VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 10700

Last change on this file since 10700 was 10507, checked in by vboxsync, 16 years ago

Fixed release build problem

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 195.8 KB
Line 
1/* $Id: PGM.cpp 10507 2008-07-11 09:51:47Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636#endif
637
638
639/*******************************************************************************
640* Global Variables *
641*******************************************************************************/
642#ifdef VBOX_WITH_DEBUGGER
643/** Command descriptors. */
644static const DBGCCMD g_aCmds[] =
645{
646 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
647 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
648 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
649 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
650#ifdef VBOX_STRICT
651 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
652#endif
653 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
654};
655#endif
656
657
658
659
660/*
661 * Shadow - 32-bit mode
662 */
663#define PGM_SHW_TYPE PGM_TYPE_32BIT
664#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
665#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
666#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
667#include "PGMShw.h"
668
669/* Guest - real mode */
670#define PGM_GST_TYPE PGM_TYPE_REAL
671#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
672#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
673#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
674#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
675#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
676#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
677#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
678#include "PGMGst.h"
679#include "PGMBth.h"
680#undef BTH_PGMPOOLKIND_PT_FOR_PT
681#undef PGM_BTH_NAME
682#undef PGM_BTH_NAME_GC_STR
683#undef PGM_BTH_NAME_R0_STR
684#undef PGM_GST_TYPE
685#undef PGM_GST_NAME
686#undef PGM_GST_NAME_GC_STR
687#undef PGM_GST_NAME_R0_STR
688
689/* Guest - protected mode */
690#define PGM_GST_TYPE PGM_TYPE_PROT
691#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
692#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
693#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
694#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
695#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
696#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
697#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
698#include "PGMGst.h"
699#include "PGMBth.h"
700#undef BTH_PGMPOOLKIND_PT_FOR_PT
701#undef PGM_BTH_NAME
702#undef PGM_BTH_NAME_GC_STR
703#undef PGM_BTH_NAME_R0_STR
704#undef PGM_GST_TYPE
705#undef PGM_GST_NAME
706#undef PGM_GST_NAME_GC_STR
707#undef PGM_GST_NAME_R0_STR
708
709/* Guest - 32-bit mode */
710#define PGM_GST_TYPE PGM_TYPE_32BIT
711#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
712#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
713#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
714#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
715#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
716#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
717#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
718#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
719#include "PGMGst.h"
720#include "PGMBth.h"
721#undef BTH_PGMPOOLKIND_PT_FOR_BIG
722#undef BTH_PGMPOOLKIND_PT_FOR_PT
723#undef PGM_BTH_NAME
724#undef PGM_BTH_NAME_GC_STR
725#undef PGM_BTH_NAME_R0_STR
726#undef PGM_GST_TYPE
727#undef PGM_GST_NAME
728#undef PGM_GST_NAME_GC_STR
729#undef PGM_GST_NAME_R0_STR
730
731#undef PGM_SHW_TYPE
732#undef PGM_SHW_NAME
733#undef PGM_SHW_NAME_GC_STR
734#undef PGM_SHW_NAME_R0_STR
735
736
737/*
738 * Shadow - PAE mode
739 */
740#define PGM_SHW_TYPE PGM_TYPE_PAE
741#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
742#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
743#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
744#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
745#include "PGMShw.h"
746
747/* Guest - real mode */
748#define PGM_GST_TYPE PGM_TYPE_REAL
749#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
750#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
751#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
752#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
753#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
754#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
755#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
756#include "PGMBth.h"
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef PGM_BTH_NAME
759#undef PGM_BTH_NAME_GC_STR
760#undef PGM_BTH_NAME_R0_STR
761#undef PGM_GST_TYPE
762#undef PGM_GST_NAME
763#undef PGM_GST_NAME_GC_STR
764#undef PGM_GST_NAME_R0_STR
765
766/* Guest - protected mode */
767#define PGM_GST_TYPE PGM_TYPE_PROT
768#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
769#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
770#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
771#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
772#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
773#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
774#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
775#include "PGMBth.h"
776#undef BTH_PGMPOOLKIND_PT_FOR_PT
777#undef PGM_BTH_NAME
778#undef PGM_BTH_NAME_GC_STR
779#undef PGM_BTH_NAME_R0_STR
780#undef PGM_GST_TYPE
781#undef PGM_GST_NAME
782#undef PGM_GST_NAME_GC_STR
783#undef PGM_GST_NAME_R0_STR
784
785/* Guest - 32-bit mode */
786#define PGM_GST_TYPE PGM_TYPE_32BIT
787#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
788#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
789#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
790#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
791#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
792#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
793#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
794#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
795#include "PGMBth.h"
796#undef BTH_PGMPOOLKIND_PT_FOR_BIG
797#undef BTH_PGMPOOLKIND_PT_FOR_PT
798#undef PGM_BTH_NAME
799#undef PGM_BTH_NAME_GC_STR
800#undef PGM_BTH_NAME_R0_STR
801#undef PGM_GST_TYPE
802#undef PGM_GST_NAME
803#undef PGM_GST_NAME_GC_STR
804#undef PGM_GST_NAME_R0_STR
805
806/* Guest - PAE mode */
807#define PGM_GST_TYPE PGM_TYPE_PAE
808#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
809#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
810#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
811#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
812#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
813#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
814#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
815#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
816#include "PGMGst.h"
817#include "PGMBth.h"
818#undef BTH_PGMPOOLKIND_PT_FOR_BIG
819#undef BTH_PGMPOOLKIND_PT_FOR_PT
820#undef PGM_BTH_NAME
821#undef PGM_BTH_NAME_GC_STR
822#undef PGM_BTH_NAME_R0_STR
823#undef PGM_GST_TYPE
824#undef PGM_GST_NAME
825#undef PGM_GST_NAME_GC_STR
826#undef PGM_GST_NAME_R0_STR
827
828#undef PGM_SHW_TYPE
829#undef PGM_SHW_NAME
830#undef PGM_SHW_NAME_GC_STR
831#undef PGM_SHW_NAME_R0_STR
832
833
834/*
835 * Shadow - AMD64 mode
836 */
837#define PGM_SHW_TYPE PGM_TYPE_AMD64
838#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
839#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
840#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
841#include "PGMShw.h"
842
843/* Guest - AMD64 mode */
844#define PGM_GST_TYPE PGM_TYPE_AMD64
845#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
846#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
847#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
848#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
849#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
850#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
851#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
852#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
853#include "PGMGst.h"
854#include "PGMBth.h"
855#undef BTH_PGMPOOLKIND_PT_FOR_BIG
856#undef BTH_PGMPOOLKIND_PT_FOR_PT
857#undef PGM_BTH_NAME
858#undef PGM_BTH_NAME_GC_STR
859#undef PGM_BTH_NAME_R0_STR
860#undef PGM_GST_TYPE
861#undef PGM_GST_NAME
862#undef PGM_GST_NAME_GC_STR
863#undef PGM_GST_NAME_R0_STR
864
865#undef PGM_SHW_TYPE
866#undef PGM_SHW_NAME
867#undef PGM_SHW_NAME_GC_STR
868#undef PGM_SHW_NAME_R0_STR
869
870/*
871 * Shadow - Nested paging mode
872 */
873#define PGM_SHW_TYPE PGM_TYPE_NESTED
874#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
875#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
876#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
877#include "PGMShw.h"
878
879/* Guest - real mode */
880#define PGM_GST_TYPE PGM_TYPE_REAL
881#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
882#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
883#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
884#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
885#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
886#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
887#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
888#include "PGMBth.h"
889#undef BTH_PGMPOOLKIND_PT_FOR_PT
890#undef PGM_BTH_NAME
891#undef PGM_BTH_NAME_GC_STR
892#undef PGM_BTH_NAME_R0_STR
893#undef PGM_GST_TYPE
894#undef PGM_GST_NAME
895#undef PGM_GST_NAME_GC_STR
896#undef PGM_GST_NAME_R0_STR
897
898/* Guest - protected mode */
899#define PGM_GST_TYPE PGM_TYPE_PROT
900#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
901#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
902#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
903#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
904#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
905#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
906#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
907#include "PGMBth.h"
908#undef BTH_PGMPOOLKIND_PT_FOR_PT
909#undef PGM_BTH_NAME
910#undef PGM_BTH_NAME_GC_STR
911#undef PGM_BTH_NAME_R0_STR
912#undef PGM_GST_TYPE
913#undef PGM_GST_NAME
914#undef PGM_GST_NAME_GC_STR
915#undef PGM_GST_NAME_R0_STR
916
917/* Guest - 32-bit mode */
918#define PGM_GST_TYPE PGM_TYPE_32BIT
919#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
920#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
921#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
922#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
923#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
924#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
925#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
926#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
927#include "PGMBth.h"
928#undef BTH_PGMPOOLKIND_PT_FOR_BIG
929#undef BTH_PGMPOOLKIND_PT_FOR_PT
930#undef PGM_BTH_NAME
931#undef PGM_BTH_NAME_GC_STR
932#undef PGM_BTH_NAME_R0_STR
933#undef PGM_GST_TYPE
934#undef PGM_GST_NAME
935#undef PGM_GST_NAME_GC_STR
936#undef PGM_GST_NAME_R0_STR
937
938/* Guest - PAE mode */
939#define PGM_GST_TYPE PGM_TYPE_PAE
940#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
941#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
942#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
943#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
944#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
945#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
946#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
947#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
948#include "PGMBth.h"
949#undef BTH_PGMPOOLKIND_PT_FOR_BIG
950#undef BTH_PGMPOOLKIND_PT_FOR_PT
951#undef PGM_BTH_NAME
952#undef PGM_BTH_NAME_GC_STR
953#undef PGM_BTH_NAME_R0_STR
954#undef PGM_GST_TYPE
955#undef PGM_GST_NAME
956#undef PGM_GST_NAME_GC_STR
957#undef PGM_GST_NAME_R0_STR
958
959/* Guest - AMD64 mode */
960#define PGM_GST_TYPE PGM_TYPE_AMD64
961#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
962#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
963#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
964#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
965#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
966#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
967#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
968#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
969#include "PGMBth.h"
970#undef BTH_PGMPOOLKIND_PT_FOR_BIG
971#undef BTH_PGMPOOLKIND_PT_FOR_PT
972#undef PGM_BTH_NAME
973#undef PGM_BTH_NAME_GC_STR
974#undef PGM_BTH_NAME_R0_STR
975#undef PGM_GST_TYPE
976#undef PGM_GST_NAME
977#undef PGM_GST_NAME_GC_STR
978#undef PGM_GST_NAME_R0_STR
979
980#undef PGM_SHW_TYPE
981#undef PGM_SHW_NAME
982#undef PGM_SHW_NAME_GC_STR
983#undef PGM_SHW_NAME_R0_STR
984
985
986/**
987 * Initiates the paging of VM.
988 *
989 * @returns VBox status code.
990 * @param pVM Pointer to VM structure.
991 */
992PGMR3DECL(int) PGMR3Init(PVM pVM)
993{
994 LogFlow(("PGMR3Init:\n"));
995
996 /*
997 * Assert alignment and sizes.
998 */
999 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1000
1001 /*
1002 * Init the structure.
1003 */
1004 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1005 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1006 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1007 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1008 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1009 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1010 pVM->pgm.s.fA20Enabled = true;
1011 pVM->pgm.s.pGstPaePDPTHC = NULL;
1012 pVM->pgm.s.pGstPaePDPTGC = 0;
1013 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1014 {
1015 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1016 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1017 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1018 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1019 }
1020
1021#ifdef VBOX_STRICT
1022 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1023#endif
1024
1025 /*
1026 * Get the configured RAM size - to estimate saved state size.
1027 */
1028 uint64_t cbRam;
1029 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1030 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1031 cbRam = pVM->pgm.s.cbRamSize = 0;
1032 else if (VBOX_SUCCESS(rc))
1033 {
1034 if (cbRam < PAGE_SIZE)
1035 cbRam = 0;
1036 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1037 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1038 }
1039 else
1040 {
1041 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1042 return rc;
1043 }
1044
1045 /*
1046 * Register saved state data unit.
1047 */
1048 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1049 NULL, pgmR3Save, NULL,
1050 NULL, pgmR3Load, NULL);
1051 if (VBOX_FAILURE(rc))
1052 return rc;
1053
1054 /*
1055 * Initialize the PGM critical section and flush the phys TLBs
1056 */
1057 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1058 AssertRCReturn(rc, rc);
1059
1060 PGMR3PhysChunkInvalidateTLB(pVM);
1061 PGMPhysInvalidatePageR3MapTLB(pVM);
1062 PGMPhysInvalidatePageR0MapTLB(pVM);
1063 PGMPhysInvalidatePageGCMapTLB(pVM);
1064
1065 /*
1066 * Trees
1067 */
1068 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1069 if (VBOX_SUCCESS(rc))
1070 {
1071 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1072
1073 /*
1074 * Alocate the zero page.
1075 */
1076 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1077 }
1078 if (VBOX_SUCCESS(rc))
1079 {
1080 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3);
1081 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1082 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1083 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1084 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1085
1086 /*
1087 * Init the paging.
1088 */
1089 rc = pgmR3InitPaging(pVM);
1090 }
1091 if (VBOX_SUCCESS(rc))
1092 {
1093 /*
1094 * Init the page pool.
1095 */
1096 rc = pgmR3PoolInit(pVM);
1097 }
1098 if (VBOX_SUCCESS(rc))
1099 {
1100 /*
1101 * Info & statistics
1102 */
1103 DBGFR3InfoRegisterInternal(pVM, "mode",
1104 "Shows the current paging mode. "
1105 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1106 pgmR3InfoMode);
1107 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1108 "Dumps all the entries in the top level paging table. No arguments.",
1109 pgmR3InfoCr3);
1110 DBGFR3InfoRegisterInternal(pVM, "phys",
1111 "Dumps all the physical address ranges. No arguments.",
1112 pgmR3PhysInfo);
1113 DBGFR3InfoRegisterInternal(pVM, "handlers",
1114 "Dumps physical, virtual and hyper virtual handlers. "
1115 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1116 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1117 pgmR3InfoHandlers);
1118 DBGFR3InfoRegisterInternal(pVM, "mappings",
1119 "Dumps guest mappings.",
1120 pgmR3MapInfo);
1121
1122 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1123#ifdef VBOX_WITH_STATISTICS
1124 pgmR3InitStats(pVM);
1125#endif
1126#ifdef VBOX_WITH_DEBUGGER
1127 /*
1128 * Debugger commands.
1129 */
1130 static bool fRegisteredCmds = false;
1131 if (!fRegisteredCmds)
1132 {
1133 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1134 if (VBOX_SUCCESS(rc))
1135 fRegisteredCmds = true;
1136 }
1137#endif
1138 return VINF_SUCCESS;
1139 }
1140
1141 /* Almost no cleanup necessary, MM frees all memory. */
1142 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1143
1144 return rc;
1145}
1146
1147
1148/**
1149 * Init paging.
1150 *
1151 * Since we need to check what mode the host is operating in before we can choose
1152 * the right paging functions for the host we have to delay this until R0 has
1153 * been initialized.
1154 *
1155 * @returns VBox status code.
1156 * @param pVM VM handle.
1157 */
1158static int pgmR3InitPaging(PVM pVM)
1159{
1160 /*
1161 * Force a recalculation of modes and switcher so everyone gets notified.
1162 */
1163 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1164 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1165 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1166
1167 /*
1168 * Allocate static mapping space for whatever the cr3 register
1169 * points to and in the case of PAE mode to the 4 PDs.
1170 */
1171 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1172 if (VBOX_FAILURE(rc))
1173 {
1174 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1175 return rc;
1176 }
1177 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1178
1179 /*
1180 * Allocate pages for the three possible intermediate contexts
1181 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1182 * for the sake of simplicity. The AMD64 uses the PAE for the
1183 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1184 *
1185 * We assume that two page tables will be enought for the core code
1186 * mappings (HC virtual and identity).
1187 */
1188 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1189 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1190 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1191 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1192 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1193 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1194 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1195 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1196 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1197 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1198 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1199 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1200 if ( !pVM->pgm.s.pInterPD
1201 || !pVM->pgm.s.apInterPTs[0]
1202 || !pVM->pgm.s.apInterPTs[1]
1203 || !pVM->pgm.s.apInterPaePTs[0]
1204 || !pVM->pgm.s.apInterPaePTs[1]
1205 || !pVM->pgm.s.apInterPaePDs[0]
1206 || !pVM->pgm.s.apInterPaePDs[1]
1207 || !pVM->pgm.s.apInterPaePDs[2]
1208 || !pVM->pgm.s.apInterPaePDs[3]
1209 || !pVM->pgm.s.pInterPaePDPT
1210 || !pVM->pgm.s.pInterPaePDPT64
1211 || !pVM->pgm.s.pInterPaePML4)
1212 {
1213 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1214 return VERR_NO_PAGE_MEMORY;
1215 }
1216
1217 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1218 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1219 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1220 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1221 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1222 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1223
1224 /*
1225 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1226 */
1227 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1228 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1229 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1230
1231 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1232 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1233
1234 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1235 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1236 {
1237 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1238 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1239 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1240 }
1241
1242 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1243 {
1244 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1245 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1246 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1247 }
1248
1249 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1250 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1251 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1252 | HCPhysInterPaePDPT64;
1253
1254 /*
1255 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1256 * We allocate pages for all three posibilities to in order to simplify mappings and
1257 * avoid resource failure during mode switches. So, we need to cover all levels of the
1258 * of the first 4GB down to PD level.
1259 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1260 */
1261 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1262 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1263 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1264 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1265 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1266 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1267 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1268 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1269 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1270 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1271
1272 if ( !pVM->pgm.s.pHC32BitPD
1273 || !pVM->pgm.s.apHCPaePDs[0]
1274 || !pVM->pgm.s.apHCPaePDs[1]
1275 || !pVM->pgm.s.apHCPaePDs[2]
1276 || !pVM->pgm.s.apHCPaePDs[3]
1277 || !pVM->pgm.s.pHCPaePDPT
1278 || !pVM->pgm.s.pHCNestedRoot)
1279 {
1280 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1281 return VERR_NO_PAGE_MEMORY;
1282 }
1283
1284 /* get physical addresses. */
1285 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1286 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1287 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1288 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1289 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1290 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1291 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1292 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1293
1294 /*
1295 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1296 */
1297 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1298 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1299 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1300 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1301 {
1302 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1303 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1304 /* The flags will be corrected when entering and leaving long mode. */
1305 }
1306
1307 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1308
1309 /*
1310 * Initialize paging workers and mode from current host mode
1311 * and the guest running in real mode.
1312 */
1313 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1314 switch (pVM->pgm.s.enmHostMode)
1315 {
1316 case SUPPAGINGMODE_32_BIT:
1317 case SUPPAGINGMODE_32_BIT_GLOBAL:
1318 case SUPPAGINGMODE_PAE:
1319 case SUPPAGINGMODE_PAE_GLOBAL:
1320 case SUPPAGINGMODE_PAE_NX:
1321 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1322 break;
1323
1324 case SUPPAGINGMODE_AMD64:
1325 case SUPPAGINGMODE_AMD64_GLOBAL:
1326 case SUPPAGINGMODE_AMD64_NX:
1327 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1328#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1329 if (ARCH_BITS != 64)
1330 {
1331 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1332 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1333 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1334 }
1335#endif
1336 break;
1337 default:
1338 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1339 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1340 }
1341 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1342 if (VBOX_SUCCESS(rc))
1343 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1344 if (VBOX_SUCCESS(rc))
1345 {
1346 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1347#if HC_ARCH_BITS == 64
1348LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1349 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1350 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1351LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1352 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1353LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1354 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1355 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1356 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1357 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1358#endif
1359
1360 return VINF_SUCCESS;
1361 }
1362
1363 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1364 return rc;
1365}
1366
1367
1368#ifdef VBOX_WITH_STATISTICS
1369/**
1370 * Init statistics
1371 */
1372static void pgmR3InitStats(PVM pVM)
1373{
1374 PPGM pPGM = &pVM->pgm.s;
1375 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1376 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1377 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1378 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1379 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1380 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1381 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1382 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1383 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1384 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1385 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1386 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1387 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1388 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1389 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1390 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1391 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1392 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1393 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1394 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1395 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1396 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1397
1398 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1399 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1400 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1401 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1402 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1403 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1404 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1405 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1406 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1407 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1408 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1409 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1410 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1411 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1412 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1413 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1414 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1415 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1416 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1417
1418 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1419 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1420 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1421 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1422 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1423 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1424 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1425 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1426
1427 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1428 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1429 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1430 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1431 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1432 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1433 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1434
1435 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1436 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1437 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1438 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1439 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1440 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1441 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1442
1443 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1444 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1445
1446 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1447 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1448 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1449
1450 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1451 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1452
1453 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1454 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1455
1456 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1457 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1458
1459 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1460 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1461 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1462
1463 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1464 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1465 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1466 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1467 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1468 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1469 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1470 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1471 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1472 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1473 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1474
1475 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1476 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1477 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1478 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1479 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1480 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1481 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1482
1483 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1484 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1485 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1486 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1487
1488 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1489 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1490 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1491 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1492 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1493
1494 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1495 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1496 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1497 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1498 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1499 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1500 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1501 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1502 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1503 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1504 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1505 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1506
1507 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1508 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1509 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1510 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1511 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1512 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1513 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1514 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1515 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1516 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1517 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1518 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1519
1520 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1521 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1522 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1523
1524 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1525 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1526
1527 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1528 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1529 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1530 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1531
1532 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1533 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1534
1535 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1536 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1537 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1538 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1539 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1540 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1541 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1542 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1543 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1544 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1545 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1546 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1547 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1548
1549#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1550 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1551 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1552 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1553 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1554 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1555 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1556#endif
1557
1558 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1559 {
1560 /** @todo r=bird: We need a STAMR3RegisterF()! */
1561 char szName[32];
1562
1563 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1564 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1565 AssertRC(rc);
1566
1567 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1568 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1569 AssertRC(rc);
1570
1571 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1572 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1573 AssertRC(rc);
1574 }
1575}
1576#endif /* VBOX_WITH_STATISTICS */
1577
1578/**
1579 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1580 *
1581 * The dynamic mapping area will also be allocated and initialized at this
1582 * time. We could allocate it during PGMR3Init of course, but the mapping
1583 * wouldn't be allocated at that time preventing us from setting up the
1584 * page table entries with the dummy page.
1585 *
1586 * @returns VBox status code.
1587 * @param pVM VM handle.
1588 */
1589PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1590{
1591 RTGCPTR GCPtr;
1592 /*
1593 * Reserve space for mapping the paging pages into guest context.
1594 */
1595 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1596 AssertRCReturn(rc, rc);
1597 pVM->pgm.s.pGC32BitPD = GCPtr;
1598 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1599
1600 /*
1601 * Reserve space for the dynamic mappings.
1602 */
1603 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1604 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1605 if (VBOX_SUCCESS(rc))
1606 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1607
1608 if ( VBOX_SUCCESS(rc)
1609 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1610 {
1611 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1612 if (VBOX_SUCCESS(rc))
1613 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1614 }
1615 if (VBOX_SUCCESS(rc))
1616 {
1617 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1618 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1619 }
1620 return rc;
1621}
1622
1623
1624/**
1625 * Ring-3 init finalizing.
1626 *
1627 * @returns VBox status code.
1628 * @param pVM The VM handle.
1629 */
1630PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1631{
1632 /*
1633 * Map the paging pages into the guest context.
1634 */
1635 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1636 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1637
1638 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1639 AssertRCReturn(rc, rc);
1640 pVM->pgm.s.pGC32BitPD = GCPtr;
1641 GCPtr += PAGE_SIZE;
1642 GCPtr += PAGE_SIZE; /* reserved page */
1643
1644 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1645 {
1646 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1647 AssertRCReturn(rc, rc);
1648 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1649 GCPtr += PAGE_SIZE;
1650 }
1651 /* A bit of paranoia is justified. */
1652 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1653 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1654 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1655 GCPtr += PAGE_SIZE; /* reserved page */
1656
1657 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1658 AssertRCReturn(rc, rc);
1659 pVM->pgm.s.pGCPaePDPT = GCPtr;
1660 GCPtr += PAGE_SIZE;
1661 GCPtr += PAGE_SIZE; /* reserved page */
1662
1663
1664 /*
1665 * Reserve space for the dynamic mappings.
1666 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1667 */
1668 /* get the pointer to the page table entries. */
1669 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1670 AssertRelease(pMapping);
1671 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1672 const unsigned iPT = off >> X86_PD_SHIFT;
1673 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1674 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1675 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1676
1677 /* init cache */
1678 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1679 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1680 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1681
1682 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1683 {
1684 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1685 AssertRCReturn(rc, rc);
1686 }
1687
1688 return rc;
1689}
1690
1691
1692/**
1693 * Applies relocations to data and code managed by this
1694 * component. This function will be called at init and
1695 * whenever the VMM need to relocate it self inside the GC.
1696 *
1697 * @param pVM The VM.
1698 * @param offDelta Relocation delta relative to old location.
1699 */
1700PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1701{
1702 LogFlow(("PGMR3Relocate\n"));
1703
1704 /*
1705 * Paging stuff.
1706 */
1707 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1708 /** @todo move this into shadow and guest specific relocation functions. */
1709 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1710 pVM->pgm.s.pGC32BitPD += offDelta;
1711 pVM->pgm.s.pGuestPDGC += offDelta;
1712 AssertCompile(ELEMENTS(pVM->pgm.s.apGCPaePDs) == ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1713 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1714 {
1715 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1716 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1717 }
1718 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1719 pVM->pgm.s.pGCPaePDPT += offDelta;
1720
1721 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1722 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1723
1724 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1725 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1726 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1727
1728 /*
1729 * Trees.
1730 */
1731 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1732
1733 /*
1734 * Ram ranges.
1735 */
1736 if (pVM->pgm.s.pRamRangesR3)
1737 {
1738 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1739 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1740#ifdef VBOX_WITH_NEW_PHYS_CODE
1741 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1742#else
1743 {
1744 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1745 if (pCur->pavHCChunkGC)
1746 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1747 }
1748#endif
1749 }
1750
1751 /*
1752 * Update the two page directories with all page table mappings.
1753 * (One or more of them have changed, that's why we're here.)
1754 */
1755 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1756 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1757 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1758
1759 /* Relocate GC addresses of Page Tables. */
1760 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1761 {
1762 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1763 {
1764 pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3);
1765 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3);
1766 }
1767 }
1768
1769 /*
1770 * Dynamic page mapping area.
1771 */
1772 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1773 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1774 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1775
1776 /*
1777 * The Zero page.
1778 */
1779 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1780 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1781
1782 /*
1783 * Physical and virtual handlers.
1784 */
1785 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1786 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1787 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1788
1789 /*
1790 * The page pool.
1791 */
1792 pgmR3PoolRelocate(pVM);
1793}
1794
1795
1796/**
1797 * Callback function for relocating a physical access handler.
1798 *
1799 * @returns 0 (continue enum)
1800 * @param pNode Pointer to a PGMPHYSHANDLER node.
1801 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1802 * not certain the delta will fit in a void pointer for all possible configs.
1803 */
1804static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1805{
1806 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1807 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1808 if (pHandler->pfnHandlerGC)
1809 pHandler->pfnHandlerGC += offDelta;
1810 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1811 pHandler->pvUserGC += offDelta;
1812 return 0;
1813}
1814
1815
1816/**
1817 * Callback function for relocating a virtual access handler.
1818 *
1819 * @returns 0 (continue enum)
1820 * @param pNode Pointer to a PGMVIRTHANDLER node.
1821 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1822 * not certain the delta will fit in a void pointer for all possible configs.
1823 */
1824static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1825{
1826 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1827 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1828 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1829 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1830 Assert(pHandler->pfnHandlerGC);
1831 pHandler->pfnHandlerGC += offDelta;
1832 return 0;
1833}
1834
1835
1836/**
1837 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1838 *
1839 * @returns 0 (continue enum)
1840 * @param pNode Pointer to a PGMVIRTHANDLER node.
1841 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1842 * not certain the delta will fit in a void pointer for all possible configs.
1843 */
1844static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1845{
1846 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1847 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1848 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1849 Assert(pHandler->pfnHandlerGC);
1850 pHandler->pfnHandlerGC += offDelta;
1851 return 0;
1852}
1853
1854
1855/**
1856 * The VM is being reset.
1857 *
1858 * For the PGM component this means that any PD write monitors
1859 * needs to be removed.
1860 *
1861 * @param pVM VM handle.
1862 */
1863PGMR3DECL(void) PGMR3Reset(PVM pVM)
1864{
1865 LogFlow(("PGMR3Reset:\n"));
1866 VM_ASSERT_EMT(pVM);
1867
1868 pgmLock(pVM);
1869
1870 /*
1871 * Unfix any fixed mappings and disable CR3 monitoring.
1872 */
1873 pVM->pgm.s.fMappingsFixed = false;
1874 pVM->pgm.s.GCPtrMappingFixed = 0;
1875 pVM->pgm.s.cbMappingFixed = 0;
1876
1877 /* Exit the guest paging mode before the pgm pool gets reset.
1878 * Important to clean up the amd64 case.
1879 */
1880 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
1881 AssertRC(rc);
1882#ifdef DEBUG
1883 DBGFR3InfoLog(pVM, "mappings", NULL);
1884 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1885#endif
1886
1887 /*
1888 * Reset the shadow page pool.
1889 */
1890 pgmR3PoolReset(pVM);
1891
1892 /*
1893 * Re-init other members.
1894 */
1895 pVM->pgm.s.fA20Enabled = true;
1896
1897 /*
1898 * Clear the FFs PGM owns.
1899 */
1900 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1901 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1902
1903 /*
1904 * Reset (zero) RAM pages.
1905 */
1906 rc = pgmR3PhysRamReset(pVM);
1907 if (RT_SUCCESS(rc))
1908 {
1909#ifdef VBOX_WITH_NEW_PHYS_CODE
1910 /*
1911 * Reset (zero) shadow ROM pages.
1912 */
1913 rc = pgmR3PhysRomReset(pVM);
1914#endif
1915 if (RT_SUCCESS(rc))
1916 {
1917 /*
1918 * Switch mode back to real mode.
1919 */
1920 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1921 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
1922 }
1923 }
1924
1925 pgmUnlock(pVM);
1926 //return rc;
1927 AssertReleaseRC(rc);
1928}
1929
1930
1931#ifdef VBOX_STRICT
1932/**
1933 * VM state change callback for clearing fNoMorePhysWrites after
1934 * a snapshot has been created.
1935 */
1936static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
1937{
1938 if (enmState == VMSTATE_RUNNING)
1939 pVM->pgm.s.fNoMorePhysWrites = false;
1940}
1941#endif
1942
1943
1944/**
1945 * Terminates the PGM.
1946 *
1947 * @returns VBox status code.
1948 * @param pVM Pointer to VM structure.
1949 */
1950PGMR3DECL(int) PGMR3Term(PVM pVM)
1951{
1952 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1953}
1954
1955
1956/**
1957 * Execute state save operation.
1958 *
1959 * @returns VBox status code.
1960 * @param pVM VM Handle.
1961 * @param pSSM SSM operation handle.
1962 */
1963static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
1964{
1965 PPGM pPGM = &pVM->pgm.s;
1966
1967 /* No more writes to physical memory after this point! */
1968 pVM->pgm.s.fNoMorePhysWrites = true;
1969
1970 /*
1971 * Save basic data (required / unaffected by relocation).
1972 */
1973#if 1
1974 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
1975#else
1976 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
1977#endif
1978 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
1979 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
1980 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
1981 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
1982 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
1983 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
1984 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
1985 SSMR3PutU32(pSSM, ~0); /* Separator. */
1986
1987 /*
1988 * The guest mappings.
1989 */
1990 uint32_t i = 0;
1991 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1992 {
1993 SSMR3PutU32(pSSM, i);
1994 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1995 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
1996 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1997 /* flags are done by the mapping owners! */
1998 }
1999 SSMR3PutU32(pSSM, ~0); /* terminator. */
2000
2001 /*
2002 * Ram range flags and bits.
2003 */
2004 i = 0;
2005 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2006 {
2007 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2008
2009 SSMR3PutU32(pSSM, i);
2010 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2011 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2012 SSMR3PutGCPhys(pSSM, pRam->cb);
2013 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
2014
2015 /* Flags. */
2016 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2017 for (unsigned iPage = 0; iPage < cPages; iPage++)
2018 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2019
2020 /* any memory associated with the range. */
2021 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2022 {
2023 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2024 {
2025 if (pRam->pavHCChunkHC[iChunk])
2026 {
2027 SSMR3PutU8(pSSM, 1); /* chunk present */
2028 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2029 }
2030 else
2031 SSMR3PutU8(pSSM, 0); /* no chunk present */
2032 }
2033 }
2034 else if (pRam->pvHC)
2035 {
2036 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
2037 if (VBOX_FAILURE(rc))
2038 {
2039 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2040 return rc;
2041 }
2042 }
2043 }
2044 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2045}
2046
2047
2048/**
2049 * Execute state load operation.
2050 *
2051 * @returns VBox status code.
2052 * @param pVM VM Handle.
2053 * @param pSSM SSM operation handle.
2054 * @param u32Version Data layout version.
2055 */
2056static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2057{
2058 /*
2059 * Validate version.
2060 */
2061 if (u32Version != PGM_SAVED_STATE_VERSION)
2062 {
2063 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2064 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2065 }
2066
2067 /*
2068 * Call the reset function to make sure all the memory is cleared.
2069 */
2070 PGMR3Reset(pVM);
2071
2072 /*
2073 * Load basic data (required / unaffected by relocation).
2074 */
2075 PPGM pPGM = &pVM->pgm.s;
2076#if 1
2077 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2078#else
2079 uint32_t u;
2080 SSMR3GetU32(pSSM, &u);
2081 pPGM->fMappingsFixed = u;
2082#endif
2083 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2084 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2085
2086 RTUINT cbRamSize;
2087 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2088 if (VBOX_FAILURE(rc))
2089 return rc;
2090 if (cbRamSize != pPGM->cbRamSize)
2091 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2092 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2093 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2094 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2095 RTUINT uGuestMode;
2096 SSMR3GetUInt(pSSM, &uGuestMode);
2097 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2098
2099 /* check separator. */
2100 uint32_t u32Sep;
2101 SSMR3GetU32(pSSM, &u32Sep);
2102 if (VBOX_FAILURE(rc))
2103 return rc;
2104 if (u32Sep != (uint32_t)~0)
2105 {
2106 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2107 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2108 }
2109
2110 /*
2111 * The guest mappings.
2112 */
2113 uint32_t i = 0;
2114 for (;; i++)
2115 {
2116 /* Check the seqence number / separator. */
2117 rc = SSMR3GetU32(pSSM, &u32Sep);
2118 if (VBOX_FAILURE(rc))
2119 return rc;
2120 if (u32Sep == ~0U)
2121 break;
2122 if (u32Sep != i)
2123 {
2124 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2125 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2126 }
2127
2128 /* get the mapping details. */
2129 char szDesc[256];
2130 szDesc[0] = '\0';
2131 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2132 if (VBOX_FAILURE(rc))
2133 return rc;
2134 RTGCPTR GCPtr;
2135 SSMR3GetGCPtr(pSSM, &GCPtr);
2136 RTGCUINTPTR cPTs;
2137 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2138 if (VBOX_FAILURE(rc))
2139 return rc;
2140
2141 /* find matching range. */
2142 PPGMMAPPING pMapping;
2143 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2144 if ( pMapping->cPTs == cPTs
2145 && !strcmp(pMapping->pszDesc, szDesc))
2146 break;
2147 if (!pMapping)
2148 {
2149 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2150 cPTs, szDesc, GCPtr));
2151 AssertFailed();
2152 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2153 }
2154
2155 /* relocate it. */
2156 if (pMapping->GCPtr != GCPtr)
2157 {
2158 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2159#if HC_ARCH_BITS == 64
2160LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2161#endif
2162 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2163 }
2164 else
2165 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2166 }
2167
2168 /*
2169 * Ram range flags and bits.
2170 */
2171 i = 0;
2172 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2173 {
2174 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2175 /* Check the seqence number / separator. */
2176 rc = SSMR3GetU32(pSSM, &u32Sep);
2177 if (VBOX_FAILURE(rc))
2178 return rc;
2179 if (u32Sep == ~0U)
2180 break;
2181 if (u32Sep != i)
2182 {
2183 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2184 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2185 }
2186
2187 /* Get the range details. */
2188 RTGCPHYS GCPhys;
2189 SSMR3GetGCPhys(pSSM, &GCPhys);
2190 RTGCPHYS GCPhysLast;
2191 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2192 RTGCPHYS cb;
2193 SSMR3GetGCPhys(pSSM, &cb);
2194 uint8_t fHaveBits;
2195 rc = SSMR3GetU8(pSSM, &fHaveBits);
2196 if (VBOX_FAILURE(rc))
2197 return rc;
2198 if (fHaveBits & ~1)
2199 {
2200 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2201 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2202 }
2203
2204 /* Match it up with the current range. */
2205 if ( GCPhys != pRam->GCPhys
2206 || GCPhysLast != pRam->GCPhysLast
2207 || cb != pRam->cb
2208 || fHaveBits != !!pRam->pvHC)
2209 {
2210 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2211 "State : %VGp-%VGp %VGp bytes %s\n",
2212 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2213 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2214 /*
2215 * If we're loading a state for debugging purpose, don't make a fuss if
2216 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2217 */
2218 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2219 || GCPhys < 8 * _1M)
2220 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2221
2222 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2223 while (cPages-- > 0)
2224 {
2225 uint16_t u16Ignore;
2226 SSMR3GetU16(pSSM, &u16Ignore);
2227 }
2228 continue;
2229 }
2230
2231 /* Flags. */
2232 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2233 for (unsigned iPage = 0; iPage < cPages; iPage++)
2234 {
2235 uint16_t u16 = 0;
2236 SSMR3GetU16(pSSM, &u16);
2237 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2238 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2239 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2240 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2241 }
2242
2243 /* any memory associated with the range. */
2244 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2245 {
2246 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2247 {
2248 uint8_t fValidChunk;
2249
2250 rc = SSMR3GetU8(pSSM, &fValidChunk);
2251 if (VBOX_FAILURE(rc))
2252 return rc;
2253 if (fValidChunk > 1)
2254 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2255
2256 if (fValidChunk)
2257 {
2258 if (!pRam->pavHCChunkHC[iChunk])
2259 {
2260 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2261 if (VBOX_FAILURE(rc))
2262 return rc;
2263 }
2264 Assert(pRam->pavHCChunkHC[iChunk]);
2265
2266 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2267 }
2268 /* else nothing to do */
2269 }
2270 }
2271 else if (pRam->pvHC)
2272 {
2273 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2274 if (VBOX_FAILURE(rc))
2275 {
2276 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2277 return rc;
2278 }
2279 }
2280 }
2281
2282 /*
2283 * We require a full resync now.
2284 */
2285 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2286 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2287 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2288 pPGM->fPhysCacheFlushPending = true;
2289 pgmR3HandlerPhysicalUpdateAll(pVM);
2290
2291 /*
2292 * Change the paging mode.
2293 */
2294 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2295
2296 /* Restore pVM->pgm.s.GCPhysCR3. */
2297 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2298 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2299 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2300 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2301 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2302 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2303 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2304 else
2305 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2306 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2307
2308 return rc;
2309}
2310
2311
2312/**
2313 * Show paging mode.
2314 *
2315 * @param pVM VM Handle.
2316 * @param pHlp The info helpers.
2317 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2318 */
2319static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2320{
2321 /* digest argument. */
2322 bool fGuest, fShadow, fHost;
2323 if (pszArgs)
2324 pszArgs = RTStrStripL(pszArgs);
2325 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2326 fShadow = fHost = fGuest = true;
2327 else
2328 {
2329 fShadow = fHost = fGuest = false;
2330 if (strstr(pszArgs, "guest"))
2331 fGuest = true;
2332 if (strstr(pszArgs, "shadow"))
2333 fShadow = true;
2334 if (strstr(pszArgs, "host"))
2335 fHost = true;
2336 }
2337
2338 /* print info. */
2339 if (fGuest)
2340 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2341 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2342 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2343 if (fShadow)
2344 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2345 if (fHost)
2346 {
2347 const char *psz;
2348 switch (pVM->pgm.s.enmHostMode)
2349 {
2350 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2351 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2352 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2353 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2354 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2355 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2356 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2357 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2358 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2359 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2360 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2361 default: psz = "unknown"; break;
2362 }
2363 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2364 }
2365}
2366
2367
2368/**
2369 * Dump registered MMIO ranges to the log.
2370 *
2371 * @param pVM VM Handle.
2372 * @param pHlp The info helpers.
2373 * @param pszArgs Arguments, ignored.
2374 */
2375static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2376{
2377 NOREF(pszArgs);
2378 pHlp->pfnPrintf(pHlp,
2379 "RAM ranges (pVM=%p)\n"
2380 "%.*s %.*s\n",
2381 pVM,
2382 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2383 sizeof(RTHCPTR) * 2, "pvHC ");
2384
2385 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2386 pHlp->pfnPrintf(pHlp,
2387 "%RGp-%RGp %RHv %s\n",
2388 pCur->GCPhys,
2389 pCur->GCPhysLast,
2390 pCur->pvHC,
2391 pCur->pszDesc);
2392}
2393
2394/**
2395 * Dump the page directory to the log.
2396 *
2397 * @param pVM VM Handle.
2398 * @param pHlp The info helpers.
2399 * @param pszArgs Arguments, ignored.
2400 */
2401static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2402{
2403/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2404 /* Big pages supported? */
2405 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2406
2407 /* Global pages supported? */
2408 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2409
2410 NOREF(pszArgs);
2411
2412 /*
2413 * Get page directory addresses.
2414 */
2415 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2416 Assert(pPDSrc);
2417 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2418
2419 /*
2420 * Iterate the page directory.
2421 */
2422 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2423 {
2424 X86PDE PdeSrc = pPDSrc->a[iPD];
2425 if (PdeSrc.n.u1Present)
2426 {
2427 if (PdeSrc.b.u1Size && fPSE)
2428 {
2429 pHlp->pfnPrintf(pHlp,
2430 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2431 iPD,
2432 PdeSrc.u & X86_PDE_PG_MASK,
2433 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2434 }
2435 else
2436 {
2437 pHlp->pfnPrintf(pHlp,
2438 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2439 iPD,
2440 PdeSrc.u & X86_PDE4M_PG_MASK,
2441 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2442 }
2443 }
2444 }
2445}
2446
2447
2448/**
2449 * Serivce a VMMCALLHOST_PGM_LOCK call.
2450 *
2451 * @returns VBox status code.
2452 * @param pVM The VM handle.
2453 */
2454PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2455{
2456 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2457 AssertRC(rc);
2458 return rc;
2459}
2460
2461
2462/**
2463 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2464 *
2465 * @returns PGM_TYPE_*.
2466 * @param pgmMode The mode value to convert.
2467 */
2468DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2469{
2470 switch (pgmMode)
2471 {
2472 case PGMMODE_REAL: return PGM_TYPE_REAL;
2473 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2474 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2475 case PGMMODE_PAE:
2476 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2477 case PGMMODE_AMD64:
2478 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2479 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2480 default:
2481 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2482 }
2483}
2484
2485
2486/**
2487 * Gets the index into the paging mode data array of a SHW+GST mode.
2488 *
2489 * @returns PGM::paPagingData index.
2490 * @param uShwType The shadow paging mode type.
2491 * @param uGstType The guest paging mode type.
2492 */
2493DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2494{
2495 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_NESTED);
2496 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2497 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2498 + (uGstType - PGM_TYPE_REAL);
2499}
2500
2501
2502/**
2503 * Gets the index into the paging mode data array of a SHW+GST mode.
2504 *
2505 * @returns PGM::paPagingData index.
2506 * @param enmShw The shadow paging mode.
2507 * @param enmGst The guest paging mode.
2508 */
2509DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2510{
2511 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2512 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2513 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2514}
2515
2516
2517/**
2518 * Calculates the max data index.
2519 * @returns The number of entries in the paging data array.
2520 */
2521DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2522{
2523 return pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64) + 1;
2524}
2525
2526
2527/**
2528 * Initializes the paging mode data kept in PGM::paModeData.
2529 *
2530 * @param pVM The VM handle.
2531 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2532 * This is used early in the init process to avoid trouble with PDM
2533 * not being initialized yet.
2534 */
2535static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2536{
2537 PPGMMODEDATA pModeData;
2538 int rc;
2539
2540 /*
2541 * Allocate the array on the first call.
2542 */
2543 if (!pVM->pgm.s.paModeData)
2544 {
2545 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2546 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2547 }
2548
2549 /*
2550 * Initialize the array entries.
2551 */
2552 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2553 pModeData->uShwType = PGM_TYPE_32BIT;
2554 pModeData->uGstType = PGM_TYPE_REAL;
2555 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2556 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2557 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2558
2559 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2560 pModeData->uShwType = PGM_TYPE_32BIT;
2561 pModeData->uGstType = PGM_TYPE_PROT;
2562 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2563 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2564 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2565
2566 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2567 pModeData->uShwType = PGM_TYPE_32BIT;
2568 pModeData->uGstType = PGM_TYPE_32BIT;
2569 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2570 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2571 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2572
2573 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2574 pModeData->uShwType = PGM_TYPE_PAE;
2575 pModeData->uGstType = PGM_TYPE_REAL;
2576 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2577 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2578 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2579
2580 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2581 pModeData->uShwType = PGM_TYPE_PAE;
2582 pModeData->uGstType = PGM_TYPE_PROT;
2583 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2584 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2585 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2586
2587 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2588 pModeData->uShwType = PGM_TYPE_PAE;
2589 pModeData->uGstType = PGM_TYPE_32BIT;
2590 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2591 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2592 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2593
2594 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2595 pModeData->uShwType = PGM_TYPE_PAE;
2596 pModeData->uGstType = PGM_TYPE_PAE;
2597 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2598 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2599 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2600
2601 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2602 pModeData->uShwType = PGM_TYPE_AMD64;
2603 pModeData->uGstType = PGM_TYPE_AMD64;
2604 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2605 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2606 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2607
2608 /* The nested paging mode. */
2609 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2610 pModeData->uShwType = PGM_TYPE_NESTED;
2611 pModeData->uGstType = PGM_TYPE_REAL;
2612 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2613 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2614
2615 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2616 pModeData->uShwType = PGM_TYPE_NESTED;
2617 pModeData->uGstType = PGM_TYPE_PROT;
2618 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2619 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2620
2621 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2622 pModeData->uShwType = PGM_TYPE_NESTED;
2623 pModeData->uGstType = PGM_TYPE_32BIT;
2624 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2625 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2626
2627 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2628 pModeData->uShwType = PGM_TYPE_NESTED;
2629 pModeData->uGstType = PGM_TYPE_PAE;
2630 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2631 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2632
2633 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2634 pModeData->uShwType = PGM_TYPE_NESTED;
2635 pModeData->uGstType = PGM_TYPE_AMD64;
2636 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2637 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2638
2639 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2640 switch(pVM->pgm.s.enmHostMode)
2641 {
2642 case SUPPAGINGMODE_32_BIT:
2643 case SUPPAGINGMODE_32_BIT_GLOBAL:
2644 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2645 {
2646 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2647 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2648 }
2649 break;
2650
2651 case SUPPAGINGMODE_PAE:
2652 case SUPPAGINGMODE_PAE_NX:
2653 case SUPPAGINGMODE_PAE_GLOBAL:
2654 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2655 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2656 {
2657 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2658 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2659 }
2660 break;
2661
2662 case SUPPAGINGMODE_AMD64:
2663 case SUPPAGINGMODE_AMD64_GLOBAL:
2664 case SUPPAGINGMODE_AMD64_NX:
2665 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2666 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2667 {
2668 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2669 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2670 }
2671 break;
2672 default:
2673 AssertFailed();
2674 break;
2675 }
2676 return VINF_SUCCESS;
2677}
2678
2679
2680/**
2681 * Switch to different (or relocated in the relocate case) mode data.
2682 *
2683 * @param pVM The VM handle.
2684 * @param enmShw The the shadow paging mode.
2685 * @param enmGst The the guest paging mode.
2686 */
2687static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2688{
2689 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2690
2691 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2692 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2693
2694 /* shadow */
2695 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2696 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2697 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2698 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2699 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2700
2701 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2702 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2703
2704 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2705 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2706
2707
2708 /* guest */
2709 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2710 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2711 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2712 Assert(pVM->pgm.s.pfnR3GstGetPage);
2713 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2714 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2715 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2716 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2717 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2718 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2719 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2720 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2721 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2722 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2723
2724 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2725 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2726 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2727 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2728 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2729 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2730 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2731 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2732 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2733
2734 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2735 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2736 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2737 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2738 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2739 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2740 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2741 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2742 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2743
2744
2745 /* both */
2746 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2747 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2748 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2749 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2750 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2751 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2752 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2753 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2754#ifdef VBOX_STRICT
2755 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2756#endif
2757
2758 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2759 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2760 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2761 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2762 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2763 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2764#ifdef VBOX_STRICT
2765 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2766#endif
2767
2768 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2769 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2770 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2771 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2772 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2773 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2774#ifdef VBOX_STRICT
2775 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2776#endif
2777}
2778
2779
2780#ifdef DEBUG_bird
2781#include <stdlib.h> /* getenv() remove me! */
2782#endif
2783
2784/**
2785 * Calculates the shadow paging mode.
2786 *
2787 * @returns The shadow paging mode.
2788 * @param pVM VM handle.
2789 * @param enmGuestMode The guest mode.
2790 * @param enmHostMode The host mode.
2791 * @param enmShadowMode The current shadow mode.
2792 * @param penmSwitcher Where to store the switcher to use.
2793 * VMMSWITCHER_INVALID means no change.
2794 */
2795static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2796{
2797 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2798 switch (enmGuestMode)
2799 {
2800 /*
2801 * When switching to real or protected mode we don't change
2802 * anything since it's likely that we'll switch back pretty soon.
2803 *
2804 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2805 * and is supposed to determine which shadow paging and switcher to
2806 * use during init.
2807 */
2808 case PGMMODE_REAL:
2809 case PGMMODE_PROTECTED:
2810 if ( enmShadowMode != PGMMODE_INVALID
2811 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2812 break; /* (no change) */
2813
2814 switch (enmHostMode)
2815 {
2816 case SUPPAGINGMODE_32_BIT:
2817 case SUPPAGINGMODE_32_BIT_GLOBAL:
2818 enmShadowMode = PGMMODE_32_BIT;
2819 enmSwitcher = VMMSWITCHER_32_TO_32;
2820 break;
2821
2822 case SUPPAGINGMODE_PAE:
2823 case SUPPAGINGMODE_PAE_NX:
2824 case SUPPAGINGMODE_PAE_GLOBAL:
2825 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2826 enmShadowMode = PGMMODE_PAE;
2827 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2828#ifdef DEBUG_bird
2829if (getenv("VBOX_32BIT"))
2830{
2831 enmShadowMode = PGMMODE_32_BIT;
2832 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2833}
2834#endif
2835 break;
2836
2837 case SUPPAGINGMODE_AMD64:
2838 case SUPPAGINGMODE_AMD64_GLOBAL:
2839 case SUPPAGINGMODE_AMD64_NX:
2840 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2841 enmShadowMode = PGMMODE_PAE;
2842 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2843 break;
2844
2845 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2846 }
2847 break;
2848
2849 case PGMMODE_32_BIT:
2850 switch (enmHostMode)
2851 {
2852 case SUPPAGINGMODE_32_BIT:
2853 case SUPPAGINGMODE_32_BIT_GLOBAL:
2854 enmShadowMode = PGMMODE_32_BIT;
2855 enmSwitcher = VMMSWITCHER_32_TO_32;
2856 break;
2857
2858 case SUPPAGINGMODE_PAE:
2859 case SUPPAGINGMODE_PAE_NX:
2860 case SUPPAGINGMODE_PAE_GLOBAL:
2861 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2862 enmShadowMode = PGMMODE_PAE;
2863 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2864#ifdef DEBUG_bird
2865if (getenv("VBOX_32BIT"))
2866{
2867 enmShadowMode = PGMMODE_32_BIT;
2868 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2869}
2870#endif
2871 break;
2872
2873 case SUPPAGINGMODE_AMD64:
2874 case SUPPAGINGMODE_AMD64_GLOBAL:
2875 case SUPPAGINGMODE_AMD64_NX:
2876 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2877 enmShadowMode = PGMMODE_PAE;
2878 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2879 break;
2880
2881 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2882 }
2883 break;
2884
2885 case PGMMODE_PAE:
2886 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2887 switch (enmHostMode)
2888 {
2889 case SUPPAGINGMODE_32_BIT:
2890 case SUPPAGINGMODE_32_BIT_GLOBAL:
2891 enmShadowMode = PGMMODE_PAE;
2892 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2893 break;
2894
2895 case SUPPAGINGMODE_PAE:
2896 case SUPPAGINGMODE_PAE_NX:
2897 case SUPPAGINGMODE_PAE_GLOBAL:
2898 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2899 enmShadowMode = PGMMODE_PAE;
2900 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2901 break;
2902
2903 case SUPPAGINGMODE_AMD64:
2904 case SUPPAGINGMODE_AMD64_GLOBAL:
2905 case SUPPAGINGMODE_AMD64_NX:
2906 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2907 enmShadowMode = PGMMODE_PAE;
2908 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2909 break;
2910
2911 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2912 }
2913 break;
2914
2915 case PGMMODE_AMD64:
2916 case PGMMODE_AMD64_NX:
2917 switch (enmHostMode)
2918 {
2919 case SUPPAGINGMODE_32_BIT:
2920 case SUPPAGINGMODE_32_BIT_GLOBAL:
2921 enmShadowMode = PGMMODE_PAE;
2922 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
2923 break;
2924
2925 case SUPPAGINGMODE_PAE:
2926 case SUPPAGINGMODE_PAE_NX:
2927 case SUPPAGINGMODE_PAE_GLOBAL:
2928 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2929 enmShadowMode = PGMMODE_PAE;
2930 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
2931 break;
2932
2933 case SUPPAGINGMODE_AMD64:
2934 case SUPPAGINGMODE_AMD64_GLOBAL:
2935 case SUPPAGINGMODE_AMD64_NX:
2936 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2937 enmShadowMode = PGMMODE_AMD64;
2938 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
2939 break;
2940
2941 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2942 }
2943 break;
2944
2945
2946 default:
2947 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2948 return PGMMODE_INVALID;
2949 }
2950 /* Override the shadow mode is nested paging is active. */
2951 if (HWACCMIsNestedPagingActive(pVM))
2952 enmShadowMode = PGMMODE_NESTED;
2953
2954 *penmSwitcher = enmSwitcher;
2955 return enmShadowMode;
2956}
2957
2958#ifdef LOG_ENABLED
2959/**
2960 * Return the string corresponding to the guest mode
2961 *
2962 * @returns string
2963 * @param enmGuestMode The guest mode.
2964 */
2965const char *pgmr3GuestModeString(PGMMODE enmGuestMode)
2966{
2967 switch(enmGuestMode)
2968 {
2969 case PGMMODE_REAL:
2970 return "Real mode";
2971
2972 case PGMMODE_PROTECTED:
2973 return "Protected mode without paging";
2974
2975 case PGMMODE_32_BIT:
2976 return "32 bits protected mode";
2977
2978 case PGMMODE_PAE:
2979 return "PAE";
2980
2981 case PGMMODE_PAE_NX:
2982 return "PAE + NX";
2983
2984 case PGMMODE_AMD64:
2985 return "AMD64";
2986
2987 case PGMMODE_AMD64_NX:
2988 return "AMD64 + NX";
2989
2990 case PGMMODE_NESTED:
2991 return "Nested";
2992
2993 default:
2994 return "Unknown";
2995 }
2996}
2997#endif
2998
2999/**
3000 * Performs the actual mode change.
3001 * This is called by PGMChangeMode and pgmR3InitPaging().
3002 *
3003 * @returns VBox status code.
3004 * @param pVM VM handle.
3005 * @param enmGuestMode The new guest mode. This is assumed to be different from
3006 * the current mode.
3007 */
3008PGMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3009{
3010 LogFlow(("PGMR3ChangeMode: Guest mode: %s -> %s\n", pgmr3GuestModeString(pVM->pgm.s.enmGuestMode), pgmr3GuestModeString(enmGuestMode)));
3011 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3012
3013 /*
3014 * Calc the shadow mode and switcher.
3015 */
3016 VMMSWITCHER enmSwitcher;
3017 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3018 if (enmSwitcher != VMMSWITCHER_INVALID)
3019 {
3020 /*
3021 * Select new switcher.
3022 */
3023 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3024 if (VBOX_FAILURE(rc))
3025 {
3026 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3027 return rc;
3028 }
3029 }
3030
3031 /*
3032 * Exit old mode(s).
3033 */
3034 /* shadow */
3035 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3036 {
3037 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", pgmr3GuestModeString(pVM->pgm.s.enmShadowMode), pgmr3GuestModeString(enmShadowMode)));
3038 if (PGM_SHW_PFN(Exit, pVM))
3039 {
3040 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3041 if (VBOX_FAILURE(rc))
3042 {
3043 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3044 return rc;
3045 }
3046 }
3047
3048 }
3049
3050 /* guest */
3051 if (PGM_GST_PFN(Exit, pVM))
3052 {
3053 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3054 if (VBOX_FAILURE(rc))
3055 {
3056 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3057 return rc;
3058 }
3059 }
3060
3061 /*
3062 * Load new paging mode data.
3063 */
3064 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3065
3066 /*
3067 * Enter new shadow mode (if changed).
3068 */
3069 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3070 {
3071 int rc;
3072 pVM->pgm.s.enmShadowMode = enmShadowMode;
3073 switch (enmShadowMode)
3074 {
3075 case PGMMODE_32_BIT:
3076 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3077 break;
3078 case PGMMODE_PAE:
3079 case PGMMODE_PAE_NX:
3080 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3081 break;
3082 case PGMMODE_AMD64:
3083 case PGMMODE_AMD64_NX:
3084 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3085 break;
3086 case PGMMODE_NESTED:
3087 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3088 break;
3089 case PGMMODE_REAL:
3090 case PGMMODE_PROTECTED:
3091 default:
3092 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3093 return VERR_INTERNAL_ERROR;
3094 }
3095 if (VBOX_FAILURE(rc))
3096 {
3097 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3098 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3099 return rc;
3100 }
3101 }
3102
3103 /*
3104 * Enter the new guest and shadow+guest modes.
3105 */
3106 int rc = -1;
3107 int rc2 = -1;
3108 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3109 pVM->pgm.s.enmGuestMode = enmGuestMode;
3110 switch (enmGuestMode)
3111 {
3112 case PGMMODE_REAL:
3113 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3114 switch (pVM->pgm.s.enmShadowMode)
3115 {
3116 case PGMMODE_32_BIT:
3117 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3118 break;
3119 case PGMMODE_PAE:
3120 case PGMMODE_PAE_NX:
3121 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3122 break;
3123 case PGMMODE_NESTED:
3124 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3125 break;
3126 case PGMMODE_AMD64:
3127 case PGMMODE_AMD64_NX:
3128 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3129 default: AssertFailed(); break;
3130 }
3131 break;
3132
3133 case PGMMODE_PROTECTED:
3134 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3135 switch (pVM->pgm.s.enmShadowMode)
3136 {
3137 case PGMMODE_32_BIT:
3138 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3139 break;
3140 case PGMMODE_PAE:
3141 case PGMMODE_PAE_NX:
3142 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3143 break;
3144 case PGMMODE_NESTED:
3145 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3146 break;
3147 case PGMMODE_AMD64:
3148 case PGMMODE_AMD64_NX:
3149 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3150 default: AssertFailed(); break;
3151 }
3152 break;
3153
3154 case PGMMODE_32_BIT:
3155 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3156 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3157 switch (pVM->pgm.s.enmShadowMode)
3158 {
3159 case PGMMODE_32_BIT:
3160 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3161 break;
3162 case PGMMODE_PAE:
3163 case PGMMODE_PAE_NX:
3164 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3165 break;
3166 case PGMMODE_NESTED:
3167 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3168 break;
3169 case PGMMODE_AMD64:
3170 case PGMMODE_AMD64_NX:
3171 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3172 default: AssertFailed(); break;
3173 }
3174 break;
3175
3176 case PGMMODE_PAE_NX: /* VT-x/AMD-V only */
3177 Assert(HWACCMIsEnabled(pVM));
3178 /* no break */
3179
3180 case PGMMODE_PAE:
3181 {
3182 uint32_t u32Dummy, u32Features;
3183
3184 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3185 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3186 {
3187 /* Pause first, then inform Main. */
3188 rc = VMR3SuspendNoSave(pVM);
3189 AssertRC(rc);
3190
3191 VMSetRuntimeError(pVM, true, "PAEmode",
3192 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage."));
3193 /* we must return TRUE here otherwise the recompiler will assert */
3194 return VINF_SUCCESS;
3195 }
3196 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3197 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3198 switch (pVM->pgm.s.enmShadowMode)
3199 {
3200 case PGMMODE_PAE:
3201 case PGMMODE_PAE_NX:
3202 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3203 break;
3204 case PGMMODE_NESTED:
3205 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3206 break;
3207 case PGMMODE_32_BIT:
3208 case PGMMODE_AMD64:
3209 case PGMMODE_AMD64_NX:
3210 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3211 default: AssertFailed(); break;
3212 }
3213 break;
3214 }
3215
3216 case PGMMODE_AMD64_NX:
3217 case PGMMODE_AMD64:
3218 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3219 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3220 switch (pVM->pgm.s.enmShadowMode)
3221 {
3222 case PGMMODE_AMD64:
3223 case PGMMODE_AMD64_NX:
3224 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3225 break;
3226 case PGMMODE_NESTED:
3227 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3228 break;
3229 case PGMMODE_32_BIT:
3230 case PGMMODE_PAE:
3231 case PGMMODE_PAE_NX:
3232 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3233 default: AssertFailed(); break;
3234 }
3235 break;
3236
3237 default:
3238 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3239 rc = VERR_NOT_IMPLEMENTED;
3240 break;
3241 }
3242
3243 /* status codes. */
3244 AssertRC(rc);
3245 AssertRC(rc2);
3246 if (VBOX_SUCCESS(rc))
3247 {
3248 rc = rc2;
3249 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3250 rc = VINF_SUCCESS;
3251 }
3252
3253 /*
3254 * Notify SELM so it can update the TSSes with correct CR3s.
3255 */
3256 SELMR3PagingModeChanged(pVM);
3257
3258 /* Notify HWACCM as well. */
3259 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3260 return rc;
3261}
3262
3263
3264/**
3265 * Dumps a PAE shadow page table.
3266 *
3267 * @returns VBox status code (VINF_SUCCESS).
3268 * @param pVM The VM handle.
3269 * @param pPT Pointer to the page table.
3270 * @param u64Address The virtual address of the page table starts.
3271 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3272 * @param cMaxDepth The maxium depth.
3273 * @param pHlp Pointer to the output functions.
3274 */
3275static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3276{
3277 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3278 {
3279 X86PTEPAE Pte = pPT->a[i];
3280 if (Pte.n.u1Present)
3281 {
3282 pHlp->pfnPrintf(pHlp,
3283 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3284 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3285 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3286 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3287 Pte.n.u1Write ? 'W' : 'R',
3288 Pte.n.u1User ? 'U' : 'S',
3289 Pte.n.u1Accessed ? 'A' : '-',
3290 Pte.n.u1Dirty ? 'D' : '-',
3291 Pte.n.u1Global ? 'G' : '-',
3292 Pte.n.u1WriteThru ? "WT" : "--",
3293 Pte.n.u1CacheDisable? "CD" : "--",
3294 Pte.n.u1PAT ? "AT" : "--",
3295 Pte.n.u1NoExecute ? "NX" : "--",
3296 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3297 Pte.u & RT_BIT(10) ? '1' : '0',
3298 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3299 Pte.u & X86_PTE_PAE_PG_MASK);
3300 }
3301 }
3302 return VINF_SUCCESS;
3303}
3304
3305
3306/**
3307 * Dumps a PAE shadow page directory table.
3308 *
3309 * @returns VBox status code (VINF_SUCCESS).
3310 * @param pVM The VM handle.
3311 * @param HCPhys The physical address of the page directory table.
3312 * @param u64Address The virtual address of the page table starts.
3313 * @param cr4 The CR4, PSE is currently used.
3314 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3315 * @param cMaxDepth The maxium depth.
3316 * @param pHlp Pointer to the output functions.
3317 */
3318static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3319{
3320 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3321 if (!pPD)
3322 {
3323 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3324 fLongMode ? 16 : 8, u64Address, HCPhys);
3325 return VERR_INVALID_PARAMETER;
3326 }
3327 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3328
3329 int rc = VINF_SUCCESS;
3330 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3331 {
3332 X86PDEPAE Pde = pPD->a[i];
3333 if (Pde.n.u1Present)
3334 {
3335 if (fBigPagesSupported && Pde.b.u1Size)
3336 pHlp->pfnPrintf(pHlp,
3337 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3338 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3339 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3340 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3341 Pde.b.u1Write ? 'W' : 'R',
3342 Pde.b.u1User ? 'U' : 'S',
3343 Pde.b.u1Accessed ? 'A' : '-',
3344 Pde.b.u1Dirty ? 'D' : '-',
3345 Pde.b.u1Global ? 'G' : '-',
3346 Pde.b.u1WriteThru ? "WT" : "--",
3347 Pde.b.u1CacheDisable? "CD" : "--",
3348 Pde.b.u1PAT ? "AT" : "--",
3349 Pde.b.u1NoExecute ? "NX" : "--",
3350 Pde.u & RT_BIT_64(9) ? '1' : '0',
3351 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3352 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3353 Pde.u & X86_PDE_PAE_PG_MASK);
3354 else
3355 {
3356 pHlp->pfnPrintf(pHlp,
3357 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3358 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3359 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3360 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3361 Pde.n.u1Write ? 'W' : 'R',
3362 Pde.n.u1User ? 'U' : 'S',
3363 Pde.n.u1Accessed ? 'A' : '-',
3364 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3365 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3366 Pde.n.u1WriteThru ? "WT" : "--",
3367 Pde.n.u1CacheDisable? "CD" : "--",
3368 Pde.n.u1NoExecute ? "NX" : "--",
3369 Pde.u & RT_BIT_64(9) ? '1' : '0',
3370 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3371 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3372 Pde.u & X86_PDE_PAE_PG_MASK);
3373 if (cMaxDepth >= 1)
3374 {
3375 /** @todo what about using the page pool for mapping PTs? */
3376 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3377 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3378 PX86PTPAE pPT = NULL;
3379 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3380 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3381 else
3382 {
3383 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3384 {
3385 uint64_t off = u64AddressPT - pMap->GCPtr;
3386 if (off < pMap->cb)
3387 {
3388 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3389 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3390 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3391 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3392 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3393 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3394 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3395 }
3396 }
3397 }
3398 int rc2 = VERR_INVALID_PARAMETER;
3399 if (pPT)
3400 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3401 else
3402 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3403 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3404 if (rc2 < rc && VBOX_SUCCESS(rc))
3405 rc = rc2;
3406 }
3407 }
3408 }
3409 }
3410 return rc;
3411}
3412
3413
3414/**
3415 * Dumps a PAE shadow page directory pointer table.
3416 *
3417 * @returns VBox status code (VINF_SUCCESS).
3418 * @param pVM The VM handle.
3419 * @param HCPhys The physical address of the page directory pointer table.
3420 * @param u64Address The virtual address of the page table starts.
3421 * @param cr4 The CR4, PSE is currently used.
3422 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3423 * @param cMaxDepth The maxium depth.
3424 * @param pHlp Pointer to the output functions.
3425 */
3426static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3427{
3428 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3429 if (!pPDPT)
3430 {
3431 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3432 fLongMode ? 16 : 8, u64Address, HCPhys);
3433 return VERR_INVALID_PARAMETER;
3434 }
3435
3436 int rc = VINF_SUCCESS;
3437 const unsigned c = fLongMode ? ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3438 for (unsigned i = 0; i < c; i++)
3439 {
3440 X86PDPE Pdpe = pPDPT->a[i];
3441 if (Pdpe.n.u1Present)
3442 {
3443 if (fLongMode)
3444 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3445 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3446 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3447 Pdpe.lm.u1Write ? 'W' : 'R',
3448 Pdpe.lm.u1User ? 'U' : 'S',
3449 Pdpe.lm.u1Accessed ? 'A' : '-',
3450 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3451 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3452 Pdpe.lm.u1WriteThru ? "WT" : "--",
3453 Pdpe.lm.u1CacheDisable? "CD" : "--",
3454 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3455 Pdpe.lm.u1NoExecute ? "NX" : "--",
3456 Pdpe.u & RT_BIT(9) ? '1' : '0',
3457 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3458 Pdpe.u & RT_BIT(11) ? '1' : '0',
3459 Pdpe.u & X86_PDPE_PG_MASK);
3460 else
3461 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3462 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3463 i << X86_PDPT_SHIFT,
3464 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3465 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3466 Pdpe.n.u1WriteThru ? "WT" : "--",
3467 Pdpe.n.u1CacheDisable? "CD" : "--",
3468 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3469 Pdpe.u & RT_BIT(9) ? '1' : '0',
3470 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3471 Pdpe.u & RT_BIT(11) ? '1' : '0',
3472 Pdpe.u & X86_PDPE_PG_MASK);
3473 if (cMaxDepth >= 1)
3474 {
3475 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3476 cr4, fLongMode, cMaxDepth - 1, pHlp);
3477 if (rc2 < rc && VBOX_SUCCESS(rc))
3478 rc = rc2;
3479 }
3480 }
3481 }
3482 return rc;
3483}
3484
3485
3486/**
3487 * Dumps a 32-bit shadow page table.
3488 *
3489 * @returns VBox status code (VINF_SUCCESS).
3490 * @param pVM The VM handle.
3491 * @param HCPhys The physical address of the table.
3492 * @param cr4 The CR4, PSE is currently used.
3493 * @param cMaxDepth The maxium depth.
3494 * @param pHlp Pointer to the output functions.
3495 */
3496static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3497{
3498 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3499 if (!pPML4)
3500 {
3501 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3502 return VERR_INVALID_PARAMETER;
3503 }
3504
3505 int rc = VINF_SUCCESS;
3506 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3507 {
3508 X86PML4E Pml4e = pPML4->a[i];
3509 if (Pml4e.n.u1Present)
3510 {
3511 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3512 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3513 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3514 u64Address,
3515 Pml4e.n.u1Write ? 'W' : 'R',
3516 Pml4e.n.u1User ? 'U' : 'S',
3517 Pml4e.n.u1Accessed ? 'A' : '-',
3518 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3519 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3520 Pml4e.n.u1WriteThru ? "WT" : "--",
3521 Pml4e.n.u1CacheDisable? "CD" : "--",
3522 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3523 Pml4e.n.u1NoExecute ? "NX" : "--",
3524 Pml4e.u & RT_BIT(9) ? '1' : '0',
3525 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3526 Pml4e.u & RT_BIT(11) ? '1' : '0',
3527 Pml4e.u & X86_PML4E_PG_MASK);
3528
3529 if (cMaxDepth >= 1)
3530 {
3531 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3532 if (rc2 < rc && VBOX_SUCCESS(rc))
3533 rc = rc2;
3534 }
3535 }
3536 }
3537 return rc;
3538}
3539
3540
3541/**
3542 * Dumps a 32-bit shadow page table.
3543 *
3544 * @returns VBox status code (VINF_SUCCESS).
3545 * @param pVM The VM handle.
3546 * @param pPT Pointer to the page table.
3547 * @param u32Address The virtual address this table starts at.
3548 * @param pHlp Pointer to the output functions.
3549 */
3550int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3551{
3552 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3553 {
3554 X86PTE Pte = pPT->a[i];
3555 if (Pte.n.u1Present)
3556 {
3557 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3558 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3559 u32Address + (i << X86_PT_SHIFT),
3560 Pte.n.u1Write ? 'W' : 'R',
3561 Pte.n.u1User ? 'U' : 'S',
3562 Pte.n.u1Accessed ? 'A' : '-',
3563 Pte.n.u1Dirty ? 'D' : '-',
3564 Pte.n.u1Global ? 'G' : '-',
3565 Pte.n.u1WriteThru ? "WT" : "--",
3566 Pte.n.u1CacheDisable? "CD" : "--",
3567 Pte.n.u1PAT ? "AT" : "--",
3568 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3569 Pte.u & RT_BIT(10) ? '1' : '0',
3570 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3571 Pte.u & X86_PDE_PG_MASK);
3572 }
3573 }
3574 return VINF_SUCCESS;
3575}
3576
3577
3578/**
3579 * Dumps a 32-bit shadow page directory and page tables.
3580 *
3581 * @returns VBox status code (VINF_SUCCESS).
3582 * @param pVM The VM handle.
3583 * @param cr3 The root of the hierarchy.
3584 * @param cr4 The CR4, PSE is currently used.
3585 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3586 * @param pHlp Pointer to the output functions.
3587 */
3588int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3589{
3590 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3591 if (!pPD)
3592 {
3593 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3594 return VERR_INVALID_PARAMETER;
3595 }
3596
3597 int rc = VINF_SUCCESS;
3598 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3599 {
3600 X86PDE Pde = pPD->a[i];
3601 if (Pde.n.u1Present)
3602 {
3603 const uint32_t u32Address = i << X86_PD_SHIFT;
3604 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3605 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3606 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3607 u32Address,
3608 Pde.b.u1Write ? 'W' : 'R',
3609 Pde.b.u1User ? 'U' : 'S',
3610 Pde.b.u1Accessed ? 'A' : '-',
3611 Pde.b.u1Dirty ? 'D' : '-',
3612 Pde.b.u1Global ? 'G' : '-',
3613 Pde.b.u1WriteThru ? "WT" : "--",
3614 Pde.b.u1CacheDisable? "CD" : "--",
3615 Pde.b.u1PAT ? "AT" : "--",
3616 Pde.u & RT_BIT_64(9) ? '1' : '0',
3617 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3618 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3619 Pde.u & X86_PDE4M_PG_MASK);
3620 else
3621 {
3622 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3623 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3624 u32Address,
3625 Pde.n.u1Write ? 'W' : 'R',
3626 Pde.n.u1User ? 'U' : 'S',
3627 Pde.n.u1Accessed ? 'A' : '-',
3628 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3629 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3630 Pde.n.u1WriteThru ? "WT" : "--",
3631 Pde.n.u1CacheDisable? "CD" : "--",
3632 Pde.u & RT_BIT_64(9) ? '1' : '0',
3633 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3634 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3635 Pde.u & X86_PDE_PG_MASK);
3636 if (cMaxDepth >= 1)
3637 {
3638 /** @todo what about using the page pool for mapping PTs? */
3639 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3640 PX86PT pPT = NULL;
3641 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3642 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3643 else
3644 {
3645 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3646 if (u32Address - pMap->GCPtr < pMap->cb)
3647 {
3648 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3649 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3650 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3651 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3652 pPT = pMap->aPTs[iPDE].pPTR3;
3653 }
3654 }
3655 int rc2 = VERR_INVALID_PARAMETER;
3656 if (pPT)
3657 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3658 else
3659 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3660 if (rc2 < rc && VBOX_SUCCESS(rc))
3661 rc = rc2;
3662 }
3663 }
3664 }
3665 }
3666
3667 return rc;
3668}
3669
3670
3671/**
3672 * Dumps a 32-bit shadow page table.
3673 *
3674 * @returns VBox status code (VINF_SUCCESS).
3675 * @param pVM The VM handle.
3676 * @param pPT Pointer to the page table.
3677 * @param u32Address The virtual address this table starts at.
3678 * @param PhysSearch Address to search for.
3679 */
3680int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3681{
3682 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3683 {
3684 X86PTE Pte = pPT->a[i];
3685 if (Pte.n.u1Present)
3686 {
3687 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3688 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3689 u32Address + (i << X86_PT_SHIFT),
3690 Pte.n.u1Write ? 'W' : 'R',
3691 Pte.n.u1User ? 'U' : 'S',
3692 Pte.n.u1Accessed ? 'A' : '-',
3693 Pte.n.u1Dirty ? 'D' : '-',
3694 Pte.n.u1Global ? 'G' : '-',
3695 Pte.n.u1WriteThru ? "WT" : "--",
3696 Pte.n.u1CacheDisable? "CD" : "--",
3697 Pte.n.u1PAT ? "AT" : "--",
3698 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3699 Pte.u & RT_BIT(10) ? '1' : '0',
3700 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3701 Pte.u & X86_PDE_PG_MASK));
3702
3703 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3704 {
3705 uint64_t fPageShw = 0;
3706 RTHCPHYS pPhysHC = 0;
3707
3708 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3709 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3710 }
3711 }
3712 }
3713 return VINF_SUCCESS;
3714}
3715
3716
3717/**
3718 * Dumps a 32-bit guest page directory and page tables.
3719 *
3720 * @returns VBox status code (VINF_SUCCESS).
3721 * @param pVM The VM handle.
3722 * @param cr3 The root of the hierarchy.
3723 * @param cr4 The CR4, PSE is currently used.
3724 * @param PhysSearch Address to search for.
3725 */
3726PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3727{
3728 bool fLongMode = false;
3729 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3730 PX86PD pPD = 0;
3731
3732 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3733 if (VBOX_FAILURE(rc) || !pPD)
3734 {
3735 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3736 return VERR_INVALID_PARAMETER;
3737 }
3738
3739 Log(("cr3=%08x cr4=%08x%s\n"
3740 "%-*s P - Present\n"
3741 "%-*s | R/W - Read (0) / Write (1)\n"
3742 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3743 "%-*s | | | A - Accessed\n"
3744 "%-*s | | | | D - Dirty\n"
3745 "%-*s | | | | | G - Global\n"
3746 "%-*s | | | | | | WT - Write thru\n"
3747 "%-*s | | | | | | | CD - Cache disable\n"
3748 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3749 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3750 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3751 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3752 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3753 "%-*s Level | | | | | | | | | | | | Page\n"
3754 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3755 - W U - - - -- -- -- -- -- 010 */
3756 , cr3, cr4, fLongMode ? " Long Mode" : "",
3757 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3758 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3759
3760 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3761 {
3762 X86PDE Pde = pPD->a[i];
3763 if (Pde.n.u1Present)
3764 {
3765 const uint32_t u32Address = i << X86_PD_SHIFT;
3766
3767 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3768 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3769 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3770 u32Address,
3771 Pde.b.u1Write ? 'W' : 'R',
3772 Pde.b.u1User ? 'U' : 'S',
3773 Pde.b.u1Accessed ? 'A' : '-',
3774 Pde.b.u1Dirty ? 'D' : '-',
3775 Pde.b.u1Global ? 'G' : '-',
3776 Pde.b.u1WriteThru ? "WT" : "--",
3777 Pde.b.u1CacheDisable? "CD" : "--",
3778 Pde.b.u1PAT ? "AT" : "--",
3779 Pde.u & RT_BIT(9) ? '1' : '0',
3780 Pde.u & RT_BIT(10) ? '1' : '0',
3781 Pde.u & RT_BIT(11) ? '1' : '0',
3782 Pde.u & X86_PDE4M_PG_MASK));
3783 /** @todo PhysSearch */
3784 else
3785 {
3786 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3787 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3788 u32Address,
3789 Pde.n.u1Write ? 'W' : 'R',
3790 Pde.n.u1User ? 'U' : 'S',
3791 Pde.n.u1Accessed ? 'A' : '-',
3792 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3793 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3794 Pde.n.u1WriteThru ? "WT" : "--",
3795 Pde.n.u1CacheDisable? "CD" : "--",
3796 Pde.u & RT_BIT(9) ? '1' : '0',
3797 Pde.u & RT_BIT(10) ? '1' : '0',
3798 Pde.u & RT_BIT(11) ? '1' : '0',
3799 Pde.u & X86_PDE_PG_MASK));
3800 ////if (cMaxDepth >= 1)
3801 {
3802 /** @todo what about using the page pool for mapping PTs? */
3803 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3804 PX86PT pPT = NULL;
3805
3806 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3807
3808 int rc2 = VERR_INVALID_PARAMETER;
3809 if (pPT)
3810 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3811 else
3812 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3813 if (rc2 < rc && VBOX_SUCCESS(rc))
3814 rc = rc2;
3815 }
3816 }
3817 }
3818 }
3819
3820 return rc;
3821}
3822
3823
3824/**
3825 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3826 *
3827 * @returns VBox status code (VINF_SUCCESS).
3828 * @param pVM The VM handle.
3829 * @param cr3 The root of the hierarchy.
3830 * @param cr4 The cr4, only PAE and PSE is currently used.
3831 * @param fLongMode Set if long mode, false if not long mode.
3832 * @param cMaxDepth Number of levels to dump.
3833 * @param pHlp Pointer to the output functions.
3834 */
3835PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3836{
3837 if (!pHlp)
3838 pHlp = DBGFR3InfoLogHlp();
3839 if (!cMaxDepth)
3840 return VINF_SUCCESS;
3841 const unsigned cch = fLongMode ? 16 : 8;
3842 pHlp->pfnPrintf(pHlp,
3843 "cr3=%08x cr4=%08x%s\n"
3844 "%-*s P - Present\n"
3845 "%-*s | R/W - Read (0) / Write (1)\n"
3846 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3847 "%-*s | | | A - Accessed\n"
3848 "%-*s | | | | D - Dirty\n"
3849 "%-*s | | | | | G - Global\n"
3850 "%-*s | | | | | | WT - Write thru\n"
3851 "%-*s | | | | | | | CD - Cache disable\n"
3852 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3853 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3854 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3855 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3856 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3857 "%-*s Level | | | | | | | | | | | | Page\n"
3858 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3859 - W U - - - -- -- -- -- -- 010 */
3860 , cr3, cr4, fLongMode ? " Long Mode" : "",
3861 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3862 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3863 if (cr4 & X86_CR4_PAE)
3864 {
3865 if (fLongMode)
3866 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3867 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3868 }
3869 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3870}
3871
3872
3873
3874#ifdef VBOX_WITH_DEBUGGER
3875/**
3876 * The '.pgmram' command.
3877 *
3878 * @returns VBox status.
3879 * @param pCmd Pointer to the command descriptor (as registered).
3880 * @param pCmdHlp Pointer to command helper functions.
3881 * @param pVM Pointer to the current VM (if any).
3882 * @param paArgs Pointer to (readonly) array of arguments.
3883 * @param cArgs Number of arguments in the array.
3884 */
3885static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3886{
3887 /*
3888 * Validate input.
3889 */
3890 if (!pVM)
3891 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3892 if (!pVM->pgm.s.pRamRangesGC)
3893 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3894
3895 /*
3896 * Dump the ranges.
3897 */
3898 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3899 PPGMRAMRANGE pRam;
3900 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3901 {
3902 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3903 "%VGp - %VGp %p\n",
3904 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
3905 if (VBOX_FAILURE(rc))
3906 return rc;
3907 }
3908
3909 return VINF_SUCCESS;
3910}
3911
3912
3913/**
3914 * The '.pgmmap' command.
3915 *
3916 * @returns VBox status.
3917 * @param pCmd Pointer to the command descriptor (as registered).
3918 * @param pCmdHlp Pointer to command helper functions.
3919 * @param pVM Pointer to the current VM (if any).
3920 * @param paArgs Pointer to (readonly) array of arguments.
3921 * @param cArgs Number of arguments in the array.
3922 */
3923static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3924{
3925 /*
3926 * Validate input.
3927 */
3928 if (!pVM)
3929 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3930 if (!pVM->pgm.s.pMappingsR3)
3931 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
3932
3933 /*
3934 * Print message about the fixedness of the mappings.
3935 */
3936 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
3937 if (VBOX_FAILURE(rc))
3938 return rc;
3939
3940 /*
3941 * Dump the ranges.
3942 */
3943 PPGMMAPPING pCur;
3944 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
3945 {
3946 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3947 "%08x - %08x %s\n",
3948 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
3949 if (VBOX_FAILURE(rc))
3950 return rc;
3951 }
3952
3953 return VINF_SUCCESS;
3954}
3955
3956
3957/**
3958 * The '.pgmsync' command.
3959 *
3960 * @returns VBox status.
3961 * @param pCmd Pointer to the command descriptor (as registered).
3962 * @param pCmdHlp Pointer to command helper functions.
3963 * @param pVM Pointer to the current VM (if any).
3964 * @param paArgs Pointer to (readonly) array of arguments.
3965 * @param cArgs Number of arguments in the array.
3966 */
3967static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3968{
3969 /*
3970 * Validate input.
3971 */
3972 if (!pVM)
3973 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3974
3975 /*
3976 * Force page directory sync.
3977 */
3978 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3979
3980 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3981 if (VBOX_FAILURE(rc))
3982 return rc;
3983
3984 return VINF_SUCCESS;
3985}
3986
3987
3988#ifdef VBOX_STRICT
3989/**
3990 * The '.pgmassertcr3' command.
3991 *
3992 * @returns VBox status.
3993 * @param pCmd Pointer to the command descriptor (as registered).
3994 * @param pCmdHlp Pointer to command helper functions.
3995 * @param pVM Pointer to the current VM (if any).
3996 * @param paArgs Pointer to (readonly) array of arguments.
3997 * @param cArgs Number of arguments in the array.
3998 */
3999static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4000{
4001 /*
4002 * Validate input.
4003 */
4004 if (!pVM)
4005 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4006
4007 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4008 if (VBOX_FAILURE(rc))
4009 return rc;
4010
4011 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4012
4013 return VINF_SUCCESS;
4014}
4015#endif
4016
4017/**
4018 * The '.pgmsyncalways' command.
4019 *
4020 * @returns VBox status.
4021 * @param pCmd Pointer to the command descriptor (as registered).
4022 * @param pCmdHlp Pointer to command helper functions.
4023 * @param pVM Pointer to the current VM (if any).
4024 * @param paArgs Pointer to (readonly) array of arguments.
4025 * @param cArgs Number of arguments in the array.
4026 */
4027static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4028{
4029 /*
4030 * Validate input.
4031 */
4032 if (!pVM)
4033 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4034
4035 /*
4036 * Force page directory sync.
4037 */
4038 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4039 {
4040 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4041 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4042 }
4043 else
4044 {
4045 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4046 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4047 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4048 }
4049}
4050
4051#endif
4052
4053/**
4054 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4055 */
4056typedef struct PGMCHECKINTARGS
4057{
4058 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4059 PPGMPHYSHANDLER pPrevPhys;
4060 PPGMVIRTHANDLER pPrevVirt;
4061 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4062 PVM pVM;
4063} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4064
4065/**
4066 * Validate a node in the physical handler tree.
4067 *
4068 * @returns 0 on if ok, other wise 1.
4069 * @param pNode The handler node.
4070 * @param pvUser pVM.
4071 */
4072static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4073{
4074 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4075 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4076 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4077 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4078 AssertReleaseMsg( !pArgs->pPrevPhys
4079 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4080 ("pPrevPhys=%p %VGp-%VGp %s\n"
4081 " pCur=%p %VGp-%VGp %s\n",
4082 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4083 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4084 pArgs->pPrevPhys = pCur;
4085 return 0;
4086}
4087
4088
4089/**
4090 * Validate a node in the virtual handler tree.
4091 *
4092 * @returns 0 on if ok, other wise 1.
4093 * @param pNode The handler node.
4094 * @param pvUser pVM.
4095 */
4096static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4097{
4098 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4099 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4100 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4101 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4102 AssertReleaseMsg( !pArgs->pPrevVirt
4103 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4104 ("pPrevVirt=%p %VGv-%VGv %s\n"
4105 " pCur=%p %VGv-%VGv %s\n",
4106 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4107 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4108 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4109 {
4110 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4111 ("pCur=%p %VGv-%VGv %s\n"
4112 "iPage=%d offVirtHandle=%#x expected %#x\n",
4113 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4114 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4115 }
4116 pArgs->pPrevVirt = pCur;
4117 return 0;
4118}
4119
4120
4121/**
4122 * Validate a node in the virtual handler tree.
4123 *
4124 * @returns 0 on if ok, other wise 1.
4125 * @param pNode The handler node.
4126 * @param pvUser pVM.
4127 */
4128static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4129{
4130 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4131 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4132 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4133 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4134 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4135 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4136 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4137 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4138 " pCur=%p %VGp-%VGp\n",
4139 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4140 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4141 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4142 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4143 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4144 " pCur=%p %VGp-%VGp\n",
4145 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4146 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4147 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4148 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4149 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4150 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4151 {
4152 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4153 for (;;)
4154 {
4155 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4156 AssertReleaseMsg(pCur2 != pCur,
4157 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4158 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4159 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4160 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4161 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4162 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4163 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4164 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4165 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4166 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4167 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4168 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4169 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4170 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4171 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4172 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4173 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4174 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4175 break;
4176 }
4177 }
4178
4179 pArgs->pPrevPhys2Virt = pCur;
4180 return 0;
4181}
4182
4183
4184/**
4185 * Perform an integrity check on the PGM component.
4186 *
4187 * @returns VINF_SUCCESS if everything is fine.
4188 * @returns VBox error status after asserting on integrity breach.
4189 * @param pVM The VM handle.
4190 */
4191PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4192{
4193 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4194
4195 /*
4196 * Check the trees.
4197 */
4198 int cErrors = 0;
4199 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4200 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4201 PGMCHECKINTARGS Args = s_LeftToRight;
4202 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4203 Args = s_RightToLeft;
4204 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4205 Args = s_LeftToRight;
4206 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4207 Args = s_RightToLeft;
4208 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4209 Args = s_LeftToRight;
4210 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4211 Args = s_RightToLeft;
4212 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4213 Args = s_LeftToRight;
4214 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4215 Args = s_RightToLeft;
4216 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4217
4218 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4219}
4220
4221
4222/**
4223 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4224 *
4225 * @returns VBox status code.
4226 * @param pVM VM handle.
4227 * @param fEnable Enable or disable shadow mappings
4228 */
4229PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4230{
4231 pVM->pgm.s.fDisableMappings = !fEnable;
4232
4233 uint32_t cb;
4234 int rc = PGMR3MappingsSize(pVM, &cb);
4235 AssertRCReturn(rc, rc);
4236
4237 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4238 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4239 AssertRCReturn(rc, rc);
4240
4241 return VINF_SUCCESS;
4242}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette