VirtualBox

source: vbox/trunk/src/VBox/VMM/MM.cpp@ 1674

Last change on this file since 1674 was 1480, checked in by vboxsync, 18 years ago

No longer require contiguous memory for the VM structure.
Did long overdue IOCtl cleanup wrt R3/R0 pointers.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 18.7 KB
Line 
1/* $Id: MM.cpp 1480 2007-03-14 18:27:47Z vboxsync $ */
2/** @file
3 * MM - Memory Monitor(/Manager).
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/** @page pg_mm MM - The Memory Monitor/Manager
24 *
25 * It seems like this is going to be the entity taking care of memory allocations
26 * and the locking of physical memory for a VM. MM will track these allocations and
27 * pinnings so pointer conversions, memory read and write, and correct clean up can
28 * be done.
29 *
30 * Memory types:
31 * - Hypervisor Memory Area (HMA).
32 * - Page tables.
33 * - Physical pages.
34 *
35 * The first two types are not accessible using the generic conversion functions
36 * for GC memory, there are special functions for these.
37 *
38 *
39 * A decent structure for this component need to be eveloped as we see usage. One
40 * or two rewrites is probabaly needed to get it right...
41 *
42 *
43 *
44 * @section Hypervisor Memory Area
45 *
46 * The hypervisor is give 4MB of space inside the guest, we assume that we can
47 * steal an page directory entry from the guest OS without cause trouble. In
48 * addition to these 4MB we'll be mapping memory for the graphics emulation,
49 * but that will be an independant mapping.
50 *
51 * The 4MBs are divided into two main parts:
52 * -# The static code and data
53 * -# The shortlived page mappings.
54 *
55 * The first part is used for the VM structure, the core code (VMMSwitch),
56 * GC modules, and the alloc-only-heap. The size will be determined at a
57 * later point but initially we'll say 2MB of locked memory, most of which
58 * is non contiguous physically.
59 *
60 * The second part is used for mapping pages to the hypervisor. We'll be using
61 * a simple round robin when doing these mappings. This means that no-one can
62 * assume that a mapping hangs around for very long, while the managing of the
63 * pages are very simple.
64 *
65 *
66 *
67 * @section Page Pool
68 *
69 * The MM manages a per VM page pool from which other components can allocate
70 * locked, page aligned and page granular memory objects. The pool provides
71 * facilities to convert back and forth between physical and virtual addresses
72 * (within the pool of course). Several specialized interfaces are provided
73 * for the most common alloctions and convertions to save the caller from
74 * bothersome casting and extra parameter passing.
75 *
76 *
77 */
78
79
80
81/*******************************************************************************
82* Header Files *
83*******************************************************************************/
84#define LOG_GROUP LOG_GROUP_MM
85#include <VBox/mm.h>
86#include <VBox/pgm.h>
87#include <VBox/cfgm.h>
88#include <VBox/ssm.h>
89#include "MMInternal.h"
90#include <VBox/vm.h>
91#include <VBox/err.h>
92#include <VBox/param.h>
93
94#include <VBox/log.h>
95#include <iprt/alloc.h>
96#include <iprt/assert.h>
97#include <iprt/string.h>
98
99
100/*******************************************************************************
101* Internal Functions *
102*******************************************************************************/
103static int mmR3Term(PVM pVM, bool fKeepTheHeap);
104static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
105static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
106
107
108
109/**
110 * Initializes the MM.
111 *
112 * MM is managing the virtual address space (among other things) and
113 * setup the hypvervisor memory area mapping in the VM structure and
114 * the hypvervisor alloc-only-heap. Assuming the current init order
115 * and components the hypvervisor memory area looks like this:
116 * -# VM Structure.
117 * -# Hypervisor alloc only heap (also call Hypervisor memory region).
118 * -# Core code.
119 *
120 * MM determins the virtual address of the hypvervisor memory area by
121 * checking for location at previous run. If that property isn't available
122 * it will choose a default starting location, currently 0xe0000000.
123 *
124 * @returns VBox status code.
125 * @param pVM The VM to operate on.
126 */
127MMR3DECL(int) MMR3Init(PVM pVM)
128{
129 LogFlow(("MMR3Init\n"));
130
131 /*
132 * Assert alignment, sizes and order.
133 */
134 AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
135 AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
136 AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
137
138 /*
139 * Init the structure.
140 */
141 pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
142 pVM->mm.s.offLookupHyper = NIL_OFFSET;
143
144 /*
145 * Init the heap (may already be initialized already if someone used it).
146 */
147 if (!pVM->mm.s.pHeap)
148 {
149 int rc = mmr3HeapCreate(pVM, &pVM->mm.s.pHeap);
150 if (!VBOX_SUCCESS(rc))
151 return rc;
152 }
153
154 /*
155 * Init the page pool.
156 */
157 int rc = mmr3PagePoolInit(pVM);
158 if (VBOX_SUCCESS(rc))
159 {
160 /*
161 * Init the hypervisor related stuff.
162 */
163 rc = mmr3HyperInit(pVM);
164 if (VBOX_SUCCESS(rc))
165 {
166 /*
167 * Register the saved state data unit.
168 */
169 rc = SSMR3RegisterInternal(pVM, "mm", 1, 1, sizeof(uint32_t) * 2,
170 NULL, mmR3Save, NULL,
171 NULL, mmR3Load, NULL);
172 if (VBOX_SUCCESS(rc))
173 return rc;
174 }
175
176 /* .... failure .... */
177 mmR3Term(pVM, true /* keep the heap */);
178 }
179 else
180 mmr3HeapDestroy(pVM->mm.s.pHeap);
181 return rc;
182}
183
184
185/**
186 * Initializes the MM parts which depends on PGM being initialized.
187 *
188 * @returns VBox status code.
189 * @param pVM The VM to operate on.
190 * @remark No cleanup necessary since MMR3Term() will be called on failure.
191 */
192MMR3DECL(int) MMR3InitPaging(PVM pVM)
193{
194 LogFlow(("MMR3InitPaging:\n"));
195 bool fPreAlloc;
196 int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RamPreAlloc", &fPreAlloc);
197 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
198 fPreAlloc = false;
199 else
200 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamPreAlloc\", rc=%Vrc.\n", rc), rc);
201
202 uint64_t cbRam;
203 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
204 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
205 cbRam = 0;
206 if (VBOX_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND)
207 {
208 if (cbRam < PAGE_SIZE)
209 {
210 Log(("MM: No RAM configured\n"));
211 return VINF_SUCCESS;
212 }
213#ifdef PGM_DYNAMIC_RAM_ALLOC
214 Log(("MM: %llu bytes of RAM%s\n", cbRam, fPreAlloc ? " (PreAlloc)" : ""));
215 pVM->mm.s.pvRamBaseHC = 0; /** @todo obsolete */
216 pVM->mm.s.cbRamBase = cbRam & PAGE_BASE_GC_MASK;
217 rc = MMR3PhysRegister(pVM, pVM->mm.s.pvRamBaseHC, 0, pVM->mm.s.cbRamBase, MM_RAM_FLAGS_DYNAMIC_ALLOC, "Main Memory");
218 if (VBOX_SUCCESS(rc))
219 {
220 /* Allocate the first chunk, as we'll map ROM ranges there. */
221 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)0);
222 if (VBOX_SUCCESS(rc))
223 {
224 /* Should we preallocate the entire guest RAM? */
225 if (fPreAlloc)
226 {
227 for (RTGCPHYS GCPhys = PGM_DYNAMIC_CHUNK_SIZE; GCPhys < cbRam; GCPhys += PGM_DYNAMIC_CHUNK_SIZE)
228 {
229 rc = PGM3PhysGrowRange(pVM, GCPhys);
230 if (VBOX_FAILURE(rc))
231 return rc;
232 }
233 }
234 return rc;
235 }
236 }
237#else
238 unsigned cPages = cbRam >> PAGE_SHIFT;
239 Log(("MM: %llu bytes of RAM (%d pages)\n", cbRam, cPages));
240 rc = SUPPageAlloc(cPages, &pVM->mm.s.pvRamBaseHC);
241 if (VBOX_SUCCESS(rc))
242 {
243 pVM->mm.s.cbRamBase = cPages << PAGE_SHIFT;
244 rc = MMR3PhysRegister(pVM, pVM->mm.s.pvRamBaseHC, 0, pVM->mm.s.cbRamBase, 0, "Main Memory");
245 if (VBOX_SUCCESS(rc))
246 return rc;
247 SUPPageFree(pVM->mm.s.pvRamBaseHC);
248 }
249 else
250 LogRel(("MMR3InitPage: Failed to allocate %u bytes of RAM! rc=%Vrc\n", cPages << PAGE_SHIFT));
251#endif
252 }
253 else
254 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
255
256 LogFlow(("MMR3InitPaging: returns %Vrc\n", rc));
257 return rc;
258}
259
260
261/**
262 * Terminates the MM.
263 *
264 * Termination means cleaning up and freeing all resources,
265 * the VM it self is at this point powered off or suspended.
266 *
267 * @returns VBox status code.
268 * @param pVM The VM to operate on.
269 */
270MMR3DECL(int) MMR3Term(PVM pVM)
271{
272 return mmR3Term(pVM, false /* free the heap */);
273}
274
275
276/**
277 * Worker for MMR3Term and MMR3Init.
278 *
279 * The tricky bit here is that we must not destroy the heap if we're
280 * called from MMR3Init, otherwise we'll get into trouble when
281 * CFGMR3Term is called later in the bailout process.
282 *
283 * @returns VBox status code.
284 * @param pVM The VM to operate on.
285 * @param fKeepTheHeap Whether or not to keep the heap.
286 */
287static int mmR3Term(PVM pVM, bool fKeepTheHeap)
288{
289 /*
290 * Release locked memory.
291 * (Associated record are released by the heap.)
292 */
293 PMMLOCKEDMEM pLockedMem = pVM->mm.s.pLockedMem;
294 while (pLockedMem)
295 {
296 int rc = SUPPageUnlock(pLockedMem->pv);
297 AssertMsgRC(rc, ("SUPPageUnlock(%p) -> rc=%d\n", pLockedMem->pv, rc));
298 switch (pLockedMem->eType)
299 {
300 case MM_LOCKED_TYPE_HYPER:
301 rc = SUPPageFree(pLockedMem->pv);
302 AssertMsgRC(rc, ("SUPPageFree(%p) -> rc=%d\n", pLockedMem->pv, rc));
303 break;
304 case MM_LOCKED_TYPE_HYPER_NOFREE:
305 case MM_LOCKED_TYPE_HYPER_PAGES:
306 case MM_LOCKED_TYPE_PHYS:
307 /* nothing to do. */
308 break;
309 }
310 /* next */
311 pLockedMem = pLockedMem->pNext;
312 }
313
314 /*
315 * Destroy the page pool.
316 */
317 mmr3PagePoolTerm(pVM);
318
319 /*
320 * Destroy the heap if requested.
321 */
322 if (!fKeepTheHeap)
323 {
324 mmr3HeapDestroy(pVM->mm.s.pHeap);
325 pVM->mm.s.pHeap = NULL;
326 }
327
328 /*
329 * Zero stuff to detect after termination use of the MM interface
330 */
331 pVM->mm.s.offLookupHyper = NIL_OFFSET;
332 pVM->mm.s.pLockedMem = NULL;
333 pVM->mm.s.pHyperHeapHC = NULL; /* freed above. */
334 pVM->mm.s.pHyperHeapGC = 0; /* freed above. */
335 pVM->mm.s.offVM = 0; /* init assertion on this */
336
337 return 0;
338}
339
340
341/**
342 * Execute state save operation.
343 *
344 * @returns VBox status code.
345 * @param pVM VM Handle.
346 * @param pSSM SSM operation handle.
347 */
348static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
349{
350 LogFlow(("mmR3Save:\n"));
351
352 /* (PGM saves the physical memory.) */
353 SSMR3PutUInt(pSSM, pVM->mm.s.cbRAMSize);
354 return SSMR3PutUInt(pSSM, pVM->mm.s.cbRamBase);
355}
356
357
358/**
359 * Execute state load operation.
360 *
361 * @returns VBox status code.
362 * @param pVM VM Handle.
363 * @param pSSM SSM operation handle.
364 * @param u32Version Data layout version.
365 */
366static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
367{
368 LogFlow(("mmR3Load:\n"));
369
370 /*
371 * Validate version.
372 */
373 if (u32Version != 1)
374 {
375 Log(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
376 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
377 }
378
379 /*
380 * Check the cbRAMSize and cbRamBase values.
381 */
382 RTUINT cb;
383 int rc = SSMR3GetUInt(pSSM, &cb);
384 if (VBOX_FAILURE(rc))
385 return rc;
386 if (cb != pVM->mm.s.cbRAMSize)
387 {
388 Log(("mmR3Load: Memory configuration has changed. cbRAMSize=%#x save %#x\n", pVM->mm.s.cbRAMSize, cb));
389 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
390 }
391
392 rc = SSMR3GetUInt(pSSM, &cb);
393 if (VBOX_FAILURE(rc))
394 return rc;
395 if (cb != pVM->mm.s.cbRamBase)
396 {
397 Log(("mmR3Load: Memory configuration has changed. cbRamBase=%#x save %#x\n", pVM->mm.s.cbRamBase, cb));
398 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
399 }
400
401 /* PGM restores the physical memory. */
402 return rc;
403}
404
405
406/**
407 * Locks physical memory which backs a virtual memory range (HC) adding
408 * the required records to the pLockedMem list.
409 *
410 * @returns VBox status code.
411 * @param pVM The VM handle.
412 * @param pv Pointer to memory range which shall be locked down.
413 * This pointer is page aligned.
414 * @param cb Size of memory range (in bytes). This size is page aligned.
415 * @param eType Memory type.
416 * @param ppLockedMem Where to store the pointer to the created locked memory record.
417 * This is optional, pass NULL if not used.
418 * @param fSilentFailure Don't raise an error when unsuccessful. Upper layer with deal with it.
419 */
420int mmr3LockMem(PVM pVM, void *pv, size_t cb, MMLOCKEDTYPE eType, PMMLOCKEDMEM *ppLockedMem, bool fSilentFailure)
421{
422 Assert(RT_ALIGN_P(pv, PAGE_SIZE) == pv);
423 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
424
425 if (ppLockedMem)
426 *ppLockedMem = NULL;
427
428 /*
429 * Allocate locked mem structure.
430 */
431 unsigned cPages = cb >> PAGE_SHIFT;
432 AssertReturn(cPages == (cb >> PAGE_SHIFT), VERR_OUT_OF_RANGE);
433 PMMLOCKEDMEM pLockedMem = (PMMLOCKEDMEM)MMR3HeapAlloc(pVM, MM_TAG_MM, RT_OFFSETOF(MMLOCKEDMEM, aPhysPages[cPages]));
434 if (!pLockedMem)
435 return VERR_NO_MEMORY;
436 pLockedMem->pv = pv;
437 pLockedMem->cb = cb;
438 pLockedMem->eType = eType;
439 memset(&pLockedMem->u, 0, sizeof(pLockedMem->u));
440
441 /*
442 * Lock the memory.
443 */
444 int rc = SUPPageLock(pv, cb, &pLockedMem->aPhysPages[0]);
445 if (VBOX_SUCCESS(rc))
446 {
447 /*
448 * Setup the reserved field.
449 */
450 PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[0];
451 for (unsigned c = cPages; c > 0; c--, pPhysPage++)
452 pPhysPage->uReserved = (RTHCUINTPTR)pLockedMem;
453
454 /*
455 * Insert into the list.
456 *
457 * ASSUME no protected needed here as only one thread in the system can possibly
458 * be doing this. No other threads will walk this list either we assume.
459 */
460 pLockedMem->pNext = pVM->mm.s.pLockedMem;
461 pVM->mm.s.pLockedMem = pLockedMem;
462 /* Set return value. */
463 if (ppLockedMem)
464 *ppLockedMem = pLockedMem;
465 }
466 else
467 {
468 AssertMsgFailed(("SUPPageLock failed with rc=%d\n", rc));
469 MMR3HeapFree(pLockedMem);
470 if (!fSilentFailure)
471 rc = VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to lock %d bytes of host memory (out of memory)"), cb);
472 }
473
474 return rc;
475}
476
477
478/**
479 * Maps a part of or an entire locked memory region into the guest context.
480 *
481 * @returns VBox status.
482 * God knows what happens if we fail...
483 * @param pVM VM handle.
484 * @param pLockedMem Locked memory structure.
485 * @param Addr GC Address where to start the mapping.
486 * @param iPage Page number in the locked memory region.
487 * @param cPages Number of pages to map.
488 * @param fFlags See the fFlags argument of PGR3Map().
489 */
490int mmr3MapLocked(PVM pVM, PMMLOCKEDMEM pLockedMem, RTGCPTR Addr, unsigned iPage, size_t cPages, unsigned fFlags)
491{
492 /*
493 * Adjust ~0 argument
494 */
495 if (cPages == ~(size_t)0)
496 cPages = (pLockedMem->cb >> PAGE_SHIFT) - iPage;
497 Assert(cPages != ~0U);
498 /* no incorrect arguments are accepted */
499 Assert(RT_ALIGN_GCPT(Addr, PAGE_SIZE, RTGCPTR) == Addr);
500 AssertMsg(iPage < (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad iPage(=%d)\n", iPage));
501 AssertMsg(iPage + cPages <= (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad cPages(=%d)\n", cPages));
502
503 /*
504 * Map the the pages.
505 */
506 PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[iPage];
507 while (cPages)
508 {
509 RTHCPHYS HCPhys = pPhysPage->Phys;
510 int rc = PGMMap(pVM, Addr, HCPhys, PAGE_SIZE, fFlags);
511 if (VBOX_FAILURE(rc))
512 {
513 /** @todo how the hell can we do a proper bailout here. */
514 return rc;
515 }
516
517 /* next */
518 cPages--;
519 iPage++;
520 pPhysPage++;
521 Addr += PAGE_SIZE;
522 }
523
524 return VINF_SUCCESS;
525}
526
527
528/**
529 * Convert HC Physical address to HC Virtual address.
530 *
531 * @returns VBox status.
532 * @param pVM VM handle.
533 * @param HCPhys The host context virtual address.
534 * @param ppv Where to store the resulting address.
535 * @thread The Emulation Thread.
536 */
537MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
538{
539 /*
540 * Try page tables.
541 */
542 int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
543 if (VBOX_SUCCESS(rc))
544 return rc;
545
546 /*
547 * Iterate the locked memory - very slow.
548 */
549 uint32_t off = HCPhys & PAGE_OFFSET_MASK;
550 HCPhys &= X86_PTE_PAE_PG_MASK;
551 for (PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; pCur; pCur = pCur->pNext)
552 {
553 size_t iPage = pCur->cb >> PAGE_SHIFT;
554 while (iPage-- > 0)
555 if ((pCur->aPhysPages[iPage].Phys & X86_PTE_PAE_PG_MASK) == HCPhys)
556 {
557 *ppv = (char *)pCur->pv + (iPage << PAGE_SHIFT) + off;
558 return VINF_SUCCESS;
559 }
560 }
561 /* give up */
562 return VERR_INVALID_POINTER;
563}
564
565
566/**
567 * Read memory from GC virtual address using the current guest CR3.
568 *
569 * @returns VBox status.
570 * @param pVM VM handle.
571 * @param pvDst Destination address (HC of course).
572 * @param GCPtr GC virtual address.
573 * @param cb Number of bytes to read.
574 */
575MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb)
576{
577 if (GCPtr - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
578 return MMR3HyperReadGCVirt(pVM, pvDst, GCPtr, cb);
579 return PGMPhysReadGCPtr(pVM, pvDst, GCPtr, cb);
580}
581
582
583/**
584 * Write to memory at GC virtual address translated using the current guest CR3.
585 *
586 * @returns VBox status.
587 * @param pVM VM handle.
588 * @param GCPtrDst GC virtual address.
589 * @param pvSrc The source address (HC of course).
590 * @param cb Number of bytes to read.
591 */
592MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
593{
594 if (GCPtrDst - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
595 return VERR_ACCESS_DENIED;
596 return PGMPhysWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
597}
598
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette