/* $Id: EM.cpp 20198 2009-06-02 14:45:01Z vboxsync $ */ /** @file * EM - Execution Monitor / Manager. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /** @page pg_em EM - The Execution Monitor / Manager * * The Execution Monitor/Manager is responsible for running the VM, scheduling * the right kind of execution (Raw-mode, Hardware Assisted, Recompiled or * Interpreted), and keeping the CPU states in sync. The function * EMR3ExecuteVM() is the 'main-loop' of the VM, while each of the execution * modes has different inner loops (emR3RawExecute, emR3HwAccExecute, and * emR3RemExecute). * * The interpreted execution is only used to avoid switching between * raw-mode/hwaccm and the recompiler when fielding virtualization traps/faults. * The interpretation is thus implemented as part of EM. * * @see grp_em */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_EM #include #include #ifdef VBOX_WITH_VMI # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "EMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ #if 0 /* Disabled till after 2.1.0 when we've time to test it. */ #define EM_NOTIFY_HWACCM #endif /******************************************************************************* * Internal Functions * *******************************************************************************/ static DECLCALLBACK(int) emR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) emR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version); static int emR3Debug(PVM pVM, PVMCPU pVCpu, int rc); static int emR3RemStep(PVM pVM, PVMCPU pVCpu); static int emR3RemExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone); static int emR3RawResumeHyper(PVM pVM, PVMCPU pVCpu); static int emR3RawStep(PVM pVM, PVMCPU pVCpu); DECLINLINE(int) emR3RawHandleRC(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc); DECLINLINE(int) emR3RawUpdateForceFlag(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc); static int emR3RawForcedActions(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx); static int emR3RawExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone); DECLINLINE(int) emR3RawExecuteInstruction(PVM pVM, PVMCPU pVCpu, const char *pszPrefix, int rcGC = VINF_SUCCESS); static int emR3HighPriorityPostForcedActions(PVM pVM, PVMCPU pVCpu, int rc); static int emR3ForcedActions(PVM pVM, PVMCPU pVCpu, int rc); static int emR3RawGuestTrap(PVM pVM, PVMCPU pVCpu); static int emR3PatchTrap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int gcret); static int emR3SingleStepExecRem(PVM pVM, uint32_t cIterations); static EMSTATE emR3Reschedule(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx); /** * Initializes the EM. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3DECL(int) EMR3Init(PVM pVM) { LogFlow(("EMR3Init\n")); /* * Assert alignment and sizes. */ AssertCompileMemberAlignment(VM, em.s, 32); AssertCompile(sizeof(pVM->em.s) <= sizeof(pVM->em.padding)); AssertCompile(sizeof(pVM->aCpus[0].em.s.u.FatalLongJump) <= sizeof(pVM->aCpus[0].em.s.u.achPaddingFatalLongJump)); AssertCompileMemberAlignment(EM, CritSectREM, sizeof(uintptr_t)); /* * Init the structure. */ pVM->em.s.offVM = RT_OFFSETOF(VM, em.s); int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RawR3Enabled", &pVM->fRawR3Enabled); if (RT_FAILURE(rc)) pVM->fRawR3Enabled = true; rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RawR0Enabled", &pVM->fRawR0Enabled); if (RT_FAILURE(rc)) pVM->fRawR0Enabled = true; Log(("EMR3Init: fRawR3Enabled=%d fRawR0Enabled=%d\n", pVM->fRawR3Enabled, pVM->fRawR0Enabled)); /* * Initialize the REM critical section. */ rc = PDMR3CritSectInit(pVM, &pVM->em.s.CritSectREM, "EM-REM"); AssertRCReturn(rc, rc); /* * Saved state. */ rc = SSMR3RegisterInternal(pVM, "em", 0, EM_SAVED_STATE_VERSION, 16, NULL, emR3Save, NULL, NULL, emR3Load, NULL); if (RT_FAILURE(rc)) return rc; for (unsigned i=0;icCPUs;i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->em.s.offVMCPU = RT_OFFSETOF(VMCPU, em.s); pVCpu->em.s.enmState = (i == 0) ? EMSTATE_NONE : EMSTATE_WAIT_SIPI; pVCpu->em.s.enmPrevState = EMSTATE_NONE; pVCpu->em.s.fForceRAW = false; pVCpu->em.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu); pVCpu->em.s.pPatmGCState = PATMR3QueryGCStateHC(pVM); AssertMsg(pVCpu->em.s.pPatmGCState, ("PATMR3QueryGCStateHC failed!\n")); # define EM_REG_COUNTER(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \ AssertRC(rc); # define EM_REG_COUNTER_USED(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, c, b, i); \ AssertRC(rc); # define EM_REG_PROFILE(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \ AssertRC(rc); # define EM_REG_PROFILE_ADV(a, b, c) \ rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE_ADV, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \ AssertRC(rc); /* * Statistics. */ #ifdef VBOX_WITH_STATISTICS PEMSTATS pStats; rc = MMHyperAlloc(pVM, sizeof(*pStats), 0, MM_TAG_EM, (void **)&pStats); if (RT_FAILURE(rc)) return rc; pVCpu->em.s.pStatsR3 = pStats; pVCpu->em.s.pStatsR0 = MMHyperR3ToR0(pVM, pStats); pVCpu->em.s.pStatsRC = MMHyperR3ToRC(pVM, pStats); EM_REG_PROFILE(&pStats->StatRZEmulate, "/EM/CPU%d/RZ/Interpret", "Profiling of EMInterpretInstruction."); EM_REG_PROFILE(&pStats->StatR3Emulate, "/EM/CPU%d/R3/Interpret", "Profiling of EMInterpretInstruction."); EM_REG_PROFILE(&pStats->StatRZInterpretSucceeded, "/EM/CPU%d/RZ/Interpret/Success", "The number of times an instruction was successfully interpreted."); EM_REG_PROFILE(&pStats->StatR3InterpretSucceeded, "/EM/CPU%d/R3/Interpret/Success", "The number of times an instruction was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZAnd, "/EM/CPU%d/RZ/Interpret/Success/And", "The number of times AND was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3And, "/EM/CPU%d/R3/Interpret/Success/And", "The number of times AND was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZAdd, "/EM/CPU%d/RZ/Interpret/Success/Add", "The number of times ADD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Add, "/EM/CPU%d/R3/Interpret/Success/Add", "The number of times ADD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZAdc, "/EM/CPU%d/RZ/Interpret/Success/Adc", "The number of times ADC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Adc, "/EM/CPU%d/R3/Interpret/Success/Adc", "The number of times ADC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZSub, "/EM/CPU%d/RZ/Interpret/Success/Sub", "The number of times SUB was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Sub, "/EM/CPU%d/R3/Interpret/Success/Sub", "The number of times SUB was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZCpuId, "/EM/CPU%d/RZ/Interpret/Success/CpuId", "The number of times CPUID was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3CpuId, "/EM/CPU%d/R3/Interpret/Success/CpuId", "The number of times CPUID was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZDec, "/EM/CPU%d/RZ/Interpret/Success/Dec", "The number of times DEC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Dec, "/EM/CPU%d/R3/Interpret/Success/Dec", "The number of times DEC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZHlt, "/EM/CPU%d/RZ/Interpret/Success/Hlt", "The number of times HLT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Hlt, "/EM/CPU%d/R3/Interpret/Success/Hlt", "The number of times HLT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZInc, "/EM/CPU%d/RZ/Interpret/Success/Inc", "The number of times INC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Inc, "/EM/CPU%d/R3/Interpret/Success/Inc", "The number of times INC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZInvlPg, "/EM/CPU%d/RZ/Interpret/Success/Invlpg", "The number of times INVLPG was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3InvlPg, "/EM/CPU%d/R3/Interpret/Success/Invlpg", "The number of times INVLPG was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZIret, "/EM/CPU%d/RZ/Interpret/Success/Iret", "The number of times IRET was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Iret, "/EM/CPU%d/R3/Interpret/Success/Iret", "The number of times IRET was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZLLdt, "/EM/CPU%d/RZ/Interpret/Success/LLdt", "The number of times LLDT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3LLdt, "/EM/CPU%d/R3/Interpret/Success/LLdt", "The number of times LLDT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZLIdt, "/EM/CPU%d/RZ/Interpret/Success/LIdt", "The number of times LIDT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3LIdt, "/EM/CPU%d/R3/Interpret/Success/LIdt", "The number of times LIDT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZLGdt, "/EM/CPU%d/RZ/Interpret/Success/LGdt", "The number of times LGDT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3LGdt, "/EM/CPU%d/R3/Interpret/Success/LGdt", "The number of times LGDT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZMov, "/EM/CPU%d/RZ/Interpret/Success/Mov", "The number of times MOV was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Mov, "/EM/CPU%d/R3/Interpret/Success/Mov", "The number of times MOV was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZMovCRx, "/EM/CPU%d/RZ/Interpret/Success/MovCRx", "The number of times MOV CRx was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3MovCRx, "/EM/CPU%d/R3/Interpret/Success/MovCRx", "The number of times MOV CRx was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZMovDRx, "/EM/CPU%d/RZ/Interpret/Success/MovDRx", "The number of times MOV DRx was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3MovDRx, "/EM/CPU%d/R3/Interpret/Success/MovDRx", "The number of times MOV DRx was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZOr, "/EM/CPU%d/RZ/Interpret/Success/Or", "The number of times OR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Or, "/EM/CPU%d/R3/Interpret/Success/Or", "The number of times OR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZPop, "/EM/CPU%d/RZ/Interpret/Success/Pop", "The number of times POP was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Pop, "/EM/CPU%d/R3/Interpret/Success/Pop", "The number of times POP was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZRdtsc, "/EM/CPU%d/RZ/Interpret/Success/Rdtsc", "The number of times RDTSC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Rdtsc, "/EM/CPU%d/R3/Interpret/Success/Rdtsc", "The number of times RDTSC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZRdpmc, "/EM/CPU%d/RZ/Interpret/Success/Rdpmc", "The number of times RDPMC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Rdpmc, "/EM/CPU%d/R3/Interpret/Success/Rdpmc", "The number of times RDPMC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZSti, "/EM/CPU%d/RZ/Interpret/Success/Sti", "The number of times STI was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Sti, "/EM/CPU%d/R3/Interpret/Success/Sti", "The number of times STI was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZXchg, "/EM/CPU%d/RZ/Interpret/Success/Xchg", "The number of times XCHG was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Xchg, "/EM/CPU%d/R3/Interpret/Success/Xchg", "The number of times XCHG was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZXor, "/EM/CPU%d/RZ/Interpret/Success/Xor", "The number of times XOR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Xor, "/EM/CPU%d/R3/Interpret/Success/Xor", "The number of times XOR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZMonitor, "/EM/CPU%d/RZ/Interpret/Success/Monitor", "The number of times MONITOR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Monitor, "/EM/CPU%d/R3/Interpret/Success/Monitor", "The number of times MONITOR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZMWait, "/EM/CPU%d/RZ/Interpret/Success/MWait", "The number of times MWAIT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3MWait, "/EM/CPU%d/R3/Interpret/Success/MWait", "The number of times MWAIT was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZBtr, "/EM/CPU%d/RZ/Interpret/Success/Btr", "The number of times BTR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Btr, "/EM/CPU%d/R3/Interpret/Success/Btr", "The number of times BTR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZBts, "/EM/CPU%d/RZ/Interpret/Success/Bts", "The number of times BTS was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Bts, "/EM/CPU%d/R3/Interpret/Success/Bts", "The number of times BTS was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZBtc, "/EM/CPU%d/RZ/Interpret/Success/Btc", "The number of times BTC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Btc, "/EM/CPU%d/R3/Interpret/Success/Btc", "The number of times BTC was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZCmpXchg, "/EM/CPU%d/RZ/Interpret/Success/CmpXchg", "The number of times CMPXCHG was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3CmpXchg, "/EM/CPU%d/R3/Interpret/Success/CmpXchg", "The number of times CMPXCHG was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZCmpXchg8b, "/EM/CPU%d/RZ/Interpret/Success/CmpXchg8b", "The number of times CMPXCHG8B was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3CmpXchg8b, "/EM/CPU%d/R3/Interpret/Success/CmpXchg8b", "The number of times CMPXCHG8B was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZXAdd, "/EM/CPU%d/RZ/Interpret/Success/XAdd", "The number of times XADD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3XAdd, "/EM/CPU%d/R3/Interpret/Success/XAdd", "The number of times XADD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Rdmsr, "/EM/CPU%d/R3/Interpret/Success/Rdmsr", "The number of times RDMSR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZRdmsr, "/EM/CPU%d/RZ/Interpret/Success/Rdmsr", "The number of times RDMSR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Wrmsr, "/EM/CPU%d/R3/Interpret/Success/Wrmsr", "The number of times WRMSR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZWrmsr, "/EM/CPU%d/RZ/Interpret/Success/Wrmsr", "The number of times WRMSR was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3StosWD, "/EM/CPU%d/R3/Interpret/Success/Stoswd", "The number of times STOSWD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZStosWD, "/EM/CPU%d/RZ/Interpret/Success/Stoswd", "The number of times STOSWD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZWbInvd, "/EM/CPU%d/RZ/Interpret/Success/WbInvd", "The number of times WBINVD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3WbInvd, "/EM/CPU%d/R3/Interpret/Success/WbInvd", "The number of times WBINVD was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZLmsw, "/EM/CPU%d/RZ/Interpret/Success/Lmsw", "The number of times LMSW was successfully interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3Lmsw, "/EM/CPU%d/R3/Interpret/Success/Lmsw", "The number of times LMSW was successfully interpreted."); EM_REG_COUNTER(&pStats->StatRZInterpretFailed, "/EM/CPU%d/RZ/Interpret/Failed", "The number of times an instruction was not interpreted."); EM_REG_COUNTER(&pStats->StatR3InterpretFailed, "/EM/CPU%d/R3/Interpret/Failed", "The number of times an instruction was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedAnd, "/EM/CPU%d/RZ/Interpret/Failed/And", "The number of times AND was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedAnd, "/EM/CPU%d/R3/Interpret/Failed/And", "The number of times AND was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedCpuId, "/EM/CPU%d/RZ/Interpret/Failed/CpuId", "The number of times CPUID was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedCpuId, "/EM/CPU%d/R3/Interpret/Failed/CpuId", "The number of times CPUID was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedDec, "/EM/CPU%d/RZ/Interpret/Failed/Dec", "The number of times DEC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedDec, "/EM/CPU%d/R3/Interpret/Failed/Dec", "The number of times DEC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedHlt, "/EM/CPU%d/RZ/Interpret/Failed/Hlt", "The number of times HLT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedHlt, "/EM/CPU%d/R3/Interpret/Failed/Hlt", "The number of times HLT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedInc, "/EM/CPU%d/RZ/Interpret/Failed/Inc", "The number of times INC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedInc, "/EM/CPU%d/R3/Interpret/Failed/Inc", "The number of times INC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedInvlPg, "/EM/CPU%d/RZ/Interpret/Failed/InvlPg", "The number of times INVLPG was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedInvlPg, "/EM/CPU%d/R3/Interpret/Failed/InvlPg", "The number of times INVLPG was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedIret, "/EM/CPU%d/RZ/Interpret/Failed/Iret", "The number of times IRET was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedIret, "/EM/CPU%d/R3/Interpret/Failed/Iret", "The number of times IRET was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedLLdt, "/EM/CPU%d/RZ/Interpret/Failed/LLdt", "The number of times LLDT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedLLdt, "/EM/CPU%d/R3/Interpret/Failed/LLdt", "The number of times LLDT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedLIdt, "/EM/CPU%d/RZ/Interpret/Failed/LIdt", "The number of times LIDT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedLIdt, "/EM/CPU%d/R3/Interpret/Failed/LIdt", "The number of times LIDT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedLGdt, "/EM/CPU%d/RZ/Interpret/Failed/LGdt", "The number of times LGDT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedLGdt, "/EM/CPU%d/R3/Interpret/Failed/LGdt", "The number of times LGDT was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMov, "/EM/CPU%d/RZ/Interpret/Failed/Mov", "The number of times MOV was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMov, "/EM/CPU%d/R3/Interpret/Failed/Mov", "The number of times MOV was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMovCRx, "/EM/CPU%d/RZ/Interpret/Failed/MovCRx", "The number of times MOV CRx was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMovCRx, "/EM/CPU%d/R3/Interpret/Failed/MovCRx", "The number of times MOV CRx was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMovDRx, "/EM/CPU%d/RZ/Interpret/Failed/MovDRx", "The number of times MOV DRx was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMovDRx, "/EM/CPU%d/R3/Interpret/Failed/MovDRx", "The number of times MOV DRx was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedOr, "/EM/CPU%d/RZ/Interpret/Failed/Or", "The number of times OR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedOr, "/EM/CPU%d/R3/Interpret/Failed/Or", "The number of times OR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedPop, "/EM/CPU%d/RZ/Interpret/Failed/Pop", "The number of times POP was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedPop, "/EM/CPU%d/R3/Interpret/Failed/Pop", "The number of times POP was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedSti, "/EM/CPU%d/RZ/Interpret/Failed/Sti", "The number of times STI was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedSti, "/EM/CPU%d/R3/Interpret/Failed/Sti", "The number of times STI was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedXchg, "/EM/CPU%d/RZ/Interpret/Failed/Xchg", "The number of times XCHG was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedXchg, "/EM/CPU%d/R3/Interpret/Failed/Xchg", "The number of times XCHG was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedXor, "/EM/CPU%d/RZ/Interpret/Failed/Xor", "The number of times XOR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedXor, "/EM/CPU%d/R3/Interpret/Failed/Xor", "The number of times XOR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMonitor, "/EM/CPU%d/RZ/Interpret/Failed/Monitor", "The number of times MONITOR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMonitor, "/EM/CPU%d/R3/Interpret/Failed/Monitor", "The number of times MONITOR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMWait, "/EM/CPU%d/RZ/Interpret/Failed/MWait", "The number of times MONITOR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMWait, "/EM/CPU%d/R3/Interpret/Failed/MWait", "The number of times MONITOR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedRdtsc, "/EM/CPU%d/RZ/Interpret/Failed/Rdtsc", "The number of times RDTSC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedRdtsc, "/EM/CPU%d/R3/Interpret/Failed/Rdtsc", "The number of times RDTSC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedRdpmc, "/EM/CPU%d/RZ/Interpret/Failed/Rdpmc", "The number of times RDPMC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedRdpmc, "/EM/CPU%d/R3/Interpret/Failed/Rdpmc", "The number of times RDPMC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedRdmsr, "/EM/CPU%d/RZ/Interpret/Failed/Rdmsr", "The number of times RDMSR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedRdmsr, "/EM/CPU%d/R3/Interpret/Failed/Rdmsr", "The number of times RDMSR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedWrmsr, "/EM/CPU%d/RZ/Interpret/Failed/Wrmsr", "The number of times WRMSR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedWrmsr, "/EM/CPU%d/R3/Interpret/Failed/Wrmsr", "The number of times WRMSR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedLmsw, "/EM/CPU%d/RZ/Interpret/Failed/Lmsw", "The number of times LMSW was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedLmsw, "/EM/CPU%d/R3/Interpret/Failed/Lmsw", "The number of times LMSW was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMisc, "/EM/CPU%d/RZ/Interpret/Failed/Misc", "The number of times some misc instruction was encountered."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMisc, "/EM/CPU%d/R3/Interpret/Failed/Misc", "The number of times some misc instruction was encountered."); EM_REG_COUNTER_USED(&pStats->StatRZFailedAdd, "/EM/CPU%d/RZ/Interpret/Failed/Add", "The number of times ADD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedAdd, "/EM/CPU%d/R3/Interpret/Failed/Add", "The number of times ADD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedAdc, "/EM/CPU%d/RZ/Interpret/Failed/Adc", "The number of times ADC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedAdc, "/EM/CPU%d/R3/Interpret/Failed/Adc", "The number of times ADC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedBtr, "/EM/CPU%d/RZ/Interpret/Failed/Btr", "The number of times BTR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedBtr, "/EM/CPU%d/R3/Interpret/Failed/Btr", "The number of times BTR was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedBts, "/EM/CPU%d/RZ/Interpret/Failed/Bts", "The number of times BTS was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedBts, "/EM/CPU%d/R3/Interpret/Failed/Bts", "The number of times BTS was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedBtc, "/EM/CPU%d/RZ/Interpret/Failed/Btc", "The number of times BTC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedBtc, "/EM/CPU%d/R3/Interpret/Failed/Btc", "The number of times BTC was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedCli, "/EM/CPU%d/RZ/Interpret/Failed/Cli", "The number of times CLI was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedCli, "/EM/CPU%d/R3/Interpret/Failed/Cli", "The number of times CLI was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedCmpXchg, "/EM/CPU%d/RZ/Interpret/Failed/CmpXchg", "The number of times CMPXCHG was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedCmpXchg, "/EM/CPU%d/R3/Interpret/Failed/CmpXchg", "The number of times CMPXCHG was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedCmpXchg8b, "/EM/CPU%d/RZ/Interpret/Failed/CmpXchg8b", "The number of times CMPXCHG8B was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedCmpXchg8b, "/EM/CPU%d/R3/Interpret/Failed/CmpXchg8b", "The number of times CMPXCHG8B was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedXAdd, "/EM/CPU%d/RZ/Interpret/Failed/XAdd", "The number of times XADD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedXAdd, "/EM/CPU%d/R3/Interpret/Failed/XAdd", "The number of times XADD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedMovNTPS, "/EM/CPU%d/RZ/Interpret/Failed/MovNTPS", "The number of times MOVNTPS was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedMovNTPS, "/EM/CPU%d/R3/Interpret/Failed/MovNTPS", "The number of times MOVNTPS was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedStosWD, "/EM/CPU%d/RZ/Interpret/Failed/StosWD", "The number of times STOSWD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedStosWD, "/EM/CPU%d/R3/Interpret/Failed/StosWD", "The number of times STOSWD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedSub, "/EM/CPU%d/RZ/Interpret/Failed/Sub", "The number of times SUB was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedSub, "/EM/CPU%d/R3/Interpret/Failed/Sub", "The number of times SUB was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedWbInvd, "/EM/CPU%d/RZ/Interpret/Failed/WbInvd", "The number of times WBINVD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatR3FailedWbInvd, "/EM/CPU%d/R3/Interpret/Failed/WbInvd", "The number of times WBINVD was not interpreted."); EM_REG_COUNTER_USED(&pStats->StatRZFailedUserMode, "/EM/CPU%d/RZ/Interpret/Failed/UserMode", "The number of rejections because of CPL."); EM_REG_COUNTER_USED(&pStats->StatR3FailedUserMode, "/EM/CPU%d/R3/Interpret/Failed/UserMode", "The number of rejections because of CPL."); EM_REG_COUNTER_USED(&pStats->StatRZFailedPrefix, "/EM/CPU%d/RZ/Interpret/Failed/Prefix", "The number of rejections because of prefix ."); EM_REG_COUNTER_USED(&pStats->StatR3FailedPrefix, "/EM/CPU%d/R3/Interpret/Failed/Prefix", "The number of rejections because of prefix ."); EM_REG_COUNTER_USED(&pStats->StatCli, "/EM/CPU%d/R3/PrivInst/Cli", "Number of cli instructions."); EM_REG_COUNTER_USED(&pStats->StatSti, "/EM/CPU%d/R3/PrivInst/Sti", "Number of sli instructions."); EM_REG_COUNTER_USED(&pStats->StatIn, "/EM/CPU%d/R3/PrivInst/In", "Number of in instructions."); EM_REG_COUNTER_USED(&pStats->StatOut, "/EM/CPU%d/R3/PrivInst/Out", "Number of out instructions."); EM_REG_COUNTER_USED(&pStats->StatHlt, "/EM/CPU%d/R3/PrivInst/Hlt", "Number of hlt instructions not handled in GC because of PATM."); EM_REG_COUNTER_USED(&pStats->StatInvlpg, "/EM/CPU%d/R3/PrivInst/Invlpg", "Number of invlpg instructions."); EM_REG_COUNTER_USED(&pStats->StatMisc, "/EM/CPU%d/R3/PrivInst/Misc", "Number of misc. instructions."); EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[0], "/EM/CPU%d/R3/PrivInst/Mov CR0, X", "Number of mov CR0 read instructions."); EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[1], "/EM/CPU%d/R3/PrivInst/Mov CR1, X", "Number of mov CR1 read instructions."); EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[2], "/EM/CPU%d/R3/PrivInst/Mov CR2, X", "Number of mov CR2 read instructions."); EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[3], "/EM/CPU%d/R3/PrivInst/Mov CR3, X", "Number of mov CR3 read instructions."); EM_REG_COUNTER_USED(&pStats->StatMovWriteCR[4], "/EM/CPU%d/R3/PrivInst/Mov CR4, X", "Number of mov CR4 read instructions."); EM_REG_COUNTER_USED(&pStats->StatMovReadCR[0], "/EM/CPU%d/R3/PrivInst/Mov X, CR0", "Number of mov CR0 write instructions."); EM_REG_COUNTER_USED(&pStats->StatMovReadCR[1], "/EM/CPU%d/R3/PrivInst/Mov X, CR1", "Number of mov CR1 write instructions."); EM_REG_COUNTER_USED(&pStats->StatMovReadCR[2], "/EM/CPU%d/R3/PrivInst/Mov X, CR2", "Number of mov CR2 write instructions."); EM_REG_COUNTER_USED(&pStats->StatMovReadCR[3], "/EM/CPU%d/R3/PrivInst/Mov X, CR3", "Number of mov CR3 write instructions."); EM_REG_COUNTER_USED(&pStats->StatMovReadCR[4], "/EM/CPU%d/R3/PrivInst/Mov X, CR4", "Number of mov CR4 write instructions."); EM_REG_COUNTER_USED(&pStats->StatMovDRx, "/EM/CPU%d/R3/PrivInst/MovDRx", "Number of mov DRx instructions."); EM_REG_COUNTER_USED(&pStats->StatIret, "/EM/CPU%d/R3/PrivInst/Iret", "Number of iret instructions."); EM_REG_COUNTER_USED(&pStats->StatMovLgdt, "/EM/CPU%d/R3/PrivInst/Lgdt", "Number of lgdt instructions."); EM_REG_COUNTER_USED(&pStats->StatMovLidt, "/EM/CPU%d/R3/PrivInst/Lidt", "Number of lidt instructions."); EM_REG_COUNTER_USED(&pStats->StatMovLldt, "/EM/CPU%d/R3/PrivInst/Lldt", "Number of lldt instructions."); EM_REG_COUNTER_USED(&pStats->StatSysEnter, "/EM/CPU%d/R3/PrivInst/Sysenter", "Number of sysenter instructions."); EM_REG_COUNTER_USED(&pStats->StatSysExit, "/EM/CPU%d/R3/PrivInst/Sysexit", "Number of sysexit instructions."); EM_REG_COUNTER_USED(&pStats->StatSysCall, "/EM/CPU%d/R3/PrivInst/Syscall", "Number of syscall instructions."); EM_REG_COUNTER_USED(&pStats->StatSysRet, "/EM/CPU%d/R3/PrivInst/Sysret", "Number of sysret instructions."); EM_REG_COUNTER(&pVCpu->em.s.StatTotalClis, "/EM/CPU%d/Cli/Total", "Total number of cli instructions executed."); pVCpu->em.s.pCliStatTree = 0; /* these should be considered for release statistics. */ EM_REG_COUNTER(&pVCpu->em.s.StatIOEmu, "/PROF/CPU%d/EM/Emulation/IO", "Profiling of emR3RawExecuteIOInstruction."); EM_REG_COUNTER(&pVCpu->em.s.StatPrivEmu, "/PROF/CPU%d/EM/Emulation/Priv", "Profiling of emR3RawPrivileged."); EM_REG_COUNTER(&pVCpu->em.s.StatMiscEmu, "/PROF/CPU%d/EM/Emulation/Misc", "Profiling of emR3RawExecuteInstruction."); EM_REG_PROFILE(&pVCpu->em.s.StatHwAccEntry, "/PROF/CPU%d/EM/HwAccEnter", "Profiling Hardware Accelerated Mode entry overhead."); EM_REG_PROFILE(&pVCpu->em.s.StatHwAccExec, "/PROF/CPU%d/EM/HwAccExec", "Profiling Hardware Accelerated Mode execution."); EM_REG_PROFILE(&pVCpu->em.s.StatREMEmu, "/PROF/CPU%d/EM/REMEmuSingle", "Profiling single instruction REM execution."); EM_REG_PROFILE(&pVCpu->em.s.StatREMExec, "/PROF/CPU%d/EM/REMExec", "Profiling REM execution."); EM_REG_PROFILE(&pVCpu->em.s.StatREMSync, "/PROF/CPU%d/EM/REMSync", "Profiling REM context syncing."); EM_REG_PROFILE(&pVCpu->em.s.StatRAWEntry, "/PROF/CPU%d/EM/RAWEnter", "Profiling Raw Mode entry overhead."); EM_REG_PROFILE(&pVCpu->em.s.StatRAWExec, "/PROF/CPU%d/EM/RAWExec", "Profiling Raw Mode execution."); EM_REG_PROFILE(&pVCpu->em.s.StatRAWTail, "/PROF/CPU%d/EM/RAWTail", "Profiling Raw Mode tail overhead."); #endif /* VBOX_WITH_STATISTICS */ EM_REG_COUNTER(&pVCpu->em.s.StatForcedActions, "/PROF/CPU%d/EM/ForcedActions", "Profiling forced action execution."); EM_REG_COUNTER(&pVCpu->em.s.StatHalted, "/PROF/CPU%d/EM/Halted", "Profiling halted state (VMR3WaitHalted)."); EM_REG_COUNTER(&pVCpu->em.s.StatREMTotal, "/PROF/CPU%d/EM/REMTotal", "Profiling emR3RemExecute (excluding FFs)."); EM_REG_COUNTER(&pVCpu->em.s.StatRAWTotal, "/PROF/CPU%d/EM/RAWTotal", "Profiling emR3RawExecute (excluding FFs)."); EM_REG_PROFILE_ADV(&pVCpu->em.s.StatTotal, "/PROF/CPU%d/EM/Total", "Profiling EMR3ExecuteVM."); } return VINF_SUCCESS; } /** * Initializes the per-VCPU EM. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3DECL(int) EMR3InitCPU(PVM pVM) { LogFlow(("EMR3InitCPU\n")); return VINF_SUCCESS; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * @param pVM The VM. */ VMMR3DECL(void) EMR3Relocate(PVM pVM) { LogFlow(("EMR3Relocate\n")); for (unsigned i=0;icCPUs;i++) { PVMCPU pVCpu = &pVM->aCpus[i]; if (pVCpu->em.s.pStatsR3) pVCpu->em.s.pStatsRC = MMHyperR3ToRC(pVM, pVCpu->em.s.pStatsR3); } } /** * Reset notification. * * @param pVM */ VMMR3DECL(void) EMR3Reset(PVM pVM) { LogFlow(("EMR3Reset: \n")); for (unsigned i=0;icCPUs;i++) { PVMCPU pVCpu = &pVM->aCpus[i]; pVCpu->em.s.fForceRAW = false; } } /** * Terminates the EM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3DECL(int) EMR3Term(PVM pVM) { AssertMsg(pVM->em.s.offVM, ("bad init order!\n")); PDMR3CritSectDelete(&pVM->em.s.CritSectREM); return VINF_SUCCESS; } /** * Terminates the per-VCPU EM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pVM The VM to operate on. */ VMMR3DECL(int) EMR3TermCPU(PVM pVM) { return 0; } /** * Execute state save operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) emR3Save(PVM pVM, PSSMHANDLE pSSM) { for (VMCPUID i = 0; i < pVM->cCPUs; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; int rc = SSMR3PutBool(pSSM, pVCpu->em.s.fForceRAW); AssertRCReturn(rc, rc); Assert(pVCpu->em.s.enmState == EMSTATE_SUSPENDED); Assert(pVCpu->em.s.enmPrevState != EMSTATE_SUSPENDED); rc = SSMR3PutU32(pSSM, pVCpu->em.s.enmPrevState); AssertRCReturn(rc, rc); } return VINF_SUCCESS; } /** * Execute state load operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. * @param u32Version Data layout version. */ static DECLCALLBACK(int) emR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version) { int rc = VINF_SUCCESS; /* * Validate version. */ if ( u32Version != EM_SAVED_STATE_VERSION && u32Version != EM_SAVED_STATE_VERSION_PRE_SMP) { AssertMsgFailed(("emR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, EM_SAVED_STATE_VERSION)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Load the saved state. */ for (VMCPUID i = 0; i < pVM->cCPUs; i++) { PVMCPU pVCpu = &pVM->aCpus[i]; rc = SSMR3GetBool(pSSM, &pVCpu->em.s.fForceRAW); if (RT_FAILURE(rc)) pVCpu->em.s.fForceRAW = false; if (u32Version > EM_SAVED_STATE_VERSION_PRE_SMP) { AssertCompile(sizeof(pVCpu->em.s.enmPrevState) == sizeof(uint32_t)); rc = SSMR3GetU32(pSSM, (uint32_t *)&pVCpu->em.s.enmPrevState); AssertRCReturn(rc, rc); Assert(pVCpu->em.s.enmPrevState != EMSTATE_SUSPENDED); pVCpu->em.s.enmState = EMSTATE_SUSPENDED; } Assert(!pVCpu->em.s.pCliStatTree); } return rc; } /** * Enables or disables a set of raw-mode execution modes. * * @returns VINF_SUCCESS on success. * @returns VINF_RESCHEDULE if a rescheduling might be required. * @returns VERR_INVALID_PARAMETER on an invalid enmMode value. * * @param pVM The VM to operate on. * @param enmMode The execution mode change. * @thread The emulation thread. */ VMMR3DECL(int) EMR3RawSetMode(PVM pVM, EMRAWMODE enmMode) { switch (enmMode) { case EMRAW_NONE: pVM->fRawR3Enabled = false; pVM->fRawR0Enabled = false; break; case EMRAW_RING3_ENABLE: pVM->fRawR3Enabled = true; break; case EMRAW_RING3_DISABLE: pVM->fRawR3Enabled = false; break; case EMRAW_RING0_ENABLE: pVM->fRawR0Enabled = true; break; case EMRAW_RING0_DISABLE: pVM->fRawR0Enabled = false; break; default: AssertMsgFailed(("Invalid enmMode=%d\n", enmMode)); return VERR_INVALID_PARAMETER; } Log(("EMR3SetRawMode: fRawR3Enabled=%RTbool fRawR0Enabled=%RTbool\n", pVM->fRawR3Enabled, pVM->fRawR0Enabled)); return pVM->aCpus[0].em.s.enmState == EMSTATE_RAW ? VINF_EM_RESCHEDULE : VINF_SUCCESS; } /** * Raise a fatal error. * * Safely terminate the VM with full state report and stuff. This function * will naturally never return. * * @param pVCpu VMCPU handle. * @param rc VBox status code. */ VMMR3DECL(void) EMR3FatalError(PVMCPU pVCpu, int rc) { longjmp(pVCpu->em.s.u.FatalLongJump, rc); AssertReleaseMsgFailed(("longjmp returned!\n")); } /** * Gets the EM state name. * * @returns pointer to read only state name, * @param enmState The state. */ VMMR3DECL(const char *) EMR3GetStateName(EMSTATE enmState) { switch (enmState) { case EMSTATE_NONE: return "EMSTATE_NONE"; case EMSTATE_RAW: return "EMSTATE_RAW"; case EMSTATE_HWACC: return "EMSTATE_HWACC"; case EMSTATE_REM: return "EMSTATE_REM"; case EMSTATE_PARAV: return "EMSTATE_PARAV"; case EMSTATE_HALTED: return "EMSTATE_HALTED"; case EMSTATE_WAIT_SIPI: return "EMSTATE_WAIT_SIPI"; case EMSTATE_SUSPENDED: return "EMSTATE_SUSPENDED"; case EMSTATE_TERMINATING: return "EMSTATE_TERMINATING"; case EMSTATE_DEBUG_GUEST_RAW: return "EMSTATE_DEBUG_GUEST_RAW"; case EMSTATE_DEBUG_GUEST_REM: return "EMSTATE_DEBUG_GUEST_REM"; case EMSTATE_DEBUG_HYPER: return "EMSTATE_DEBUG_HYPER"; case EMSTATE_GURU_MEDITATION: return "EMSTATE_GURU_MEDITATION"; default: return "Unknown!"; } } #ifdef VBOX_WITH_STATISTICS /** * Just a braindead function to keep track of cli addresses. * @param pVM VM handle. * @param pVMCPU VMCPU handle. * @param GCPtrInstr The EIP of the cli instruction. */ static void emR3RecordCli(PVM pVM, PVMCPU pVCpu, RTGCPTR GCPtrInstr) { PCLISTAT pRec; pRec = (PCLISTAT)RTAvlPVGet(&pVCpu->em.s.pCliStatTree, (AVLPVKEY)GCPtrInstr); if (!pRec) { /* New cli instruction; insert into the tree. */ pRec = (PCLISTAT)MMR3HeapAllocZ(pVM, MM_TAG_EM, sizeof(*pRec)); Assert(pRec); if (!pRec) return; pRec->Core.Key = (AVLPVKEY)GCPtrInstr; char szCliStatName[32]; RTStrPrintf(szCliStatName, sizeof(szCliStatName), "/EM/Cli/0x%RGv", GCPtrInstr); STAM_REG(pVM, &pRec->Counter, STAMTYPE_COUNTER, szCliStatName, STAMUNIT_OCCURENCES, "Number of times cli was executed."); bool fRc = RTAvlPVInsert(&pVCpu->em.s.pCliStatTree, &pRec->Core); Assert(fRc); NOREF(fRc); } STAM_COUNTER_INC(&pRec->Counter); STAM_COUNTER_INC(&pVCpu->em.s.StatTotalClis); } #endif /* VBOX_WITH_STATISTICS */ /** * Debug loop. * * @returns VBox status code for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param rc Current EM VBox status code.. */ static int emR3Debug(PVM pVM, PVMCPU pVCpu, int rc) { for (;;) { Log(("emR3Debug: rc=%Rrc\n", rc)); const int rcLast = rc; /* * Debug related RC. */ switch (rc) { /* * Single step an instruction. */ case VINF_EM_DBG_STEP: if ( pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_RAW || pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER || pVCpu->em.s.fForceRAW /* paranoia */) rc = emR3RawStep(pVM, pVCpu); else { Assert(pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_REM); rc = emR3RemStep(pVM, pVCpu); } break; /* * Simple events: stepped, breakpoint, stop/assertion. */ case VINF_EM_DBG_STEPPED: rc = DBGFR3Event(pVM, DBGFEVENT_STEPPED); break; case VINF_EM_DBG_BREAKPOINT: rc = DBGFR3EventBreakpoint(pVM, DBGFEVENT_BREAKPOINT); break; case VINF_EM_DBG_STOP: rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, NULL, 0, NULL, NULL); break; case VINF_EM_DBG_HYPER_STEPPED: rc = DBGFR3Event(pVM, DBGFEVENT_STEPPED_HYPER); break; case VINF_EM_DBG_HYPER_BREAKPOINT: rc = DBGFR3EventBreakpoint(pVM, DBGFEVENT_BREAKPOINT_HYPER); break; case VINF_EM_DBG_HYPER_ASSERTION: RTPrintf("\nVINF_EM_DBG_HYPER_ASSERTION:\n%s%s\n", VMMR3GetRZAssertMsg1(pVM), VMMR3GetRZAssertMsg2(pVM)); rc = DBGFR3EventAssertion(pVM, DBGFEVENT_ASSERTION_HYPER, VMMR3GetRZAssertMsg1(pVM), VMMR3GetRZAssertMsg2(pVM)); break; /* * Guru meditation. */ case VERR_VMM_RING0_ASSERTION: /** @todo Make a guru meditation event! */ rc = DBGFR3EventSrc(pVM, DBGFEVENT_FATAL_ERROR, "VERR_VMM_RING0_ASSERTION", 0, NULL, NULL); break; case VERR_REM_TOO_MANY_TRAPS: /** @todo Make a guru meditation event! */ rc = DBGFR3EventSrc(pVM, DBGFEVENT_DEV_STOP, "VERR_REM_TOO_MANY_TRAPS", 0, NULL, NULL); break; default: /** @todo don't use default for guru, but make special errors code! */ rc = DBGFR3Event(pVM, DBGFEVENT_FATAL_ERROR); break; } /* * Process the result. */ do { switch (rc) { /* * Continue the debugging loop. */ case VINF_EM_DBG_STEP: case VINF_EM_DBG_STOP: case VINF_EM_DBG_STEPPED: case VINF_EM_DBG_BREAKPOINT: case VINF_EM_DBG_HYPER_STEPPED: case VINF_EM_DBG_HYPER_BREAKPOINT: case VINF_EM_DBG_HYPER_ASSERTION: break; /* * Resuming execution (in some form) has to be done here if we got * a hypervisor debug event. */ case VINF_SUCCESS: case VINF_EM_RESUME: case VINF_EM_SUSPEND: case VINF_EM_RESCHEDULE: case VINF_EM_RESCHEDULE_RAW: case VINF_EM_RESCHEDULE_REM: case VINF_EM_HALT: if (pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER) { rc = emR3RawResumeHyper(pVM, pVCpu); if (rc != VINF_SUCCESS && RT_SUCCESS(rc)) continue; } if (rc == VINF_SUCCESS) rc = VINF_EM_RESCHEDULE; return rc; /* * The debugger isn't attached. * We'll simply turn the thing off since that's the easiest thing to do. */ case VERR_DBGF_NOT_ATTACHED: switch (rcLast) { case VINF_EM_DBG_HYPER_STEPPED: case VINF_EM_DBG_HYPER_BREAKPOINT: case VINF_EM_DBG_HYPER_ASSERTION: case VERR_TRPM_PANIC: case VERR_TRPM_DONT_PANIC: case VERR_VMM_RING0_ASSERTION: return rcLast; } return VINF_EM_OFF; /* * Status codes terminating the VM in one or another sense. */ case VINF_EM_TERMINATE: case VINF_EM_OFF: case VINF_EM_RESET: case VINF_EM_NO_MEMORY: case VINF_EM_RAW_STALE_SELECTOR: case VINF_EM_RAW_IRET_TRAP: case VERR_TRPM_PANIC: case VERR_TRPM_DONT_PANIC: case VERR_VMM_RING0_ASSERTION: case VERR_INTERNAL_ERROR: case VERR_INTERNAL_ERROR_2: case VERR_INTERNAL_ERROR_3: case VERR_INTERNAL_ERROR_4: case VERR_INTERNAL_ERROR_5: case VERR_IPE_UNEXPECTED_STATUS: case VERR_IPE_UNEXPECTED_INFO_STATUS: case VERR_IPE_UNEXPECTED_ERROR_STATUS: return rc; /* * The rest is unexpected, and will keep us here. */ default: AssertMsgFailed(("Unxpected rc %Rrc!\n", rc)); break; } } while (false); } /* debug for ever */ } /** * Locks REM execution to a single VCpu * * @param pVM VM handle. */ VMMR3DECL(void) EMR3RemLock(PVM pVM) { #ifdef IN_RING3 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM)) return; /* early init */ #else Assert(PDMCritSectIsInitialized(&pVM->em.s.CritSectREM)); #endif int rc = PDMCritSectEnter(&pVM->em.s.CritSectREM, VERR_SEM_BUSY); AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc)); } /** * Unlocks REM execution * * @param pVM VM handle. */ VMMR3DECL(void) EMR3RemUnlock(PVM pVM) { #ifdef IN_RING3 if (!PDMCritSectIsInitialized(&pVM->em.s.CritSectREM)) return; /* early init */ #else Assert(PDMCritSectIsInitialized(&pVM->em.s.CritSectREM)); #endif PDMCritSectLeave(&pVM->em.s.CritSectREM); } /** * Steps recompiled code. * * @returns VBox status code. The most important ones are: VINF_EM_STEP_EVENT, * VINF_EM_RESCHEDULE, VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE. * * @param pVM VM handle. * @param pVCpu VMCPU handle. */ static int emR3RemStep(PVM pVM, PVMCPU pVCpu) { LogFlow(("emR3RemStep: cs:eip=%04x:%08x\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); EMR3RemLock(pVM); /* * Switch to REM, step instruction, switch back. */ int rc = REMR3State(pVM, pVCpu); if (RT_SUCCESS(rc)) { rc = REMR3Step(pVM, pVCpu); REMR3StateBack(pVM, pVCpu); } EMR3RemUnlock(pVM); LogFlow(("emR3RemStep: returns %Rrc cs:eip=%04x:%08x\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); return rc; } /** * Executes recompiled code. * * This function contains the recompiler version of the inner * execution loop (the outer loop being in EMR3ExecuteVM()). * * @returns VBox status code. The most important ones are: VINF_EM_RESCHEDULE, * VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE. * * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pfFFDone Where to store an indicator telling wheter or not * FFs were done before returning. * */ static int emR3RemExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone) { #ifdef LOG_ENABLED PCPUMCTX pCtx = pVCpu->em.s.pCtx; uint32_t cpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)); if (pCtx->eflags.Bits.u1VM) Log(("EMV86: %04X:%08X IF=%d\n", pCtx->cs, pCtx->eip, pCtx->eflags.Bits.u1IF)); else Log(("EMR%d: %04X:%08X ESP=%08X IF=%d CR0=%x\n", cpl, pCtx->cs, pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, (uint32_t)pCtx->cr0)); #endif STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatREMTotal, a); #if defined(VBOX_STRICT) && defined(DEBUG_bird) AssertMsg( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) || !MMHyperIsInsideArea(pVM, CPUMGetGuestEIP(pVCpu)), /** @todo #1419 - get flat address. */ ("cs:eip=%RX16:%RX32\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu))); #endif /* Big lock, but you are not supposed to own any lock when coming in here. */ EMR3RemLock(pVM); /* * Spin till we get a forced action which returns anything but VINF_SUCCESS * or the REM suggests raw-mode execution. */ *pfFFDone = false; bool fInREMState = false; int rc = VINF_SUCCESS; /* Flush the recompiler TLB if the VCPU has changed. */ if (pVM->em.s.idLastRemCpu != pVCpu->idCpu) { REMFlushTBs(pVM); /* Also sync the entire state. */ CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL); } pVM->em.s.idLastRemCpu = pVCpu->idCpu; for (;;) { /* * Update REM state if not already in sync. */ if (!fInREMState) { STAM_PROFILE_START(&pVCpu->em.s.StatREMSync, b); rc = REMR3State(pVM, pVCpu); STAM_PROFILE_STOP(&pVCpu->em.s.StatREMSync, b); if (RT_FAILURE(rc)) break; fInREMState = true; /* * We might have missed the raising of VMREQ, TIMER and some other * imporant FFs while we were busy switching the state. So, check again. */ if ( VM_FF_ISPENDING(pVM, VM_FF_REQUEST | VM_FF_PDM_QUEUES | VM_FF_DBGF | VM_FF_TERMINATE | VM_FF_RESET) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TIMER | VMCPU_FF_REQUEST)) { LogFlow(("emR3RemExecute: Skipping run, because FF is set. %#x\n", pVM->fGlobalForcedActions)); goto l_REMDoForcedActions; } } /* * Execute REM. */ STAM_PROFILE_START(&pVCpu->em.s.StatREMExec, c); rc = REMR3Run(pVM, pVCpu); STAM_PROFILE_STOP(&pVCpu->em.s.StatREMExec, c); /* * Deal with high priority post execution FFs before doing anything else. */ if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_MASK)) rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc); /* * Process the returned status code. * (Try keep this short! Call functions!) */ if (rc != VINF_SUCCESS) { if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST) break; if (rc != VINF_REM_INTERRUPED_FF) { /* * Anything which is not known to us means an internal error * and the termination of the VM! */ AssertMsg(rc == VERR_REM_TOO_MANY_TRAPS, ("Unknown GC return code: %Rra\n", rc)); break; } } /* * Check and execute forced actions. * Sync back the VM state before calling any of these. */ #ifdef VBOX_HIGH_RES_TIMERS_HACK TMTimerPollVoid(pVM, pVCpu); #endif AssertCompile((VMCPU_FF_ALL_BUT_RAW_MASK & ~(VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE)) & VMCPU_FF_TIMER); if ( VM_FF_ISPENDING(pVM, VM_FF_ALL_BUT_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_BUT_RAW_MASK & ~(VMCPU_FF_CSAM_PENDING_ACTION | VMCPU_FF_CSAM_SCAN_PAGE))) { l_REMDoForcedActions: if (fInREMState) { STAM_PROFILE_START(&pVCpu->em.s.StatREMSync, d); REMR3StateBack(pVM, pVCpu); STAM_PROFILE_STOP(&pVCpu->em.s.StatREMSync, d); fInREMState = false; } STAM_REL_PROFILE_ADV_SUSPEND(&pVCpu->em.s.StatREMTotal, a); rc = emR3ForcedActions(pVM, pVCpu, rc); STAM_REL_PROFILE_ADV_RESUME(&pVCpu->em.s.StatREMTotal, a); if ( rc != VINF_SUCCESS && rc != VINF_EM_RESCHEDULE_REM) { *pfFFDone = true; break; } } } /* The Inner Loop, recompiled execution mode version. */ /* * Returning. Sync back the VM state if required. */ if (fInREMState) { STAM_PROFILE_START(&pVCpu->em.s.StatREMSync, e); REMR3StateBack(pVM, pVCpu); STAM_PROFILE_STOP(&pVCpu->em.s.StatREMSync, e); } EMR3RemUnlock(pVM); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatREMTotal, a); return rc; } /** * Resumes executing hypervisor after a debug event. * * This is kind of special since our current guest state is * potentially out of sync. * * @returns VBox status code. * @param pVM The VM handle. * @param pVCpu The VMCPU handle. */ static int emR3RawResumeHyper(PVM pVM, PVMCPU pVCpu) { int rc; PCPUMCTX pCtx = pVCpu->em.s.pCtx; Assert(pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER); Log(("emR3RawResumeHyper: cs:eip=%RTsel:%RGr efl=%RGr\n", pCtx->cs, pCtx->eip, pCtx->eflags)); /* * Resume execution. */ CPUMRawEnter(pVCpu, NULL); CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_RF); rc = VMMR3ResumeHyper(pVM, pVCpu); Log(("emR3RawStep: cs:eip=%RTsel:%RGr efl=%RGr - returned from GC with rc=%Rrc\n", pCtx->cs, pCtx->eip, pCtx->eflags, rc)); rc = CPUMRawLeave(pVCpu, NULL, rc); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK); /* * Deal with the return code. */ rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc); rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc); rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc); return rc; } /** * Steps rawmode. * * @returns VBox status code. * @param pVM The VM handle. * @param pVCpu The VMCPU handle. */ static int emR3RawStep(PVM pVM, PVMCPU pVCpu) { Assert( pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER || pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_RAW || pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_REM); int rc; PCPUMCTX pCtx = pVCpu->em.s.pCtx; bool fGuest = pVCpu->em.s.enmState != EMSTATE_DEBUG_HYPER; #ifndef DEBUG_sandervl Log(("emR3RawStep: cs:eip=%RTsel:%RGr efl=%RGr\n", fGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu), fGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu), fGuest ? CPUMGetGuestEFlags(pVCpu) : CPUMGetHyperEFlags(pVCpu))); #endif if (fGuest) { /* * Check vital forced actions, but ignore pending interrupts and timers. */ if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK)) { rc = emR3RawForcedActions(pVM, pVCpu, pCtx); if (rc != VINF_SUCCESS) return rc; } /* * Set flags for single stepping. */ CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF); } else CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF); /* * Single step. * We do not start time or anything, if anything we should just do a few nanoseconds. */ CPUMRawEnter(pVCpu, NULL); do { if (pVCpu->em.s.enmState == EMSTATE_DEBUG_HYPER) rc = VMMR3ResumeHyper(pVM, pVCpu); else rc = VMMR3RawRunGC(pVM, pVCpu); #ifndef DEBUG_sandervl Log(("emR3RawStep: cs:eip=%RTsel:%RGr efl=%RGr - GC rc %Rrc\n", fGuest ? CPUMGetGuestCS(pVCpu) : CPUMGetHyperCS(pVCpu), fGuest ? CPUMGetGuestEIP(pVCpu) : CPUMGetHyperEIP(pVCpu), fGuest ? CPUMGetGuestEFlags(pVCpu) : CPUMGetHyperEFlags(pVCpu), rc)); #endif } while ( rc == VINF_SUCCESS || rc == VINF_EM_RAW_INTERRUPT); rc = CPUMRawLeave(pVCpu, NULL, rc); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK); /* * Make sure the trap flag is cleared. * (Too bad if the guest is trying to single step too.) */ if (fGuest) CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF); else CPUMSetHyperEFlags(pVCpu, CPUMGetHyperEFlags(pVCpu) & ~X86_EFL_TF); /* * Deal with the return codes. */ rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc); rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc); rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc); return rc; } #ifdef DEBUG /** * Steps hardware accelerated mode. * * @returns VBox status code. * @param pVM The VM handle. * @param pVCpu The VMCPU handle. */ static int emR3HwAccStep(PVM pVM, PVMCPU pVCpu) { Assert(pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC); int rc; PCPUMCTX pCtx = pVCpu->em.s.pCtx; VMCPU_FF_CLEAR(pVCpu, (VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_TRPM_SYNC_IDT | VMCPU_FF_SELM_SYNC_TSS)); /* * Check vital forced actions, but ignore pending interrupts and timers. */ if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK)) { rc = emR3RawForcedActions(pVM, pVCpu, pCtx); if (rc != VINF_SUCCESS) return rc; } /* * Set flags for single stepping. */ CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) | X86_EFL_TF | X86_EFL_RF); /* * Single step. * We do not start time or anything, if anything we should just do a few nanoseconds. */ do { rc = VMMR3HwAccRunGC(pVM, pVCpu); } while ( rc == VINF_SUCCESS || rc == VINF_EM_RAW_INTERRUPT); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK); /* * Make sure the trap flag is cleared. * (Too bad if the guest is trying to single step too.) */ CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF); /* * Deal with the return codes. */ rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc); rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc); rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc); return rc; } int emR3SingleStepExecRaw(PVM pVM, PVMCPU pVCpu, uint32_t cIterations) { int rc = VINF_SUCCESS; EMSTATE enmOldState = pVCpu->em.s.enmState; pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_RAW; Log(("Single step BEGIN:\n")); for (uint32_t i = 0; i < cIterations; i++) { DBGFR3PrgStep(pVCpu); DBGFR3DisasInstrCurrentLog(pVCpu, "RSS: "); rc = emR3RawStep(pVM, pVCpu); if (rc != VINF_SUCCESS) break; } Log(("Single step END: rc=%Rrc\n", rc)); CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF); pVCpu->em.s.enmState = enmOldState; return rc; } static int emR3SingleStepExecHwAcc(PVM pVM, PVMCPU pVCpu, uint32_t cIterations) { int rc = VINF_SUCCESS; EMSTATE enmOldState = pVCpu->em.s.enmState; pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_HWACC; Log(("Single step BEGIN:\n")); for (uint32_t i = 0; i < cIterations; i++) { DBGFR3PrgStep(pVCpu); DBGFR3DisasInstrCurrentLog(pVCpu, "RSS: "); rc = emR3HwAccStep(pVM, pVCpu); if ( rc != VINF_SUCCESS || !HWACCMR3CanExecuteGuest(pVM, pVCpu->em.s.pCtx)) break; } Log(("Single step END: rc=%Rrc\n", rc)); CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF); pVCpu->em.s.enmState = enmOldState; return rc == VINF_SUCCESS ? VINF_EM_RESCHEDULE_REM : rc; } static int emR3SingleStepExecRem(PVM pVM, PVMCPU pVCpu, uint32_t cIterations) { EMSTATE enmOldState = pVCpu->em.s.enmState; pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_REM; Log(("Single step BEGIN:\n")); for (uint32_t i = 0; i < cIterations; i++) { DBGFR3PrgStep(pVCpu); DBGFR3DisasInstrCurrentLog(pVCpu, "RSS: "); emR3RemStep(pVM, pVCpu); if (emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx) != EMSTATE_REM) break; } Log(("Single step END:\n")); CPUMSetGuestEFlags(pVCpu, CPUMGetGuestEFlags(pVCpu) & ~X86_EFL_TF); pVCpu->em.s.enmState = enmOldState; return VINF_EM_RESCHEDULE; } #endif /* DEBUG */ /** * Executes one (or perhaps a few more) instruction(s). * * @returns VBox status code suitable for EM. * * @param pVM VM handle. * @param pVCpu VMCPU handle * @param rcGC GC return code * @param pszPrefix Disassembly prefix. If not NULL we'll disassemble the * instruction and prefix the log output with this text. */ #ifdef LOG_ENABLED static int emR3RawExecuteInstructionWorker(PVM pVM, PVMCPU pVCpu, int rcGC, const char *pszPrefix) #else static int emR3RawExecuteInstructionWorker(PVM pVM, PVMCPU pVCpu, int rcGC) #endif { PCPUMCTX pCtx = pVCpu->em.s.pCtx; int rc; /* * * The simple solution is to use the recompiler. * The better solution is to disassemble the current instruction and * try handle as many as possible without using REM. * */ #ifdef LOG_ENABLED /* * Disassemble the instruction if requested. */ if (pszPrefix) { DBGFR3InfoLog(pVM, "cpumguest", pszPrefix); DBGFR3DisasInstrCurrentLog(pVCpu, pszPrefix); } #endif /* LOG_ENABLED */ /* * PATM is making life more interesting. * We cannot hand anything to REM which has an EIP inside patch code. So, we'll * tell PATM there is a trap in this code and have it take the appropriate actions * to allow us execute the code in REM. */ if (PATMIsPatchGCAddr(pVM, pCtx->eip)) { Log(("emR3RawExecuteInstruction: In patch block. eip=%RRv\n", (RTRCPTR)pCtx->eip)); RTGCPTR pNewEip; rc = PATMR3HandleTrap(pVM, pCtx, pCtx->eip, &pNewEip); switch (rc) { /* * It's not very useful to emulate a single instruction and then go back to raw * mode; just execute the whole block until IF is set again. */ case VINF_SUCCESS: Log(("emR3RawExecuteInstruction: Executing instruction starting at new address %RGv IF=%d VMIF=%x\n", pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags)); pCtx->eip = pNewEip; Assert(pCtx->eip); if (pCtx->eflags.Bits.u1IF) { /* * The last instruction in the patch block needs to be executed!! (sti/sysexit for example) */ Log(("PATCH: IF=1 -> emulate last instruction as it can't be interrupted!!\n")); return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR"); } else if (rcGC == VINF_PATM_PENDING_IRQ_AFTER_IRET) { /* special case: iret, that sets IF, detected a pending irq/event */ return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIRET"); } return VINF_EM_RESCHEDULE_REM; /* * One instruction. */ case VINF_PATCH_EMULATE_INSTR: Log(("emR3RawExecuteInstruction: Emulate patched instruction at %RGv IF=%d VMIF=%x\n", pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags)); pCtx->eip = pNewEip; return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR"); /* * The patch was disabled, hand it to the REM. */ case VERR_PATCH_DISABLED: Log(("emR3RawExecuteInstruction: Disabled patch -> new eip %RGv IF=%d VMIF=%x\n", pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags)); pCtx->eip = pNewEip; if (pCtx->eflags.Bits.u1IF) { /* * The last instruction in the patch block needs to be executed!! (sti/sysexit for example) */ Log(("PATCH: IF=1 -> emulate last instruction as it can't be interrupted!!\n")); return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR"); } return VINF_EM_RESCHEDULE_REM; /* Force continued patch exection; usually due to write monitored stack. */ case VINF_PATCH_CONTINUE: return VINF_SUCCESS; default: AssertReleaseMsgFailed(("Unknown return code %Rrc from PATMR3HandleTrap\n", rc)); return VERR_IPE_UNEXPECTED_STATUS; } } #if 0 /* Try our own instruction emulator before falling back to the recompiler. */ DISCPUSTATE Cpu; rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "GEN EMU"); if (RT_SUCCESS(rc)) { uint32_t size; switch (Cpu.pCurInstr->opcode) { /* @todo we can do more now */ case OP_MOV: case OP_AND: case OP_OR: case OP_XOR: case OP_POP: case OP_INC: case OP_DEC: case OP_XCHG: STAM_PROFILE_START(&pVCpu->em.s.StatMiscEmu, a); rc = EMInterpretInstructionCPU(pVM, &Cpu, CPUMCTX2CORE(pCtx), 0, &size); if (RT_SUCCESS(rc)) { pCtx->rip += Cpu.opsize; #ifdef EM_NOTIFY_HWACCM if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC) HWACCMR3NotifyEmulated(pVCpu); #endif STAM_PROFILE_STOP(&pVCpu->em.s.StatMiscEmu, a); return rc; } if (rc != VERR_EM_INTERPRETER) AssertMsgFailedReturn(("rc=%Rrc\n", rc), rc); STAM_PROFILE_STOP(&pVCpu->em.s.StatMiscEmu, a); break; } } #endif /* 0 */ STAM_PROFILE_START(&pVCpu->em.s.StatREMEmu, a); Log(("EMINS: %04x:%RGv RSP=%RGv\n", pCtx->cs, (RTGCPTR)pCtx->rip, (RTGCPTR)pCtx->rsp)); EMR3RemLock(pVM); /* Flush the recompiler TLB if the VCPU has changed. */ if (pVM->em.s.idLastRemCpu != pVCpu->idCpu) CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL); pVM->em.s.idLastRemCpu = pVCpu->idCpu; rc = REMR3EmulateInstruction(pVM, pVCpu); EMR3RemUnlock(pVM); STAM_PROFILE_STOP(&pVCpu->em.s.StatREMEmu, a); #ifdef EM_NOTIFY_HWACCM if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC) HWACCMR3NotifyEmulated(pVCpu); #endif return rc; } /** * Executes one (or perhaps a few more) instruction(s). * This is just a wrapper for discarding pszPrefix in non-logging builds. * * @returns VBox status code suitable for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pszPrefix Disassembly prefix. If not NULL we'll disassemble the * instruction and prefix the log output with this text. * @param rcGC GC return code */ DECLINLINE(int) emR3RawExecuteInstruction(PVM pVM, PVMCPU pVCpu, const char *pszPrefix, int rcGC) { #ifdef LOG_ENABLED return emR3RawExecuteInstructionWorker(pVM, pVCpu, rcGC, pszPrefix); #else return emR3RawExecuteInstructionWorker(pVM, pVCpu, rcGC); #endif } /** * Executes one (or perhaps a few more) IO instruction(s). * * @returns VBox status code suitable for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle. */ int emR3RawExecuteIOInstruction(PVM pVM, PVMCPU pVCpu) { int rc; PCPUMCTX pCtx = pVCpu->em.s.pCtx; STAM_PROFILE_START(&pVCpu->em.s.StatIOEmu, a); /** @todo probably we should fall back to the recompiler; otherwise we'll go back and forth between HC & GC * as io instructions tend to come in packages of more than one */ DISCPUSTATE Cpu; rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "IO EMU"); if (RT_SUCCESS(rc)) { rc = VINF_EM_RAW_EMULATE_INSTR; if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE))) { switch (Cpu.pCurInstr->opcode) { case OP_IN: { STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatIn); rc = IOMInterpretIN(pVM, CPUMCTX2CORE(pCtx), &Cpu); break; } case OP_OUT: { STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatOut); rc = IOMInterpretOUT(pVM, CPUMCTX2CORE(pCtx), &Cpu); break; } } } else if (Cpu.prefix & PREFIX_REP) { switch (Cpu.pCurInstr->opcode) { case OP_INSB: case OP_INSWD: { STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatIn); rc = IOMInterpretINS(pVM, CPUMCTX2CORE(pCtx), &Cpu); break; } case OP_OUTSB: case OP_OUTSWD: { STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatOut); rc = IOMInterpretOUTS(pVM, CPUMCTX2CORE(pCtx), &Cpu); break; } } } /* * Handled the I/O return codes. * (The unhandled cases end up with rc == VINF_EM_RAW_EMULATE_INSTR.) */ if (IOM_SUCCESS(rc)) { pCtx->rip += Cpu.opsize; STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a); return rc; } if (rc == VINF_EM_RAW_GUEST_TRAP) { STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a); rc = emR3RawGuestTrap(pVM, pVCpu); return rc; } AssertMsg(rc != VINF_TRPM_XCPT_DISPATCHED, ("Handle VINF_TRPM_XCPT_DISPATCHED\n")); if (RT_FAILURE(rc)) { STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a); return rc; } AssertMsg(rc == VINF_EM_RAW_EMULATE_INSTR || rc == VINF_EM_RESCHEDULE_REM, ("rc=%Rrc\n", rc)); } STAM_PROFILE_STOP(&pVCpu->em.s.StatIOEmu, a); return emR3RawExecuteInstruction(pVM, pVCpu, "IO: "); } /** * Handle a guest context trap. * * @returns VBox status code suitable for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle. */ static int emR3RawGuestTrap(PVM pVM, PVMCPU pVCpu) { PCPUMCTX pCtx = pVCpu->em.s.pCtx; /* * Get the trap info. */ uint8_t u8TrapNo; TRPMEVENT enmType; RTGCUINT uErrorCode; RTGCUINTPTR uCR2; int rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrorCode, &uCR2); if (RT_FAILURE(rc)) { AssertReleaseMsgFailed(("No trap! (rc=%Rrc)\n", rc)); return rc; } /* * Traps can be directly forwarded in hardware accelerated mode. */ if (HWACCMIsEnabled(pVM)) { #ifdef LOGGING_ENABLED DBGFR3InfoLog(pVM, "cpumguest", "Guest trap"); DBGFR3DisasInstrCurrentLog(pVCpu, "Guest trap"); #endif return VINF_EM_RESCHEDULE_HWACC; } #if 1 /* Experimental: Review, disable if it causes trouble. */ /* * Handle traps in patch code first. * * We catch a few of these cases in RC before returning to R3 (#PF, #GP, #BP) * but several traps isn't handled specially by TRPM in RC and we end up here * instead. One example is #DE. */ uint32_t uCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)); if ( uCpl == 0 && PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip)) { LogFlow(("emR3RawGuestTrap: trap %#x in patch code; eip=%08x\n", u8TrapNo, pCtx->eip)); return emR3PatchTrap(pVM, pVCpu, pCtx, rc); } #endif /* * If the guest gate is marked unpatched, then we will check again if we can patch it. * (This assumes that we've already tried and failed to dispatch the trap in * RC for the gates that already has been patched. Which is true for most high * volume traps, because these are handled specially, but not for odd ones like #DE.) */ if (TRPMR3GetGuestTrapHandler(pVM, u8TrapNo) == TRPM_INVALID_HANDLER) { CSAMR3CheckGates(pVM, u8TrapNo, 1); Log(("emR3RawHandleRC: recheck gate %x -> valid=%d\n", u8TrapNo, TRPMR3GetGuestTrapHandler(pVM, u8TrapNo) != TRPM_INVALID_HANDLER)); /* If it was successful, then we could go back to raw mode. */ if (TRPMR3GetGuestTrapHandler(pVM, u8TrapNo) != TRPM_INVALID_HANDLER) { /* Must check pending forced actions as our IDT or GDT might be out of sync. */ rc = EMR3CheckRawForcedActions(pVM, pVCpu); AssertRCReturn(rc, rc); TRPMERRORCODE enmError = uErrorCode != ~0U ? TRPM_TRAP_HAS_ERRORCODE : TRPM_TRAP_NO_ERRORCODE; rc = TRPMForwardTrap(pVCpu, CPUMCTX2CORE(pCtx), u8TrapNo, uErrorCode, enmError, TRPM_TRAP, -1); if (rc == VINF_SUCCESS /* Don't use RT_SUCCESS */) { TRPMResetTrap(pVCpu); return VINF_EM_RESCHEDULE_RAW; } AssertMsg(rc == VINF_EM_RAW_GUEST_TRAP, ("%Rrc\n", rc)); } } /* * Scan kernel code that traps; we might not get another chance. */ /** @todo move this up before the dispatching? */ if ( (pCtx->ss & X86_SEL_RPL) <= 1 && !pCtx->eflags.Bits.u1VM) { Assert(!PATMIsPatchGCAddr(pVM, pCtx->eip)); CSAMR3CheckCodeEx(pVM, CPUMCTX2CORE(pCtx), pCtx->eip); } /* * Trap specific handling. */ if (u8TrapNo == 6) /* (#UD) Invalid opcode. */ { /* * If MONITOR & MWAIT are supported, then interpret them here. */ DISCPUSTATE cpu; rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &cpu, "Guest Trap (#UD): "); if ( RT_SUCCESS(rc) && (cpu.pCurInstr->opcode == OP_MONITOR || cpu.pCurInstr->opcode == OP_MWAIT)) { uint32_t u32Dummy, u32Features, u32ExtFeatures; CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32ExtFeatures, &u32Features); if (u32ExtFeatures & X86_CPUID_FEATURE_ECX_MONITOR) { rc = TRPMResetTrap(pVCpu); AssertRC(rc); uint32_t opsize; rc = EMInterpretInstructionCPU(pVM, pVCpu, &cpu, CPUMCTX2CORE(pCtx), 0, &opsize); if (RT_SUCCESS(rc)) { pCtx->rip += cpu.opsize; #ifdef EM_NOTIFY_HWACCM if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC) HWACCMR3NotifyEmulated(pVCpu); #endif return rc; } return emR3RawExecuteInstruction(pVM, pVCpu, "Monitor: "); } } } else if (u8TrapNo == 13) /* (#GP) Privileged exception */ { /* * Handle I/O bitmap? */ /** @todo We're not supposed to be here with a false guest trap concerning * I/O access. We can easily handle those in RC. */ DISCPUSTATE cpu; rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &cpu, "Guest Trap: "); if ( RT_SUCCESS(rc) && (cpu.pCurInstr->optype & OPTYPE_PORTIO)) { /* * We should really check the TSS for the IO bitmap, but it's not like this * lazy approach really makes things worse. */ rc = TRPMResetTrap(pVCpu); AssertRC(rc); return emR3RawExecuteInstruction(pVM, pVCpu, "IO Guest Trap: "); } } #ifdef LOG_ENABLED DBGFR3InfoLog(pVM, "cpumguest", "Guest trap"); DBGFR3DisasInstrCurrentLog(pVCpu, "Guest trap"); /* Get guest page information. */ uint64_t fFlags = 0; RTGCPHYS GCPhys = 0; int rc2 = PGMGstGetPage(pVCpu, uCR2, &fFlags, &GCPhys); Log(("emR3RawGuestTrap: cs:eip=%04x:%08x: trap=%02x err=%08x cr2=%08x cr0=%08x%s: Phys=%RGp fFlags=%08llx %s %s %s%s rc2=%d\n", pCtx->cs, pCtx->eip, u8TrapNo, uErrorCode, uCR2, (uint32_t)pCtx->cr0, (enmType == TRPM_SOFTWARE_INT) ? " software" : "", GCPhys, fFlags, fFlags & X86_PTE_P ? "P " : "NP", fFlags & X86_PTE_US ? "U" : "S", fFlags & X86_PTE_RW ? "RW" : "R0", fFlags & X86_PTE_G ? " G" : "", rc2)); #endif /* * #PG has CR2. * (Because of stuff like above we must set CR2 in a delayed fashion.) */ if (u8TrapNo == 14 /* #PG */) pCtx->cr2 = uCR2; return VINF_EM_RESCHEDULE_REM; } /** * Handle a ring switch trap. * Need to do statistics and to install patches. The result is going to REM. * * @returns VBox status code suitable for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle. */ int emR3RawRingSwitch(PVM pVM, PVMCPU pVCpu) { int rc; DISCPUSTATE Cpu; PCPUMCTX pCtx = pVCpu->em.s.pCtx; /* * sysenter, syscall & callgate */ rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "RSWITCH: "); if (RT_SUCCESS(rc)) { if (Cpu.pCurInstr->opcode == OP_SYSENTER) { if (pCtx->SysEnter.cs != 0) { rc = PATMR3InstallPatch(pVM, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->eip), (SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) ? PATMFL_CODE32 : 0); if (RT_SUCCESS(rc)) { DBGFR3DisasInstrCurrentLog(pVCpu, "Patched sysenter instruction"); return VINF_EM_RESCHEDULE_RAW; } } } #ifdef VBOX_WITH_STATISTICS switch (Cpu.pCurInstr->opcode) { case OP_SYSENTER: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysEnter); break; case OP_SYSEXIT: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysExit); break; case OP_SYSCALL: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysCall); break; case OP_SYSRET: STAM_COUNTER_INC(&pVCpu->em.s.CTX_SUFF(pStats)->StatSysRet); break; } #endif } else AssertRC(rc); /* go to the REM to emulate a single instruction */ return emR3RawExecuteInstruction(pVM, pVCpu, "RSWITCH: "); } /** * Handle a trap (\#PF or \#GP) in patch code * * @returns VBox status code suitable for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pCtx CPU context * @param gcret GC return code */ static int emR3PatchTrap(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int gcret) { uint8_t u8TrapNo; int rc; TRPMEVENT enmType; RTGCUINT uErrorCode; RTGCUINTPTR uCR2; Assert(PATMIsPatchGCAddr(pVM, pCtx->eip)); if (gcret == VINF_PATM_PATCH_INT3) { u8TrapNo = 3; uCR2 = 0; uErrorCode = 0; } else if (gcret == VINF_PATM_PATCH_TRAP_GP) { /* No active trap in this case. Kind of ugly. */ u8TrapNo = X86_XCPT_GP; uCR2 = 0; uErrorCode = 0; } else { rc = TRPMQueryTrapAll(pVCpu, &u8TrapNo, &enmType, &uErrorCode, &uCR2); if (RT_FAILURE(rc)) { AssertReleaseMsgFailed(("emR3PatchTrap: no trap! (rc=%Rrc) gcret=%Rrc\n", rc, gcret)); return rc; } /* Reset the trap as we'll execute the original instruction again. */ TRPMResetTrap(pVCpu); } /* * Deal with traps inside patch code. * (This code won't run outside GC.) */ if (u8TrapNo != 1) { #ifdef LOG_ENABLED DBGFR3InfoLog(pVM, "cpumguest", "Trap in patch code"); DBGFR3DisasInstrCurrentLog(pVCpu, "Patch code"); DISCPUSTATE Cpu; int rc; rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->eip, &Cpu, "Patch code: "); if ( RT_SUCCESS(rc) && Cpu.pCurInstr->opcode == OP_IRET) { uint32_t eip, selCS, uEFlags; /* Iret crashes are bad as we have already changed the flags on the stack */ rc = PGMPhysSimpleReadGCPtr(pVCpu, &eip, pCtx->esp, 4); rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selCS, pCtx->esp+4, 4); rc |= PGMPhysSimpleReadGCPtr(pVCpu, &uEFlags, pCtx->esp+8, 4); if (rc == VINF_SUCCESS) { if ( (uEFlags & X86_EFL_VM) || (selCS & X86_SEL_RPL) == 3) { uint32_t selSS, esp; rc |= PGMPhysSimpleReadGCPtr(pVCpu, &esp, pCtx->esp + 12, 4); rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selSS, pCtx->esp + 16, 4); if (uEFlags & X86_EFL_VM) { uint32_t selDS, selES, selFS, selGS; rc = PGMPhysSimpleReadGCPtr(pVCpu, &selES, pCtx->esp + 20, 4); rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selDS, pCtx->esp + 24, 4); rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selFS, pCtx->esp + 28, 4); rc |= PGMPhysSimpleReadGCPtr(pVCpu, &selGS, pCtx->esp + 32, 4); if (rc == VINF_SUCCESS) { Log(("Patch code: IRET->VM stack frame: return address %04X:%08RX32 eflags=%08x ss:esp=%04X:%08RX32\n", selCS, eip, uEFlags, selSS, esp)); Log(("Patch code: IRET->VM stack frame: DS=%04X ES=%04X FS=%04X GS=%04X\n", selDS, selES, selFS, selGS)); } } else Log(("Patch code: IRET stack frame: return address %04X:%08RX32 eflags=%08x ss:esp=%04X:%08RX32\n", selCS, eip, uEFlags, selSS, esp)); } else Log(("Patch code: IRET stack frame: return address %04X:%08RX32 eflags=%08x\n", selCS, eip, uEFlags)); } } #endif /* LOG_ENABLED */ Log(("emR3PatchTrap: in patch: eip=%08x: trap=%02x err=%08x cr2=%08x cr0=%08x\n", pCtx->eip, u8TrapNo, uErrorCode, uCR2, (uint32_t)pCtx->cr0)); RTGCPTR pNewEip; rc = PATMR3HandleTrap(pVM, pCtx, pCtx->eip, &pNewEip); switch (rc) { /* * Execute the faulting instruction. */ case VINF_SUCCESS: { /** @todo execute a whole block */ Log(("emR3PatchTrap: Executing faulting instruction at new address %RGv\n", pNewEip)); if (!(pVCpu->em.s.pPatmGCState->uVMFlags & X86_EFL_IF)) Log(("emR3PatchTrap: Virtual IF flag disabled!!\n")); pCtx->eip = pNewEip; AssertRelease(pCtx->eip); if (pCtx->eflags.Bits.u1IF) { /* Windows XP lets irets fault intentionally and then takes action based on the opcode; an * int3 patch overwrites it and leads to blue screens. Remove the patch in this case. */ if ( u8TrapNo == X86_XCPT_GP && PATMIsInt3Patch(pVM, pCtx->eip, NULL, NULL)) { /** @todo move to PATMR3HandleTrap */ Log(("Possible Windows XP iret fault at %08RX32\n", pCtx->eip)); PATMR3RemovePatch(pVM, pCtx->eip); } /** @todo Knoppix 5 regression when returning VINF_SUCCESS here and going back to raw mode. */ /* Note: possibly because a reschedule is required (e.g. iret to V86 code) */ return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR"); /* Interrupts are enabled; just go back to the original instruction. return VINF_SUCCESS; */ } return VINF_EM_RESCHEDULE_REM; } /* * One instruction. */ case VINF_PATCH_EMULATE_INSTR: Log(("emR3PatchTrap: Emulate patched instruction at %RGv IF=%d VMIF=%x\n", pNewEip, pCtx->eflags.Bits.u1IF, pVCpu->em.s.pPatmGCState->uVMFlags)); pCtx->eip = pNewEip; AssertRelease(pCtx->eip); return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHEMUL: "); /* * The patch was disabled, hand it to the REM. */ case VERR_PATCH_DISABLED: if (!(pVCpu->em.s.pPatmGCState->uVMFlags & X86_EFL_IF)) Log(("emR3PatchTrap: Virtual IF flag disabled!!\n")); pCtx->eip = pNewEip; AssertRelease(pCtx->eip); if (pCtx->eflags.Bits.u1IF) { /* * The last instruction in the patch block needs to be executed!! (sti/sysexit for example) */ Log(("PATCH: IF=1 -> emulate last instruction as it can't be interrupted!!\n")); return emR3RawExecuteInstruction(pVM, pVCpu, "PATCHIR"); } return VINF_EM_RESCHEDULE_REM; /* Force continued patch exection; usually due to write monitored stack. */ case VINF_PATCH_CONTINUE: return VINF_SUCCESS; /* * Anything else is *fatal*. */ default: AssertReleaseMsgFailed(("Unknown return code %Rrc from PATMR3HandleTrap!\n", rc)); return VERR_IPE_UNEXPECTED_STATUS; } } return VINF_SUCCESS; } /** * Handle a privileged instruction. * * @returns VBox status code suitable for EM. * @param pVM VM handle. * @param pVCpu VMCPU handle; */ int emR3RawPrivileged(PVM pVM, PVMCPU pVCpu) { STAM_PROFILE_START(&pVCpu->em.s.StatPrivEmu, a); PCPUMCTX pCtx = pVCpu->em.s.pCtx; Assert(!pCtx->eflags.Bits.u1VM); if (PATMIsEnabled(pVM)) { /* * Check if in patch code. */ if (PATMR3IsInsidePatchJump(pVM, pCtx->eip, NULL)) { #ifdef LOG_ENABLED DBGFR3InfoLog(pVM, "cpumguest", "PRIV"); #endif AssertMsgFailed(("FATAL ERROR: executing random instruction inside generated patch jump %08X\n", pCtx->eip)); return VERR_EM_RAW_PATCH_CONFLICT; } if ( (pCtx->ss & X86_SEL_RPL) == 0 && !pCtx->eflags.Bits.u1VM && !PATMIsPatchGCAddr(pVM, pCtx->eip)) { int rc = PATMR3InstallPatch(pVM, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->eip), (SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) ? PATMFL_CODE32 : 0); if (RT_SUCCESS(rc)) { #ifdef LOG_ENABLED DBGFR3InfoLog(pVM, "cpumguest", "PRIV"); #endif DBGFR3DisasInstrCurrentLog(pVCpu, "Patched privileged instruction"); return VINF_SUCCESS; } } } #ifdef LOG_ENABLED if (!PATMIsPatchGCAddr(pVM, pCtx->eip)) { DBGFR3InfoLog(pVM, "cpumguest", "PRIV"); DBGFR3DisasInstrCurrentLog(pVCpu, "Privileged instr: "); } #endif /* * Instruction statistics and logging. */ DISCPUSTATE Cpu; int rc; rc = CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pCtx->rip, &Cpu, "PRIV: "); if (RT_SUCCESS(rc)) { #ifdef VBOX_WITH_STATISTICS PEMSTATS pStats = pVCpu->em.s.CTX_SUFF(pStats); switch (Cpu.pCurInstr->opcode) { case OP_INVLPG: STAM_COUNTER_INC(&pStats->StatInvlpg); break; case OP_IRET: STAM_COUNTER_INC(&pStats->StatIret); break; case OP_CLI: STAM_COUNTER_INC(&pStats->StatCli); emR3RecordCli(pVM, pVCpu, pCtx->rip); break; case OP_STI: STAM_COUNTER_INC(&pStats->StatSti); break; case OP_INSB: case OP_INSWD: case OP_IN: case OP_OUTSB: case OP_OUTSWD: case OP_OUT: AssertMsgFailed(("Unexpected privileged exception due to port IO\n")); break; case OP_MOV_CR: if (Cpu.param1.flags & USE_REG_GEN32) { //read Assert(Cpu.param2.flags & USE_REG_CR); Assert(Cpu.param2.base.reg_ctrl <= USE_REG_CR4); STAM_COUNTER_INC(&pStats->StatMovReadCR[Cpu.param2.base.reg_ctrl]); } else { //write Assert(Cpu.param1.flags & USE_REG_CR); Assert(Cpu.param1.base.reg_ctrl <= USE_REG_CR4); STAM_COUNTER_INC(&pStats->StatMovWriteCR[Cpu.param1.base.reg_ctrl]); } break; case OP_MOV_DR: STAM_COUNTER_INC(&pStats->StatMovDRx); break; case OP_LLDT: STAM_COUNTER_INC(&pStats->StatMovLldt); break; case OP_LIDT: STAM_COUNTER_INC(&pStats->StatMovLidt); break; case OP_LGDT: STAM_COUNTER_INC(&pStats->StatMovLgdt); break; case OP_SYSENTER: STAM_COUNTER_INC(&pStats->StatSysEnter); break; case OP_SYSEXIT: STAM_COUNTER_INC(&pStats->StatSysExit); break; case OP_SYSCALL: STAM_COUNTER_INC(&pStats->StatSysCall); break; case OP_SYSRET: STAM_COUNTER_INC(&pStats->StatSysRet); break; case OP_HLT: STAM_COUNTER_INC(&pStats->StatHlt); break; default: STAM_COUNTER_INC(&pStats->StatMisc); Log4(("emR3RawPrivileged: opcode=%d\n", Cpu.pCurInstr->opcode)); break; } #endif /* VBOX_WITH_STATISTICS */ if ( (pCtx->ss & X86_SEL_RPL) == 0 && !pCtx->eflags.Bits.u1VM && SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) { uint32_t size; STAM_PROFILE_START(&pVCpu->em.s.StatPrivEmu, a); switch (Cpu.pCurInstr->opcode) { case OP_CLI: pCtx->eflags.u32 &= ~X86_EFL_IF; Assert(Cpu.opsize == 1); pCtx->rip += Cpu.opsize; STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a); return VINF_EM_RESCHEDULE_REM; /* must go to the recompiler now! */ case OP_STI: pCtx->eflags.u32 |= X86_EFL_IF; EMSetInhibitInterruptsPC(pVCpu, pCtx->rip + Cpu.opsize); Assert(Cpu.opsize == 1); pCtx->rip += Cpu.opsize; STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a); return VINF_SUCCESS; case OP_HLT: if (PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip)) { PATMTRANSSTATE enmState; RTGCPTR pOrgInstrGC = PATMR3PatchToGCPtr(pVM, pCtx->eip, &enmState); if (enmState == PATMTRANS_OVERWRITTEN) { rc = PATMR3DetectConflict(pVM, pOrgInstrGC, pOrgInstrGC); Assert(rc == VERR_PATCH_DISABLED); /* Conflict detected, patch disabled */ Log(("emR3RawPrivileged: detected conflict -> disabled patch at %08RX32\n", pCtx->eip)); enmState = PATMTRANS_SAFE; } /* The translation had better be successful. Otherwise we can't recover. */ AssertReleaseMsg(pOrgInstrGC && enmState != PATMTRANS_OVERWRITTEN, ("Unable to translate instruction address at %08RX32\n", pCtx->eip)); if (enmState != PATMTRANS_OVERWRITTEN) pCtx->eip = pOrgInstrGC; } /* no break; we could just return VINF_EM_HALT here */ case OP_MOV_CR: case OP_MOV_DR: #ifdef LOG_ENABLED if (PATMIsPatchGCAddr(pVM, pCtx->eip)) { DBGFR3InfoLog(pVM, "cpumguest", "PRIV"); DBGFR3DisasInstrCurrentLog(pVCpu, "Privileged instr: "); } #endif rc = EMInterpretInstructionCPU(pVM, pVCpu, &Cpu, CPUMCTX2CORE(pCtx), 0, &size); if (RT_SUCCESS(rc)) { pCtx->rip += Cpu.opsize; #ifdef EM_NOTIFY_HWACCM if (pVCpu->em.s.enmState == EMSTATE_DEBUG_GUEST_HWACC) HWACCMR3NotifyEmulated(pVCpu); #endif STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a); if ( Cpu.pCurInstr->opcode == OP_MOV_CR && Cpu.param1.flags == USE_REG_CR /* write */ ) { /* Deal with CR0 updates inside patch code that force * us to go to the recompiler. */ if ( PATMIsPatchGCAddr(pVM, pCtx->rip) && (pCtx->cr0 & (X86_CR0_WP|X86_CR0_PG|X86_CR0_PE)) != (X86_CR0_WP|X86_CR0_PG|X86_CR0_PE)) { PATMTRANSSTATE enmState; RTGCPTR pOrgInstrGC = PATMR3PatchToGCPtr(pVM, pCtx->rip, &enmState); Log(("Force recompiler switch due to cr0 (%RGp) update rip=%RGv -> %RGv (enmState=%d)\n", pCtx->cr0, pCtx->rip, pOrgInstrGC, enmState)); if (enmState == PATMTRANS_OVERWRITTEN) { rc = PATMR3DetectConflict(pVM, pOrgInstrGC, pOrgInstrGC); Assert(rc == VERR_PATCH_DISABLED); /* Conflict detected, patch disabled */ Log(("emR3RawPrivileged: detected conflict -> disabled patch at %RGv\n", (RTGCPTR)pCtx->rip)); enmState = PATMTRANS_SAFE; } /* The translation had better be successful. Otherwise we can't recover. */ AssertReleaseMsg(pOrgInstrGC && enmState != PATMTRANS_OVERWRITTEN, ("Unable to translate instruction address at %RGv\n", (RTGCPTR)pCtx->rip)); if (enmState != PATMTRANS_OVERWRITTEN) pCtx->rip = pOrgInstrGC; } /* Reschedule is necessary as the execution/paging mode might have changed. */ return VINF_EM_RESCHEDULE; } return rc; /* can return VINF_EM_HALT as well. */ } AssertMsgReturn(rc == VERR_EM_INTERPRETER, ("%Rrc\n", rc), rc); break; /* fall back to the recompiler */ } STAM_PROFILE_STOP(&pVCpu->em.s.StatPrivEmu, a); } } if (PATMIsPatchGCAddr(pVM, pCtx->eip)) return emR3PatchTrap(pVM, pVCpu, pCtx, VINF_PATM_PATCH_TRAP_GP); return emR3RawExecuteInstruction(pVM, pVCpu, "PRIV"); } /** * Update the forced rawmode execution modifier. * * This function is called when we're returning from the raw-mode loop(s). If we're * in patch code, it will set a flag forcing execution to be resumed in raw-mode, * if not in patch code, the flag will be cleared. * * We should never interrupt patch code while it's being executed. Cli patches can * contain big code blocks, but they are always executed with IF=0. Other patches * replace single instructions and should be atomic. * * @returns Updated rc. * * @param pVM The VM handle. * @param pVCpu The VMCPU handle. * @param pCtx The guest CPU context. * @param rc The result code. */ DECLINLINE(int) emR3RawUpdateForceFlag(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc) { if (PATMIsPatchGCAddr(pVM, pCtx->eip)) /** @todo check cs selector base/type */ { /* ignore reschedule attempts. */ switch (rc) { case VINF_EM_RESCHEDULE: case VINF_EM_RESCHEDULE_REM: LogFlow(("emR3RawUpdateForceFlag: patch address -> force raw reschedule\n")); rc = VINF_SUCCESS; break; } pVCpu->em.s.fForceRAW = true; } else pVCpu->em.s.fForceRAW = false; return rc; } /** * Process a subset of the raw-mode return code. * * Since we have to share this with raw-mode single stepping, this inline * function has been created to avoid code duplication. * * @returns VINF_SUCCESS if it's ok to continue raw mode. * @returns VBox status code to return to the EM main loop. * * @param pVM The VM handle * @param pVCpu The VMCPU handle * @param rc The return code. * @param pCtx The guest cpu context. */ DECLINLINE(int) emR3RawHandleRC(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, int rc) { switch (rc) { /* * Common & simple ones. */ case VINF_SUCCESS: break; case VINF_EM_RESCHEDULE_RAW: case VINF_EM_RESCHEDULE_HWACC: case VINF_EM_RAW_INTERRUPT: case VINF_EM_RAW_TO_R3: case VINF_EM_RAW_TIMER_PENDING: case VINF_EM_PENDING_REQUEST: rc = VINF_SUCCESS; break; /* * Privileged instruction. */ case VINF_EM_RAW_EXCEPTION_PRIVILEGED: case VINF_PATM_PATCH_TRAP_GP: rc = emR3RawPrivileged(pVM, pVCpu); break; /* * Got a trap which needs dispatching. */ case VINF_EM_RAW_GUEST_TRAP: if (PATMR3IsInsidePatchJump(pVM, pCtx->eip, NULL)) { AssertReleaseMsgFailed(("FATAL ERROR: executing random instruction inside generated patch jump %08X\n", CPUMGetGuestEIP(pVCpu))); rc = VERR_EM_RAW_PATCH_CONFLICT; break; } rc = emR3RawGuestTrap(pVM, pVCpu); break; /* * Trap in patch code. */ case VINF_PATM_PATCH_TRAP_PF: case VINF_PATM_PATCH_INT3: rc = emR3PatchTrap(pVM, pVCpu, pCtx, rc); break; case VINF_PATM_DUPLICATE_FUNCTION: Assert(PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip)); rc = PATMR3DuplicateFunctionRequest(pVM, pCtx); AssertRC(rc); rc = VINF_SUCCESS; break; case VINF_PATM_CHECK_PATCH_PAGE: rc = PATMR3HandleMonitoredPage(pVM); AssertRC(rc); rc = VINF_SUCCESS; break; /* * Patch manager. */ case VERR_EM_RAW_PATCH_CONFLICT: AssertReleaseMsgFailed(("%Rrc handling is not yet implemented\n", rc)); break; #ifdef VBOX_WITH_VMI /* * PARAV function. */ case VINF_EM_RESCHEDULE_PARAV: rc = PARAVCallFunction(pVM); break; #endif /* * Memory mapped I/O access - attempt to patch the instruction */ case VINF_PATM_HC_MMIO_PATCH_READ: rc = PATMR3InstallPatch(pVM, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->eip), PATMFL_MMIO_ACCESS | ((SELMGetCpuModeFromSelector(pVM, pCtx->eflags, pCtx->cs, &pCtx->csHid) == CPUMODE_32BIT) ? PATMFL_CODE32 : 0)); if (RT_FAILURE(rc)) rc = emR3RawExecuteInstruction(pVM, pVCpu, "MMIO"); break; case VINF_PATM_HC_MMIO_PATCH_WRITE: AssertFailed(); /* not yet implemented. */ rc = emR3RawExecuteInstruction(pVM, pVCpu, "MMIO"); break; /* * Conflict or out of page tables. * * VM_FF_PGM_SYNC_CR3 is set by the hypervisor and all we need to * do here is to execute the pending forced actions. */ case VINF_PGM_SYNC_CR3: AssertMsg(VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL), ("VINF_PGM_SYNC_CR3 and no VMCPU_FF_PGM_SYNC_CR3*!\n")); rc = VINF_SUCCESS; break; /* * Paging mode change. */ case VINF_PGM_CHANGE_MODE: rc = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER); if (rc == VINF_SUCCESS) rc = VINF_EM_RESCHEDULE; AssertMsg(RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST), ("%Rrc\n", rc)); break; /* * CSAM wants to perform a task in ring-3. It has set an FF action flag. */ case VINF_CSAM_PENDING_ACTION: rc = VINF_SUCCESS; break; /* * Invoked Interrupt gate - must directly (!) go to the recompiler. */ case VINF_EM_RAW_INTERRUPT_PENDING: case VINF_EM_RAW_RING_SWITCH_INT: Assert(TRPMHasTrap(pVCpu)); Assert(!PATMIsPatchGCAddr(pVM, (RTGCPTR)pCtx->eip)); if (TRPMHasTrap(pVCpu)) { /* If the guest gate is marked unpatched, then we will check again if we can patch it. */ uint8_t u8Interrupt = TRPMGetTrapNo(pVCpu); if (TRPMR3GetGuestTrapHandler(pVM, u8Interrupt) == TRPM_INVALID_HANDLER) { CSAMR3CheckGates(pVM, u8Interrupt, 1); Log(("emR3RawHandleRC: recheck gate %x -> valid=%d\n", u8Interrupt, TRPMR3GetGuestTrapHandler(pVM, u8Interrupt) != TRPM_INVALID_HANDLER)); /* Note: If it was successful, then we could go back to raw mode, but let's keep things simple for now. */ } } rc = VINF_EM_RESCHEDULE_REM; break; /* * Other ring switch types. */ case VINF_EM_RAW_RING_SWITCH: rc = emR3RawRingSwitch(pVM, pVCpu); break; /* * REMGCNotifyInvalidatePage() failed because of overflow. */ case VERR_REM_FLUSHED_PAGES_OVERFLOW: Assert((pCtx->ss & X86_SEL_RPL) != 1); EMR3RemLock(pVM); REMR3ReplayInvalidatedPages(pVM, pVCpu); EMR3RemUnlock(pVM); rc = VINF_SUCCESS; break; /* * I/O Port access - emulate the instruction. */ case VINF_IOM_HC_IOPORT_READ: case VINF_IOM_HC_IOPORT_WRITE: rc = emR3RawExecuteIOInstruction(pVM, pVCpu); break; /* * Memory mapped I/O access - emulate the instruction. */ case VINF_IOM_HC_MMIO_READ: case VINF_IOM_HC_MMIO_WRITE: case VINF_IOM_HC_MMIO_READ_WRITE: rc = emR3RawExecuteInstruction(pVM, pVCpu, "MMIO"); break; /* * (MM)IO intensive code block detected; fall back to the recompiler for better performance */ case VINF_EM_RAW_EMULATE_IO_BLOCK: rc = HWACCMR3EmulateIoBlock(pVM, pCtx); break; /* * Execute instruction. */ case VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT: rc = emR3RawExecuteInstruction(pVM, pVCpu, "LDT FAULT: "); break; case VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT: rc = emR3RawExecuteInstruction(pVM, pVCpu, "GDT FAULT: "); break; case VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT: rc = emR3RawExecuteInstruction(pVM, pVCpu, "IDT FAULT: "); break; case VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT: rc = emR3RawExecuteInstruction(pVM, pVCpu, "TSS FAULT: "); break; case VINF_EM_RAW_EMULATE_INSTR_PD_FAULT: rc = emR3RawExecuteInstruction(pVM, pVCpu, "PD FAULT: "); break; case VINF_EM_RAW_EMULATE_INSTR_HLT: /** @todo skip instruction and go directly to the halt state. (see REM for implementation details) */ rc = emR3RawPrivileged(pVM, pVCpu); break; case VINF_PATM_PENDING_IRQ_AFTER_IRET: rc = emR3RawExecuteInstruction(pVM, pVCpu, "EMUL: ", VINF_PATM_PENDING_IRQ_AFTER_IRET); break; case VINF_EM_RAW_EMULATE_INSTR: case VINF_PATCH_EMULATE_INSTR: rc = emR3RawExecuteInstruction(pVM, pVCpu, "EMUL: "); break; /* * Stale selector and iret traps => REM. */ case VINF_EM_RAW_STALE_SELECTOR: case VINF_EM_RAW_IRET_TRAP: /* We will not go to the recompiler if EIP points to patch code. */ if (PATMIsPatchGCAddr(pVM, pCtx->eip)) { pCtx->eip = PATMR3PatchToGCPtr(pVM, (RTGCPTR)pCtx->eip, 0); } LogFlow(("emR3RawHandleRC: %Rrc -> %Rrc\n", rc, VINF_EM_RESCHEDULE_REM)); rc = VINF_EM_RESCHEDULE_REM; break; /* * Up a level. */ case VINF_EM_TERMINATE: case VINF_EM_OFF: case VINF_EM_RESET: case VINF_EM_SUSPEND: case VINF_EM_HALT: case VINF_EM_RESUME: case VINF_EM_NO_MEMORY: case VINF_EM_RESCHEDULE: case VINF_EM_RESCHEDULE_REM: case VINF_EM_WAIT_SIPI: break; /* * Up a level and invoke the debugger. */ case VINF_EM_DBG_STEPPED: case VINF_EM_DBG_BREAKPOINT: case VINF_EM_DBG_STEP: case VINF_EM_DBG_HYPER_BREAKPOINT: case VINF_EM_DBG_HYPER_STEPPED: case VINF_EM_DBG_HYPER_ASSERTION: case VINF_EM_DBG_STOP: break; /* * Up a level, dump and debug. */ case VERR_TRPM_DONT_PANIC: case VERR_TRPM_PANIC: case VERR_VMM_RING0_ASSERTION: break; /* * Up a level, after HwAccM have done some release logging. */ case VERR_VMX_INVALID_VMCS_FIELD: case VERR_VMX_INVALID_VMCS_PTR: case VERR_VMX_INVALID_VMXON_PTR: case VERR_VMX_UNEXPECTED_INTERRUPTION_EXIT_CODE: case VERR_VMX_UNEXPECTED_EXCEPTION: case VERR_VMX_UNEXPECTED_EXIT_CODE: case VERR_VMX_INVALID_GUEST_STATE: case VERR_VMX_UNABLE_TO_START_VM: case VERR_VMX_UNABLE_TO_RESUME_VM: HWACCMR3CheckError(pVM, rc); break; /* * Anything which is not known to us means an internal error * and the termination of the VM! */ default: AssertMsgFailed(("Unknown GC return code: %Rra\n", rc)); break; } return rc; } /** * Check for pending raw actions * * @returns VBox status code. May return VINF_EM_NO_MEMORY but none of the other * EM statuses. * @param pVM The VM to operate on. * @param pVCpu The VMCPU handle. */ VMMR3DECL(int) EMR3CheckRawForcedActions(PVM pVM, PVMCPU pVCpu) { return emR3RawForcedActions(pVM, pVCpu, pVCpu->em.s.pCtx); } /** * Process raw-mode specific forced actions. * * This function is called when any FFs in the VM_FF_HIGH_PRIORITY_PRE_RAW_MASK is pending. * * @returns VBox status code. May return VINF_EM_NO_MEMORY but none of the other * EM statuses. * @param pVM The VM handle. * @param pVCpu The VMCPU handle. * @param pCtx The guest CPUM register context. */ static int emR3RawForcedActions(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { /* * Note that the order is *vitally* important! * Also note that SELMR3UpdateFromCPUM may trigger VM_FF_SELM_SYNC_TSS. */ /* * Sync selector tables. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT)) { int rc = SELMR3UpdateFromCPUM(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; } /* * Sync IDT. * * The CSAMR3CheckGates call in TRPMR3SyncIDT may call PGMPrefetchPage * and PGMShwModifyPage, so we're in for trouble if for instance a * PGMSyncCR3+pgmPoolClearAll is pending. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TRPM_SYNC_IDT)) { if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3) && EMIsRawRing0Enabled(pVM) && CSAMIsEnabled(pVM)) { int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); if (RT_FAILURE(rc)) return rc; } int rc = TRPMR3SyncIDT(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; } /* * Sync TSS. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_TSS)) { int rc = SELMR3SyncTSS(pVM, pVCpu); if (RT_FAILURE(rc)) return rc; } /* * Sync page directory. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL)) { Assert(pVCpu->em.s.enmState != EMSTATE_WAIT_SIPI); int rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); if (RT_FAILURE(rc)) return rc; Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT)); /* Prefetch pages for EIP and ESP. */ /** @todo This is rather expensive. Should investigate if it really helps at all. */ rc = PGMPrefetchPage(pVCpu, SELMToFlat(pVM, DIS_SELREG_CS, CPUMCTX2CORE(pCtx), pCtx->rip)); if (rc == VINF_SUCCESS) rc = PGMPrefetchPage(pVCpu, SELMToFlat(pVM, DIS_SELREG_SS, CPUMCTX2CORE(pCtx), pCtx->rsp)); if (rc != VINF_SUCCESS) { if (rc != VINF_PGM_SYNC_CR3) { AssertLogRelMsgReturn(RT_FAILURE(rc), ("%Rrc\n", rc), VERR_IPE_UNEXPECTED_INFO_STATUS); return rc; } rc = PGMSyncCR3(pVCpu, pCtx->cr0, pCtx->cr3, pCtx->cr4, VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)); if (RT_FAILURE(rc)) return rc; } /** @todo maybe prefetch the supervisor stack page as well */ Assert(!VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT)); } /* * Allocate handy pages (just in case the above actions have consumed some pages). */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PGM_NEED_HANDY_PAGES, VM_FF_PGM_NO_MEMORY)) { int rc = PGMR3PhysAllocateHandyPages(pVM); if (RT_FAILURE(rc)) return rc; } /* * Check whether we're out of memory now. * * This may stem from some of the above actions or operations that has been executed * since we ran FFs. The allocate handy pages must for instance always be followed by * this check. */ if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) return VINF_EM_NO_MEMORY; return VINF_SUCCESS; } /** * Executes raw code. * * This function contains the raw-mode version of the inner * execution loop (the outer loop being in EMR3ExecuteVM()). * * @returns VBox status code. The most important ones are: VINF_EM_RESCHEDULE, * VINF_EM_RESCHEDULE_REM, VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE. * * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pfFFDone Where to store an indicator telling whether or not * FFs were done before returning. */ static int emR3RawExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone) { STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatRAWTotal, a); int rc = VERR_INTERNAL_ERROR; PCPUMCTX pCtx = pVCpu->em.s.pCtx; LogFlow(("emR3RawExecute: (cs:eip=%04x:%08x)\n", pCtx->cs, pCtx->eip)); pVCpu->em.s.fForceRAW = false; *pfFFDone = false; /* * * Spin till we get a forced action or raw mode status code resulting in * in anything but VINF_SUCCESS or VINF_EM_RESCHEDULE_RAW. * */ for (;;) { STAM_PROFILE_ADV_START(&pVCpu->em.s.StatRAWEntry, b); /* * Check various preconditions. */ #ifdef VBOX_STRICT Assert(REMR3QueryPendingInterrupt(pVM, pVCpu) == REM_NO_PENDING_IRQ); Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss & X86_SEL_RPL) == 3 || (pCtx->ss & X86_SEL_RPL) == 0); AssertMsg( (pCtx->eflags.u32 & X86_EFL_IF) || PATMShouldUseRawMode(pVM, (RTGCPTR)pCtx->eip), ("Tried to execute code with IF at EIP=%08x!\n", pCtx->eip)); if ( !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) && PGMMapHasConflicts(pVM)) { PGMMapCheck(pVM); AssertMsgFailed(("We should not get conflicts any longer!!!\n")); return VERR_INTERNAL_ERROR; } #endif /* VBOX_STRICT */ /* * Process high priority pre-execution raw-mode FFs. */ if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK)) { rc = emR3RawForcedActions(pVM, pVCpu, pCtx); if (rc != VINF_SUCCESS) break; } /* * If we're going to execute ring-0 code, the guest state needs to * be modified a bit and some of the state components (IF, SS/CS RPL, * and perhaps EIP) needs to be stored with PATM. */ rc = CPUMRawEnter(pVCpu, NULL); if (rc != VINF_SUCCESS) { STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWEntry, b); break; } /* * Scan code before executing it. Don't bother with user mode or V86 code */ if ( (pCtx->ss & X86_SEL_RPL) <= 1 && !pCtx->eflags.Bits.u1VM && !PATMIsPatchGCAddr(pVM, pCtx->eip)) { STAM_PROFILE_ADV_SUSPEND(&pVCpu->em.s.StatRAWEntry, b); CSAMR3CheckCodeEx(pVM, CPUMCTX2CORE(pCtx), pCtx->eip); STAM_PROFILE_ADV_RESUME(&pVCpu->em.s.StatRAWEntry, b); if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK)) { rc = emR3RawForcedActions(pVM, pVCpu, pCtx); if (rc != VINF_SUCCESS) { rc = CPUMRawLeave(pVCpu, NULL, rc); break; } } } #ifdef LOG_ENABLED /* * Log important stuff before entering GC. */ PPATMGCSTATE pGCState = PATMR3QueryGCStateHC(pVM); if (pCtx->eflags.Bits.u1VM) Log(("RV86: %04X:%08X IF=%d VMFlags=%x\n", pCtx->cs, pCtx->eip, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags)); else if ((pCtx->ss & X86_SEL_RPL) == 1) { bool fCSAMScanned = CSAMIsPageScanned(pVM, (RTGCPTR)pCtx->eip); Log(("RR0: %08X ESP=%08X IF=%d VMFlags=%x PIF=%d CPL=%d (Scanned=%d)\n", pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags, pGCState->fPIF, (pCtx->ss & X86_SEL_RPL), fCSAMScanned)); } else if ((pCtx->ss & X86_SEL_RPL) == 3) Log(("RR3: %08X ESP=%08X IF=%d VMFlags=%x\n", pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags)); #endif /* LOG_ENABLED */ /* * Execute the code. */ STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWEntry, b); STAM_PROFILE_START(&pVCpu->em.s.StatRAWExec, c); rc = VMMR3RawRunGC(pVM, pVCpu); STAM_PROFILE_STOP(&pVCpu->em.s.StatRAWExec, c); STAM_PROFILE_ADV_START(&pVCpu->em.s.StatRAWTail, d); LogFlow(("RR0-E: %08X ESP=%08X IF=%d VMFlags=%x PIF=%d CPL=%d\n", pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pGCState->uVMFlags, pGCState->fPIF, (pCtx->ss & X86_SEL_RPL))); LogFlow(("VMMR3RawRunGC returned %Rrc\n", rc)); /* * Restore the real CPU state and deal with high priority post * execution FFs before doing anything else. */ rc = CPUMRawLeave(pVCpu, NULL, rc); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK); if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_MASK)) rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc); #ifdef VBOX_STRICT /* * Assert TSS consistency & rc vs patch code. */ if ( !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_SELM_SYNC_GDT) /* GDT implies TSS at the moment. */ && EMIsRawRing0Enabled(pVM)) SELMR3CheckTSS(pVM); switch (rc) { case VINF_SUCCESS: case VINF_EM_RAW_INTERRUPT: case VINF_PATM_PATCH_TRAP_PF: case VINF_PATM_PATCH_TRAP_GP: case VINF_PATM_PATCH_INT3: case VINF_PATM_CHECK_PATCH_PAGE: case VINF_EM_RAW_EXCEPTION_PRIVILEGED: case VINF_EM_RAW_GUEST_TRAP: case VINF_EM_RESCHEDULE_RAW: break; default: if (PATMIsPatchGCAddr(pVM, pCtx->eip) && !(pCtx->eflags.u32 & X86_EFL_TF)) LogIt(NULL, 0, LOG_GROUP_PATM, ("Patch code interrupted at %RRv for reason %Rrc\n", (RTRCPTR)CPUMGetGuestEIP(pVCpu), rc)); break; } /* * Let's go paranoid! */ if ( !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL) && PGMMapHasConflicts(pVM)) { PGMMapCheck(pVM); AssertMsgFailed(("We should not get conflicts any longer!!! rc=%Rrc\n", rc)); return VERR_INTERNAL_ERROR; } #endif /* VBOX_STRICT */ /* * Process the returned status code. */ if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST) { STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTail, d); break; } rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc); if (rc != VINF_SUCCESS) { rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc); if (rc != VINF_SUCCESS) { STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTail, d); break; } } /* * Check and execute forced actions. */ #ifdef VBOX_HIGH_RES_TIMERS_HACK TMTimerPollVoid(pVM, pVCpu); #endif STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTail, d); if ( VM_FF_ISPENDING(pVM, ~VM_FF_HIGH_PRIORITY_PRE_RAW_MASK | VM_FF_PGM_NO_MEMORY) || VMCPU_FF_ISPENDING(pVCpu, ~VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK)) { Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss & X86_SEL_RPL) != 1); STAM_REL_PROFILE_ADV_SUSPEND(&pVCpu->em.s.StatRAWTotal, a); rc = emR3ForcedActions(pVM, pVCpu, rc); STAM_REL_PROFILE_ADV_RESUME(&pVCpu->em.s.StatRAWTotal, a); if ( rc != VINF_SUCCESS && rc != VINF_EM_RESCHEDULE_RAW) { rc = emR3RawUpdateForceFlag(pVM, pVCpu, pCtx, rc); if (rc != VINF_SUCCESS) { *pfFFDone = true; break; } } } } /* * Return to outer loop. */ #if defined(LOG_ENABLED) && defined(DEBUG) RTLogFlush(NULL); #endif STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatRAWTotal, a); return rc; } /** * Executes hardware accelerated raw code. (Intel VMX & AMD SVM) * * This function contains the raw-mode version of the inner * execution loop (the outer loop being in EMR3ExecuteVM()). * * @returns VBox status code. The most important ones are: VINF_EM_RESCHEDULE, VINF_EM_RESCHEDULE_RAW, * VINF_EM_RESCHEDULE_REM, VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE. * * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param pfFFDone Where to store an indicator telling whether or not * FFs were done before returning. */ static int emR3HwAccExecute(PVM pVM, PVMCPU pVCpu, bool *pfFFDone) { int rc = VERR_INTERNAL_ERROR; PCPUMCTX pCtx = pVCpu->em.s.pCtx; LogFlow(("emR3HwAccExecute%d: (cs:eip=%04x:%RGv)\n", pVCpu->idCpu, pCtx->cs, (RTGCPTR)pCtx->rip)); *pfFFDone = false; STAM_COUNTER_INC(&pVCpu->em.s.StatHwAccExecuteEntry); #ifdef EM_NOTIFY_HWACCM HWACCMR3NotifyScheduled(pVCpu); #endif /* * Spin till we get a forced action which returns anything but VINF_SUCCESS. */ for (;;) { STAM_PROFILE_ADV_START(&pVCpu->em.s.StatHwAccEntry, a); /* * Process high priority pre-execution raw-mode FFs. */ VMCPU_FF_CLEAR(pVCpu, (VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_TRPM_SYNC_IDT | VMCPU_FF_SELM_SYNC_TSS)); /* not relevant in HWACCM mode; shouldn't be set really. */ if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_RAW_MASK)) { rc = emR3RawForcedActions(pVM, pVCpu, pCtx); if (rc != VINF_SUCCESS) break; } #ifdef LOG_ENABLED /* * Log important stuff before entering GC. */ if (TRPMHasTrap(pVCpu)) Log(("CPU%d: Pending hardware interrupt=0x%x cs:rip=%04X:%RGv\n", pVCpu->idCpu, TRPMGetTrapNo(pVCpu), pCtx->cs, (RTGCPTR)pCtx->rip)); uint32_t cpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)); if (pVM->cCPUs == 1) { if (pCtx->eflags.Bits.u1VM) Log(("HWV86: %08X IF=%d\n", pCtx->eip, pCtx->eflags.Bits.u1IF)); else if (CPUMIsGuestIn64BitCodeEx(pCtx)) Log(("HWR%d: %04X:%RGv ESP=%RGv IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->rsp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER)); else Log(("HWR%d: %04X:%08X ESP=%08X IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pCtx->cs, pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER)); } else { if (pCtx->eflags.Bits.u1VM) Log(("HWV86-CPU%d: %08X IF=%d\n", pVCpu->idCpu, pCtx->eip, pCtx->eflags.Bits.u1IF)); else if (CPUMIsGuestIn64BitCodeEx(pCtx)) Log(("HWR%d-CPU%d: %04X:%RGv ESP=%RGv IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pVCpu->idCpu, pCtx->cs, (RTGCPTR)pCtx->rip, pCtx->rsp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER)); else Log(("HWR%d-CPU%d: %04X:%08X ESP=%08X IF=%d IOPL=%d CR0=%x CR4=%x EFER=%x\n", cpl, pVCpu->idCpu, pCtx->cs, pCtx->eip, pCtx->esp, pCtx->eflags.Bits.u1IF, pCtx->eflags.Bits.u2IOPL, (uint32_t)pCtx->cr0, (uint32_t)pCtx->cr4, (uint32_t)pCtx->msrEFER)); } #endif /* LOG_ENABLED */ /* * Execute the code. */ STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatHwAccEntry, a); STAM_PROFILE_START(&pVCpu->em.s.StatHwAccExec, x); rc = VMMR3HwAccRunGC(pVM, pVCpu); STAM_PROFILE_STOP(&pVCpu->em.s.StatHwAccExec, x); /* * Deal with high priority post execution FFs before doing anything else. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_RESUME_GUEST_MASK); if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_POST_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_POST_MASK)) rc = emR3HighPriorityPostForcedActions(pVM, pVCpu, rc); /* * Process the returned status code. */ if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST) break; rc = emR3RawHandleRC(pVM, pVCpu, pCtx, rc); if (rc != VINF_SUCCESS) break; /* * Check and execute forced actions. */ #ifdef VBOX_HIGH_RES_TIMERS_HACK TMTimerPollVoid(pVM, pVCpu); #endif if ( VM_FF_ISPENDING(pVM, VM_FF_ALL_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_MASK)) { rc = emR3ForcedActions(pVM, pVCpu, rc); if ( rc != VINF_SUCCESS && rc != VINF_EM_RESCHEDULE_HWACC) { *pfFFDone = true; break; } } } /* * Return to outer loop. */ #if defined(LOG_ENABLED) && defined(DEBUG) RTLogFlush(NULL); #endif return rc; } /** * Decides whether to execute RAW, HWACC or REM. * * @returns new EM state * @param pVM The VM. * @param pVCpu The VMCPU handle. * @param pCtx The CPU context. */ static EMSTATE emR3Reschedule(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx) { /* * When forcing raw-mode execution, things are simple. */ if (pVCpu->em.s.fForceRAW) return EMSTATE_RAW; /* * We stay in the wait for SIPI state unless explicitly told otherwise. */ if (pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI) return EMSTATE_WAIT_SIPI; /* !!! THIS MUST BE IN SYNC WITH remR3CanExecuteRaw !!! */ /* !!! THIS MUST BE IN SYNC WITH remR3CanExecuteRaw !!! */ /* !!! THIS MUST BE IN SYNC WITH remR3CanExecuteRaw !!! */ X86EFLAGS EFlags = pCtx->eflags; if (HWACCMIsEnabled(pVM)) { /* Hardware accelerated raw-mode: * * Typically only 32-bits protected mode, with paging enabled, code is allowed here. */ if (HWACCMR3CanExecuteGuest(pVM, pCtx) == true) return EMSTATE_HWACC; /* Note: Raw mode and hw accelerated mode are incompatible. The latter turns * off monitoring features essential for raw mode! */ return EMSTATE_REM; } /* * Standard raw-mode: * * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges * or 32 bits protected mode ring 0 code * * The tests are ordered by the likelyhood of being true during normal execution. */ if (EFlags.u32 & (X86_EFL_TF /* | HF_INHIBIT_IRQ_MASK*/)) { Log2(("raw mode refused: EFlags=%#x\n", EFlags.u32)); return EMSTATE_REM; } #ifndef VBOX_RAW_V86 if (EFlags.u32 & X86_EFL_VM) { Log2(("raw mode refused: VM_MASK\n")); return EMSTATE_REM; } #endif /** @todo check up the X86_CR0_AM flag in respect to raw mode!!! We're probably not emulating it right! */ uint32_t u32CR0 = pCtx->cr0; if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE)) { //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM")); return EMSTATE_REM; } if (pCtx->cr4 & X86_CR4_PAE) { uint32_t u32Dummy, u32Features; CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features); if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE)) return EMSTATE_REM; } unsigned uSS = pCtx->ss; if ( pCtx->eflags.Bits.u1VM || (uSS & X86_SEL_RPL) == 3) { if (!EMIsRawRing3Enabled(pVM)) return EMSTATE_REM; if (!(EFlags.u32 & X86_EFL_IF)) { Log2(("raw mode refused: IF (RawR3)\n")); return EMSTATE_REM; } if (!(u32CR0 & X86_CR0_WP) && EMIsRawRing0Enabled(pVM)) { Log2(("raw mode refused: CR0.WP + RawR0\n")); return EMSTATE_REM; } } else { if (!EMIsRawRing0Enabled(pVM)) return EMSTATE_REM; /* Only ring 0 supervisor code. */ if ((uSS & X86_SEL_RPL) != 0) { Log2(("raw r0 mode refused: CPL %d\n", uSS & X86_SEL_RPL)); return EMSTATE_REM; } // Let's start with pure 32 bits ring 0 code first /** @todo What's pure 32-bit mode? flat? */ if ( !(pCtx->ssHid.Attr.n.u1DefBig) || !(pCtx->csHid.Attr.n.u1DefBig)) { Log2(("raw r0 mode refused: SS/CS not 32bit\n")); return EMSTATE_REM; } /* Write protection must be turned on, or else the guest can overwrite our hypervisor code and data. */ if (!(u32CR0 & X86_CR0_WP)) { Log2(("raw r0 mode refused: CR0.WP=0!\n")); return EMSTATE_REM; } if (PATMShouldUseRawMode(pVM, (RTGCPTR)pCtx->eip)) { Log2(("raw r0 mode forced: patch code\n")); return EMSTATE_RAW; } #if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS) if (!(EFlags.u32 & X86_EFL_IF)) { ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, pVMeflags)); //Log2(("RR0: Interrupts turned off; fall back to emulation\n")); return EMSTATE_REM; } #endif /** @todo still necessary??? */ if (EFlags.Bits.u2IOPL != 0) { Log2(("raw r0 mode refused: IOPL %d\n", EFlags.Bits.u2IOPL)); return EMSTATE_REM; } } Assert(PGMPhysIsA20Enabled(pVCpu)); return EMSTATE_RAW; } /** * Executes all high priority post execution force actions. * * @returns rc or a fatal status code. * * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param rc The current rc. */ static int emR3HighPriorityPostForcedActions(PVM pVM, PVMCPU pVCpu, int rc) { if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT)) PDMCritSectFF(pVCpu); if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_CSAM_PENDING_ACTION)) CSAMR3DoPendingAction(pVM, pVCpu); if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { if ( rc > VINF_EM_NO_MEMORY && rc <= VINF_EM_LAST) rc = VINF_EM_NO_MEMORY; } return rc; } /** * Executes all pending forced actions. * * Forced actions can cause execution delays and execution * rescheduling. The first we deal with using action priority, so * that for instance pending timers aren't scheduled and ran until * right before execution. The rescheduling we deal with using * return codes. The same goes for VM termination, only in that case * we exit everything. * * @returns VBox status code of equal or greater importance/severity than rc. * The most important ones are: VINF_EM_RESCHEDULE, * VINF_EM_SUSPEND, VINF_EM_RESET and VINF_EM_TERMINATE. * * @param pVM VM handle. * @param pVCpu VMCPU handle. * @param rc The current rc. * */ static int emR3ForcedActions(PVM pVM, PVMCPU pVCpu, int rc) { STAM_REL_PROFILE_START(&pVCpu->em.s.StatForcedActions, a); #ifdef VBOX_STRICT int rcIrq = VINF_SUCCESS; #endif int rc2; #define UPDATE_RC() \ do { \ AssertMsg(rc2 <= 0 || (rc2 >= VINF_EM_FIRST && rc2 <= VINF_EM_LAST), ("Invalid FF return code: %Rra\n", rc2)); \ if (rc2 == VINF_SUCCESS || rc < VINF_SUCCESS) \ break; \ if (!rc || rc2 < rc) \ rc = rc2; \ } while (0) /* * Post execution chunk first. */ if ( VM_FF_ISPENDING(pVM, VM_FF_NORMAL_PRIORITY_POST_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_NORMAL_PRIORITY_POST_MASK)) { /* * Termination request. */ if (VM_FF_ISPENDING(pVM, VM_FF_TERMINATE)) { Log2(("emR3ForcedActions: returns VINF_EM_TERMINATE\n")); STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a); return VINF_EM_TERMINATE; } /* * Debugger Facility polling. */ if (VM_FF_ISPENDING(pVM, VM_FF_DBGF)) { rc2 = DBGFR3VMMForcedAction(pVM); UPDATE_RC(); } /* * Postponed reset request. */ if (VM_FF_TESTANDCLEAR(pVM, VM_FF_RESET_BIT)) { rc2 = VMR3Reset(pVM); UPDATE_RC(); } /* * CSAM page scanning. */ if ( !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY) && VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_CSAM_SCAN_PAGE)) { PCPUMCTX pCtx = pVCpu->em.s.pCtx; /** @todo: check for 16 or 32 bits code! (D bit in the code selector) */ Log(("Forced action VMCPU_FF_CSAM_SCAN_PAGE\n")); CSAMR3CheckCodeEx(pVM, CPUMCTX2CORE(pCtx), pCtx->eip); VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_CSAM_SCAN_PAGE); } /* * Out of memory? Putting this after CSAM as it may in theory cause us to run out of memory. */ if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { rc2 = PGMR3PhysAllocateHandyPages(pVM); UPDATE_RC(); if (rc == VINF_EM_NO_MEMORY) return rc; } /* check that we got them all */ AssertCompile(VM_FF_NORMAL_PRIORITY_POST_MASK == (VM_FF_TERMINATE | VM_FF_DBGF | VM_FF_RESET | VM_FF_PGM_NO_MEMORY)); AssertCompile(VMCPU_FF_NORMAL_PRIORITY_POST_MASK == VMCPU_FF_CSAM_SCAN_PAGE); } /* * Normal priority then. * (Executed in no particular order.) */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_NORMAL_PRIORITY_MASK, VM_FF_PGM_NO_MEMORY)) { /* * PDM Queues are pending. */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PDM_QUEUES, VM_FF_PGM_NO_MEMORY)) PDMR3QueueFlushAll(pVM); /* * PDM DMA transfers are pending. */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PDM_DMA, VM_FF_PGM_NO_MEMORY)) PDMR3DmaRun(pVM); /* * Requests from other threads. */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_REQUEST, VM_FF_PGM_NO_MEMORY)) { rc2 = VMR3ReqProcessU(pVM->pUVM, VMCPUID_ANY); Assert(rc2 != VINF_EM_RESET); /* should be per-VCPU */ if (rc2 == VINF_EM_OFF || rc2 == VINF_EM_TERMINATE) { Log2(("emR3ForcedActions: returns %Rrc\n", rc2)); STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a); return rc2; } UPDATE_RC(); } /* Replay the handler notification changes. */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_REM_HANDLER_NOTIFY, VM_FF_PGM_NO_MEMORY)) { EMR3RemLock(pVM); REMR3ReplayHandlerNotifications(pVM); EMR3RemUnlock(pVM); } /* check that we got them all */ AssertCompile(VM_FF_NORMAL_PRIORITY_MASK == (VM_FF_REQUEST | VM_FF_PDM_QUEUES | VM_FF_PDM_DMA | VM_FF_REM_HANDLER_NOTIFY)); } /* * Normal priority then. (per-VCPU) * (Executed in no particular order.) */ if ( !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY) && VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_NORMAL_PRIORITY_MASK)) { /* * Requests from other threads. */ if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_REQUEST)) { rc2 = VMR3ReqProcessU(pVM->pUVM, pVCpu->idCpu); if (rc2 == VINF_EM_OFF || rc2 == VINF_EM_TERMINATE || rc2 == VINF_EM_RESET) { Log2(("emR3ForcedActions: returns %Rrc\n", rc2)); STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a); return rc2; } UPDATE_RC(); } /* check that we got them all */ Assert(!(VMCPU_FF_NORMAL_PRIORITY_MASK & ~(VMCPU_FF_REQUEST))); } /* * High priority pre execution chunk last. * (Executed in ascending priority order.) */ if ( VM_FF_ISPENDING(pVM, VM_FF_HIGH_PRIORITY_PRE_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_HIGH_PRIORITY_PRE_MASK)) { /* * Timers before interrupts. */ if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_TIMER) && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) TMR3TimerQueuesDo(pVM); /* * The instruction following an emulated STI should *always* be executed! */ if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { Log(("VM_FF_EMULATED_STI at %RGv successor %RGv\n", (RTGCPTR)CPUMGetGuestRIP(pVCpu), EMGetInhibitInterruptsPC(pVCpu))); if (CPUMGetGuestEIP(pVCpu) != EMGetInhibitInterruptsPC(pVCpu)) { /* Note: we intentionally don't clear VM_FF_INHIBIT_INTERRUPTS here if the eip is the same as the inhibited instr address. * Before we are able to execute this instruction in raw mode (iret to guest code) an external interrupt might * force a world switch again. Possibly allowing a guest interrupt to be dispatched in the process. This could * break the guest. Sounds very unlikely, but such timing sensitive problem are not as rare as you might think. */ VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS); } if (HWACCMR3IsActive(pVCpu)) rc2 = VINF_EM_RESCHEDULE_HWACC; else rc2 = PATMAreInterruptsEnabled(pVM) ? VINF_EM_RESCHEDULE_RAW : VINF_EM_RESCHEDULE_REM; UPDATE_RC(); } /* * Interrupts. */ if ( !VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY) && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS) && (!rc || rc >= VINF_EM_RESCHEDULE_HWACC) && !TRPMHasTrap(pVCpu) /* an interrupt could already be scheduled for dispatching in the recompiler. */ && PATMAreInterruptsEnabled(pVM) && !HWACCMR3IsEventPending(pVM)) { Assert(pVCpu->em.s.enmState != EMSTATE_WAIT_SIPI); if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)) { /* Note: it's important to make sure the return code from TRPMR3InjectEvent isn't ignored! */ /** @todo this really isn't nice, should properly handle this */ rc2 = TRPMR3InjectEvent(pVM, pVCpu, TRPM_HARDWARE_INT); #ifdef VBOX_STRICT rcIrq = rc2; #endif UPDATE_RC(); } /** @todo really ugly; if we entered the hlt state when exiting the recompiler and an interrupt was pending, we previously got stuck in the halted state. */ else if (REMR3QueryPendingInterrupt(pVM, pVCpu) != REM_NO_PENDING_IRQ) { rc2 = VINF_EM_RESCHEDULE_REM; UPDATE_RC(); } } /* * Allocate handy pages. */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_PGM_NEED_HANDY_PAGES, VM_FF_PGM_NO_MEMORY)) { rc2 = PGMR3PhysAllocateHandyPages(pVM); UPDATE_RC(); } /* * Debugger Facility request. */ if (VM_FF_IS_PENDING_EXCEPT(pVM, VM_FF_DBGF, VM_FF_PGM_NO_MEMORY)) { rc2 = DBGFR3VMMForcedAction(pVM); UPDATE_RC(); } /* * Termination request. */ if (VM_FF_ISPENDING(pVM, VM_FF_TERMINATE)) { Log2(("emR3ForcedActions: returns VINF_EM_TERMINATE\n")); STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a); return VINF_EM_TERMINATE; } /* * Out of memory? Since most of our fellow high priority actions may cause us * to run out of memory, we're employing VM_FF_IS_PENDING_EXCEPT and putting this * at the end rather than the start. Also, VM_FF_TERMINATE has higher priority * than us since we can terminate without allocating more memory. */ if (VM_FF_ISPENDING(pVM, VM_FF_PGM_NO_MEMORY)) { rc2 = PGMR3PhysAllocateHandyPages(pVM); UPDATE_RC(); if (rc == VINF_EM_NO_MEMORY) return rc; } /* * If the virtual sync clock is still stopped, make TM restart it. */ if (VM_FF_ISPENDING(pVM, VM_FF_TM_VIRTUAL_SYNC)) TMR3VirtualSyncFF(pVM, pVCpu); #ifdef DEBUG /* * Debug, pause the VM. */ if (VM_FF_ISPENDING(pVM, VM_FF_DEBUG_SUSPEND)) { VM_FF_CLEAR(pVM, VM_FF_DEBUG_SUSPEND); Log(("emR3ForcedActions: returns VINF_EM_SUSPEND\n")); return VINF_EM_SUSPEND; } #endif /* check that we got them all */ AssertCompile(VM_FF_HIGH_PRIORITY_PRE_MASK == (VM_FF_TM_VIRTUAL_SYNC | VM_FF_DBGF | VM_FF_TERMINATE | VM_FF_DEBUG_SUSPEND | VM_FF_PGM_NEED_HANDY_PAGES | VM_FF_PGM_NO_MEMORY)); AssertCompile(VMCPU_FF_HIGH_PRIORITY_PRE_MASK == (VMCPU_FF_TIMER | VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL | VMCPU_FF_SELM_SYNC_TSS | VMCPU_FF_TRPM_SYNC_IDT | VMCPU_FF_SELM_SYNC_GDT | VMCPU_FF_SELM_SYNC_LDT | VMCPU_FF_INHIBIT_INTERRUPTS)); } #undef UPDATE_RC Log2(("emR3ForcedActions: returns %Rrc\n", rc)); STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatForcedActions, a); Assert(rcIrq == VINF_SUCCESS || rcIrq == rc); return rc; } /** * Release the IOM lock if owned by the current VCPU * * @param pVM The VM to operate on. */ VMMR3DECL(void) EMR3ReleaseOwnedLocks(PVM pVM) { while (PDMCritSectIsOwner(&pVM->em.s.CritSectREM)) PDMCritSectLeave(&pVM->em.s.CritSectREM); } /** * Execute VM. * * This function is the main loop of the VM. The emulation thread * calls this function when the VM has been successfully constructed * and we're ready for executing the VM. * * Returning from this function means that the VM is turned off or * suspended (state already saved) and deconstruction in next in line. * * All interaction from other thread are done using forced actions * and signaling of the wait object. * * @returns VBox status code, informational status codes may indicate failure. * @param pVM The VM to operate on. * @param pVCpu The VMCPU to operate on. */ VMMR3DECL(int) EMR3ExecuteVM(PVM pVM, PVMCPU pVCpu) { LogFlow(("EMR3ExecuteVM: pVM=%p enmVMState=%d enmState=%d (%s) fForceRAW=%d\n", pVM, pVM->enmVMState, pVCpu->em.s.enmState, EMR3GetStateName(pVCpu->em.s.enmState), pVCpu->em.s.fForceRAW)); VM_ASSERT_EMT(pVM); AssertMsg( pVCpu->em.s.enmState == EMSTATE_NONE || pVCpu->em.s.enmState == EMSTATE_WAIT_SIPI || pVCpu->em.s.enmState == EMSTATE_SUSPENDED, ("%s\n", EMR3GetStateName(pVCpu->em.s.enmState))); int rc = setjmp(pVCpu->em.s.u.FatalLongJump); if (rc == 0) { /* * Start the virtual time. */ TMR3NotifyResume(pVM, pVCpu); /* * The Outer Main Loop. */ bool fFFDone = false; /* Reschedule right away to start in the right state. */ rc = VINF_SUCCESS; /* If resuming after a pause or a state load, restore the previous state or else we'll start executing code. Else, just reschedule. */ if ( pVCpu->em.s.enmState == EMSTATE_SUSPENDED && ( pVCpu->em.s.enmPrevState == EMSTATE_WAIT_SIPI || pVCpu->em.s.enmPrevState == EMSTATE_HALTED)) pVCpu->em.s.enmState = pVCpu->em.s.enmPrevState; else pVCpu->em.s.enmState = emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx); STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatTotal, x); for (;;) { /* * Before we can schedule anything (we're here because * scheduling is required) we must service any pending * forced actions to avoid any pending action causing * immediate rescheduling upon entering an inner loop * * Do forced actions. */ if ( !fFFDone && rc != VINF_EM_TERMINATE && rc != VINF_EM_OFF && ( VM_FF_ISPENDING(pVM, VM_FF_ALL_BUT_RAW_MASK) || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_BUT_RAW_MASK))) { rc = emR3ForcedActions(pVM, pVCpu, rc); if ( ( rc == VINF_EM_RESCHEDULE_REM || rc == VINF_EM_RESCHEDULE_HWACC) && pVCpu->em.s.fForceRAW) rc = VINF_EM_RESCHEDULE_RAW; } else if (fFFDone) fFFDone = false; /* * Now what to do? */ Log2(("EMR3ExecuteVM: rc=%Rrc\n", rc)); switch (rc) { /* * Keep doing what we're currently doing. */ case VINF_SUCCESS: break; /* * Reschedule - to raw-mode execution. */ case VINF_EM_RESCHEDULE_RAW: Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_RAW: %d -> %d (EMSTATE_RAW)\n", pVCpu->em.s.enmState, EMSTATE_RAW)); pVCpu->em.s.enmState = EMSTATE_RAW; break; /* * Reschedule - to hardware accelerated raw-mode execution. */ case VINF_EM_RESCHEDULE_HWACC: Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_HWACC: %d -> %d (EMSTATE_HWACC)\n", pVCpu->em.s.enmState, EMSTATE_HWACC)); Assert(!pVCpu->em.s.fForceRAW); pVCpu->em.s.enmState = EMSTATE_HWACC; break; /* * Reschedule - to recompiled execution. */ case VINF_EM_RESCHEDULE_REM: Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_REM: %d -> %d (EMSTATE_REM)\n", pVCpu->em.s.enmState, EMSTATE_REM)); pVCpu->em.s.enmState = EMSTATE_REM; break; #ifdef VBOX_WITH_VMI /* * Reschedule - parav call. */ case VINF_EM_RESCHEDULE_PARAV: Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE_PARAV: %d -> %d (EMSTATE_PARAV)\n", pVCpu->em.s.enmState, EMSTATE_PARAV)); pVCpu->em.s.enmState = EMSTATE_PARAV; break; #endif /* * Resume. */ case VINF_EM_RESUME: Log2(("EMR3ExecuteVM: VINF_EM_RESUME: %d -> VINF_EM_RESCHEDULE\n", pVCpu->em.s.enmState)); /* Don't reschedule in the halted or wait for SIPI case. */ if ( pVCpu->em.s.enmPrevState == EMSTATE_WAIT_SIPI || pVCpu->em.s.enmPrevState == EMSTATE_HALTED) break; /* fall through and get scheduled. */ /* * Reschedule. */ case VINF_EM_RESCHEDULE: { EMSTATE enmState = emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx); Log2(("EMR3ExecuteVM: VINF_EM_RESCHEDULE: %d -> %d (%s)\n", pVCpu->em.s.enmState, enmState, EMR3GetStateName(enmState))); pVCpu->em.s.enmState = enmState; break; } /* * Halted. */ case VINF_EM_HALT: Log2(("EMR3ExecuteVM: VINF_EM_HALT: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_HALTED)); pVCpu->em.s.enmState = EMSTATE_HALTED; break; /* * Switch to the wait for SIPI state (application processor only) */ case VINF_EM_WAIT_SIPI: Assert(pVCpu->idCpu != 0); Log2(("EMR3ExecuteVM: VINF_EM_WAIT_SIPI: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_WAIT_SIPI)); pVCpu->em.s.enmState = EMSTATE_WAIT_SIPI; break; /* * Suspend. */ case VINF_EM_SUSPEND: Log2(("EMR3ExecuteVM: VINF_EM_SUSPEND: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_SUSPENDED)); pVCpu->em.s.enmPrevState = pVCpu->em.s.enmState; pVCpu->em.s.enmState = EMSTATE_SUSPENDED; break; /* * Reset. * We might end up doing a double reset for now, we'll have to clean up the mess later. */ case VINF_EM_RESET: { if (pVCpu->idCpu == 0) { EMSTATE enmState = emR3Reschedule(pVM, pVCpu, pVCpu->em.s.pCtx); Log2(("EMR3ExecuteVM: VINF_EM_RESET: %d -> %d (%s)\n", pVCpu->em.s.enmState, enmState, EMR3GetStateName(enmState))); pVCpu->em.s.enmState = enmState; } else { /* All other VCPUs go into the wait for SIPI state. */ pVCpu->em.s.enmState = EMSTATE_WAIT_SIPI; } break; } /* * Power Off. */ case VINF_EM_OFF: pVCpu->em.s.enmState = EMSTATE_TERMINATING; Log2(("EMR3ExecuteVM: returns VINF_EM_OFF (%d -> %d)\n", pVCpu->em.s.enmState, EMSTATE_TERMINATING)); TMR3NotifySuspend(pVM, pVCpu); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); return rc; /* * Terminate the VM. */ case VINF_EM_TERMINATE: pVCpu->em.s.enmState = EMSTATE_TERMINATING; Log(("EMR3ExecuteVM returns VINF_EM_TERMINATE (%d -> %d)\n", pVCpu->em.s.enmState, EMSTATE_TERMINATING)); TMR3NotifySuspend(pVM, pVCpu); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); return rc; /* * Out of memory, suspend the VM and stuff. */ case VINF_EM_NO_MEMORY: Log2(("EMR3ExecuteVM: VINF_EM_NO_MEMORY: %d -> %d\n", pVCpu->em.s.enmState, EMSTATE_SUSPENDED)); pVCpu->em.s.enmState = EMSTATE_SUSPENDED; TMR3NotifySuspend(pVM, pVCpu); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); rc = VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_SUSPEND, "HostMemoryLow", N_("Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM")); if (rc != VINF_EM_SUSPEND) { if (RT_SUCCESS_NP(rc)) { AssertLogRelMsgFailed(("%Rrc\n", rc)); rc = VERR_EM_INTERNAL_ERROR; } pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION; } return rc; /* * Guest debug events. */ case VINF_EM_DBG_STEPPED: AssertMsgFailed(("VINF_EM_DBG_STEPPED cannot be here!")); case VINF_EM_DBG_STOP: case VINF_EM_DBG_BREAKPOINT: case VINF_EM_DBG_STEP: if (pVCpu->em.s.enmState == EMSTATE_RAW) { Log2(("EMR3ExecuteVM: %Rrc: %d -> %d\n", rc, pVCpu->em.s.enmState, EMSTATE_DEBUG_GUEST_RAW)); pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_RAW; } else { Log2(("EMR3ExecuteVM: %Rrc: %d -> %d\n", rc, pVCpu->em.s.enmState, EMSTATE_DEBUG_GUEST_REM)); pVCpu->em.s.enmState = EMSTATE_DEBUG_GUEST_REM; } break; /* * Hypervisor debug events. */ case VINF_EM_DBG_HYPER_STEPPED: case VINF_EM_DBG_HYPER_BREAKPOINT: case VINF_EM_DBG_HYPER_ASSERTION: Log2(("EMR3ExecuteVM: %Rrc: %d -> %d\n", rc, pVCpu->em.s.enmState, EMSTATE_DEBUG_HYPER)); pVCpu->em.s.enmState = EMSTATE_DEBUG_HYPER; break; /* * Guru mediations. */ case VERR_VMM_RING0_ASSERTION: Log(("EMR3ExecuteVM: %Rrc: %d -> %d (EMSTATE_GURU_MEDITATION)\n", rc, pVCpu->em.s.enmState, EMSTATE_GURU_MEDITATION)); pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION; break; /* * Any error code showing up here other than the ones we * know and process above are considered to be FATAL. * * Unknown warnings and informational status codes are also * included in this. */ default: if (RT_SUCCESS_NP(rc)) { AssertMsgFailed(("Unexpected warning or informational status code %Rra!\n", rc)); rc = VERR_EM_INTERNAL_ERROR; } pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION; Log(("EMR3ExecuteVM returns %d\n", rc)); break; } STAM_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); /* (skip this in release) */ STAM_PROFILE_ADV_START(&pVCpu->em.s.StatTotal, x); /* * Act on the state. */ switch (pVCpu->em.s.enmState) { /* * Execute raw. */ case EMSTATE_RAW: rc = emR3RawExecute(pVM, pVCpu, &fFFDone); break; /* * Execute hardware accelerated raw. */ case EMSTATE_HWACC: rc = emR3HwAccExecute(pVM, pVCpu, &fFFDone); break; /* * Execute recompiled. */ case EMSTATE_REM: rc = emR3RemExecute(pVM, pVCpu, &fFFDone); Log2(("EMR3ExecuteVM: emR3RemExecute -> %Rrc\n", rc)); break; #ifdef VBOX_WITH_VMI /* * Execute PARAV function. */ case EMSTATE_PARAV: rc = PARAVCallFunction(pVM); pVCpu->em.s.enmState = EMSTATE_REM; break; #endif /* * Application processor execution halted until SIPI. */ case EMSTATE_WAIT_SIPI: /* no break */ /* * hlt - execution halted until interrupt. */ case EMSTATE_HALTED: { STAM_REL_PROFILE_START(&pVCpu->em.s.StatHalted, y); rc = VMR3WaitHalted(pVM, pVCpu, !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)); STAM_REL_PROFILE_STOP(&pVCpu->em.s.StatHalted, y); break; } /* * Suspended - return to VM.cpp. */ case EMSTATE_SUSPENDED: TMR3NotifySuspend(pVM, pVCpu); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); return VINF_EM_SUSPEND; /* * Debugging in the guest. */ case EMSTATE_DEBUG_GUEST_REM: case EMSTATE_DEBUG_GUEST_RAW: TMR3NotifySuspend(pVM, pVCpu); rc = emR3Debug(pVM, pVCpu, rc); TMR3NotifyResume(pVM, pVCpu); Log2(("EMR3ExecuteVM: enmr3Debug -> %Rrc (state %d)\n", rc, pVCpu->em.s.enmState)); break; /* * Debugging in the hypervisor. */ case EMSTATE_DEBUG_HYPER: { TMR3NotifySuspend(pVM, pVCpu); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); rc = emR3Debug(pVM, pVCpu, rc); Log2(("EMR3ExecuteVM: enmr3Debug -> %Rrc (state %d)\n", rc, pVCpu->em.s.enmState)); if (rc != VINF_SUCCESS) { /* switch to guru meditation mode */ pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION; VMMR3FatalDump(pVM, pVCpu, rc); return rc; } STAM_REL_PROFILE_ADV_START(&pVCpu->em.s.StatTotal, x); TMR3NotifyResume(pVM, pVCpu); break; } /* * Guru meditation takes place in the debugger. */ case EMSTATE_GURU_MEDITATION: { TMR3NotifySuspend(pVM, pVCpu); VMMR3FatalDump(pVM, pVCpu, rc); emR3Debug(pVM, pVCpu, rc); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); return rc; } /* * The states we don't expect here. */ case EMSTATE_NONE: case EMSTATE_TERMINATING: default: AssertMsgFailed(("EMR3ExecuteVM: Invalid state %d!\n", pVCpu->em.s.enmState)); pVCpu->em.s.enmState = EMSTATE_GURU_MEDITATION; TMR3NotifySuspend(pVM, pVCpu); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); return VERR_EM_INTERNAL_ERROR; } } /* The Outer Main Loop */ } else { /* * Fatal error. */ LogFlow(("EMR3ExecuteVM: returns %Rrc (longjmp / fatal error)\n", rc)); TMR3NotifySuspend(pVM, pVCpu); VMMR3FatalDump(pVM, pVCpu, rc); emR3Debug(pVM, pVCpu, rc); STAM_REL_PROFILE_ADV_STOP(&pVCpu->em.s.StatTotal, x); /** @todo change the VM state! */ return rc; } /* (won't ever get here). */ AssertFailed(); }