VirtualBox

source: vbox/trunk/src/VBox/VMM/CPUM.cpp@ 31768

Last change on this file since 31768 was 31395, checked in by vboxsync, 14 years ago

CPUM.cpp: Added /CPUM/EnableNX config option, defaults to false. Useful for raw-mode where we don't normally enable NXE.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 187.9 KB
Line 
1/* $Id: CPUM.cpp 31395 2010-08-05 12:15:00Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers accross world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/cpum.h>
39#include <VBox/cpumdis.h>
40#include <VBox/pgm.h>
41#include <VBox/mm.h>
42#include <VBox/selm.h>
43#include <VBox/dbgf.h>
44#include <VBox/patm.h>
45#include <VBox/hwaccm.h>
46#include <VBox/ssm.h>
47#include "CPUMInternal.h"
48#include <VBox/vm.h>
49
50#include <VBox/param.h>
51#include <VBox/dis.h>
52#include <VBox/err.h>
53#include <VBox/log.h>
54#include <iprt/assert.h>
55#include <iprt/asm-amd64-x86.h>
56#include <iprt/string.h>
57#include <iprt/mp.h>
58#include <iprt/cpuset.h>
59#include <include/internal/pgm.h>
60
61/*******************************************************************************
62* Defined Constants And Macros *
63*******************************************************************************/
64/** The current saved state version. */
65#define CPUM_SAVED_STATE_VERSION 12
66/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
67 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
68#define CPUM_SAVED_STATE_VERSION_VER3_2 11
69/** The saved state version of 3.0 and 3.1 trunk before the teleportation
70 * changes. */
71#define CPUM_SAVED_STATE_VERSION_VER3_0 10
72/** The saved state version for the 2.1 trunk before the MSR changes. */
73#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
74/** The saved state version of 2.0, used for backwards compatibility. */
75#define CPUM_SAVED_STATE_VERSION_VER2_0 8
76/** The saved state version of 1.6, used for backwards compatability. */
77#define CPUM_SAVED_STATE_VERSION_VER1_6 6
78
79
80/*******************************************************************************
81* Structures and Typedefs *
82*******************************************************************************/
83
84/**
85 * What kind of cpu info dump to perform.
86 */
87typedef enum CPUMDUMPTYPE
88{
89 CPUMDUMPTYPE_TERSE,
90 CPUMDUMPTYPE_DEFAULT,
91 CPUMDUMPTYPE_VERBOSE
92} CPUMDUMPTYPE;
93/** Pointer to a cpu info dump type. */
94typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
95
96
97/*******************************************************************************
98* Internal Functions *
99*******************************************************************************/
100static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
101static int cpumR3CpuIdInit(PVM pVM);
102static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
103static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
104static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
106static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
107static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
108static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
109static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
110static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113
114
115/**
116 * Initializes the CPUM.
117 *
118 * @returns VBox status code.
119 * @param pVM The VM to operate on.
120 */
121VMMR3DECL(int) CPUMR3Init(PVM pVM)
122{
123 LogFlow(("CPUMR3Init\n"));
124
125 /*
126 * Assert alignment and sizes.
127 */
128 AssertCompileMemberAlignment(VM, cpum.s, 32);
129 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
130 AssertCompileSizeAlignment(CPUMCTX, 64);
131 AssertCompileSizeAlignment(CPUMCTXMSR, 64);
132 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
133 AssertCompileMemberAlignment(VM, cpum, 64);
134 AssertCompileMemberAlignment(VM, aCpus, 64);
135 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
136 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
137
138 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
139 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
140 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
141
142 /* Calculate the offset from CPUMCPU to CPUM. */
143 for (VMCPUID i = 0; i < pVM->cCpus; i++)
144 {
145 PVMCPU pVCpu = &pVM->aCpus[i];
146
147 /*
148 * Setup any fixed pointers and offsets.
149 */
150 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
151 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
152
153 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
154 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
155 }
156
157 /*
158 * Check that the CPU supports the minimum features we require.
159 */
160 if (!ASMHasCpuId())
161 {
162 Log(("The CPU doesn't support CPUID!\n"));
163 return VERR_UNSUPPORTED_CPU;
164 }
165 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
166 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
167
168 /* Setup the CR4 AND and OR masks used in the switcher */
169 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
170 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
171 {
172 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
173 /* No FXSAVE implies no SSE */
174 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
175 pVM->cpum.s.CR4.OrMask = 0;
176 }
177 else
178 {
179 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
180 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
181 }
182
183 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
184 {
185 Log(("The CPU doesn't support MMX!\n"));
186 return VERR_UNSUPPORTED_CPU;
187 }
188 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
189 {
190 Log(("The CPU doesn't support TSC!\n"));
191 return VERR_UNSUPPORTED_CPU;
192 }
193 /* Bogus on AMD? */
194 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
195 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
196
197 /*
198 * Detech the host CPU vendor.
199 * (The guest CPU vendor is re-detected later on.)
200 */
201 uint32_t uEAX, uEBX, uECX, uEDX;
202 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
203 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
204 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
205
206 /*
207 * Setup hypervisor startup values.
208 */
209
210 /*
211 * Register saved state data item.
212 */
213 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
214 NULL, cpumR3LiveExec, NULL,
215 NULL, cpumR3SaveExec, NULL,
216 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
217 if (RT_FAILURE(rc))
218 return rc;
219
220 /*
221 * Register info handlers.
222 */
223 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
224 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
225 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
226 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
227 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
228 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
229
230 /*
231 * Initialize the Guest CPUID state.
232 */
233 rc = cpumR3CpuIdInit(pVM);
234 if (RT_FAILURE(rc))
235 return rc;
236 CPUMR3Reset(pVM);
237 return VINF_SUCCESS;
238}
239
240
241/**
242 * Initializes the per-VCPU CPUM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247VMMR3DECL(int) CPUMR3InitCPU(PVM pVM)
248{
249 LogFlow(("CPUMR3InitCPU\n"));
250 return VINF_SUCCESS;
251}
252
253
254/**
255 * Detect the CPU vendor give n the
256 *
257 * @returns The vendor.
258 * @param uEAX EAX from CPUID(0).
259 * @param uEBX EBX from CPUID(0).
260 * @param uECX ECX from CPUID(0).
261 * @param uEDX EDX from CPUID(0).
262 */
263static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
264{
265 if ( uEAX >= 1
266 && uEBX == X86_CPUID_VENDOR_AMD_EBX
267 && uECX == X86_CPUID_VENDOR_AMD_ECX
268 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
269 return CPUMCPUVENDOR_AMD;
270
271 if ( uEAX >= 1
272 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
273 && uECX == X86_CPUID_VENDOR_INTEL_ECX
274 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
275 return CPUMCPUVENDOR_INTEL;
276
277 /** @todo detect the other buggers... */
278 return CPUMCPUVENDOR_UNKNOWN;
279}
280
281
282/**
283 * Fetches overrides for a CPUID leaf.
284 *
285 * @returns VBox status code.
286 * @param pLeaf The leaf to load the overrides into.
287 * @param pCfgNode The CFGM node containing the overrides
288 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
289 * @param iLeaf The CPUID leaf number.
290 */
291static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
292{
293 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
294 if (pLeafNode)
295 {
296 uint32_t u32;
297 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
298 if (RT_SUCCESS(rc))
299 pLeaf->eax = u32;
300 else
301 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
302
303 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
304 if (RT_SUCCESS(rc))
305 pLeaf->ebx = u32;
306 else
307 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
308
309 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
310 if (RT_SUCCESS(rc))
311 pLeaf->ecx = u32;
312 else
313 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
314
315 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
316 if (RT_SUCCESS(rc))
317 pLeaf->edx = u32;
318 else
319 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
320
321 }
322 return VINF_SUCCESS;
323}
324
325
326/**
327 * Load the overrides for a set of CPUID leaves.
328 *
329 * @returns VBox status code.
330 * @param paLeaves The leaf array.
331 * @param cLeaves The number of leaves.
332 * @param uStart The start leaf number.
333 * @param pCfgNode The CFGM node containing the overrides
334 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
335 */
336static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
337{
338 for (uint32_t i = 0; i < cLeaves; i++)
339 {
340 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
341 if (RT_FAILURE(rc))
342 return rc;
343 }
344
345 return VINF_SUCCESS;
346}
347
348/**
349 * Init a set of host CPUID leaves.
350 *
351 * @returns VBox status code.
352 * @param paLeaves The leaf array.
353 * @param cLeaves The number of leaves.
354 * @param uStart The start leaf number.
355 * @param pCfgNode The /CPUM/HostCPUID/ node.
356 */
357static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
358{
359 /* Using the ECX variant for all of them can't hurt... */
360 for (uint32_t i = 0; i < cLeaves; i++)
361 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
362
363 /* Load CPUID leaf override; we currently don't care if the user
364 specifies features the host CPU doesn't support. */
365 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
366}
367
368
369/**
370 * Initializes the emulated CPU's cpuid information.
371 *
372 * @returns VBox status code.
373 * @param pVM The VM to operate on.
374 */
375static int cpumR3CpuIdInit(PVM pVM)
376{
377 PCPUM pCPUM = &pVM->cpum.s;
378 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
379 uint32_t i;
380 int rc;
381
382#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
383 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
384 { \
385 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
386 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
387 }
388#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
389 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
390 { \
391 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
392 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
393 }
394
395 /*
396 * Read the configuration.
397 */
398 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
399 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
400 * completely overridden by VirtualBox custom strings. Some
401 * CPUID information is withheld, like the cache info. */
402 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
403 AssertRCReturn(rc, rc);
404
405 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
406 * When non-zero CPUID features that could cause portability issues will be
407 * stripped. The higher the value the more features gets stripped. Higher
408 * values should only be used when older CPUs are involved since it may
409 * harm performance and maybe also cause problems with specific guests. */
410 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
411 AssertRCReturn(rc, rc);
412
413 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_INTERNAL_ERROR_2);
414
415 /*
416 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
417 * been overridden).
418 */
419 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
420 * Overrides the host CPUID leaf values used for calculating the guest CPUID
421 * leaves. This can be used to preserve the CPUID values when moving a VM
422 * to a different machine. Another use is restricting (or extending) the
423 * feature set exposed to the guest. */
424 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
425 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
426 AssertRCReturn(rc, rc);
427 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
428 AssertRCReturn(rc, rc);
429 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
430 AssertRCReturn(rc, rc);
431
432 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
433 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
434
435 /*
436 * Determine the default leaf.
437 *
438 * Intel returns values of the highest standard function, while AMD
439 * returns zeros. VIA on the other hand seems to returning nothing or
440 * perhaps some random garbage, we don't try to duplicate this behavior.
441 */
442 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
443 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
444 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
445
446
447 /* Cpuid 1 & 0x80000001:
448 * Only report features we can support.
449 *
450 * Note! When enabling new features the Synthetic CPU and Portable CPUID
451 * options may require adjusting (i.e. stripping what was enabled).
452 */
453 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
454 | X86_CPUID_FEATURE_EDX_VME
455 | X86_CPUID_FEATURE_EDX_DE
456 | X86_CPUID_FEATURE_EDX_PSE
457 | X86_CPUID_FEATURE_EDX_TSC
458 | X86_CPUID_FEATURE_EDX_MSR
459 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
460 | X86_CPUID_FEATURE_EDX_MCE
461 | X86_CPUID_FEATURE_EDX_CX8
462 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
463 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
464 //| X86_CPUID_FEATURE_EDX_SEP
465 | X86_CPUID_FEATURE_EDX_MTRR
466 | X86_CPUID_FEATURE_EDX_PGE
467 | X86_CPUID_FEATURE_EDX_MCA
468 | X86_CPUID_FEATURE_EDX_CMOV
469 | X86_CPUID_FEATURE_EDX_PAT
470 | X86_CPUID_FEATURE_EDX_PSE36
471 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
472 | X86_CPUID_FEATURE_EDX_CLFSH
473 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
474 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
475 | X86_CPUID_FEATURE_EDX_MMX
476 | X86_CPUID_FEATURE_EDX_FXSR
477 | X86_CPUID_FEATURE_EDX_SSE
478 | X86_CPUID_FEATURE_EDX_SSE2
479 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
480 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
481 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
482 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
483 | 0;
484 pCPUM->aGuestCpuIdStd[1].ecx &= 0
485 | X86_CPUID_FEATURE_ECX_SSE3
486 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
487 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
488 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
489 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
490 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
491 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
492 | X86_CPUID_FEATURE_ECX_SSSE3
493 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
494 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
495 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
496 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
497 /* ECX Bit 21 - x2APIC support - not yet. */
498 // | X86_CPUID_FEATURE_ECX_X2APIC
499 /* ECX Bit 23 - POPCNT instruction. */
500 //| X86_CPUID_FEATURE_ECX_POPCNT
501 | 0;
502 if (pCPUM->u8PortableCpuIdLevel > 0)
503 {
504 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
505 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
506 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
507 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
508 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
509 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
510 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
511
512 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
513 | X86_CPUID_FEATURE_EDX_PSN
514 | X86_CPUID_FEATURE_EDX_DS
515 | X86_CPUID_FEATURE_EDX_ACPI
516 | X86_CPUID_FEATURE_EDX_SS
517 | X86_CPUID_FEATURE_EDX_TM
518 | X86_CPUID_FEATURE_EDX_PBE
519 )));
520 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
521 | X86_CPUID_FEATURE_ECX_DTES64
522 | X86_CPUID_FEATURE_ECX_CPLDS
523 | X86_CPUID_FEATURE_ECX_VMX
524 | X86_CPUID_FEATURE_ECX_SMX
525 | X86_CPUID_FEATURE_ECX_EST
526 | X86_CPUID_FEATURE_ECX_TM2
527 | X86_CPUID_FEATURE_ECX_CNTXID
528 | X86_CPUID_FEATURE_ECX_FMA
529 | X86_CPUID_FEATURE_ECX_CX16
530 | X86_CPUID_FEATURE_ECX_TPRUPDATE
531 | X86_CPUID_FEATURE_ECX_PDCM
532 | X86_CPUID_FEATURE_ECX_DCA
533 | X86_CPUID_FEATURE_ECX_MOVBE
534 | X86_CPUID_FEATURE_ECX_AES
535 | X86_CPUID_FEATURE_ECX_POPCNT
536 | X86_CPUID_FEATURE_ECX_XSAVE
537 | X86_CPUID_FEATURE_ECX_OSXSAVE
538 | X86_CPUID_FEATURE_ECX_AVX
539 )));
540 }
541
542 /* Cpuid 0x80000001:
543 * Only report features we can support.
544 *
545 * Note! When enabling new features the Synthetic CPU and Portable CPUID
546 * options may require adjusting (i.e. stripping what was enabled).
547 *
548 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
549 */
550 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
551 | X86_CPUID_AMD_FEATURE_EDX_VME
552 | X86_CPUID_AMD_FEATURE_EDX_DE
553 | X86_CPUID_AMD_FEATURE_EDX_PSE
554 | X86_CPUID_AMD_FEATURE_EDX_TSC
555 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
556 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
557 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
558 | X86_CPUID_AMD_FEATURE_EDX_CX8
559 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
560 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
561 //| X86_CPUID_AMD_FEATURE_EDX_SEP
562 | X86_CPUID_AMD_FEATURE_EDX_MTRR
563 | X86_CPUID_AMD_FEATURE_EDX_PGE
564 | X86_CPUID_AMD_FEATURE_EDX_MCA
565 | X86_CPUID_AMD_FEATURE_EDX_CMOV
566 | X86_CPUID_AMD_FEATURE_EDX_PAT
567 | X86_CPUID_AMD_FEATURE_EDX_PSE36
568 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
569 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
570 | X86_CPUID_AMD_FEATURE_EDX_MMX
571 | X86_CPUID_AMD_FEATURE_EDX_FXSR
572 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
573 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
574 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
575 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
576 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
577 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
578 | 0;
579 pCPUM->aGuestCpuIdExt[1].ecx &= 0
580 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
581 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
582 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
583 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
584 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
585 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
586 //| X86_CPUID_AMD_FEATURE_ECX_ABM
587 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
588 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
589 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
590 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
591 //| X86_CPUID_AMD_FEATURE_ECX_IBS
592 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
593 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
594 //| X86_CPUID_AMD_FEATURE_ECX_WDT
595 | 0;
596 if (pCPUM->u8PortableCpuIdLevel > 0)
597 {
598 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
599 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
600 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
601 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
602 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
603 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
604 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
605
606 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
607 | X86_CPUID_AMD_FEATURE_ECX_SVM
608 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
609 | X86_CPUID_AMD_FEATURE_ECX_CR8L
610 | X86_CPUID_AMD_FEATURE_ECX_ABM
611 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
612 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
613 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
614 | X86_CPUID_AMD_FEATURE_ECX_OSVW
615 | X86_CPUID_AMD_FEATURE_ECX_IBS
616 | X86_CPUID_AMD_FEATURE_ECX_SSE5
617 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
618 | X86_CPUID_AMD_FEATURE_ECX_WDT
619 | UINT32_C(0xffffc000)
620 )));
621 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
622 | X86_CPUID_AMD_FEATURE_EDX_SEP
623 | RT_BIT(18)
624 | RT_BIT(19)
625 | RT_BIT(21)
626 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
627 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
628 | RT_BIT(28)
629 )));
630 }
631
632 /*
633 * Apply the Synthetic CPU modifications. (TODO: move this up)
634 */
635 if (pCPUM->fSyntheticCpu)
636 {
637 static const char s_szVendor[13] = "VirtualBox ";
638 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
639
640 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
641
642 /* Limit the nr of standard leaves; 5 for monitor/mwait */
643 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
644
645 /* 0: Vendor */
646 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
647 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
648 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
649
650 /* 1.eax: Version information. family : model : stepping */
651 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
652
653 /* Leaves 2 - 4 are Intel only - zero them out */
654 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
655 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
656 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
657
658 /* Leaf 5 = monitor/mwait */
659
660 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
661 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
662 /* AMD only - set to zero. */
663 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
664
665 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
666 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
667
668 /* 0x800000002-4: Processor Name String Identifier. */
669 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
670 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
671 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
672 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
673 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
674 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
675 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
676 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
677 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
678 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
679 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
680 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
681
682 /* 0x800000005-7 - reserved -> zero */
683 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
684 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
685 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
686
687 /* 0x800000008: only the max virtual and physical address size. */
688 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
689 }
690
691 /*
692 * Hide HTT, multicode, SMP, whatever.
693 * (APIC-ID := 0 and #LogCpus := 0)
694 */
695 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
696#ifdef VBOX_WITH_MULTI_CORE
697 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
698 && pVM->cCpus > 1)
699 {
700 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
701 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
702 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
703 }
704#endif
705
706 /* Cpuid 2:
707 * Intel: Cache and TLB information
708 * AMD: Reserved
709 * Safe to expose; restrict the number of calls to 1 for the portable case.
710 */
711 if ( pCPUM->u8PortableCpuIdLevel > 0
712 && pCPUM->aGuestCpuIdStd[0].eax >= 2
713 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
714 {
715 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
716 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
717 }
718
719 /* Cpuid 3:
720 * Intel: EAX, EBX - reserved (transmeta uses these)
721 * ECX, EDX - Processor Serial Number if available, otherwise reserved
722 * AMD: Reserved
723 * Safe to expose
724 */
725 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
726 {
727 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
728 if (pCPUM->u8PortableCpuIdLevel > 0)
729 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
730 }
731
732 /* Cpuid 4:
733 * Intel: Deterministic Cache Parameters Leaf
734 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
735 * AMD: Reserved
736 * Safe to expose, except for EAX:
737 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
738 * Bits 31-26: Maximum number of processor cores in this physical package**
739 * Note: These SMP values are constant regardless of ECX
740 */
741 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
742 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
743#ifdef VBOX_WITH_MULTI_CORE
744 if ( pVM->cCpus > 1
745 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
746 {
747 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
748 /* One logical processor with possibly multiple cores. */
749 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
750 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
751 }
752#endif
753
754 /* Cpuid 5: Monitor/mwait Leaf
755 * Intel: ECX, EDX - reserved
756 * EAX, EBX - Smallest and largest monitor line size
757 * AMD: EDX - reserved
758 * EAX, EBX - Smallest and largest monitor line size
759 * ECX - extensions (ignored for now)
760 * Safe to expose
761 */
762 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
763 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
764
765 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
766 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
767 * Expose MWAIT extended features to the guest. For now we expose
768 * just MWAIT break on interrupt feature (bit 1).
769 */
770 bool fMWaitExtensions;
771 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
772 if (fMWaitExtensions)
773 {
774 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
775 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
776 it shall be part of our power management virtualization model */
777#if 0
778 /* MWAIT sub C-states */
779 pCPUM->aGuestCpuIdStd[5].edx =
780 (0 << 0) /* 0 in C0 */ |
781 (2 << 4) /* 2 in C1 */ |
782 (2 << 8) /* 2 in C2 */ |
783 (2 << 12) /* 2 in C3 */ |
784 (0 << 16) /* 0 in C4 */
785 ;
786#endif
787 }
788 else
789 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
790
791 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
792 * Safe to pass on to the guest.
793 *
794 * Intel: 0x800000005 reserved
795 * 0x800000006 L2 cache information
796 * AMD: 0x800000005 L1 cache information
797 * 0x800000006 L2/L3 cache information
798 */
799
800 /* Cpuid 0x800000007:
801 * AMD: EAX, EBX, ECX - reserved
802 * EDX: Advanced Power Management Information
803 * Intel: Reserved
804 */
805 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
806 {
807 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
808
809 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
810
811 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
812 {
813 /* Only expose the TSC invariant capability bit to the guest. */
814 pCPUM->aGuestCpuIdExt[7].edx &= 0
815 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
816 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
817 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
818 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
819 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
820 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
821 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
822 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
823#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
824 * Linux kernels blindly assume that the AMD performance counters work
825 * if this is set for 64 bits guests. (Can't really find a CPUID feature
826 * bit for them though.) */
827 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
828#endif
829 | 0;
830 }
831 else
832 pCPUM->aGuestCpuIdExt[7].edx = 0;
833 }
834
835 /* Cpuid 0x800000008:
836 * AMD: EBX, EDX - reserved
837 * EAX: Virtual/Physical/Guest address Size
838 * ECX: Number of cores + APICIdCoreIdSize
839 * Intel: EAX: Virtual/Physical address Size
840 * EBX, ECX, EDX - reserved
841 */
842 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
843 {
844 /* Only expose the virtual and physical address sizes to the guest. */
845 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
846 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
847 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
848 * NC (0-7) Number of cores; 0 equals 1 core */
849 pCPUM->aGuestCpuIdExt[8].ecx = 0;
850#ifdef VBOX_WITH_MULTI_CORE
851 if ( pVM->cCpus > 1
852 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
853 {
854 /* Legacy method to determine the number of cores. */
855 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
856 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
857 }
858#endif
859 }
860
861 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
862 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
863 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
864 * This option corrsponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
865 */
866 bool fNt4LeafLimit;
867 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
868 if (fNt4LeafLimit)
869 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
870
871 /*
872 * Limit it the number of entries and fill the remaining with the defaults.
873 *
874 * The limits are masking off stuff about power saving and similar, this
875 * is perhaps a bit crudely done as there is probably some relatively harmless
876 * info too in these leaves (like words about having a constant TSC).
877 */
878 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
879 pCPUM->aGuestCpuIdStd[0].eax = 5;
880 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
881 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
882
883 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
884 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
885 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
886 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
887 : 0;
888 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
889 i++)
890 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
891
892 /*
893 * Centaur stuff (VIA).
894 *
895 * The important part here (we think) is to make sure the 0xc0000000
896 * function returns 0xc0000001. As for the features, we don't currently
897 * let on about any of those... 0xc0000002 seems to be some
898 * temperature/hz/++ stuff, include it as well (static).
899 */
900 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
901 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
902 {
903 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
904 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
905 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
906 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
907 i++)
908 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
909 }
910 else
911 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
912 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
913
914
915 /*
916 * Load CPUID overrides from configuration.
917 * Note: Kind of redundant now, but allows unchanged overrides
918 */
919 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
920 * Overrides the CPUID leaf values. */
921 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
922 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
923 AssertRCReturn(rc, rc);
924 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
925 AssertRCReturn(rc, rc);
926 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
927 AssertRCReturn(rc, rc);
928
929 /*
930 * Check if PAE was explicitely enabled by the user.
931 */
932 bool fEnable;
933 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
934 if (fEnable)
935 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
936
937 /*
938 * We don't normally enable NX for raw-mode, so give the user a chance to
939 * force it on.
940 */
941 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
942 if (fEnable)
943 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
944
945 /*
946 * Log the cpuid and we're good.
947 */
948 RTCPUSET OnlineSet;
949 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
950 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
951 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
952 LogRel(("************************* CPUID dump ************************\n"));
953 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
954 LogRel(("\n"));
955 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
956 LogRel(("******************** End of CPUID dump **********************\n"));
957
958#undef PORTABLE_DISABLE_FEATURE_BIT
959#undef PORTABLE_CLEAR_BITS_WHEN
960
961 return VINF_SUCCESS;
962}
963
964
965/**
966 * Applies relocations to data and code managed by this
967 * component. This function will be called at init and
968 * whenever the VMM need to relocate it self inside the GC.
969 *
970 * The CPUM will update the addresses used by the switcher.
971 *
972 * @param pVM The VM.
973 */
974VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
975{
976 LogFlow(("CPUMR3Relocate\n"));
977 for (VMCPUID i = 0; i < pVM->cCpus; i++)
978 {
979 /*
980 * Switcher pointers.
981 */
982 PVMCPU pVCpu = &pVM->aCpus[i];
983 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
984 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
985
986 }
987}
988
989
990/**
991 * Apply late CPUM property changes based on the fHWVirtEx setting
992 *
993 * @param pVM The VM to operate on.
994 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
995 */
996VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
997{
998 /*
999 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
1000 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1001 * of processors from (cpuid(4).eax >> 26) + 1.
1002 *
1003 * Note: this code is obsolete, but let's keep it here for reference.
1004 * Purpose is valid when we artifically cap the max std id to less than 4.
1005 */
1006 if (!fHWVirtExEnabled)
1007 {
1008 Assert(pVM->cpum.s.aGuestCpuIdStd[4].eax == 0);
1009 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1010 }
1011}
1012
1013/**
1014 * Terminates the CPUM.
1015 *
1016 * Termination means cleaning up and freeing all resources,
1017 * the VM it self is at this point powered off or suspended.
1018 *
1019 * @returns VBox status code.
1020 * @param pVM The VM to operate on.
1021 */
1022VMMR3DECL(int) CPUMR3Term(PVM pVM)
1023{
1024 CPUMR3TermCPU(pVM);
1025 return 0;
1026}
1027
1028
1029/**
1030 * Terminates the per-VCPU CPUM.
1031 *
1032 * Termination means cleaning up and freeing all resources,
1033 * the VM it self is at this point powered off or suspended.
1034 *
1035 * @returns VBox status code.
1036 * @param pVM The VM to operate on.
1037 */
1038VMMR3DECL(int) CPUMR3TermCPU(PVM pVM)
1039{
1040#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1041 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1042 {
1043 PVMCPU pVCpu = &pVM->aCpus[i];
1044 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1045
1046 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1047 pVCpu->cpum.s.uMagic = 0;
1048 pCtx->dr[5] = 0;
1049 }
1050#endif
1051 return 0;
1052}
1053
1054
1055/**
1056 * Resets a virtual CPU.
1057 *
1058 * Used by CPUMR3Reset and CPU hot plugging.
1059 *
1060 * @param pVCpu The virtual CPU handle.
1061 */
1062VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1063{
1064 /** @todo anything different for VCPU > 0? */
1065 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1066
1067 /*
1068 * Initialize everything to ZERO first.
1069 */
1070 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1071 memset(pCtx, 0, sizeof(*pCtx));
1072 pVCpu->cpum.s.fUseFlags = fUseFlags;
1073
1074 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1075 pCtx->eip = 0x0000fff0;
1076 pCtx->edx = 0x00000600; /* P6 processor */
1077 pCtx->eflags.Bits.u1Reserved0 = 1;
1078
1079 pCtx->cs = 0xf000;
1080 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
1081 pCtx->csHid.u32Limit = 0x0000ffff;
1082 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
1083 pCtx->csHid.Attr.n.u1Present = 1;
1084 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1085
1086 pCtx->dsHid.u32Limit = 0x0000ffff;
1087 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
1088 pCtx->dsHid.Attr.n.u1Present = 1;
1089 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1090
1091 pCtx->esHid.u32Limit = 0x0000ffff;
1092 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
1093 pCtx->esHid.Attr.n.u1Present = 1;
1094 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1095
1096 pCtx->fsHid.u32Limit = 0x0000ffff;
1097 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
1098 pCtx->fsHid.Attr.n.u1Present = 1;
1099 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1100
1101 pCtx->gsHid.u32Limit = 0x0000ffff;
1102 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
1103 pCtx->gsHid.Attr.n.u1Present = 1;
1104 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1105
1106 pCtx->ssHid.u32Limit = 0x0000ffff;
1107 pCtx->ssHid.Attr.n.u1Present = 1;
1108 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
1109 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1110
1111 pCtx->idtr.cbIdt = 0xffff;
1112 pCtx->gdtr.cbGdt = 0xffff;
1113
1114 pCtx->ldtrHid.u32Limit = 0xffff;
1115 pCtx->ldtrHid.Attr.n.u1Present = 1;
1116 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1117
1118 pCtx->trHid.u32Limit = 0xffff;
1119 pCtx->trHid.Attr.n.u1Present = 1;
1120 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
1121
1122 pCtx->dr[6] = X86_DR6_INIT_VAL;
1123 pCtx->dr[7] = X86_DR7_INIT_VAL;
1124
1125 pCtx->fpu.FTW = 0xff; /* All tags are set, i.e. the regs are empty. */
1126 pCtx->fpu.FCW = 0x37f;
1127
1128 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1. IA-32 Processor States Following Power-up, Reset, or INIT */
1129 pCtx->fpu.MXCSR = 0x1F80;
1130
1131 /* Init PAT MSR */
1132 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1133
1134 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1135 * The Intel docs don't mention it.
1136 */
1137 pCtx->msrEFER = 0;
1138}
1139
1140
1141/**
1142 * Resets the CPU.
1143 *
1144 * @returns VINF_SUCCESS.
1145 * @param pVM The VM handle.
1146 */
1147VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1148{
1149 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1150 {
1151 CPUMR3ResetCpu(&pVM->aCpus[i]);
1152
1153#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1154 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1155
1156 /* Magic marker for searching in crash dumps. */
1157 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1158 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1159 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1160#endif
1161 }
1162}
1163
1164
1165/**
1166 * Called both in pass 0 and the final pass.
1167 *
1168 * @param pVM The VM handle.
1169 * @param pSSM The saved state handle.
1170 */
1171static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1172{
1173 /*
1174 * Save all the CPU ID leaves here so we can check them for compatability
1175 * upon loading.
1176 */
1177 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1178 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1179
1180 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1181 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1182
1183 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1184 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1185
1186 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1187
1188 /*
1189 * Save a good portion of the raw CPU IDs as well as they may come in
1190 * handy when validating features for raw mode.
1191 */
1192 CPUMCPUID aRawStd[16];
1193 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1194 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1195 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1196 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1197
1198 CPUMCPUID aRawExt[32];
1199 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1200 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1201 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1202 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1203}
1204
1205
1206/**
1207 * Loads the CPU ID leaves saved by pass 0.
1208 *
1209 * @returns VBox status code.
1210 * @param pVM The VM handle.
1211 * @param pSSM The saved state handle.
1212 * @param uVersion The format version.
1213 */
1214static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1215{
1216 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1217
1218 /*
1219 * Define a bunch of macros for simplifying the code.
1220 */
1221 /* Generic expression + failure message. */
1222#define CPUID_CHECK_RET(expr, fmt) \
1223 do { \
1224 if (!(expr)) \
1225 { \
1226 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadict macros sucks */ \
1227 if (fStrictCpuIdChecks) \
1228 { \
1229 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1230 RTStrFree(pszMsg); \
1231 return rcCpuid; \
1232 } \
1233 LogRel(("CPUM: %s\n", pszMsg)); \
1234 RTStrFree(pszMsg); \
1235 } \
1236 } while (0)
1237#define CPUID_CHECK_WRN(expr, fmt) \
1238 do { \
1239 if (!(expr)) \
1240 LogRel(fmt); \
1241 } while (0)
1242
1243 /* For comparing two values and bitch if they differs. */
1244#define CPUID_CHECK2_RET(what, host, saved) \
1245 do { \
1246 if ((host) != (saved)) \
1247 { \
1248 if (fStrictCpuIdChecks) \
1249 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1250 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1251 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1252 } \
1253 } while (0)
1254#define CPUID_CHECK2_WRN(what, host, saved) \
1255 do { \
1256 if ((host) != (saved)) \
1257 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1258 } while (0)
1259
1260 /* For checking raw cpu features (raw mode). */
1261#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1262 do { \
1263 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1264 { \
1265 if (fStrictCpuIdChecks) \
1266 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1267 N_(#bit " mismatch: host=%d saved=%d"), \
1268 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1269 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1270 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1271 } \
1272 } while (0)
1273#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1274 do { \
1275 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1276 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1277 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1278 } while (0)
1279#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1280
1281 /* For checking guest features. */
1282#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1283 do { \
1284 if ( (aGuestCpuId##set [1].reg & bit) \
1285 && !(aHostRaw##set [1].reg & bit) \
1286 && !(aHostOverride##set [1].reg & bit) \
1287 && !(aGuestOverride##set [1].reg & bit) \
1288 ) \
1289 { \
1290 if (fStrictCpuIdChecks) \
1291 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1292 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1293 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1294 } \
1295 } while (0)
1296#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1297 do { \
1298 if ( (aGuestCpuId##set [1].reg & bit) \
1299 && !(aHostRaw##set [1].reg & bit) \
1300 && !(aHostOverride##set [1].reg & bit) \
1301 && !(aGuestOverride##set [1].reg & bit) \
1302 ) \
1303 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1304 } while (0)
1305#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1306 do { \
1307 if ( (aGuestCpuId##set [1].reg & bit) \
1308 && !(aHostRaw##set [1].reg & bit) \
1309 && !(aHostOverride##set [1].reg & bit) \
1310 && !(aGuestOverride##set [1].reg & bit) \
1311 ) \
1312 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1313 } while (0)
1314#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1315
1316 /* For checking guest features if AMD guest CPU. */
1317#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1318 do { \
1319 if ( (aGuestCpuId##set [1].reg & bit) \
1320 && fGuestAmd \
1321 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1322 && !(aHostOverride##set [1].reg & bit) \
1323 && !(aGuestOverride##set [1].reg & bit) \
1324 ) \
1325 { \
1326 if (fStrictCpuIdChecks) \
1327 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1328 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1329 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1330 } \
1331 } while (0)
1332#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1333 do { \
1334 if ( (aGuestCpuId##set [1].reg & bit) \
1335 && fGuestAmd \
1336 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1337 && !(aHostOverride##set [1].reg & bit) \
1338 && !(aGuestOverride##set [1].reg & bit) \
1339 ) \
1340 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1341 } while (0)
1342#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1343 do { \
1344 if ( (aGuestCpuId##set [1].reg & bit) \
1345 && fGuestAmd \
1346 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1347 && !(aHostOverride##set [1].reg & bit) \
1348 && !(aGuestOverride##set [1].reg & bit) \
1349 ) \
1350 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1351 } while (0)
1352#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1353
1354 /* For checking AMD features which have a corresponding bit in the standard
1355 range. (Intel defines very few bits in the extended feature sets.) */
1356#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1357 do { \
1358 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1359 && !(fHostAmd \
1360 ? aHostRawExt[1].reg & (ExtBit) \
1361 : aHostRawStd[1].reg & (StdBit)) \
1362 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1363 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1364 ) \
1365 { \
1366 if (fStrictCpuIdChecks) \
1367 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1368 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1369 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1370 } \
1371 } while (0)
1372#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1373 do { \
1374 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1375 && !(fHostAmd \
1376 ? aHostRawExt[1].reg & (ExtBit) \
1377 : aHostRawStd[1].reg & (StdBit)) \
1378 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1379 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1380 ) \
1381 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1382 } while (0)
1383#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1384 do { \
1385 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1386 && !(fHostAmd \
1387 ? aHostRawExt[1].reg & (ExtBit) \
1388 : aHostRawStd[1].reg & (StdBit)) \
1389 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1390 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1391 ) \
1392 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1393 } while (0)
1394#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1395
1396 /*
1397 * Load them into stack buffers first.
1398 */
1399 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1400 uint32_t cGuestCpuIdStd;
1401 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1402 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1403 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1404 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1405
1406 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1407 uint32_t cGuestCpuIdExt;
1408 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1409 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1410 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1411 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1412
1413 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1414 uint32_t cGuestCpuIdCentaur;
1415 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1416 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1417 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1418 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1419
1420 CPUMCPUID GuestCpuIdDef;
1421 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1422 AssertRCReturn(rc, rc);
1423
1424 CPUMCPUID aRawStd[16];
1425 uint32_t cRawStd;
1426 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1427 if (cRawStd > RT_ELEMENTS(aRawStd))
1428 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1429 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1430
1431 CPUMCPUID aRawExt[32];
1432 uint32_t cRawExt;
1433 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1434 if (cRawExt > RT_ELEMENTS(aRawExt))
1435 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1436 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1437 AssertRCReturn(rc, rc);
1438
1439 /*
1440 * Note that we support restoring less than the current amount of standard
1441 * leaves because we've been allowed more is newer version of VBox.
1442 *
1443 * So, pad new entries with the default.
1444 */
1445 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1446 aGuestCpuIdStd[i] = GuestCpuIdDef;
1447
1448 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1449 aGuestCpuIdExt[i] = GuestCpuIdDef;
1450
1451 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1452 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1453
1454 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1455 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1456
1457 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1458 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1459
1460 /*
1461 * Get the raw CPU IDs for the current host.
1462 */
1463 CPUMCPUID aHostRawStd[16];
1464 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1465 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1466
1467 CPUMCPUID aHostRawExt[32];
1468 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1469 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1470
1471 /*
1472 * Get the host and guest overrides so we don't reject the state because
1473 * some feature was enabled thru these interfaces.
1474 * Note! We currently only need the feature leaves, so skip rest.
1475 */
1476 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1477 CPUMCPUID aGuestOverrideStd[2];
1478 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1479 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1480
1481 CPUMCPUID aGuestOverrideExt[2];
1482 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1483 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1484
1485 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1486 CPUMCPUID aHostOverrideStd[2];
1487 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1488 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1489
1490 CPUMCPUID aHostOverrideExt[2];
1491 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1492 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1493
1494 /*
1495 * This can be skipped.
1496 */
1497 bool fStrictCpuIdChecks;
1498 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1499
1500
1501
1502 /*
1503 * For raw-mode we'll require that the CPUs are very similar since we don't
1504 * intercept CPUID instructions for user mode applications.
1505 */
1506 if (!HWACCMIsEnabled(pVM))
1507 {
1508 /* CPUID(0) */
1509 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1510 && aHostRawStd[0].ecx == aRawStd[0].ecx
1511 && aHostRawStd[0].edx == aRawStd[0].edx,
1512 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1513 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1514 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1515 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1516 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1517 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1518
1519 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1520
1521 /* CPUID(1).eax */
1522 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1523 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1524 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1525
1526 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1527 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1528 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1529
1530 /* CPUID(1).ecx */
1531 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1532 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1533 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1534 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1535 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1536 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1537 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1538 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1539 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1540 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1541 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1542 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1543 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1544 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1545 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1546 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1547 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1548 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1549 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1550 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1551 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1552 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1553 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1554 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1555 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1556 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1557 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1558 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1559 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1560 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1561 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1562 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1563
1564 /* CPUID(1).edx */
1565 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1566 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1567 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1568 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1569 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1570 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1571 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1572 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1573 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1574 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1575 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1576 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1577 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1578 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1579 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1580 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1581 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1582 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1583 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1584 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1585 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1586 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1587 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1588 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1589 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1590 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1591 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1592 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1593 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1594 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1595 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1596 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1597
1598 /* CPUID(2) - config, mostly about caches. ignore. */
1599 /* CPUID(3) - processor serial number. ignore. */
1600 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1601 /* CPUID(5) - mwait/monitor config. ignore. */
1602 /* CPUID(6) - power management. ignore. */
1603 /* CPUID(7) - ???. ignore. */
1604 /* CPUID(8) - ???. ignore. */
1605 /* CPUID(9) - DCA. ignore for now. */
1606 /* CPUID(a) - PeMo info. ignore for now. */
1607 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1608
1609 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1610 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1611 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1612 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1613 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1614 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1615 {
1616 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1617 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1618 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1619 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1620 }
1621
1622 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1623 Note! Intel have/is marking many of the fields here as reserved. We
1624 will verify them as if it's an AMD CPU. */
1625 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1626 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1627 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1628 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1629 {
1630 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1631 && aHostRawExt[0].ecx == aRawExt[0].ecx
1632 && aHostRawExt[0].edx == aRawExt[0].edx,
1633 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1634 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1635 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1636 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1637
1638 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1639 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1640 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1641 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1642 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1643 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1644
1645 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1646 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1647 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1648 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1649
1650 /* CPUID(0x80000001).ecx */
1651 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1652 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1653 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1654 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1655 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1656 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1657 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1658 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1659 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1660 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1661 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1662 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1663 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1664 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1665 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1666 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1667 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1668 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1669 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1670 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1671 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1672 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1673 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1674 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1675 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1676 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1677 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1678 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1679 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1680 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1681 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1682 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1683
1684 /* CPUID(0x80000001).edx */
1685 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1686 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1687 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1688 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1689 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1690 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1691 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1692 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1693 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1694 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1695 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1696 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1697 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1698 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1699 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1700 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1701 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1702 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1703 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1704 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1705 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1706 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1707 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1708 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1709 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1710 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1711 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1712 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1713 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1714 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1715 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1716 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1717
1718 /** @todo verify the rest as well. */
1719 }
1720 }
1721
1722
1723
1724 /*
1725 * Verify that we can support the features already exposed to the guest on
1726 * this host.
1727 *
1728 * Most of the features we're emulating requires intercepting instruction
1729 * and doing it the slow way, so there is no need to warn when they aren't
1730 * present in the host CPU. Thus we use IGN instead of EMU on these.
1731 *
1732 * Trailing comments:
1733 * "EMU" - Possible to emulate, could be lots of work and very slow.
1734 * "EMU?" - Can this be emulated?
1735 */
1736 /* CPUID(1).ecx */
1737 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1738 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1739 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1740 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1741 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1742 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1743 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1744 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1745 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1746 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1747 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1748 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1749 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1750 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1751 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1752 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1753 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1754 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1755 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1756 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1757 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1758 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1759 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1760 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1761 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1762 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1763 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1764 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1765 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1766 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1767 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1768 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1769
1770 /* CPUID(1).edx */
1771 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1772 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1773 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1774 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1775 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1776 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1777 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1778 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1779 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1780 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1781 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1782 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1783 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1784 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1785 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1786 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1787 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1788 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1789 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1790 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1791 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1792 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1793 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1794 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1795 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1796 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1797 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1798 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1799 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1800 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1801 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1802 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1803
1804 /* CPUID(0x80000000). */
1805 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1806 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1807 {
1808 /** @todo deal with no 0x80000001 on the host. */
1809 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1810 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1811
1812 /* CPUID(0x80000001).ecx */
1813 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1814 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1815 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1816 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1817 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1818 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1819 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1820 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1821 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1822 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1823 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1824 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1825 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1826 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1827 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1828 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1829 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1830 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1831 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1832 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1833 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1834 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1835 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1836 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1837 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1838 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1839 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1840 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1841 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1842 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1843 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1844 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1845
1846 /* CPUID(0x80000001).edx */
1847 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1848 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1849 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1850 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1851 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1852 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1853 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1854 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1855 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1856 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1857 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1858 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1859 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1860 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1861 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1862 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1863 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1864 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1865 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1866 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1867 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1868 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1869 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1870 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1871 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1872 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1873 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1874 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1875 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1876 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1877 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1878 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1879 }
1880
1881 /*
1882 * We're good, commit the CPU ID leaves.
1883 */
1884 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1885 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1886 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1887 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1888
1889#undef CPUID_CHECK_RET
1890#undef CPUID_CHECK_WRN
1891#undef CPUID_CHECK2_RET
1892#undef CPUID_CHECK2_WRN
1893#undef CPUID_RAW_FEATURE_RET
1894#undef CPUID_RAW_FEATURE_WRN
1895#undef CPUID_RAW_FEATURE_IGN
1896#undef CPUID_GST_FEATURE_RET
1897#undef CPUID_GST_FEATURE_WRN
1898#undef CPUID_GST_FEATURE_EMU
1899#undef CPUID_GST_FEATURE_IGN
1900#undef CPUID_GST_FEATURE2_RET
1901#undef CPUID_GST_FEATURE2_WRN
1902#undef CPUID_GST_FEATURE2_EMU
1903#undef CPUID_GST_FEATURE2_IGN
1904#undef CPUID_GST_AMD_FEATURE_RET
1905#undef CPUID_GST_AMD_FEATURE_WRN
1906#undef CPUID_GST_AMD_FEATURE_EMU
1907#undef CPUID_GST_AMD_FEATURE_IGN
1908
1909 return VINF_SUCCESS;
1910}
1911
1912
1913/**
1914 * Pass 0 live exec callback.
1915 *
1916 * @returns VINF_SSM_DONT_CALL_AGAIN.
1917 * @param pVM The VM handle.
1918 * @param pSSM The saved state handle.
1919 * @param uPass The pass (0).
1920 */
1921static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1922{
1923 AssertReturn(uPass == 0, VERR_INTERNAL_ERROR_4);
1924 cpumR3SaveCpuId(pVM, pSSM);
1925 return VINF_SSM_DONT_CALL_AGAIN;
1926}
1927
1928
1929/**
1930 * Execute state save operation.
1931 *
1932 * @returns VBox status code.
1933 * @param pVM VM Handle.
1934 * @param pSSM SSM operation handle.
1935 */
1936static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1937{
1938 /*
1939 * Save.
1940 */
1941 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1942 {
1943 PVMCPU pVCpu = &pVM->aCpus[i];
1944
1945 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1946 }
1947
1948 SSMR3PutU32(pSSM, pVM->cCpus);
1949 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1950 {
1951 PVMCPU pVCpu = &pVM->aCpus[i];
1952
1953 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1954 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1955 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1956 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsr, sizeof(pVCpu->cpum.s.GuestMsr));
1957 }
1958
1959 cpumR3SaveCpuId(pVM, pSSM);
1960 return VINF_SUCCESS;
1961}
1962
1963
1964/**
1965 * Load a version 1.6 CPUMCTX structure.
1966 *
1967 * @returns VBox status code.
1968 * @param pVM VM Handle.
1969 * @param pCpumctx16 Version 1.6 CPUMCTX
1970 */
1971static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1972{
1973#define CPUMCTX16_LOADREG(RegName) \
1974 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1975
1976#define CPUMCTX16_LOADDRXREG(RegName) \
1977 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1978
1979#define CPUMCTX16_LOADHIDREG(RegName) \
1980 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1981 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1982 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1983
1984#define CPUMCTX16_LOADSEGREG(RegName) \
1985 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1986 CPUMCTX16_LOADHIDREG(RegName);
1987
1988 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1989
1990 CPUMCTX16_LOADREG(rax);
1991 CPUMCTX16_LOADREG(rbx);
1992 CPUMCTX16_LOADREG(rcx);
1993 CPUMCTX16_LOADREG(rdx);
1994 CPUMCTX16_LOADREG(rdi);
1995 CPUMCTX16_LOADREG(rsi);
1996 CPUMCTX16_LOADREG(rbp);
1997 CPUMCTX16_LOADREG(esp);
1998 CPUMCTX16_LOADREG(rip);
1999 CPUMCTX16_LOADREG(rflags);
2000
2001 CPUMCTX16_LOADSEGREG(cs);
2002 CPUMCTX16_LOADSEGREG(ds);
2003 CPUMCTX16_LOADSEGREG(es);
2004 CPUMCTX16_LOADSEGREG(fs);
2005 CPUMCTX16_LOADSEGREG(gs);
2006 CPUMCTX16_LOADSEGREG(ss);
2007
2008 CPUMCTX16_LOADREG(r8);
2009 CPUMCTX16_LOADREG(r9);
2010 CPUMCTX16_LOADREG(r10);
2011 CPUMCTX16_LOADREG(r11);
2012 CPUMCTX16_LOADREG(r12);
2013 CPUMCTX16_LOADREG(r13);
2014 CPUMCTX16_LOADREG(r14);
2015 CPUMCTX16_LOADREG(r15);
2016
2017 CPUMCTX16_LOADREG(cr0);
2018 CPUMCTX16_LOADREG(cr2);
2019 CPUMCTX16_LOADREG(cr3);
2020 CPUMCTX16_LOADREG(cr4);
2021
2022 CPUMCTX16_LOADDRXREG(0);
2023 CPUMCTX16_LOADDRXREG(1);
2024 CPUMCTX16_LOADDRXREG(2);
2025 CPUMCTX16_LOADDRXREG(3);
2026 CPUMCTX16_LOADDRXREG(4);
2027 CPUMCTX16_LOADDRXREG(5);
2028 CPUMCTX16_LOADDRXREG(6);
2029 CPUMCTX16_LOADDRXREG(7);
2030
2031 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
2032 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
2033 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
2034 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
2035
2036 CPUMCTX16_LOADREG(ldtr);
2037 CPUMCTX16_LOADREG(tr);
2038
2039 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
2040
2041 CPUMCTX16_LOADREG(msrEFER);
2042 CPUMCTX16_LOADREG(msrSTAR);
2043 CPUMCTX16_LOADREG(msrPAT);
2044 CPUMCTX16_LOADREG(msrLSTAR);
2045 CPUMCTX16_LOADREG(msrCSTAR);
2046 CPUMCTX16_LOADREG(msrSFMASK);
2047 CPUMCTX16_LOADREG(msrKERNELGSBASE);
2048
2049 CPUMCTX16_LOADHIDREG(ldtr);
2050 CPUMCTX16_LOADHIDREG(tr);
2051
2052#undef CPUMCTX16_LOADSEGREG
2053#undef CPUMCTX16_LOADHIDREG
2054#undef CPUMCTX16_LOADDRXREG
2055#undef CPUMCTX16_LOADREG
2056}
2057
2058
2059/**
2060 * @copydoc FNSSMINTLOADPREP
2061 */
2062static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2063{
2064 pVM->cpum.s.fPendingRestore = true;
2065 return VINF_SUCCESS;
2066}
2067
2068
2069/**
2070 * @copydoc FNSSMINTLOADEXEC
2071 */
2072static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2073{
2074 /*
2075 * Validate version.
2076 */
2077 if ( uVersion != CPUM_SAVED_STATE_VERSION
2078 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2079 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2080 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2081 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2082 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2083 {
2084 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2085 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2086 }
2087
2088 if (uPass == SSM_PASS_FINAL)
2089 {
2090 /*
2091 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2092 * really old SSM file versions.)
2093 */
2094 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2095 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2096 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2097 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2098
2099 /*
2100 * Restore.
2101 */
2102 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2103 {
2104 PVMCPU pVCpu = &pVM->aCpus[i];
2105 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2106 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
2107
2108 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
2109 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2110 pVCpu->cpum.s.Hyper.esp = uESP;
2111 }
2112
2113 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2114 {
2115 CPUMCTX_VER1_6 cpumctx16;
2116 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
2117 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
2118
2119 /* Save the old cpumctx state into the new one. */
2120 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
2121
2122 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
2123 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
2124 }
2125 else
2126 {
2127 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2128 {
2129 uint32_t cCpus;
2130 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2131 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2132 VERR_SSM_UNEXPECTED_DATA);
2133 }
2134 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2135 || pVM->cCpus == 1,
2136 ("cCpus=%u\n", pVM->cCpus),
2137 VERR_SSM_UNEXPECTED_DATA);
2138
2139 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2140 {
2141 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
2142 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2143 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2144 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2145 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsr, sizeof(pVM->aCpus[i].cpum.s.GuestMsr));
2146 }
2147 }
2148
2149 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2150 raw-mode guest, so we have to do it ourselves. */
2151 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2152 && !HWACCMIsEnabled(pVM))
2153 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2154 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2155 }
2156
2157 pVM->cpum.s.fPendingRestore = false;
2158
2159 /*
2160 * Guest CPUIDs.
2161 */
2162 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2163 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2164
2165 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2166 * actually required. */
2167
2168 /*
2169 * Restore the CPUID leaves.
2170 *
2171 * Note that we support restoring less than the current amount of standard
2172 * leaves because we've been allowed more is newer version of VBox.
2173 */
2174 uint32_t cElements;
2175 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2176 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2177 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2178 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2179
2180 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2181 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2182 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2183 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2184
2185 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2186 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2187 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2188 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2189
2190 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2191
2192 /*
2193 * Check that the basic cpuid id information is unchanged.
2194 */
2195 /** @todo we should check the 64 bits capabilities too! */
2196 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2197 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2198 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2199 uint32_t au32CpuIdSaved[8];
2200 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2201 if (RT_SUCCESS(rc))
2202 {
2203 /* Ignore CPU stepping. */
2204 au32CpuId[4] &= 0xfffffff0;
2205 au32CpuIdSaved[4] &= 0xfffffff0;
2206
2207 /* Ignore APIC ID (AMD specs). */
2208 au32CpuId[5] &= ~0xff000000;
2209 au32CpuIdSaved[5] &= ~0xff000000;
2210
2211 /* Ignore the number of Logical CPUs (AMD specs). */
2212 au32CpuId[5] &= ~0x00ff0000;
2213 au32CpuIdSaved[5] &= ~0x00ff0000;
2214
2215 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2216 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2217 | X86_CPUID_FEATURE_ECX_VMX
2218 | X86_CPUID_FEATURE_ECX_SMX
2219 | X86_CPUID_FEATURE_ECX_EST
2220 | X86_CPUID_FEATURE_ECX_TM2
2221 | X86_CPUID_FEATURE_ECX_CNTXID
2222 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2223 | X86_CPUID_FEATURE_ECX_PDCM
2224 | X86_CPUID_FEATURE_ECX_DCA
2225 | X86_CPUID_FEATURE_ECX_X2APIC
2226 );
2227 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2228 | X86_CPUID_FEATURE_ECX_VMX
2229 | X86_CPUID_FEATURE_ECX_SMX
2230 | X86_CPUID_FEATURE_ECX_EST
2231 | X86_CPUID_FEATURE_ECX_TM2
2232 | X86_CPUID_FEATURE_ECX_CNTXID
2233 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2234 | X86_CPUID_FEATURE_ECX_PDCM
2235 | X86_CPUID_FEATURE_ECX_DCA
2236 | X86_CPUID_FEATURE_ECX_X2APIC
2237 );
2238
2239 /* Make sure we don't forget to update the masks when enabling
2240 * features in the future.
2241 */
2242 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2243 ( X86_CPUID_FEATURE_ECX_DTES64
2244 | X86_CPUID_FEATURE_ECX_VMX
2245 | X86_CPUID_FEATURE_ECX_SMX
2246 | X86_CPUID_FEATURE_ECX_EST
2247 | X86_CPUID_FEATURE_ECX_TM2
2248 | X86_CPUID_FEATURE_ECX_CNTXID
2249 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2250 | X86_CPUID_FEATURE_ECX_PDCM
2251 | X86_CPUID_FEATURE_ECX_DCA
2252 | X86_CPUID_FEATURE_ECX_X2APIC
2253 )));
2254 /* do the compare */
2255 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2256 {
2257 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2258 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2259 "Saved=%.*Rhxs\n"
2260 "Real =%.*Rhxs\n",
2261 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2262 sizeof(au32CpuId), au32CpuId));
2263 else
2264 {
2265 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2266 "Saved=%.*Rhxs\n"
2267 "Real =%.*Rhxs\n",
2268 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2269 sizeof(au32CpuId), au32CpuId));
2270 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2271 }
2272 }
2273 }
2274
2275 return rc;
2276}
2277
2278
2279/**
2280 * @copydoc FNSSMINTLOADPREP
2281 */
2282static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2283{
2284 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2285 return VINF_SUCCESS;
2286
2287 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2288 if (pVM->cpum.s.fPendingRestore)
2289 {
2290 LogRel(("CPUM: Missing state!\n"));
2291 return VERR_INTERNAL_ERROR_2;
2292 }
2293
2294 /* Notify PGM of the NXE states in case they've changed. */
2295 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2296 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2297 return VINF_SUCCESS;
2298}
2299
2300
2301/**
2302 * Checks if the CPUM state restore is still pending.
2303 *
2304 * @returns true / false.
2305 * @param pVM The VM handle.
2306 */
2307VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2308{
2309 return pVM->cpum.s.fPendingRestore;
2310}
2311
2312
2313/**
2314 * Formats the EFLAGS value into mnemonics.
2315 *
2316 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2317 * @param efl The EFLAGS value.
2318 */
2319static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2320{
2321 /*
2322 * Format the flags.
2323 */
2324 static const struct
2325 {
2326 const char *pszSet; const char *pszClear; uint32_t fFlag;
2327 } s_aFlags[] =
2328 {
2329 { "vip",NULL, X86_EFL_VIP },
2330 { "vif",NULL, X86_EFL_VIF },
2331 { "ac", NULL, X86_EFL_AC },
2332 { "vm", NULL, X86_EFL_VM },
2333 { "rf", NULL, X86_EFL_RF },
2334 { "nt", NULL, X86_EFL_NT },
2335 { "ov", "nv", X86_EFL_OF },
2336 { "dn", "up", X86_EFL_DF },
2337 { "ei", "di", X86_EFL_IF },
2338 { "tf", NULL, X86_EFL_TF },
2339 { "nt", "pl", X86_EFL_SF },
2340 { "nz", "zr", X86_EFL_ZF },
2341 { "ac", "na", X86_EFL_AF },
2342 { "po", "pe", X86_EFL_PF },
2343 { "cy", "nc", X86_EFL_CF },
2344 };
2345 char *psz = pszEFlags;
2346 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2347 {
2348 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2349 if (pszAdd)
2350 {
2351 strcpy(psz, pszAdd);
2352 psz += strlen(pszAdd);
2353 *psz++ = ' ';
2354 }
2355 }
2356 psz[-1] = '\0';
2357}
2358
2359
2360/**
2361 * Formats a full register dump.
2362 *
2363 * @param pVM VM Handle.
2364 * @param pCtx The context to format.
2365 * @param pCtxCore The context core to format.
2366 * @param pHlp Output functions.
2367 * @param enmType The dump type.
2368 * @param pszPrefix Register name prefix.
2369 */
2370static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType, const char *pszPrefix)
2371{
2372 /*
2373 * Format the EFLAGS.
2374 */
2375 uint32_t efl = pCtxCore->eflags.u32;
2376 char szEFlags[80];
2377 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2378
2379 /*
2380 * Format the registers.
2381 */
2382 switch (enmType)
2383 {
2384 case CPUMDUMPTYPE_TERSE:
2385 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2386 pHlp->pfnPrintf(pHlp,
2387 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2388 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2389 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2390 "%sr14=%016RX64 %sr15=%016RX64\n"
2391 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2392 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2393 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2394 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2395 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2396 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2397 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2398 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2399 else
2400 pHlp->pfnPrintf(pHlp,
2401 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2402 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2403 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2404 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2405 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2406 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2407 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2408 break;
2409
2410 case CPUMDUMPTYPE_DEFAULT:
2411 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2412 pHlp->pfnPrintf(pHlp,
2413 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2414 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2415 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2416 "%sr14=%016RX64 %sr15=%016RX64\n"
2417 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2418 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2419 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2420 ,
2421 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2422 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2423 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2424 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2425 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2426 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2427 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2428 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2429 else
2430 pHlp->pfnPrintf(pHlp,
2431 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2432 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2433 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2434 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2435 ,
2436 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2437 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2438 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2439 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2440 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2441 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2442 break;
2443
2444 case CPUMDUMPTYPE_VERBOSE:
2445 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2446 pHlp->pfnPrintf(pHlp,
2447 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2448 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2449 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2450 "%sr14=%016RX64 %sr15=%016RX64\n"
2451 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2452 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2453 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2454 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2455 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2456 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2457 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2458 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2459 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2460 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2461 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2462 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2463 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2464 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2465 ,
2466 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2467 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2468 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2469 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2470 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2471 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2472 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2473 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2474 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2475 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2476 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2477 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2478 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2479 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2480 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2481 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2482 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2483 else
2484 pHlp->pfnPrintf(pHlp,
2485 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2486 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2487 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2488 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2489 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2490 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2491 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2492 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2493 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2494 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2495 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2496 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2497 ,
2498 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2499 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2500 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2501 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2502 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2503 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2504 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2505 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2506 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2507 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2508 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2509 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2510
2511 pHlp->pfnPrintf(pHlp,
2512 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2513 "%sFPUIP=%08x %sCS=%04x %sRsvrd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2514 ,
2515 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2516 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2517 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsvrd1,
2518 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2519 );
2520 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2521 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2522 {
2523 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2524 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2525 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2526 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2527 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2528 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2529 /** @todo This isn't entirenly correct and needs more work! */
2530 pHlp->pfnPrintf(pHlp,
2531 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2532 pszPrefix, iST, pszPrefix, iFPR,
2533 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2534 uTag, chSign, iInteger, u64Fraction, uExponent);
2535 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2536 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2537 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2538 else
2539 pHlp->pfnPrintf(pHlp, "\n");
2540 }
2541 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2542 pHlp->pfnPrintf(pHlp,
2543 iXMM & 1
2544 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2545 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2546 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2547 pCtx->fpu.aXMM[iXMM].au32[3],
2548 pCtx->fpu.aXMM[iXMM].au32[2],
2549 pCtx->fpu.aXMM[iXMM].au32[1],
2550 pCtx->fpu.aXMM[iXMM].au32[0]);
2551 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2552 if (pCtx->fpu.au32RsrvdRest[i])
2553 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2554 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2555
2556 pHlp->pfnPrintf(pHlp,
2557 "%sEFER =%016RX64\n"
2558 "%sPAT =%016RX64\n"
2559 "%sSTAR =%016RX64\n"
2560 "%sCSTAR =%016RX64\n"
2561 "%sLSTAR =%016RX64\n"
2562 "%sSFMASK =%016RX64\n"
2563 "%sKERNELGSBASE =%016RX64\n",
2564 pszPrefix, pCtx->msrEFER,
2565 pszPrefix, pCtx->msrPAT,
2566 pszPrefix, pCtx->msrSTAR,
2567 pszPrefix, pCtx->msrCSTAR,
2568 pszPrefix, pCtx->msrLSTAR,
2569 pszPrefix, pCtx->msrSFMASK,
2570 pszPrefix, pCtx->msrKERNELGSBASE);
2571 break;
2572 }
2573}
2574
2575
2576/**
2577 * Display all cpu states and any other cpum info.
2578 *
2579 * @param pVM VM Handle.
2580 * @param pHlp The info helper functions.
2581 * @param pszArgs Arguments, ignored.
2582 */
2583static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2584{
2585 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2586 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2587 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2588 cpumR3InfoHost(pVM, pHlp, pszArgs);
2589}
2590
2591
2592/**
2593 * Parses the info argument.
2594 *
2595 * The argument starts with 'verbose', 'terse' or 'default' and then
2596 * continues with the comment string.
2597 *
2598 * @param pszArgs The pointer to the argument string.
2599 * @param penmType Where to store the dump type request.
2600 * @param ppszComment Where to store the pointer to the comment string.
2601 */
2602static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2603{
2604 if (!pszArgs)
2605 {
2606 *penmType = CPUMDUMPTYPE_DEFAULT;
2607 *ppszComment = "";
2608 }
2609 else
2610 {
2611 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2612 {
2613 pszArgs += 5;
2614 *penmType = CPUMDUMPTYPE_VERBOSE;
2615 }
2616 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2617 {
2618 pszArgs += 5;
2619 *penmType = CPUMDUMPTYPE_TERSE;
2620 }
2621 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2622 {
2623 pszArgs += 7;
2624 *penmType = CPUMDUMPTYPE_DEFAULT;
2625 }
2626 else
2627 *penmType = CPUMDUMPTYPE_DEFAULT;
2628 *ppszComment = RTStrStripL(pszArgs);
2629 }
2630}
2631
2632
2633/**
2634 * Display the guest cpu state.
2635 *
2636 * @param pVM VM Handle.
2637 * @param pHlp The info helper functions.
2638 * @param pszArgs Arguments, ignored.
2639 */
2640static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2641{
2642 CPUMDUMPTYPE enmType;
2643 const char *pszComment;
2644 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2645
2646 /* @todo SMP support! */
2647 PVMCPU pVCpu = VMMGetCpu(pVM);
2648 if (!pVCpu)
2649 pVCpu = &pVM->aCpus[0];
2650
2651 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2652
2653 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2654 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2655}
2656
2657
2658/**
2659 * Display the current guest instruction
2660 *
2661 * @param pVM VM Handle.
2662 * @param pHlp The info helper functions.
2663 * @param pszArgs Arguments, ignored.
2664 */
2665static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2666{
2667 char szInstruction[256];
2668 /* @todo SMP support! */
2669 PVMCPU pVCpu = VMMGetCpu(pVM);
2670 if (!pVCpu)
2671 pVCpu = &pVM->aCpus[0];
2672
2673 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2674 if (RT_SUCCESS(rc))
2675 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2676}
2677
2678
2679/**
2680 * Display the hypervisor cpu state.
2681 *
2682 * @param pVM VM Handle.
2683 * @param pHlp The info helper functions.
2684 * @param pszArgs Arguments, ignored.
2685 */
2686static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2687{
2688 CPUMDUMPTYPE enmType;
2689 const char *pszComment;
2690 /* @todo SMP */
2691 PVMCPU pVCpu = &pVM->aCpus[0];
2692
2693 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2694 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2695 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2696 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2697}
2698
2699
2700/**
2701 * Display the host cpu state.
2702 *
2703 * @param pVM VM Handle.
2704 * @param pHlp The info helper functions.
2705 * @param pszArgs Arguments, ignored.
2706 */
2707static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2708{
2709 CPUMDUMPTYPE enmType;
2710 const char *pszComment;
2711 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2712 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2713
2714 /*
2715 * Format the EFLAGS.
2716 */
2717 /* @todo SMP */
2718 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2719#if HC_ARCH_BITS == 32
2720 uint32_t efl = pCtx->eflags.u32;
2721#else
2722 uint64_t efl = pCtx->rflags;
2723#endif
2724 char szEFlags[80];
2725 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2726
2727 /*
2728 * Format the registers.
2729 */
2730#if HC_ARCH_BITS == 32
2731# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2732 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2733# endif
2734 {
2735 pHlp->pfnPrintf(pHlp,
2736 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2737 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2738 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2739 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2740 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2741 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2742 ,
2743 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2744 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2745 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2746 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2747 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2748 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2749 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2750 }
2751# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2752 else
2753# endif
2754#endif
2755#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2756 {
2757 pHlp->pfnPrintf(pHlp,
2758 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2759 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2760 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2761 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2762 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2763 "r14=%016RX64 r15=%016RX64\n"
2764 "iopl=%d %31s\n"
2765 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2766 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2767 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2768 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2769 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2770 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2771 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2772 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2773 ,
2774 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2775 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2776 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2777 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2778 pCtx->r11, pCtx->r12, pCtx->r13,
2779 pCtx->r14, pCtx->r15,
2780 X86_EFL_GET_IOPL(efl), szEFlags,
2781 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2782 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2783 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2784 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2785 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2786 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2787 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2788 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2789 }
2790#endif
2791}
2792
2793
2794/**
2795 * Get L1 cache / TLS associativity.
2796 */
2797static const char *getCacheAss(unsigned u, char *pszBuf)
2798{
2799 if (u == 0)
2800 return "res0 ";
2801 if (u == 1)
2802 return "direct";
2803 if (u == 255)
2804 return "fully";
2805 if (u >= 256)
2806 return "???";
2807
2808 RTStrPrintf(pszBuf, 16, "%d way", u);
2809 return pszBuf;
2810}
2811
2812
2813/**
2814 * Get L2 cache soociativity.
2815 */
2816const char *getL2CacheAss(unsigned u)
2817{
2818 switch (u)
2819 {
2820 case 0: return "off ";
2821 case 1: return "direct";
2822 case 2: return "2 way ";
2823 case 3: return "res3 ";
2824 case 4: return "4 way ";
2825 case 5: return "res5 ";
2826 case 6: return "8 way ";
2827 case 7: return "res7 ";
2828 case 8: return "16 way";
2829 case 9: return "res9 ";
2830 case 10: return "res10 ";
2831 case 11: return "res11 ";
2832 case 12: return "res12 ";
2833 case 13: return "res13 ";
2834 case 14: return "res14 ";
2835 case 15: return "fully ";
2836 default: return "????";
2837 }
2838}
2839
2840
2841/**
2842 * Display the guest CpuId leaves.
2843 *
2844 * @param pVM VM Handle.
2845 * @param pHlp The info helper functions.
2846 * @param pszArgs "terse", "default" or "verbose".
2847 */
2848static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2849{
2850 /*
2851 * Parse the argument.
2852 */
2853 unsigned iVerbosity = 1;
2854 if (pszArgs)
2855 {
2856 pszArgs = RTStrStripL(pszArgs);
2857 if (!strcmp(pszArgs, "terse"))
2858 iVerbosity--;
2859 else if (!strcmp(pszArgs, "verbose"))
2860 iVerbosity++;
2861 }
2862
2863 /*
2864 * Start cracking.
2865 */
2866 CPUMCPUID Host;
2867 CPUMCPUID Guest;
2868 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2869
2870 pHlp->pfnPrintf(pHlp,
2871 " RAW Standard CPUIDs\n"
2872 " Function eax ebx ecx edx\n");
2873 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2874 {
2875 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2876 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2877
2878 pHlp->pfnPrintf(pHlp,
2879 "Gst: %08x %08x %08x %08x %08x%s\n"
2880 "Hst: %08x %08x %08x %08x\n",
2881 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2882 i <= cStdMax ? "" : "*",
2883 Host.eax, Host.ebx, Host.ecx, Host.edx);
2884 }
2885
2886 /*
2887 * If verbose, decode it.
2888 */
2889 if (iVerbosity)
2890 {
2891 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2892 pHlp->pfnPrintf(pHlp,
2893 "Name: %.04s%.04s%.04s\n"
2894 "Supports: 0-%x\n",
2895 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2896 }
2897
2898 /*
2899 * Get Features.
2900 */
2901 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2902 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2903 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2904 if (cStdMax >= 1 && iVerbosity)
2905 {
2906 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
2907
2908 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2909 uint32_t uEAX = Guest.eax;
2910
2911 pHlp->pfnPrintf(pHlp,
2912 "Family: %d \tExtended: %d \tEffective: %d\n"
2913 "Model: %d \tExtended: %d \tEffective: %d\n"
2914 "Stepping: %d\n"
2915 "Type: %d (%s)\n"
2916 "APIC ID: %#04x\n"
2917 "Logical CPUs: %d\n"
2918 "CLFLUSH Size: %d\n"
2919 "Brand ID: %#04x\n",
2920 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2921 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2922 ASMGetCpuStepping(uEAX),
2923 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
2924 (Guest.ebx >> 24) & 0xff,
2925 (Guest.ebx >> 16) & 0xff,
2926 (Guest.ebx >> 8) & 0xff,
2927 (Guest.ebx >> 0) & 0xff);
2928 if (iVerbosity == 1)
2929 {
2930 uint32_t uEDX = Guest.edx;
2931 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2932 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2933 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2934 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2935 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2936 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2937 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2938 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2939 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2940 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2941 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2942 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2943 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2944 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2945 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2946 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2947 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2948 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2949 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2950 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2951 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2952 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2953 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2954 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2955 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2956 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2957 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2958 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2959 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2960 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2961 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2962 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2963 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2964 pHlp->pfnPrintf(pHlp, "\n");
2965
2966 uint32_t uECX = Guest.ecx;
2967 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2968 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2969 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2970 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2971 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2972 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2973 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2974 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2975 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2976 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2977 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2978 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2979 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2980 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2981 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2982 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
2983 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
2984 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
2985 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " 17");
2986 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
2987 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4_1");
2988 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4_2");
2989 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
2990 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
2991 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
2992 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " 24");
2993 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
2994 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
2995 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
2996 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
2997 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
2998 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2999 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
3000 pHlp->pfnPrintf(pHlp, "\n");
3001 }
3002 else
3003 {
3004 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3005
3006 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
3007 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
3008 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
3009 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
3010
3011 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3012 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
3013 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
3014 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
3015 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
3016 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
3017 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
3018 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
3019 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
3020 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
3021 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
3022 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
3023 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
3024 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
3025 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3026 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3027 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3028 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3029 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3030 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3031 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3032 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3033 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3034 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3035 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3036 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3037 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3038 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3039 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3040 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technolog = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3041 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3042 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3043 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3044
3045 pHlp->pfnPrintf(pHlp, "Supports SSE3 or not = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3046 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3047 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3048 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3049 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3050 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3051 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3052 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3053 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3054 pHlp->pfnPrintf(pHlp, "Supports Supplemental SSE3 or not = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3055 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3056 pHlp->pfnPrintf(pHlp, "FMA = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3057 pHlp->pfnPrintf(pHlp, "Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3058 pHlp->pfnPrintf(pHlp, "CMPXCHG16B = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3059 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3060 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3061 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3062 pHlp->pfnPrintf(pHlp, "Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3063 pHlp->pfnPrintf(pHlp, "Supports SSE4_1 or not = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3064 pHlp->pfnPrintf(pHlp, "Supports SSE4_2 or not = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3065 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3066 pHlp->pfnPrintf(pHlp, "Supports MOVBE = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3067 pHlp->pfnPrintf(pHlp, "Supports POPCNT = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3068 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u1Reserved4, EcxHost.u1Reserved4);
3069 pHlp->pfnPrintf(pHlp, "Supports XSAVE = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3070 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3071 pHlp->pfnPrintf(pHlp, "Reserved = %#x (%#x)\n",EcxGuest.u4Reserved5, EcxHost.u4Reserved5);
3072 }
3073 }
3074 if (cStdMax >= 2 && iVerbosity)
3075 {
3076 /** @todo */
3077 }
3078
3079 /*
3080 * Extended.
3081 * Implemented after AMD specs.
3082 */
3083 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3084
3085 pHlp->pfnPrintf(pHlp,
3086 "\n"
3087 " RAW Extended CPUIDs\n"
3088 " Function eax ebx ecx edx\n");
3089 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3090 {
3091 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3092 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3093
3094 pHlp->pfnPrintf(pHlp,
3095 "Gst: %08x %08x %08x %08x %08x%s\n"
3096 "Hst: %08x %08x %08x %08x\n",
3097 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3098 i <= cExtMax ? "" : "*",
3099 Host.eax, Host.ebx, Host.ecx, Host.edx);
3100 }
3101
3102 /*
3103 * Understandable output
3104 */
3105 if (iVerbosity)
3106 {
3107 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3108 pHlp->pfnPrintf(pHlp,
3109 "Ext Name: %.4s%.4s%.4s\n"
3110 "Ext Supports: 0x80000000-%#010x\n",
3111 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3112 }
3113
3114 if (iVerbosity && cExtMax >= 1)
3115 {
3116 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3117 uint32_t uEAX = Guest.eax;
3118 pHlp->pfnPrintf(pHlp,
3119 "Family: %d \tExtended: %d \tEffective: %d\n"
3120 "Model: %d \tExtended: %d \tEffective: %d\n"
3121 "Stepping: %d\n"
3122 "Brand ID: %#05x\n",
3123 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3124 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3125 ASMGetCpuStepping(uEAX),
3126 Guest.ebx & 0xfff);
3127
3128 if (iVerbosity == 1)
3129 {
3130 uint32_t uEDX = Guest.edx;
3131 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3132 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3133 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3134 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3135 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3136 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3137 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3138 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3139 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3140 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3141 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3142 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3143 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3144 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3145 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3146 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3147 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3148 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3149 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3150 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3151 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3152 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3153 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3154 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3155 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3156 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3157 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3158 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3159 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3160 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3161 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3162 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3163 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3164 pHlp->pfnPrintf(pHlp, "\n");
3165
3166 uint32_t uECX = Guest.ecx;
3167 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3168 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3169 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3170 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3171 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3172 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3173 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3174 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3175 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3176 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3177 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3178 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3179 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3180 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3181 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3182 for (unsigned iBit = 5; iBit < 32; iBit++)
3183 if (uECX & RT_BIT(iBit))
3184 pHlp->pfnPrintf(pHlp, " %d", iBit);
3185 pHlp->pfnPrintf(pHlp, "\n");
3186 }
3187 else
3188 {
3189 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3190
3191 uint32_t uEdxGst = Guest.edx;
3192 uint32_t uEdxHst = Host.edx;
3193 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3194 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3195 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3196 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3197 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3198 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3199 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3200 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3201 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3202 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3203 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3204 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3205 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3206 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3207 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3208 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3209 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3210 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3211 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3212 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3213 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3214 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3215 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3216 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3217 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3218 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3219 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3220 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3221 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3222 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3223 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3224 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3225 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3226
3227 uint32_t uEcxGst = Guest.ecx;
3228 uint32_t uEcxHst = Host.ecx;
3229 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3230 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3231 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3232 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3233 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3234 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3235 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3236 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3237 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3238 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3239 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3240 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3241 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3242 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3243 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3244 }
3245 }
3246
3247 if (iVerbosity && cExtMax >= 2)
3248 {
3249 char szString[4*4*3+1] = {0};
3250 uint32_t *pu32 = (uint32_t *)szString;
3251 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3252 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3253 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3254 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3255 if (cExtMax >= 3)
3256 {
3257 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3258 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3259 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3260 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3261 }
3262 if (cExtMax >= 4)
3263 {
3264 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3265 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3266 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3267 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3268 }
3269 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3270 }
3271
3272 if (iVerbosity && cExtMax >= 5)
3273 {
3274 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3275 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3276 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3277 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3278 char sz1[32];
3279 char sz2[32];
3280
3281 pHlp->pfnPrintf(pHlp,
3282 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3283 "TLB 2/4M Data: %s %3d entries\n",
3284 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3285 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3286 pHlp->pfnPrintf(pHlp,
3287 "TLB 4K Instr/Uni: %s %3d entries\n"
3288 "TLB 4K Data: %s %3d entries\n",
3289 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3290 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3291 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3292 "L1 Instr Cache Lines Per Tag: %d\n"
3293 "L1 Instr Cache Associativity: %s\n"
3294 "L1 Instr Cache Size: %d KB\n",
3295 (uEDX >> 0) & 0xff,
3296 (uEDX >> 8) & 0xff,
3297 getCacheAss((uEDX >> 16) & 0xff, sz1),
3298 (uEDX >> 24) & 0xff);
3299 pHlp->pfnPrintf(pHlp,
3300 "L1 Data Cache Line Size: %d bytes\n"
3301 "L1 Data Cache Lines Per Tag: %d\n"
3302 "L1 Data Cache Associativity: %s\n"
3303 "L1 Data Cache Size: %d KB\n",
3304 (uECX >> 0) & 0xff,
3305 (uECX >> 8) & 0xff,
3306 getCacheAss((uECX >> 16) & 0xff, sz1),
3307 (uECX >> 24) & 0xff);
3308 }
3309
3310 if (iVerbosity && cExtMax >= 6)
3311 {
3312 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3313 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3314 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3315
3316 pHlp->pfnPrintf(pHlp,
3317 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3318 "L2 TLB 2/4M Data: %s %4d entries\n",
3319 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3320 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3321 pHlp->pfnPrintf(pHlp,
3322 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3323 "L2 TLB 4K Data: %s %4d entries\n",
3324 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3325 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3326 pHlp->pfnPrintf(pHlp,
3327 "L2 Cache Line Size: %d bytes\n"
3328 "L2 Cache Lines Per Tag: %d\n"
3329 "L2 Cache Associativity: %s\n"
3330 "L2 Cache Size: %d KB\n",
3331 (uEDX >> 0) & 0xff,
3332 (uEDX >> 8) & 0xf,
3333 getL2CacheAss((uEDX >> 12) & 0xf),
3334 (uEDX >> 16) & 0xffff);
3335 }
3336
3337 if (iVerbosity && cExtMax >= 7)
3338 {
3339 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3340
3341 pHlp->pfnPrintf(pHlp, "APM Features: ");
3342 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3343 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3344 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3345 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3346 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3347 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3348 for (unsigned iBit = 6; iBit < 32; iBit++)
3349 if (uEDX & RT_BIT(iBit))
3350 pHlp->pfnPrintf(pHlp, " %d", iBit);
3351 pHlp->pfnPrintf(pHlp, "\n");
3352 }
3353
3354 if (iVerbosity && cExtMax >= 8)
3355 {
3356 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3357 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3358
3359 pHlp->pfnPrintf(pHlp,
3360 "Physical Address Width: %d bits\n"
3361 "Virtual Address Width: %d bits\n"
3362 "Guest Physical Address Width: %d bits\n",
3363 (uEAX >> 0) & 0xff,
3364 (uEAX >> 8) & 0xff,
3365 (uEAX >> 16) & 0xff);
3366 pHlp->pfnPrintf(pHlp,
3367 "Physical Core Count: %d\n",
3368 (uECX >> 0) & 0xff);
3369 }
3370
3371
3372 /*
3373 * Centaur.
3374 */
3375 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3376
3377 pHlp->pfnPrintf(pHlp,
3378 "\n"
3379 " RAW Centaur CPUIDs\n"
3380 " Function eax ebx ecx edx\n");
3381 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3382 {
3383 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3384 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3385
3386 pHlp->pfnPrintf(pHlp,
3387 "Gst: %08x %08x %08x %08x %08x%s\n"
3388 "Hst: %08x %08x %08x %08x\n",
3389 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3390 i <= cCentaurMax ? "" : "*",
3391 Host.eax, Host.ebx, Host.ecx, Host.edx);
3392 }
3393
3394 /*
3395 * Understandable output
3396 */
3397 if (iVerbosity)
3398 {
3399 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3400 pHlp->pfnPrintf(pHlp,
3401 "Centaur Supports: 0xc0000000-%#010x\n",
3402 Guest.eax);
3403 }
3404
3405 if (iVerbosity && cCentaurMax >= 1)
3406 {
3407 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3408 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3409 uint32_t uEdxHst = Host.edx;
3410
3411 if (iVerbosity == 1)
3412 {
3413 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3414 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3415 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3416 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3417 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3418 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3419 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3420 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3421 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3422 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3423 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3424 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3425 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3426 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3427 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3428 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3429 for (unsigned iBit = 14; iBit < 32; iBit++)
3430 if (uEdxGst & RT_BIT(iBit))
3431 pHlp->pfnPrintf(pHlp, " %d", iBit);
3432 pHlp->pfnPrintf(pHlp, "\n");
3433 }
3434 else
3435 {
3436 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3437 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3438 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3439 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3440 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3441 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3442 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3443 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3444 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3445 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3446 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3447 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3448 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3449 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3450 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3451 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3452 for (unsigned iBit = 14; iBit < 32; iBit++)
3453 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3454 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3455 pHlp->pfnPrintf(pHlp, "\n");
3456 }
3457 }
3458}
3459
3460
3461/**
3462 * Structure used when disassembling and instructions in DBGF.
3463 * This is used so the reader function can get the stuff it needs.
3464 */
3465typedef struct CPUMDISASSTATE
3466{
3467 /** Pointer to the CPU structure. */
3468 PDISCPUSTATE pCpu;
3469 /** The VM handle. */
3470 PVM pVM;
3471 /** The VMCPU handle. */
3472 PVMCPU pVCpu;
3473 /** Pointer to the first byte in the segemnt. */
3474 RTGCUINTPTR GCPtrSegBase;
3475 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3476 RTGCUINTPTR GCPtrSegEnd;
3477 /** The size of the segment minus 1. */
3478 RTGCUINTPTR cbSegLimit;
3479 /** Pointer to the current page - R3 Ptr. */
3480 void const *pvPageR3;
3481 /** Pointer to the current page - GC Ptr. */
3482 RTGCPTR pvPageGC;
3483 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3484 PGMPAGEMAPLOCK PageMapLock;
3485 /** Whether the PageMapLock is valid or not. */
3486 bool fLocked;
3487 /** 64 bits mode or not. */
3488 bool f64Bits;
3489} CPUMDISASSTATE, *PCPUMDISASSTATE;
3490
3491
3492/**
3493 * Instruction reader.
3494 *
3495 * @returns VBox status code.
3496 * @param PtrSrc Address to read from.
3497 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3498 * @param pu8Dst Where to store the bytes.
3499 * @param cbRead Number of bytes to read.
3500 * @param uDisCpu Pointer to the disassembler cpu state.
3501 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3502 */
3503static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3504{
3505 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3506 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3507 Assert(cbRead > 0);
3508 for (;;)
3509 {
3510 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3511
3512 /* Need to update the page translation? */
3513 if ( !pState->pvPageR3
3514 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3515 {
3516 int rc = VINF_SUCCESS;
3517
3518 /* translate the address */
3519 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3520 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3521 && !HWACCMIsEnabled(pState->pVM))
3522 {
3523 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3524 if (!pState->pvPageR3)
3525 rc = VERR_INVALID_POINTER;
3526 }
3527 else
3528 {
3529 /* Release mapping lock previously acquired. */
3530 if (pState->fLocked)
3531 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3532 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3533 pState->fLocked = RT_SUCCESS_NP(rc);
3534 }
3535 if (RT_FAILURE(rc))
3536 {
3537 pState->pvPageR3 = NULL;
3538 return rc;
3539 }
3540 }
3541
3542 /* check the segemnt limit */
3543 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3544 return VERR_OUT_OF_SELECTOR_BOUNDS;
3545
3546 /* calc how much we can read */
3547 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3548 if (!pState->f64Bits)
3549 {
3550 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3551 if (cb > cbSeg && cbSeg)
3552 cb = cbSeg;
3553 }
3554 if (cb > cbRead)
3555 cb = cbRead;
3556
3557 /* read and advance */
3558 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3559 cbRead -= cb;
3560 if (!cbRead)
3561 return VINF_SUCCESS;
3562 pu8Dst += cb;
3563 PtrSrc += cb;
3564 }
3565}
3566
3567
3568/**
3569 * Disassemble an instruction and return the information in the provided structure.
3570 *
3571 * @returns VBox status code.
3572 * @param pVM VM Handle
3573 * @param pVCpu VMCPU Handle
3574 * @param pCtx CPU context
3575 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3576 * @param pCpu Disassembly state
3577 * @param pszPrefix String prefix for logging (debug only)
3578 *
3579 */
3580VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3581{
3582 CPUMDISASSTATE State;
3583 int rc;
3584
3585 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3586 State.pCpu = pCpu;
3587 State.pvPageGC = 0;
3588 State.pvPageR3 = NULL;
3589 State.pVM = pVM;
3590 State.pVCpu = pVCpu;
3591 State.fLocked = false;
3592 State.f64Bits = false;
3593
3594 /*
3595 * Get selector information.
3596 */
3597 if ( (pCtx->cr0 & X86_CR0_PE)
3598 && pCtx->eflags.Bits.u1VM == 0)
3599 {
3600 if (CPUMAreHiddenSelRegsValid(pVCpu))
3601 {
3602 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3603 State.GCPtrSegBase = pCtx->csHid.u64Base;
3604 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3605 State.cbSegLimit = pCtx->csHid.u32Limit;
3606 pCpu->mode = (State.f64Bits)
3607 ? CPUMODE_64BIT
3608 : pCtx->csHid.Attr.n.u1DefBig
3609 ? CPUMODE_32BIT
3610 : CPUMODE_16BIT;
3611 }
3612 else
3613 {
3614 DBGFSELINFO SelInfo;
3615
3616 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3617 if (RT_FAILURE(rc))
3618 {
3619 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3620 return rc;
3621 }
3622
3623 /*
3624 * Validate the selector.
3625 */
3626 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3627 if (RT_FAILURE(rc))
3628 {
3629 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3630 return rc;
3631 }
3632 State.GCPtrSegBase = SelInfo.GCPtrBase;
3633 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3634 State.cbSegLimit = SelInfo.cbLimit;
3635 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3636 }
3637 }
3638 else
3639 {
3640 /* real or V86 mode */
3641 pCpu->mode = CPUMODE_16BIT;
3642 State.GCPtrSegBase = pCtx->cs * 16;
3643 State.GCPtrSegEnd = 0xFFFFFFFF;
3644 State.cbSegLimit = 0xFFFFFFFF;
3645 }
3646
3647 /*
3648 * Disassemble the instruction.
3649 */
3650 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3651 pCpu->apvUserData[0] = &State;
3652
3653 uint32_t cbInstr;
3654#ifndef LOG_ENABLED
3655 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3656 if (RT_SUCCESS(rc))
3657 {
3658#else
3659 char szOutput[160];
3660 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3661 if (RT_SUCCESS(rc))
3662 {
3663 /* log it */
3664 if (pszPrefix)
3665 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3666 else
3667 Log(("%s", szOutput));
3668#endif
3669 rc = VINF_SUCCESS;
3670 }
3671 else
3672 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3673
3674 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3675 if (State.fLocked)
3676 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3677
3678 return rc;
3679}
3680
3681#ifdef DEBUG
3682
3683/**
3684 * Disassemble an instruction and dump it to the log
3685 *
3686 * @returns VBox status code.
3687 * @param pVM VM Handle
3688 * @param pVCpu VMCPU Handle
3689 * @param pCtx CPU context
3690 * @param pc GC instruction pointer
3691 * @param pszPrefix String prefix for logging
3692 *
3693 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3694 */
3695VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3696{
3697 DISCPUSTATE Cpu;
3698 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3699}
3700
3701
3702/**
3703 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3704 *
3705 * @internal
3706 */
3707VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3708{
3709 /** @todo SMP support!! */
3710 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3711}
3712
3713#endif /* DEBUG */
3714
3715/**
3716 * API for controlling a few of the CPU features found in CR4.
3717 *
3718 * Currently only X86_CR4_TSD is accepted as input.
3719 *
3720 * @returns VBox status code.
3721 *
3722 * @param pVM The VM handle.
3723 * @param fOr The CR4 OR mask.
3724 * @param fAnd The CR4 AND mask.
3725 */
3726VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3727{
3728 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3729 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3730
3731 pVM->cpum.s.CR4.OrMask &= fAnd;
3732 pVM->cpum.s.CR4.OrMask |= fOr;
3733
3734 return VINF_SUCCESS;
3735}
3736
3737
3738/**
3739 * Gets a pointer to the array of standard CPUID leaves.
3740 *
3741 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3742 *
3743 * @returns Pointer to the standard CPUID leaves (read-only).
3744 * @param pVM The VM handle.
3745 * @remark Intended for PATM.
3746 */
3747VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3748{
3749 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3750}
3751
3752
3753/**
3754 * Gets a pointer to the array of extended CPUID leaves.
3755 *
3756 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3757 *
3758 * @returns Pointer to the extended CPUID leaves (read-only).
3759 * @param pVM The VM handle.
3760 * @remark Intended for PATM.
3761 */
3762VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3763{
3764 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3765}
3766
3767
3768/**
3769 * Gets a pointer to the array of centaur CPUID leaves.
3770 *
3771 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3772 *
3773 * @returns Pointer to the centaur CPUID leaves (read-only).
3774 * @param pVM The VM handle.
3775 * @remark Intended for PATM.
3776 */
3777VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3778{
3779 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3780}
3781
3782
3783/**
3784 * Gets a pointer to the default CPUID leaf.
3785 *
3786 * @returns Pointer to the default CPUID leaf (read-only).
3787 * @param pVM The VM handle.
3788 * @remark Intended for PATM.
3789 */
3790VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3791{
3792 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3793}
3794
3795
3796/**
3797 * Transforms the guest CPU state to raw-ring mode.
3798 *
3799 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3800 *
3801 * @returns VBox status. (recompiler failure)
3802 * @param pVCpu The VMCPU handle.
3803 * @param pCtxCore The context core (for trap usage).
3804 * @see @ref pg_raw
3805 */
3806VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3807{
3808 PVM pVM = pVCpu->CTX_SUFF(pVM);
3809
3810 Assert(!pVCpu->cpum.s.fRawEntered);
3811 Assert(!pVCpu->cpum.s.fRemEntered);
3812 if (!pCtxCore)
3813 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
3814
3815 /*
3816 * Are we in Ring-0?
3817 */
3818 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
3819 && !pCtxCore->eflags.Bits.u1VM)
3820 {
3821 /*
3822 * Enter execution mode.
3823 */
3824 PATMRawEnter(pVM, pCtxCore);
3825
3826 /*
3827 * Set CPL to Ring-1.
3828 */
3829 pCtxCore->ss |= 1;
3830 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
3831 pCtxCore->cs |= 1;
3832 }
3833 else
3834 {
3835 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
3836 ("ring-1 code not supported\n"));
3837 /*
3838 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
3839 */
3840 PATMRawEnter(pVM, pCtxCore);
3841 }
3842
3843 /*
3844 * Invalidate the hidden registers.
3845 */
3846 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3847
3848 /*
3849 * Assert sanity.
3850 */
3851 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
3852 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
3853 || pCtxCore->eflags.Bits.u1VM,
3854 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3855 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
3856
3857 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
3858
3859 pVCpu->cpum.s.fRawEntered = true;
3860 return VINF_SUCCESS;
3861}
3862
3863
3864/**
3865 * Transforms the guest CPU state from raw-ring mode to correct values.
3866 *
3867 * This function will change any selector registers with DPL=1 to DPL=0.
3868 *
3869 * @returns Adjusted rc.
3870 * @param pVCpu The VMCPU handle.
3871 * @param rc Raw mode return code
3872 * @param pCtxCore The context core (for trap usage).
3873 * @see @ref pg_raw
3874 */
3875VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
3876{
3877 PVM pVM = pVCpu->CTX_SUFF(pVM);
3878
3879 /*
3880 * Don't leave if we've already left (in GC).
3881 */
3882 Assert(pVCpu->cpum.s.fRawEntered);
3883 Assert(!pVCpu->cpum.s.fRemEntered);
3884 if (!pVCpu->cpum.s.fRawEntered)
3885 return rc;
3886 pVCpu->cpum.s.fRawEntered = false;
3887
3888 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3889 if (!pCtxCore)
3890 pCtxCore = CPUMCTX2CORE(pCtx);
3891 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
3892 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
3893 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3894
3895 /*
3896 * Are we executing in raw ring-1?
3897 */
3898 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
3899 && !pCtxCore->eflags.Bits.u1VM)
3900 {
3901 /*
3902 * Leave execution mode.
3903 */
3904 PATMRawLeave(pVM, pCtxCore, rc);
3905 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
3906 /** @todo See what happens if we remove this. */
3907 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3908 pCtxCore->ds &= ~X86_SEL_RPL;
3909 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3910 pCtxCore->es &= ~X86_SEL_RPL;
3911 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3912 pCtxCore->fs &= ~X86_SEL_RPL;
3913 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3914 pCtxCore->gs &= ~X86_SEL_RPL;
3915
3916 /*
3917 * Ring-1 selector => Ring-0.
3918 */
3919 pCtxCore->ss &= ~X86_SEL_RPL;
3920 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
3921 pCtxCore->cs &= ~X86_SEL_RPL;
3922 }
3923 else
3924 {
3925 /*
3926 * PATM is taking care of the IOPL and IF flags for us.
3927 */
3928 PATMRawLeave(pVM, pCtxCore, rc);
3929 if (!pCtxCore->eflags.Bits.u1VM)
3930 {
3931 /** @todo See what happens if we remove this. */
3932 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3933 pCtxCore->ds &= ~X86_SEL_RPL;
3934 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3935 pCtxCore->es &= ~X86_SEL_RPL;
3936 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3937 pCtxCore->fs &= ~X86_SEL_RPL;
3938 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3939 pCtxCore->gs &= ~X86_SEL_RPL;
3940 }
3941 }
3942
3943 return rc;
3944}
3945
3946
3947/**
3948 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3949 *
3950 * Only REM should ever call this function!
3951 *
3952 * @returns The changed flags.
3953 * @param pVCpu The VMCPU handle.
3954 * @param puCpl Where to return the current privilege level (CPL).
3955 */
3956VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3957{
3958 Assert(!pVCpu->cpum.s.fRawEntered);
3959 Assert(!pVCpu->cpum.s.fRemEntered);
3960
3961 /*
3962 * Get the CPL first.
3963 */
3964 *puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
3965
3966 /*
3967 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
3968 */
3969 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3970 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
3971
3972 /** @todo change the switcher to use the fChanged flags. */
3973 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3974 {
3975 fFlags |= CPUM_CHANGED_FPU_REM;
3976 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3977 }
3978
3979 pVCpu->cpum.s.fRemEntered = true;
3980 return fFlags;
3981}
3982
3983
3984/**
3985 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
3986 *
3987 * @param pVCpu The virtual CPU handle.
3988 * @param fNoOutOfSyncSels This is @c false if there are out of sync
3989 * registers.
3990 */
3991VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
3992{
3993 Assert(!pVCpu->cpum.s.fRawEntered);
3994 Assert(pVCpu->cpum.s.fRemEntered);
3995
3996 if (fNoOutOfSyncSels)
3997 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3998 else
3999 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4000
4001 pVCpu->cpum.s.fRemEntered = false;
4002}
4003
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette