1 | /* $Id: MM.cpp 1890 2007-04-03 16:04:19Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * MM - Memory Monitor(/Manager).
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006 InnoTek Systemberatung GmbH
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License as published by the Free Software Foundation,
|
---|
13 | * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
|
---|
14 | * distribution. VirtualBox OSE is distributed in the hope that it will
|
---|
15 | * be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | *
|
---|
17 | * If you received this file as part of a commercial VirtualBox
|
---|
18 | * distribution, then only the terms of your commercial VirtualBox
|
---|
19 | * license agreement apply instead of the previous paragraph.
|
---|
20 | */
|
---|
21 |
|
---|
22 |
|
---|
23 | /** @page pg_mm MM - The Memory Monitor/Manager
|
---|
24 | *
|
---|
25 | * It seems like this is going to be the entity taking care of memory allocations
|
---|
26 | * and the locking of physical memory for a VM. MM will track these allocations and
|
---|
27 | * pinnings so pointer conversions, memory read and write, and correct clean up can
|
---|
28 | * be done.
|
---|
29 | *
|
---|
30 | * Memory types:
|
---|
31 | * - Hypervisor Memory Area (HMA).
|
---|
32 | * - Page tables.
|
---|
33 | * - Physical pages.
|
---|
34 | *
|
---|
35 | * The first two types are not accessible using the generic conversion functions
|
---|
36 | * for GC memory, there are special functions for these.
|
---|
37 | *
|
---|
38 | *
|
---|
39 | * A decent structure for this component need to be eveloped as we see usage. One
|
---|
40 | * or two rewrites is probabaly needed to get it right...
|
---|
41 | *
|
---|
42 | *
|
---|
43 | *
|
---|
44 | * @section Hypervisor Memory Area
|
---|
45 | *
|
---|
46 | * The hypervisor is give 4MB of space inside the guest, we assume that we can
|
---|
47 | * steal an page directory entry from the guest OS without cause trouble. In
|
---|
48 | * addition to these 4MB we'll be mapping memory for the graphics emulation,
|
---|
49 | * but that will be an independant mapping.
|
---|
50 | *
|
---|
51 | * The 4MBs are divided into two main parts:
|
---|
52 | * -# The static code and data
|
---|
53 | * -# The shortlived page mappings.
|
---|
54 | *
|
---|
55 | * The first part is used for the VM structure, the core code (VMMSwitch),
|
---|
56 | * GC modules, and the alloc-only-heap. The size will be determined at a
|
---|
57 | * later point but initially we'll say 2MB of locked memory, most of which
|
---|
58 | * is non contiguous physically.
|
---|
59 | *
|
---|
60 | * The second part is used for mapping pages to the hypervisor. We'll be using
|
---|
61 | * a simple round robin when doing these mappings. This means that no-one can
|
---|
62 | * assume that a mapping hangs around for very long, while the managing of the
|
---|
63 | * pages are very simple.
|
---|
64 | *
|
---|
65 | *
|
---|
66 | *
|
---|
67 | * @section Page Pool
|
---|
68 | *
|
---|
69 | * The MM manages a per VM page pool from which other components can allocate
|
---|
70 | * locked, page aligned and page granular memory objects. The pool provides
|
---|
71 | * facilities to convert back and forth between physical and virtual addresses
|
---|
72 | * (within the pool of course). Several specialized interfaces are provided
|
---|
73 | * for the most common alloctions and convertions to save the caller from
|
---|
74 | * bothersome casting and extra parameter passing.
|
---|
75 | *
|
---|
76 | *
|
---|
77 | */
|
---|
78 |
|
---|
79 |
|
---|
80 |
|
---|
81 | /*******************************************************************************
|
---|
82 | * Header Files *
|
---|
83 | *******************************************************************************/
|
---|
84 | #define LOG_GROUP LOG_GROUP_MM
|
---|
85 | #include <VBox/mm.h>
|
---|
86 | #include <VBox/pgm.h>
|
---|
87 | #include <VBox/cfgm.h>
|
---|
88 | #include <VBox/ssm.h>
|
---|
89 | #include "MMInternal.h"
|
---|
90 | #include <VBox/vm.h>
|
---|
91 | #include <VBox/err.h>
|
---|
92 | #include <VBox/param.h>
|
---|
93 |
|
---|
94 | #include <VBox/log.h>
|
---|
95 | #include <iprt/alloc.h>
|
---|
96 | #include <iprt/assert.h>
|
---|
97 | #include <iprt/string.h>
|
---|
98 |
|
---|
99 |
|
---|
100 | /*******************************************************************************
|
---|
101 | * Internal Functions *
|
---|
102 | *******************************************************************************/
|
---|
103 | static int mmR3Term(PVM pVM, bool fKeepTheHeap);
|
---|
104 | static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM);
|
---|
105 | static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
|
---|
106 |
|
---|
107 |
|
---|
108 |
|
---|
109 | /**
|
---|
110 | * Initializes the MM.
|
---|
111 | *
|
---|
112 | * MM is managing the virtual address space (among other things) and
|
---|
113 | * setup the hypvervisor memory area mapping in the VM structure and
|
---|
114 | * the hypvervisor alloc-only-heap. Assuming the current init order
|
---|
115 | * and components the hypvervisor memory area looks like this:
|
---|
116 | * -# VM Structure.
|
---|
117 | * -# Hypervisor alloc only heap (also call Hypervisor memory region).
|
---|
118 | * -# Core code.
|
---|
119 | *
|
---|
120 | * MM determins the virtual address of the hypvervisor memory area by
|
---|
121 | * checking for location at previous run. If that property isn't available
|
---|
122 | * it will choose a default starting location, currently 0xe0000000.
|
---|
123 | *
|
---|
124 | * @returns VBox status code.
|
---|
125 | * @param pVM The VM to operate on.
|
---|
126 | */
|
---|
127 | MMR3DECL(int) MMR3Init(PVM pVM)
|
---|
128 | {
|
---|
129 | LogFlow(("MMR3Init\n"));
|
---|
130 |
|
---|
131 | /*
|
---|
132 | * Assert alignment, sizes and order.
|
---|
133 | */
|
---|
134 | AssertRelease(!(RT_OFFSETOF(VM, mm.s) & 31));
|
---|
135 | AssertRelease(sizeof(pVM->mm.s) <= sizeof(pVM->mm.padding));
|
---|
136 | AssertMsg(pVM->mm.s.offVM == 0, ("Already initialized!\n"));
|
---|
137 |
|
---|
138 | /*
|
---|
139 | * Init the structure.
|
---|
140 | */
|
---|
141 | pVM->mm.s.offVM = RT_OFFSETOF(VM, mm);
|
---|
142 | pVM->mm.s.offLookupHyper = NIL_OFFSET;
|
---|
143 |
|
---|
144 | /*
|
---|
145 | * Init the heap (may already be initialized already if someone used it).
|
---|
146 | */
|
---|
147 | if (!pVM->mm.s.pHeap)
|
---|
148 | {
|
---|
149 | int rc = mmr3HeapCreate(pVM, &pVM->mm.s.pHeap);
|
---|
150 | if (!VBOX_SUCCESS(rc))
|
---|
151 | return rc;
|
---|
152 | }
|
---|
153 |
|
---|
154 | /*
|
---|
155 | * Init the page pool.
|
---|
156 | */
|
---|
157 | int rc = mmr3PagePoolInit(pVM);
|
---|
158 | if (VBOX_SUCCESS(rc))
|
---|
159 | {
|
---|
160 | /*
|
---|
161 | * Init the hypervisor related stuff.
|
---|
162 | */
|
---|
163 | rc = mmr3HyperInit(pVM);
|
---|
164 | if (VBOX_SUCCESS(rc))
|
---|
165 | {
|
---|
166 | /*
|
---|
167 | * Register the saved state data unit.
|
---|
168 | */
|
---|
169 | rc = SSMR3RegisterInternal(pVM, "mm", 1, 1, sizeof(uint32_t) * 2,
|
---|
170 | NULL, mmR3Save, NULL,
|
---|
171 | NULL, mmR3Load, NULL);
|
---|
172 | if (VBOX_SUCCESS(rc))
|
---|
173 | return rc;
|
---|
174 | }
|
---|
175 |
|
---|
176 | /* .... failure .... */
|
---|
177 | mmR3Term(pVM, true /* keep the heap */);
|
---|
178 | }
|
---|
179 | else
|
---|
180 | mmr3HeapDestroy(pVM->mm.s.pHeap);
|
---|
181 | return rc;
|
---|
182 | }
|
---|
183 |
|
---|
184 |
|
---|
185 | /**
|
---|
186 | * Initializes the MM parts which depends on PGM being initialized.
|
---|
187 | *
|
---|
188 | * @returns VBox status code.
|
---|
189 | * @param pVM The VM to operate on.
|
---|
190 | * @remark No cleanup necessary since MMR3Term() will be called on failure.
|
---|
191 | */
|
---|
192 | MMR3DECL(int) MMR3InitPaging(PVM pVM)
|
---|
193 | {
|
---|
194 | LogFlow(("MMR3InitPaging:\n"));
|
---|
195 | bool fPreAlloc;
|
---|
196 | int rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "RamPreAlloc", &fPreAlloc);
|
---|
197 | if (rc == VERR_CFGM_VALUE_NOT_FOUND)
|
---|
198 | fPreAlloc = false;
|
---|
199 | else
|
---|
200 | AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"RamPreAlloc\", rc=%Vrc.\n", rc), rc);
|
---|
201 |
|
---|
202 | uint64_t cbRam;
|
---|
203 | rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
|
---|
204 | if (rc == VERR_CFGM_VALUE_NOT_FOUND)
|
---|
205 | cbRam = 0;
|
---|
206 | if (VBOX_SUCCESS(rc) || rc == VERR_CFGM_VALUE_NOT_FOUND)
|
---|
207 | {
|
---|
208 | if (cbRam < PAGE_SIZE)
|
---|
209 | {
|
---|
210 | Log(("MM: No RAM configured\n"));
|
---|
211 | return VINF_SUCCESS;
|
---|
212 | }
|
---|
213 | #ifdef PGM_DYNAMIC_RAM_ALLOC
|
---|
214 | Log(("MM: %llu bytes of RAM%s\n", cbRam, fPreAlloc ? " (PreAlloc)" : ""));
|
---|
215 | pVM->mm.s.pvRamBaseHC = 0; /** @todo obsolete */
|
---|
216 | pVM->mm.s.cbRamBase = cbRam & PAGE_BASE_GC_MASK;
|
---|
217 | rc = MMR3PhysRegister(pVM, pVM->mm.s.pvRamBaseHC, 0, pVM->mm.s.cbRamBase, MM_RAM_FLAGS_DYNAMIC_ALLOC, "Main Memory");
|
---|
218 | if (VBOX_SUCCESS(rc))
|
---|
219 | {
|
---|
220 | /* Allocate the first chunk, as we'll map ROM ranges there. */
|
---|
221 | rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)0);
|
---|
222 | if (VBOX_SUCCESS(rc))
|
---|
223 | {
|
---|
224 | /* Should we preallocate the entire guest RAM? */
|
---|
225 | if (fPreAlloc)
|
---|
226 | {
|
---|
227 | for (RTGCPHYS GCPhys = PGM_DYNAMIC_CHUNK_SIZE; GCPhys < cbRam; GCPhys += PGM_DYNAMIC_CHUNK_SIZE)
|
---|
228 | {
|
---|
229 | rc = PGM3PhysGrowRange(pVM, GCPhys);
|
---|
230 | if (VBOX_FAILURE(rc))
|
---|
231 | return rc;
|
---|
232 | }
|
---|
233 | }
|
---|
234 | return rc;
|
---|
235 | }
|
---|
236 | }
|
---|
237 | #else
|
---|
238 | unsigned cPages = cbRam >> PAGE_SHIFT;
|
---|
239 | Log(("MM: %llu bytes of RAM (%d pages)\n", cbRam, cPages));
|
---|
240 | rc = SUPPageAlloc(cPages, &pVM->mm.s.pvRamBaseHC);
|
---|
241 | if (VBOX_SUCCESS(rc))
|
---|
242 | {
|
---|
243 | pVM->mm.s.cbRamBase = cPages << PAGE_SHIFT;
|
---|
244 | rc = MMR3PhysRegister(pVM, pVM->mm.s.pvRamBaseHC, 0, pVM->mm.s.cbRamBase, 0, "Main Memory");
|
---|
245 | if (VBOX_SUCCESS(rc))
|
---|
246 | return rc;
|
---|
247 | SUPPageFree(pVM->mm.s.pvRamBaseHC);
|
---|
248 | }
|
---|
249 | else
|
---|
250 | LogRel(("MMR3InitPage: Failed to allocate %u bytes of RAM! rc=%Vrc\n", cPages << PAGE_SHIFT));
|
---|
251 | #endif
|
---|
252 | }
|
---|
253 | else
|
---|
254 | AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
|
---|
255 |
|
---|
256 | LogFlow(("MMR3InitPaging: returns %Vrc\n", rc));
|
---|
257 | return rc;
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | /**
|
---|
262 | * Terminates the MM.
|
---|
263 | *
|
---|
264 | * Termination means cleaning up and freeing all resources,
|
---|
265 | * the VM it self is at this point powered off or suspended.
|
---|
266 | *
|
---|
267 | * @returns VBox status code.
|
---|
268 | * @param pVM The VM to operate on.
|
---|
269 | */
|
---|
270 | MMR3DECL(int) MMR3Term(PVM pVM)
|
---|
271 | {
|
---|
272 | return mmR3Term(pVM, false /* free the heap */);
|
---|
273 | }
|
---|
274 |
|
---|
275 |
|
---|
276 | /**
|
---|
277 | * Worker for MMR3Term and MMR3Init.
|
---|
278 | *
|
---|
279 | * The tricky bit here is that we must not destroy the heap if we're
|
---|
280 | * called from MMR3Init, otherwise we'll get into trouble when
|
---|
281 | * CFGMR3Term is called later in the bailout process.
|
---|
282 | *
|
---|
283 | * @returns VBox status code.
|
---|
284 | * @param pVM The VM to operate on.
|
---|
285 | * @param fKeepTheHeap Whether or not to keep the heap.
|
---|
286 | */
|
---|
287 | static int mmR3Term(PVM pVM, bool fKeepTheHeap)
|
---|
288 | {
|
---|
289 | /*
|
---|
290 | * Release locked memory.
|
---|
291 | * (Associated record are released by the heap.)
|
---|
292 | */
|
---|
293 | PMMLOCKEDMEM pLockedMem = pVM->mm.s.pLockedMem;
|
---|
294 | while (pLockedMem)
|
---|
295 | {
|
---|
296 | int rc = SUPPageUnlock(pLockedMem->pv);
|
---|
297 | AssertMsgRC(rc, ("SUPPageUnlock(%p) -> rc=%d\n", pLockedMem->pv, rc));
|
---|
298 | switch (pLockedMem->eType)
|
---|
299 | {
|
---|
300 | case MM_LOCKED_TYPE_HYPER:
|
---|
301 | rc = SUPPageFree(pLockedMem->pv, pLockedMem->cb >> PAGE_SHIFT);
|
---|
302 | AssertMsgRC(rc, ("SUPPageFree(%p) -> rc=%d\n", pLockedMem->pv, rc));
|
---|
303 | break;
|
---|
304 | case MM_LOCKED_TYPE_HYPER_NOFREE:
|
---|
305 | case MM_LOCKED_TYPE_HYPER_PAGES:
|
---|
306 | case MM_LOCKED_TYPE_PHYS:
|
---|
307 | /* nothing to do. */
|
---|
308 | break;
|
---|
309 | }
|
---|
310 | /* next */
|
---|
311 | pLockedMem = pLockedMem->pNext;
|
---|
312 | }
|
---|
313 |
|
---|
314 | /*
|
---|
315 | * Destroy the page pool.
|
---|
316 | */
|
---|
317 | mmr3PagePoolTerm(pVM);
|
---|
318 |
|
---|
319 | /*
|
---|
320 | * Destroy the heap if requested.
|
---|
321 | */
|
---|
322 | if (!fKeepTheHeap)
|
---|
323 | {
|
---|
324 | mmr3HeapDestroy(pVM->mm.s.pHeap);
|
---|
325 | pVM->mm.s.pHeap = NULL;
|
---|
326 | }
|
---|
327 |
|
---|
328 | /*
|
---|
329 | * Zero stuff to detect after termination use of the MM interface
|
---|
330 | */
|
---|
331 | pVM->mm.s.offLookupHyper = NIL_OFFSET;
|
---|
332 | pVM->mm.s.pLockedMem = NULL;
|
---|
333 | pVM->mm.s.pHyperHeapHC = NULL; /* freed above. */
|
---|
334 | pVM->mm.s.pHyperHeapGC = 0; /* freed above. */
|
---|
335 | pVM->mm.s.offVM = 0; /* init assertion on this */
|
---|
336 |
|
---|
337 | return 0;
|
---|
338 | }
|
---|
339 |
|
---|
340 |
|
---|
341 | /**
|
---|
342 | * Execute state save operation.
|
---|
343 | *
|
---|
344 | * @returns VBox status code.
|
---|
345 | * @param pVM VM Handle.
|
---|
346 | * @param pSSM SSM operation handle.
|
---|
347 | */
|
---|
348 | static DECLCALLBACK(int) mmR3Save(PVM pVM, PSSMHANDLE pSSM)
|
---|
349 | {
|
---|
350 | LogFlow(("mmR3Save:\n"));
|
---|
351 |
|
---|
352 | /* (PGM saves the physical memory.) */
|
---|
353 | SSMR3PutUInt(pSSM, pVM->mm.s.cbRAMSize);
|
---|
354 | return SSMR3PutUInt(pSSM, pVM->mm.s.cbRamBase);
|
---|
355 | }
|
---|
356 |
|
---|
357 |
|
---|
358 | /**
|
---|
359 | * Execute state load operation.
|
---|
360 | *
|
---|
361 | * @returns VBox status code.
|
---|
362 | * @param pVM VM Handle.
|
---|
363 | * @param pSSM SSM operation handle.
|
---|
364 | * @param u32Version Data layout version.
|
---|
365 | */
|
---|
366 | static DECLCALLBACK(int) mmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
|
---|
367 | {
|
---|
368 | LogFlow(("mmR3Load:\n"));
|
---|
369 |
|
---|
370 | /*
|
---|
371 | * Validate version.
|
---|
372 | */
|
---|
373 | if (u32Version != 1)
|
---|
374 | {
|
---|
375 | Log(("mmR3Load: Invalid version u32Version=%d!\n", u32Version));
|
---|
376 | return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
|
---|
377 | }
|
---|
378 |
|
---|
379 | /*
|
---|
380 | * Check the cbRAMSize and cbRamBase values.
|
---|
381 | */
|
---|
382 | RTUINT cb;
|
---|
383 | int rc = SSMR3GetUInt(pSSM, &cb);
|
---|
384 | if (VBOX_FAILURE(rc))
|
---|
385 | return rc;
|
---|
386 | if (cb != pVM->mm.s.cbRAMSize)
|
---|
387 | {
|
---|
388 | Log(("mmR3Load: Memory configuration has changed. cbRAMSize=%#x save %#x\n", pVM->mm.s.cbRAMSize, cb));
|
---|
389 | return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
|
---|
390 | }
|
---|
391 |
|
---|
392 | rc = SSMR3GetUInt(pSSM, &cb);
|
---|
393 | if (VBOX_FAILURE(rc))
|
---|
394 | return rc;
|
---|
395 | if (cb != pVM->mm.s.cbRamBase)
|
---|
396 | {
|
---|
397 | Log(("mmR3Load: Memory configuration has changed. cbRamBase=%#x save %#x\n", pVM->mm.s.cbRamBase, cb));
|
---|
398 | return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
|
---|
399 | }
|
---|
400 |
|
---|
401 | /* PGM restores the physical memory. */
|
---|
402 | return rc;
|
---|
403 | }
|
---|
404 |
|
---|
405 |
|
---|
406 | /**
|
---|
407 | * Locks physical memory which backs a virtual memory range (HC) adding
|
---|
408 | * the required records to the pLockedMem list.
|
---|
409 | *
|
---|
410 | * @returns VBox status code.
|
---|
411 | * @param pVM The VM handle.
|
---|
412 | * @param pv Pointer to memory range which shall be locked down.
|
---|
413 | * This pointer is page aligned.
|
---|
414 | * @param cb Size of memory range (in bytes). This size is page aligned.
|
---|
415 | * @param eType Memory type.
|
---|
416 | * @param ppLockedMem Where to store the pointer to the created locked memory record.
|
---|
417 | * This is optional, pass NULL if not used.
|
---|
418 | * @param fSilentFailure Don't raise an error when unsuccessful. Upper layer with deal with it.
|
---|
419 | */
|
---|
420 | int mmr3LockMem(PVM pVM, void *pv, size_t cb, MMLOCKEDTYPE eType, PMMLOCKEDMEM *ppLockedMem, bool fSilentFailure)
|
---|
421 | {
|
---|
422 | Assert(RT_ALIGN_P(pv, PAGE_SIZE) == pv);
|
---|
423 | Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
|
---|
424 |
|
---|
425 | if (ppLockedMem)
|
---|
426 | *ppLockedMem = NULL;
|
---|
427 |
|
---|
428 | /*
|
---|
429 | * Allocate locked mem structure.
|
---|
430 | */
|
---|
431 | unsigned cPages = cb >> PAGE_SHIFT;
|
---|
432 | AssertReturn(cPages == (cb >> PAGE_SHIFT), VERR_OUT_OF_RANGE);
|
---|
433 | PMMLOCKEDMEM pLockedMem = (PMMLOCKEDMEM)MMR3HeapAlloc(pVM, MM_TAG_MM, RT_OFFSETOF(MMLOCKEDMEM, aPhysPages[cPages]));
|
---|
434 | if (!pLockedMem)
|
---|
435 | return VERR_NO_MEMORY;
|
---|
436 | pLockedMem->pv = pv;
|
---|
437 | pLockedMem->cb = cb;
|
---|
438 | pLockedMem->eType = eType;
|
---|
439 | memset(&pLockedMem->u, 0, sizeof(pLockedMem->u));
|
---|
440 |
|
---|
441 | /*
|
---|
442 | * Lock the memory.
|
---|
443 | */
|
---|
444 | int rc = SUPPageLock(pv, cPages, &pLockedMem->aPhysPages[0]);
|
---|
445 | if (VBOX_SUCCESS(rc))
|
---|
446 | {
|
---|
447 | /*
|
---|
448 | * Setup the reserved field.
|
---|
449 | */
|
---|
450 | PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[0];
|
---|
451 | for (unsigned c = cPages; c > 0; c--, pPhysPage++)
|
---|
452 | pPhysPage->uReserved = (RTHCUINTPTR)pLockedMem;
|
---|
453 |
|
---|
454 | /*
|
---|
455 | * Insert into the list.
|
---|
456 | *
|
---|
457 | * ASSUME no protected needed here as only one thread in the system can possibly
|
---|
458 | * be doing this. No other threads will walk this list either we assume.
|
---|
459 | */
|
---|
460 | pLockedMem->pNext = pVM->mm.s.pLockedMem;
|
---|
461 | pVM->mm.s.pLockedMem = pLockedMem;
|
---|
462 | /* Set return value. */
|
---|
463 | if (ppLockedMem)
|
---|
464 | *ppLockedMem = pLockedMem;
|
---|
465 | }
|
---|
466 | else
|
---|
467 | {
|
---|
468 | AssertMsgFailed(("SUPPageLock failed with rc=%d\n", rc));
|
---|
469 | MMR3HeapFree(pLockedMem);
|
---|
470 | if (!fSilentFailure)
|
---|
471 | rc = VMSetError(pVM, rc, RT_SRC_POS, N_("Failed to lock %d bytes of host memory (out of memory)"), cb);
|
---|
472 | }
|
---|
473 |
|
---|
474 | return rc;
|
---|
475 | }
|
---|
476 |
|
---|
477 |
|
---|
478 | /**
|
---|
479 | * Maps a part of or an entire locked memory region into the guest context.
|
---|
480 | *
|
---|
481 | * @returns VBox status.
|
---|
482 | * God knows what happens if we fail...
|
---|
483 | * @param pVM VM handle.
|
---|
484 | * @param pLockedMem Locked memory structure.
|
---|
485 | * @param Addr GC Address where to start the mapping.
|
---|
486 | * @param iPage Page number in the locked memory region.
|
---|
487 | * @param cPages Number of pages to map.
|
---|
488 | * @param fFlags See the fFlags argument of PGR3Map().
|
---|
489 | */
|
---|
490 | int mmr3MapLocked(PVM pVM, PMMLOCKEDMEM pLockedMem, RTGCPTR Addr, unsigned iPage, size_t cPages, unsigned fFlags)
|
---|
491 | {
|
---|
492 | /*
|
---|
493 | * Adjust ~0 argument
|
---|
494 | */
|
---|
495 | if (cPages == ~(size_t)0)
|
---|
496 | cPages = (pLockedMem->cb >> PAGE_SHIFT) - iPage;
|
---|
497 | Assert(cPages != ~0U);
|
---|
498 | /* no incorrect arguments are accepted */
|
---|
499 | Assert(RT_ALIGN_GCPT(Addr, PAGE_SIZE, RTGCPTR) == Addr);
|
---|
500 | AssertMsg(iPage < (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad iPage(=%d)\n", iPage));
|
---|
501 | AssertMsg(iPage + cPages <= (pLockedMem->cb >> PAGE_SHIFT), ("never even think about giving me a bad cPages(=%d)\n", cPages));
|
---|
502 |
|
---|
503 | /*
|
---|
504 | * Map the the pages.
|
---|
505 | */
|
---|
506 | PSUPPAGE pPhysPage = &pLockedMem->aPhysPages[iPage];
|
---|
507 | while (cPages)
|
---|
508 | {
|
---|
509 | RTHCPHYS HCPhys = pPhysPage->Phys;
|
---|
510 | int rc = PGMMap(pVM, Addr, HCPhys, PAGE_SIZE, fFlags);
|
---|
511 | if (VBOX_FAILURE(rc))
|
---|
512 | {
|
---|
513 | /** @todo how the hell can we do a proper bailout here. */
|
---|
514 | return rc;
|
---|
515 | }
|
---|
516 |
|
---|
517 | /* next */
|
---|
518 | cPages--;
|
---|
519 | iPage++;
|
---|
520 | pPhysPage++;
|
---|
521 | Addr += PAGE_SIZE;
|
---|
522 | }
|
---|
523 |
|
---|
524 | return VINF_SUCCESS;
|
---|
525 | }
|
---|
526 |
|
---|
527 |
|
---|
528 | /**
|
---|
529 | * Convert HC Physical address to HC Virtual address.
|
---|
530 | *
|
---|
531 | * @returns VBox status.
|
---|
532 | * @param pVM VM handle.
|
---|
533 | * @param HCPhys The host context virtual address.
|
---|
534 | * @param ppv Where to store the resulting address.
|
---|
535 | * @thread The Emulation Thread.
|
---|
536 | */
|
---|
537 | MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv)
|
---|
538 | {
|
---|
539 | /*
|
---|
540 | * Try page tables.
|
---|
541 | */
|
---|
542 | int rc = MMPagePhys2PageTry(pVM, HCPhys, ppv);
|
---|
543 | if (VBOX_SUCCESS(rc))
|
---|
544 | return rc;
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * Iterate the locked memory - very slow.
|
---|
548 | */
|
---|
549 | uint32_t off = HCPhys & PAGE_OFFSET_MASK;
|
---|
550 | HCPhys &= X86_PTE_PAE_PG_MASK;
|
---|
551 | for (PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; pCur; pCur = pCur->pNext)
|
---|
552 | {
|
---|
553 | size_t iPage = pCur->cb >> PAGE_SHIFT;
|
---|
554 | while (iPage-- > 0)
|
---|
555 | if ((pCur->aPhysPages[iPage].Phys & X86_PTE_PAE_PG_MASK) == HCPhys)
|
---|
556 | {
|
---|
557 | *ppv = (char *)pCur->pv + (iPage << PAGE_SHIFT) + off;
|
---|
558 | return VINF_SUCCESS;
|
---|
559 | }
|
---|
560 | }
|
---|
561 | /* give up */
|
---|
562 | return VERR_INVALID_POINTER;
|
---|
563 | }
|
---|
564 |
|
---|
565 |
|
---|
566 | /**
|
---|
567 | * Read memory from GC virtual address using the current guest CR3.
|
---|
568 | *
|
---|
569 | * @returns VBox status.
|
---|
570 | * @param pVM VM handle.
|
---|
571 | * @param pvDst Destination address (HC of course).
|
---|
572 | * @param GCPtr GC virtual address.
|
---|
573 | * @param cb Number of bytes to read.
|
---|
574 | */
|
---|
575 | MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb)
|
---|
576 | {
|
---|
577 | if (GCPtr - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
|
---|
578 | return MMR3HyperReadGCVirt(pVM, pvDst, GCPtr, cb);
|
---|
579 | return PGMPhysReadGCPtr(pVM, pvDst, GCPtr, cb);
|
---|
580 | }
|
---|
581 |
|
---|
582 |
|
---|
583 | /**
|
---|
584 | * Write to memory at GC virtual address translated using the current guest CR3.
|
---|
585 | *
|
---|
586 | * @returns VBox status.
|
---|
587 | * @param pVM VM handle.
|
---|
588 | * @param GCPtrDst GC virtual address.
|
---|
589 | * @param pvSrc The source address (HC of course).
|
---|
590 | * @param cb Number of bytes to read.
|
---|
591 | */
|
---|
592 | MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb)
|
---|
593 | {
|
---|
594 | if (GCPtrDst - pVM->mm.s.pvHyperAreaGC < pVM->mm.s.cbHyperArea)
|
---|
595 | return VERR_ACCESS_DENIED;
|
---|
596 | return PGMPhysWriteGCPtr(pVM, GCPtrDst, pvSrc, cb);
|
---|
597 | }
|
---|
598 |
|
---|