VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 13050

Last change on this file since 13050 was 13045, checked in by vboxsync, 16 years ago

#1865: More PGM changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 203.9 KB
Line 
1/* $Id: PGM.cpp 13045 2008-10-07 13:04:43Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608
609/*******************************************************************************
610* Internal Functions *
611*******************************************************************************/
612static int pgmR3InitPaging(PVM pVM);
613static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
615static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
616static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
617static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
618static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
619#ifdef VBOX_STRICT
620static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
621#endif
622static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
623static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
624static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
625static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
626static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
627
628#ifdef VBOX_WITH_STATISTICS
629static void pgmR3InitStats(PVM pVM);
630#endif
631
632#ifdef VBOX_WITH_DEBUGGER
633/** @todo all but the two last commands must be converted to 'info'. */
634static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638# ifdef VBOX_STRICT
639static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# endif
641#endif
642
643
644/*******************************************************************************
645* Global Variables *
646*******************************************************************************/
647#ifdef VBOX_WITH_DEBUGGER
648/** Command descriptors. */
649static const DBGCCMD g_aCmds[] =
650{
651 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
652 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
653 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
654 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
655#ifdef VBOX_STRICT
656 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
657#endif
658 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
659};
660#endif
661
662
663
664
665/*
666 * Shadow - 32-bit mode
667 */
668#define PGM_SHW_TYPE PGM_TYPE_32BIT
669#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
670#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
671#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
672#include "PGMShw.h"
673
674/* Guest - real mode */
675#define PGM_GST_TYPE PGM_TYPE_REAL
676#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
677#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
678#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
679#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
680#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
681#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
682#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
683#include "PGMGst.h"
684#include "PGMBth.h"
685#undef BTH_PGMPOOLKIND_PT_FOR_PT
686#undef PGM_BTH_NAME
687#undef PGM_BTH_NAME_GC_STR
688#undef PGM_BTH_NAME_R0_STR
689#undef PGM_GST_TYPE
690#undef PGM_GST_NAME
691#undef PGM_GST_NAME_GC_STR
692#undef PGM_GST_NAME_R0_STR
693
694/* Guest - protected mode */
695#define PGM_GST_TYPE PGM_TYPE_PROT
696#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
697#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
698#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
699#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
700#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
701#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
702#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
703#include "PGMGst.h"
704#include "PGMBth.h"
705#undef BTH_PGMPOOLKIND_PT_FOR_PT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_GC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_GC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - 32-bit mode */
715#define PGM_GST_TYPE PGM_TYPE_32BIT
716#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
717#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
720#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
723#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
724#include "PGMGst.h"
725#include "PGMBth.h"
726#undef BTH_PGMPOOLKIND_PT_FOR_BIG
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef PGM_BTH_NAME
729#undef PGM_BTH_NAME_GC_STR
730#undef PGM_BTH_NAME_R0_STR
731#undef PGM_GST_TYPE
732#undef PGM_GST_NAME
733#undef PGM_GST_NAME_GC_STR
734#undef PGM_GST_NAME_R0_STR
735
736#undef PGM_SHW_TYPE
737#undef PGM_SHW_NAME
738#undef PGM_SHW_NAME_GC_STR
739#undef PGM_SHW_NAME_R0_STR
740
741
742/*
743 * Shadow - PAE mode
744 */
745#define PGM_SHW_TYPE PGM_TYPE_PAE
746#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
747#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
748#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
750#include "PGMShw.h"
751
752/* Guest - real mode */
753#define PGM_GST_TYPE PGM_TYPE_REAL
754#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
755#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
756#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
757#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
758#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
759#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
760#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
761#include "PGMBth.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_PT
763#undef PGM_BTH_NAME
764#undef PGM_BTH_NAME_GC_STR
765#undef PGM_BTH_NAME_R0_STR
766#undef PGM_GST_TYPE
767#undef PGM_GST_NAME
768#undef PGM_GST_NAME_GC_STR
769#undef PGM_GST_NAME_R0_STR
770
771/* Guest - protected mode */
772#define PGM_GST_TYPE PGM_TYPE_PROT
773#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
774#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
775#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
776#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
777#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
778#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
779#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
780#include "PGMBth.h"
781#undef BTH_PGMPOOLKIND_PT_FOR_PT
782#undef PGM_BTH_NAME
783#undef PGM_BTH_NAME_GC_STR
784#undef PGM_BTH_NAME_R0_STR
785#undef PGM_GST_TYPE
786#undef PGM_GST_NAME
787#undef PGM_GST_NAME_GC_STR
788#undef PGM_GST_NAME_R0_STR
789
790/* Guest - 32-bit mode */
791#define PGM_GST_TYPE PGM_TYPE_32BIT
792#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
793#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
794#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
795#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
796#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
797#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
798#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
799#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_BIG
802#undef BTH_PGMPOOLKIND_PT_FOR_PT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_GC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_GC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - PAE mode */
812#define PGM_GST_TYPE PGM_TYPE_PAE
813#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
814#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
817#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
820#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
821#include "PGMGst.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_BIG
824#undef BTH_PGMPOOLKIND_PT_FOR_PT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_GC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_GC_STR
831#undef PGM_GST_NAME_R0_STR
832
833#undef PGM_SHW_TYPE
834#undef PGM_SHW_NAME
835#undef PGM_SHW_NAME_GC_STR
836#undef PGM_SHW_NAME_R0_STR
837
838
839/*
840 * Shadow - AMD64 mode
841 */
842#define PGM_SHW_TYPE PGM_TYPE_AMD64
843#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
844#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
845#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
846#include "PGMShw.h"
847
848/* Guest - AMD64 mode */
849#define PGM_GST_TYPE PGM_TYPE_AMD64
850#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
851#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
852#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
853#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
854#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
855#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
856#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
857#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
858#include "PGMGst.h"
859#include "PGMBth.h"
860#undef BTH_PGMPOOLKIND_PT_FOR_BIG
861#undef BTH_PGMPOOLKIND_PT_FOR_PT
862#undef PGM_BTH_NAME
863#undef PGM_BTH_NAME_GC_STR
864#undef PGM_BTH_NAME_R0_STR
865#undef PGM_GST_TYPE
866#undef PGM_GST_NAME
867#undef PGM_GST_NAME_GC_STR
868#undef PGM_GST_NAME_R0_STR
869
870#undef PGM_SHW_TYPE
871#undef PGM_SHW_NAME
872#undef PGM_SHW_NAME_GC_STR
873#undef PGM_SHW_NAME_R0_STR
874
875/*
876 * Shadow - Nested paging mode
877 */
878#define PGM_SHW_TYPE PGM_TYPE_NESTED
879#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
880#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
881#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
882#include "PGMShw.h"
883
884/* Guest - real mode */
885#define PGM_GST_TYPE PGM_TYPE_REAL
886#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
887#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
888#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
889#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
890#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
891#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
892#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
893#include "PGMBth.h"
894#undef BTH_PGMPOOLKIND_PT_FOR_PT
895#undef PGM_BTH_NAME
896#undef PGM_BTH_NAME_GC_STR
897#undef PGM_BTH_NAME_R0_STR
898#undef PGM_GST_TYPE
899#undef PGM_GST_NAME
900#undef PGM_GST_NAME_GC_STR
901#undef PGM_GST_NAME_R0_STR
902
903/* Guest - protected mode */
904#define PGM_GST_TYPE PGM_TYPE_PROT
905#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
906#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
907#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
908#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
909#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
910#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
911#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
912#include "PGMBth.h"
913#undef BTH_PGMPOOLKIND_PT_FOR_PT
914#undef PGM_BTH_NAME
915#undef PGM_BTH_NAME_GC_STR
916#undef PGM_BTH_NAME_R0_STR
917#undef PGM_GST_TYPE
918#undef PGM_GST_NAME
919#undef PGM_GST_NAME_GC_STR
920#undef PGM_GST_NAME_R0_STR
921
922/* Guest - 32-bit mode */
923#define PGM_GST_TYPE PGM_TYPE_32BIT
924#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
925#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
926#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
927#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
928#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
929#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
930#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
931#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
932#include "PGMBth.h"
933#undef BTH_PGMPOOLKIND_PT_FOR_BIG
934#undef BTH_PGMPOOLKIND_PT_FOR_PT
935#undef PGM_BTH_NAME
936#undef PGM_BTH_NAME_GC_STR
937#undef PGM_BTH_NAME_R0_STR
938#undef PGM_GST_TYPE
939#undef PGM_GST_NAME
940#undef PGM_GST_NAME_GC_STR
941#undef PGM_GST_NAME_R0_STR
942
943/* Guest - PAE mode */
944#define PGM_GST_TYPE PGM_TYPE_PAE
945#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
946#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
947#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
948#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
949#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
950#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
951#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
952#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
953#include "PGMBth.h"
954#undef BTH_PGMPOOLKIND_PT_FOR_BIG
955#undef BTH_PGMPOOLKIND_PT_FOR_PT
956#undef PGM_BTH_NAME
957#undef PGM_BTH_NAME_GC_STR
958#undef PGM_BTH_NAME_R0_STR
959#undef PGM_GST_TYPE
960#undef PGM_GST_NAME
961#undef PGM_GST_NAME_GC_STR
962#undef PGM_GST_NAME_R0_STR
963
964/* Guest - AMD64 mode */
965#define PGM_GST_TYPE PGM_TYPE_AMD64
966#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
967#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
968#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
969#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
970#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
971#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
972#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
973#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
974#include "PGMBth.h"
975#undef BTH_PGMPOOLKIND_PT_FOR_BIG
976#undef BTH_PGMPOOLKIND_PT_FOR_PT
977#undef PGM_BTH_NAME
978#undef PGM_BTH_NAME_GC_STR
979#undef PGM_BTH_NAME_R0_STR
980#undef PGM_GST_TYPE
981#undef PGM_GST_NAME
982#undef PGM_GST_NAME_GC_STR
983#undef PGM_GST_NAME_R0_STR
984
985#undef PGM_SHW_TYPE
986#undef PGM_SHW_NAME
987#undef PGM_SHW_NAME_GC_STR
988#undef PGM_SHW_NAME_R0_STR
989
990/*
991 * Shadow - EPT
992 */
993#define PGM_SHW_TYPE PGM_TYPE_EPT
994#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
995#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_EPT_STR(name)
996#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
997#include "PGMShw.h"
998
999/* Guest - real mode */
1000#define PGM_GST_TYPE PGM_TYPE_REAL
1001#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1002#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
1003#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1004#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1005#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_REAL_STR(name)
1006#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1007#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1008#include "PGMBth.h"
1009#undef BTH_PGMPOOLKIND_PT_FOR_PT
1010#undef PGM_BTH_NAME
1011#undef PGM_BTH_NAME_GC_STR
1012#undef PGM_BTH_NAME_R0_STR
1013#undef PGM_GST_TYPE
1014#undef PGM_GST_NAME
1015#undef PGM_GST_NAME_GC_STR
1016#undef PGM_GST_NAME_R0_STR
1017
1018/* Guest - protected mode */
1019#define PGM_GST_TYPE PGM_TYPE_PROT
1020#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1021#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
1022#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1023#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1024#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PROT_STR(name)
1025#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1026#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1027#include "PGMBth.h"
1028#undef BTH_PGMPOOLKIND_PT_FOR_PT
1029#undef PGM_BTH_NAME
1030#undef PGM_BTH_NAME_GC_STR
1031#undef PGM_BTH_NAME_R0_STR
1032#undef PGM_GST_TYPE
1033#undef PGM_GST_NAME
1034#undef PGM_GST_NAME_GC_STR
1035#undef PGM_GST_NAME_R0_STR
1036
1037/* Guest - 32-bit mode */
1038#define PGM_GST_TYPE PGM_TYPE_32BIT
1039#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1040#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
1041#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1042#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1043#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_32BIT_STR(name)
1044#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1045#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1046#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1047#include "PGMBth.h"
1048#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_GC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_GC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058/* Guest - PAE mode */
1059#define PGM_GST_TYPE PGM_TYPE_PAE
1060#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1061#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1064#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PAE_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1067#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1070#undef BTH_PGMPOOLKIND_PT_FOR_PT
1071#undef PGM_BTH_NAME
1072#undef PGM_BTH_NAME_GC_STR
1073#undef PGM_BTH_NAME_R0_STR
1074#undef PGM_GST_TYPE
1075#undef PGM_GST_NAME
1076#undef PGM_GST_NAME_GC_STR
1077#undef PGM_GST_NAME_R0_STR
1078
1079/* Guest - AMD64 mode */
1080#define PGM_GST_TYPE PGM_TYPE_AMD64
1081#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1082#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
1083#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1084#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1085#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_AMD64_STR(name)
1086#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1087#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1088#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_GC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_GC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100#undef PGM_SHW_TYPE
1101#undef PGM_SHW_NAME
1102#undef PGM_SHW_NAME_GC_STR
1103#undef PGM_SHW_NAME_R0_STR
1104
1105/**
1106 * Initiates the paging of VM.
1107 *
1108 * @returns VBox status code.
1109 * @param pVM Pointer to VM structure.
1110 */
1111VMMR3DECL(int) PGMR3Init(PVM pVM)
1112{
1113 LogFlow(("PGMR3Init:\n"));
1114
1115 /*
1116 * Assert alignment and sizes.
1117 */
1118 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1119
1120 /*
1121 * Init the structure.
1122 */
1123 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1124 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1125 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1126 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1127 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1128 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1129 pVM->pgm.s.fA20Enabled = true;
1130 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1131 pVM->pgm.s.pGstPaePDPTHC = NULL;
1132 pVM->pgm.s.pGstPaePDPTGC = 0;
1133 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1134 {
1135 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1136 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1137 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1138 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1139 }
1140
1141#ifdef VBOX_STRICT
1142 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1143#endif
1144
1145 /*
1146 * Get the configured RAM size - to estimate saved state size.
1147 */
1148 uint64_t cbRam;
1149 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1150 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1151 cbRam = pVM->pgm.s.cbRamSize = 0;
1152 else if (VBOX_SUCCESS(rc))
1153 {
1154 if (cbRam < PAGE_SIZE)
1155 cbRam = 0;
1156 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1157 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1158 }
1159 else
1160 {
1161 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1162 return rc;
1163 }
1164
1165 /*
1166 * Register saved state data unit.
1167 */
1168 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1169 NULL, pgmR3Save, NULL,
1170 NULL, pgmR3Load, NULL);
1171 if (VBOX_FAILURE(rc))
1172 return rc;
1173
1174 /*
1175 * Initialize the PGM critical section and flush the phys TLBs
1176 */
1177 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1178 AssertRCReturn(rc, rc);
1179
1180 PGMR3PhysChunkInvalidateTLB(pVM);
1181 PGMPhysInvalidatePageR3MapTLB(pVM);
1182 PGMPhysInvalidatePageR0MapTLB(pVM);
1183 PGMPhysInvalidatePageGCMapTLB(pVM);
1184
1185 /*
1186 * Trees
1187 */
1188 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1189 if (VBOX_SUCCESS(rc))
1190 {
1191 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1192
1193 /*
1194 * Alocate the zero page.
1195 */
1196 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1197 }
1198 if (VBOX_SUCCESS(rc))
1199 {
1200 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1201 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1202 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1203 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1204 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1205
1206 /*
1207 * Init the paging.
1208 */
1209 rc = pgmR3InitPaging(pVM);
1210 }
1211 if (VBOX_SUCCESS(rc))
1212 {
1213 /*
1214 * Init the page pool.
1215 */
1216 rc = pgmR3PoolInit(pVM);
1217 }
1218 if (VBOX_SUCCESS(rc))
1219 {
1220 /*
1221 * Info & statistics
1222 */
1223 DBGFR3InfoRegisterInternal(pVM, "mode",
1224 "Shows the current paging mode. "
1225 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1226 pgmR3InfoMode);
1227 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1228 "Dumps all the entries in the top level paging table. No arguments.",
1229 pgmR3InfoCr3);
1230 DBGFR3InfoRegisterInternal(pVM, "phys",
1231 "Dumps all the physical address ranges. No arguments.",
1232 pgmR3PhysInfo);
1233 DBGFR3InfoRegisterInternal(pVM, "handlers",
1234 "Dumps physical, virtual and hyper virtual handlers. "
1235 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1236 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1237 pgmR3InfoHandlers);
1238 DBGFR3InfoRegisterInternal(pVM, "mappings",
1239 "Dumps guest mappings.",
1240 pgmR3MapInfo);
1241
1242 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1243#ifdef VBOX_WITH_STATISTICS
1244 pgmR3InitStats(pVM);
1245#endif
1246#ifdef VBOX_WITH_DEBUGGER
1247 /*
1248 * Debugger commands.
1249 */
1250 static bool fRegisteredCmds = false;
1251 if (!fRegisteredCmds)
1252 {
1253 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1254 if (VBOX_SUCCESS(rc))
1255 fRegisteredCmds = true;
1256 }
1257#endif
1258 return VINF_SUCCESS;
1259 }
1260
1261 /* Almost no cleanup necessary, MM frees all memory. */
1262 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1263
1264 return rc;
1265}
1266
1267
1268/**
1269 * Init paging.
1270 *
1271 * Since we need to check what mode the host is operating in before we can choose
1272 * the right paging functions for the host we have to delay this until R0 has
1273 * been initialized.
1274 *
1275 * @returns VBox status code.
1276 * @param pVM VM handle.
1277 */
1278static int pgmR3InitPaging(PVM pVM)
1279{
1280 /*
1281 * Force a recalculation of modes and switcher so everyone gets notified.
1282 */
1283 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1284 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1285 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1286
1287 /*
1288 * Allocate static mapping space for whatever the cr3 register
1289 * points to and in the case of PAE mode to the 4 PDs.
1290 */
1291 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1292 if (VBOX_FAILURE(rc))
1293 {
1294 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1295 return rc;
1296 }
1297 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1298
1299 /*
1300 * Allocate pages for the three possible intermediate contexts
1301 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1302 * for the sake of simplicity. The AMD64 uses the PAE for the
1303 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1304 *
1305 * We assume that two page tables will be enought for the core code
1306 * mappings (HC virtual and identity).
1307 */
1308 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1309 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1310 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1311 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1312 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1313 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1314 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1315 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1316 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1317 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1318 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1319 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1320 if ( !pVM->pgm.s.pInterPD
1321 || !pVM->pgm.s.apInterPTs[0]
1322 || !pVM->pgm.s.apInterPTs[1]
1323 || !pVM->pgm.s.apInterPaePTs[0]
1324 || !pVM->pgm.s.apInterPaePTs[1]
1325 || !pVM->pgm.s.apInterPaePDs[0]
1326 || !pVM->pgm.s.apInterPaePDs[1]
1327 || !pVM->pgm.s.apInterPaePDs[2]
1328 || !pVM->pgm.s.apInterPaePDs[3]
1329 || !pVM->pgm.s.pInterPaePDPT
1330 || !pVM->pgm.s.pInterPaePDPT64
1331 || !pVM->pgm.s.pInterPaePML4)
1332 {
1333 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1334 return VERR_NO_PAGE_MEMORY;
1335 }
1336
1337 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1338 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1339 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1340 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1341 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1342 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1343
1344 /*
1345 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1346 */
1347 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1348 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1349 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1350
1351 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1352 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1353
1354 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1355 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1356 {
1357 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1358 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1359 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1360 }
1361
1362 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1363 {
1364 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1365 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1366 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1367 }
1368
1369 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1370 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1371 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1372 | HCPhysInterPaePDPT64;
1373
1374 /*
1375 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1376 * We allocate pages for all three posibilities to in order to simplify mappings and
1377 * avoid resource failure during mode switches. So, we need to cover all levels of the
1378 * of the first 4GB down to PD level.
1379 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1380 */
1381 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1382 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1383 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1384 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1385 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1386 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1387 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1388 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1389 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1390 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1391
1392 if ( !pVM->pgm.s.pHC32BitPD
1393 || !pVM->pgm.s.apHCPaePDs[0]
1394 || !pVM->pgm.s.apHCPaePDs[1]
1395 || !pVM->pgm.s.apHCPaePDs[2]
1396 || !pVM->pgm.s.apHCPaePDs[3]
1397 || !pVM->pgm.s.pHCPaePDPT
1398 || !pVM->pgm.s.pHCNestedRoot)
1399 {
1400 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1401 return VERR_NO_PAGE_MEMORY;
1402 }
1403
1404 /* get physical addresses. */
1405 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1406 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1407 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1408 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1409 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1410 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1411 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1412 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1413
1414 /*
1415 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1416 */
1417 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1418 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1419 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1420 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1421 {
1422 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1423 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1424 /* The flags will be corrected when entering and leaving long mode. */
1425 }
1426
1427 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1428
1429 /*
1430 * Initialize paging workers and mode from current host mode
1431 * and the guest running in real mode.
1432 */
1433 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1434 switch (pVM->pgm.s.enmHostMode)
1435 {
1436 case SUPPAGINGMODE_32_BIT:
1437 case SUPPAGINGMODE_32_BIT_GLOBAL:
1438 case SUPPAGINGMODE_PAE:
1439 case SUPPAGINGMODE_PAE_GLOBAL:
1440 case SUPPAGINGMODE_PAE_NX:
1441 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1442 break;
1443
1444 case SUPPAGINGMODE_AMD64:
1445 case SUPPAGINGMODE_AMD64_GLOBAL:
1446 case SUPPAGINGMODE_AMD64_NX:
1447 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1448#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1449 if (ARCH_BITS != 64)
1450 {
1451 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1452 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1453 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1454 }
1455#endif
1456 break;
1457 default:
1458 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1459 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1460 }
1461 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1462 if (VBOX_SUCCESS(rc))
1463 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1464 if (VBOX_SUCCESS(rc))
1465 {
1466 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1467#if HC_ARCH_BITS == 64
1468 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1469 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1470 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1471 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1472 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1473 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1474 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1475 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1476 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1477 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1478#endif
1479
1480 return VINF_SUCCESS;
1481 }
1482
1483 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1484 return rc;
1485}
1486
1487
1488#ifdef VBOX_WITH_STATISTICS
1489/**
1490 * Init statistics
1491 */
1492static void pgmR3InitStats(PVM pVM)
1493{
1494 PPGM pPGM = &pVM->pgm.s;
1495 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1496 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1497 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1498 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1499 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1500 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1501 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1502 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1503 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1504 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1505 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1506 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1507 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1508 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1509 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1510 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1511 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1512 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1513 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1514 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1515 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1516 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1517
1518 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1519 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1520 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1521 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1522 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1523 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1524 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1525 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1526 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1527 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1528 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1529 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1530 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1531 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1532 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1533 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1534 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1535 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1536 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1537
1538 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1539 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1540 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1541 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1542 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1543 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1544 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1545 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1546
1547 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1548 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1549 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1550 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1551 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1552 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1553 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1554
1555 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1556 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1557 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1558 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1559 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1560 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1561 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1562
1563 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1564 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1565
1566 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1567 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1568 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1569
1570 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1571 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1572
1573 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1574 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1575
1576 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1577 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1578
1579 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1580 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1581 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1582
1583 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1584 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1585 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1586 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1587 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1588 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1589 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1590 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1591 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1592 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1593 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1594
1595 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1596 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1597 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1598 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1599 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1600 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1601 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1602
1603 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1604 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1605 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1606 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1607
1608 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1609 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1610 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1611 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1612 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1613
1614 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1615 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1616 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1617 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1618 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1619 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1620 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1621 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1622 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1623 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1624 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1625 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1626
1627 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1628 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1629 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1630 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1631 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1632 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1633 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1634 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1635 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1636 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1637 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1638 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1639
1640 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1641 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1642 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1643
1644 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1645 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1646
1647 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1648 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1649 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1650 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1651
1652 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1653 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1654
1655 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1656 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1657 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1658 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1659 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1660 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1661 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1662 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1663 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1664 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1665 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1666 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1667 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1668
1669#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1670 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1671 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1672 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1673 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1674 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1675 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1676#endif
1677
1678 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1679 {
1680 /** @todo r=bird: We need a STAMR3RegisterF()! */
1681 char szName[32];
1682
1683 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1684 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1685 AssertRC(rc);
1686
1687 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1688 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1689 AssertRC(rc);
1690
1691 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1692 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1693 AssertRC(rc);
1694 }
1695}
1696#endif /* VBOX_WITH_STATISTICS */
1697
1698/**
1699 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1700 *
1701 * The dynamic mapping area will also be allocated and initialized at this
1702 * time. We could allocate it during PGMR3Init of course, but the mapping
1703 * wouldn't be allocated at that time preventing us from setting up the
1704 * page table entries with the dummy page.
1705 *
1706 * @returns VBox status code.
1707 * @param pVM VM handle.
1708 */
1709VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1710{
1711 RTGCPTR GCPtr;
1712 /*
1713 * Reserve space for mapping the paging pages into guest context.
1714 */
1715 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1716 AssertRCReturn(rc, rc);
1717 pVM->pgm.s.pGC32BitPD = GCPtr;
1718 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1719
1720 /*
1721 * Reserve space for the dynamic mappings.
1722 */
1723 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1724 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1725 if (VBOX_SUCCESS(rc))
1726 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1727
1728 if ( VBOX_SUCCESS(rc)
1729 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1730 {
1731 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1732 if (VBOX_SUCCESS(rc))
1733 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1734 }
1735 if (VBOX_SUCCESS(rc))
1736 {
1737 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1738 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1739 }
1740 return rc;
1741}
1742
1743
1744/**
1745 * Ring-3 init finalizing.
1746 *
1747 * @returns VBox status code.
1748 * @param pVM The VM handle.
1749 */
1750VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1751{
1752 /*
1753 * Map the paging pages into the guest context.
1754 */
1755 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1756 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1757
1758 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1759 AssertRCReturn(rc, rc);
1760 pVM->pgm.s.pGC32BitPD = GCPtr;
1761 GCPtr += PAGE_SIZE;
1762 GCPtr += PAGE_SIZE; /* reserved page */
1763
1764 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1765 {
1766 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1767 AssertRCReturn(rc, rc);
1768 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1769 GCPtr += PAGE_SIZE;
1770 }
1771 /* A bit of paranoia is justified. */
1772 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1773 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1774 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1775 GCPtr += PAGE_SIZE; /* reserved page */
1776
1777 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1778 AssertRCReturn(rc, rc);
1779 pVM->pgm.s.pGCPaePDPT = GCPtr;
1780 GCPtr += PAGE_SIZE;
1781 GCPtr += PAGE_SIZE; /* reserved page */
1782
1783
1784 /*
1785 * Reserve space for the dynamic mappings.
1786 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1787 */
1788 /* get the pointer to the page table entries. */
1789 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1790 AssertRelease(pMapping);
1791 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1792 const unsigned iPT = off >> X86_PD_SHIFT;
1793 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1794 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1795 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1796
1797 /* init cache */
1798 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1799 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1800 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1801
1802 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1803 {
1804 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1805 AssertRCReturn(rc, rc);
1806 }
1807
1808 /* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); Intel only goes up to 36 bits, so
1809 * we stick to 36 as well.
1810 *
1811 * @todo How to test for the 40 bits support? Long mode seems to be the test criterium.
1812 */
1813 uint32_t u32Dummy, u32Features;
1814 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1815
1816 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1817 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1818 else
1819 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1820
1821 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %VGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1822
1823 return rc;
1824}
1825
1826
1827/**
1828 * Applies relocations to data and code managed by this
1829 * component. This function will be called at init and
1830 * whenever the VMM need to relocate it self inside the GC.
1831 *
1832 * @param pVM The VM.
1833 * @param offDelta Relocation delta relative to old location.
1834 */
1835VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1836{
1837 LogFlow(("PGMR3Relocate\n"));
1838
1839 /*
1840 * Paging stuff.
1841 */
1842 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1843 /** @todo move this into shadow and guest specific relocation functions. */
1844 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1845 pVM->pgm.s.pGC32BitPD += offDelta;
1846 pVM->pgm.s.pGuestPDGC += offDelta;
1847 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1848 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1849 {
1850 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1851 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1852 }
1853 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1854 pVM->pgm.s.pGCPaePDPT += offDelta;
1855
1856 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1857 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1858
1859 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1860 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1861 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1862
1863 /*
1864 * Trees.
1865 */
1866 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1867
1868 /*
1869 * Ram ranges.
1870 */
1871 if (pVM->pgm.s.pRamRangesR3)
1872 {
1873 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1874 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1875 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1876 }
1877
1878 /*
1879 * Update the two page directories with all page table mappings.
1880 * (One or more of them have changed, that's why we're here.)
1881 */
1882 pVM->pgm.s.pMappingsRC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1883 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1884 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1885
1886 /* Relocate GC addresses of Page Tables. */
1887 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1888 {
1889 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1890 {
1891 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1892 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1893 }
1894 }
1895
1896 /*
1897 * Dynamic page mapping area.
1898 */
1899 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1900 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1901 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1902
1903 /*
1904 * The Zero page.
1905 */
1906 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1907 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1908
1909 /*
1910 * Physical and virtual handlers.
1911 */
1912 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1913 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1914 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1915
1916 /*
1917 * The page pool.
1918 */
1919 pgmR3PoolRelocate(pVM);
1920}
1921
1922
1923/**
1924 * Callback function for relocating a physical access handler.
1925 *
1926 * @returns 0 (continue enum)
1927 * @param pNode Pointer to a PGMPHYSHANDLER node.
1928 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1929 * not certain the delta will fit in a void pointer for all possible configs.
1930 */
1931static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1932{
1933 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1934 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1935 if (pHandler->pfnHandlerRC)
1936 pHandler->pfnHandlerRC += offDelta;
1937 if (pHandler->pvUserRC >= 0x10000)
1938 pHandler->pvUserRC += offDelta;
1939 return 0;
1940}
1941
1942
1943/**
1944 * Callback function for relocating a virtual access handler.
1945 *
1946 * @returns 0 (continue enum)
1947 * @param pNode Pointer to a PGMVIRTHANDLER node.
1948 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1949 * not certain the delta will fit in a void pointer for all possible configs.
1950 */
1951static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1952{
1953 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1954 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1955 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1956 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1957 Assert(pHandler->pfnHandlerRC);
1958 pHandler->pfnHandlerRC += offDelta;
1959 return 0;
1960}
1961
1962
1963/**
1964 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1965 *
1966 * @returns 0 (continue enum)
1967 * @param pNode Pointer to a PGMVIRTHANDLER node.
1968 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1969 * not certain the delta will fit in a void pointer for all possible configs.
1970 */
1971static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1972{
1973 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1974 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1975 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1976 Assert(pHandler->pfnHandlerRC);
1977 pHandler->pfnHandlerRC += offDelta;
1978 return 0;
1979}
1980
1981
1982/**
1983 * The VM is being reset.
1984 *
1985 * For the PGM component this means that any PD write monitors
1986 * needs to be removed.
1987 *
1988 * @param pVM VM handle.
1989 */
1990VMMR3DECL(void) PGMR3Reset(PVM pVM)
1991{
1992 LogFlow(("PGMR3Reset:\n"));
1993 VM_ASSERT_EMT(pVM);
1994
1995 pgmLock(pVM);
1996
1997 /*
1998 * Unfix any fixed mappings and disable CR3 monitoring.
1999 */
2000 pVM->pgm.s.fMappingsFixed = false;
2001 pVM->pgm.s.GCPtrMappingFixed = 0;
2002 pVM->pgm.s.cbMappingFixed = 0;
2003
2004 /* Exit the guest paging mode before the pgm pool gets reset.
2005 * Important to clean up the amd64 case.
2006 */
2007 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2008 AssertRC(rc);
2009#ifdef DEBUG
2010 DBGFR3InfoLog(pVM, "mappings", NULL);
2011 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2012#endif
2013
2014 /*
2015 * Reset the shadow page pool.
2016 */
2017 pgmR3PoolReset(pVM);
2018
2019 /*
2020 * Re-init other members.
2021 */
2022 pVM->pgm.s.fA20Enabled = true;
2023
2024 /*
2025 * Clear the FFs PGM owns.
2026 */
2027 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2028 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2029
2030 /*
2031 * Reset (zero) RAM pages.
2032 */
2033 rc = pgmR3PhysRamReset(pVM);
2034 if (RT_SUCCESS(rc))
2035 {
2036#ifdef VBOX_WITH_NEW_PHYS_CODE
2037 /*
2038 * Reset (zero) shadow ROM pages.
2039 */
2040 rc = pgmR3PhysRomReset(pVM);
2041#endif
2042 if (RT_SUCCESS(rc))
2043 {
2044 /*
2045 * Switch mode back to real mode.
2046 */
2047 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2048 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2049 }
2050 }
2051
2052 pgmUnlock(pVM);
2053 //return rc;
2054 AssertReleaseRC(rc);
2055}
2056
2057
2058#ifdef VBOX_STRICT
2059/**
2060 * VM state change callback for clearing fNoMorePhysWrites after
2061 * a snapshot has been created.
2062 */
2063static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2064{
2065 if (enmState == VMSTATE_RUNNING)
2066 pVM->pgm.s.fNoMorePhysWrites = false;
2067}
2068#endif
2069
2070
2071/**
2072 * Terminates the PGM.
2073 *
2074 * @returns VBox status code.
2075 * @param pVM Pointer to VM structure.
2076 */
2077VMMR3DECL(int) PGMR3Term(PVM pVM)
2078{
2079 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2080}
2081
2082
2083/**
2084 * Execute state save operation.
2085 *
2086 * @returns VBox status code.
2087 * @param pVM VM Handle.
2088 * @param pSSM SSM operation handle.
2089 */
2090static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2091{
2092 PPGM pPGM = &pVM->pgm.s;
2093
2094 /* No more writes to physical memory after this point! */
2095 pVM->pgm.s.fNoMorePhysWrites = true;
2096
2097 /*
2098 * Save basic data (required / unaffected by relocation).
2099 */
2100#if 1
2101 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2102#else
2103 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2104#endif
2105 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2106 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2107 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2108 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2109 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2110 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2111 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2112 SSMR3PutU32(pSSM, ~0); /* Separator. */
2113
2114 /*
2115 * The guest mappings.
2116 */
2117 uint32_t i = 0;
2118 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2119 {
2120 SSMR3PutU32(pSSM, i);
2121 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2122 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2123 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2124 /* flags are done by the mapping owners! */
2125 }
2126 SSMR3PutU32(pSSM, ~0); /* terminator. */
2127
2128 /*
2129 * Ram range flags and bits.
2130 */
2131 i = 0;
2132 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2133 {
2134 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2135
2136 SSMR3PutU32(pSSM, i);
2137 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2138 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2139 SSMR3PutGCPhys(pSSM, pRam->cb);
2140 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2141
2142 /* Flags. */
2143 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2144 for (unsigned iPage = 0; iPage < cPages; iPage++)
2145 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2146
2147 /* any memory associated with the range. */
2148 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2149 {
2150 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2151 {
2152 if (pRam->paChunkR3Ptrs[iChunk])
2153 {
2154 SSMR3PutU8(pSSM, 1); /* chunk present */
2155 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2156 }
2157 else
2158 SSMR3PutU8(pSSM, 0); /* no chunk present */
2159 }
2160 }
2161 else if (pRam->pvR3)
2162 {
2163 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2164 if (VBOX_FAILURE(rc))
2165 {
2166 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2167 return rc;
2168 }
2169 }
2170 }
2171 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2172}
2173
2174
2175/**
2176 * Execute state load operation.
2177 *
2178 * @returns VBox status code.
2179 * @param pVM VM Handle.
2180 * @param pSSM SSM operation handle.
2181 * @param u32Version Data layout version.
2182 */
2183static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2184{
2185 /*
2186 * Validate version.
2187 */
2188 if (u32Version != PGM_SAVED_STATE_VERSION)
2189 {
2190 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2191 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2192 }
2193
2194 /*
2195 * Call the reset function to make sure all the memory is cleared.
2196 */
2197 PGMR3Reset(pVM);
2198
2199 /*
2200 * Load basic data (required / unaffected by relocation).
2201 */
2202 PPGM pPGM = &pVM->pgm.s;
2203#if 1
2204 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2205#else
2206 uint32_t u;
2207 SSMR3GetU32(pSSM, &u);
2208 pPGM->fMappingsFixed = u;
2209#endif
2210 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2211 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2212
2213 RTUINT cbRamSize;
2214 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2215 if (VBOX_FAILURE(rc))
2216 return rc;
2217 if (cbRamSize != pPGM->cbRamSize)
2218 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2219 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2220 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2221 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2222 RTUINT uGuestMode;
2223 SSMR3GetUInt(pSSM, &uGuestMode);
2224 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2225
2226 /* check separator. */
2227 uint32_t u32Sep;
2228 SSMR3GetU32(pSSM, &u32Sep);
2229 if (VBOX_FAILURE(rc))
2230 return rc;
2231 if (u32Sep != (uint32_t)~0)
2232 {
2233 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2234 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2235 }
2236
2237 /*
2238 * The guest mappings.
2239 */
2240 uint32_t i = 0;
2241 for (;; i++)
2242 {
2243 /* Check the seqence number / separator. */
2244 rc = SSMR3GetU32(pSSM, &u32Sep);
2245 if (VBOX_FAILURE(rc))
2246 return rc;
2247 if (u32Sep == ~0U)
2248 break;
2249 if (u32Sep != i)
2250 {
2251 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2252 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2253 }
2254
2255 /* get the mapping details. */
2256 char szDesc[256];
2257 szDesc[0] = '\0';
2258 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2259 if (VBOX_FAILURE(rc))
2260 return rc;
2261 RTGCPTR GCPtr;
2262 SSMR3GetGCPtr(pSSM, &GCPtr);
2263 RTGCUINTPTR cPTs;
2264 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2265 if (VBOX_FAILURE(rc))
2266 return rc;
2267
2268 /* find matching range. */
2269 PPGMMAPPING pMapping;
2270 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2271 if ( pMapping->cPTs == cPTs
2272 && !strcmp(pMapping->pszDesc, szDesc))
2273 break;
2274 if (!pMapping)
2275 {
2276 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2277 cPTs, szDesc, GCPtr));
2278 AssertFailed();
2279 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2280 }
2281
2282 /* relocate it. */
2283 if (pMapping->GCPtr != GCPtr)
2284 {
2285 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2286#if HC_ARCH_BITS == 64
2287LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2288#endif
2289 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2290 }
2291 else
2292 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2293 }
2294
2295 /*
2296 * Ram range flags and bits.
2297 */
2298 i = 0;
2299 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2300 {
2301 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2302 /* Check the seqence number / separator. */
2303 rc = SSMR3GetU32(pSSM, &u32Sep);
2304 if (VBOX_FAILURE(rc))
2305 return rc;
2306 if (u32Sep == ~0U)
2307 break;
2308 if (u32Sep != i)
2309 {
2310 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2311 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2312 }
2313
2314 /* Get the range details. */
2315 RTGCPHYS GCPhys;
2316 SSMR3GetGCPhys(pSSM, &GCPhys);
2317 RTGCPHYS GCPhysLast;
2318 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2319 RTGCPHYS cb;
2320 SSMR3GetGCPhys(pSSM, &cb);
2321 uint8_t fHaveBits;
2322 rc = SSMR3GetU8(pSSM, &fHaveBits);
2323 if (VBOX_FAILURE(rc))
2324 return rc;
2325 if (fHaveBits & ~1)
2326 {
2327 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2328 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2329 }
2330
2331 /* Match it up with the current range. */
2332 if ( GCPhys != pRam->GCPhys
2333 || GCPhysLast != pRam->GCPhysLast
2334 || cb != pRam->cb
2335 || fHaveBits != !!pRam->pvR3)
2336 {
2337 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2338 "State : %RGp-%RGp %RGp bytes %s\n",
2339 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2340 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2341 /*
2342 * If we're loading a state for debugging purpose, don't make a fuss if
2343 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2344 */
2345 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2346 || GCPhys < 8 * _1M)
2347 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2348
2349 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2350 while (cPages-- > 0)
2351 {
2352 uint16_t u16Ignore;
2353 SSMR3GetU16(pSSM, &u16Ignore);
2354 }
2355 continue;
2356 }
2357
2358 /* Flags. */
2359 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2360 for (unsigned iPage = 0; iPage < cPages; iPage++)
2361 {
2362 uint16_t u16 = 0;
2363 SSMR3GetU16(pSSM, &u16);
2364 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2365 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2366 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2367 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2368 }
2369
2370 /* any memory associated with the range. */
2371 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2372 {
2373 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2374 {
2375 uint8_t fValidChunk;
2376
2377 rc = SSMR3GetU8(pSSM, &fValidChunk);
2378 if (VBOX_FAILURE(rc))
2379 return rc;
2380 if (fValidChunk > 1)
2381 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2382
2383 if (fValidChunk)
2384 {
2385 if (!pRam->paChunkR3Ptrs[iChunk])
2386 {
2387 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2388 if (VBOX_FAILURE(rc))
2389 return rc;
2390 }
2391 Assert(pRam->paChunkR3Ptrs[iChunk]);
2392
2393 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2394 }
2395 /* else nothing to do */
2396 }
2397 }
2398 else if (pRam->pvR3)
2399 {
2400 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2401 if (VBOX_FAILURE(rc))
2402 {
2403 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2404 return rc;
2405 }
2406 }
2407 }
2408
2409 /*
2410 * We require a full resync now.
2411 */
2412 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2413 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2414 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2415 pPGM->fPhysCacheFlushPending = true;
2416 pgmR3HandlerPhysicalUpdateAll(pVM);
2417
2418 /*
2419 * Change the paging mode.
2420 */
2421 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2422
2423 /* Restore pVM->pgm.s.GCPhysCR3. */
2424 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2425 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2426 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2427 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2428 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2429 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2430 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2431 else
2432 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2433 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2434
2435 return rc;
2436}
2437
2438
2439/**
2440 * Show paging mode.
2441 *
2442 * @param pVM VM Handle.
2443 * @param pHlp The info helpers.
2444 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2445 */
2446static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2447{
2448 /* digest argument. */
2449 bool fGuest, fShadow, fHost;
2450 if (pszArgs)
2451 pszArgs = RTStrStripL(pszArgs);
2452 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2453 fShadow = fHost = fGuest = true;
2454 else
2455 {
2456 fShadow = fHost = fGuest = false;
2457 if (strstr(pszArgs, "guest"))
2458 fGuest = true;
2459 if (strstr(pszArgs, "shadow"))
2460 fShadow = true;
2461 if (strstr(pszArgs, "host"))
2462 fHost = true;
2463 }
2464
2465 /* print info. */
2466 if (fGuest)
2467 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2468 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2469 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2470 if (fShadow)
2471 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2472 if (fHost)
2473 {
2474 const char *psz;
2475 switch (pVM->pgm.s.enmHostMode)
2476 {
2477 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2478 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2479 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2480 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2481 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2482 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2483 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2484 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2485 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2486 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2487 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2488 default: psz = "unknown"; break;
2489 }
2490 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2491 }
2492}
2493
2494
2495/**
2496 * Dump registered MMIO ranges to the log.
2497 *
2498 * @param pVM VM Handle.
2499 * @param pHlp The info helpers.
2500 * @param pszArgs Arguments, ignored.
2501 */
2502static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2503{
2504 NOREF(pszArgs);
2505 pHlp->pfnPrintf(pHlp,
2506 "RAM ranges (pVM=%p)\n"
2507 "%.*s %.*s\n",
2508 pVM,
2509 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2510 sizeof(RTHCPTR) * 2, "pvHC ");
2511
2512 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2513 pHlp->pfnPrintf(pHlp,
2514 "%RGp-%RGp %RHv %s\n",
2515 pCur->GCPhys,
2516 pCur->GCPhysLast,
2517 pCur->pvR3,
2518 pCur->pszDesc);
2519}
2520
2521/**
2522 * Dump the page directory to the log.
2523 *
2524 * @param pVM VM Handle.
2525 * @param pHlp The info helpers.
2526 * @param pszArgs Arguments, ignored.
2527 */
2528static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2529{
2530/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2531 /* Big pages supported? */
2532 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2533
2534 /* Global pages supported? */
2535 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2536
2537 NOREF(pszArgs);
2538
2539 /*
2540 * Get page directory addresses.
2541 */
2542 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2543 Assert(pPDSrc);
2544 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2545
2546 /*
2547 * Iterate the page directory.
2548 */
2549 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2550 {
2551 X86PDE PdeSrc = pPDSrc->a[iPD];
2552 if (PdeSrc.n.u1Present)
2553 {
2554 if (PdeSrc.b.u1Size && fPSE)
2555 {
2556 pHlp->pfnPrintf(pHlp,
2557 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2558 iPD,
2559 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2560 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2561 }
2562 else
2563 {
2564 pHlp->pfnPrintf(pHlp,
2565 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2566 iPD,
2567 PdeSrc.u & X86_PDE_PG_MASK,
2568 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2569 }
2570 }
2571 }
2572}
2573
2574
2575/**
2576 * Serivce a VMMCALLHOST_PGM_LOCK call.
2577 *
2578 * @returns VBox status code.
2579 * @param pVM The VM handle.
2580 */
2581VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2582{
2583 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2584 AssertRC(rc);
2585 return rc;
2586}
2587
2588
2589/**
2590 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2591 *
2592 * @returns PGM_TYPE_*.
2593 * @param pgmMode The mode value to convert.
2594 */
2595DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2596{
2597 switch (pgmMode)
2598 {
2599 case PGMMODE_REAL: return PGM_TYPE_REAL;
2600 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2601 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2602 case PGMMODE_PAE:
2603 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2604 case PGMMODE_AMD64:
2605 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2606 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2607 case PGMMODE_EPT: return PGM_TYPE_EPT;
2608 default:
2609 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2610 }
2611}
2612
2613
2614/**
2615 * Gets the index into the paging mode data array of a SHW+GST mode.
2616 *
2617 * @returns PGM::paPagingData index.
2618 * @param uShwType The shadow paging mode type.
2619 * @param uGstType The guest paging mode type.
2620 */
2621DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2622{
2623 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2624 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2625 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2626 + (uGstType - PGM_TYPE_REAL);
2627}
2628
2629
2630/**
2631 * Gets the index into the paging mode data array of a SHW+GST mode.
2632 *
2633 * @returns PGM::paPagingData index.
2634 * @param enmShw The shadow paging mode.
2635 * @param enmGst The guest paging mode.
2636 */
2637DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2638{
2639 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2640 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2641 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2642}
2643
2644
2645/**
2646 * Calculates the max data index.
2647 * @returns The number of entries in the paging data array.
2648 */
2649DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2650{
2651 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2652}
2653
2654
2655/**
2656 * Initializes the paging mode data kept in PGM::paModeData.
2657 *
2658 * @param pVM The VM handle.
2659 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2660 * This is used early in the init process to avoid trouble with PDM
2661 * not being initialized yet.
2662 */
2663static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2664{
2665 PPGMMODEDATA pModeData;
2666 int rc;
2667
2668 /*
2669 * Allocate the array on the first call.
2670 */
2671 if (!pVM->pgm.s.paModeData)
2672 {
2673 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2674 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2675 }
2676
2677 /*
2678 * Initialize the array entries.
2679 */
2680 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2681 pModeData->uShwType = PGM_TYPE_32BIT;
2682 pModeData->uGstType = PGM_TYPE_REAL;
2683 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2684 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2686
2687 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2688 pModeData->uShwType = PGM_TYPE_32BIT;
2689 pModeData->uGstType = PGM_TYPE_PROT;
2690 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2691 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2692 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2693
2694 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2695 pModeData->uShwType = PGM_TYPE_32BIT;
2696 pModeData->uGstType = PGM_TYPE_32BIT;
2697 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2698 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2699 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2700
2701 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2702 pModeData->uShwType = PGM_TYPE_PAE;
2703 pModeData->uGstType = PGM_TYPE_REAL;
2704 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2705 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2706 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2707
2708 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2709 pModeData->uShwType = PGM_TYPE_PAE;
2710 pModeData->uGstType = PGM_TYPE_PROT;
2711 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2712 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2713 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714
2715 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2716 pModeData->uShwType = PGM_TYPE_PAE;
2717 pModeData->uGstType = PGM_TYPE_32BIT;
2718 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2719 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721
2722 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2723 pModeData->uShwType = PGM_TYPE_PAE;
2724 pModeData->uGstType = PGM_TYPE_PAE;
2725 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2726 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2727 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2728
2729 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2730 pModeData->uShwType = PGM_TYPE_AMD64;
2731 pModeData->uGstType = PGM_TYPE_AMD64;
2732 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735
2736 /* The nested paging mode. */
2737 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2738 pModeData->uShwType = PGM_TYPE_NESTED;
2739 pModeData->uGstType = PGM_TYPE_REAL;
2740 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2741 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2742
2743 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2744 pModeData->uShwType = PGM_TYPE_NESTED;
2745 pModeData->uGstType = PGM_TYPE_PROT;
2746 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2747 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2748
2749 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2750 pModeData->uShwType = PGM_TYPE_NESTED;
2751 pModeData->uGstType = PGM_TYPE_32BIT;
2752 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754
2755 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2756 pModeData->uShwType = PGM_TYPE_NESTED;
2757 pModeData->uGstType = PGM_TYPE_PAE;
2758 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2759 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2760
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2762 pModeData->uShwType = PGM_TYPE_NESTED;
2763 pModeData->uGstType = PGM_TYPE_AMD64;
2764 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766
2767 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2768 switch(pVM->pgm.s.enmHostMode)
2769 {
2770 case SUPPAGINGMODE_32_BIT:
2771 case SUPPAGINGMODE_32_BIT_GLOBAL:
2772 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2773 {
2774 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2775 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2776 }
2777 break;
2778
2779 case SUPPAGINGMODE_PAE:
2780 case SUPPAGINGMODE_PAE_NX:
2781 case SUPPAGINGMODE_PAE_GLOBAL:
2782 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2783 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2784 {
2785 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2786 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2787 }
2788 break;
2789
2790 case SUPPAGINGMODE_AMD64:
2791 case SUPPAGINGMODE_AMD64_GLOBAL:
2792 case SUPPAGINGMODE_AMD64_NX:
2793 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2794 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2795 {
2796 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2797 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798 }
2799 break;
2800 default:
2801 AssertFailed();
2802 break;
2803 }
2804
2805 /* Extended paging (EPT) / Intel VT-x */
2806 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2807 pModeData->uShwType = PGM_TYPE_EPT;
2808 pModeData->uGstType = PGM_TYPE_REAL;
2809 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2811 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812
2813 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2814 pModeData->uShwType = PGM_TYPE_EPT;
2815 pModeData->uGstType = PGM_TYPE_PROT;
2816 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2817 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819
2820 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2821 pModeData->uShwType = PGM_TYPE_EPT;
2822 pModeData->uGstType = PGM_TYPE_32BIT;
2823 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2826
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2828 pModeData->uShwType = PGM_TYPE_EPT;
2829 pModeData->uGstType = PGM_TYPE_PAE;
2830 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2832 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833
2834 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2835 pModeData->uShwType = PGM_TYPE_EPT;
2836 pModeData->uGstType = PGM_TYPE_AMD64;
2837 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2839 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 return VINF_SUCCESS;
2841}
2842
2843
2844/**
2845 * Switch to different (or relocated in the relocate case) mode data.
2846 *
2847 * @param pVM The VM handle.
2848 * @param enmShw The the shadow paging mode.
2849 * @param enmGst The the guest paging mode.
2850 */
2851static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2852{
2853 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2854
2855 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2856 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2857
2858 /* shadow */
2859 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2860 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2861 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2862 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2863 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2864
2865 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2866 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2867
2868 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2869 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2870
2871
2872 /* guest */
2873 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2874 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2875 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2876 Assert(pVM->pgm.s.pfnR3GstGetPage);
2877 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2878 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2879 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2880 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2881 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2882 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2883 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2884 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2885 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2886 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2887
2888 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2889 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2890 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2891 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2892 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2893 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2894 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2895 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2896 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2897
2898 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2899 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2900 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2901 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2902 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2903 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2904 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2905 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2906 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2907
2908
2909 /* both */
2910 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2911 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2912 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2913 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2914 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2915 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2916 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2917 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2918#ifdef VBOX_STRICT
2919 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2920#endif
2921
2922 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2923 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2924 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2925 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2926 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2927 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2928#ifdef VBOX_STRICT
2929 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2930#endif
2931
2932 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2933 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2934 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2935 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2936 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2937 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2938#ifdef VBOX_STRICT
2939 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2940#endif
2941}
2942
2943
2944#ifdef DEBUG_bird
2945#include <stdlib.h> /* getenv() remove me! */
2946#endif
2947
2948/**
2949 * Calculates the shadow paging mode.
2950 *
2951 * @returns The shadow paging mode.
2952 * @param pVM VM handle.
2953 * @param enmGuestMode The guest mode.
2954 * @param enmHostMode The host mode.
2955 * @param enmShadowMode The current shadow mode.
2956 * @param penmSwitcher Where to store the switcher to use.
2957 * VMMSWITCHER_INVALID means no change.
2958 */
2959static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2960{
2961 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2962 switch (enmGuestMode)
2963 {
2964 /*
2965 * When switching to real or protected mode we don't change
2966 * anything since it's likely that we'll switch back pretty soon.
2967 *
2968 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2969 * and is supposed to determine which shadow paging and switcher to
2970 * use during init.
2971 */
2972 case PGMMODE_REAL:
2973 case PGMMODE_PROTECTED:
2974 if ( enmShadowMode != PGMMODE_INVALID
2975 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2976 break; /* (no change) */
2977
2978 switch (enmHostMode)
2979 {
2980 case SUPPAGINGMODE_32_BIT:
2981 case SUPPAGINGMODE_32_BIT_GLOBAL:
2982 enmShadowMode = PGMMODE_32_BIT;
2983 enmSwitcher = VMMSWITCHER_32_TO_32;
2984 break;
2985
2986 case SUPPAGINGMODE_PAE:
2987 case SUPPAGINGMODE_PAE_NX:
2988 case SUPPAGINGMODE_PAE_GLOBAL:
2989 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2990 enmShadowMode = PGMMODE_PAE;
2991 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2992#ifdef DEBUG_bird
2993if (getenv("VBOX_32BIT"))
2994{
2995 enmShadowMode = PGMMODE_32_BIT;
2996 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2997}
2998#endif
2999 break;
3000
3001 case SUPPAGINGMODE_AMD64:
3002 case SUPPAGINGMODE_AMD64_GLOBAL:
3003 case SUPPAGINGMODE_AMD64_NX:
3004 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3005 enmShadowMode = PGMMODE_PAE;
3006 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3007 break;
3008
3009 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3010 }
3011 break;
3012
3013 case PGMMODE_32_BIT:
3014 switch (enmHostMode)
3015 {
3016 case SUPPAGINGMODE_32_BIT:
3017 case SUPPAGINGMODE_32_BIT_GLOBAL:
3018 enmShadowMode = PGMMODE_32_BIT;
3019 enmSwitcher = VMMSWITCHER_32_TO_32;
3020 break;
3021
3022 case SUPPAGINGMODE_PAE:
3023 case SUPPAGINGMODE_PAE_NX:
3024 case SUPPAGINGMODE_PAE_GLOBAL:
3025 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3026 enmShadowMode = PGMMODE_PAE;
3027 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3028#ifdef DEBUG_bird
3029if (getenv("VBOX_32BIT"))
3030{
3031 enmShadowMode = PGMMODE_32_BIT;
3032 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3033}
3034#endif
3035 break;
3036
3037 case SUPPAGINGMODE_AMD64:
3038 case SUPPAGINGMODE_AMD64_GLOBAL:
3039 case SUPPAGINGMODE_AMD64_NX:
3040 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3041 enmShadowMode = PGMMODE_PAE;
3042 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3043 break;
3044
3045 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3046 }
3047 break;
3048
3049 case PGMMODE_PAE:
3050 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3051 switch (enmHostMode)
3052 {
3053 case SUPPAGINGMODE_32_BIT:
3054 case SUPPAGINGMODE_32_BIT_GLOBAL:
3055 enmShadowMode = PGMMODE_PAE;
3056 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3057 break;
3058
3059 case SUPPAGINGMODE_PAE:
3060 case SUPPAGINGMODE_PAE_NX:
3061 case SUPPAGINGMODE_PAE_GLOBAL:
3062 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3063 enmShadowMode = PGMMODE_PAE;
3064 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3065 break;
3066
3067 case SUPPAGINGMODE_AMD64:
3068 case SUPPAGINGMODE_AMD64_GLOBAL:
3069 case SUPPAGINGMODE_AMD64_NX:
3070 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3071 enmShadowMode = PGMMODE_PAE;
3072 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3073 break;
3074
3075 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3076 }
3077 break;
3078
3079 case PGMMODE_AMD64:
3080 case PGMMODE_AMD64_NX:
3081 switch (enmHostMode)
3082 {
3083 case SUPPAGINGMODE_32_BIT:
3084 case SUPPAGINGMODE_32_BIT_GLOBAL:
3085 enmShadowMode = PGMMODE_PAE;
3086 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3087 break;
3088
3089 case SUPPAGINGMODE_PAE:
3090 case SUPPAGINGMODE_PAE_NX:
3091 case SUPPAGINGMODE_PAE_GLOBAL:
3092 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3093 enmShadowMode = PGMMODE_PAE;
3094 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3095 break;
3096
3097 case SUPPAGINGMODE_AMD64:
3098 case SUPPAGINGMODE_AMD64_GLOBAL:
3099 case SUPPAGINGMODE_AMD64_NX:
3100 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3101 enmShadowMode = PGMMODE_AMD64;
3102 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3103 break;
3104
3105 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3106 }
3107 break;
3108
3109
3110 default:
3111 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3112 return PGMMODE_INVALID;
3113 }
3114 /* Override the shadow mode is nested paging is active. */
3115 if (HWACCMIsNestedPagingActive(pVM))
3116 enmShadowMode = HWACCMGetPagingMode(pVM);
3117
3118 *penmSwitcher = enmSwitcher;
3119 return enmShadowMode;
3120}
3121
3122/**
3123 * Performs the actual mode change.
3124 * This is called by PGMChangeMode and pgmR3InitPaging().
3125 *
3126 * @returns VBox status code.
3127 * @param pVM VM handle.
3128 * @param enmGuestMode The new guest mode. This is assumed to be different from
3129 * the current mode.
3130 */
3131VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3132{
3133 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3134 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3135
3136 /*
3137 * Calc the shadow mode and switcher.
3138 */
3139 VMMSWITCHER enmSwitcher;
3140 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3141 if (enmSwitcher != VMMSWITCHER_INVALID)
3142 {
3143 /*
3144 * Select new switcher.
3145 */
3146 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3147 if (VBOX_FAILURE(rc))
3148 {
3149 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3150 return rc;
3151 }
3152 }
3153
3154 /*
3155 * Exit old mode(s).
3156 */
3157 /* shadow */
3158 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3159 {
3160 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3161 if (PGM_SHW_PFN(Exit, pVM))
3162 {
3163 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3164 if (VBOX_FAILURE(rc))
3165 {
3166 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3167 return rc;
3168 }
3169 }
3170
3171 }
3172 else
3173 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3174
3175 /* guest */
3176 if (PGM_GST_PFN(Exit, pVM))
3177 {
3178 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3179 if (VBOX_FAILURE(rc))
3180 {
3181 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3182 return rc;
3183 }
3184 }
3185
3186 /*
3187 * Load new paging mode data.
3188 */
3189 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3190
3191 /*
3192 * Enter new shadow mode (if changed).
3193 */
3194 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3195 {
3196 int rc;
3197 pVM->pgm.s.enmShadowMode = enmShadowMode;
3198 switch (enmShadowMode)
3199 {
3200 case PGMMODE_32_BIT:
3201 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3202 break;
3203 case PGMMODE_PAE:
3204 case PGMMODE_PAE_NX:
3205 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3206 break;
3207 case PGMMODE_AMD64:
3208 case PGMMODE_AMD64_NX:
3209 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3210 break;
3211 case PGMMODE_NESTED:
3212 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3213 break;
3214 case PGMMODE_EPT:
3215 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3216 break;
3217 case PGMMODE_REAL:
3218 case PGMMODE_PROTECTED:
3219 default:
3220 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3221 return VERR_INTERNAL_ERROR;
3222 }
3223 if (VBOX_FAILURE(rc))
3224 {
3225 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3226 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3227 return rc;
3228 }
3229 }
3230
3231 /* We must flush the PGM pool cache if the guest mode changes; we don't always
3232 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3233 * the shadow page tables.
3234 *
3235 * That only applies when switching between paging and non-paging modes.
3236 *
3237 * @todo A20 setting
3238 */
3239 if ( pVM->pgm.s.CTXSUFF(pPool)
3240 && !HWACCMIsNestedPagingActive(pVM)
3241 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3242 {
3243 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3244 pgmPoolFlushAll(pVM);
3245 }
3246
3247 /*
3248 * Enter the new guest and shadow+guest modes.
3249 */
3250 int rc = -1;
3251 int rc2 = -1;
3252 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3253 pVM->pgm.s.enmGuestMode = enmGuestMode;
3254 switch (enmGuestMode)
3255 {
3256 case PGMMODE_REAL:
3257 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3258 switch (pVM->pgm.s.enmShadowMode)
3259 {
3260 case PGMMODE_32_BIT:
3261 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3262 break;
3263 case PGMMODE_PAE:
3264 case PGMMODE_PAE_NX:
3265 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3266 break;
3267 case PGMMODE_NESTED:
3268 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3269 break;
3270 case PGMMODE_EPT:
3271 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3272 break;
3273 case PGMMODE_AMD64:
3274 case PGMMODE_AMD64_NX:
3275 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3276 default: AssertFailed(); break;
3277 }
3278 break;
3279
3280 case PGMMODE_PROTECTED:
3281 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3282 switch (pVM->pgm.s.enmShadowMode)
3283 {
3284 case PGMMODE_32_BIT:
3285 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3286 break;
3287 case PGMMODE_PAE:
3288 case PGMMODE_PAE_NX:
3289 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3290 break;
3291 case PGMMODE_NESTED:
3292 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3293 break;
3294 case PGMMODE_EPT:
3295 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3296 break;
3297 case PGMMODE_AMD64:
3298 case PGMMODE_AMD64_NX:
3299 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3300 default: AssertFailed(); break;
3301 }
3302 break;
3303
3304 case PGMMODE_32_BIT:
3305 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3306 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3307 switch (pVM->pgm.s.enmShadowMode)
3308 {
3309 case PGMMODE_32_BIT:
3310 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3311 break;
3312 case PGMMODE_PAE:
3313 case PGMMODE_PAE_NX:
3314 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3315 break;
3316 case PGMMODE_NESTED:
3317 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3318 break;
3319 case PGMMODE_EPT:
3320 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3321 break;
3322 case PGMMODE_AMD64:
3323 case PGMMODE_AMD64_NX:
3324 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3325 default: AssertFailed(); break;
3326 }
3327 break;
3328
3329 case PGMMODE_PAE_NX:
3330 case PGMMODE_PAE:
3331 {
3332 uint32_t u32Dummy, u32Features;
3333
3334 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3335 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3336 {
3337 /* Pause first, then inform Main. */
3338 rc = VMR3SuspendNoSave(pVM);
3339 AssertRC(rc);
3340
3341 VMSetRuntimeError(pVM, true, "PAEmode",
3342 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3343 /* we must return TRUE here otherwise the recompiler will assert */
3344 return VINF_SUCCESS;
3345 }
3346 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3347 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3348 switch (pVM->pgm.s.enmShadowMode)
3349 {
3350 case PGMMODE_PAE:
3351 case PGMMODE_PAE_NX:
3352 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3353 break;
3354 case PGMMODE_NESTED:
3355 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3356 break;
3357 case PGMMODE_EPT:
3358 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3359 break;
3360 case PGMMODE_32_BIT:
3361 case PGMMODE_AMD64:
3362 case PGMMODE_AMD64_NX:
3363 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3364 default: AssertFailed(); break;
3365 }
3366 break;
3367 }
3368
3369 case PGMMODE_AMD64_NX:
3370 case PGMMODE_AMD64:
3371 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3372 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3373 switch (pVM->pgm.s.enmShadowMode)
3374 {
3375 case PGMMODE_AMD64:
3376 case PGMMODE_AMD64_NX:
3377 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3378 break;
3379 case PGMMODE_NESTED:
3380 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3381 break;
3382 case PGMMODE_EPT:
3383 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3384 break;
3385 case PGMMODE_32_BIT:
3386 case PGMMODE_PAE:
3387 case PGMMODE_PAE_NX:
3388 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3389 default: AssertFailed(); break;
3390 }
3391 break;
3392
3393 default:
3394 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3395 rc = VERR_NOT_IMPLEMENTED;
3396 break;
3397 }
3398
3399 /* status codes. */
3400 AssertRC(rc);
3401 AssertRC(rc2);
3402 if (VBOX_SUCCESS(rc))
3403 {
3404 rc = rc2;
3405 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3406 rc = VINF_SUCCESS;
3407 }
3408
3409 /*
3410 * Notify SELM so it can update the TSSes with correct CR3s.
3411 */
3412 SELMR3PagingModeChanged(pVM);
3413
3414 /* Notify HWACCM as well. */
3415 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3416 return rc;
3417}
3418
3419
3420/**
3421 * Dumps a PAE shadow page table.
3422 *
3423 * @returns VBox status code (VINF_SUCCESS).
3424 * @param pVM The VM handle.
3425 * @param pPT Pointer to the page table.
3426 * @param u64Address The virtual address of the page table starts.
3427 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3428 * @param cMaxDepth The maxium depth.
3429 * @param pHlp Pointer to the output functions.
3430 */
3431static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3432{
3433 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3434 {
3435 X86PTEPAE Pte = pPT->a[i];
3436 if (Pte.n.u1Present)
3437 {
3438 pHlp->pfnPrintf(pHlp,
3439 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3440 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3441 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3442 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3443 Pte.n.u1Write ? 'W' : 'R',
3444 Pte.n.u1User ? 'U' : 'S',
3445 Pte.n.u1Accessed ? 'A' : '-',
3446 Pte.n.u1Dirty ? 'D' : '-',
3447 Pte.n.u1Global ? 'G' : '-',
3448 Pte.n.u1WriteThru ? "WT" : "--",
3449 Pte.n.u1CacheDisable? "CD" : "--",
3450 Pte.n.u1PAT ? "AT" : "--",
3451 Pte.n.u1NoExecute ? "NX" : "--",
3452 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3453 Pte.u & RT_BIT(10) ? '1' : '0',
3454 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3455 Pte.u & X86_PTE_PAE_PG_MASK);
3456 }
3457 }
3458 return VINF_SUCCESS;
3459}
3460
3461
3462/**
3463 * Dumps a PAE shadow page directory table.
3464 *
3465 * @returns VBox status code (VINF_SUCCESS).
3466 * @param pVM The VM handle.
3467 * @param HCPhys The physical address of the page directory table.
3468 * @param u64Address The virtual address of the page table starts.
3469 * @param cr4 The CR4, PSE is currently used.
3470 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3471 * @param cMaxDepth The maxium depth.
3472 * @param pHlp Pointer to the output functions.
3473 */
3474static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3475{
3476 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3477 if (!pPD)
3478 {
3479 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3480 fLongMode ? 16 : 8, u64Address, HCPhys);
3481 return VERR_INVALID_PARAMETER;
3482 }
3483 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3484
3485 int rc = VINF_SUCCESS;
3486 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3487 {
3488 X86PDEPAE Pde = pPD->a[i];
3489 if (Pde.n.u1Present)
3490 {
3491 if (fBigPagesSupported && Pde.b.u1Size)
3492 pHlp->pfnPrintf(pHlp,
3493 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3494 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3495 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3496 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3497 Pde.b.u1Write ? 'W' : 'R',
3498 Pde.b.u1User ? 'U' : 'S',
3499 Pde.b.u1Accessed ? 'A' : '-',
3500 Pde.b.u1Dirty ? 'D' : '-',
3501 Pde.b.u1Global ? 'G' : '-',
3502 Pde.b.u1WriteThru ? "WT" : "--",
3503 Pde.b.u1CacheDisable? "CD" : "--",
3504 Pde.b.u1PAT ? "AT" : "--",
3505 Pde.b.u1NoExecute ? "NX" : "--",
3506 Pde.u & RT_BIT_64(9) ? '1' : '0',
3507 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3508 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3509 Pde.u & X86_PDE_PAE_PG_MASK);
3510 else
3511 {
3512 pHlp->pfnPrintf(pHlp,
3513 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3514 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3515 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3516 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3517 Pde.n.u1Write ? 'W' : 'R',
3518 Pde.n.u1User ? 'U' : 'S',
3519 Pde.n.u1Accessed ? 'A' : '-',
3520 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3521 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3522 Pde.n.u1WriteThru ? "WT" : "--",
3523 Pde.n.u1CacheDisable? "CD" : "--",
3524 Pde.n.u1NoExecute ? "NX" : "--",
3525 Pde.u & RT_BIT_64(9) ? '1' : '0',
3526 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3527 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3528 Pde.u & X86_PDE_PAE_PG_MASK);
3529 if (cMaxDepth >= 1)
3530 {
3531 /** @todo what about using the page pool for mapping PTs? */
3532 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3533 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3534 PX86PTPAE pPT = NULL;
3535 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3536 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3537 else
3538 {
3539 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3540 {
3541 uint64_t off = u64AddressPT - pMap->GCPtr;
3542 if (off < pMap->cb)
3543 {
3544 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3545 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3546 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3547 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3548 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3549 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3550 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3551 }
3552 }
3553 }
3554 int rc2 = VERR_INVALID_PARAMETER;
3555 if (pPT)
3556 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3557 else
3558 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3559 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3560 if (rc2 < rc && VBOX_SUCCESS(rc))
3561 rc = rc2;
3562 }
3563 }
3564 }
3565 }
3566 return rc;
3567}
3568
3569
3570/**
3571 * Dumps a PAE shadow page directory pointer table.
3572 *
3573 * @returns VBox status code (VINF_SUCCESS).
3574 * @param pVM The VM handle.
3575 * @param HCPhys The physical address of the page directory pointer table.
3576 * @param u64Address The virtual address of the page table starts.
3577 * @param cr4 The CR4, PSE is currently used.
3578 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3579 * @param cMaxDepth The maxium depth.
3580 * @param pHlp Pointer to the output functions.
3581 */
3582static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3583{
3584 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3585 if (!pPDPT)
3586 {
3587 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3588 fLongMode ? 16 : 8, u64Address, HCPhys);
3589 return VERR_INVALID_PARAMETER;
3590 }
3591
3592 int rc = VINF_SUCCESS;
3593 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3594 for (unsigned i = 0; i < c; i++)
3595 {
3596 X86PDPE Pdpe = pPDPT->a[i];
3597 if (Pdpe.n.u1Present)
3598 {
3599 if (fLongMode)
3600 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3601 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3602 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3603 Pdpe.lm.u1Write ? 'W' : 'R',
3604 Pdpe.lm.u1User ? 'U' : 'S',
3605 Pdpe.lm.u1Accessed ? 'A' : '-',
3606 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3607 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3608 Pdpe.lm.u1WriteThru ? "WT" : "--",
3609 Pdpe.lm.u1CacheDisable? "CD" : "--",
3610 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3611 Pdpe.lm.u1NoExecute ? "NX" : "--",
3612 Pdpe.u & RT_BIT(9) ? '1' : '0',
3613 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3614 Pdpe.u & RT_BIT(11) ? '1' : '0',
3615 Pdpe.u & X86_PDPE_PG_MASK);
3616 else
3617 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3618 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3619 i << X86_PDPT_SHIFT,
3620 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3621 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3622 Pdpe.n.u1WriteThru ? "WT" : "--",
3623 Pdpe.n.u1CacheDisable? "CD" : "--",
3624 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3625 Pdpe.u & RT_BIT(9) ? '1' : '0',
3626 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3627 Pdpe.u & RT_BIT(11) ? '1' : '0',
3628 Pdpe.u & X86_PDPE_PG_MASK);
3629 if (cMaxDepth >= 1)
3630 {
3631 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3632 cr4, fLongMode, cMaxDepth - 1, pHlp);
3633 if (rc2 < rc && VBOX_SUCCESS(rc))
3634 rc = rc2;
3635 }
3636 }
3637 }
3638 return rc;
3639}
3640
3641
3642/**
3643 * Dumps a 32-bit shadow page table.
3644 *
3645 * @returns VBox status code (VINF_SUCCESS).
3646 * @param pVM The VM handle.
3647 * @param HCPhys The physical address of the table.
3648 * @param cr4 The CR4, PSE is currently used.
3649 * @param cMaxDepth The maxium depth.
3650 * @param pHlp Pointer to the output functions.
3651 */
3652static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3653{
3654 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3655 if (!pPML4)
3656 {
3657 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3658 return VERR_INVALID_PARAMETER;
3659 }
3660
3661 int rc = VINF_SUCCESS;
3662 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3663 {
3664 X86PML4E Pml4e = pPML4->a[i];
3665 if (Pml4e.n.u1Present)
3666 {
3667 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3668 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3669 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3670 u64Address,
3671 Pml4e.n.u1Write ? 'W' : 'R',
3672 Pml4e.n.u1User ? 'U' : 'S',
3673 Pml4e.n.u1Accessed ? 'A' : '-',
3674 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3675 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3676 Pml4e.n.u1WriteThru ? "WT" : "--",
3677 Pml4e.n.u1CacheDisable? "CD" : "--",
3678 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3679 Pml4e.n.u1NoExecute ? "NX" : "--",
3680 Pml4e.u & RT_BIT(9) ? '1' : '0',
3681 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3682 Pml4e.u & RT_BIT(11) ? '1' : '0',
3683 Pml4e.u & X86_PML4E_PG_MASK);
3684
3685 if (cMaxDepth >= 1)
3686 {
3687 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3688 if (rc2 < rc && VBOX_SUCCESS(rc))
3689 rc = rc2;
3690 }
3691 }
3692 }
3693 return rc;
3694}
3695
3696
3697/**
3698 * Dumps a 32-bit shadow page table.
3699 *
3700 * @returns VBox status code (VINF_SUCCESS).
3701 * @param pVM The VM handle.
3702 * @param pPT Pointer to the page table.
3703 * @param u32Address The virtual address this table starts at.
3704 * @param pHlp Pointer to the output functions.
3705 */
3706int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3707{
3708 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3709 {
3710 X86PTE Pte = pPT->a[i];
3711 if (Pte.n.u1Present)
3712 {
3713 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3714 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3715 u32Address + (i << X86_PT_SHIFT),
3716 Pte.n.u1Write ? 'W' : 'R',
3717 Pte.n.u1User ? 'U' : 'S',
3718 Pte.n.u1Accessed ? 'A' : '-',
3719 Pte.n.u1Dirty ? 'D' : '-',
3720 Pte.n.u1Global ? 'G' : '-',
3721 Pte.n.u1WriteThru ? "WT" : "--",
3722 Pte.n.u1CacheDisable? "CD" : "--",
3723 Pte.n.u1PAT ? "AT" : "--",
3724 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3725 Pte.u & RT_BIT(10) ? '1' : '0',
3726 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3727 Pte.u & X86_PDE_PG_MASK);
3728 }
3729 }
3730 return VINF_SUCCESS;
3731}
3732
3733
3734/**
3735 * Dumps a 32-bit shadow page directory and page tables.
3736 *
3737 * @returns VBox status code (VINF_SUCCESS).
3738 * @param pVM The VM handle.
3739 * @param cr3 The root of the hierarchy.
3740 * @param cr4 The CR4, PSE is currently used.
3741 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3742 * @param pHlp Pointer to the output functions.
3743 */
3744int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3745{
3746 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3747 if (!pPD)
3748 {
3749 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3750 return VERR_INVALID_PARAMETER;
3751 }
3752
3753 int rc = VINF_SUCCESS;
3754 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3755 {
3756 X86PDE Pde = pPD->a[i];
3757 if (Pde.n.u1Present)
3758 {
3759 const uint32_t u32Address = i << X86_PD_SHIFT;
3760 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3761 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3762 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3763 u32Address,
3764 Pde.b.u1Write ? 'W' : 'R',
3765 Pde.b.u1User ? 'U' : 'S',
3766 Pde.b.u1Accessed ? 'A' : '-',
3767 Pde.b.u1Dirty ? 'D' : '-',
3768 Pde.b.u1Global ? 'G' : '-',
3769 Pde.b.u1WriteThru ? "WT" : "--",
3770 Pde.b.u1CacheDisable? "CD" : "--",
3771 Pde.b.u1PAT ? "AT" : "--",
3772 Pde.u & RT_BIT_64(9) ? '1' : '0',
3773 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3774 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3775 Pde.u & X86_PDE4M_PG_MASK);
3776 else
3777 {
3778 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3779 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3780 u32Address,
3781 Pde.n.u1Write ? 'W' : 'R',
3782 Pde.n.u1User ? 'U' : 'S',
3783 Pde.n.u1Accessed ? 'A' : '-',
3784 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3785 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3786 Pde.n.u1WriteThru ? "WT" : "--",
3787 Pde.n.u1CacheDisable? "CD" : "--",
3788 Pde.u & RT_BIT_64(9) ? '1' : '0',
3789 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3790 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3791 Pde.u & X86_PDE_PG_MASK);
3792 if (cMaxDepth >= 1)
3793 {
3794 /** @todo what about using the page pool for mapping PTs? */
3795 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3796 PX86PT pPT = NULL;
3797 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3798 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3799 else
3800 {
3801 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3802 if (u32Address - pMap->GCPtr < pMap->cb)
3803 {
3804 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3805 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3806 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3807 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3808 pPT = pMap->aPTs[iPDE].pPTR3;
3809 }
3810 }
3811 int rc2 = VERR_INVALID_PARAMETER;
3812 if (pPT)
3813 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3814 else
3815 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3816 if (rc2 < rc && VBOX_SUCCESS(rc))
3817 rc = rc2;
3818 }
3819 }
3820 }
3821 }
3822
3823 return rc;
3824}
3825
3826
3827/**
3828 * Dumps a 32-bit shadow page table.
3829 *
3830 * @returns VBox status code (VINF_SUCCESS).
3831 * @param pVM The VM handle.
3832 * @param pPT Pointer to the page table.
3833 * @param u32Address The virtual address this table starts at.
3834 * @param PhysSearch Address to search for.
3835 */
3836int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3837{
3838 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3839 {
3840 X86PTE Pte = pPT->a[i];
3841 if (Pte.n.u1Present)
3842 {
3843 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3844 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3845 u32Address + (i << X86_PT_SHIFT),
3846 Pte.n.u1Write ? 'W' : 'R',
3847 Pte.n.u1User ? 'U' : 'S',
3848 Pte.n.u1Accessed ? 'A' : '-',
3849 Pte.n.u1Dirty ? 'D' : '-',
3850 Pte.n.u1Global ? 'G' : '-',
3851 Pte.n.u1WriteThru ? "WT" : "--",
3852 Pte.n.u1CacheDisable? "CD" : "--",
3853 Pte.n.u1PAT ? "AT" : "--",
3854 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3855 Pte.u & RT_BIT(10) ? '1' : '0',
3856 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3857 Pte.u & X86_PDE_PG_MASK));
3858
3859 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3860 {
3861 uint64_t fPageShw = 0;
3862 RTHCPHYS pPhysHC = 0;
3863
3864 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3865 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3866 }
3867 }
3868 }
3869 return VINF_SUCCESS;
3870}
3871
3872
3873/**
3874 * Dumps a 32-bit guest page directory and page tables.
3875 *
3876 * @returns VBox status code (VINF_SUCCESS).
3877 * @param pVM The VM handle.
3878 * @param cr3 The root of the hierarchy.
3879 * @param cr4 The CR4, PSE is currently used.
3880 * @param PhysSearch Address to search for.
3881 */
3882VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3883{
3884 bool fLongMode = false;
3885 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3886 PX86PD pPD = 0;
3887
3888 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3889 if (VBOX_FAILURE(rc) || !pPD)
3890 {
3891 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3892 return VERR_INVALID_PARAMETER;
3893 }
3894
3895 Log(("cr3=%08x cr4=%08x%s\n"
3896 "%-*s P - Present\n"
3897 "%-*s | R/W - Read (0) / Write (1)\n"
3898 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3899 "%-*s | | | A - Accessed\n"
3900 "%-*s | | | | D - Dirty\n"
3901 "%-*s | | | | | G - Global\n"
3902 "%-*s | | | | | | WT - Write thru\n"
3903 "%-*s | | | | | | | CD - Cache disable\n"
3904 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3905 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3906 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3907 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3908 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3909 "%-*s Level | | | | | | | | | | | | Page\n"
3910 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3911 - W U - - - -- -- -- -- -- 010 */
3912 , cr3, cr4, fLongMode ? " Long Mode" : "",
3913 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3914 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3915
3916 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3917 {
3918 X86PDE Pde = pPD->a[i];
3919 if (Pde.n.u1Present)
3920 {
3921 const uint32_t u32Address = i << X86_PD_SHIFT;
3922
3923 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3924 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3925 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3926 u32Address,
3927 Pde.b.u1Write ? 'W' : 'R',
3928 Pde.b.u1User ? 'U' : 'S',
3929 Pde.b.u1Accessed ? 'A' : '-',
3930 Pde.b.u1Dirty ? 'D' : '-',
3931 Pde.b.u1Global ? 'G' : '-',
3932 Pde.b.u1WriteThru ? "WT" : "--",
3933 Pde.b.u1CacheDisable? "CD" : "--",
3934 Pde.b.u1PAT ? "AT" : "--",
3935 Pde.u & RT_BIT(9) ? '1' : '0',
3936 Pde.u & RT_BIT(10) ? '1' : '0',
3937 Pde.u & RT_BIT(11) ? '1' : '0',
3938 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3939 /** @todo PhysSearch */
3940 else
3941 {
3942 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3943 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3944 u32Address,
3945 Pde.n.u1Write ? 'W' : 'R',
3946 Pde.n.u1User ? 'U' : 'S',
3947 Pde.n.u1Accessed ? 'A' : '-',
3948 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3949 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3950 Pde.n.u1WriteThru ? "WT" : "--",
3951 Pde.n.u1CacheDisable? "CD" : "--",
3952 Pde.u & RT_BIT(9) ? '1' : '0',
3953 Pde.u & RT_BIT(10) ? '1' : '0',
3954 Pde.u & RT_BIT(11) ? '1' : '0',
3955 Pde.u & X86_PDE_PG_MASK));
3956 ////if (cMaxDepth >= 1)
3957 {
3958 /** @todo what about using the page pool for mapping PTs? */
3959 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3960 PX86PT pPT = NULL;
3961
3962 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3963
3964 int rc2 = VERR_INVALID_PARAMETER;
3965 if (pPT)
3966 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3967 else
3968 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3969 if (rc2 < rc && VBOX_SUCCESS(rc))
3970 rc = rc2;
3971 }
3972 }
3973 }
3974 }
3975
3976 return rc;
3977}
3978
3979
3980/**
3981 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3982 *
3983 * @returns VBox status code (VINF_SUCCESS).
3984 * @param pVM The VM handle.
3985 * @param cr3 The root of the hierarchy.
3986 * @param cr4 The cr4, only PAE and PSE is currently used.
3987 * @param fLongMode Set if long mode, false if not long mode.
3988 * @param cMaxDepth Number of levels to dump.
3989 * @param pHlp Pointer to the output functions.
3990 */
3991VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3992{
3993 if (!pHlp)
3994 pHlp = DBGFR3InfoLogHlp();
3995 if (!cMaxDepth)
3996 return VINF_SUCCESS;
3997 const unsigned cch = fLongMode ? 16 : 8;
3998 pHlp->pfnPrintf(pHlp,
3999 "cr3=%08x cr4=%08x%s\n"
4000 "%-*s P - Present\n"
4001 "%-*s | R/W - Read (0) / Write (1)\n"
4002 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4003 "%-*s | | | A - Accessed\n"
4004 "%-*s | | | | D - Dirty\n"
4005 "%-*s | | | | | G - Global\n"
4006 "%-*s | | | | | | WT - Write thru\n"
4007 "%-*s | | | | | | | CD - Cache disable\n"
4008 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4009 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4010 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4011 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4012 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4013 "%-*s Level | | | | | | | | | | | | Page\n"
4014 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4015 - W U - - - -- -- -- -- -- 010 */
4016 , cr3, cr4, fLongMode ? " Long Mode" : "",
4017 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4018 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4019 if (cr4 & X86_CR4_PAE)
4020 {
4021 if (fLongMode)
4022 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4023 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4024 }
4025 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4026}
4027
4028
4029
4030#ifdef VBOX_WITH_DEBUGGER
4031/**
4032 * The '.pgmram' command.
4033 *
4034 * @returns VBox status.
4035 * @param pCmd Pointer to the command descriptor (as registered).
4036 * @param pCmdHlp Pointer to command helper functions.
4037 * @param pVM Pointer to the current VM (if any).
4038 * @param paArgs Pointer to (readonly) array of arguments.
4039 * @param cArgs Number of arguments in the array.
4040 */
4041static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4042{
4043 /*
4044 * Validate input.
4045 */
4046 if (!pVM)
4047 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4048 if (!pVM->pgm.s.pRamRangesRC)
4049 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4050
4051 /*
4052 * Dump the ranges.
4053 */
4054 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4055 PPGMRAMRANGE pRam;
4056 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4057 {
4058 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4059 "%RGp - %RGp %p\n",
4060 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4061 if (VBOX_FAILURE(rc))
4062 return rc;
4063 }
4064
4065 return VINF_SUCCESS;
4066}
4067
4068
4069/**
4070 * The '.pgmmap' command.
4071 *
4072 * @returns VBox status.
4073 * @param pCmd Pointer to the command descriptor (as registered).
4074 * @param pCmdHlp Pointer to command helper functions.
4075 * @param pVM Pointer to the current VM (if any).
4076 * @param paArgs Pointer to (readonly) array of arguments.
4077 * @param cArgs Number of arguments in the array.
4078 */
4079static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4080{
4081 /*
4082 * Validate input.
4083 */
4084 if (!pVM)
4085 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4086 if (!pVM->pgm.s.pMappingsR3)
4087 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4088
4089 /*
4090 * Print message about the fixedness of the mappings.
4091 */
4092 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4093 if (VBOX_FAILURE(rc))
4094 return rc;
4095
4096 /*
4097 * Dump the ranges.
4098 */
4099 PPGMMAPPING pCur;
4100 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4101 {
4102 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4103 "%08x - %08x %s\n",
4104 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4105 if (VBOX_FAILURE(rc))
4106 return rc;
4107 }
4108
4109 return VINF_SUCCESS;
4110}
4111
4112
4113/**
4114 * The '.pgmsync' command.
4115 *
4116 * @returns VBox status.
4117 * @param pCmd Pointer to the command descriptor (as registered).
4118 * @param pCmdHlp Pointer to command helper functions.
4119 * @param pVM Pointer to the current VM (if any).
4120 * @param paArgs Pointer to (readonly) array of arguments.
4121 * @param cArgs Number of arguments in the array.
4122 */
4123static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4124{
4125 /*
4126 * Validate input.
4127 */
4128 if (!pVM)
4129 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4130
4131 /*
4132 * Force page directory sync.
4133 */
4134 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4135
4136 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4137 if (VBOX_FAILURE(rc))
4138 return rc;
4139
4140 return VINF_SUCCESS;
4141}
4142
4143
4144#ifdef VBOX_STRICT
4145/**
4146 * The '.pgmassertcr3' command.
4147 *
4148 * @returns VBox status.
4149 * @param pCmd Pointer to the command descriptor (as registered).
4150 * @param pCmdHlp Pointer to command helper functions.
4151 * @param pVM Pointer to the current VM (if any).
4152 * @param paArgs Pointer to (readonly) array of arguments.
4153 * @param cArgs Number of arguments in the array.
4154 */
4155static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4156{
4157 /*
4158 * Validate input.
4159 */
4160 if (!pVM)
4161 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4162
4163 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4164 if (VBOX_FAILURE(rc))
4165 return rc;
4166
4167 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4168
4169 return VINF_SUCCESS;
4170}
4171#endif
4172
4173/**
4174 * The '.pgmsyncalways' command.
4175 *
4176 * @returns VBox status.
4177 * @param pCmd Pointer to the command descriptor (as registered).
4178 * @param pCmdHlp Pointer to command helper functions.
4179 * @param pVM Pointer to the current VM (if any).
4180 * @param paArgs Pointer to (readonly) array of arguments.
4181 * @param cArgs Number of arguments in the array.
4182 */
4183static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4184{
4185 /*
4186 * Validate input.
4187 */
4188 if (!pVM)
4189 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4190
4191 /*
4192 * Force page directory sync.
4193 */
4194 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4195 {
4196 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4197 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4198 }
4199 else
4200 {
4201 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4202 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4203 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4204 }
4205}
4206
4207#endif
4208
4209/**
4210 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4211 */
4212typedef struct PGMCHECKINTARGS
4213{
4214 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4215 PPGMPHYSHANDLER pPrevPhys;
4216 PPGMVIRTHANDLER pPrevVirt;
4217 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4218 PVM pVM;
4219} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4220
4221/**
4222 * Validate a node in the physical handler tree.
4223 *
4224 * @returns 0 on if ok, other wise 1.
4225 * @param pNode The handler node.
4226 * @param pvUser pVM.
4227 */
4228static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4229{
4230 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4231 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4232 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4233 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4234 AssertReleaseMsg( !pArgs->pPrevPhys
4235 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4236 ("pPrevPhys=%p %VGp-%VGp %s\n"
4237 " pCur=%p %VGp-%VGp %s\n",
4238 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4239 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4240 pArgs->pPrevPhys = pCur;
4241 return 0;
4242}
4243
4244
4245/**
4246 * Validate a node in the virtual handler tree.
4247 *
4248 * @returns 0 on if ok, other wise 1.
4249 * @param pNode The handler node.
4250 * @param pvUser pVM.
4251 */
4252static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4253{
4254 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4255 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4256 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4257 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4258 AssertReleaseMsg( !pArgs->pPrevVirt
4259 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4260 ("pPrevVirt=%p %VGv-%VGv %s\n"
4261 " pCur=%p %VGv-%VGv %s\n",
4262 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4263 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4264 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4265 {
4266 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4267 ("pCur=%p %VGv-%VGv %s\n"
4268 "iPage=%d offVirtHandle=%#x expected %#x\n",
4269 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4270 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4271 }
4272 pArgs->pPrevVirt = pCur;
4273 return 0;
4274}
4275
4276
4277/**
4278 * Validate a node in the virtual handler tree.
4279 *
4280 * @returns 0 on if ok, other wise 1.
4281 * @param pNode The handler node.
4282 * @param pvUser pVM.
4283 */
4284static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4285{
4286 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4287 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4288 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4289 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4290 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4291 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4292 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4293 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4294 " pCur=%p %VGp-%VGp\n",
4295 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4296 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4297 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4298 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4299 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4300 " pCur=%p %VGp-%VGp\n",
4301 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4302 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4303 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4304 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4305 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4306 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4307 {
4308 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4309 for (;;)
4310 {
4311 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4312 AssertReleaseMsg(pCur2 != pCur,
4313 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4314 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4315 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4316 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4317 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4318 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4319 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4320 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4321 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4322 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4323 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4324 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4325 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4326 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4327 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4328 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4329 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4330 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4331 break;
4332 }
4333 }
4334
4335 pArgs->pPrevPhys2Virt = pCur;
4336 return 0;
4337}
4338
4339
4340/**
4341 * Perform an integrity check on the PGM component.
4342 *
4343 * @returns VINF_SUCCESS if everything is fine.
4344 * @returns VBox error status after asserting on integrity breach.
4345 * @param pVM The VM handle.
4346 */
4347VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4348{
4349 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4350
4351 /*
4352 * Check the trees.
4353 */
4354 int cErrors = 0;
4355 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4356 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4357 PGMCHECKINTARGS Args = s_LeftToRight;
4358 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4359 Args = s_RightToLeft;
4360 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4361 Args = s_LeftToRight;
4362 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4363 Args = s_RightToLeft;
4364 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4365 Args = s_LeftToRight;
4366 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4367 Args = s_RightToLeft;
4368 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4369 Args = s_LeftToRight;
4370 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4371 Args = s_RightToLeft;
4372 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4373
4374 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4375}
4376
4377
4378/**
4379 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4380 *
4381 * @returns VBox status code.
4382 * @param pVM VM handle.
4383 * @param fEnable Enable or disable shadow mappings
4384 */
4385VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4386{
4387 pVM->pgm.s.fDisableMappings = !fEnable;
4388
4389 uint32_t cb;
4390 int rc = PGMR3MappingsSize(pVM, &cb);
4391 AssertRCReturn(rc, rc);
4392
4393 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4394 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4395 AssertRCReturn(rc, rc);
4396
4397 return VINF_SUCCESS;
4398}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette