VirtualBox

source: vbox/trunk/src/VBox/VMM/MM.cpp@ 18761

Last change on this file since 18761 was 18718, checked in by vboxsync, 16 years ago

MM: cleaned out MMLOCKEDMEM stuff (only user was MMR3HyperMapPages).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 29.2 KB
Line 
1/* $Id: MM.cpp 18718 2009-04-05 13:47:09Z vboxsync $ */
2/** @file
3 * MM - Memory Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_mm MM - The Memory Manager
24 *
25 * The memory manager is in charge of the following memory:
26 * - Hypervisor Memory Area (HMA) - Address space management.
27 * - Hypervisor Heap - A memory heap that lives in all contexts.
28 * - Tagged ring-3 heap.
29 * - Page pools - Primarily used by PGM for shadow page tables.
30 * - Locked process memory - Guest RAM and other. (reduce/obsolete this)
31 * - Physical guest memory (RAM & ROM) - Moving to PGM. (obsolete this)
32 *
33 * The global memory manager (GMM) is the global counter part / partner of MM.
34 * MM will provide therefore ring-3 callable interfaces for some of the GMM APIs
35 * related to resource tracking (PGM is the user).
36 *
37 * @see grp_mm
38 *
39 *
40 * @section sec_mm_hma Hypervisor Memory Area
41 *
42 * The HMA is used when executing in raw-mode. We borrow, with the help of
43 * PGMMap, some unused space (one or more page directory entries to be precise)
44 * in the guest's virtual memory context. PGM will monitor the guest's virtual
45 * address space for changes and relocate the HMA when required.
46 *
47 * To give some idea what's in the HMA, study the 'info hma' output:
48 * @verbatim
49VBoxDbg> info hma
50Hypervisor Memory Area (HMA) Layout: Base 00000000a0000000, 0x00800000 bytes
5100000000a05cc000-00000000a05cd000 DYNAMIC fence
5200000000a05c4000-00000000a05cc000 DYNAMIC Dynamic mapping
5300000000a05c3000-00000000a05c4000 DYNAMIC fence
5400000000a05b8000-00000000a05c3000 DYNAMIC Paging
5500000000a05b6000-00000000a05b8000 MMIO2 0000000000000000 PCNetShMem
5600000000a0536000-00000000a05b6000 MMIO2 0000000000000000 VGA VRam
5700000000a0523000-00000000a0536000 00002aaab3d0c000 LOCKED autofree alloc once (PDM_DEVICE)
5800000000a0522000-00000000a0523000 DYNAMIC fence
5900000000a051e000-00000000a0522000 00002aaab36f5000 LOCKED autofree VBoxDD2GC.gc
6000000000a051d000-00000000a051e000 DYNAMIC fence
6100000000a04eb000-00000000a051d000 00002aaab36c3000 LOCKED autofree VBoxDDGC.gc
6200000000a04ea000-00000000a04eb000 DYNAMIC fence
6300000000a04e9000-00000000a04ea000 00002aaab36c2000 LOCKED autofree ram range (High ROM Region)
6400000000a04e8000-00000000a04e9000 DYNAMIC fence
6500000000a040e000-00000000a04e8000 00002aaab2e6d000 LOCKED autofree VMMGC.gc
6600000000a0208000-00000000a040e000 00002aaab2c67000 LOCKED autofree alloc once (PATM)
6700000000a01f7000-00000000a0208000 00002aaaab92d000 LOCKED autofree alloc once (SELM)
6800000000a01e7000-00000000a01f7000 00002aaaab5e8000 LOCKED autofree alloc once (SELM)
6900000000a01e6000-00000000a01e7000 DYNAMIC fence
7000000000a01e5000-00000000a01e6000 00002aaaab5e7000 HCPHYS 00000000c363c000 Core Code
7100000000a01e4000-00000000a01e5000 DYNAMIC fence
7200000000a01e3000-00000000a01e4000 00002aaaaab26000 HCPHYS 00000000619cf000 GIP
7300000000a01a2000-00000000a01e3000 00002aaaabf32000 LOCKED autofree alloc once (PGM_PHYS)
7400000000a016b000-00000000a01a2000 00002aaab233f000 LOCKED autofree alloc once (PGM_POOL)
7500000000a016a000-00000000a016b000 DYNAMIC fence
7600000000a0165000-00000000a016a000 DYNAMIC CR3 mapping
7700000000a0164000-00000000a0165000 DYNAMIC fence
7800000000a0024000-00000000a0164000 00002aaab215f000 LOCKED autofree Heap
7900000000a0023000-00000000a0024000 DYNAMIC fence
8000000000a0001000-00000000a0023000 00002aaab1d24000 LOCKED pages VM
8100000000a0000000-00000000a0001000 DYNAMIC fence
82 @endverbatim
83 *
84 *
85 * @section sec_mm_hyperheap Hypervisor Heap
86 *
87 * The heap is accessible from ring-3, ring-0 and the raw-mode context. That
88 * said, it's not necessarily mapped into ring-0 on if that's possible since we
89 * don't wish to waste kernel address space without a good reason.
90 *
91 * Allocations within the heap are always in the same relative position in all
92 * contexts, so, it's possible to use offset based linking. In fact, the heap is
93 * internally using offset based linked lists tracking heap blocks. We use
94 * offset linked AVL trees and lists in a lot of places where share structures
95 * between RC, R3 and R0, so this is a strict requirement of the heap. However
96 * this means that we cannot easily extend the heap since the extension won't
97 * necessarily be in the continuation of the current heap memory in all (or any)
98 * context.
99 *
100 * All allocations are tagged. Per tag allocation statistics will be maintaing
101 * and exposed thru STAM when VBOX_WITH_STATISTICS is defined.
102 *
103 *
104 * @section sec_mm_r3heap Tagged Ring-3 Heap
105 *
106 * The ring-3 heap is a wrapper around the RTMem API adding allocation
107 * statistics and automatic cleanup on VM destruction.
108 *
109 * Per tag allocation statistics will be maintaing and exposed thru STAM when
110 * VBOX_WITH_STATISTICS is defined.
111 *
112 *
113 * @section sec_mm_page Page Pool
114 *
115 * The MM manages a page pool from which other components can allocate locked,
116 * page aligned and page sized memory objects. The pool provides facilities to
117 * convert back and forth between (host) physical and virtual addresses (within
118 * the pool of course). Several specialized interfaces are provided for the most
119 * common alloctions and convertions to save the caller from bothersome casting
120 * and extra parameter passing.
121 *
122 *
123 * @section sec_mm_locked Locked Process Memory
124 *
125 * MM manages the locked process memory. This is used for a bunch of things
126 * (count the LOCKED entries in the'info hma' output found in @ref sec_mm_hma),
127 * but the main consumer of memory is currently for guest RAM. There is an
128 * ongoing rewrite that will move all the guest RAM allocation to PGM and
129 * GMM.
130 *
131 * The locking of memory is something doing in cooperation with the VirtualBox
132 * support driver, SUPDrv (aka. VBoxDrv), thru the support library API,
133 * SUPR3 (aka. SUPLib).
134 *
135 *
136 * @section sec_mm_phys Physical Guest Memory
137 *
138 * MM is currently managing the physical memory for the guest. It relies heavily
139 * on PGM for this. There is an ongoing rewrite that will move this to PGM. (The
140 * rewrite is driven by the need for more flexible guest ram allocation, but
141 * also motivated by the fact that MMPhys is just adding stupid bureaucracy and
142 * that MMR3PhysReserve is a totally weird artifact that must go away.)
143 *
144 */
145
146
147/*******************************************************************************
148* Header Files *
149*******************************************************************************/
150#define LOG_GROUP LOG_GROUP_MM
151#include <VBox/mm.h>
152#include <VBox/pgm.h>
153#include <VBox/cfgm.h>
154#include <VBox/ssm.h>
155#include <VBox/gmm.h>
156#include "MMInternal.h"
157#include <VBox/vm.h>
158#include <VBox/uvm.h>
159#include <VBox/err.h>
160#include <VBox/param.h>
161
162#include <VBox/log.h>
163#include <iprt/alloc.h>
164#include <iprt/assert.h>
165#include <iprt/string.h>
166
167
168/*******************************************************************************
169* Defined Constants And Macros *
170*******************************************************************************/
171/** The current saved state versino of MM. */
172#define MM_SAVED_STATE_VERSION 2
173
174
175/*******************************************************************************
176* Internal Functions *
177*******************************************************************************/
178static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
179static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
180
181
182
183
184/**
185 * Initializes the MM members of the UVM.
186 *
187 * This is currently only the ring-3 heap.
188 *
189 * @returns VBox status code.
190 * @param pUVM Pointer to the user mode VM structure.
191 */
192VMMR3DECL(int) MMR3InitUVM(PUVM pUVM)
193{
194 /*
195 * Assert sizes and order.
196 */
197 AssertCompile(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
198 AssertRelease(sizeof(pUVM->mm.s) <= sizeof(pUVM->mm.padding));
199 Assert(!pUVM->mm.s.pHeap);
200
201 /*
202 * Init the heap.
203 */
204 return mmR3HeapCreateU(pUVM, &pUVM->mm.s.pHeap);
205}
206
207
208/**
209 * Initializes the MM.
210 *
211 * MM is managing the virtual address space (among other things) and
212 * setup the hypvervisor memory area mapping in the VM structure and
213 * the hypvervisor alloc-only-heap. Assuming the current init order
214 * and components the hypvervisor memory area looks like this:
215 * -# VM Structure.
216 * -# Hypervisor alloc only heap (also call Hypervisor memory region).
217 * -# Core code.
218 *
219 * MM determins the virtual address of the hypvervisor memory area by
220 * checking for location at previous run. If that property isn't available
221 * it will choose a default starting location, currently 0xa0000000.
222 *
223 * @returns VBox status code.
224 * @param pVM The VM to operate on.
225 */
226VMMR3DECL(int) MMR3Init(PVM pVM)
227{
228 LogFlow(("MMR3Init\n"));
229
230 /*
231 * Assert alignment, sizes and order.
232 */
233 AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
234 AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
235 AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
236
237 /*
238 * Init the structure.
239 */
240 pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
241 pVM->mm.s.offLookupHyper = NIL_OFFSET;
242
243 /*
244 * Init the page pool.
245 */
246 int rc = mmR3PagePoolInit(pVM);
247 if (RT_SUCCESS(rc))
248 {
249 /*
250 * Init the hypervisor related stuff.
251 */
252 rc = mmR3HyperInit(pVM);
253 if (RT_SUCCESS(rc))
254 {
255 /*
256 * Register the saved state data unit.
257 */
258 rc = SSMR3RegisterInternal(pVM, "mm", 1, MM_SAVED_STATE_VERSION, sizeof(uint32_t) * 2,
259 NULL, mmR3Save, NULL,
260 NULL, mmR3Load, NULL);
261 if (RT_SUCCESS(rc))
262 return rc;
263
264 /* .... failure .... */
265 }
266 }
267 MMR3Term(pVM);
268 return rc;
269}
270
271
272/**
273 * Initializes the MM parts which depends on PGM being initialized.
274 *
275 * @returns VBox status code.
276 * @param pVM The VM to operate on.
277 * @remark No cleanup necessary since MMR3Term() will be called on failure.
278 */
279VMMR3DECL(int) MMR3InitPaging(PVM pVM)
280{
281 LogFlow(("MMR3InitPaging:\n"));
282
283 /*
284 * Query the CFGM values.
285 */
286 int rc;
287 PCFGMNODE pMMCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "MM");
288 if (!pMMCfg)
289 {
290 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "MM", &pMMCfg);
291 AssertRCReturn(rc, rc);
292 }
293
294 /** @cfgm{RamPreAlloc, boolean, false}
295 * Indicates whether the base RAM should all be allocated before starting
296 * the VM (default), or if it should be allocated when first written to.
297 */
298 bool fPreAlloc;
299 rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RamPreAlloc", &fPreAlloc);
300 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
301 fPreAlloc = false;
302 else
303 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamPreAlloc\", rc=%Rrc.\n", rc), rc);
304
305 /** @cfgm{RamSize, uint64_t, 0, 16TB, 0}
306 * Specifies the size of the base RAM that is to be set up during
307 * VM initialization.
308 */
309 uint64_t cbRam;
310 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 cbRam = 0;
313 else
314 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc), rc);
315 AssertLogRelMsg(!(cbRam & ~X86_PTE_PAE_PG_MASK), ("%RGp X86_PTE_PAE_PG_MASK=%RX64\n", cbRam, X86_PTE_PAE_PG_MASK));
316 AssertLogRelMsgReturn(cbRam <= GMM_GCPHYS_LAST, ("cbRam=%RGp GMM_GCPHYS_LAST=%RX64\n", cbRam, GMM_GCPHYS_LAST), VERR_OUT_OF_RANGE);
317 cbRam &= X86_PTE_PAE_PG_MASK;
318 pVM->mm.s.cbRamBase = cbRam;
319
320 /** @cfgm{RamHoleSize, uint32_t, 0, 4032MB, 512MB}
321 * Specifies the size of the memory hole. The memory hole is used
322 * to avoid mapping RAM to the range normally used for PCI memory regions.
323 * Must be aligned on a 4MB boundrary. */
324 uint32_t cbRamHole;
325 rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
326 AssertLogRelMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamHoleSize\", rc=%Rrc.\n", rc), rc);
327 AssertLogRelMsgReturn(cbRamHole <= 4032U * _1M,
328 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
329 AssertLogRelMsgReturn(cbRamHole > 16 * _1M,
330 ("Configuration error: \"RamHoleSize\"=%#RX32 is too large.\n", cbRamHole), VERR_OUT_OF_RANGE);
331 AssertLogRelMsgReturn(!(cbRamHole & (_4M - 1)),
332 ("Configuration error: \"RamHoleSize\"=%#RX32 is misaligned.\n", cbRamHole), VERR_OUT_OF_RANGE);
333 uint64_t const offRamHole = _4G - cbRamHole;
334 if (cbRam < offRamHole)
335 Log(("MM: %RU64 bytes of RAM%s\n", cbRam, fPreAlloc ? " (PreAlloc)" : ""));
336 else
337 Log(("MM: %RU64 bytes of RAM%s with a hole at %RU64 up to 4GB.\n", cbRam, fPreAlloc ? " (PreAlloc)" : "", offRamHole));
338
339 /** @cfgm{MM/Policy, string, no overcommitment}
340 * Specifies the policy to use when reserving memory for this VM. The recognized
341 * value is 'no overcommitment' (default). See GMMPOLICY.
342 */
343 GMMOCPOLICY enmOcPolicy;
344 char sz[64];
345 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Policy", sz, sizeof(sz));
346 if (RT_SUCCESS(rc))
347 {
348 if ( !RTStrICmp(sz, "no_oc")
349 || !RTStrICmp(sz, "no overcommitment"))
350 enmOcPolicy = GMMOCPOLICY_NO_OC;
351 else
352 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Policy\" value \"%s\"", sz);
353 }
354 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
355 enmOcPolicy = GMMOCPOLICY_NO_OC;
356 else
357 AssertMsgRCReturn(rc, ("Configuration error: Failed to query string \"MM/Policy\", rc=%Rrc.\n", rc), rc);
358
359 /** @cfgm{MM/Priority, string, normal}
360 * Specifies the memory priority of this VM. The priority comes into play when the
361 * system is overcommitted and the VMs needs to be milked for memory. The recognized
362 * values are 'low', 'normal' (default) and 'high'. See GMMPRIORITY.
363 */
364 GMMPRIORITY enmPriority;
365 rc = CFGMR3QueryString(CFGMR3GetRoot(pVM), "Priority", sz, sizeof(sz));
366 if (RT_SUCCESS(rc))
367 {
368 if (!RTStrICmp(sz, "low"))
369 enmPriority = GMMPRIORITY_LOW;
370 else if (!RTStrICmp(sz, "normal"))
371 enmPriority = GMMPRIORITY_NORMAL;
372 else if (!RTStrICmp(sz, "high"))
373 enmPriority = GMMPRIORITY_HIGH;
374 else
375 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, "Unknown \"MM/Priority\" value \"%s\"", sz);
376 }
377 else if (rc == VERR_CFGM_VALUE_NOT_FOUND)
378 enmPriority = GMMPRIORITY_NORMAL;
379 else
380 AssertMsgRCReturn(rc, ("Configuration error: Failed to query string \"MM/Priority\", rc=%Rrc.\n", rc), rc);
381
382 /*
383 * Make the initial memory reservation with GMM.
384 */
385 uint64_t cBasePages = (cbRam >> PAGE_SHIFT) + pVM->mm.s.cBasePages;
386 rc = GMMR3InitialReservation(pVM,
387 RT_MAX(cBasePages + pVM->mm.s.cHandyPages, 1),
388 RT_MAX(pVM->mm.s.cShadowPages, 1),
389 RT_MAX(pVM->mm.s.cFixedPages, 1),
390 enmOcPolicy,
391 enmPriority);
392 if (RT_FAILURE(rc))
393 {
394 if (rc == VERR_GMM_MEMORY_RESERVATION_DECLINED)
395 return VMSetError(pVM, rc, RT_SRC_POS,
396 N_("Insufficient free memory to start the VM (cbRam=%#RX64 enmOcPolicy=%d enmPriority=%d)"),
397 cbRam, enmOcPolicy, enmPriority);
398 return VMSetError(pVM, rc, RT_SRC_POS, "GMMR3InitialReservation(,%#RX64,0,0,%d,%d)",
399 cbRam >> PAGE_SHIFT, enmOcPolicy, enmPriority);
400 }
401
402 /*
403 * If RamSize is 0 we're done now.
404 */
405 if (cbRam < PAGE_SIZE)
406 {
407 Log(("MM: No RAM configured\n"));
408 return VINF_SUCCESS;
409 }
410
411 /*
412 * Setup the base ram (PGM).
413 */
414 if (cbRam > offRamHole)
415 {
416 rc = PGMR3PhysRegisterRam(pVM, 0, offRamHole, "Base RAM");
417 if (RT_SUCCESS(rc))
418 rc = PGMR3PhysRegisterRam(pVM, _4G, cbRam - offRamHole, "Above 4GB Base RAM");
419 }
420 else
421 rc = PGMR3PhysRegisterRam(pVM, 0, RT_MIN(cbRam, offRamHole), "Base RAM");
422 if ( RT_SUCCESS(rc)
423 && fPreAlloc)
424 {
425 /** @todo RamPreAlloc should be handled at the very end of the VM creation. (lazy bird) */
426 return VM_SET_ERROR(pVM, VERR_NOT_IMPLEMENTED, "TODO: RamPreAlloc");
427 }
428
429 /*
430 * Enabled mmR3UpdateReservation here since we don't want the
431 * PGMR3PhysRegisterRam calls above mess things up.
432 */
433 pVM->mm.s.fDoneMMR3InitPaging = true;
434 AssertMsg(pVM->mm.s.cBasePages == cBasePages || RT_FAILURE(rc), ("%RX64 != %RX64\n", pVM->mm.s.cBasePages, cBasePages));
435
436 LogFlow(("MMR3InitPaging: returns %Rrc\n", rc));
437 return rc;
438}
439
440
441/**
442 * Terminates the MM.
443 *
444 * Termination means cleaning up and freeing all resources,
445 * the VM it self is at this point powered off or suspended.
446 *
447 * @returns VBox status code.
448 * @param pVM The VM to operate on.
449 */
450VMMR3DECL(int) MMR3Term(PVM pVM)
451{
452 /*
453 * Destroy the page pool. (first as it used the hyper heap)
454 */
455 mmR3PagePoolTerm(pVM);
456
457 /*
458 * Zero stuff to detect after termination use of the MM interface
459 */
460 pVM->mm.s.offLookupHyper = NIL_OFFSET;
461 pVM->mm.s.pHyperHeapR3 = NULL; /* freed above. */
462 pVM->mm.s.pHyperHeapR0 = NIL_RTR0PTR; /* freed above. */
463 pVM->mm.s.pHyperHeapRC = NIL_RTRCPTR; /* freed above. */
464 pVM->mm.s.offVM = 0; /* init assertion on this */
465
466 return VINF_SUCCESS;
467}
468
469
470/**
471 * Terminates the UVM part of MM.
472 *
473 * Termination means cleaning up and freeing all resources,
474 * the VM it self is at this point powered off or suspended.
475 *
476 * @returns VBox status code.
477 * @param pUVM Pointer to the user mode VM structure.
478 */
479VMMR3DECL(void) MMR3TermUVM(PUVM pUVM)
480{
481 /*
482 * Destroy the heap.
483 */
484 mmR3HeapDestroy(pUVM->mm.s.pHeap);
485 pUVM->mm.s.pHeap = NULL;
486}
487
488
489/**
490 * Reset notification.
491 *
492 * @param pVM The VM handle.
493 */
494VMMR3DECL(void) MMR3Reset(PVM pVM)
495{
496 /* nothing to do anylonger. */
497}
498
499
500/**
501 * Execute state save operation.
502 *
503 * @returns VBox status code.
504 * @param pVM VM Handle.
505 * @param pSSM SSM operation handle.
506 */
507static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
508{
509 LogFlow(("mmR3Save:\n"));
510
511 /* (PGM saves the physical memory.) */
512 SSMR3PutU64(pSSM, pVM->mm.s.cBasePages);
513 return SSMR3PutU64(pSSM, pVM->mm.s.cbRamBase);
514}
515
516
517/**
518 * Execute state load operation.
519 *
520 * @returns VBox status code.
521 * @param pVM VM Handle.
522 * @param pSSM SSM operation handle.
523 * @param u32Version Data layout version.
524 */
525static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
526{
527 LogFlow(("mmR3Load:\n"));
528
529 /*
530 * Validate version.
531 */
532 if ( SSM_VERSION_MAJOR_CHANGED(u32Version, MM_SAVED_STATE_VERSION)
533 || !u32Version)
534 {
535 AssertMsgFailed(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
536 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
537 }
538
539 /*
540 * Check the cBasePages and cbRamBase values.
541 */
542 int rc;
543 RTUINT cb1;
544
545 /* cBasePages (ignored) */
546 uint64_t cPages;
547 if (u32Version >= 2)
548 rc = SSMR3GetU64(pSSM, &cPages);
549 else
550 {
551 rc = SSMR3GetUInt(pSSM, &cb1);
552 cPages = cb1 >> PAGE_SHIFT;
553 }
554 if (RT_FAILURE(rc))
555 return rc;
556
557 /* cbRamBase */
558 uint64_t cb;
559 if (u32Version != 1)
560 rc = SSMR3GetU64(pSSM, &cb);
561 else
562 {
563 rc = SSMR3GetUInt(pSSM, &cb1);
564 cb = cb1;
565 }
566 if (RT_FAILURE(rc))
567 return rc;
568 AssertLogRelMsgReturn(cb == pVM->mm.s.cbRamBase,
569 ("Memory configuration has changed. cbRamBase=%#RX64 save=%#RX64\n", pVM->mm.s.cbRamBase, cb),
570 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
571
572 /* (PGM restores the physical memory.) */
573 return rc;
574}
575
576
577/**
578 * Updates GMM with memory reservation changes.
579 *
580 * Called when MM::cbRamRegistered, MM::cShadowPages or MM::cFixedPages changes.
581 *
582 * @returns VBox status code - see GMMR0UpdateReservation.
583 * @param pVM The shared VM structure.
584 */
585int mmR3UpdateReservation(PVM pVM)
586{
587 VM_ASSERT_EMT(pVM);
588 if (pVM->mm.s.fDoneMMR3InitPaging)
589 return GMMR3UpdateReservation(pVM,
590 RT_MAX(pVM->mm.s.cBasePages + pVM->mm.s.cHandyPages, 1),
591 RT_MAX(pVM->mm.s.cShadowPages, 1),
592 RT_MAX(pVM->mm.s.cFixedPages, 1));
593 return VINF_SUCCESS;
594}
595
596
597/**
598 * Interface for PGM to increase the reservation of RAM and ROM pages.
599 *
600 * This can be called before MMR3InitPaging.
601 *
602 * @returns VBox status code. Will set VM error on failure.
603 * @param pVM The shared VM structure.
604 * @param cAddBasePages The number of pages to add.
605 */
606VMMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages)
607{
608 uint64_t cOld = pVM->mm.s.cBasePages;
609 pVM->mm.s.cBasePages += cAddBasePages;
610 LogFlow(("MMR3IncreaseBaseReservation: +%RU64 (%RU64 -> %RU64\n", cAddBasePages, cOld, pVM->mm.s.cBasePages));
611 int rc = mmR3UpdateReservation(pVM);
612 if (RT_FAILURE(rc))
613 {
614 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 -> %#RX64 + %#RX32)"),
615 cOld, pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
616 pVM->mm.s.cBasePages = cOld;
617 }
618 return rc;
619}
620
621
622/**
623 * Interface for PGM to make reservations for handy pages in addition to the
624 * base memory.
625 *
626 * This can be called before MMR3InitPaging.
627 *
628 * @returns VBox status code. Will set VM error on failure.
629 * @param pVM The shared VM structure.
630 * @param cHandyPages The number of handy pages.
631 */
632VMMR3DECL(int) MMR3ReserveHandyPages(PVM pVM, uint32_t cHandyPages)
633{
634 AssertReturn(!pVM->mm.s.cHandyPages, VERR_WRONG_ORDER);
635
636 pVM->mm.s.cHandyPages = cHandyPages;
637 LogFlow(("MMR3ReserveHandyPages: %RU32 (base %RU64)\n", pVM->mm.s.cHandyPages, pVM->mm.s.cBasePages));
638 int rc = mmR3UpdateReservation(pVM);
639 if (RT_FAILURE(rc))
640 {
641 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserved physical memory for the RAM (%#RX64 + %#RX32)"),
642 pVM->mm.s.cBasePages, pVM->mm.s.cHandyPages);
643 pVM->mm.s.cHandyPages = 0;
644 }
645 return rc;
646}
647
648
649/**
650 * Interface for PGM to adjust the reservation of fixed pages.
651 *
652 * This can be called before MMR3InitPaging.
653 *
654 * @returns VBox status code. Will set VM error on failure.
655 * @param pVM The shared VM structure.
656 * @param cDeltaFixedPages The number of pages to add (positive) or subtract (negative).
657 * @param pszDesc Some description associated with the reservation.
658 */
659VMMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc)
660{
661 const uint32_t cOld = pVM->mm.s.cFixedPages;
662 pVM->mm.s.cFixedPages += cDeltaFixedPages;
663 LogFlow(("MMR3AdjustFixedReservation: %d (%u -> %u)\n", cDeltaFixedPages, cOld, pVM->mm.s.cFixedPages));
664 int rc = mmR3UpdateReservation(pVM);
665 if (RT_FAILURE(rc))
666 {
667 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory (%#x -> %#x; %s)"),
668 cOld, pVM->mm.s.cFixedPages, pszDesc);
669 pVM->mm.s.cFixedPages = cOld;
670 }
671 return rc;
672}
673
674
675/**
676 * Interface for PGM to update the reservation of shadow pages.
677 *
678 * This can be called before MMR3InitPaging.
679 *
680 * @returns VBox status code. Will set VM error on failure.
681 * @param pVM The shared VM structure.
682 * @param cShadowPages The new page count.
683 */
684VMMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages)
685{
686 const uint32_t cOld = pVM->mm.s.cShadowPages;
687 pVM->mm.s.cShadowPages = cShadowPages;
688 LogFlow(("MMR3UpdateShadowReservation: %u -> %u\n", cOld, pVM->mm.s.cShadowPages));
689 int rc = mmR3UpdateReservation(pVM);
690 if (RT_FAILURE(rc))
691 {
692 VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to reserve physical memory for shadow page tables (%#x -> %#x)"), cOld, pVM->mm.s.cShadowPages);
693 pVM->mm.s.cShadowPages = cOld;
694 }
695 return rc;
696}
697
698
699/**
700 * Convert HC Physical address to HC Virtual address.
701 *
702 * @returns VBox status.
703 * @param pVM VM handle.
704 * @param HCPhys The host context virtual address.
705 * @param ppv Where to store the resulting address.
706 * @thread The Emulation Thread.
707 *
708 * @remarks Avoid whenever possible.
709 * Intended for the debugger facility only.
710 * @todo Rename to indicate the special usage.
711 */
712VMMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
713{
714 /*
715 * Try page tables.
716 */
717 int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
718 if (RT_SUCCESS(rc))
719 return rc;
720
721 /*
722 * Iterate thru the lookup records for HMA.
723 */
724 uint32_t off = HCPhys & PAGE_OFFSET_MASK;
725 HCPhys &= X86_PTE_PAE_PG_MASK;
726 PMMLOOKUPHYPER pCur = (PMMLOOKUPHYPER)((uint8_t *)pVM->mm.s.CTX_SUFF(pHyperHeap) + pVM->mm.s.offLookupHyper);
727 for (;;)
728 {
729 switch (pCur->enmType)
730 {
731 case MMLOOKUPHYPERTYPE_LOCKED:
732 {
733 PCRTHCPHYS paHCPhysPages = pCur->u.Locked.paHCPhysPages;
734 size_t iPage = pCur->cb >> PAGE_SHIFT;
735 while (iPage-- > 0)
736 if (paHCPhysPages[iPage] == HCPhys)
737 {
738 *ppv = (char *)pCur->u.Locked.pvR3 + (iPage << PAGE_SHIFT) + off;
739 return VINF_SUCCESS;
740 }
741 break;
742 }
743
744 case MMLOOKUPHYPERTYPE_HCPHYS:
745 if (pCur->u.HCPhys.HCPhys - HCPhys < pCur->cb)
746 {
747 *ppv = (uint8_t *)pCur->u.HCPhys.pvR3 + pCur->u.HCPhys.HCPhys - HCPhys + off;
748 return VINF_SUCCESS;
749 }
750 break;
751
752 case MMLOOKUPHYPERTYPE_GCPHYS: /* (for now we'll not allow these kind of conversions) */
753 case MMLOOKUPHYPERTYPE_MMIO2:
754 case MMLOOKUPHYPERTYPE_DYNAMIC:
755 break;
756
757 default:
758 AssertMsgFailed(("enmType=%d\n", pCur->enmType));
759 break;
760 }
761
762 /* next */
763 if (pCur->offNext == (int32_t)NIL_OFFSET)
764 break;
765 pCur = (PMMLOOKUPHYPER)((uint8_t *)pCur + pCur->offNext);
766 }
767 /* give up */
768 return VERR_INVALID_POINTER;
769}
770
771
772/**
773 * Read memory from GC virtual address using the current guest CR3.
774 *
775 * @returns VBox status.
776 * @param pVM VM handle.
777 * @param pvDst Destination address (HC of course).
778 * @param GCPtr GC virtual address.
779 * @param cb Number of bytes to read.
780 *
781 * @remarks Intended for the debugger facility only.
782 * @todo Move to DBGF, it's only selecting which functions to use!
783 */
784VMMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb)
785{
786 if (GCPtr - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
787 return MMR3HyperReadGCVirt(pVM, pvDst, GCPtr, cb);
788 return PGMPhysSimpleReadGCPtr(pVM, pvDst, GCPtr, cb);
789}
790
791
792/**
793 * Write to memory at GC virtual address translated using the current guest CR3.
794 *
795 * @returns VBox status.
796 * @param pVM VM handle.
797 * @param GCPtrDst GC virtual address.
798 * @param pvSrc The source address (HC of course).
799 * @param cb Number of bytes to read.
800 *
801 * @remarks Intended for the debugger facility only.
802 * @todo Move to DBGF, it's only selecting which functions to use!
803 */
804VMMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
805{
806 if (GCPtrDst - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
807 return VERR_ACCESS_DENIED;
808 return PGMPhysSimpleWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
809}
810
811
812/**
813 * Get the size of the base RAM.
814 * This usually means the size of the first contigous block of physical memory.
815 *
816 * @returns The guest base RAM size.
817 * @param pVM The VM handle.
818 * @thread Any.
819 *
820 * @deprecated
821 */
822VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM)
823{
824 return pVM->mm.s.cbRamBase;
825}
826
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette