/* $Id: DBGFStack.cpp 23012 2009-09-14 16:38:13Z vboxsync $ */ /** @file * DBGF - Debugger Facility, Call Stack Analyser. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_DBGF #include #include #include #include "DBGFInternal.h" #include #include #include #include #include #include #include /** * Read stack memory. */ DECLINLINE(int) dbgfR3Read(PVM pVM, VMCPUID idCpu, void *pvBuf, PCDBGFADDRESS pSrcAddr, size_t cb, size_t *pcbRead) { int rc = DBGFR3MemRead(pVM, idCpu, pSrcAddr, pvBuf, cb); if (RT_FAILURE(rc)) { /* fallback: byte by byte and zero the ones we fail to read. */ size_t cbRead; for (cbRead = 0; cbRead < cb; cbRead++) { DBGFADDRESS Addr = *pSrcAddr; rc = DBGFR3MemRead(pVM, idCpu, DBGFR3AddrAdd(&Addr, cbRead), (uint8_t *)pvBuf + cbRead, 1); if (RT_FAILURE(rc)) break; } if (cbRead) rc = VINF_SUCCESS; memset((char *)pvBuf + cbRead, 0, cb - cbRead); *pcbRead = cbRead; } else *pcbRead = cb; return rc; } /** * Internal worker routine. * * On x86 the typical stack frame layout is like this: * .. .. * 16 parameter 2 * 12 parameter 1 * 8 parameter 0 * 4 return address * 0 old ebp; current ebp points here * * @todo Add AMD64 support (needs teaming up with the module management for * unwind tables). */ static int dbgfR3StackWalk(PVM pVM, VMCPUID idCpu, RTDBGAS hAs, PDBGFSTACKFRAME pFrame) { /* * Stop if we got a read error in the previous run. */ if (pFrame->fFlags & DBGFSTACKFRAME_FLAGS_LAST) return VERR_NO_MORE_FILES; /* * Read the raw frame data. */ const DBGFADDRESS AddrOldPC = pFrame->AddrPC; const unsigned cbRetAddr = DBGFReturnTypeSize(pFrame->enmReturnType); unsigned cbStackItem; switch (AddrOldPC.fFlags & DBGFADDRESS_FLAGS_TYPE_MASK) { case DBGFADDRESS_FLAGS_FAR16: cbStackItem = 2; break; case DBGFADDRESS_FLAGS_FAR32: cbStackItem = 4; break; case DBGFADDRESS_FLAGS_FAR64: cbStackItem = 8; break; case DBGFADDRESS_FLAGS_RING0: cbStackItem = sizeof(RTHCUINTPTR); break; default: switch (pFrame->enmReturnType) { case DBGFRETURNTYPE_FAR16: case DBGFRETURNTYPE_IRET16: case DBGFRETURNTYPE_IRET32_V86: case DBGFRETURNTYPE_NEAR16: cbStackItem = 2; break; case DBGFRETURNTYPE_FAR32: case DBGFRETURNTYPE_IRET32: case DBGFRETURNTYPE_IRET32_PRIV: case DBGFRETURNTYPE_NEAR32: cbStackItem = 4; break; case DBGFRETURNTYPE_FAR64: case DBGFRETURNTYPE_IRET64: case DBGFRETURNTYPE_NEAR64: cbStackItem = 8; break; default: AssertMsgFailed(("%d\n", pFrame->enmReturnType)); cbStackItem = 4; break; } } union { uint64_t *pu64; uint32_t *pu32; uint16_t *pu16; uint8_t *pb; void *pv; } u, uRet, uArgs, uBp; size_t cbRead = cbRetAddr + cbStackItem + sizeof(pFrame->Args); u.pv = alloca(cbRead); uBp = u; uRet.pb = u.pb + cbStackItem; uArgs.pb = u.pb + cbStackItem + cbRetAddr; Assert(DBGFADDRESS_IS_VALID(&pFrame->AddrFrame)); int rc = dbgfR3Read(pVM, idCpu, u.pv, pFrame->fFlags & DBGFSTACKFRAME_FLAGS_ALL_VALID ? &pFrame->AddrReturnFrame : &pFrame->AddrFrame, cbRead, &cbRead); if ( RT_FAILURE(rc) || cbRead < cbRetAddr + cbStackItem) pFrame->fFlags |= DBGFSTACKFRAME_FLAGS_LAST; /* * The first step is taken in a different way than the others. */ if (!(pFrame->fFlags & DBGFSTACKFRAME_FLAGS_ALL_VALID)) { pFrame->fFlags |= DBGFSTACKFRAME_FLAGS_ALL_VALID; pFrame->iFrame = 0; /* Current PC - set by caller, just find symbol & line. */ if (DBGFADDRESS_IS_VALID(&pFrame->AddrPC)) { pFrame->pSymPC = DBGFR3AsSymbolByAddrA(pVM, hAs, &pFrame->AddrPC, NULL /*offDisp*/, NULL /*phMod*/); pFrame->pLinePC = DBGFR3LineByAddrAlloc(pVM, pFrame->AddrPC.FlatPtr, NULL); } } else /* 2nd and subsequent steps */ { /* frame, pc and stack is taken from the existing frames return members. */ pFrame->AddrFrame = pFrame->AddrReturnFrame; pFrame->AddrPC = pFrame->AddrReturnPC; pFrame->pSymPC = pFrame->pSymReturnPC; pFrame->pLinePC = pFrame->pLineReturnPC; /* increment the frame number. */ pFrame->iFrame++; } /* * Return Frame address. */ pFrame->AddrReturnFrame = pFrame->AddrFrame; switch (cbStackItem) { case 2: pFrame->AddrReturnFrame.off = *uBp.pu16; break; case 4: pFrame->AddrReturnFrame.off = *uBp.pu32; break; case 8: pFrame->AddrReturnFrame.off = *uBp.pu64; break; default: AssertMsgFailed(("cbStackItem=%d\n", cbStackItem)); return VERR_INTERNAL_ERROR; } pFrame->AddrReturnFrame.FlatPtr += pFrame->AddrReturnFrame.off - pFrame->AddrFrame.off; /* * Return PC and Stack Addresses. */ /** @todo AddrReturnStack is not correct for stdcall and pascal. (requires scope info) */ pFrame->AddrReturnStack = pFrame->AddrFrame; pFrame->AddrReturnStack.off += cbStackItem + cbRetAddr; pFrame->AddrReturnStack.FlatPtr += cbStackItem + cbRetAddr; pFrame->AddrReturnPC = pFrame->AddrPC; switch (pFrame->enmReturnType) { case DBGFRETURNTYPE_NEAR16: if (DBGFADDRESS_IS_VALID(&pFrame->AddrReturnPC)) { pFrame->AddrReturnPC.FlatPtr += *uRet.pu16 - pFrame->AddrReturnPC.off; pFrame->AddrReturnPC.off = *uRet.pu16; } else DBGFR3AddrFromFlat(pVM, &pFrame->AddrReturnPC, *uRet.pu16); break; case DBGFRETURNTYPE_NEAR32: if (DBGFADDRESS_IS_VALID(&pFrame->AddrReturnPC)) { pFrame->AddrReturnPC.FlatPtr += *uRet.pu32 - pFrame->AddrReturnPC.off; pFrame->AddrReturnPC.off = *uRet.pu32; } else DBGFR3AddrFromFlat(pVM, &pFrame->AddrReturnPC, *uRet.pu32); break; case DBGFRETURNTYPE_NEAR64: if (DBGFADDRESS_IS_VALID(&pFrame->AddrReturnPC)) { pFrame->AddrReturnPC.FlatPtr += *uRet.pu64 - pFrame->AddrReturnPC.off; pFrame->AddrReturnPC.off = *uRet.pu64; } else DBGFR3AddrFromFlat(pVM, &pFrame->AddrReturnPC, *uRet.pu64); break; case DBGFRETURNTYPE_FAR16: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[1], uRet.pu16[0]); break; case DBGFRETURNTYPE_FAR32: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[2], uRet.pu32[0]); break; case DBGFRETURNTYPE_FAR64: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[4], uRet.pu64[0]); break; case DBGFRETURNTYPE_IRET16: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[1], uRet.pu16[0]); break; case DBGFRETURNTYPE_IRET32: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[2], uRet.pu32[0]); break; case DBGFRETURNTYPE_IRET32_PRIV: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[2], uRet.pu32[0]); break; case DBGFRETURNTYPE_IRET32_V86: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[2], uRet.pu32[0]); break; case DBGFRETURNTYPE_IRET64: DBGFR3AddrFromSelOff(pVM, idCpu, &pFrame->AddrReturnPC, uRet.pu16[4], uRet.pu64[0]); break; default: AssertMsgFailed(("enmReturnType=%d\n", pFrame->enmReturnType)); return VERR_INVALID_PARAMETER; } pFrame->pSymReturnPC = DBGFR3AsSymbolByAddrA(pVM, hAs, &pFrame->AddrReturnPC, NULL /*offDisp*/, NULL /*phMod*/); pFrame->pLineReturnPC = DBGFR3LineByAddrAlloc(pVM, pFrame->AddrReturnPC.FlatPtr, NULL); /* * Frame bitness flag. */ switch (cbStackItem) { case 2: pFrame->fFlags |= DBGFSTACKFRAME_FLAGS_16BIT; break; case 4: pFrame->fFlags |= DBGFSTACKFRAME_FLAGS_32BIT; break; case 8: pFrame->fFlags |= DBGFSTACKFRAME_FLAGS_64BIT; break; default: AssertMsgFailed(("cbStackItem=%d\n", cbStackItem)); return VERR_INTERNAL_ERROR; } /* * The arguments. */ memcpy(&pFrame->Args, uArgs.pv, sizeof(pFrame->Args)); return VINF_SUCCESS; } /** * Walks the entire stack allocating memory as we walk. */ static DECLCALLBACK(int) dbgfR3StackWalkCtxFull(PVM pVM, VMCPUID idCpu, PCCPUMCTXCORE pCtxCore, RTDBGAS hAs, DBGFCODETYPE enmCodeType, PCDBGFADDRESS pAddrFrame, PCDBGFADDRESS pAddrStack, PCDBGFADDRESS pAddrPC, DBGFRETURNTYPE enmReturnType, PCDBGFSTACKFRAME *ppFirstFrame) { /* alloc first frame. */ PDBGFSTACKFRAME pCur = (PDBGFSTACKFRAME)MMR3HeapAllocZ(pVM, MM_TAG_DBGF_STACK, sizeof(*pCur)); if (!pCur) return VERR_NO_MEMORY; /* * Initialize the frame. */ pCur->pNextInternal = NULL; pCur->pFirstInternal = pCur; int rc = VINF_SUCCESS; if (pAddrPC) pCur->AddrPC = *pAddrPC; else rc = DBGFR3AddrFromSelOff(pVM, idCpu, &pCur->AddrPC, pCtxCore->cs, pCtxCore->rip); if (RT_SUCCESS(rc)) { if (enmReturnType == DBGFRETURNTYPE_INVALID) switch (pCur->AddrPC.fFlags & DBGFADDRESS_FLAGS_TYPE_MASK) { case DBGFADDRESS_FLAGS_FAR16: pCur->enmReturnType = DBGFRETURNTYPE_NEAR16; break; case DBGFADDRESS_FLAGS_FAR32: pCur->enmReturnType = DBGFRETURNTYPE_NEAR32; break; case DBGFADDRESS_FLAGS_FAR64: pCur->enmReturnType = DBGFRETURNTYPE_NEAR64; break; case DBGFADDRESS_FLAGS_RING0: pCur->enmReturnType = HC_ARCH_BITS == 64 ? DBGFRETURNTYPE_NEAR64 : DBGFRETURNTYPE_NEAR32; break; default: pCur->enmReturnType = DBGFRETURNTYPE_NEAR32; break; /// @todo 64-bit guests } uint64_t fAddrMask; if (enmCodeType == DBGFCODETYPE_RING0) fAddrMask = HC_ARCH_BITS == 64 ? UINT64_MAX : UINT32_MAX; else if (enmCodeType == DBGFCODETYPE_HYPER) fAddrMask = UINT32_MAX; else if (DBGFADDRESS_IS_FAR16(&pCur->AddrPC)) fAddrMask = UINT16_MAX; else if (DBGFADDRESS_IS_FAR32(&pCur->AddrPC)) fAddrMask = UINT32_MAX; else if (DBGFADDRESS_IS_FAR64(&pCur->AddrPC)) fAddrMask = UINT64_MAX; else { PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu); CPUMMODE CpuMode = CPUMGetGuestMode(pVCpu); if (CpuMode == CPUMMODE_REAL) fAddrMask = UINT16_MAX; else if ( CpuMode == CPUMMODE_PROTECTED || !CPUMIsGuestIn64BitCode(pVCpu, pCtxCore)) fAddrMask = UINT32_MAX; else fAddrMask = UINT64_MAX; } if (pAddrStack) pCur->AddrStack = *pAddrStack; else rc = DBGFR3AddrFromSelOff(pVM, idCpu, &pCur->AddrStack, pCtxCore->ss, pCtxCore->rsp & fAddrMask); if (pAddrFrame) pCur->AddrFrame = *pAddrFrame; else if (RT_SUCCESS(rc)) rc = DBGFR3AddrFromSelOff(pVM, idCpu, &pCur->AddrFrame, pCtxCore->ss, pCtxCore->rbp & fAddrMask); } else pCur->enmReturnType = enmReturnType; /* * The first frame. */ if (RT_SUCCESS(rc)) rc = dbgfR3StackWalk(pVM, idCpu, hAs, pCur); if (RT_FAILURE(rc)) { DBGFR3StackWalkEnd(pCur); return rc; } /* * The other frames. */ DBGFSTACKFRAME Next = *pCur; while (!(pCur->fFlags & (DBGFSTACKFRAME_FLAGS_LAST | DBGFSTACKFRAME_FLAGS_MAX_DEPTH | DBGFSTACKFRAME_FLAGS_LOOP))) { /* try walk. */ rc = dbgfR3StackWalk(pVM, idCpu, hAs, &Next); if (RT_FAILURE(rc)) break; /* add the next frame to the chain. */ PDBGFSTACKFRAME pNext = (PDBGFSTACKFRAME)MMR3HeapAlloc(pVM, MM_TAG_DBGF_STACK, sizeof(*pNext)); if (!pNext) { DBGFR3StackWalkEnd(pCur); return VERR_NO_MEMORY; } *pNext = Next; pCur->pNextInternal = pNext; pCur = pNext; Assert(pCur->pNextInternal == NULL); /* check for loop */ for (PCDBGFSTACKFRAME pLoop = pCur->pFirstInternal; pLoop && pLoop != pCur; pLoop = pLoop->pNextInternal) if (pLoop->AddrFrame.FlatPtr == pCur->AddrFrame.FlatPtr) { pCur->fFlags |= DBGFSTACKFRAME_FLAGS_LOOP; break; } /* check for insane recursion */ if (pCur->iFrame >= 2048) pCur->fFlags |= DBGFSTACKFRAME_FLAGS_MAX_DEPTH; } *ppFirstFrame = pCur->pFirstInternal; return rc; } /** * Common worker for DBGFR3StackWalkBeginGuestEx, DBGFR3StackWalkBeginHyperEx, * DBGFR3StackWalkBeginGuest and DBGFR3StackWalkBeginHyper. */ static int dbgfR3StackWalkBeginCommon(PVM pVM, VMCPUID idCpu, DBGFCODETYPE enmCodeType, PCDBGFADDRESS pAddrFrame, PCDBGFADDRESS pAddrStack, PCDBGFADDRESS pAddrPC, DBGFRETURNTYPE enmReturnType, PCDBGFSTACKFRAME *ppFirstFrame) { #if HC_ARCH_BITS == 64 /** @todo Not implemented for 64 bits hosts yet */ if (enmCodeType == DBGFCODETYPE_RING0) return VINF_SUCCESS; #endif /* * Validate parameters. */ *ppFirstFrame = NULL; VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE); AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_CPU_ID); if (pAddrFrame) AssertReturn(DBGFR3AddrIsValid(pVM, pAddrFrame), VERR_INVALID_PARAMETER); if (pAddrStack) AssertReturn(DBGFR3AddrIsValid(pVM, pAddrStack), VERR_INVALID_PARAMETER); if (pAddrPC) AssertReturn(DBGFR3AddrIsValid(pVM, pAddrPC), VERR_INVALID_PARAMETER); AssertReturn(enmReturnType >= DBGFRETURNTYPE_INVALID && enmReturnType < DBGFRETURNTYPE_END, VERR_INVALID_PARAMETER); /* * Get the CPUM context pointer and pass it on the specified EMT. */ RTDBGAS hAs; PCCPUMCTXCORE pCtxCore; switch (enmCodeType) { case DBGFCODETYPE_GUEST: pCtxCore = CPUMGetGuestCtxCore(VMMGetCpuById(pVM, idCpu)); hAs = DBGF_AS_GLOBAL; break; case DBGFCODETYPE_HYPER: pCtxCore = CPUMGetHyperCtxCore(VMMGetCpuById(pVM, idCpu)); hAs = DBGF_AS_RC_AND_GC_GLOBAL; break; case DBGFCODETYPE_RING0: pCtxCore = NULL; /* No valid context present. */ hAs = DBGF_AS_R0; break; default: AssertFailedReturn(VERR_INVALID_PARAMETER); } return VMR3ReqCallWait(pVM, idCpu, (PFNRT)dbgfR3StackWalkCtxFull, 10, pVM, idCpu, pCtxCore, hAs, enmCodeType, pAddrFrame, pAddrStack, pAddrPC, enmReturnType, ppFirstFrame); } /** * Begins a guest stack walk, extended version. * * This will walk the current stack, constructing a list of info frames which is * returned to the caller. The caller uses DBGFR3StackWalkNext to traverse the * list and DBGFR3StackWalkEnd to release it. * * @returns VINF_SUCCESS on success. * @returns VERR_NO_MEMORY if we're out of memory. * * @param pVM The VM handle. * @param idCpu The ID of the virtual CPU which stack we want to walk. * @param enmCodeType Code type * @param pAddrFrame Frame address to start at. (Optional) * @param pAddrStack Stack address to start at. (Optional) * @param pAddrPC Program counter to start at. (Optional) * @param enmReturnType The return address type. (Optional) * @param ppFirstFrame Where to return the pointer to the first info frame. */ VMMR3DECL(int) DBGFR3StackWalkBeginEx(PVM pVM, VMCPUID idCpu, DBGFCODETYPE enmCodeType, PCDBGFADDRESS pAddrFrame, PCDBGFADDRESS pAddrStack, PCDBGFADDRESS pAddrPC, DBGFRETURNTYPE enmReturnType, PCDBGFSTACKFRAME *ppFirstFrame) { return dbgfR3StackWalkBeginCommon(pVM, idCpu, enmCodeType, pAddrFrame, pAddrStack, pAddrPC, enmReturnType, ppFirstFrame); } /** * Begins a guest stack walk. * * This will walk the current stack, constructing a list of info frames which is * returned to the caller. The caller uses DBGFR3StackWalkNext to traverse the * list and DBGFR3StackWalkEnd to release it. * * @returns VINF_SUCCESS on success. * @returns VERR_NO_MEMORY if we're out of memory. * * @param pVM The VM handle. * @param idCpu The ID of the virtual CPU which stack we want to walk. * @param enmCodeType Code type * @param ppFirstFrame Where to return the pointer to the first info frame. */ VMMR3DECL(int) DBGFR3StackWalkBegin(PVM pVM, VMCPUID idCpu, DBGFCODETYPE enmCodeType, PCDBGFSTACKFRAME *ppFirstFrame) { return dbgfR3StackWalkBeginCommon(pVM, idCpu, enmCodeType, NULL, NULL, NULL, DBGFRETURNTYPE_INVALID, ppFirstFrame); } /** * Gets the next stack frame. * * @returns Pointer to the info for the next stack frame. * NULL if no more frames. * * @param pCurrent Pointer to the current stack frame. * */ VMMR3DECL(PCDBGFSTACKFRAME) DBGFR3StackWalkNext(PCDBGFSTACKFRAME pCurrent) { return pCurrent ? pCurrent->pNextInternal : NULL; } /** * Ends a stack walk process. * * This *must* be called after a successful first call to any of the stack * walker functions. If not called we will leak memory or other resources. * * @param pFirstFrame The frame returned by one of the the begin * functions. */ VMMR3DECL(void) DBGFR3StackWalkEnd(PCDBGFSTACKFRAME pFirstFrame) { if ( !pFirstFrame || !pFirstFrame->pFirstInternal) return; PDBGFSTACKFRAME pFrame = (PDBGFSTACKFRAME)pFirstFrame->pFirstInternal; while (pFrame) { PDBGFSTACKFRAME pCur = pFrame; pFrame = (PDBGFSTACKFRAME)pCur->pNextInternal; if (pFrame) { if (pCur->pSymReturnPC == pFrame->pSymPC) pFrame->pSymPC = NULL; if (pCur->pSymReturnPC == pFrame->pSymReturnPC) pFrame->pSymReturnPC = NULL; if (pCur->pSymPC == pFrame->pSymPC) pFrame->pSymPC = NULL; if (pCur->pSymPC == pFrame->pSymReturnPC) pFrame->pSymReturnPC = NULL; if (pCur->pLineReturnPC == pFrame->pLinePC) pFrame->pLinePC = NULL; if (pCur->pLineReturnPC == pFrame->pLineReturnPC) pFrame->pLineReturnPC = NULL; if (pCur->pLinePC == pFrame->pLinePC) pFrame->pLinePC = NULL; if (pCur->pLinePC == pFrame->pLineReturnPC) pFrame->pLineReturnPC = NULL; } RTDbgSymbolFree(pCur->pSymPC); RTDbgSymbolFree(pCur->pSymReturnPC); DBGFR3LineFree(pCur->pLinePC); DBGFR3LineFree(pCur->pLineReturnPC); pCur->pNextInternal = NULL; pCur->pFirstInternal = NULL; pCur->fFlags = 0; MMR3HeapFree(pCur); } }