/* $Id: MMPhys.cpp 13841 2008-11-05 03:38:52Z vboxsync $ */ /** @file * MM - Memory Manager - Physical Memory. * * @remarks This will will be eliminated ASAP, all physical memory management * is done by PGM now. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_MM_PHYS #include #include #include #include "MMInternal.h" #include #include #include #include #include #include #include /** * Register externally allocated RAM for the virtual machine. * * The memory registered with the VM thru this interface must not be freed * before the virtual machine has been destroyed. Bad things may happen... :-) * * @return VBox status code. * @param pVM VM handle. * @param pvRam Virtual address of the guest's physical memory range Must be page aligned. * @param GCPhys The physical address the ram shall be registered at. * @param cb Size of the memory. Must be page aligend. * @param fFlags Flags of the MM_RAM_FLAGS_* defines. * @param pszDesc Description of the memory. */ VMMR3DECL(int) MMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, const char *pszDesc) { return MMR3PhysRegisterEx(pVM, pvRam, GCPhys, cb, fFlags, MM_PHYS_TYPE_NORMAL, pszDesc); } /** * Register externally allocated RAM for the virtual machine. * * The memory registered with the VM thru this interface must not be freed * before the virtual machine has been destroyed. Bad things may happen... :-) * * @return VBox status code. * @param pVM VM handle. * @param pvRam Virtual address of the guest's physical memory range Must be page aligned. * @param GCPhys The physical address the ram shall be registered at. * @param cb Size of the memory. Must be page aligend. * @param fFlags Flags of the MM_RAM_FLAGS_* defines. * @param enmType Physical range type (MM_PHYS_TYPE_*) * @param pszDesc Description of the memory. * @thread The Emulation Thread. * * @deprecated For the old dynamic allocation code only. Will be removed with VBOX_WITH_NEW_PHYS_CODE. */ /** @todo this function description is not longer up-to-date */ VMMR3DECL(int) MMR3PhysRegisterEx(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, MMPHYSREG enmType, const char *pszDesc) { int rc = VINF_SUCCESS; Log(("MMR3PhysRegister: pvRam=%p GCPhys=%RGp cb=%#x fFlags=%#x\n", pvRam, GCPhys, cb, fFlags)); /* * Validate input. */ AssertMsg(pVM, ("Invalid VM pointer\n")); if (pvRam) AssertReturn(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam, VERR_INVALID_PARAMETER); else AssertReturn(fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_Z(cb, PAGE_SIZE) == cb, VERR_INVALID_PARAMETER); AssertReturn(enmType == MM_PHYS_TYPE_NORMAL || enmType == MM_PHYS_TYPE_DYNALLOC_CHUNK, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cb - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); /* * Check for conflicts. * * We do not support overlapping physical memory regions yet, * even if that's what the MM_RAM_FLAGS_MMIO2 flags is trying to * tell us to do. Provided that all MMIO2 addresses are very high * there is no real danger we'll be able to assign so much memory * for a guest that it'll ever be a problem. */ AssertMsg(!(fFlags & MM_RAM_FLAGS_MMIO2) || GCPhys > 0xc0000000, ("MMIO2 addresses should be above 3GB for avoiding conflicts with real RAM.\n")); PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; while (pCur) { if ( pCur->eType == MM_LOCKED_TYPE_PHYS && ( GCPhys - pCur->u.phys.GCPhys < pCur->cb || pCur->u.phys.GCPhys - GCPhys < cb) ) { AssertMsgFailed(("Conflicting RAM range. Existing %#x LB%#x, Req %#x LB%#x\n", pCur->u.phys.GCPhys, pCur->cb, GCPhys, cb)); return VERR_MM_RAM_CONFLICT; } /* next */ pCur = pCur->pNext; } /* Dynamic/on-demand allocation of backing memory? */ if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { /* * Register the ram with PGM. */ rc = PGMR3PhysRegister(pVM, pvRam, GCPhys, cb, fFlags, NULL, pszDesc); if (RT_SUCCESS(rc)) { if (fFlags == MM_RAM_FLAGS_DYNAMIC_ALLOC) pVM->mm.s.cBasePages += cb >> PAGE_SHIFT; REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, fFlags); return rc; } } else { /* * Lock the memory. (fully allocated by caller) */ PMMLOCKEDMEM pLockedMem; rc = mmR3LockMem(pVM, pvRam, cb, MM_LOCKED_TYPE_PHYS, &pLockedMem, enmType == MM_PHYS_TYPE_DYNALLOC_CHUNK /* fSilentFailure */); if (RT_SUCCESS(rc)) { pLockedMem->u.phys.GCPhys = GCPhys; /* * We set any page flags specified. */ if (fFlags) for (unsigned i = 0; i < cb >> PAGE_SHIFT; i++) pLockedMem->aPhysPages[i].Phys |= fFlags; /* * Register the ram with PGM. */ if (enmType == MM_PHYS_TYPE_NORMAL) { rc = PGMR3PhysRegister(pVM, pvRam, pLockedMem->u.phys.GCPhys, cb, fFlags, &pLockedMem->aPhysPages[0], pszDesc); if (RT_SUCCESS(rc)) { if (!fFlags) pVM->mm.s.cBasePages += cb >> PAGE_SHIFT; REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, fFlags); return rc; } } else { Assert(enmType == MM_PHYS_TYPE_DYNALLOC_CHUNK); return PGMR3PhysRegisterChunk(pVM, pvRam, pLockedMem->u.phys.GCPhys, cb, fFlags, &pLockedMem->aPhysPages[0], pszDesc); } } /* Cleanup is done in VM destruction to which failure of this function will lead. */ /* Not true in case of MM_PHYS_TYPE_DYNALLOC_CHUNK */ } return rc; } /** * Register a ROM (BIOS) region. * * It goes without saying that this is read-only memory. The memory region must be * in unassigned memory. I.e. from the top of the address space or on the PC in * the 0xa0000-0xfffff range. * * @returns VBox status. * @param pVM VM Handle. * @param pDevIns The device instance owning the ROM region. * @param GCPhys First physical address in the range. * Must be page aligned! * @param cbRange The size of the range (in bytes). * Must be page aligned! * @param pvBinary Pointer to the binary data backing the ROM image. * This must be cbRange bytes big. * It will be copied and doesn't have to stick around. * It will be copied and doesn't have to stick around if fShadow is clear. * @param fShadow Whether to emulate ROM shadowing. This involves leaving * the ROM writable for a while during the POST and refreshing * it at reset. When this flag is set, the memory pointed to by * pvBinary has to stick around for the lifespan of the VM. * @param pszDesc Pointer to description string. This must not be freed. * @remark There is no way to remove the rom, automatically on device cleanup or * manually from the device yet. At present I doubt we need such features... */ VMMR3DECL(int) MMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTUINT cbRange, const void *pvBinary, bool fShadow, const char *pszDesc) { /* * Validate input. */ AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN(cbRange, PAGE_SIZE) == cbRange, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cbRange - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER); /* * Check if this can fit in an existing range. * * We do not handle the case where a new chunk of locked memory is * required to accommodate the ROM since we assume MMR3PhysReserve() * have been called to reserve the memory first. * * To make things even simpler, the pages in question must be * marked as reserved. */ PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; for ( ; pCur; pCur = pCur->pNext) if ( pCur->eType == MM_LOCKED_TYPE_PHYS && GCPhys - pCur->u.phys.GCPhys < pCur->cb) break; if (!pCur) { AssertMsgFailed(("No physical range was found matching the ROM location (%RGp LB%#x)\n", GCPhys, cbRange)); return VERR_INVALID_PARAMETER; } if (GCPhysLast - pCur->u.phys.GCPhys >= pCur->cb) { AssertMsgFailed(("The ROM range (%RGp LB%#x) was crossing the end of the physical range (%RGp LB%#x)\n", GCPhys, cbRange, pCur->u.phys.GCPhys, pCur->cb)); return VERR_INVALID_PARAMETER; } /* flags must be all reserved. */ unsigned iPage = (GCPhys - pCur->u.phys.GCPhys) >> PAGE_SHIFT; unsigned iPageEnd = cbRange >> PAGE_SHIFT; for (; iPage < iPageEnd; iPage++) if ( (pCur->aPhysPages[iPage].Phys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) != MM_RAM_FLAGS_RESERVED) { AssertMsgFailed(("Flags conflict at %RGp, HCPhys=%RHp.\n", pCur->u.phys.GCPhys + (iPage << PAGE_SHIFT), pCur->aPhysPages[iPage].Phys)); return VERR_INVALID_PARAMETER; } /* * Copy the ram and update the flags. */ iPage = (GCPhys - pCur->u.phys.GCPhys) >> PAGE_SHIFT; void *pvCopy = (char *)pCur->pv + (iPage << PAGE_SHIFT); memcpy(pvCopy, pvBinary, cbRange); const unsigned fSet = fShadow ? MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2 : MM_RAM_FLAGS_ROM; for (; iPage < iPageEnd; iPage++) { pCur->aPhysPages[iPage].Phys &= ~MM_RAM_FLAGS_RESERVED; pCur->aPhysPages[iPage].Phys |= fSet; } int rc = PGMR3PhysSetFlags(pVM, GCPhys, cbRange, fSet, ~MM_RAM_FLAGS_RESERVED); AssertRC(rc); if (RT_SUCCESS(rc)) { /* * To prevent the shadow page table mappings from being RW in raw-mode, we * must currently employ a little hack. We register an write access handler * and thereby ensures a RO mapping of the pages. This is NOT very nice, * and wasn't really my intention when writing the code, consider it a PGM bug. * * ASSUMES that REMR3NotifyPhysRomRegister doesn't call cpu_register_physical_memory * when there is no HC handler. The result would probably be immediate boot failure. */ rc = PGMR3HandlerPhysicalRegister(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhys, GCPhys + cbRange - 1, NULL, NULL, NULL, "pgmPhysRomWriteHandler", 0, NULL, "pgmPhysRomWriteHandler", 0, pszDesc); AssertRC(rc); } /* * Create a ROM range it so we can make a 'info rom' thingy and more importantly * reload and protect/unprotect shadow ROM correctly. */ if (RT_SUCCESS(rc)) { PMMROMRANGE pRomRange = (PMMROMRANGE)MMR3HeapAlloc(pVM, MM_TAG_MM, sizeof(*pRomRange)); AssertReturn(pRomRange, VERR_NO_MEMORY); pRomRange->GCPhys = GCPhys; pRomRange->cbRange = cbRange; pRomRange->pszDesc = pszDesc; pRomRange->fShadow = fShadow; pRomRange->fWritable = fShadow; pRomRange->pvBinary = fShadow ? pvBinary : NULL; pRomRange->pvCopy = pvCopy; /* sort it for 'info rom' readability. */ PMMROMRANGE pPrev = NULL; PMMROMRANGE pCur = pVM->mm.s.pRomHead; while (pCur && pCur->GCPhys < GCPhys) { pPrev = pCur; pCur = pCur->pNext; } pRomRange->pNext = pCur; if (pPrev) pPrev->pNext = pRomRange; else pVM->mm.s.pRomHead = pRomRange; } REMR3NotifyPhysRomRegister(pVM, GCPhys, cbRange, pvCopy, fShadow); return rc; /* we're sloppy with error cleanup here, but we're toast anyway if this fails. */ } /** * Reserve physical address space for ROM and MMIO ranges. * * @returns VBox status code. * @param pVM VM Handle. * @param GCPhys Start physical address. * @param cbRange The size of the range. * @param pszDesc Description string. */ VMMR3DECL(int) MMR3PhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, const char *pszDesc) { /* * Validate input. */ AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER); AssertReturn(RT_ALIGN(cbRange, PAGE_SIZE) == cbRange, VERR_INVALID_PARAMETER); RTGCPHYS GCPhysLast = GCPhys + (cbRange - 1); AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER); /* * Do we have an existing physical address range for the request? */ PMMLOCKEDMEM pCur = pVM->mm.s.pLockedMem; for ( ; pCur; pCur = pCur->pNext) if ( pCur->eType == MM_LOCKED_TYPE_PHYS && GCPhys - pCur->u.phys.GCPhys < pCur->cb) break; if (!pCur) { /* * No range, we'll just allocate backing pages and register * them as reserved using the Ram interface. */ void *pvPages; int rc = SUPPageAlloc(cbRange >> PAGE_SHIFT, &pvPages); if (RT_SUCCESS(rc)) { rc = MMR3PhysRegister(pVM, pvPages, GCPhys, cbRange, MM_RAM_FLAGS_RESERVED, pszDesc); if (RT_FAILURE(rc)) SUPPageFree(pvPages, cbRange >> PAGE_SHIFT); } return rc; } if (GCPhysLast - pCur->u.phys.GCPhys >= pCur->cb) { AssertMsgFailed(("The reserved range (%RGp LB%#x) was crossing the end of the physical range (%RGp LB%#x)\n", GCPhys, cbRange, pCur->u.phys.GCPhys, pCur->cb)); return VERR_INVALID_PARAMETER; } /* * Update the flags. */ unsigned iPage = (GCPhys - pCur->u.phys.GCPhys) >> PAGE_SHIFT; unsigned iPageEnd = cbRange >> PAGE_SHIFT; for (; iPage < iPageEnd; iPage++) pCur->aPhysPages[iPage].Phys |= MM_RAM_FLAGS_RESERVED; int rc = PGMR3PhysSetFlags(pVM, GCPhys, cbRange, MM_RAM_FLAGS_RESERVED, ~0); AssertRC(rc); REMR3NotifyPhysReserve(pVM, GCPhys, cbRange); return rc; } /** * Get the size of the base RAM. * This usually means the size of the first contigous block of physical memory. * * @returns The guest base RAM size. * @param pVM The VM handle. * @thread Any. */ VMMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM) { return pVM->mm.s.cbRamBase; } /** * Called by MMR3Reset to reset the shadow ROM. * * Resetting involves reloading the ROM into RAM and make it * wriable again (as it was made read only at the end of the POST). * * @param pVM The VM handle. */ void mmR3PhysRomReset(PVM pVM) { for (PMMROMRANGE pCur = pVM->mm.s.pRomHead; pCur; pCur = pCur->pNext) if (pCur->fShadow) { memcpy(pCur->pvCopy, pCur->pvBinary, pCur->cbRange); if (!pCur->fWritable) { int rc = PGMHandlerPhysicalDeregister(pVM, pCur->GCPhys); AssertRC(rc); pCur->fWritable = true; rc = PGMR3PhysSetFlags(pVM, pCur->GCPhys, pCur->cbRange, MM_RAM_FLAGS_MMIO2, ~0); /* ROM -> ROM + MMIO2 */ AssertRC(rc); REMR3NotifyPhysRomRegister(pVM, pCur->GCPhys, pCur->cbRange, pCur->pvCopy, true /* read-write now */); } } } /** * Write-protects a shadow ROM range. * * This is called late in the POST for shadow ROM ranges. * * @returns VBox status code. * @param pVM The VM handle. * @param GCPhys Start of the registered shadow ROM range * @param cbRange The length of the registered shadow ROM range. * This can be NULL (not sure about the BIOS interface yet). */ VMMR3DECL(int) MMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange) { for (PMMROMRANGE pCur = pVM->mm.s.pRomHead; pCur; pCur = pCur->pNext) if ( pCur->GCPhys == GCPhys && ( pCur->cbRange == cbRange || !cbRange)) { if (pCur->fWritable) { cbRange = pCur->cbRange; int rc = PGMR3HandlerPhysicalRegister(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE, GCPhys, GCPhys + cbRange - 1, NULL, NULL, NULL, "pgmPhysRomWriteHandler", 0, NULL, "pgmPhysRomWriteHandler", 0, pCur->pszDesc); AssertRCReturn(rc, rc); pCur->fWritable = false; rc = PGMR3PhysSetFlags(pVM, GCPhys, cbRange, 0, ~MM_RAM_FLAGS_MMIO2); /* ROM + MMIO2 -> ROM */ AssertRCReturn(rc, rc); /* Don't bother with the MM page flags here because I don't think they are really used beyond conflict checking at ROM, RAM, Reservation, etc. */ REMR3NotifyPhysRomRegister(pVM, GCPhys, cbRange, pCur->pvCopy, false /* read-only now */); } return VINF_SUCCESS; } AssertMsgFailed(("GCPhys=%RGp cbRange=%#x\n", GCPhys, cbRange)); return VERR_INVALID_PARAMETER; }