VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 14141

Last change on this file since 14141 was 14133, checked in by vboxsync, 16 years ago

#1865: final pae change.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 210.1 KB
Line 
1/* $Id: PGM.cpp 14133 2008-11-12 16:37:47Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#ifdef DEBUG_bird
605# include <iprt/env.h>
606#endif
607#include <VBox/param.h>
608#include <VBox/err.h>
609
610
611
612/*******************************************************************************
613* Internal Functions *
614*******************************************************************************/
615static int pgmR3InitPaging(PVM pVM);
616static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
617static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
620static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622#ifdef VBOX_STRICT
623static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
624#endif
625static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
626static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
627static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
628static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
629static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
630
631#ifdef VBOX_WITH_STATISTICS
632static void pgmR3InitStats(PVM pVM);
633#endif
634
635#ifdef VBOX_WITH_DEBUGGER
636/** @todo all but the two last commands must be converted to 'info'. */
637static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641# ifdef VBOX_STRICT
642static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643# endif
644#endif
645
646
647/*******************************************************************************
648* Global Variables *
649*******************************************************************************/
650#ifdef VBOX_WITH_DEBUGGER
651/** Command descriptors. */
652static const DBGCCMD g_aCmds[] =
653{
654 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
655 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
656 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
657 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
658#ifdef VBOX_STRICT
659 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
660#endif
661 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
662};
663#endif
664
665
666
667
668/*
669 * Shadow - 32-bit mode
670 */
671#define PGM_SHW_TYPE PGM_TYPE_32BIT
672#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
673#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
674#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
675#include "PGMShw.h"
676
677/* Guest - real mode */
678#define PGM_GST_TYPE PGM_TYPE_REAL
679#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
680#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
681#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
682#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
683#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
684#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
685#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
686#include "PGMGst.h"
687#include "PGMBth.h"
688#undef BTH_PGMPOOLKIND_PT_FOR_PT
689#undef PGM_BTH_NAME
690#undef PGM_BTH_NAME_RC_STR
691#undef PGM_BTH_NAME_R0_STR
692#undef PGM_GST_TYPE
693#undef PGM_GST_NAME
694#undef PGM_GST_NAME_RC_STR
695#undef PGM_GST_NAME_R0_STR
696
697/* Guest - protected mode */
698#define PGM_GST_TYPE PGM_TYPE_PROT
699#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
700#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
701#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
702#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
703#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
704#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
705#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
706#include "PGMGst.h"
707#include "PGMBth.h"
708#undef BTH_PGMPOOLKIND_PT_FOR_PT
709#undef PGM_BTH_NAME
710#undef PGM_BTH_NAME_RC_STR
711#undef PGM_BTH_NAME_R0_STR
712#undef PGM_GST_TYPE
713#undef PGM_GST_NAME
714#undef PGM_GST_NAME_RC_STR
715#undef PGM_GST_NAME_R0_STR
716
717/* Guest - 32-bit mode */
718#define PGM_GST_TYPE PGM_TYPE_32BIT
719#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
720#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
721#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
722#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
723#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
724#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
725#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
726#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
727#include "PGMGst.h"
728#include "PGMBth.h"
729#undef BTH_PGMPOOLKIND_PT_FOR_BIG
730#undef BTH_PGMPOOLKIND_PT_FOR_PT
731#undef PGM_BTH_NAME
732#undef PGM_BTH_NAME_RC_STR
733#undef PGM_BTH_NAME_R0_STR
734#undef PGM_GST_TYPE
735#undef PGM_GST_NAME
736#undef PGM_GST_NAME_RC_STR
737#undef PGM_GST_NAME_R0_STR
738
739#undef PGM_SHW_TYPE
740#undef PGM_SHW_NAME
741#undef PGM_SHW_NAME_RC_STR
742#undef PGM_SHW_NAME_R0_STR
743
744
745/*
746 * Shadow - PAE mode
747 */
748#define PGM_SHW_TYPE PGM_TYPE_PAE
749#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
750#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
751#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
752#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
753#include "PGMShw.h"
754
755/* Guest - real mode */
756#define PGM_GST_TYPE PGM_TYPE_REAL
757#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
758#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
759#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
760#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
761#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
762#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
763#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
764#include "PGMBth.h"
765#undef BTH_PGMPOOLKIND_PT_FOR_PT
766#undef PGM_BTH_NAME
767#undef PGM_BTH_NAME_RC_STR
768#undef PGM_BTH_NAME_R0_STR
769#undef PGM_GST_TYPE
770#undef PGM_GST_NAME
771#undef PGM_GST_NAME_RC_STR
772#undef PGM_GST_NAME_R0_STR
773
774/* Guest - protected mode */
775#define PGM_GST_TYPE PGM_TYPE_PROT
776#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
777#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
778#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
779#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
780#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
781#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
782#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
783#include "PGMBth.h"
784#undef BTH_PGMPOOLKIND_PT_FOR_PT
785#undef PGM_BTH_NAME
786#undef PGM_BTH_NAME_RC_STR
787#undef PGM_BTH_NAME_R0_STR
788#undef PGM_GST_TYPE
789#undef PGM_GST_NAME
790#undef PGM_GST_NAME_RC_STR
791#undef PGM_GST_NAME_R0_STR
792
793/* Guest - 32-bit mode */
794#define PGM_GST_TYPE PGM_TYPE_32BIT
795#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
796#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
797#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
798#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
799#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
800#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
801#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
802#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
803#include "PGMBth.h"
804#undef BTH_PGMPOOLKIND_PT_FOR_BIG
805#undef BTH_PGMPOOLKIND_PT_FOR_PT
806#undef PGM_BTH_NAME
807#undef PGM_BTH_NAME_RC_STR
808#undef PGM_BTH_NAME_R0_STR
809#undef PGM_GST_TYPE
810#undef PGM_GST_NAME
811#undef PGM_GST_NAME_RC_STR
812#undef PGM_GST_NAME_R0_STR
813
814/* Guest - PAE mode */
815#define PGM_GST_TYPE PGM_TYPE_PAE
816#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
817#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
818#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
819#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
820#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
821#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
822#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
823#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
824#include "PGMGst.h"
825#include "PGMBth.h"
826#undef BTH_PGMPOOLKIND_PT_FOR_BIG
827#undef BTH_PGMPOOLKIND_PT_FOR_PT
828#undef PGM_BTH_NAME
829#undef PGM_BTH_NAME_RC_STR
830#undef PGM_BTH_NAME_R0_STR
831#undef PGM_GST_TYPE
832#undef PGM_GST_NAME
833#undef PGM_GST_NAME_RC_STR
834#undef PGM_GST_NAME_R0_STR
835
836#undef PGM_SHW_TYPE
837#undef PGM_SHW_NAME
838#undef PGM_SHW_NAME_RC_STR
839#undef PGM_SHW_NAME_R0_STR
840
841
842/*
843 * Shadow - AMD64 mode
844 */
845#define PGM_SHW_TYPE PGM_TYPE_AMD64
846#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
847#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
848#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
849#include "PGMShw.h"
850
851#ifdef VBOX_WITH_64_BITS_GUESTS
852/* Guest - AMD64 mode */
853# define PGM_GST_TYPE PGM_TYPE_AMD64
854# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
855# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
856# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
857# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
858# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
859# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
860# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
861# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
862# include "PGMGst.h"
863# include "PGMBth.h"
864# undef BTH_PGMPOOLKIND_PT_FOR_BIG
865# undef BTH_PGMPOOLKIND_PT_FOR_PT
866# undef PGM_BTH_NAME
867# undef PGM_BTH_NAME_RC_STR
868# undef PGM_BTH_NAME_R0_STR
869# undef PGM_GST_TYPE
870# undef PGM_GST_NAME
871# undef PGM_GST_NAME_RC_STR
872# undef PGM_GST_NAME_R0_STR
873#endif /* VBOX_WITH_64_BITS_GUESTS */
874
875#undef PGM_SHW_TYPE
876#undef PGM_SHW_NAME
877#undef PGM_SHW_NAME_RC_STR
878#undef PGM_SHW_NAME_R0_STR
879
880
881/*
882 * Shadow - Nested paging mode
883 */
884#define PGM_SHW_TYPE PGM_TYPE_NESTED
885#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
886#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
887#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
888#include "PGMShw.h"
889
890/* Guest - real mode */
891#define PGM_GST_TYPE PGM_TYPE_REAL
892#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
893#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
894#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
895#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
896#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
897#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
898#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
899#include "PGMBth.h"
900#undef BTH_PGMPOOLKIND_PT_FOR_PT
901#undef PGM_BTH_NAME
902#undef PGM_BTH_NAME_RC_STR
903#undef PGM_BTH_NAME_R0_STR
904#undef PGM_GST_TYPE
905#undef PGM_GST_NAME
906#undef PGM_GST_NAME_RC_STR
907#undef PGM_GST_NAME_R0_STR
908
909/* Guest - protected mode */
910#define PGM_GST_TYPE PGM_TYPE_PROT
911#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
912#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
913#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
914#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
915#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
916#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
917#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
918#include "PGMBth.h"
919#undef BTH_PGMPOOLKIND_PT_FOR_PT
920#undef PGM_BTH_NAME
921#undef PGM_BTH_NAME_RC_STR
922#undef PGM_BTH_NAME_R0_STR
923#undef PGM_GST_TYPE
924#undef PGM_GST_NAME
925#undef PGM_GST_NAME_RC_STR
926#undef PGM_GST_NAME_R0_STR
927
928/* Guest - 32-bit mode */
929#define PGM_GST_TYPE PGM_TYPE_32BIT
930#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
931#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
932#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
933#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
934#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
935#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
936#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
937#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
938#include "PGMBth.h"
939#undef BTH_PGMPOOLKIND_PT_FOR_BIG
940#undef BTH_PGMPOOLKIND_PT_FOR_PT
941#undef PGM_BTH_NAME
942#undef PGM_BTH_NAME_RC_STR
943#undef PGM_BTH_NAME_R0_STR
944#undef PGM_GST_TYPE
945#undef PGM_GST_NAME
946#undef PGM_GST_NAME_RC_STR
947#undef PGM_GST_NAME_R0_STR
948
949/* Guest - PAE mode */
950#define PGM_GST_TYPE PGM_TYPE_PAE
951#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
952#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
953#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
954#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
955#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
956#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
957#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
958#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
959#include "PGMBth.h"
960#undef BTH_PGMPOOLKIND_PT_FOR_BIG
961#undef BTH_PGMPOOLKIND_PT_FOR_PT
962#undef PGM_BTH_NAME
963#undef PGM_BTH_NAME_RC_STR
964#undef PGM_BTH_NAME_R0_STR
965#undef PGM_GST_TYPE
966#undef PGM_GST_NAME
967#undef PGM_GST_NAME_RC_STR
968#undef PGM_GST_NAME_R0_STR
969
970#ifdef VBOX_WITH_64_BITS_GUESTS
971/* Guest - AMD64 mode */
972# define PGM_GST_TYPE PGM_TYPE_AMD64
973# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
974# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
975# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
976# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
977# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
978# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
979# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
980# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
981# include "PGMBth.h"
982# undef BTH_PGMPOOLKIND_PT_FOR_BIG
983# undef BTH_PGMPOOLKIND_PT_FOR_PT
984# undef PGM_BTH_NAME
985# undef PGM_BTH_NAME_RC_STR
986# undef PGM_BTH_NAME_R0_STR
987# undef PGM_GST_TYPE
988# undef PGM_GST_NAME
989# undef PGM_GST_NAME_RC_STR
990# undef PGM_GST_NAME_R0_STR
991#endif /* VBOX_WITH_64_BITS_GUESTS */
992
993#undef PGM_SHW_TYPE
994#undef PGM_SHW_NAME
995#undef PGM_SHW_NAME_RC_STR
996#undef PGM_SHW_NAME_R0_STR
997
998
999/*
1000 * Shadow - EPT
1001 */
1002#define PGM_SHW_TYPE PGM_TYPE_EPT
1003#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1004#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1005#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1006#include "PGMShw.h"
1007
1008/* Guest - real mode */
1009#define PGM_GST_TYPE PGM_TYPE_REAL
1010#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1011#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1012#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1013#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1014#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1015#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1016#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1017#include "PGMBth.h"
1018#undef BTH_PGMPOOLKIND_PT_FOR_PT
1019#undef PGM_BTH_NAME
1020#undef PGM_BTH_NAME_RC_STR
1021#undef PGM_BTH_NAME_R0_STR
1022#undef PGM_GST_TYPE
1023#undef PGM_GST_NAME
1024#undef PGM_GST_NAME_RC_STR
1025#undef PGM_GST_NAME_R0_STR
1026
1027/* Guest - protected mode */
1028#define PGM_GST_TYPE PGM_TYPE_PROT
1029#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1030#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1031#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1032#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1033#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1034#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1035#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1036#include "PGMBth.h"
1037#undef BTH_PGMPOOLKIND_PT_FOR_PT
1038#undef PGM_BTH_NAME
1039#undef PGM_BTH_NAME_RC_STR
1040#undef PGM_BTH_NAME_R0_STR
1041#undef PGM_GST_TYPE
1042#undef PGM_GST_NAME
1043#undef PGM_GST_NAME_RC_STR
1044#undef PGM_GST_NAME_R0_STR
1045
1046/* Guest - 32-bit mode */
1047#define PGM_GST_TYPE PGM_TYPE_32BIT
1048#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1049#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1050#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1051#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1052#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1053#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1054#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1055#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1056#include "PGMBth.h"
1057#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1058#undef BTH_PGMPOOLKIND_PT_FOR_PT
1059#undef PGM_BTH_NAME
1060#undef PGM_BTH_NAME_RC_STR
1061#undef PGM_BTH_NAME_R0_STR
1062#undef PGM_GST_TYPE
1063#undef PGM_GST_NAME
1064#undef PGM_GST_NAME_RC_STR
1065#undef PGM_GST_NAME_R0_STR
1066
1067/* Guest - PAE mode */
1068#define PGM_GST_TYPE PGM_TYPE_PAE
1069#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1070#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1071#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1072#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1073#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1074#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1075#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1076#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1077#include "PGMBth.h"
1078#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1079#undef BTH_PGMPOOLKIND_PT_FOR_PT
1080#undef PGM_BTH_NAME
1081#undef PGM_BTH_NAME_RC_STR
1082#undef PGM_BTH_NAME_R0_STR
1083#undef PGM_GST_TYPE
1084#undef PGM_GST_NAME
1085#undef PGM_GST_NAME_RC_STR
1086#undef PGM_GST_NAME_R0_STR
1087
1088#ifdef VBOX_WITH_64_BITS_GUESTS
1089/* Guest - AMD64 mode */
1090# define PGM_GST_TYPE PGM_TYPE_AMD64
1091# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1092# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1093# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1094# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1095# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1096# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1097# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1098# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1099# include "PGMBth.h"
1100# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1101# undef BTH_PGMPOOLKIND_PT_FOR_PT
1102# undef PGM_BTH_NAME
1103# undef PGM_BTH_NAME_RC_STR
1104# undef PGM_BTH_NAME_R0_STR
1105# undef PGM_GST_TYPE
1106# undef PGM_GST_NAME
1107# undef PGM_GST_NAME_RC_STR
1108# undef PGM_GST_NAME_R0_STR
1109#endif /* VBOX_WITH_64_BITS_GUESTS */
1110
1111#undef PGM_SHW_TYPE
1112#undef PGM_SHW_NAME
1113#undef PGM_SHW_NAME_RC_STR
1114#undef PGM_SHW_NAME_R0_STR
1115
1116
1117
1118/**
1119 * Initiates the paging of VM.
1120 *
1121 * @returns VBox status code.
1122 * @param pVM Pointer to VM structure.
1123 */
1124VMMR3DECL(int) PGMR3Init(PVM pVM)
1125{
1126 LogFlow(("PGMR3Init:\n"));
1127
1128 /*
1129 * Assert alignment and sizes.
1130 */
1131 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1132
1133 /*
1134 * Init the structure.
1135 */
1136 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1137 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1138 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1139 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1140 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1141 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1142 pVM->pgm.s.fA20Enabled = true;
1143 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1144 pVM->pgm.s.pGstPaePDPTR3 = NULL;
1145#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1146 pVM->pgm.s.pGstPaePDPTR0 = NIL_RTR0PTR;
1147#endif
1148 pVM->pgm.s.pGstPaePDPTRC = NIL_RTRCPTR;
1149 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1150 {
1151 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1152#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1153 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1154#endif
1155 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1156 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1157 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1158 }
1159
1160#ifdef VBOX_STRICT
1161 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1162#endif
1163
1164 /*
1165 * Get the configured RAM size - to estimate saved state size.
1166 */
1167 uint64_t cbRam;
1168 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1169 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1170 cbRam = pVM->pgm.s.cbRamSize = 0;
1171 else if (RT_SUCCESS(rc))
1172 {
1173 if (cbRam < PAGE_SIZE)
1174 cbRam = 0;
1175 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1176 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1177 }
1178 else
1179 {
1180 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1181 return rc;
1182 }
1183
1184 /*
1185 * Register saved state data unit.
1186 */
1187 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1188 NULL, pgmR3Save, NULL,
1189 NULL, pgmR3Load, NULL);
1190 if (RT_FAILURE(rc))
1191 return rc;
1192
1193 /*
1194 * Initialize the PGM critical section and flush the phys TLBs
1195 */
1196 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1197 AssertRCReturn(rc, rc);
1198
1199 PGMR3PhysChunkInvalidateTLB(pVM);
1200 PGMPhysInvalidatePageR3MapTLB(pVM);
1201 PGMPhysInvalidatePageR0MapTLB(pVM);
1202 PGMPhysInvalidatePageGCMapTLB(pVM);
1203
1204 /*
1205 * Trees
1206 */
1207 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1208 if (RT_SUCCESS(rc))
1209 {
1210 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1211 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1212
1213 /*
1214 * Alocate the zero page.
1215 */
1216 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1217 }
1218 if (RT_SUCCESS(rc))
1219 {
1220 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1221 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1222 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1223 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1224 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1225
1226 /*
1227 * Init the paging.
1228 */
1229 rc = pgmR3InitPaging(pVM);
1230 }
1231 if (RT_SUCCESS(rc))
1232 {
1233 /*
1234 * Init the page pool.
1235 */
1236 rc = pgmR3PoolInit(pVM);
1237 }
1238 if (RT_SUCCESS(rc))
1239 {
1240 /*
1241 * Info & statistics
1242 */
1243 DBGFR3InfoRegisterInternal(pVM, "mode",
1244 "Shows the current paging mode. "
1245 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1246 pgmR3InfoMode);
1247 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1248 "Dumps all the entries in the top level paging table. No arguments.",
1249 pgmR3InfoCr3);
1250 DBGFR3InfoRegisterInternal(pVM, "phys",
1251 "Dumps all the physical address ranges. No arguments.",
1252 pgmR3PhysInfo);
1253 DBGFR3InfoRegisterInternal(pVM, "handlers",
1254 "Dumps physical, virtual and hyper virtual handlers. "
1255 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1256 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1257 pgmR3InfoHandlers);
1258 DBGFR3InfoRegisterInternal(pVM, "mappings",
1259 "Dumps guest mappings.",
1260 pgmR3MapInfo);
1261
1262 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1263#ifdef VBOX_WITH_STATISTICS
1264 pgmR3InitStats(pVM);
1265#endif
1266#ifdef VBOX_WITH_DEBUGGER
1267 /*
1268 * Debugger commands.
1269 */
1270 static bool fRegisteredCmds = false;
1271 if (!fRegisteredCmds)
1272 {
1273 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1274 if (RT_SUCCESS(rc))
1275 fRegisteredCmds = true;
1276 }
1277#endif
1278 return VINF_SUCCESS;
1279 }
1280
1281 /* Almost no cleanup necessary, MM frees all memory. */
1282 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1283
1284 return rc;
1285}
1286
1287
1288/**
1289 * Initializes the per-VCPU PGM.
1290 *
1291 * @returns VBox status code.
1292 * @param pVM The VM to operate on.
1293 */
1294VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1295{
1296 LogFlow(("PGMR3InitCPU\n"));
1297 return VINF_SUCCESS;
1298}
1299
1300
1301/**
1302 * Init paging.
1303 *
1304 * Since we need to check what mode the host is operating in before we can choose
1305 * the right paging functions for the host we have to delay this until R0 has
1306 * been initialized.
1307 *
1308 * @returns VBox status code.
1309 * @param pVM VM handle.
1310 */
1311static int pgmR3InitPaging(PVM pVM)
1312{
1313 /*
1314 * Force a recalculation of modes and switcher so everyone gets notified.
1315 */
1316 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1317 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1318 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1319
1320 /*
1321 * Allocate static mapping space for whatever the cr3 register
1322 * points to and in the case of PAE mode to the 4 PDs.
1323 */
1324 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1325 if (RT_FAILURE(rc))
1326 {
1327 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1328 return rc;
1329 }
1330 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1331
1332 /*
1333 * Allocate pages for the three possible intermediate contexts
1334 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1335 * for the sake of simplicity. The AMD64 uses the PAE for the
1336 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1337 *
1338 * We assume that two page tables will be enought for the core code
1339 * mappings (HC virtual and identity).
1340 */
1341 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1342 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1343 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1344 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1345 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1346 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1347 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1348 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1349 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1350 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1351 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1352 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1353 if ( !pVM->pgm.s.pInterPD
1354 || !pVM->pgm.s.apInterPTs[0]
1355 || !pVM->pgm.s.apInterPTs[1]
1356 || !pVM->pgm.s.apInterPaePTs[0]
1357 || !pVM->pgm.s.apInterPaePTs[1]
1358 || !pVM->pgm.s.apInterPaePDs[0]
1359 || !pVM->pgm.s.apInterPaePDs[1]
1360 || !pVM->pgm.s.apInterPaePDs[2]
1361 || !pVM->pgm.s.apInterPaePDs[3]
1362 || !pVM->pgm.s.pInterPaePDPT
1363 || !pVM->pgm.s.pInterPaePDPT64
1364 || !pVM->pgm.s.pInterPaePML4)
1365 {
1366 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1367 return VERR_NO_PAGE_MEMORY;
1368 }
1369
1370 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1371 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1372 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1373 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1374 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1375 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1376
1377 /*
1378 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1379 */
1380 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1381 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1382 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1383
1384 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1385 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1386
1387 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1388 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1389 {
1390 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1391 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1392 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1393 }
1394
1395 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1396 {
1397 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1398 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1399 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1400 }
1401
1402 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1403 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1404 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1405 | HCPhysInterPaePDPT64;
1406
1407 /*
1408 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1409 * We allocate pages for all three posibilities in order to simplify mappings and
1410 * avoid resource failure during mode switches. So, we need to cover all levels of the
1411 * of the first 4GB down to PD level.
1412 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1413 */
1414 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1415 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1416 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1417 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1418 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1419 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1420 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1421 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1422#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1423 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1424 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1425 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1426 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1427#endif
1428 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1429#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1430 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1431#endif
1432 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1433#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1434 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1435#endif
1436
1437 if ( !pVM->pgm.s.pHC32BitPD
1438 || !pVM->pgm.s.apShwPaePDsR3[0]
1439 || !pVM->pgm.s.apShwPaePDsR3[1]
1440 || !pVM->pgm.s.apShwPaePDsR3[2]
1441 || !pVM->pgm.s.apShwPaePDsR3[3]
1442 || !pVM->pgm.s.pShwPaePdptR3
1443 || !pVM->pgm.s.pShwNestedRootR3)
1444 {
1445 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1446 return VERR_NO_PAGE_MEMORY;
1447 }
1448
1449 /* get physical addresses. */
1450 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1451 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1452 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1453 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1454 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1455 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1456 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1457 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1458
1459 /*
1460 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1461 */
1462 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1463 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1464 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1465 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1466 {
1467 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1468 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1469 /* The flags will be corrected when entering and leaving long mode. */
1470 }
1471
1472 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1473
1474 /*
1475 * Initialize paging workers and mode from current host mode
1476 * and the guest running in real mode.
1477 */
1478 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1479 switch (pVM->pgm.s.enmHostMode)
1480 {
1481 case SUPPAGINGMODE_32_BIT:
1482 case SUPPAGINGMODE_32_BIT_GLOBAL:
1483 case SUPPAGINGMODE_PAE:
1484 case SUPPAGINGMODE_PAE_GLOBAL:
1485 case SUPPAGINGMODE_PAE_NX:
1486 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1487 break;
1488
1489 case SUPPAGINGMODE_AMD64:
1490 case SUPPAGINGMODE_AMD64_GLOBAL:
1491 case SUPPAGINGMODE_AMD64_NX:
1492 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1493#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1494 if (ARCH_BITS != 64)
1495 {
1496 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1497 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1498 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1499 }
1500#endif
1501 break;
1502 default:
1503 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1504 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1505 }
1506 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1507 if (RT_SUCCESS(rc))
1508 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1509 if (RT_SUCCESS(rc))
1510 {
1511 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1512#if HC_ARCH_BITS == 64
1513 LogRel(("Debug: HCPhys32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysPaePDPT=%RHp HCPhysPaePML4=%RHp\n",
1514 pVM->pgm.s.HCPhys32BitPD,
1515 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1516 pVM->pgm.s.HCPhysPaePDPT,
1517 pVM->pgm.s.HCPhysPaePML4));
1518 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1519 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1520 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1521 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1522 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1523 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1524 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1525#endif
1526
1527 return VINF_SUCCESS;
1528 }
1529
1530 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1531 return rc;
1532}
1533
1534
1535#ifdef VBOX_WITH_STATISTICS
1536/**
1537 * Init statistics
1538 */
1539static void pgmR3InitStats(PVM pVM)
1540{
1541 PPGM pPGM = &pVM->pgm.s;
1542 unsigned i;
1543
1544 /*
1545 * Note! The layout of this function matches the member layout exactly!
1546 */
1547
1548 /* Common - misc variables */
1549 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1550 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1551 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1552 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1553 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1554 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1555
1556 /* Common - stats */
1557#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1558 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1559 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1560 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1561 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1562 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1563 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1564#endif
1565 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1566 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1567 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1568 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1569 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1570 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1571
1572 /* R3 only: */
1573 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1574 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1575 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1576 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1577 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1578 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1579
1580 /* GC only: */
1581 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1582 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1583 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1584 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1585
1586 /* RZ only: */
1587 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1588 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1589 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1590 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1591 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1592 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1593 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1594 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1595 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1596 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1597 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1598 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1599 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1600 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1601 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1602 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1603 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1604 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1605 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1606 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1607 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1608 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1609 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1610 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1611 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1612 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1613 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1614 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1615 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1616 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1617 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1618 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1619 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1620 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1621 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1622 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1624 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1625 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1630 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1631 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1632 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1633 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1634 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1635 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1636 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1637 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1638
1639 /* HC only: */
1640
1641 /* RZ & R3: */
1642 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1643 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1644 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1645 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1646 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1647 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1648 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1649 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1650 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1651 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1652 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1653 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1654 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1655 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1656 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1657 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1658 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1659 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1660 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1661 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1662 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1663 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1664 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1665 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1666 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1667 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1668 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1669 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1670 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1671 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1672 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1673 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1674 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1675 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1676 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1677 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1678 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1679 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1680 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1681 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1682 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1683 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1684 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1685 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1686 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1687 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1688 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1689/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1690 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1691 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1692 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1693 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1694 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1695 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1696
1697 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1698 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1699 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1700 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1701 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1702 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1703 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1704 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1705 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1706 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1707 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1708 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1709 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1710 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1711 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1712 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1713 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1714 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1715 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1716 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1717 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1718 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1719 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1720 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1721 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1722 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1723 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1724 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1725 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1726 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1727 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1728 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1729 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1730 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1731 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1732 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1733 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1734 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1735 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1736 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1737 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1738 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1739 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1740 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1741 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1742 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1743 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1744/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1745 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1746 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1747 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1748 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1749 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1750 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1751
1752}
1753#endif /* VBOX_WITH_STATISTICS */
1754
1755
1756/**
1757 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1758 *
1759 * The dynamic mapping area will also be allocated and initialized at this
1760 * time. We could allocate it during PGMR3Init of course, but the mapping
1761 * wouldn't be allocated at that time preventing us from setting up the
1762 * page table entries with the dummy page.
1763 *
1764 * @returns VBox status code.
1765 * @param pVM VM handle.
1766 */
1767VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1768{
1769 RTGCPTR GCPtr;
1770 /*
1771 * Reserve space for mapping the paging pages into guest context.
1772 */
1773 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1774 AssertRCReturn(rc, rc);
1775 pVM->pgm.s.pGC32BitPD = GCPtr;
1776 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1777
1778 /*
1779 * Reserve space for the dynamic mappings.
1780 */
1781 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1782 if (RT_SUCCESS(rc))
1783 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1784
1785 if ( RT_SUCCESS(rc)
1786 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1787 {
1788 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1789 if (RT_SUCCESS(rc))
1790 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1791 }
1792 if (RT_SUCCESS(rc))
1793 {
1794 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1795 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1796 }
1797 return rc;
1798}
1799
1800
1801/**
1802 * Ring-3 init finalizing.
1803 *
1804 * @returns VBox status code.
1805 * @param pVM The VM handle.
1806 */
1807VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1808{
1809 /*
1810 * Map the paging pages into the guest context.
1811 */
1812 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1813 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1814
1815 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1816 AssertRCReturn(rc, rc);
1817 pVM->pgm.s.pGC32BitPD = GCPtr;
1818 GCPtr += PAGE_SIZE;
1819 GCPtr += PAGE_SIZE; /* reserved page */
1820
1821 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1822 {
1823 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1824 AssertRCReturn(rc, rc);
1825 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1826 GCPtr += PAGE_SIZE;
1827 }
1828 /* A bit of paranoia is justified. */
1829 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1830 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1831 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1832 GCPtr += PAGE_SIZE; /* reserved page */
1833
1834 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1835 AssertRCReturn(rc, rc);
1836 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1837 GCPtr += PAGE_SIZE;
1838 GCPtr += PAGE_SIZE; /* reserved page */
1839
1840
1841 /*
1842 * Reserve space for the dynamic mappings.
1843 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1844 */
1845 /* get the pointer to the page table entries. */
1846 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1847 AssertRelease(pMapping);
1848 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1849 const unsigned iPT = off >> X86_PD_SHIFT;
1850 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1851 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1852 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1853
1854 /* init cache */
1855 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1856 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1857 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1858
1859 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1860 {
1861 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1862 AssertRCReturn(rc, rc);
1863 }
1864
1865 /*
1866 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1867 * Intel only goes up to 36 bits, so we stick to 36 as well.
1868 */
1869 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1870 uint32_t u32Dummy, u32Features;
1871 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1872
1873 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1874 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1875 else
1876 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1877
1878 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1879
1880 return rc;
1881}
1882
1883
1884/**
1885 * Applies relocations to data and code managed by this component.
1886 *
1887 * This function will be called at init and whenever the VMM need to relocate it
1888 * self inside the GC.
1889 *
1890 * @param pVM The VM.
1891 * @param offDelta Relocation delta relative to old location.
1892 */
1893VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1894{
1895 LogFlow(("PGMR3Relocate\n"));
1896
1897 /*
1898 * Paging stuff.
1899 */
1900 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1901 /** @todo move this into shadow and guest specific relocation functions. */
1902 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1903 pVM->pgm.s.pGC32BitPD += offDelta;
1904 pVM->pgm.s.pGuestPDRC += offDelta;
1905 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1906 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC); i++)
1907 {
1908 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1909 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1910 }
1911 pVM->pgm.s.pGstPaePDPTRC += offDelta;
1912 pVM->pgm.s.pShwPaePdptRC += offDelta;
1913
1914 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1915 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1916
1917 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1918 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1919 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1920
1921 /*
1922 * Trees.
1923 */
1924 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1925
1926 /*
1927 * Ram ranges.
1928 */
1929 if (pVM->pgm.s.pRamRangesR3)
1930 {
1931 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1932 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1933 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1934 }
1935
1936 /*
1937 * Update the two page directories with all page table mappings.
1938 * (One or more of them have changed, that's why we're here.)
1939 */
1940 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1941 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1942 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1943
1944 /* Relocate GC addresses of Page Tables. */
1945 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1946 {
1947 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1948 {
1949 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1950 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1951 }
1952 }
1953
1954 /*
1955 * Dynamic page mapping area.
1956 */
1957 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1958 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1959 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1960
1961 /*
1962 * The Zero page.
1963 */
1964 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1965 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1966
1967 /*
1968 * Physical and virtual handlers.
1969 */
1970 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1971 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1972 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1973
1974 /*
1975 * The page pool.
1976 */
1977 pgmR3PoolRelocate(pVM);
1978}
1979
1980
1981/**
1982 * Callback function for relocating a physical access handler.
1983 *
1984 * @returns 0 (continue enum)
1985 * @param pNode Pointer to a PGMPHYSHANDLER node.
1986 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1987 * not certain the delta will fit in a void pointer for all possible configs.
1988 */
1989static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1990{
1991 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1992 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1993 if (pHandler->pfnHandlerRC)
1994 pHandler->pfnHandlerRC += offDelta;
1995 if (pHandler->pvUserRC >= 0x10000)
1996 pHandler->pvUserRC += offDelta;
1997 return 0;
1998}
1999
2000
2001/**
2002 * Callback function for relocating a virtual access handler.
2003 *
2004 * @returns 0 (continue enum)
2005 * @param pNode Pointer to a PGMVIRTHANDLER node.
2006 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2007 * not certain the delta will fit in a void pointer for all possible configs.
2008 */
2009static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2010{
2011 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2012 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2013 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2014 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2015 Assert(pHandler->pfnHandlerRC);
2016 pHandler->pfnHandlerRC += offDelta;
2017 return 0;
2018}
2019
2020
2021/**
2022 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2023 *
2024 * @returns 0 (continue enum)
2025 * @param pNode Pointer to a PGMVIRTHANDLER node.
2026 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2027 * not certain the delta will fit in a void pointer for all possible configs.
2028 */
2029static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2030{
2031 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2032 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2033 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2034 Assert(pHandler->pfnHandlerRC);
2035 pHandler->pfnHandlerRC += offDelta;
2036 return 0;
2037}
2038
2039
2040/**
2041 * The VM is being reset.
2042 *
2043 * For the PGM component this means that any PD write monitors
2044 * needs to be removed.
2045 *
2046 * @param pVM VM handle.
2047 */
2048VMMR3DECL(void) PGMR3Reset(PVM pVM)
2049{
2050 LogFlow(("PGMR3Reset:\n"));
2051 VM_ASSERT_EMT(pVM);
2052
2053 pgmLock(pVM);
2054
2055 /*
2056 * Unfix any fixed mappings and disable CR3 monitoring.
2057 */
2058 pVM->pgm.s.fMappingsFixed = false;
2059 pVM->pgm.s.GCPtrMappingFixed = 0;
2060 pVM->pgm.s.cbMappingFixed = 0;
2061
2062 /* Exit the guest paging mode before the pgm pool gets reset.
2063 * Important to clean up the amd64 case.
2064 */
2065 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2066 AssertRC(rc);
2067#ifdef DEBUG
2068 DBGFR3InfoLog(pVM, "mappings", NULL);
2069 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2070#endif
2071
2072 /*
2073 * Reset the shadow page pool.
2074 */
2075 pgmR3PoolReset(pVM);
2076
2077 /*
2078 * Re-init other members.
2079 */
2080 pVM->pgm.s.fA20Enabled = true;
2081
2082 /*
2083 * Clear the FFs PGM owns.
2084 */
2085 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2086 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2087
2088 /*
2089 * Reset (zero) RAM pages.
2090 */
2091 rc = pgmR3PhysRamReset(pVM);
2092 if (RT_SUCCESS(rc))
2093 {
2094#ifdef VBOX_WITH_NEW_PHYS_CODE
2095 /*
2096 * Reset (zero) shadow ROM pages.
2097 */
2098 rc = pgmR3PhysRomReset(pVM);
2099#endif
2100 if (RT_SUCCESS(rc))
2101 {
2102 /*
2103 * Switch mode back to real mode.
2104 */
2105 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2106 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2107 }
2108 }
2109
2110 pgmUnlock(pVM);
2111 //return rc;
2112 AssertReleaseRC(rc);
2113}
2114
2115
2116#ifdef VBOX_STRICT
2117/**
2118 * VM state change callback for clearing fNoMorePhysWrites after
2119 * a snapshot has been created.
2120 */
2121static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2122{
2123 if (enmState == VMSTATE_RUNNING)
2124 pVM->pgm.s.fNoMorePhysWrites = false;
2125}
2126#endif
2127
2128
2129/**
2130 * Terminates the PGM.
2131 *
2132 * @returns VBox status code.
2133 * @param pVM Pointer to VM structure.
2134 */
2135VMMR3DECL(int) PGMR3Term(PVM pVM)
2136{
2137 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2138}
2139
2140
2141/**
2142 * Terminates the per-VCPU PGM.
2143 *
2144 * Termination means cleaning up and freeing all resources,
2145 * the VM it self is at this point powered off or suspended.
2146 *
2147 * @returns VBox status code.
2148 * @param pVM The VM to operate on.
2149 */
2150VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2151{
2152 return 0;
2153}
2154
2155
2156/**
2157 * Execute state save operation.
2158 *
2159 * @returns VBox status code.
2160 * @param pVM VM Handle.
2161 * @param pSSM SSM operation handle.
2162 */
2163static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2164{
2165 PPGM pPGM = &pVM->pgm.s;
2166
2167 /* No more writes to physical memory after this point! */
2168 pVM->pgm.s.fNoMorePhysWrites = true;
2169
2170 /*
2171 * Save basic data (required / unaffected by relocation).
2172 */
2173#if 1
2174 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2175#else
2176 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2177#endif
2178 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2179 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2180 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2181 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2182 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2183 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2184 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2185 SSMR3PutU32(pSSM, ~0); /* Separator. */
2186
2187 /*
2188 * The guest mappings.
2189 */
2190 uint32_t i = 0;
2191 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2192 {
2193 SSMR3PutU32(pSSM, i);
2194 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2195 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2196 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2197 /* flags are done by the mapping owners! */
2198 }
2199 SSMR3PutU32(pSSM, ~0); /* terminator. */
2200
2201 /*
2202 * Ram range flags and bits.
2203 */
2204 i = 0;
2205 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2206 {
2207 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2208
2209 SSMR3PutU32(pSSM, i);
2210 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2211 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2212 SSMR3PutGCPhys(pSSM, pRam->cb);
2213 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2214
2215 /* Flags. */
2216 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2217 for (unsigned iPage = 0; iPage < cPages; iPage++)
2218 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2219
2220 /* any memory associated with the range. */
2221 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2222 {
2223 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2224 {
2225 if (pRam->paChunkR3Ptrs[iChunk])
2226 {
2227 SSMR3PutU8(pSSM, 1); /* chunk present */
2228 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2229 }
2230 else
2231 SSMR3PutU8(pSSM, 0); /* no chunk present */
2232 }
2233 }
2234 else if (pRam->pvR3)
2235 {
2236 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2237 if (RT_FAILURE(rc))
2238 {
2239 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2240 return rc;
2241 }
2242 }
2243 }
2244 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2245}
2246
2247
2248/**
2249 * Execute state load operation.
2250 *
2251 * @returns VBox status code.
2252 * @param pVM VM Handle.
2253 * @param pSSM SSM operation handle.
2254 * @param u32Version Data layout version.
2255 */
2256static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2257{
2258 /*
2259 * Validate version.
2260 */
2261 if (u32Version != PGM_SAVED_STATE_VERSION)
2262 {
2263 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2264 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2265 }
2266
2267 /*
2268 * Call the reset function to make sure all the memory is cleared.
2269 */
2270 PGMR3Reset(pVM);
2271
2272 /*
2273 * Load basic data (required / unaffected by relocation).
2274 */
2275 PPGM pPGM = &pVM->pgm.s;
2276#if 1
2277 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2278#else
2279 uint32_t u;
2280 SSMR3GetU32(pSSM, &u);
2281 pPGM->fMappingsFixed = u;
2282#endif
2283 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2284 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2285
2286 RTUINT cbRamSize;
2287 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2288 if (RT_FAILURE(rc))
2289 return rc;
2290 if (cbRamSize != pPGM->cbRamSize)
2291 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2292 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2293 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2294 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2295 RTUINT uGuestMode;
2296 SSMR3GetUInt(pSSM, &uGuestMode);
2297 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2298
2299 /* check separator. */
2300 uint32_t u32Sep;
2301 SSMR3GetU32(pSSM, &u32Sep);
2302 if (RT_FAILURE(rc))
2303 return rc;
2304 if (u32Sep != (uint32_t)~0)
2305 {
2306 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2307 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2308 }
2309
2310 /*
2311 * The guest mappings.
2312 */
2313 uint32_t i = 0;
2314 for (;; i++)
2315 {
2316 /* Check the seqence number / separator. */
2317 rc = SSMR3GetU32(pSSM, &u32Sep);
2318 if (RT_FAILURE(rc))
2319 return rc;
2320 if (u32Sep == ~0U)
2321 break;
2322 if (u32Sep != i)
2323 {
2324 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2325 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2326 }
2327
2328 /* get the mapping details. */
2329 char szDesc[256];
2330 szDesc[0] = '\0';
2331 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2332 if (RT_FAILURE(rc))
2333 return rc;
2334 RTGCPTR GCPtr;
2335 SSMR3GetGCPtr(pSSM, &GCPtr);
2336 RTGCPTR cPTs;
2337 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2338 if (RT_FAILURE(rc))
2339 return rc;
2340
2341 /* find matching range. */
2342 PPGMMAPPING pMapping;
2343 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2344 if ( pMapping->cPTs == cPTs
2345 && !strcmp(pMapping->pszDesc, szDesc))
2346 break;
2347 if (!pMapping)
2348 {
2349 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2350 cPTs, szDesc, GCPtr));
2351 AssertFailed();
2352 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2353 }
2354
2355 /* relocate it. */
2356 if (pMapping->GCPtr != GCPtr)
2357 {
2358 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2359 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2360 }
2361 else
2362 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2363 }
2364
2365 /*
2366 * Ram range flags and bits.
2367 */
2368 i = 0;
2369 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2370 {
2371 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2372 /* Check the seqence number / separator. */
2373 rc = SSMR3GetU32(pSSM, &u32Sep);
2374 if (RT_FAILURE(rc))
2375 return rc;
2376 if (u32Sep == ~0U)
2377 break;
2378 if (u32Sep != i)
2379 {
2380 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2381 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2382 }
2383
2384 /* Get the range details. */
2385 RTGCPHYS GCPhys;
2386 SSMR3GetGCPhys(pSSM, &GCPhys);
2387 RTGCPHYS GCPhysLast;
2388 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2389 RTGCPHYS cb;
2390 SSMR3GetGCPhys(pSSM, &cb);
2391 uint8_t fHaveBits;
2392 rc = SSMR3GetU8(pSSM, &fHaveBits);
2393 if (RT_FAILURE(rc))
2394 return rc;
2395 if (fHaveBits & ~1)
2396 {
2397 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2398 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2399 }
2400
2401 /* Match it up with the current range. */
2402 if ( GCPhys != pRam->GCPhys
2403 || GCPhysLast != pRam->GCPhysLast
2404 || cb != pRam->cb
2405 || fHaveBits != !!pRam->pvR3)
2406 {
2407 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2408 "State : %RGp-%RGp %RGp bytes %s\n",
2409 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2410 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2411 /*
2412 * If we're loading a state for debugging purpose, don't make a fuss if
2413 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2414 */
2415 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2416 || GCPhys < 8 * _1M)
2417 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2418
2419 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2420 while (cPages-- > 0)
2421 {
2422 uint16_t u16Ignore;
2423 SSMR3GetU16(pSSM, &u16Ignore);
2424 }
2425 continue;
2426 }
2427
2428 /* Flags. */
2429 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2430 for (unsigned iPage = 0; iPage < cPages; iPage++)
2431 {
2432 uint16_t u16 = 0;
2433 SSMR3GetU16(pSSM, &u16);
2434 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2435 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2436 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2437 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2438 }
2439
2440 /* any memory associated with the range. */
2441 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2442 {
2443 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2444 {
2445 uint8_t fValidChunk;
2446
2447 rc = SSMR3GetU8(pSSM, &fValidChunk);
2448 if (RT_FAILURE(rc))
2449 return rc;
2450 if (fValidChunk > 1)
2451 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2452
2453 if (fValidChunk)
2454 {
2455 if (!pRam->paChunkR3Ptrs[iChunk])
2456 {
2457 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2458 if (RT_FAILURE(rc))
2459 return rc;
2460 }
2461 Assert(pRam->paChunkR3Ptrs[iChunk]);
2462
2463 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2464 }
2465 /* else nothing to do */
2466 }
2467 }
2468 else if (pRam->pvR3)
2469 {
2470 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2471 if (RT_FAILURE(rc))
2472 {
2473 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2474 return rc;
2475 }
2476 }
2477 }
2478
2479 /*
2480 * We require a full resync now.
2481 */
2482 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2483 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2484 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2485 pPGM->fPhysCacheFlushPending = true;
2486 pgmR3HandlerPhysicalUpdateAll(pVM);
2487
2488 /*
2489 * Change the paging mode.
2490 */
2491 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2492
2493 /* Restore pVM->pgm.s.GCPhysCR3. */
2494 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2495 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2496 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2497 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2498 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2499 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2500 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2501 else
2502 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2503 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2504
2505 return rc;
2506}
2507
2508
2509/**
2510 * Show paging mode.
2511 *
2512 * @param pVM VM Handle.
2513 * @param pHlp The info helpers.
2514 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2515 */
2516static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2517{
2518 /* digest argument. */
2519 bool fGuest, fShadow, fHost;
2520 if (pszArgs)
2521 pszArgs = RTStrStripL(pszArgs);
2522 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2523 fShadow = fHost = fGuest = true;
2524 else
2525 {
2526 fShadow = fHost = fGuest = false;
2527 if (strstr(pszArgs, "guest"))
2528 fGuest = true;
2529 if (strstr(pszArgs, "shadow"))
2530 fShadow = true;
2531 if (strstr(pszArgs, "host"))
2532 fHost = true;
2533 }
2534
2535 /* print info. */
2536 if (fGuest)
2537 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2538 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2539 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2540 if (fShadow)
2541 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2542 if (fHost)
2543 {
2544 const char *psz;
2545 switch (pVM->pgm.s.enmHostMode)
2546 {
2547 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2548 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2549 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2550 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2551 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2552 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2553 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2554 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2555 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2556 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2557 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2558 default: psz = "unknown"; break;
2559 }
2560 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2561 }
2562}
2563
2564
2565/**
2566 * Dump registered MMIO ranges to the log.
2567 *
2568 * @param pVM VM Handle.
2569 * @param pHlp The info helpers.
2570 * @param pszArgs Arguments, ignored.
2571 */
2572static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2573{
2574 NOREF(pszArgs);
2575 pHlp->pfnPrintf(pHlp,
2576 "RAM ranges (pVM=%p)\n"
2577 "%.*s %.*s\n",
2578 pVM,
2579 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2580 sizeof(RTHCPTR) * 2, "pvHC ");
2581
2582 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2583 pHlp->pfnPrintf(pHlp,
2584 "%RGp-%RGp %RHv %s\n",
2585 pCur->GCPhys,
2586 pCur->GCPhysLast,
2587 pCur->pvR3,
2588 pCur->pszDesc);
2589}
2590
2591/**
2592 * Dump the page directory to the log.
2593 *
2594 * @param pVM VM Handle.
2595 * @param pHlp The info helpers.
2596 * @param pszArgs Arguments, ignored.
2597 */
2598static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2599{
2600/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2601 /* Big pages supported? */
2602 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2603
2604 /* Global pages supported? */
2605 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2606
2607 NOREF(pszArgs);
2608
2609 /*
2610 * Get page directory addresses.
2611 */
2612 PX86PD pPDSrc = pVM->pgm.s.pGuestPDR3;
2613 Assert(pPDSrc);
2614 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2615
2616 /*
2617 * Iterate the page directory.
2618 */
2619 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2620 {
2621 X86PDE PdeSrc = pPDSrc->a[iPD];
2622 if (PdeSrc.n.u1Present)
2623 {
2624 if (PdeSrc.b.u1Size && fPSE)
2625 pHlp->pfnPrintf(pHlp,
2626 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2627 iPD,
2628 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2629 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2630 else
2631 pHlp->pfnPrintf(pHlp,
2632 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2633 iPD,
2634 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2635 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2636 }
2637 }
2638}
2639
2640
2641/**
2642 * Serivce a VMMCALLHOST_PGM_LOCK call.
2643 *
2644 * @returns VBox status code.
2645 * @param pVM The VM handle.
2646 */
2647VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2648{
2649 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2650 AssertRC(rc);
2651 return rc;
2652}
2653
2654
2655/**
2656 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2657 *
2658 * @returns PGM_TYPE_*.
2659 * @param pgmMode The mode value to convert.
2660 */
2661DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2662{
2663 switch (pgmMode)
2664 {
2665 case PGMMODE_REAL: return PGM_TYPE_REAL;
2666 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2667 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2668 case PGMMODE_PAE:
2669 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2670 case PGMMODE_AMD64:
2671 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2672 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2673 case PGMMODE_EPT: return PGM_TYPE_EPT;
2674 default:
2675 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2676 }
2677}
2678
2679
2680/**
2681 * Gets the index into the paging mode data array of a SHW+GST mode.
2682 *
2683 * @returns PGM::paPagingData index.
2684 * @param uShwType The shadow paging mode type.
2685 * @param uGstType The guest paging mode type.
2686 */
2687DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2688{
2689 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2690 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2691 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2692 + (uGstType - PGM_TYPE_REAL);
2693}
2694
2695
2696/**
2697 * Gets the index into the paging mode data array of a SHW+GST mode.
2698 *
2699 * @returns PGM::paPagingData index.
2700 * @param enmShw The shadow paging mode.
2701 * @param enmGst The guest paging mode.
2702 */
2703DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2704{
2705 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2706 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2707 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2708}
2709
2710
2711/**
2712 * Calculates the max data index.
2713 * @returns The number of entries in the paging data array.
2714 */
2715DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2716{
2717 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2718}
2719
2720
2721/**
2722 * Initializes the paging mode data kept in PGM::paModeData.
2723 *
2724 * @param pVM The VM handle.
2725 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2726 * This is used early in the init process to avoid trouble with PDM
2727 * not being initialized yet.
2728 */
2729static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2730{
2731 PPGMMODEDATA pModeData;
2732 int rc;
2733
2734 /*
2735 * Allocate the array on the first call.
2736 */
2737 if (!pVM->pgm.s.paModeData)
2738 {
2739 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2740 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2741 }
2742
2743 /*
2744 * Initialize the array entries.
2745 */
2746 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2747 pModeData->uShwType = PGM_TYPE_32BIT;
2748 pModeData->uGstType = PGM_TYPE_REAL;
2749 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2752
2753 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2754 pModeData->uShwType = PGM_TYPE_32BIT;
2755 pModeData->uGstType = PGM_TYPE_PROT;
2756 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2759
2760 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2761 pModeData->uShwType = PGM_TYPE_32BIT;
2762 pModeData->uGstType = PGM_TYPE_32BIT;
2763 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766
2767 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2768 pModeData->uShwType = PGM_TYPE_PAE;
2769 pModeData->uGstType = PGM_TYPE_REAL;
2770 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2773
2774 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2775 pModeData->uShwType = PGM_TYPE_PAE;
2776 pModeData->uGstType = PGM_TYPE_PROT;
2777 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2780
2781 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2782 pModeData->uShwType = PGM_TYPE_PAE;
2783 pModeData->uGstType = PGM_TYPE_32BIT;
2784 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2786 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2787
2788 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2789 pModeData->uShwType = PGM_TYPE_PAE;
2790 pModeData->uGstType = PGM_TYPE_PAE;
2791 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2792 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2793 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2794
2795#ifdef VBOX_WITH_64_BITS_GUESTS
2796 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2797 pModeData->uShwType = PGM_TYPE_AMD64;
2798 pModeData->uGstType = PGM_TYPE_AMD64;
2799 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2800 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2801 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2802#endif
2803
2804 /* The nested paging mode. */
2805 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2806 pModeData->uShwType = PGM_TYPE_NESTED;
2807 pModeData->uGstType = PGM_TYPE_REAL;
2808 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2809 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810
2811 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2812 pModeData->uShwType = PGM_TYPE_NESTED;
2813 pModeData->uGstType = PGM_TYPE_PROT;
2814 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2816
2817 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2818 pModeData->uShwType = PGM_TYPE_NESTED;
2819 pModeData->uGstType = PGM_TYPE_32BIT;
2820 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2822
2823 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2824 pModeData->uShwType = PGM_TYPE_NESTED;
2825 pModeData->uGstType = PGM_TYPE_PAE;
2826 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2828
2829#ifdef VBOX_WITH_64_BITS_GUESTS
2830 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2831 pModeData->uShwType = PGM_TYPE_NESTED;
2832 pModeData->uGstType = PGM_TYPE_AMD64;
2833 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2834 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2835#endif
2836
2837 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2838 switch(pVM->pgm.s.enmHostMode)
2839 {
2840 case SUPPAGINGMODE_32_BIT:
2841 case SUPPAGINGMODE_32_BIT_GLOBAL:
2842#ifdef VBOX_WITH_64_BITS_GUESTS
2843 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2844#else
2845 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2846#endif
2847 {
2848 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2849 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850 }
2851 break;
2852
2853 case SUPPAGINGMODE_PAE:
2854 case SUPPAGINGMODE_PAE_NX:
2855 case SUPPAGINGMODE_PAE_GLOBAL:
2856 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2857#ifdef VBOX_WITH_64_BITS_GUESTS
2858 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2859#else
2860 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2861#endif
2862 {
2863 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2864 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865 }
2866 break;
2867
2868 case SUPPAGINGMODE_AMD64:
2869 case SUPPAGINGMODE_AMD64_GLOBAL:
2870 case SUPPAGINGMODE_AMD64_NX:
2871 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2872#ifdef VBOX_WITH_64_BITS_GUESTS
2873 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2874#else
2875 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2876#endif
2877 {
2878 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2879 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2880 }
2881 break;
2882 default:
2883 AssertFailed();
2884 break;
2885 }
2886
2887 /* Extended paging (EPT) / Intel VT-x */
2888 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2889 pModeData->uShwType = PGM_TYPE_EPT;
2890 pModeData->uGstType = PGM_TYPE_REAL;
2891 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2892 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2893 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894
2895 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2896 pModeData->uShwType = PGM_TYPE_EPT;
2897 pModeData->uGstType = PGM_TYPE_PROT;
2898 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2899 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2900 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901
2902 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2903 pModeData->uShwType = PGM_TYPE_EPT;
2904 pModeData->uGstType = PGM_TYPE_32BIT;
2905 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2906 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908
2909 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2910 pModeData->uShwType = PGM_TYPE_EPT;
2911 pModeData->uGstType = PGM_TYPE_PAE;
2912 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2913 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2914 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2915
2916#ifdef VBOX_WITH_64_BITS_GUESTS
2917 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2918 pModeData->uShwType = PGM_TYPE_EPT;
2919 pModeData->uGstType = PGM_TYPE_AMD64;
2920 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2921 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2922 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923#endif
2924 return VINF_SUCCESS;
2925}
2926
2927
2928/**
2929 * Switch to different (or relocated in the relocate case) mode data.
2930 *
2931 * @param pVM The VM handle.
2932 * @param enmShw The the shadow paging mode.
2933 * @param enmGst The the guest paging mode.
2934 */
2935static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2936{
2937 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2938
2939 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2940 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2941
2942 /* shadow */
2943 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2944 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2945 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2946 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2947 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2948
2949 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2950 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2951
2952 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2953 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2954
2955
2956 /* guest */
2957 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2958 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2959 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2960 Assert(pVM->pgm.s.pfnR3GstGetPage);
2961 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2962 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2963 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2964 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2965 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2966 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2967 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2968 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2969 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2970 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2971
2972 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2973 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2974 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2975 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2976 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2977 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2978 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2979 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2980 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2981
2982 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2983 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2984 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2985 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2986 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2987 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2988 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2989 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2990 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2991
2992
2993 /* both */
2994 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2995 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2996 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2997 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2998 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2999 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3000 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3001#ifdef VBOX_STRICT
3002 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3003#endif
3004
3005 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3006 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3007 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3008 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3009 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3010 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3011#ifdef VBOX_STRICT
3012 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3013#endif
3014
3015 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3016 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3017 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3018 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3019 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3020 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3021#ifdef VBOX_STRICT
3022 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3023#endif
3024}
3025
3026
3027/**
3028 * Calculates the shadow paging mode.
3029 *
3030 * @returns The shadow paging mode.
3031 * @param pVM VM handle.
3032 * @param enmGuestMode The guest mode.
3033 * @param enmHostMode The host mode.
3034 * @param enmShadowMode The current shadow mode.
3035 * @param penmSwitcher Where to store the switcher to use.
3036 * VMMSWITCHER_INVALID means no change.
3037 */
3038static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3039{
3040 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3041 switch (enmGuestMode)
3042 {
3043 /*
3044 * When switching to real or protected mode we don't change
3045 * anything since it's likely that we'll switch back pretty soon.
3046 *
3047 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3048 * and is supposed to determine which shadow paging and switcher to
3049 * use during init.
3050 */
3051 case PGMMODE_REAL:
3052 case PGMMODE_PROTECTED:
3053 if ( enmShadowMode != PGMMODE_INVALID
3054 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3055 break; /* (no change) */
3056
3057 switch (enmHostMode)
3058 {
3059 case SUPPAGINGMODE_32_BIT:
3060 case SUPPAGINGMODE_32_BIT_GLOBAL:
3061 enmShadowMode = PGMMODE_32_BIT;
3062 enmSwitcher = VMMSWITCHER_32_TO_32;
3063 break;
3064
3065 case SUPPAGINGMODE_PAE:
3066 case SUPPAGINGMODE_PAE_NX:
3067 case SUPPAGINGMODE_PAE_GLOBAL:
3068 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3069 enmShadowMode = PGMMODE_PAE;
3070 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3071#ifdef DEBUG_bird
3072 if (RTEnvExist("VBOX_32BIT"))
3073 {
3074 enmShadowMode = PGMMODE_32_BIT;
3075 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3076 }
3077#endif
3078 break;
3079
3080 case SUPPAGINGMODE_AMD64:
3081 case SUPPAGINGMODE_AMD64_GLOBAL:
3082 case SUPPAGINGMODE_AMD64_NX:
3083 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3084 enmShadowMode = PGMMODE_PAE;
3085 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3086 break;
3087
3088 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3089 }
3090 break;
3091
3092 case PGMMODE_32_BIT:
3093 switch (enmHostMode)
3094 {
3095 case SUPPAGINGMODE_32_BIT:
3096 case SUPPAGINGMODE_32_BIT_GLOBAL:
3097 enmShadowMode = PGMMODE_32_BIT;
3098 enmSwitcher = VMMSWITCHER_32_TO_32;
3099 break;
3100
3101 case SUPPAGINGMODE_PAE:
3102 case SUPPAGINGMODE_PAE_NX:
3103 case SUPPAGINGMODE_PAE_GLOBAL:
3104 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3105 enmShadowMode = PGMMODE_PAE;
3106 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3107#ifdef DEBUG_bird
3108 if (RTEnvExist("VBOX_32BIT"))
3109 {
3110 enmShadowMode = PGMMODE_32_BIT;
3111 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3112 }
3113#endif
3114 break;
3115
3116 case SUPPAGINGMODE_AMD64:
3117 case SUPPAGINGMODE_AMD64_GLOBAL:
3118 case SUPPAGINGMODE_AMD64_NX:
3119 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3120 enmShadowMode = PGMMODE_PAE;
3121 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3122 break;
3123
3124 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3125 }
3126 break;
3127
3128 case PGMMODE_PAE:
3129 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3130 switch (enmHostMode)
3131 {
3132 case SUPPAGINGMODE_32_BIT:
3133 case SUPPAGINGMODE_32_BIT_GLOBAL:
3134 enmShadowMode = PGMMODE_PAE;
3135 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3136 break;
3137
3138 case SUPPAGINGMODE_PAE:
3139 case SUPPAGINGMODE_PAE_NX:
3140 case SUPPAGINGMODE_PAE_GLOBAL:
3141 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3142 enmShadowMode = PGMMODE_PAE;
3143 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3144 break;
3145
3146 case SUPPAGINGMODE_AMD64:
3147 case SUPPAGINGMODE_AMD64_GLOBAL:
3148 case SUPPAGINGMODE_AMD64_NX:
3149 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3150 enmShadowMode = PGMMODE_PAE;
3151 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3152 break;
3153
3154 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3155 }
3156 break;
3157
3158 case PGMMODE_AMD64:
3159 case PGMMODE_AMD64_NX:
3160 switch (enmHostMode)
3161 {
3162 case SUPPAGINGMODE_32_BIT:
3163 case SUPPAGINGMODE_32_BIT_GLOBAL:
3164 enmShadowMode = PGMMODE_PAE;
3165 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3166 break;
3167
3168 case SUPPAGINGMODE_PAE:
3169 case SUPPAGINGMODE_PAE_NX:
3170 case SUPPAGINGMODE_PAE_GLOBAL:
3171 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3172 enmShadowMode = PGMMODE_PAE;
3173 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3174 break;
3175
3176 case SUPPAGINGMODE_AMD64:
3177 case SUPPAGINGMODE_AMD64_GLOBAL:
3178 case SUPPAGINGMODE_AMD64_NX:
3179 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3180 enmShadowMode = PGMMODE_AMD64;
3181 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3182 break;
3183
3184 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3185 }
3186 break;
3187
3188
3189 default:
3190 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3191 return PGMMODE_INVALID;
3192 }
3193 /* Override the shadow mode is nested paging is active. */
3194 if (HWACCMIsNestedPagingActive(pVM))
3195 enmShadowMode = HWACCMGetPagingMode(pVM);
3196
3197 *penmSwitcher = enmSwitcher;
3198 return enmShadowMode;
3199}
3200
3201
3202/**
3203 * Performs the actual mode change.
3204 * This is called by PGMChangeMode and pgmR3InitPaging().
3205 *
3206 * @returns VBox status code.
3207 * @param pVM VM handle.
3208 * @param enmGuestMode The new guest mode. This is assumed to be different from
3209 * the current mode.
3210 */
3211VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3212{
3213 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3214 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3215
3216 /*
3217 * Calc the shadow mode and switcher.
3218 */
3219 VMMSWITCHER enmSwitcher;
3220 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3221 if (enmSwitcher != VMMSWITCHER_INVALID)
3222 {
3223 /*
3224 * Select new switcher.
3225 */
3226 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3227 if (RT_FAILURE(rc))
3228 {
3229 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3230 return rc;
3231 }
3232 }
3233
3234 /*
3235 * Exit old mode(s).
3236 */
3237 /* shadow */
3238 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3239 {
3240 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3241 if (PGM_SHW_PFN(Exit, pVM))
3242 {
3243 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3244 if (RT_FAILURE(rc))
3245 {
3246 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3247 return rc;
3248 }
3249 }
3250
3251 }
3252 else
3253 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3254
3255 /* guest */
3256 if (PGM_GST_PFN(Exit, pVM))
3257 {
3258 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3259 if (RT_FAILURE(rc))
3260 {
3261 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3262 return rc;
3263 }
3264 }
3265
3266 /*
3267 * Load new paging mode data.
3268 */
3269 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3270
3271 /*
3272 * Enter new shadow mode (if changed).
3273 */
3274 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3275 {
3276 int rc;
3277 pVM->pgm.s.enmShadowMode = enmShadowMode;
3278 switch (enmShadowMode)
3279 {
3280 case PGMMODE_32_BIT:
3281 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3282 break;
3283 case PGMMODE_PAE:
3284 case PGMMODE_PAE_NX:
3285 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3286 break;
3287 case PGMMODE_AMD64:
3288 case PGMMODE_AMD64_NX:
3289 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3290 break;
3291 case PGMMODE_NESTED:
3292 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3293 break;
3294 case PGMMODE_EPT:
3295 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3296 break;
3297 case PGMMODE_REAL:
3298 case PGMMODE_PROTECTED:
3299 default:
3300 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3301 return VERR_INTERNAL_ERROR;
3302 }
3303 if (RT_FAILURE(rc))
3304 {
3305 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3306 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3307 return rc;
3308 }
3309 }
3310
3311 /** @todo This is a bug!
3312 *
3313 * We must flush the PGM pool cache if the guest mode changes; we don't always
3314 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3315 * the shadow page tables.
3316 *
3317 * That only applies when switching between paging and non-paging modes.
3318 */
3319 /** @todo A20 setting */
3320 if ( pVM->pgm.s.CTX_SUFF(pPool)
3321 && !HWACCMIsNestedPagingActive(pVM)
3322 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3323 {
3324 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3325 pgmPoolFlushAll(pVM);
3326 }
3327
3328 /*
3329 * Enter the new guest and shadow+guest modes.
3330 */
3331 int rc = -1;
3332 int rc2 = -1;
3333 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3334 pVM->pgm.s.enmGuestMode = enmGuestMode;
3335 switch (enmGuestMode)
3336 {
3337 case PGMMODE_REAL:
3338 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3339 switch (pVM->pgm.s.enmShadowMode)
3340 {
3341 case PGMMODE_32_BIT:
3342 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3343 break;
3344 case PGMMODE_PAE:
3345 case PGMMODE_PAE_NX:
3346 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3347 break;
3348 case PGMMODE_NESTED:
3349 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3350 break;
3351 case PGMMODE_EPT:
3352 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3353 break;
3354 case PGMMODE_AMD64:
3355 case PGMMODE_AMD64_NX:
3356 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3357 default: AssertFailed(); break;
3358 }
3359 break;
3360
3361 case PGMMODE_PROTECTED:
3362 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3363 switch (pVM->pgm.s.enmShadowMode)
3364 {
3365 case PGMMODE_32_BIT:
3366 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3367 break;
3368 case PGMMODE_PAE:
3369 case PGMMODE_PAE_NX:
3370 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3371 break;
3372 case PGMMODE_NESTED:
3373 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3374 break;
3375 case PGMMODE_EPT:
3376 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3377 break;
3378 case PGMMODE_AMD64:
3379 case PGMMODE_AMD64_NX:
3380 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3381 default: AssertFailed(); break;
3382 }
3383 break;
3384
3385 case PGMMODE_32_BIT:
3386 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3387 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3388 switch (pVM->pgm.s.enmShadowMode)
3389 {
3390 case PGMMODE_32_BIT:
3391 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3392 break;
3393 case PGMMODE_PAE:
3394 case PGMMODE_PAE_NX:
3395 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3396 break;
3397 case PGMMODE_NESTED:
3398 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3399 break;
3400 case PGMMODE_EPT:
3401 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3402 break;
3403 case PGMMODE_AMD64:
3404 case PGMMODE_AMD64_NX:
3405 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3406 default: AssertFailed(); break;
3407 }
3408 break;
3409
3410 case PGMMODE_PAE_NX:
3411 case PGMMODE_PAE:
3412 {
3413 uint32_t u32Dummy, u32Features;
3414
3415 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3416 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3417 {
3418 /* Pause first, then inform Main. */
3419 rc = VMR3SuspendNoSave(pVM);
3420 AssertRC(rc);
3421
3422 VMSetRuntimeError(pVM, true, "PAEmode",
3423 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3424 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3425 return VINF_SUCCESS;
3426 }
3427 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3428 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3429 switch (pVM->pgm.s.enmShadowMode)
3430 {
3431 case PGMMODE_PAE:
3432 case PGMMODE_PAE_NX:
3433 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3434 break;
3435 case PGMMODE_NESTED:
3436 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3437 break;
3438 case PGMMODE_EPT:
3439 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3440 break;
3441 case PGMMODE_32_BIT:
3442 case PGMMODE_AMD64:
3443 case PGMMODE_AMD64_NX:
3444 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3445 default: AssertFailed(); break;
3446 }
3447 break;
3448 }
3449
3450#ifdef VBOX_WITH_64_BITS_GUESTS
3451 case PGMMODE_AMD64_NX:
3452 case PGMMODE_AMD64:
3453 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3454 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3455 switch (pVM->pgm.s.enmShadowMode)
3456 {
3457 case PGMMODE_AMD64:
3458 case PGMMODE_AMD64_NX:
3459 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3460 break;
3461 case PGMMODE_NESTED:
3462 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3463 break;
3464 case PGMMODE_EPT:
3465 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3466 break;
3467 case PGMMODE_32_BIT:
3468 case PGMMODE_PAE:
3469 case PGMMODE_PAE_NX:
3470 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3471 default: AssertFailed(); break;
3472 }
3473 break;
3474#endif
3475
3476 default:
3477 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3478 rc = VERR_NOT_IMPLEMENTED;
3479 break;
3480 }
3481
3482 /* status codes. */
3483 AssertRC(rc);
3484 AssertRC(rc2);
3485 if (RT_SUCCESS(rc))
3486 {
3487 rc = rc2;
3488 if (RT_SUCCESS(rc)) /* no informational status codes. */
3489 rc = VINF_SUCCESS;
3490 }
3491
3492 /*
3493 * Notify SELM so it can update the TSSes with correct CR3s.
3494 */
3495 SELMR3PagingModeChanged(pVM);
3496
3497 /* Notify HWACCM as well. */
3498 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3499 return rc;
3500}
3501
3502
3503/**
3504 * Dumps a PAE shadow page table.
3505 *
3506 * @returns VBox status code (VINF_SUCCESS).
3507 * @param pVM The VM handle.
3508 * @param pPT Pointer to the page table.
3509 * @param u64Address The virtual address of the page table starts.
3510 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3511 * @param cMaxDepth The maxium depth.
3512 * @param pHlp Pointer to the output functions.
3513 */
3514static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3515{
3516 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3517 {
3518 X86PTEPAE Pte = pPT->a[i];
3519 if (Pte.n.u1Present)
3520 {
3521 pHlp->pfnPrintf(pHlp,
3522 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3523 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3524 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3525 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3526 Pte.n.u1Write ? 'W' : 'R',
3527 Pte.n.u1User ? 'U' : 'S',
3528 Pte.n.u1Accessed ? 'A' : '-',
3529 Pte.n.u1Dirty ? 'D' : '-',
3530 Pte.n.u1Global ? 'G' : '-',
3531 Pte.n.u1WriteThru ? "WT" : "--",
3532 Pte.n.u1CacheDisable? "CD" : "--",
3533 Pte.n.u1PAT ? "AT" : "--",
3534 Pte.n.u1NoExecute ? "NX" : "--",
3535 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3536 Pte.u & RT_BIT(10) ? '1' : '0',
3537 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3538 Pte.u & X86_PTE_PAE_PG_MASK);
3539 }
3540 }
3541 return VINF_SUCCESS;
3542}
3543
3544
3545/**
3546 * Dumps a PAE shadow page directory table.
3547 *
3548 * @returns VBox status code (VINF_SUCCESS).
3549 * @param pVM The VM handle.
3550 * @param HCPhys The physical address of the page directory table.
3551 * @param u64Address The virtual address of the page table starts.
3552 * @param cr4 The CR4, PSE is currently used.
3553 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3554 * @param cMaxDepth The maxium depth.
3555 * @param pHlp Pointer to the output functions.
3556 */
3557static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3558{
3559 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3560 if (!pPD)
3561 {
3562 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3563 fLongMode ? 16 : 8, u64Address, HCPhys);
3564 return VERR_INVALID_PARAMETER;
3565 }
3566 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3567
3568 int rc = VINF_SUCCESS;
3569 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3570 {
3571 X86PDEPAE Pde = pPD->a[i];
3572 if (Pde.n.u1Present)
3573 {
3574 if (fBigPagesSupported && Pde.b.u1Size)
3575 pHlp->pfnPrintf(pHlp,
3576 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3577 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3578 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3579 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3580 Pde.b.u1Write ? 'W' : 'R',
3581 Pde.b.u1User ? 'U' : 'S',
3582 Pde.b.u1Accessed ? 'A' : '-',
3583 Pde.b.u1Dirty ? 'D' : '-',
3584 Pde.b.u1Global ? 'G' : '-',
3585 Pde.b.u1WriteThru ? "WT" : "--",
3586 Pde.b.u1CacheDisable? "CD" : "--",
3587 Pde.b.u1PAT ? "AT" : "--",
3588 Pde.b.u1NoExecute ? "NX" : "--",
3589 Pde.u & RT_BIT_64(9) ? '1' : '0',
3590 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3591 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3592 Pde.u & X86_PDE_PAE_PG_MASK);
3593 else
3594 {
3595 pHlp->pfnPrintf(pHlp,
3596 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3597 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3598 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3599 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3600 Pde.n.u1Write ? 'W' : 'R',
3601 Pde.n.u1User ? 'U' : 'S',
3602 Pde.n.u1Accessed ? 'A' : '-',
3603 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3604 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3605 Pde.n.u1WriteThru ? "WT" : "--",
3606 Pde.n.u1CacheDisable? "CD" : "--",
3607 Pde.n.u1NoExecute ? "NX" : "--",
3608 Pde.u & RT_BIT_64(9) ? '1' : '0',
3609 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3610 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3611 Pde.u & X86_PDE_PAE_PG_MASK);
3612 if (cMaxDepth >= 1)
3613 {
3614 /** @todo what about using the page pool for mapping PTs? */
3615 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3616 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3617 PX86PTPAE pPT = NULL;
3618 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3619 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3620 else
3621 {
3622 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3623 {
3624 uint64_t off = u64AddressPT - pMap->GCPtr;
3625 if (off < pMap->cb)
3626 {
3627 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3628 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3629 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3630 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3631 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3632 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3633 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3634 }
3635 }
3636 }
3637 int rc2 = VERR_INVALID_PARAMETER;
3638 if (pPT)
3639 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3640 else
3641 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3642 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3643 if (rc2 < rc && RT_SUCCESS(rc))
3644 rc = rc2;
3645 }
3646 }
3647 }
3648 }
3649 return rc;
3650}
3651
3652
3653/**
3654 * Dumps a PAE shadow page directory pointer table.
3655 *
3656 * @returns VBox status code (VINF_SUCCESS).
3657 * @param pVM The VM handle.
3658 * @param HCPhys The physical address of the page directory pointer table.
3659 * @param u64Address The virtual address of the page table starts.
3660 * @param cr4 The CR4, PSE is currently used.
3661 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3662 * @param cMaxDepth The maxium depth.
3663 * @param pHlp Pointer to the output functions.
3664 */
3665static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3666{
3667 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3668 if (!pPDPT)
3669 {
3670 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3671 fLongMode ? 16 : 8, u64Address, HCPhys);
3672 return VERR_INVALID_PARAMETER;
3673 }
3674
3675 int rc = VINF_SUCCESS;
3676 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3677 for (unsigned i = 0; i < c; i++)
3678 {
3679 X86PDPE Pdpe = pPDPT->a[i];
3680 if (Pdpe.n.u1Present)
3681 {
3682 if (fLongMode)
3683 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3684 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3685 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3686 Pdpe.lm.u1Write ? 'W' : 'R',
3687 Pdpe.lm.u1User ? 'U' : 'S',
3688 Pdpe.lm.u1Accessed ? 'A' : '-',
3689 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3690 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3691 Pdpe.lm.u1WriteThru ? "WT" : "--",
3692 Pdpe.lm.u1CacheDisable? "CD" : "--",
3693 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3694 Pdpe.lm.u1NoExecute ? "NX" : "--",
3695 Pdpe.u & RT_BIT(9) ? '1' : '0',
3696 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3697 Pdpe.u & RT_BIT(11) ? '1' : '0',
3698 Pdpe.u & X86_PDPE_PG_MASK);
3699 else
3700 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3701 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3702 i << X86_PDPT_SHIFT,
3703 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3704 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3705 Pdpe.n.u1WriteThru ? "WT" : "--",
3706 Pdpe.n.u1CacheDisable? "CD" : "--",
3707 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3708 Pdpe.u & RT_BIT(9) ? '1' : '0',
3709 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3710 Pdpe.u & RT_BIT(11) ? '1' : '0',
3711 Pdpe.u & X86_PDPE_PG_MASK);
3712 if (cMaxDepth >= 1)
3713 {
3714 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3715 cr4, fLongMode, cMaxDepth - 1, pHlp);
3716 if (rc2 < rc && RT_SUCCESS(rc))
3717 rc = rc2;
3718 }
3719 }
3720 }
3721 return rc;
3722}
3723
3724
3725/**
3726 * Dumps a 32-bit shadow page table.
3727 *
3728 * @returns VBox status code (VINF_SUCCESS).
3729 * @param pVM The VM handle.
3730 * @param HCPhys The physical address of the table.
3731 * @param cr4 The CR4, PSE is currently used.
3732 * @param cMaxDepth The maxium depth.
3733 * @param pHlp Pointer to the output functions.
3734 */
3735static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3736{
3737 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3738 if (!pPML4)
3739 {
3740 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3741 return VERR_INVALID_PARAMETER;
3742 }
3743
3744 int rc = VINF_SUCCESS;
3745 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3746 {
3747 X86PML4E Pml4e = pPML4->a[i];
3748 if (Pml4e.n.u1Present)
3749 {
3750 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3751 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3752 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3753 u64Address,
3754 Pml4e.n.u1Write ? 'W' : 'R',
3755 Pml4e.n.u1User ? 'U' : 'S',
3756 Pml4e.n.u1Accessed ? 'A' : '-',
3757 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3758 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3759 Pml4e.n.u1WriteThru ? "WT" : "--",
3760 Pml4e.n.u1CacheDisable? "CD" : "--",
3761 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3762 Pml4e.n.u1NoExecute ? "NX" : "--",
3763 Pml4e.u & RT_BIT(9) ? '1' : '0',
3764 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3765 Pml4e.u & RT_BIT(11) ? '1' : '0',
3766 Pml4e.u & X86_PML4E_PG_MASK);
3767
3768 if (cMaxDepth >= 1)
3769 {
3770 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3771 if (rc2 < rc && RT_SUCCESS(rc))
3772 rc = rc2;
3773 }
3774 }
3775 }
3776 return rc;
3777}
3778
3779
3780/**
3781 * Dumps a 32-bit shadow page table.
3782 *
3783 * @returns VBox status code (VINF_SUCCESS).
3784 * @param pVM The VM handle.
3785 * @param pPT Pointer to the page table.
3786 * @param u32Address The virtual address this table starts at.
3787 * @param pHlp Pointer to the output functions.
3788 */
3789int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3790{
3791 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3792 {
3793 X86PTE Pte = pPT->a[i];
3794 if (Pte.n.u1Present)
3795 {
3796 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3797 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3798 u32Address + (i << X86_PT_SHIFT),
3799 Pte.n.u1Write ? 'W' : 'R',
3800 Pte.n.u1User ? 'U' : 'S',
3801 Pte.n.u1Accessed ? 'A' : '-',
3802 Pte.n.u1Dirty ? 'D' : '-',
3803 Pte.n.u1Global ? 'G' : '-',
3804 Pte.n.u1WriteThru ? "WT" : "--",
3805 Pte.n.u1CacheDisable? "CD" : "--",
3806 Pte.n.u1PAT ? "AT" : "--",
3807 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3808 Pte.u & RT_BIT(10) ? '1' : '0',
3809 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3810 Pte.u & X86_PDE_PG_MASK);
3811 }
3812 }
3813 return VINF_SUCCESS;
3814}
3815
3816
3817/**
3818 * Dumps a 32-bit shadow page directory and page tables.
3819 *
3820 * @returns VBox status code (VINF_SUCCESS).
3821 * @param pVM The VM handle.
3822 * @param cr3 The root of the hierarchy.
3823 * @param cr4 The CR4, PSE is currently used.
3824 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3825 * @param pHlp Pointer to the output functions.
3826 */
3827int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3828{
3829 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3830 if (!pPD)
3831 {
3832 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3833 return VERR_INVALID_PARAMETER;
3834 }
3835
3836 int rc = VINF_SUCCESS;
3837 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3838 {
3839 X86PDE Pde = pPD->a[i];
3840 if (Pde.n.u1Present)
3841 {
3842 const uint32_t u32Address = i << X86_PD_SHIFT;
3843 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3844 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3845 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3846 u32Address,
3847 Pde.b.u1Write ? 'W' : 'R',
3848 Pde.b.u1User ? 'U' : 'S',
3849 Pde.b.u1Accessed ? 'A' : '-',
3850 Pde.b.u1Dirty ? 'D' : '-',
3851 Pde.b.u1Global ? 'G' : '-',
3852 Pde.b.u1WriteThru ? "WT" : "--",
3853 Pde.b.u1CacheDisable? "CD" : "--",
3854 Pde.b.u1PAT ? "AT" : "--",
3855 Pde.u & RT_BIT_64(9) ? '1' : '0',
3856 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3857 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3858 Pde.u & X86_PDE4M_PG_MASK);
3859 else
3860 {
3861 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3862 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3863 u32Address,
3864 Pde.n.u1Write ? 'W' : 'R',
3865 Pde.n.u1User ? 'U' : 'S',
3866 Pde.n.u1Accessed ? 'A' : '-',
3867 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3868 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3869 Pde.n.u1WriteThru ? "WT" : "--",
3870 Pde.n.u1CacheDisable? "CD" : "--",
3871 Pde.u & RT_BIT_64(9) ? '1' : '0',
3872 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3873 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3874 Pde.u & X86_PDE_PG_MASK);
3875 if (cMaxDepth >= 1)
3876 {
3877 /** @todo what about using the page pool for mapping PTs? */
3878 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3879 PX86PT pPT = NULL;
3880 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3881 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3882 else
3883 {
3884 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3885 if (u32Address - pMap->GCPtr < pMap->cb)
3886 {
3887 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3888 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3889 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3890 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3891 pPT = pMap->aPTs[iPDE].pPTR3;
3892 }
3893 }
3894 int rc2 = VERR_INVALID_PARAMETER;
3895 if (pPT)
3896 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3897 else
3898 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3899 if (rc2 < rc && RT_SUCCESS(rc))
3900 rc = rc2;
3901 }
3902 }
3903 }
3904 }
3905
3906 return rc;
3907}
3908
3909
3910/**
3911 * Dumps a 32-bit shadow page table.
3912 *
3913 * @returns VBox status code (VINF_SUCCESS).
3914 * @param pVM The VM handle.
3915 * @param pPT Pointer to the page table.
3916 * @param u32Address The virtual address this table starts at.
3917 * @param PhysSearch Address to search for.
3918 */
3919int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3920{
3921 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3922 {
3923 X86PTE Pte = pPT->a[i];
3924 if (Pte.n.u1Present)
3925 {
3926 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3927 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3928 u32Address + (i << X86_PT_SHIFT),
3929 Pte.n.u1Write ? 'W' : 'R',
3930 Pte.n.u1User ? 'U' : 'S',
3931 Pte.n.u1Accessed ? 'A' : '-',
3932 Pte.n.u1Dirty ? 'D' : '-',
3933 Pte.n.u1Global ? 'G' : '-',
3934 Pte.n.u1WriteThru ? "WT" : "--",
3935 Pte.n.u1CacheDisable? "CD" : "--",
3936 Pte.n.u1PAT ? "AT" : "--",
3937 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3938 Pte.u & RT_BIT(10) ? '1' : '0',
3939 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3940 Pte.u & X86_PDE_PG_MASK));
3941
3942 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3943 {
3944 uint64_t fPageShw = 0;
3945 RTHCPHYS pPhysHC = 0;
3946
3947 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3948 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3949 }
3950 }
3951 }
3952 return VINF_SUCCESS;
3953}
3954
3955
3956/**
3957 * Dumps a 32-bit guest page directory and page tables.
3958 *
3959 * @returns VBox status code (VINF_SUCCESS).
3960 * @param pVM The VM handle.
3961 * @param cr3 The root of the hierarchy.
3962 * @param cr4 The CR4, PSE is currently used.
3963 * @param PhysSearch Address to search for.
3964 */
3965VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3966{
3967 bool fLongMode = false;
3968 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3969 PX86PD pPD = 0;
3970
3971 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3972 if (RT_FAILURE(rc) || !pPD)
3973 {
3974 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3975 return VERR_INVALID_PARAMETER;
3976 }
3977
3978 Log(("cr3=%08x cr4=%08x%s\n"
3979 "%-*s P - Present\n"
3980 "%-*s | R/W - Read (0) / Write (1)\n"
3981 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3982 "%-*s | | | A - Accessed\n"
3983 "%-*s | | | | D - Dirty\n"
3984 "%-*s | | | | | G - Global\n"
3985 "%-*s | | | | | | WT - Write thru\n"
3986 "%-*s | | | | | | | CD - Cache disable\n"
3987 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3988 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3989 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3990 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3991 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3992 "%-*s Level | | | | | | | | | | | | Page\n"
3993 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3994 - W U - - - -- -- -- -- -- 010 */
3995 , cr3, cr4, fLongMode ? " Long Mode" : "",
3996 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3997 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3998
3999 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4000 {
4001 X86PDE Pde = pPD->a[i];
4002 if (Pde.n.u1Present)
4003 {
4004 const uint32_t u32Address = i << X86_PD_SHIFT;
4005
4006 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4007 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4008 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4009 u32Address,
4010 Pde.b.u1Write ? 'W' : 'R',
4011 Pde.b.u1User ? 'U' : 'S',
4012 Pde.b.u1Accessed ? 'A' : '-',
4013 Pde.b.u1Dirty ? 'D' : '-',
4014 Pde.b.u1Global ? 'G' : '-',
4015 Pde.b.u1WriteThru ? "WT" : "--",
4016 Pde.b.u1CacheDisable? "CD" : "--",
4017 Pde.b.u1PAT ? "AT" : "--",
4018 Pde.u & RT_BIT(9) ? '1' : '0',
4019 Pde.u & RT_BIT(10) ? '1' : '0',
4020 Pde.u & RT_BIT(11) ? '1' : '0',
4021 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4022 /** @todo PhysSearch */
4023 else
4024 {
4025 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4026 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4027 u32Address,
4028 Pde.n.u1Write ? 'W' : 'R',
4029 Pde.n.u1User ? 'U' : 'S',
4030 Pde.n.u1Accessed ? 'A' : '-',
4031 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4032 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4033 Pde.n.u1WriteThru ? "WT" : "--",
4034 Pde.n.u1CacheDisable? "CD" : "--",
4035 Pde.u & RT_BIT(9) ? '1' : '0',
4036 Pde.u & RT_BIT(10) ? '1' : '0',
4037 Pde.u & RT_BIT(11) ? '1' : '0',
4038 Pde.u & X86_PDE_PG_MASK));
4039 ////if (cMaxDepth >= 1)
4040 {
4041 /** @todo what about using the page pool for mapping PTs? */
4042 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4043 PX86PT pPT = NULL;
4044
4045 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4046
4047 int rc2 = VERR_INVALID_PARAMETER;
4048 if (pPT)
4049 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4050 else
4051 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4052 if (rc2 < rc && RT_SUCCESS(rc))
4053 rc = rc2;
4054 }
4055 }
4056 }
4057 }
4058
4059 return rc;
4060}
4061
4062
4063/**
4064 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4065 *
4066 * @returns VBox status code (VINF_SUCCESS).
4067 * @param pVM The VM handle.
4068 * @param cr3 The root of the hierarchy.
4069 * @param cr4 The cr4, only PAE and PSE is currently used.
4070 * @param fLongMode Set if long mode, false if not long mode.
4071 * @param cMaxDepth Number of levels to dump.
4072 * @param pHlp Pointer to the output functions.
4073 */
4074VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4075{
4076 if (!pHlp)
4077 pHlp = DBGFR3InfoLogHlp();
4078 if (!cMaxDepth)
4079 return VINF_SUCCESS;
4080 const unsigned cch = fLongMode ? 16 : 8;
4081 pHlp->pfnPrintf(pHlp,
4082 "cr3=%08x cr4=%08x%s\n"
4083 "%-*s P - Present\n"
4084 "%-*s | R/W - Read (0) / Write (1)\n"
4085 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4086 "%-*s | | | A - Accessed\n"
4087 "%-*s | | | | D - Dirty\n"
4088 "%-*s | | | | | G - Global\n"
4089 "%-*s | | | | | | WT - Write thru\n"
4090 "%-*s | | | | | | | CD - Cache disable\n"
4091 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4092 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4093 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4094 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4095 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4096 "%-*s Level | | | | | | | | | | | | Page\n"
4097 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4098 - W U - - - -- -- -- -- -- 010 */
4099 , cr3, cr4, fLongMode ? " Long Mode" : "",
4100 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4101 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4102 if (cr4 & X86_CR4_PAE)
4103 {
4104 if (fLongMode)
4105 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4106 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4107 }
4108 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4109}
4110
4111#ifdef VBOX_WITH_DEBUGGER
4112
4113/**
4114 * The '.pgmram' command.
4115 *
4116 * @returns VBox status.
4117 * @param pCmd Pointer to the command descriptor (as registered).
4118 * @param pCmdHlp Pointer to command helper functions.
4119 * @param pVM Pointer to the current VM (if any).
4120 * @param paArgs Pointer to (readonly) array of arguments.
4121 * @param cArgs Number of arguments in the array.
4122 */
4123static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4124{
4125 /*
4126 * Validate input.
4127 */
4128 if (!pVM)
4129 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4130 if (!pVM->pgm.s.pRamRangesRC)
4131 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4132
4133 /*
4134 * Dump the ranges.
4135 */
4136 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4137 PPGMRAMRANGE pRam;
4138 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4139 {
4140 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4141 "%RGp - %RGp %p\n",
4142 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4143 if (RT_FAILURE(rc))
4144 return rc;
4145 }
4146
4147 return VINF_SUCCESS;
4148}
4149
4150
4151/**
4152 * The '.pgmmap' command.
4153 *
4154 * @returns VBox status.
4155 * @param pCmd Pointer to the command descriptor (as registered).
4156 * @param pCmdHlp Pointer to command helper functions.
4157 * @param pVM Pointer to the current VM (if any).
4158 * @param paArgs Pointer to (readonly) array of arguments.
4159 * @param cArgs Number of arguments in the array.
4160 */
4161static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4162{
4163 /*
4164 * Validate input.
4165 */
4166 if (!pVM)
4167 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4168 if (!pVM->pgm.s.pMappingsR3)
4169 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4170
4171 /*
4172 * Print message about the fixedness of the mappings.
4173 */
4174 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4175 if (RT_FAILURE(rc))
4176 return rc;
4177
4178 /*
4179 * Dump the ranges.
4180 */
4181 PPGMMAPPING pCur;
4182 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4183 {
4184 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4185 "%08x - %08x %s\n",
4186 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4187 if (RT_FAILURE(rc))
4188 return rc;
4189 }
4190
4191 return VINF_SUCCESS;
4192}
4193
4194
4195/**
4196 * The '.pgmsync' command.
4197 *
4198 * @returns VBox status.
4199 * @param pCmd Pointer to the command descriptor (as registered).
4200 * @param pCmdHlp Pointer to command helper functions.
4201 * @param pVM Pointer to the current VM (if any).
4202 * @param paArgs Pointer to (readonly) array of arguments.
4203 * @param cArgs Number of arguments in the array.
4204 */
4205static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4206{
4207 /*
4208 * Validate input.
4209 */
4210 if (!pVM)
4211 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4212
4213 /*
4214 * Force page directory sync.
4215 */
4216 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4217
4218 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4219 if (RT_FAILURE(rc))
4220 return rc;
4221
4222 return VINF_SUCCESS;
4223}
4224
4225
4226#ifdef VBOX_STRICT
4227/**
4228 * The '.pgmassertcr3' command.
4229 *
4230 * @returns VBox status.
4231 * @param pCmd Pointer to the command descriptor (as registered).
4232 * @param pCmdHlp Pointer to command helper functions.
4233 * @param pVM Pointer to the current VM (if any).
4234 * @param paArgs Pointer to (readonly) array of arguments.
4235 * @param cArgs Number of arguments in the array.
4236 */
4237static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4238{
4239 /*
4240 * Validate input.
4241 */
4242 if (!pVM)
4243 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4244
4245 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4246 if (RT_FAILURE(rc))
4247 return rc;
4248
4249 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4250
4251 return VINF_SUCCESS;
4252}
4253#endif /* VBOX_STRICT */
4254
4255
4256/**
4257 * The '.pgmsyncalways' command.
4258 *
4259 * @returns VBox status.
4260 * @param pCmd Pointer to the command descriptor (as registered).
4261 * @param pCmdHlp Pointer to command helper functions.
4262 * @param pVM Pointer to the current VM (if any).
4263 * @param paArgs Pointer to (readonly) array of arguments.
4264 * @param cArgs Number of arguments in the array.
4265 */
4266static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4267{
4268 /*
4269 * Validate input.
4270 */
4271 if (!pVM)
4272 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4273
4274 /*
4275 * Force page directory sync.
4276 */
4277 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4278 {
4279 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4280 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4281 }
4282 else
4283 {
4284 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4285 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4286 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4287 }
4288}
4289
4290#endif /* VBOX_WITH_DEBUGGER */
4291
4292/**
4293 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4294 */
4295typedef struct PGMCHECKINTARGS
4296{
4297 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4298 PPGMPHYSHANDLER pPrevPhys;
4299 PPGMVIRTHANDLER pPrevVirt;
4300 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4301 PVM pVM;
4302} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4303
4304/**
4305 * Validate a node in the physical handler tree.
4306 *
4307 * @returns 0 on if ok, other wise 1.
4308 * @param pNode The handler node.
4309 * @param pvUser pVM.
4310 */
4311static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4312{
4313 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4314 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4315 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4316 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4317 AssertReleaseMsg( !pArgs->pPrevPhys
4318 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4319 ("pPrevPhys=%p %RGp-%RGp %s\n"
4320 " pCur=%p %RGp-%RGp %s\n",
4321 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4322 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4323 pArgs->pPrevPhys = pCur;
4324 return 0;
4325}
4326
4327
4328/**
4329 * Validate a node in the virtual handler tree.
4330 *
4331 * @returns 0 on if ok, other wise 1.
4332 * @param pNode The handler node.
4333 * @param pvUser pVM.
4334 */
4335static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4336{
4337 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4338 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4339 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4340 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4341 AssertReleaseMsg( !pArgs->pPrevVirt
4342 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4343 ("pPrevVirt=%p %RGv-%RGv %s\n"
4344 " pCur=%p %RGv-%RGv %s\n",
4345 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4346 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4347 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4348 {
4349 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4350 ("pCur=%p %RGv-%RGv %s\n"
4351 "iPage=%d offVirtHandle=%#x expected %#x\n",
4352 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4353 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4354 }
4355 pArgs->pPrevVirt = pCur;
4356 return 0;
4357}
4358
4359
4360/**
4361 * Validate a node in the virtual handler tree.
4362 *
4363 * @returns 0 on if ok, other wise 1.
4364 * @param pNode The handler node.
4365 * @param pvUser pVM.
4366 */
4367static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4368{
4369 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4370 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4371 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4372 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4373 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4374 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4375 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4376 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4377 " pCur=%p %RGp-%RGp\n",
4378 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4379 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4380 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4381 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4382 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4383 " pCur=%p %RGp-%RGp\n",
4384 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4385 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4386 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4387 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4388 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4389 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4390 {
4391 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4392 for (;;)
4393 {
4394 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4395 AssertReleaseMsg(pCur2 != pCur,
4396 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4397 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4398 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4399 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4400 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4401 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4402 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4403 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4404 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4405 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4406 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4407 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4408 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4409 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4410 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4411 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4412 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4413 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4414 break;
4415 }
4416 }
4417
4418 pArgs->pPrevPhys2Virt = pCur;
4419 return 0;
4420}
4421
4422
4423/**
4424 * Perform an integrity check on the PGM component.
4425 *
4426 * @returns VINF_SUCCESS if everything is fine.
4427 * @returns VBox error status after asserting on integrity breach.
4428 * @param pVM The VM handle.
4429 */
4430VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4431{
4432 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4433
4434 /*
4435 * Check the trees.
4436 */
4437 int cErrors = 0;
4438 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4439 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4440 PGMCHECKINTARGS Args = s_LeftToRight;
4441 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4442 Args = s_RightToLeft;
4443 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4444 Args = s_LeftToRight;
4445 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4446 Args = s_RightToLeft;
4447 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4448 Args = s_LeftToRight;
4449 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4450 Args = s_RightToLeft;
4451 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4452 Args = s_LeftToRight;
4453 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4454 Args = s_RightToLeft;
4455 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4456
4457 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4458}
4459
4460
4461/**
4462 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4463 *
4464 * @returns VBox status code.
4465 * @param pVM VM handle.
4466 * @param fEnable Enable or disable shadow mappings
4467 */
4468VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4469{
4470 pVM->pgm.s.fDisableMappings = !fEnable;
4471
4472 uint32_t cb;
4473 int rc = PGMR3MappingsSize(pVM, &cb);
4474 AssertRCReturn(rc, rc);
4475
4476 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4477 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4478 AssertRCReturn(rc, rc);
4479
4480 return VINF_SUCCESS;
4481}
4482
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette