348#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1349 do { \
1350 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1351 && !(fHostAmd \
1352 ? aHostRawExt[1].reg & (ExtBit) \
1353 : aHostRawStd[1].reg & (StdBit)) \
1354 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1355 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1356 ) \
1357 { \
1358 if (fStrictCpuIdChecks) \
1359 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1360 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1361 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1362 } \
1363 } while (0)
1364#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1365 do { \
1366 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1367 && !(fHostAmd \
1368 ? aHostRawExt[1].reg & (ExtBit) \
1369 : aHostRawStd[1].reg & (StdBit)) \
1370 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1371 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1372 ) \
1373 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1374 } while (0)
1375#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1376 do { \
1377 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1378 && !(fHostAmd \
1379 ? aHostRawExt[1].reg & (ExtBit) \
1380 : aHostRawStd[1].reg & (StdBit)) \
1381 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1382 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1383 ) \
1384 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1385 } while (0)
1386#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1387
1388 /*
1389 * Load them into stack buffers first.
1390 */
1391 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1392 uint32_t cGuestCpuIdStd;
1393 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1394 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1395 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1396 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1397
1398 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1399 uint32_t cGuestCpuIdExt;
1400 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1401 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1402 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1403 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1404
1405 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1406 uint32_t cGuestCpuIdCentaur;
1407 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1408 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1409 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1410 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1411
1412 CPUMCPUID GuestCpuIdDef;
1413 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1414 AssertRCReturn(rc, rc);
1415
1416 CPUMCPUID aRawStd[16];
1417 uint32_t cRawStd;
1418 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1419 if (cRawStd > RT_ELEMENTS(aRawStd))
1420 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1421 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1422
1423 CPUMCPUID aRawExt[32];
1424 uint32_t cRawExt;
1425 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1426 if (cRawExt > RT_ELEMENTS(aRawExt))
1427 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1428 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1429 AssertRCReturn(rc, rc);
1430
1431 /*
1432 * Note that we support restoring less than the current amount of standard
1433 * leaves because we've been allowed more is newer version of VBox.
1434 *
1435 * So, pad new entries with the default.
1436 */
1437 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1438 aGuestCpuIdStd[i] = GuestCpuIdDef;
1439
1440 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1441 aGuestCpuIdExt[i] = GuestCpuIdDef;
1442
1443 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1444 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1445
1446 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1447 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1448
1449 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1450 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1451
1452 /*
1453 * Get the raw CPU IDs for the current host.
1454 */
1455 CPUMCPUID aHostRawStd[16];
1456 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1457 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1458
1459 CPUMCPUID aHostRawExt[32];
1460 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1461 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1462
1463 /*
1464 * Get the host and guest overrides so we don't reject the state because
1465 * some feature was enabled thru these interfaces.
1466 * Note! We currently only need the feature leaves, so skip rest.
1467 */
1468 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1469 CPUMCPUID aGuestOverrideStd[2];
1470 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1471 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1472
1473 CPUMCPUID aGuestOverrideExt[2];
1474 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1475 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1476
1477 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1478 CPUMCPUID aHostOverrideStd[2];
1479 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1480 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1481
1482 CPUMCPUID aHostOverrideExt[2];
1483 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1484 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1485
1486 /*
1487 * This can be skipped.
1488 */
1489 bool fStrictCpuIdChecks;
1490 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1491
1492
1493
1494 /*
1495 * For raw-mode we'll require that the CPUs are very similar since we don't
1496 * intercept CPUID instructions for user mode applications.
1497 */
1498 if (!HWACCMIsEnabled(pVM))
1499 {
1500 /* CPUID(0) */
1501 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1502 && aHostRawStd[0].ecx == aRawStd[0].ecx
1503 && aHostRawStd[0].edx == aRawStd[0].edx,
1504 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1505 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1506 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1507 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1508 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1509 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1510
1511 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1512
1513 /* CPUID(1).eax */
1514 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1515 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1516 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1517
1518 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1519 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1520 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1521
1522 /* CPUID(1).ecx */
1523 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1524 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1525 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1526 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1527 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1528 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1529 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1530 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1531 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1532 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1533 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1534 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1535 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1536 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1537 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1538 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1539 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1540 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1541 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1542 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1543 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1544 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1545 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1546 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1547 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1548 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1549 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1550 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1551 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1552 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1553 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1554 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1555
1556 /* CPUID(1).edx */
1557 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1558 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1559 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1560 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1561 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1562 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1563 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1564 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1565 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1566 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1567 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1568 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1569 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1570 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1571 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1572 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1573 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1574 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1575 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1576 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1577 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1578 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1579 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1580 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1581 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1582 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1583 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1584 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1585 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1586 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1587 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1588 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1589
1590 /* CPUID(2) - config, mostly about caches. ignore. */
1591 /* CPUID(3) - processor serial number. ignore. */
1592 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1593 /* CPUID(5) - mwait/monitor config. ignore. */
1594 /* CPUID(6) - power management. ignore. */
1595 /* CPUID(7) - ???. ignore. */
1596 /* CPUID(8) - ???. ignore. */
1597 /* CPUID(9) - DCA. ignore for now. */
1598 /* CPUID(a) - PeMo info. ignore for now. */
1599 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1600
1601 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1602 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1603 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1604 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1605 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1606 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1607 {
1608 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1609 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1610 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1611 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1612 }
1613
1614 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1615 Note! Intel have/is marking many of the fields here as reserved. We
1616 will verify them as if it's an AMD CPU. */
1617 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1618 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1619 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1620 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1621 {
1622 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1623 && aHostRawExt[0].ecx == aRawExt[0].ecx
1624 && aHostRawExt[0].edx == aRawExt[0].edx,
1625 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1626 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1627 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1628 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1629
1630 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1631 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1632 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1633 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1634 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1635 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1636
1637 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1638 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1639 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1640 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1641
1642 /* CPUID(0x80000001).ecx */
1643 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1644 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1645 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1646 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1647 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1648 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1649 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1650 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1651 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1652 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1653 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1654 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1655 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1656 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1657 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1658 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1659 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1660 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1661 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1662 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1663 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1664 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1665 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1666 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1667 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1668 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1669 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1670 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1671 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1672 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1673 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1674 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1675
1676 /* CPUID(0x80000001).edx */
1677 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1678 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1679 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1680 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1681 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1682 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1683 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1684 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1685 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1686 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1687 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1688 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1689 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1690 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1691 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1692 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1693 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1694 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1695 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1696 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1697 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1698 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1699 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1700 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1701 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1702 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1703 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1704 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1705 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1706 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1707 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1708 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1709
1710 /** @todo verify the rest as well. */
1711 }
1712 }
1713
1714
1715
1716 /*
1717 * Verify that we can support the features already exposed to the guest on
1718 * this host.
1719 *
1720 * Most of the features we're emulating requires intercepting instruction
1721 * and doing it the slow way, so there is no need to warn when they aren't
1722 * present in the host CPU. Thus we use IGN instead of EMU on these.
1723 *
1724 * Trailing comments:
1725 * "EMU" - Possible to emulate, could be lots of work and very slow.
1726 * "EMU?" - Can this be emulated?
1727 */
1728 /* CPUID(1).ecx */
1729 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1730 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1731 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1732 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1733 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1734 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1735 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1736 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1737 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1738 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1739 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1740 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1741 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1742 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1743 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1744 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1745 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1746 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1747 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1748 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1749 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1750 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1751 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1752 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1753 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1754 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1755 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1756 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1757 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1758 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1759 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1760 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1761
1762 /* CPUID(1).edx */
1763 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1764 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1765 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1766 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1767 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1768 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1769 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1770 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1771 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1772 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1773 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1774 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1775 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1776 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1777 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1778 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1779 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1780 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1781 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1782 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1783 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1784 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1785 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1786 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1787 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1788 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1789 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1790 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1791 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1792 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1793 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1794 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1795
1796 /* CPUID(0x80000000). */
1797 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1798 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1799 {
1800 /** @todo deal with no 0x80000001 on the host. */
1801 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1802 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1803
1804 /* CPUID(0x80000001).ecx */
1805 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1806 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1807 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1808 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1809 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1810 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1811 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1812 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1813 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1814 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1815 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1816 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1817 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1818 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1819 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1820 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1821 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1822 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1823 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1824 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1825 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1826 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1827 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1828 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1829 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1830 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1831 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1832 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1833 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1834 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1835 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1836 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1837
1838 /* CPUID(0x80000001).edx */
1839 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1840 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1841 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1842 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1843 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1844 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1845 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1846 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1847 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1848 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1849 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1850 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1851 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1852 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1853 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1854 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1855 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1856 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1857 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1858 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1859 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1860 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1861 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1862 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1863 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1864 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1865 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1866 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1867 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1868 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1869 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1870 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1871 }
1872
1873 /*
1874 * We're good, commit the CPU ID leaves.
1875 */
1876 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1877 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1878 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1879 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1880
1881#undef CPUID_CHECK_RET
1882#undef CPUID_CHECK_WRN
1883#undef CPUID_CHECK2_RET
1884#undef CPUID_CHECK2_WRN
1885#undef CPUID_RAW_FEATURE_RET
1886#undef CPUID_RAW_FEATURE_WRN
1887#undef CPUID_RAW_FEATURE_IGN
1888#undef CPUID_GST_FEATURE_RET
1889#undef CPUID_GST_FEATURE_WRN
1890#undef CPUID_GST_FEATURE_EMU
1891#undef CPUID_GST_FEATURE_IGN
1892#undef CPUID_GST_FEATURE2_RET
1893#undef CPUID_GST_FEATURE2_WRN
1894#undef CPUID_GST_FEATURE2_EMU
1895#undef CPUID_GST_FEATURE2_IGN
1896#undef CPUID_GST_AMD_FEATURE_RET
1897#undef CPUID_GST_AMD_FEATURE_WRN
1898#undef CPUID_GST_AMD_FEATURE_EMU
1899#undef CPUID_GST_AMD_FEATURE_IGN
1900
1901 return VINF_SUCCESS;
1902}
1903
1904
1905/**
1906 * Pass 0 live exec callback.
1907 *
1908 * @returns VINF_SSM_DONT_CALL_AGAIN.
1909 * @param pVM The VM handle.
1910 * @param pSSM The saved state handle.
1911 * @param uPass The pass (0).
1912 */
1913static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1914{
1915 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1916 cpumR3SaveCpuId(pVM, pSSM);
1917 return VINF_SSM_DONT_CALL_AGAIN;
1918}
1919
1920
1921/**
1922 * Execute state save operation.
1923 *
1924 * @returns VBox status code.
1925 * @param pVM VM Handle.
1926 * @param pSSM SSM operation handle.
1927 */
1928static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1929{
1930 /*
1931 * Save.
1932 */
1933 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1934 {
1935 PVMCPU pVCpu = &pVM->aCpus[i];
1936
1937 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1938 }
1939
1940 SSMR3PutU32(pSSM, pVM->cCpus);
1941 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1942 {
1943 PVMCPU pVCpu = &pVM->aCpus[i];
1944
1945 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1946 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1947 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1948 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1949 }
1950
1951 cpumR3SaveCpuId(pVM, pSSM);
1952 return VINF_SUCCESS;
1953}
1954
1955
1956/**
1957 * Load a version 1.6 CPUMCTX structure.
1958 *
1959 * @returns VBox status code.
1960 * @param pVM VM Handle.
1961 * @param pCpumctx16 Version 1.6 CPUMCTX
1962 */
1963static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1964{
1965#define CPUMCTX16_LOADREG(RegName) \
1966 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1967
1968#define CPUMCTX16_LOADDRXREG(RegName) \
1969 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1970
1971#define CPUMCTX16_LOADHIDREG(RegName) \
1972 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1973 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1974 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1975
1976#define CPUMCTX16_LOADSEGREG(RegName) \
1977 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1978 CPUMCTX16_LOADHIDREG(RegName);
1979
1980 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1981
1982 CPUMCTX16_LOADREG(rax);
1983 CPUMCTX16_LOADREG(rbx);
1984 CPUMCTX16_LOADREG(rcx);
1985 CPUMCTX16_LOADREG(rdx);
1986 CPUMCTX16_LOADREG(rdi);
1987 CPUMCTX16_LOADREG(rsi);
1988 CPUMCTX16_LOADREG(rbp);
1989 CPUMCTX16_LOADREG(esp);
1990 CPUMCTX16_LOADREG(rip);
1991 CPUMCTX16_LOADREG(rflags);
1992
1993 CPUMCTX16_LOADSEGREG(cs);
1994 CPUMCTX16_LOADSEGREG(ds);
1995 CPUMCTX16_LOADSEGREG(es);
1996 CPUMCTX16_LOADSEGREG(fs);
1997 CPUMCTX16_LOADSEGREG(gs);
1998 CPUMCTX16_LOADSEGREG(ss);
1999
2000 CPUMCTX16_LOADREG(r8);
2001 CPUMCTX16_LOADREG(r9);
2002 CPUMCTX16_LOADREG(r10);
2003 CPUMCTX16_LOADREG(r11);
2004 CPUMCTX16_LOADREG(r12);
2005 CPUMCTX16_LOADREG(r13);
2006 CPUMCTX16_LOADREG(r14);
2007 CPUMCTX16_LOADREG(r15);
2008
2009 CPUMCTX16_LOADREG(cr0);
2010 CPUMCTX16_LOADREG(cr2);
2011 CPUMCTX16_LOADREG(cr3);
2012 CPUMCTX16_LOADREG(cr4);
2013
2014 CPUMCTX16_LOADDRXREG(0);
2015 CPUMCTX16_LOADDRXREG(1);
2016 CPUMCTX16_LOADDRXREG(2);
2017 CPUMCTX16_LOADDRXREG(3);
2018 CPUMCTX16_LOADDRXREG(4);
2019 CPUMCTX16_LOADDRXREG(5);
2020 CPUMCTX16_LOADDRXREG(6);
2021 CPUMCTX16_LOADDRXREG(7);
2022
2023 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
2024 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
2025 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
2026 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
2027
2028 CPUMCTX16_LOADREG(ldtr);
2029 CPUMCTX16_LOADREG(tr);
2030
2031 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
2032
2033 CPUMCTX16_LOADREG(msrEFER);
2034 CPUMCTX16_LOADREG(msrSTAR);
2035 CPUMCTX16_LOADREG(msrPAT);
2036 CPUMCTX16_LOADREG(msrLSTAR);
2037 CPUMCTX16_LOADREG(msrCSTAR);
2038 CPUMCTX16_LOADREG(msrSFMASK);
2039 CPUMCTX16_LOADREG(msrKERNELGSBASE);
2040
2041 CPUMCTX16_LOADHIDREG(ldtr);
2042 CPUMCTX16_LOADHIDREG(tr);
2043
2044#undef CPUMCTX16_LOADSEGREG
2045#undef CPUMCTX16_LOADHIDREG
2046#undef CPUMCTX16_LOADDRXREG
2047#undef CPUMCTX16_LOADREG
2048}
2049
2050
2051/**
2052 * @copydoc FNSSMINTLOADPREP
2053 */
2054static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2055{
2056 pVM->cpum.s.fPendingRestore = true;
2057 return VINF_SUCCESS;
2058}
2059
2060
2061/**
2062 * @copydoc FNSSMINTLOADEXEC
2063 */
2064static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2065{
2066 /*
2067 * Validate version.
2068 */
2069 if ( uVersion != CPUM_SAVED_STATE_VERSION
2070 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2071 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2072 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2073 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2074 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2075 {
2076 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2077 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2078 }
2079
2080 if (uPass == SSM_PASS_FINAL)
2081 {
2082 /*
2083 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2084 * really old SSM file versions.)
2085 */
2086 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2087 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2088 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2089 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2090
2091 /*
2092 * Restore.
2093 */
2094 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2095 {
2096 PVMCPU pVCpu = &pVM->aCpus[i];
2097 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2098 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
2099
2100 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
2101 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2102 pVCpu->cpum.s.Hyper.esp = uESP;
2103 }
2104
2105 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2106 {
2107 CPUMCTX_VER1_6 cpumctx16;
2108 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
2109 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
2110
2111 /* Save the old cpumctx state into the new one. */
2112 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
2113
2114 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
2115 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
2116 }
2117 else
2118 {
2119 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2120 {
2121 uint32_t cCpus;
2122 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2123 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2124 VERR_SSM_UNEXPECTED_DATA);
2125 }
2126 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2127 || pVM->cCpus == 1,
2128 ("cCpus=%u\n", pVM->cCpus),
2129 VERR_SSM_UNEXPECTED_DATA);
2130
2131 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2132 {
2133 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
2134 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2135 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2136 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2137 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
2138 }
2139 }
2140
2141 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2142 raw-mode guest, so we have to do it ourselves. */
2143 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2144 && !HWACCMIsEnabled(pVM))
2145 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2146 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2147 }
2148
2149 pVM->cpum.s.fPendingRestore = false;
2150
2151 /*
2152 * Guest CPUIDs.
2153 */
2154 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2155 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2156
2157 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2158 * actually required. */
2159
2160 /*
2161 * Restore the CPUID leaves.
2162 *
2163 * Note that we support restoring less than the current amount of standard
2164 * leaves because we've been allowed more is newer version of VBox.
2165 */
2166 uint32_t cElements;
2167 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2168 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2169 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2170 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2171
2172 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2173 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2174 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2175 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2176
2177 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2178 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2179 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2180 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2181
2182 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2183
2184 /*
2185 * Check that the basic cpuid id information is unchanged.
2186 */
2187 /** @todo we should check the 64 bits capabilities too! */
2188 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2189 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2190 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2191 uint32_t au32CpuIdSaved[8];
2192 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2193 if (RT_SUCCESS(rc))
2194 {
2195 /* Ignore CPU stepping. */
2196 au32CpuId[4] &= 0xfffffff0;
2197 au32CpuIdSaved[4] &= 0xfffffff0;
2198
2199 /* Ignore APIC ID (AMD specs). */
2200 au32CpuId[5] &= ~0xff000000;
2201 au32CpuIdSaved[5] &= ~0xff000000;
2202
2203 /* Ignore the number of Logical CPUs (AMD specs). */
2204 au32CpuId[5] &= ~0x00ff0000;
2205 au32CpuIdSaved[5] &= ~0x00ff0000;
2206
2207 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2208 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2209 | X86_CPUID_FEATURE_ECX_VMX
2210 | X86_CPUID_FEATURE_ECX_SMX
2211 | X86_CPUID_FEATURE_ECX_EST
2212 | X86_CPUID_FEATURE_ECX_TM2
2213 | X86_CPUID_FEATURE_ECX_CNTXID
2214 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2215 | X86_CPUID_FEATURE_ECX_PDCM
2216 | X86_CPUID_FEATURE_ECX_DCA
2217 | X86_CPUID_FEATURE_ECX_X2APIC
2218 );
2219 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2220 | X86_CPUID_FEATURE_ECX_VMX
2221 | X86_CPUID_FEATURE_ECX_SMX
2222 | X86_CPUID_FEATURE_ECX_EST
2223 | X86_CPUID_FEATURE_ECX_TM2
2224 | X86_CPUID_FEATURE_ECX_CNTXID
2225 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2226 | X86_CPUID_FEATURE_ECX_PDCM
2227 | X86_CPUID_FEATURE_ECX_DCA
2228 | X86_CPUID_FEATURE_ECX_X2APIC
2229 );
2230
2231 /* Make sure we don't forget to update the masks when enabling
2232 * features in the future.
2233 */
2234 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2235 ( X86_CPUID_FEATURE_ECX_DTES64
2236 | X86_CPUID_FEATURE_ECX_VMX
2237 | X86_CPUID_FEATURE_ECX_SMX
2238 | X86_CPUID_FEATURE_ECX_EST
2239 | X86_CPUID_FEATURE_ECX_TM2
2240 | X86_CPUID_FEATURE_ECX_CNTXID
2241 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2242 | X86_CPUID_FEATURE_ECX_PDCM
2243 | X86_CPUID_FEATURE_ECX_DCA
2244 | X86_CPUID_FEATURE_ECX_X2APIC
2245 )));
2246 /* do the compare */
2247 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2248 {
2249 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2250 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2251 "Saved=%.*Rhxs\n"
2252 "Real =%.*Rhxs\n",
2253 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2254 sizeof(au32CpuId), au32CpuId));
2255 else
2256 {
2257 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2258 "Saved=%.*Rhxs\n"
2259 "Real =%.*Rhxs\n",
2260 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2261 sizeof(au32CpuId), au32CpuId));
2262 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2263 }
2264 }
2265 }
2266
2267 return rc;
2268}
2269
2270
2271/**
2272 * @copydoc FNSSMINTLOADPREP
2273 */
2274static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2275{
2276 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2277 return VINF_SUCCESS;
2278
2279 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2280 if (pVM->cpum.s.fPendingRestore)
2281 {
2282 LogRel(("CPUM: Missing state!\n"));
2283 return VERR_INTERNAL_ERROR_2;
2284 }
2285 return VINF_SUCCESS;
2286}
2287
2288
2289/**
2290 * Checks if the CPUM state restore is still pending.
2291 *
2292 * @returns true / false.
2293 * @param pVM The VM handle.
2294 */
2295VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2296{
2297 return pVM->cpum.s.fPendingRestore;
2298}
2299
2300
2301/**
2302 * Formats the EFLAGS value into mnemonics.
2303 *
2304 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2305 * @param efl The EFLAGS value.
2306 */
2307static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2308{
2309 /*
2310 * Format the flags.
2311 */
2312 static const struct
2313 {
2314 const char *pszSet; const char *pszClear; uint32_t fFlag;
2315 } s_aFlags[] =
2316 {
2317 { "vip",NULL, X86_EFL_VIP },
2318 { "vif",NULL, X86_EFL_VIF },
2319 { "ac", NULL, X86_EFL_AC },
2320 { "vm", NULL, X86_EFL_VM },
2321 { "rf", NULL, X86_EFL_RF },
2322 { "nt", NULL, X86_EFL_NT },
2323 { "ov", "nv", X86_EFL_OF },
2324 { "dn", "up", X86_EFL_DF },
2325 { "ei", "di", X86_EFL_IF },
2326 { "tf", NULL, X86_EFL_TF },
2327 { "nt", "pl", X86_EFL_SF },
2328 { "nz", "zr", X86_EFL_ZF },
2329 { "ac", "na", X86_EFL_AF },
2330 { "po", "pe", X86_EFL_PF },
2331 { "cy", "nc", X86_EFL_CF },
2332 };
2333 char *psz = pszEFlags;
2334 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2335 {
2336 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2337 if (pszAdd)
2338 {
2339 strcpy(psz, pszAdd);
2340 psz += strlen(pszAdd);
2341 *psz++ = ' ';
2342 }
2343 }
2344 psz[-1] = '\0';
2345}
2346
2347
2348/**
2349 * Formats a full register dump.
2350 *
2351 * @param pVM VM Handle.
2352 * @param pCtx The context to format.
2353 * @param pCtxCore The context core to format.
2354 * @param pHlp Output functions.
2355 * @param enmType The dump type.
2356 * @param pszPrefix Register name prefix.
2357 */
2358static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2359{
2360 /*
2361 * Format the EFLAGS.
2362 */
2363 uint32_t efl = pCtxCore->eflags.u32;
2364 char szEFlags[80];
2365 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2366
2367 /*
2368 * Format the registers.
2369 */
2370 switch (enmType)
2371 {
2372 case CPUMDUMPTYPE_TERSE:
2373 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2374 pHlp->pfnPrintf(pHlp,
2375 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2376 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2377 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2378 "%sr14=%016RX64 %sr15=%016RX64\n"
2379 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2380 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2381 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2382 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2383 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2384 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2385 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2386 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2387 else
2388 pHlp->pfnPrintf(pHlp,
2389 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2390 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2391 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2392 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2393 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2394 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2395 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2396 break;
2397
2398 case CPUMDUMPTYPE_DEFAULT:
2399 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2400 pHlp->pfnPrintf(pHlp,
2401 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2402 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2403 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2404 "%sr14=%016RX64 %sr15=%016RX64\n"
2405 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2406 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2407 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2408 ,
2409 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2410 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2411 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2412 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2413 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2414 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2415 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2416 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2417 else
2418 pHlp->pfnPrintf(pHlp,
2419 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2420 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2421 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2422 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2423 ,
2424 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2425 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2426 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2427 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2428 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2429 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2430 break;
2431
2432 case CPUMDUMPTYPE_VERBOSE:
2433 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2434 pHlp->pfnPrintf(pHlp,
2435 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2436 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2437 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2438 "%sr14=%016RX64 %sr15=%016RX64\n"
2439 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2440 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2441 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2442 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2443 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2444 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2445 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2446 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2447 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2448 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2449 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2450 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2451 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2452 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2453 ,
2454 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2455 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2456 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2457 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2458 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2459 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2460 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2461 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2462 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2463 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2464 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2465 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2466 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2467 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2468 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2469 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2470 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2471 else
2472 pHlp->pfnPrintf(pHlp,
2473 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2474 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2475 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2476 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2477 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2478 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2479 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2480 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2481 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2482 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2483 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2484 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2485 ,
2486 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2487 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2488 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2489 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2490 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2491 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2492 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2493 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2494 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2495 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2496 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2497 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2498
2499 pHlp->pfnPrintf(pHlp,
2500 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2501 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2502 ,
2503 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2504 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2505 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2506 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2507 );
2508 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2509 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2510 {
2511 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2512 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2513 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2514 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2515 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2516 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2517 /** @todo This isn't entirenly correct and needs more work! */
2518 pHlp->pfnPrintf(pHlp,
2519 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2520 pszPrefix, iST, pszPrefix, iFPR,
2521 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2522 uTag, chSign, iInteger, u64Fraction, uExponent);
2523 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2524 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2525 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2526 else
2527 pHlp->pfnPrintf(pHlp, "\n");
2528 }
2529 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2530 pHlp->pfnPrintf(pHlp,
2531 iXMM & 1
2532 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2533 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2534 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2535 pCtx->fpu.aXMM[iXMM].au32[3],
2536 pCtx->fpu.aXMM[iXMM].au32[2],
2537 pCtx->fpu.aXMM[iXMM].au32[1],
2538 pCtx->fpu.aXMM[iXMM].au32[0]);
2539 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2540 if (pCtx->fpu.au32RsrvdRest[i])
2541 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2542 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2543
2544 pHlp->pfnPrintf(pHlp,
2545 "%sEFER =%016RX64\n"
2546 "%sPAT =%016RX64\n"
2547 "%sSTAR =%016RX64\n"
2548 "%sCSTAR =%016RX64\n"
2549 "%sLSTAR =%016RX64\n"
2550 "%sSFMASK =%016RX64\n"
2551 "%sKERNELGSBASE =%016RX64\n",
2552 pszPrefix, pCtx->msrEFER,
2553 pszPrefix, pCtx->msrPAT,
2554 pszPrefix, pCtx->msrSTAR,
2555 pszPrefix, pCtx->msrCSTAR,
2556 pszPrefix, pCtx->msrLSTAR,
2557 pszPrefix, pCtx->msrSFMASK,
2558 pszPrefix, pCtx->msrKERNELGSBASE);
2559 break;
2560 }
2561}
2562
2563
2564/**
2565 * Display all cpu states and any other cpum info.
2566 *
2567 * @param pVM VM Handle.
2568 * @param pHlp The info helper functions.
2569 * @param pszArgs Arguments, ignored.
2570 */
2571static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2572{
2573 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2574 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2575 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2576 cpumR3InfoHost(pVM, pHlp, pszArgs);
2577}
2578
2579
2580/**
2581 * Parses the info argument.
2582 *
2583 * The argument starts with 'verbose', 'terse' or 'default' and then
2584 * continues with the comment string.
2585 *
2586 * @param pszArgs The pointer to the argument string.
2587 * @param penmType Where to store the dump type request.
2588 * @param ppszComment Where to store the pointer to the comment string.
2589 */
2590static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2591{
2592 if (!pszArgs)
2593 {
2594 *penmType = CPUMDUMPTYPE_DEFAULT;
2595 *ppszComment = "";
2596 }
2597 else
2598 {
2599 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2600 {
2601 pszArgs += 5;
2602 *penmType = CPUMDUMPTYPE_VERBOSE;
2603 }
2604 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2605 {
2606 pszArgs += 5;
2607 *penmType = CPUMDUMPTYPE_TERSE;
2608 }
2609 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2610 {
2611 pszArgs += 7;
2612 *penmType = CPUMDUMPTYPE_DEFAULT;
2613 }
2614 else
2615 *penmType = CPUMDUMPTYPE_DEFAULT;
2616 *ppszComment = RTStrStripL(pszArgs);
2617 }
2618}
2619
2620
2621/**
2622 * Display the guest cpu state.
2623 *
2624 * @param pVM VM Handle.
2625 * @param pHlp The info helper functions.
2626 * @param pszArgs Arguments, ignored.
2627 */
2628static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2629{
2630 CPUMDUMPTYPE enmType;
2631 const char *pszComment;
2632 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2633
2634 /* @todo SMP support! */
2635 PVMCPU pVCpu = VMMGetCpu(pVM);
2636 if (!pVCpu)
2637 pVCpu = &pVM->aCpus[0];
2638
2639 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2640
2641 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2642 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2643}
2644
2645
2646/**
2647 * Display the current guest instruction
2648 *
2649 * @param pVM VM Handle.
2650 * @param pHlp The info helper functions.
2651 * @param pszArgs Arguments, ignored.
2652 */
2653static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2654{
2655 char szInstruction[256];
2656 /* @todo SMP support! */
2657 PVMCPU pVCpu = VMMGetCpu(pVM);
2658 if (!pVCpu)
2659 pVCpu = &pVM->aCpus[0];
2660
2661 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2662 if (RT_SUCCESS(rc))
2663 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2664}
2665
2666
2667/**
2668 * Display the hypervisor cpu state.
2669 *
2670 * @param pVM VM Handle.
2671 * @param pHlp The info helper functions.
2672 * @param pszArgs Arguments, ignored.
2673 */
2674static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2675{
2676 CPUMDUMPTYPE enmType;
2677 const char *pszComment;
2678 /* @todo SMP */
2679 PVMCPU pVCpu = &pVM->aCpus[0];
2680
2681 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2682 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2683 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2684 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2685}
2686
2687
2688/**
2689 * Display the host cpu state.
2690 *
2691 * @param pVM VM Handle.
2692 * @param pHlp The info helper functions.
2693 * @param pszArgs Arguments, ignored.
2694 */
2695static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2696{
2697 CPUMDUMPTYPE enmType;
2698 const char *pszComment;
2699 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2700 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2701
2702 /*
2703 * Format the EFLAGS.
2704 */
2705 /* @todo SMP */
2706 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2707#if HC_ARCH_BITS == 32
2708 uint32_t efl = pCtx->eflags.u32;
2709#else
2710 uint64_t efl = pCtx->rflags;
2711#endif
2712 char szEFlags[80];
2713 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2714
2715 /*
2716 * Format the registers.
2717 */
2718#if HC_ARCH_BITS == 32
2719# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2720 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2721# endif
2722 {
2723 pHlp->pfnPrintf(pHlp,
2724 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2725 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2726 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2727 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2728 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2729 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2730 ,
2731 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2732 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2733 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2734 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2735 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2736 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2737 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2738 }
2739# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2740 else
2741# endif
2742#endif
2743#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2744 {
2745 pHlp->pfnPrintf(pHlp,
2746 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2747 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2748 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2749 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2750 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2751 "r14=%016RX64 r15=%016RX64\n"
2752 "iopl=%d %31s\n"
2753 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2754 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2755 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2756 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2757 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2758 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2759 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2760 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2761 ,
2762 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2763 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2764 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2765 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2766 pCtx->r11, pCtx->r12, pCtx->r13,
2767 pCtx->r14, pCtx->r15,
2768 X86_EFL_GET_IOPL(efl), szEFlags,
2769 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2770 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2771 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2772 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2773 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2774 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2775 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2776 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2777 }
2778#endif
2779}
2780
2781
2782/**
2783 * Get L1 cache / TLS associativity.
2784 */
2785static const char *getCacheAss(unsigned u, char *pszBuf)
2786{
2787 if (u == 0)
2788 return "res0 ";
2789 if (u == 1)
2790 return "direct";
2791 if (u == 255)
2792 return "fully";
2793 if (u >= 256)
2794 return "???";
2795
2796 RTStrPrintf(pszBuf, 16, "%d way", u);
2797 return pszBuf;
2798}
2799
2800
2801/**
2802 * Get L2 cache soociativity.
2803 */
2804const char *getL2CacheAss(unsigned u)
2805{
2806 switch (u)
2807 {
2808 case 0: return "off ";
2809 case 1: return "direct";
2810 case 2: return "2 way ";
2811 case 3: return "res3 ";
2812 case 4: return "4 way ";
2813 case 5: return "res5 ";
2814 case 6: return "8 way ";
2815 case 7: return "res7 ";
2816 case 8: return "16 way";
2817 case 9: return "res9 ";
2818 case 10: return "res10 ";
2819 case 11: return "res11 ";
2820 case 12: return "res12 ";
2821 case 13: return "res13 ";
2822 case 14: return "res14 ";
2823 case 15: return "fully ";
2824 default: return "????";
2825 }
2826}
2827
2828
2829/**
2830 * Display the guest CpuId leaves.
2831 *
2832 * @param pVM VM Handle.
2833 * @param pHlp The info helper functions.
2834 * @param pszArgs "terse", "default" or "verbose".
2835 */
2836static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2837{
2838 /*
2839 * Parse the argument.
2840 */
2841 unsigned iVerbosity = 1;
2842 if (pszArgs)
2843 {
2844 pszArgs = RTStrStripL(pszArgs);
2845 if (!strcmp(pszArgs, "terse"))
2846 iVerbosity--;
2847 else if (!strcmp(pszArgs, "verbose"))
2848 iVerbosity++;
2849 }
2850
2851 /*
2852 * Start cracking.
2853 */
2854 CPUMCPUID Host;
2855 CPUMCPUID Guest;
2856 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2857
2858 pHlp->pfnPrintf(pHlp,
2859 " RAW Standard CPUIDs\n"
2860 " Function eax ebx ecx edx\n");
2861 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2862 {
2863 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2864 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2865
2866 pHlp->pfnPrintf(pHlp,
2867 "Gst: %08x %08x %08x %08x %08x%s\n"
2868 "Hst: %08x %08x %08x %08x\n",
2869 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2870 i <= cStdMax ? "" : "*",
2871 Host.eax, Host.ebx, Host.ecx, Host.edx);
2872 }
2873
2874 /*
2875 * If verbose, decode it.
2876 */
2877 if (iVerbosity)
2878 {
2879 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2880 pHlp->pfnPrintf(pHlp,
2881 "Name: %.04s%.04s%.04s\n"
2882 "Supports: 0-%x\n",
2883 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2884 }
2885
2886 /*
2887 * Get Features.
2888 */
2889 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2890 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2891 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2892 if (cStdMax >= 1 && iVerbosity)
2893 {
2894 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
2895
2896 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2897 uint32_t uEAX = Guest.eax;
2898
2899 pHlp->pfnPrintf(pHlp,
2900 "Family: %d \tExtended: %d \tEffective: %d\n"
2901 "Model: %d \tExtended: %d \tEffective: %d\n"
2902 "Stepping: %d\n"
2903 "Type: %d (%s)\n"
2904 "APIC ID: %#04x\n"
2905 "Logical CPUs: %d\n"
2906 "CLFLUSH Size: %d\n"
2907 "Brand ID: %#04x\n",
2908 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2909 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2910 ASMGetCpuStepping(uEAX),
2911 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
2912 (Guest.ebx >> 24) & 0xff,
2913 (Guest.ebx >> 16) & 0xff,
2914 (Guest.ebx >> 8) & 0xff,
2915 (Guest.ebx >> 0) & 0xff);
2916 if (iVerbosity == 1)
2917 {
2918 uint32_t uEDX = Guest.edx;
2919 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2920 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2921 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2922 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2923 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2924 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2925 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2926 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2927 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2928 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2929 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2930 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2931 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2932 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2933 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2934 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2935 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2936 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2937 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2938 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2939 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2940 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2941 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2942 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2943 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2944 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2945 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2946 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2947 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2948 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2949 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2950 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2951 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2952 pHlp->pfnPrintf(pHlp, "\n");
2953
2954 uint32_t uECX = Guest.ecx;
2955 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2956 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2957 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2958 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2959 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2960 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2961 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2962 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2963 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2964 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2965 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2966 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2967 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2968 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2969 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2970 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2971 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2972 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2973 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " 17");
2974 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2975 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4_1");
2976 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4_2");
2977 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2978 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2979 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2980 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " 24");
2981 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2982 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2983 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2984 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2985 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2986 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2987 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
2988 pHlp->pfnPrintf(pHlp, "\n");
2989 }
2990 else
2991 {
2992 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2993
2994 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
2995 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
2996 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
2997 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
2998
2999 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3000 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
3001 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
3002 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
3003 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
3004 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
3005 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
3006 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
3007 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
3008 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
3009 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
3010 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
3011 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
3012 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
3013 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3014 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3015 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3016 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3017 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3018 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3019 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3020 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3021 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3022 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3023 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3024 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3025 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3026 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3027 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3028 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3029 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3030 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3031 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3032
3033 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3034 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3035 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3036 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3037 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3038 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3039 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3040 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3041 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3042 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3043 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3044 pHlp->pfnPrintf(pHlp, "FMA = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3045 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3046 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3047 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3048 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3049 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3050 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3051 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3052 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3053 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3054 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3055 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3056 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
3057 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3058 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3059 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
3060 }
3061 }
3062 if (cStdMax >= 2 && iVerbosity)
3063 {
3064 /** @todo */
3065 }
3066
3067 /*
3068 * Extended.
3069 * Implemented after AMD specs.
3070 */
3071 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3072
3073 pHlp->pfnPrintf(pHlp,
3074 "\n"
3075 " RAW Extended CPUIDs\n"
3076 " Function eax ebx ecx edx\n");
3077 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3078 {
3079 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3080 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3081
3082 pHlp->pfnPrintf(pHlp,
3083 "Gst: %08x %08x %08x %08x %08x%s\n"
3084 "Hst: %08x %08x %08x %08x\n",
3085 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3086 i <= cExtMax ? "" : "*",
3087 Host.eax, Host.ebx, Host.ecx, Host.edx);
3088 }
3089
3090 /*
3091 * Understandable output
3092 */
3093 if (iVerbosity)
3094 {
3095 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3096 pHlp->pfnPrintf(pHlp,
3097 "Ext Name: %.4s%.4s%.4s\n"
3098 "Ext Supports: 0x80000000-%#010x\n",
3099 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3100 }
3101
3102 if (iVerbosity && cExtMax >= 1)
3103 {
3104 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3105 uint32_t uEAX = Guest.eax;
3106 pHlp->pfnPrintf(pHlp,
3107 "Family: %d \tExtended: %d \tEffective: %d\n"
3108 "Model: %d \tExtended: %d \tEffective: %d\n"
3109 "Stepping: %d\n"
3110 "Brand ID: %#05x\n",
3111 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3112 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3113 ASMGetCpuStepping(uEAX),
3114 Guest.ebx & 0xfff);
3115
3116 if (iVerbosity == 1)
3117 {
3118 uint32_t uEDX = Guest.edx;
3119 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3120 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3121 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3122 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3123 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3124 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3125 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3126 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3127 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3128 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3129 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3130 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3131 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3132 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3133 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3134 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3135 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3136 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3137 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3138 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3139 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3140 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3141 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3142 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3143 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3144 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3145 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3146 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3147 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3148 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3149 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3150 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3151 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3152 pHlp->pfnPrintf(pHlp, "\n");
3153
3154 uint32_t uECX = Guest.ecx;
3155 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3156 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3157 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3158 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3159 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3160 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3161 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3162 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3163 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3164 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3165 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3166 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3167 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3168 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3169 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3170 for (unsigned iBit = 5; iBit < 32; iBit++)
3171 if (uECX & RT_BIT(iBit))
3172 pHlp->pfnPrintf(pHlp, " %d", iBit);
3173 pHlp->pfnPrintf(pHlp, "\n");
3174 }
3175 else
3176 {
3177 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3178
3179 uint32_t uEdxGst = Guest.edx;
3180 uint32_t uEdxHst = Host.edx;
3181 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3182 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3183 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3184 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3185 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3186 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3187 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3188 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3189 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3190 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3191 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3192 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3193 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3194 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3195 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3196 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3197 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3198 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3199 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3200 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3201 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3202 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3203 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3204 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3205 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3206 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3207 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3208 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3209 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3210 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3211 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3212 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3213 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3214
3215 uint32_t uEcxGst = Guest.ecx;
3216 uint32_t uEcxHst = Host.ecx;
3217 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3218 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3219 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3220 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3221 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3222 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3223 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3224 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3225 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3226 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3227 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3228 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3229 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3230 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3231 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3232 }
3233 }
3234
3235 if (iVerbosity && cExtMax >= 2)
3236 {
3237 char szString[4*4*3+1] = {0};
3238 uint32_t *pu32 = (uint32_t *)szString;
3239 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3240 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3241 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3242 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3243 if (cExtMax >= 3)
3244 {
3245 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3246 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3247 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3248 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3249 }
3250 if (cExtMax >= 4)
3251 {
3252 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3253 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3254 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3255 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3256 }
3257 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3258 }
3259
3260 if (iVerbosity && cExtMax >= 5)
3261 {
3262 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3263 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3264 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3265 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3266 char sz1[32];
3267 char sz2[32];
3268
3269 pHlp->pfnPrintf(pHlp,
3270 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3271 "TLB 2/4M Data: %s %3d entries\n",
3272 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3273 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3274 pHlp->pfnPrintf(pHlp,
3275 "TLB 4K Instr/Uni: %s %3d entries\n"
3276 "TLB 4K Data: %s %3d entries\n",
3277 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3278 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3279 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3280 "L1 Instr Cache Lines Per Tag: %d\n"
3281 "L1 Instr Cache Associativity: %s\n"
3282 "L1 Instr Cache Size: %d KB\n",
3283 (uEDX >> 0) & 0xff,
3284 (uEDX >> 8) & 0xff,
3285 getCacheAss((uEDX >> 16) & 0xff, sz1),
3286 (uEDX >> 24) & 0xff);
3287 pHlp->pfnPrintf(pHlp,
3288 "L1 Data Cache Line Size: %d bytes\n"
3289 "L1 Data Cache Lines Per Tag: %d\n"
3290 "L1 Data Cache Associativity: %s\n"
3291 "L1 Data Cache Size: %d KB\n",
3292 (uECX >> 0) & 0xff,
3293 (uECX >> 8) & 0xff,
3294 getCacheAss((uECX >> 16) & 0xff, sz1),
3295 (uECX >> 24) & 0xff);
3296 }
3297
3298 if (iVerbosity && cExtMax >= 6)
3299 {
3300 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3301 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3302 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3303
3304 pHlp->pfnPrintf(pHlp,
3305 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3306 "L2 TLB 2/4M Data: %s %4d entries\n",
3307 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3308 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3309 pHlp->pfnPrintf(pHlp,
3310 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3311 "L2 TLB 4K Data: %s %4d entries\n",
3312 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3313 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3314 pHlp->pfnPrintf(pHlp,
3315 "L2 Cache Line Size: %d bytes\n"
3316 "L2 Cache Lines Per Tag: %d\n"
3317 "L2 Cache Associativity: %s\n"
3318 "L2 Cache Size: %d KB\n",
3319 (uEDX >> 0) & 0xff,
3320 (uEDX >> 8) & 0xf,
3321 getL2CacheAss((uEDX >> 12) & 0xf),
3322 (uEDX >> 16) & 0xffff);
3323 }
3324
3325 if (iVerbosity && cExtMax >= 7)
3326 {
3327 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3328
3329 pHlp->pfnPrintf(pHlp, "APM Features: ");
3330 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3331 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3332 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3333 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3334 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3335 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3336 for (unsigned iBit = 6; iBit < 32; iBit++)
3337 if (uEDX & RT_BIT(iBit))
3338 pHlp->pfnPrintf(pHlp, " %d", iBit);
3339 pHlp->pfnPrintf(pHlp, "\n");
3340 }
3341
3342 if (iVerbosity && cExtMax >= 8)
3343 {
3344 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3345 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3346
3347 pHlp->pfnPrintf(pHlp,
3348 "Physical Address Width: %d bits\n"
3349 "Virtual Address Width: %d bits\n"
3350 "Guest Physical Address Width: %d bits\n",
3351 (uEAX >> 0) & 0xff,
3352 (uEAX >> 8) & 0xff,
3353 (uEAX >> 16) & 0xff);
3354 pHlp->pfnPrintf(pHlp,
3355 "Physical Core Count: %d\n",
3356 (uECX >> 0) & 0xff);
3357 }
3358
3359
3360 /*
3361 * Centaur.
3362 */
3363 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3364
3365 pHlp->pfnPrintf(pHlp,
3366 "\n"
3367 " RAW Centaur CPUIDs\n"
3368 " Function eax ebx ecx edx\n");
3369 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3370 {
3371 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3372 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3373
3374 pHlp->pfnPrintf(pHlp,
3375 "Gst: %08x %08x %08x %08x %08x%s\n"
3376 "Hst: %08x %08x %08x %08x\n",
3377 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3378 i <= cCentaurMax ? "" : "*",
3379 Host.eax, Host.ebx, Host.ecx, Host.edx);
3380 }
3381
3382 /*
3383 * Understandable output
3384 */
3385 if (iVerbosity)
3386 {
3387 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3388 pHlp->pfnPrintf(pHlp,
3389 "Centaur Supports: 0xc0000000-%#010x\n",
3390 Guest.eax);
3391 }
3392
3393 if (iVerbosity && cCentaurMax >= 1)
3394 {
3395 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3396 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3397 uint32_t uEdxHst = Host.edx;
3398
3399 if (iVerbosity == 1)
3400 {
3401 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3402 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3403 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3404 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3405 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3406 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3407 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3408 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3409 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3410 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3411 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3412 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3413 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3414 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3415 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3416 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3417 for (unsigned iBit = 14; iBit < 32; iBit++)
3418 if (uEdxGst & RT_BIT(iBit))
3419 pHlp->pfnPrintf(pHlp, " %d", iBit);
3420 pHlp->pfnPrintf(pHlp, "\n");
3421 }
3422 else
3423 {
3424 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3425 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3426 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3427 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3428 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3429 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3430 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3431 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3432 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3433 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3434 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3435 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3436 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3437 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3438 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3439 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3440 for (unsigned iBit = 14; iBit < 32; iBit++)
3441 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3442 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3443 pHlp->pfnPrintf(pHlp, "\n");
3444 }
3445 }
3446}
3447
3448
3449/**
3450 * Structure used when disassembling and instructions in DBGF.
3451 * This is used so the reader function can get the stuff it needs.
3452 */
3453typedef struct CPUMDISASSTATE
3454{
3455 /** Pointer to the CPU structure. */
3456 PDISCPUSTATE pCpu;
3457 /** The VM handle. */
3458 PVM pVM;
3459 /** The VMCPU handle. */
3460 PVMCPU pVCpu;
3461 /** Pointer to the first byte in the segemnt. */
3462 RTGCUINTPTR GCPtrSegBase;
3463 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3464 RTGCUINTPTR GCPtrSegEnd;
3465 /** The size of the segment minus 1. */
3466 RTGCUINTPTR cbSegLimit;
3467 /** Pointer to the current page - R3 Ptr. */
3468 void const *pvPageR3;
3469 /** Pointer to the current page - GC Ptr. */
3470 RTGCPTR pvPageGC;
3471 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3472 PGMPAGEMAPLOCK PageMapLock;
3473 /** Whether the PageMapLock is valid or not. */
3474 bool fLocked;
3475 /** 64 bits mode or not. */
3476 bool f64Bits;
3477} CPUMDISASSTATE, *PCPUMDISASSTATE;
3478
3479
3480/**
3481 * Instruction reader.
3482 *
3483 * @returns VBox status code.
3484 * @param PtrSrc Address to read from.
3485 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3486 * @param pu8Dst Where to store the bytes.
3487 * @param cbRead Number of bytes to read.
3488 * @param uDisCpu Pointer to the disassembler cpu state.
3489 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3490 */
3491static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3492{
3493 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3494 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3495 Assert(cbRead > 0);
3496 for (;;)
3497 {
3498 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3499
3500 /* Need to update the page translation? */
3501 if ( !pState->pvPageR3
3502 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3503 {
3504 int rc = VINF_SUCCESS;
3505
3506 /* translate the address */
3507 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3508 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3509 && !HWACCMIsEnabled(pState->pVM))
3510 {
3511 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3512 if (!pState->pvPageR3)
3513 rc = VERR_INVALID_POINTER;
3514 }
3515 else
3516 {
3517 /* Release mapping lock previously acquired. */
3518 if (pState->fLocked)
3519 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3520 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3521 pState->fLocked = RT_SUCCESS_NP(rc);
3522 }
3523 if (RT_FAILURE(rc))
3524 {
3525 pState->pvPageR3 = NULL;
3526 return rc;
3527 }
3528 }
3529
3530 /* check the segemnt limit */
3531 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3532 return VERR_OUT_OF_SELECTOR_BOUNDS;
3533
3534 /* calc how much we can read */
3535 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3536 if (!pState->f64Bits)
3537 {
3538 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3539 if (cb > cbSeg && cbSeg)
3540 cb = cbSeg;
3541 }
3542 if (cb > cbRead)
3543 cb = cbRead;
3544
3545 /* read and advance */
3546 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3547 cbRead -= cb;
3548 if (!cbRead)
3549 return VINF_SUCCESS;
3550 pu8Dst += cb;
3551 PtrSrc += cb;
3552 }
3553}
3554
3555
3556/**
3557 * Disassemble an instruction and return the information in the provided structure.
3558 *
3559 * @returns VBox status code.
3560 * @param pVM VM Handle
3561 * @param pVCpu VMCPU Handle
3562 * @param pCtx CPU context
3563 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3564 * @param pCpu Disassembly state
3565 * @param pszPrefix String prefix for logging (debug only)
3566 *
3567 */
3568VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3569{
3570 CPUMDISASSTATE State;
3571 int rc;
3572
3573 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3574 State.pCpu = pCpu;
3575 State.pvPageGC = 0;
3576 State.pvPageR3 = NULL;
3577 State.pVM = pVM;
3578 State.pVCpu = pVCpu;
3579 State.fLocked = false;
3580 State.f64Bits = false;
3581
3582 /*
3583 * Get selector information.
3584 */
3585 if ( (pCtx->cr0 & X86_CR0_PE)
3586 && pCtx->eflags.Bits.u1VM == 0)
3587 {
3588 if (CPUMAreHiddenSelRegsValid(pVCpu))
3589 {
3590 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3591 State.GCPtrSegBase = pCtx->csHid.u64Base;
3592 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3593 State.cbSegLimit = pCtx->csHid.u32Limit;
3594 pCpu->mode = (State.f64Bits)
3595 ? CPUMODE_64BIT
3596 : pCtx->csHid.Attr.n.u1DefBig
3597 ? CPUMODE_32BIT
3598 : CPUMODE_16BIT;
3599 }
3600 else
3601 {
3602 DBGFSELINFO SelInfo;
3603
3604 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3605 if (RT_FAILURE(rc))
3606 {
3607 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3608 return rc;
3609 }
3610
3611 /*
3612 * Validate the selector.
3613 */
3614 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3615 if (RT_FAILURE(rc))
3616 {
3617 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3618 return rc;
3619 }
3620 State.GCPtrSegBase = SelInfo.GCPtrBase;
3621 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3622 State.cbSegLimit = SelInfo.cbLimit;
3623 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3624 }
3625 }
3626 else
3627 {
3628 /* real or V86 mode */
3629 pCpu->mode = CPUMODE_16BIT;
3630 State.GCPtrSegBase = pCtx->cs * 16;
3631 State.GCPtrSegEnd = 0xFFFFFFFF;
3632 State.cbSegLimit = 0xFFFFFFFF;
3633 }
3634
3635 /*
3636 * Disassemble the instruction.
3637 */
3638 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3639 pCpu->apvUserData[0] = &State;
3640
3641 uint32_t cbInstr;
3642#ifndef LOG_ENABLED
3643 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3644 if (RT_SUCCESS(rc))
3645 {
3646#else
3647 char szOutput[160];
3648 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3649 if (RT_SUCCESS(rc))
3650 {
3651 /* log it */
3652 if (pszPrefix)
3653 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3654 else
3655 Log(("%s", szOutput));
3656#endif
3657 rc = VINF_SUCCESS;
3658 }
3659 else
3660 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3661
3662 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3663 if (State.fLocked)
3664 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3665
3666 return rc;
3667}
3668
3669#ifdef DEBUG
3670
3671/**
3672 * Disassemble an instruction and dump it to the log
3673 *
3674 * @returns VBox status code.
3675 * @param pVM VM Handle
3676 * @param pVCpu VMCPU Handle
3677 * @param pCtx CPU context
3678 * @param pc GC instruction pointer
3679 * @param pszPrefix String prefix for logging
3680 *
3681 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3682 */
3683VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3684{
3685 DISCPUSTATE Cpu;
3686 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3687}
3688
3689
3690/**
3691 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3692 *
3693 * @internal
3694 */
3695VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3696{
3697 /** @todo SMP support!! */
3698 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3699}
3700
3701#endif /* DEBUG */
3702
3703/**
3704 * API for controlling a few of the CPU features found in CR4.
3705 *
3706 * Currently only X86_CR4_TSD is accepted as input.
3707 *
3708 * @returns VBox status code.
3709 *
3710 * @param pVM The VM handle.
3711 * @param fOr The CR4 OR mask.
3712 * @param fAnd The CR4 AND mask.
3713 */
3714VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3715{
3716 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3717 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3718
3719 pVM->cpum.s.CR4.OrMask &= fAnd;
3720 pVM->cpum.s.CR4.OrMask |= fOr;
3721
3722 return VINF_SUCCESS;
3723}
3724
3725
3726/**
3727 * Gets a pointer to the array of standard CPUID leaves.
3728 *
3729 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3730 *
3731 * @returns Pointer to the standard CPUID leaves (read-only).
3732 * @param pVM The VM handle.
3733 * @remark Intended for PATM.
3734 */
3735VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3736{
3737 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3738}
3739
3740
3741/**
3742 * Gets a pointer to the array of extended CPUID leaves.
3743 *
3744 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3745 *
3746 * @returns Pointer to the extended CPUID leaves (read-only).
3747 * @param pVM The VM handle.
3748 * @remark Intended for PATM.
3749 */
3750VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3751{
3752 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3753}
3754
3755
3756/**
3757 * Gets a pointer to the array of centaur CPUID leaves.
3758 *
3759 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3760 *
3761 * @returns Pointer to the centaur CPUID leaves (read-only).
3762 * @param pVM The VM handle.
3763 * @remark Intended for PATM.
3764 */
3765VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3766{
3767 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3768}
3769
3770
3771/**
3772 * Gets a pointer to the default CPUID leaf.
3773 *
3774 * @returns Pointer to the default CPUID leaf (read-only).
3775 * @param pVM The VM handle.
3776 * @remark Intended for PATM.
3777 */
3778VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3779{
3780 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3781}
3782
3783
3784/**
3785 * Transforms the guest CPU state to raw-ring mode.
3786 *
3787 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3788 *
3789 * @returns VBox status. (recompiler failure)
3790 * @param pVCpu The VMCPU handle.
3791 * @param pCtxCore The context core (for trap usage).
3792 * @see @ref pg_raw
3793 */
3794VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3795{
3796 PVM pVM = pVCpu->CTX_SUFF(pVM);
3797
3798 Assert(!pVCpu->cpum.s.fRawEntered);
3799 Assert(!pVCpu->cpum.s.fRemEntered);
3800 if (!pCtxCore)
3801 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
3802
3803 /*
3804 * Are we in Ring-0?
3805 */
3806 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
3807 && !pCtxCore->eflags.Bits.u1VM)
3808 {
3809 /*
3810 * Enter execution mode.
3811 */
3812 PATMRawEnter(pVM, pCtxCore);
3813
3814 /*
3815 * Set CPL to Ring-1.
3816 */
3817 pCtxCore->ss |= 1;
3818 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
3819 pCtxCore->cs |= 1;
3820 }
3821 else
3822 {
3823 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
3824 ("ring-1 code not supported\n"));
3825 /*
3826 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
3827 */
3828 PATMRawEnter(pVM, pCtxCore);
3829 }
3830
3831 /*
3832 * Invalidate the hidden registers.
3833 */
3834 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3835
3836 /*
3837 * Assert sanity.
3838 */
3839 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
3840 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
3841 || pCtxCore->eflags.Bits.u1VM,
3842 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3843 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
3844
3845 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
3846
3847 pVCpu->cpum.s.fRawEntered = true;
3848 return VINF_SUCCESS;
3849}
3850
3851
3852/**
3853 * Transforms the guest CPU state from raw-ring mode to correct values.
3854 *
3855 * This function will change any selector registers with DPL=1 to DPL=0.
3856 *
3857 * @returns Adjusted rc.
3858 * @param pVCpu The VMCPU handle.
3859 * @param rc Raw mode return code
3860 * @param pCtxCore The context core (for trap usage).
3861 * @see @ref pg_raw
3862 */
3863VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
3864{
3865 PVM pVM = pVCpu->CTX_SUFF(pVM);
3866
3867 /*
3868 * Don't leave if we've already left (in GC).
3869 */
3870 Assert(pVCpu->cpum.s.fRawEntered);
3871 Assert(!pVCpu->cpum.s.fRemEntered);
3872 if (!pVCpu->cpum.s.fRawEntered)
3873 return rc;
3874 pVCpu->cpum.s.fRawEntered = false;
3875
3876 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3877 if (!pCtxCore)
3878 pCtxCore = CPUMCTX2CORE(pCtx);
3879 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
3880 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
3881 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3882
3883 /*
3884 * Are we executing in raw ring-1?
3885 */
3886 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
3887 && !pCtxCore->eflags.Bits.u1VM)
3888 {
3889 /*
3890 * Leave execution mode.
3891 */
3892 PATMRawLeave(pVM, pCtxCore, rc);
3893 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
3894 /** @todo See what happens if we remove this. */
3895 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3896 pCtxCore->ds &= ~X86_SEL_RPL;
3897 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3898 pCtxCore->es &= ~X86_SEL_RPL;
3899 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3900 pCtxCore->fs &= ~X86_SEL_RPL;
3901 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3902 pCtxCore->gs &= ~X86_SEL_RPL;
3903
3904 /*
3905 * Ring-1 selector => Ring-0.
3906 */
3907 pCtxCore->ss &= ~X86_SEL_RPL;
3908 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
3909 pCtxCore->cs &= ~X86_SEL_RPL;
3910 }
3911 else
3912 {
3913 /*
3914 * PATM is taking care of the IOPL and IF flags for us.
3915 */
3916 PATMRawLeave(pVM, pCtxCore, rc);
3917 if (!pCtxCore->eflags.Bits.u1VM)
3918 {
3919 /** @todo See what happens if we remove this. */
3920 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3921 pCtxCore->ds &= ~X86_SEL_RPL;
3922 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3923 pCtxCore->es &= ~X86_SEL_RPL;
3924 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3925 pCtxCore->fs &= ~X86_SEL_RPL;
3926 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3927 pCtxCore->gs &= ~X86_SEL_RPL;
3928 }
3929 }
3930
3931 return rc;
3932}
3933
3934
3935/**
3936 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3937 *
3938 * Only REM should ever call this function!
3939 *
3940 * @returns The changed flags.
3941 * @param pVCpu The VMCPU handle.
3942 * @param puCpl Where to return the current privilege level (CPL).
3943 */
3944VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3945{
3946 Assert(!pVCpu->cpum.s.fRawEntered);
3947 Assert(!pVCpu->cpum.s.fRemEntered);
3948
3949 /*
3950 * Get the CPL first.
3951 */
3952 *puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
3953
3954 /*
3955 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
3956 */
3957 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3958 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
3959
3960 /** @todo change the switcher to use the fChanged flags. */
3961 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3962 {
3963 fFlags |= CPUM_CHANGED_FPU_REM;
3964 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3965 }
3966
3967 pVCpu->cpum.s.fRemEntered = true;
3968 return fFlags;
3969}
3970
3971
3972/**
3973 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
3974 *
3975 * @param pVCpu The virtual CPU handle.
3976 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3977 * registers.
3978 */
3979VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3980{
3981 Assert(!pVCpu->cpum.s.fRawEntered);
3982 Assert(pVCpu->cpum.s.fRemEntered);
3983
3984 if (fNoOutOfSyncSels)
3985 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3986 else
3987 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3988
3989 pVCpu->cpum.s.fRemEntered = false;
3990}
3991
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette