VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 16840

Last change on this file since 16840 was 16801, checked in by vboxsync, 16 years ago

VBOX_WITH_PGMPOOL_PAGING_ONLY: missing relocation

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 219.1 KB
Line 
1/* $Id: PGM.cpp 16801 2009-02-16 17:01:02Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
688#include "PGMBth.h"
689#include "PGMGst.h"
690#undef BTH_PGMPOOLKIND_PT_FOR_PT
691#undef BTH_PGMPOOLKIND_ROOT
692#undef PGM_BTH_NAME
693#undef PGM_BTH_NAME_RC_STR
694#undef PGM_BTH_NAME_R0_STR
695#undef PGM_GST_TYPE
696#undef PGM_GST_NAME
697#undef PGM_GST_NAME_RC_STR
698#undef PGM_GST_NAME_R0_STR
699
700/* Guest - protected mode */
701#define PGM_GST_TYPE PGM_TYPE_PROT
702#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
703#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
704#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
705#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
706#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
707#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
708#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
709#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
710#include "PGMBth.h"
711#include "PGMGst.h"
712#undef BTH_PGMPOOLKIND_PT_FOR_PT
713#undef BTH_PGMPOOLKIND_ROOT
714#undef PGM_BTH_NAME
715#undef PGM_BTH_NAME_RC_STR
716#undef PGM_BTH_NAME_R0_STR
717#undef PGM_GST_TYPE
718#undef PGM_GST_NAME
719#undef PGM_GST_NAME_RC_STR
720#undef PGM_GST_NAME_R0_STR
721
722/* Guest - 32-bit mode */
723#define PGM_GST_TYPE PGM_TYPE_32BIT
724#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
725#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
726#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
727#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
728#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
729#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
730#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
731#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
732#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
733#include "PGMBth.h"
734#include "PGMGst.h"
735#undef BTH_PGMPOOLKIND_PT_FOR_BIG
736#undef BTH_PGMPOOLKIND_PT_FOR_PT
737#undef BTH_PGMPOOLKIND_ROOT
738#undef PGM_BTH_NAME
739#undef PGM_BTH_NAME_RC_STR
740#undef PGM_BTH_NAME_R0_STR
741#undef PGM_GST_TYPE
742#undef PGM_GST_NAME
743#undef PGM_GST_NAME_RC_STR
744#undef PGM_GST_NAME_R0_STR
745
746#undef PGM_SHW_TYPE
747#undef PGM_SHW_NAME
748#undef PGM_SHW_NAME_RC_STR
749#undef PGM_SHW_NAME_R0_STR
750
751
752/*
753 * Shadow - PAE mode
754 */
755#define PGM_SHW_TYPE PGM_TYPE_PAE
756#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
757#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
758#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
759#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
760#include "PGMShw.h"
761
762/* Guest - real mode */
763#define PGM_GST_TYPE PGM_TYPE_REAL
764#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
765#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
766#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
767#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
768#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
769#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
770#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
771#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
772#include "PGMBth.h"
773#undef BTH_PGMPOOLKIND_PT_FOR_PT
774#undef BTH_PGMPOOLKIND_ROOT
775#undef PGM_BTH_NAME
776#undef PGM_BTH_NAME_RC_STR
777#undef PGM_BTH_NAME_R0_STR
778#undef PGM_GST_TYPE
779#undef PGM_GST_NAME
780#undef PGM_GST_NAME_RC_STR
781#undef PGM_GST_NAME_R0_STR
782
783/* Guest - protected mode */
784#define PGM_GST_TYPE PGM_TYPE_PROT
785#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
792#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
793#include "PGMBth.h"
794#undef BTH_PGMPOOLKIND_PT_FOR_PT
795#undef BTH_PGMPOOLKIND_ROOT
796#undef PGM_BTH_NAME
797#undef PGM_BTH_NAME_RC_STR
798#undef PGM_BTH_NAME_R0_STR
799#undef PGM_GST_TYPE
800#undef PGM_GST_NAME
801#undef PGM_GST_NAME_RC_STR
802#undef PGM_GST_NAME_R0_STR
803
804/* Guest - 32-bit mode */
805#define PGM_GST_TYPE PGM_TYPE_32BIT
806#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
807#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
808#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
809#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
810#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
811#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
812#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
813#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
814#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
815#include "PGMBth.h"
816#undef BTH_PGMPOOLKIND_PT_FOR_BIG
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827/* Guest - PAE mode */
828#define PGM_GST_TYPE PGM_TYPE_PAE
829#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
830#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
831#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
832#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
833#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
834#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
835#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
836#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
837#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
838#include "PGMBth.h"
839#include "PGMGst.h"
840#undef BTH_PGMPOOLKIND_PT_FOR_BIG
841#undef BTH_PGMPOOLKIND_PT_FOR_PT
842#undef BTH_PGMPOOLKIND_ROOT
843#undef PGM_BTH_NAME
844#undef PGM_BTH_NAME_RC_STR
845#undef PGM_BTH_NAME_R0_STR
846#undef PGM_GST_TYPE
847#undef PGM_GST_NAME
848#undef PGM_GST_NAME_RC_STR
849#undef PGM_GST_NAME_R0_STR
850
851#undef PGM_SHW_TYPE
852#undef PGM_SHW_NAME
853#undef PGM_SHW_NAME_RC_STR
854#undef PGM_SHW_NAME_R0_STR
855
856
857/*
858 * Shadow - AMD64 mode
859 */
860#define PGM_SHW_TYPE PGM_TYPE_AMD64
861#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
862#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
863#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
864#include "PGMShw.h"
865
866#ifdef VBOX_WITH_64_BITS_GUESTS
867/* Guest - AMD64 mode */
868# define PGM_GST_TYPE PGM_TYPE_AMD64
869# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
870# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
871# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
872# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
873# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
874# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
875# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
876# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
877# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
878# include "PGMBth.h"
879# include "PGMGst.h"
880# undef BTH_PGMPOOLKIND_PT_FOR_BIG
881# undef BTH_PGMPOOLKIND_PT_FOR_PT
882# undef BTH_PGMPOOLKIND_ROOT
883# undef PGM_BTH_NAME
884# undef PGM_BTH_NAME_RC_STR
885# undef PGM_BTH_NAME_R0_STR
886# undef PGM_GST_TYPE
887# undef PGM_GST_NAME
888# undef PGM_GST_NAME_RC_STR
889# undef PGM_GST_NAME_R0_STR
890#endif /* VBOX_WITH_64_BITS_GUESTS */
891
892#undef PGM_SHW_TYPE
893#undef PGM_SHW_NAME
894#undef PGM_SHW_NAME_RC_STR
895#undef PGM_SHW_NAME_R0_STR
896
897
898/*
899 * Shadow - Nested paging mode
900 */
901#define PGM_SHW_TYPE PGM_TYPE_NESTED
902#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
903#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
904#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
905#include "PGMShw.h"
906
907/* Guest - real mode */
908#define PGM_GST_TYPE PGM_TYPE_REAL
909#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
910#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
911#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
912#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
913#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
914#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
915#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
916#include "PGMBth.h"
917#undef BTH_PGMPOOLKIND_PT_FOR_PT
918#undef PGM_BTH_NAME
919#undef PGM_BTH_NAME_RC_STR
920#undef PGM_BTH_NAME_R0_STR
921#undef PGM_GST_TYPE
922#undef PGM_GST_NAME
923#undef PGM_GST_NAME_RC_STR
924#undef PGM_GST_NAME_R0_STR
925
926/* Guest - protected mode */
927#define PGM_GST_TYPE PGM_TYPE_PROT
928#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
929#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
930#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
931#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
932#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
933#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
934#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
935#include "PGMBth.h"
936#undef BTH_PGMPOOLKIND_PT_FOR_PT
937#undef PGM_BTH_NAME
938#undef PGM_BTH_NAME_RC_STR
939#undef PGM_BTH_NAME_R0_STR
940#undef PGM_GST_TYPE
941#undef PGM_GST_NAME
942#undef PGM_GST_NAME_RC_STR
943#undef PGM_GST_NAME_R0_STR
944
945/* Guest - 32-bit mode */
946#define PGM_GST_TYPE PGM_TYPE_32BIT
947#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
948#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
949#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
950#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
951#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
952#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
953#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
954#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
955#include "PGMBth.h"
956#undef BTH_PGMPOOLKIND_PT_FOR_BIG
957#undef BTH_PGMPOOLKIND_PT_FOR_PT
958#undef PGM_BTH_NAME
959#undef PGM_BTH_NAME_RC_STR
960#undef PGM_BTH_NAME_R0_STR
961#undef PGM_GST_TYPE
962#undef PGM_GST_NAME
963#undef PGM_GST_NAME_RC_STR
964#undef PGM_GST_NAME_R0_STR
965
966/* Guest - PAE mode */
967#define PGM_GST_TYPE PGM_TYPE_PAE
968#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
969#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
970#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
971#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
972#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
973#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
974#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
975#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
976#include "PGMBth.h"
977#undef BTH_PGMPOOLKIND_PT_FOR_BIG
978#undef BTH_PGMPOOLKIND_PT_FOR_PT
979#undef PGM_BTH_NAME
980#undef PGM_BTH_NAME_RC_STR
981#undef PGM_BTH_NAME_R0_STR
982#undef PGM_GST_TYPE
983#undef PGM_GST_NAME
984#undef PGM_GST_NAME_RC_STR
985#undef PGM_GST_NAME_R0_STR
986
987#ifdef VBOX_WITH_64_BITS_GUESTS
988/* Guest - AMD64 mode */
989# define PGM_GST_TYPE PGM_TYPE_AMD64
990# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
991# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
992# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
993# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
994# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
995# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
996# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
997# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
998# include "PGMBth.h"
999# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1000# undef BTH_PGMPOOLKIND_PT_FOR_PT
1001# undef PGM_BTH_NAME
1002# undef PGM_BTH_NAME_RC_STR
1003# undef PGM_BTH_NAME_R0_STR
1004# undef PGM_GST_TYPE
1005# undef PGM_GST_NAME
1006# undef PGM_GST_NAME_RC_STR
1007# undef PGM_GST_NAME_R0_STR
1008#endif /* VBOX_WITH_64_BITS_GUESTS */
1009
1010#undef PGM_SHW_TYPE
1011#undef PGM_SHW_NAME
1012#undef PGM_SHW_NAME_RC_STR
1013#undef PGM_SHW_NAME_R0_STR
1014
1015
1016/*
1017 * Shadow - EPT
1018 */
1019#define PGM_SHW_TYPE PGM_TYPE_EPT
1020#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1021#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1022#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1023#include "PGMShw.h"
1024
1025/* Guest - real mode */
1026#define PGM_GST_TYPE PGM_TYPE_REAL
1027#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1028#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1029#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1030#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1031#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1032#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1033#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1034#include "PGMBth.h"
1035#undef BTH_PGMPOOLKIND_PT_FOR_PT
1036#undef PGM_BTH_NAME
1037#undef PGM_BTH_NAME_RC_STR
1038#undef PGM_BTH_NAME_R0_STR
1039#undef PGM_GST_TYPE
1040#undef PGM_GST_NAME
1041#undef PGM_GST_NAME_RC_STR
1042#undef PGM_GST_NAME_R0_STR
1043
1044/* Guest - protected mode */
1045#define PGM_GST_TYPE PGM_TYPE_PROT
1046#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1047#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1048#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1049#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1050#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1051#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1052#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1053#include "PGMBth.h"
1054#undef BTH_PGMPOOLKIND_PT_FOR_PT
1055#undef PGM_BTH_NAME
1056#undef PGM_BTH_NAME_RC_STR
1057#undef PGM_BTH_NAME_R0_STR
1058#undef PGM_GST_TYPE
1059#undef PGM_GST_NAME
1060#undef PGM_GST_NAME_RC_STR
1061#undef PGM_GST_NAME_R0_STR
1062
1063/* Guest - 32-bit mode */
1064#define PGM_GST_TYPE PGM_TYPE_32BIT
1065#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1066#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1067#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1068#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1069#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1070#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1071#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1072#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1073#include "PGMBth.h"
1074#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1075#undef BTH_PGMPOOLKIND_PT_FOR_PT
1076#undef PGM_BTH_NAME
1077#undef PGM_BTH_NAME_RC_STR
1078#undef PGM_BTH_NAME_R0_STR
1079#undef PGM_GST_TYPE
1080#undef PGM_GST_NAME
1081#undef PGM_GST_NAME_RC_STR
1082#undef PGM_GST_NAME_R0_STR
1083
1084/* Guest - PAE mode */
1085#define PGM_GST_TYPE PGM_TYPE_PAE
1086#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1087#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1088#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1089#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1090#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1091#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1092#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1093#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1094#include "PGMBth.h"
1095#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1096#undef BTH_PGMPOOLKIND_PT_FOR_PT
1097#undef PGM_BTH_NAME
1098#undef PGM_BTH_NAME_RC_STR
1099#undef PGM_BTH_NAME_R0_STR
1100#undef PGM_GST_TYPE
1101#undef PGM_GST_NAME
1102#undef PGM_GST_NAME_RC_STR
1103#undef PGM_GST_NAME_R0_STR
1104
1105#ifdef VBOX_WITH_64_BITS_GUESTS
1106/* Guest - AMD64 mode */
1107# define PGM_GST_TYPE PGM_TYPE_AMD64
1108# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1109# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1110# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1111# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1112# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1113# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1114# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1115# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1116# include "PGMBth.h"
1117# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1118# undef BTH_PGMPOOLKIND_PT_FOR_PT
1119# undef PGM_BTH_NAME
1120# undef PGM_BTH_NAME_RC_STR
1121# undef PGM_BTH_NAME_R0_STR
1122# undef PGM_GST_TYPE
1123# undef PGM_GST_NAME
1124# undef PGM_GST_NAME_RC_STR
1125# undef PGM_GST_NAME_R0_STR
1126#endif /* VBOX_WITH_64_BITS_GUESTS */
1127
1128#undef PGM_SHW_TYPE
1129#undef PGM_SHW_NAME
1130#undef PGM_SHW_NAME_RC_STR
1131#undef PGM_SHW_NAME_R0_STR
1132
1133
1134
1135/**
1136 * Initiates the paging of VM.
1137 *
1138 * @returns VBox status code.
1139 * @param pVM Pointer to VM structure.
1140 */
1141VMMR3DECL(int) PGMR3Init(PVM pVM)
1142{
1143 LogFlow(("PGMR3Init:\n"));
1144
1145 /*
1146 * Assert alignment and sizes.
1147 */
1148 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1149
1150 /*
1151 * Init the structure.
1152 */
1153 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1154 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1155 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1156 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1157 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1158 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1159 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1160 pVM->pgm.s.fA20Enabled = true;
1161 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1162 pVM->pgm.s.pGstPaePdptR3 = NULL;
1163#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1164 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1165#endif
1166 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1167 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1168 {
1169 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1170#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1171 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1172#endif
1173 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1174 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1175 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1176 }
1177
1178#ifdef VBOX_STRICT
1179 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1180#endif
1181
1182 /*
1183 * Get the configured RAM size - to estimate saved state size.
1184 */
1185 uint64_t cbRam;
1186 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1187 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1188 cbRam = pVM->pgm.s.cbRamSize = 0;
1189 else if (RT_SUCCESS(rc))
1190 {
1191 if (cbRam < PAGE_SIZE)
1192 cbRam = 0;
1193 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1194 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1195 }
1196 else
1197 {
1198 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1199 return rc;
1200 }
1201
1202 /*
1203 * Register saved state data unit.
1204 */
1205 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1206 NULL, pgmR3Save, NULL,
1207 NULL, pgmR3Load, NULL);
1208 if (RT_FAILURE(rc))
1209 return rc;
1210
1211 /*
1212 * Initialize the PGM critical section and flush the phys TLBs
1213 */
1214 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1215 AssertRCReturn(rc, rc);
1216
1217 PGMR3PhysChunkInvalidateTLB(pVM);
1218 PGMPhysInvalidatePageR3MapTLB(pVM);
1219 PGMPhysInvalidatePageR0MapTLB(pVM);
1220 PGMPhysInvalidatePageGCMapTLB(pVM);
1221
1222 /*
1223 * Trees
1224 */
1225 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1226 if (RT_SUCCESS(rc))
1227 {
1228 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1229 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1230
1231 /*
1232 * Alocate the zero page.
1233 */
1234 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1235 }
1236 if (RT_SUCCESS(rc))
1237 {
1238 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1239 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1240 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1241 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1242 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1243
1244 /*
1245 * Init the paging.
1246 */
1247 rc = pgmR3InitPaging(pVM);
1248 }
1249 if (RT_SUCCESS(rc))
1250 {
1251 /*
1252 * Init the page pool.
1253 */
1254 rc = pgmR3PoolInit(pVM);
1255 }
1256#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1257 if (RT_SUCCESS(rc))
1258 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1259#endif
1260 if (RT_SUCCESS(rc))
1261 {
1262 /*
1263 * Info & statistics
1264 */
1265 DBGFR3InfoRegisterInternal(pVM, "mode",
1266 "Shows the current paging mode. "
1267 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1268 pgmR3InfoMode);
1269 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1270 "Dumps all the entries in the top level paging table. No arguments.",
1271 pgmR3InfoCr3);
1272 DBGFR3InfoRegisterInternal(pVM, "phys",
1273 "Dumps all the physical address ranges. No arguments.",
1274 pgmR3PhysInfo);
1275 DBGFR3InfoRegisterInternal(pVM, "handlers",
1276 "Dumps physical, virtual and hyper virtual handlers. "
1277 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1278 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1279 pgmR3InfoHandlers);
1280 DBGFR3InfoRegisterInternal(pVM, "mappings",
1281 "Dumps guest mappings.",
1282 pgmR3MapInfo);
1283
1284 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1285 STAM_REL_REG(pVM, &pVM->pgm.s.cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1286#ifdef VBOX_WITH_STATISTICS
1287 pgmR3InitStats(pVM);
1288#endif
1289#ifdef VBOX_WITH_DEBUGGER
1290 /*
1291 * Debugger commands.
1292 */
1293 static bool fRegisteredCmds = false;
1294 if (!fRegisteredCmds)
1295 {
1296 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1297 if (RT_SUCCESS(rc))
1298 fRegisteredCmds = true;
1299 }
1300#endif
1301 return VINF_SUCCESS;
1302 }
1303
1304 /* Almost no cleanup necessary, MM frees all memory. */
1305 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1306
1307 return rc;
1308}
1309
1310
1311/**
1312 * Initializes the per-VCPU PGM.
1313 *
1314 * @returns VBox status code.
1315 * @param pVM The VM to operate on.
1316 */
1317VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1318{
1319 LogFlow(("PGMR3InitCPU\n"));
1320 return VINF_SUCCESS;
1321}
1322
1323
1324/**
1325 * Init paging.
1326 *
1327 * Since we need to check what mode the host is operating in before we can choose
1328 * the right paging functions for the host we have to delay this until R0 has
1329 * been initialized.
1330 *
1331 * @returns VBox status code.
1332 * @param pVM VM handle.
1333 */
1334static int pgmR3InitPaging(PVM pVM)
1335{
1336 /*
1337 * Force a recalculation of modes and switcher so everyone gets notified.
1338 */
1339 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1340 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1341 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1342
1343 /*
1344 * Allocate static mapping space for whatever the cr3 register
1345 * points to and in the case of PAE mode to the 4 PDs.
1346 */
1347 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1348 if (RT_FAILURE(rc))
1349 {
1350 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1351 return rc;
1352 }
1353 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1354
1355 /*
1356 * Allocate pages for the three possible intermediate contexts
1357 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1358 * for the sake of simplicity. The AMD64 uses the PAE for the
1359 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1360 *
1361 * We assume that two page tables will be enought for the core code
1362 * mappings (HC virtual and identity).
1363 */
1364 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1365 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1366 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1367 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1368 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1369 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1370 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1371 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1372 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1373 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1374 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1375 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1376 if ( !pVM->pgm.s.pInterPD
1377 || !pVM->pgm.s.apInterPTs[0]
1378 || !pVM->pgm.s.apInterPTs[1]
1379 || !pVM->pgm.s.apInterPaePTs[0]
1380 || !pVM->pgm.s.apInterPaePTs[1]
1381 || !pVM->pgm.s.apInterPaePDs[0]
1382 || !pVM->pgm.s.apInterPaePDs[1]
1383 || !pVM->pgm.s.apInterPaePDs[2]
1384 || !pVM->pgm.s.apInterPaePDs[3]
1385 || !pVM->pgm.s.pInterPaePDPT
1386 || !pVM->pgm.s.pInterPaePDPT64
1387 || !pVM->pgm.s.pInterPaePML4)
1388 {
1389 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1390 return VERR_NO_PAGE_MEMORY;
1391 }
1392
1393 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1394 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1395 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1396 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1397 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1398 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1399
1400 /*
1401 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1402 */
1403 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1404 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1405 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1406
1407 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1408 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1409
1410 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1411 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1412 {
1413 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1414 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1415 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1416 }
1417
1418 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1419 {
1420 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1421 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1422 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1423 }
1424
1425 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1426 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1427 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1428 | HCPhysInterPaePDPT64;
1429
1430 /*
1431 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1432 * We allocate pages for all three posibilities in order to simplify mappings and
1433 * avoid resource failure during mode switches. So, we need to cover all levels of the
1434 * of the first 4GB down to PD level.
1435 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1436 */
1437#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1438 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1439# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1440 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1441# endif
1442 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1443 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1444 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1445 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1446 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1447 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1448 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1449# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1450 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1451 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1452 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1453 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1454# endif
1455 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1456# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1457 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1458# endif
1459#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1460 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1461#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1462 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1463#endif
1464
1465#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1466 if (!pVM->pgm.s.pShwNestedRootR3)
1467#else
1468 if ( !pVM->pgm.s.pShw32BitPdR3
1469 || !pVM->pgm.s.apShwPaePDsR3[0]
1470 || !pVM->pgm.s.apShwPaePDsR3[1]
1471 || !pVM->pgm.s.apShwPaePDsR3[2]
1472 || !pVM->pgm.s.apShwPaePDsR3[3]
1473 || !pVM->pgm.s.pShwPaePdptR3
1474 || !pVM->pgm.s.pShwNestedRootR3)
1475#endif
1476 {
1477 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1478 return VERR_NO_PAGE_MEMORY;
1479 }
1480
1481 /* get physical addresses. */
1482#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1483 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1484 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1485 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1486 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1487 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1488 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1489 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1490#endif
1491 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1492
1493 /*
1494 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1495 */
1496#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1497 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1498 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1499#endif
1500 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1501#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1502 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1503 {
1504 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1505 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1506 /* The flags will be corrected when entering and leaving long mode. */
1507 }
1508
1509 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhysShw32BitPD);
1510#endif
1511
1512 /*
1513 * Initialize paging workers and mode from current host mode
1514 * and the guest running in real mode.
1515 */
1516 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1517 switch (pVM->pgm.s.enmHostMode)
1518 {
1519 case SUPPAGINGMODE_32_BIT:
1520 case SUPPAGINGMODE_32_BIT_GLOBAL:
1521 case SUPPAGINGMODE_PAE:
1522 case SUPPAGINGMODE_PAE_GLOBAL:
1523 case SUPPAGINGMODE_PAE_NX:
1524 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1525 break;
1526
1527 case SUPPAGINGMODE_AMD64:
1528 case SUPPAGINGMODE_AMD64_GLOBAL:
1529 case SUPPAGINGMODE_AMD64_NX:
1530 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1531#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1532 if (ARCH_BITS != 64)
1533 {
1534 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1535 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1536 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1537 }
1538#endif
1539 break;
1540 default:
1541 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1542 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1543 }
1544 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1545#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1546 if (RT_SUCCESS(rc))
1547 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1548#endif
1549 if (RT_SUCCESS(rc))
1550 {
1551 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1552#if HC_ARCH_BITS == 64
1553# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1554 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp\n",
1555 pVM->pgm.s.HCPhysShw32BitPD,
1556 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1557 pVM->pgm.s.HCPhysShwPaePdpt));
1558# endif
1559 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1560 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1561 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1562 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1563 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1564 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1565 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1566#endif
1567
1568 return VINF_SUCCESS;
1569 }
1570
1571 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1572 return rc;
1573}
1574
1575
1576#ifdef VBOX_WITH_STATISTICS
1577/**
1578 * Init statistics
1579 */
1580static void pgmR3InitStats(PVM pVM)
1581{
1582 PPGM pPGM = &pVM->pgm.s;
1583 unsigned i;
1584
1585 /*
1586 * Note! The layout of this function matches the member layout exactly!
1587 */
1588
1589 /* Common - misc variables */
1590 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1591 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1592 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1593 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1594 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1595 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1596
1597 /* Common - stats */
1598#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1599 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1600 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1601 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1602 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1603 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1604 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1605#endif
1606 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1607 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1608 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1609 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1610 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1611 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1612
1613 /* R3 only: */
1614 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1615 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1616 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1617 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1618 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1619 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1620
1621 /* R0 only: */
1622 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1623 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1624 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1625 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1626 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1627 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1628 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1629 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1630 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1631 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1632 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1633 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1634 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1635 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1636 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1637 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1638 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1639 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1640 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1641 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1642 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1643 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1644 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1645 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1646 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1647 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1648 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1649 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1650 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1651 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1652 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1653 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1654 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1655 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1656 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1657 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1658
1659 /* GC only: */
1660 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1661 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1662 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1663 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1664
1665 /* RZ only: */
1666 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1667 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1668 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1669 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1670 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1671 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1672 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1673 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1674 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1675 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1676 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1677 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1678 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1679 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1680 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1681 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1682 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1683 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1684 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1685 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1686 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1687 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1688 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1689 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1690 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1691 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1692 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1693 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1694 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1695 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1696 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1697 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1698 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1699 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1700 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1701 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1702 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1703 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1704 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1705 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1706 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1707 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1708 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1709 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1710 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1711 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1712 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1713 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1714 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1715 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1716 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1717
1718 /* HC only: */
1719
1720 /* RZ & R3: */
1721 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1722 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1723 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1724 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1725 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1726 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1727 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1728 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1729 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1730 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1731 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1732 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1733 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1734 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1735 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1736 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1737 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1738 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1739 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1740 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1741 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1742 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1743 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1744 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1745 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1746 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1747 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1748 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1749 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1750 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1751 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1752 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1753 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1754 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1755 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1756 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1757 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1758 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1759 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1760 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1761 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1762 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1763 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1764 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1765 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1766 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1767 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1768/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1769 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1770 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1771 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1772 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1773 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1774 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1775
1776 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1777 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1778 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1779 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1780 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1781 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1782 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1783 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1784 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1785 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1786 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1787 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1788 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1789 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1790 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1791 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1792 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1793 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1794 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1795 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1796 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1797 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1798 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1799 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1800 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1801 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1802 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1803 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1804 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1805 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1806 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1807 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1808 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1809 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1810 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1811 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1812 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1813 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1814 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1815 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1816 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1817 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1818 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1819 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1820 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1821 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1822 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1823/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1824 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1825 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1826 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1827 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1828 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1829 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1830
1831}
1832#endif /* VBOX_WITH_STATISTICS */
1833
1834
1835/**
1836 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1837 *
1838 * The dynamic mapping area will also be allocated and initialized at this
1839 * time. We could allocate it during PGMR3Init of course, but the mapping
1840 * wouldn't be allocated at that time preventing us from setting up the
1841 * page table entries with the dummy page.
1842 *
1843 * @returns VBox status code.
1844 * @param pVM VM handle.
1845 */
1846VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1847{
1848 RTGCPTR GCPtr;
1849 int rc;
1850
1851#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1852 /*
1853 * Reserve space for mapping the paging pages into guest context.
1854 */
1855 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1856 AssertRCReturn(rc, rc);
1857 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1858 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1859#endif
1860
1861 /*
1862 * Reserve space for the dynamic mappings.
1863 */
1864 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1865 if (RT_SUCCESS(rc))
1866 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1867
1868 if ( RT_SUCCESS(rc)
1869 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1870 {
1871 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1872 if (RT_SUCCESS(rc))
1873 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1874 }
1875 if (RT_SUCCESS(rc))
1876 {
1877 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1878 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1879 }
1880 return rc;
1881}
1882
1883
1884/**
1885 * Ring-3 init finalizing.
1886 *
1887 * @returns VBox status code.
1888 * @param pVM The VM handle.
1889 */
1890VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1891{
1892 int rc;
1893
1894#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1895 /*
1896 * Map the paging pages into the guest context.
1897 */
1898 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1899 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1900
1901 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1902 AssertRCReturn(rc, rc);
1903 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1904 GCPtr += PAGE_SIZE;
1905 GCPtr += PAGE_SIZE; /* reserved page */
1906
1907 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1908 {
1909 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1910 AssertRCReturn(rc, rc);
1911 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1912 GCPtr += PAGE_SIZE;
1913 }
1914 /* A bit of paranoia is justified. */
1915 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1916 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1917 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1918 GCPtr += PAGE_SIZE; /* reserved page */
1919
1920 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1921 AssertRCReturn(rc, rc);
1922 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1923 GCPtr += PAGE_SIZE;
1924 GCPtr += PAGE_SIZE; /* reserved page */
1925#endif
1926
1927 /*
1928 * Reserve space for the dynamic mappings.
1929 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1930 */
1931 /* get the pointer to the page table entries. */
1932 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1933 AssertRelease(pMapping);
1934 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1935 const unsigned iPT = off >> X86_PD_SHIFT;
1936 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1937 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1938 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1939
1940 /* init cache */
1941 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1942 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1943 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1944
1945 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1946 {
1947 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1948 AssertRCReturn(rc, rc);
1949 }
1950
1951 /*
1952 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1953 * Intel only goes up to 36 bits, so we stick to 36 as well.
1954 */
1955 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1956 uint32_t u32Dummy, u32Features;
1957 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1958
1959 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1960 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1961 else
1962 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1963
1964 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1965 return rc;
1966}
1967
1968
1969/**
1970 * Applies relocations to data and code managed by this component.
1971 *
1972 * This function will be called at init and whenever the VMM need to relocate it
1973 * self inside the GC.
1974 *
1975 * @param pVM The VM.
1976 * @param offDelta Relocation delta relative to old location.
1977 */
1978VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1979{
1980 LogFlow(("PGMR3Relocate\n"));
1981
1982 /*
1983 * Paging stuff.
1984 */
1985 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1986 /** @todo move this into shadow and guest specific relocation functions. */
1987#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1988 AssertMsg(pVM->pgm.s.pShwNestedRootR3, ("Init order, no relocation before paging is initialized!\n"));
1989#else
1990 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
1991 pVM->pgm.s.pShw32BitPdRC += offDelta;
1992#endif
1993 pVM->pgm.s.pGst32BitPdRC += offDelta;
1994 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1995 {
1996#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1997 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1998 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1999#endif
2000 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
2001 }
2002 pVM->pgm.s.pGstPaePdptRC += offDelta;
2003#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2004 pVM->pgm.s.pShwPaePdptRC += offDelta;
2005#endif
2006
2007#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2008 pVM->pgm.s.pShwPageCR3RC += offDelta;
2009#endif
2010
2011 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2012 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
2013
2014 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
2015 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
2016 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
2017
2018 /*
2019 * Trees.
2020 */
2021 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2022
2023 /*
2024 * Ram ranges.
2025 */
2026 if (pVM->pgm.s.pRamRangesR3)
2027 {
2028 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
2029 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
2030 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2031 }
2032
2033 /*
2034 * Update the two page directories with all page table mappings.
2035 * (One or more of them have changed, that's why we're here.)
2036 */
2037 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2038 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2039 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2040
2041 /* Relocate GC addresses of Page Tables. */
2042 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2043 {
2044 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2045 {
2046 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2047 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2048 }
2049 }
2050
2051 /*
2052 * Dynamic page mapping area.
2053 */
2054 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2055 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2056 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2057
2058 /*
2059 * The Zero page.
2060 */
2061 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2062#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2063 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2064#else
2065 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2066#endif
2067
2068 /*
2069 * Physical and virtual handlers.
2070 */
2071 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2072 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2073 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2074
2075 /*
2076 * The page pool.
2077 */
2078 pgmR3PoolRelocate(pVM);
2079}
2080
2081
2082/**
2083 * Callback function for relocating a physical access handler.
2084 *
2085 * @returns 0 (continue enum)
2086 * @param pNode Pointer to a PGMPHYSHANDLER node.
2087 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2088 * not certain the delta will fit in a void pointer for all possible configs.
2089 */
2090static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2091{
2092 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2093 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2094 if (pHandler->pfnHandlerRC)
2095 pHandler->pfnHandlerRC += offDelta;
2096 if (pHandler->pvUserRC >= 0x10000)
2097 pHandler->pvUserRC += offDelta;
2098 return 0;
2099}
2100
2101
2102/**
2103 * Callback function for relocating a virtual access handler.
2104 *
2105 * @returns 0 (continue enum)
2106 * @param pNode Pointer to a PGMVIRTHANDLER node.
2107 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2108 * not certain the delta will fit in a void pointer for all possible configs.
2109 */
2110static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2111{
2112 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2113 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2114 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2115 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2116 Assert(pHandler->pfnHandlerRC);
2117 pHandler->pfnHandlerRC += offDelta;
2118 return 0;
2119}
2120
2121
2122/**
2123 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2124 *
2125 * @returns 0 (continue enum)
2126 * @param pNode Pointer to a PGMVIRTHANDLER node.
2127 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2128 * not certain the delta will fit in a void pointer for all possible configs.
2129 */
2130static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2131{
2132 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2133 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2134 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2135 Assert(pHandler->pfnHandlerRC);
2136 pHandler->pfnHandlerRC += offDelta;
2137 return 0;
2138}
2139
2140
2141/**
2142 * The VM is being reset.
2143 *
2144 * For the PGM component this means that any PD write monitors
2145 * needs to be removed.
2146 *
2147 * @param pVM VM handle.
2148 */
2149VMMR3DECL(void) PGMR3Reset(PVM pVM)
2150{
2151 LogFlow(("PGMR3Reset:\n"));
2152 VM_ASSERT_EMT(pVM);
2153
2154 pgmLock(pVM);
2155
2156 /*
2157 * Unfix any fixed mappings and disable CR3 monitoring.
2158 */
2159 pVM->pgm.s.fMappingsFixed = false;
2160 pVM->pgm.s.GCPtrMappingFixed = 0;
2161 pVM->pgm.s.cbMappingFixed = 0;
2162
2163 /* Exit the guest paging mode before the pgm pool gets reset.
2164 * Important to clean up the amd64 case.
2165 */
2166 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2167 AssertRC(rc);
2168#ifdef DEBUG
2169 DBGFR3InfoLog(pVM, "mappings", NULL);
2170 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2171#endif
2172
2173 /*
2174 * Reset the shadow page pool.
2175 */
2176 pgmR3PoolReset(pVM);
2177
2178 /*
2179 * Re-init other members.
2180 */
2181 pVM->pgm.s.fA20Enabled = true;
2182
2183 /*
2184 * Clear the FFs PGM owns.
2185 */
2186 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2187 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2188
2189 /*
2190 * Reset (zero) RAM pages.
2191 */
2192 rc = pgmR3PhysRamReset(pVM);
2193 if (RT_SUCCESS(rc))
2194 {
2195#ifdef VBOX_WITH_NEW_PHYS_CODE
2196 /*
2197 * Reset (zero) shadow ROM pages.
2198 */
2199 rc = pgmR3PhysRomReset(pVM);
2200#endif
2201 if (RT_SUCCESS(rc))
2202 {
2203 /*
2204 * Switch mode back to real mode.
2205 */
2206 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2207 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2208 }
2209 }
2210
2211 pgmUnlock(pVM);
2212 //return rc;
2213 AssertReleaseRC(rc);
2214}
2215
2216
2217#ifdef VBOX_STRICT
2218/**
2219 * VM state change callback for clearing fNoMorePhysWrites after
2220 * a snapshot has been created.
2221 */
2222static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2223{
2224 if (enmState == VMSTATE_RUNNING)
2225 pVM->pgm.s.fNoMorePhysWrites = false;
2226}
2227#endif
2228
2229
2230/**
2231 * Terminates the PGM.
2232 *
2233 * @returns VBox status code.
2234 * @param pVM Pointer to VM structure.
2235 */
2236VMMR3DECL(int) PGMR3Term(PVM pVM)
2237{
2238 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2239}
2240
2241
2242/**
2243 * Terminates the per-VCPU PGM.
2244 *
2245 * Termination means cleaning up and freeing all resources,
2246 * the VM it self is at this point powered off or suspended.
2247 *
2248 * @returns VBox status code.
2249 * @param pVM The VM to operate on.
2250 */
2251VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2252{
2253 return 0;
2254}
2255
2256
2257/**
2258 * Execute state save operation.
2259 *
2260 * @returns VBox status code.
2261 * @param pVM VM Handle.
2262 * @param pSSM SSM operation handle.
2263 */
2264static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2265{
2266 PPGM pPGM = &pVM->pgm.s;
2267
2268 /* No more writes to physical memory after this point! */
2269 pVM->pgm.s.fNoMorePhysWrites = true;
2270
2271 /*
2272 * Save basic data (required / unaffected by relocation).
2273 */
2274#if 1
2275 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2276#else
2277 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2278#endif
2279 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2280 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2281 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2282 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2283 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2284 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2285 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2286 SSMR3PutU32(pSSM, ~0); /* Separator. */
2287
2288 /*
2289 * The guest mappings.
2290 */
2291 uint32_t i = 0;
2292 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2293 {
2294 SSMR3PutU32(pSSM, i);
2295 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2296 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2297 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2298 /* flags are done by the mapping owners! */
2299 }
2300 SSMR3PutU32(pSSM, ~0); /* terminator. */
2301
2302 /*
2303 * Ram range flags and bits.
2304 */
2305 i = 0;
2306 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2307 {
2308 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2309
2310 SSMR3PutU32(pSSM, i);
2311 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2312 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2313 SSMR3PutGCPhys(pSSM, pRam->cb);
2314 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2315
2316 /* Flags. */
2317 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2318 for (unsigned iPage = 0; iPage < cPages; iPage++)
2319 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2320
2321 /* any memory associated with the range. */
2322 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2323 {
2324 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2325 {
2326 if (pRam->paChunkR3Ptrs[iChunk])
2327 {
2328 SSMR3PutU8(pSSM, 1); /* chunk present */
2329 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2330 }
2331 else
2332 SSMR3PutU8(pSSM, 0); /* no chunk present */
2333 }
2334 }
2335 else if (pRam->pvR3)
2336 {
2337 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2338 if (RT_FAILURE(rc))
2339 {
2340 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2341 return rc;
2342 }
2343 }
2344 }
2345 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2346}
2347
2348
2349/**
2350 * Execute state load operation.
2351 *
2352 * @returns VBox status code.
2353 * @param pVM VM Handle.
2354 * @param pSSM SSM operation handle.
2355 * @param u32Version Data layout version.
2356 */
2357static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2358{
2359 /*
2360 * Validate version.
2361 */
2362 if (u32Version != PGM_SAVED_STATE_VERSION)
2363 {
2364 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2365 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2366 }
2367
2368 /*
2369 * Call the reset function to make sure all the memory is cleared.
2370 */
2371 PGMR3Reset(pVM);
2372
2373 /*
2374 * Load basic data (required / unaffected by relocation).
2375 */
2376 PPGM pPGM = &pVM->pgm.s;
2377#if 1
2378 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2379#else
2380 uint32_t u;
2381 SSMR3GetU32(pSSM, &u);
2382 pPGM->fMappingsFixed = u;
2383#endif
2384 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2385 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2386
2387 RTUINT cbRamSize;
2388 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2389 if (RT_FAILURE(rc))
2390 return rc;
2391 if (cbRamSize != pPGM->cbRamSize)
2392 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2393 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2394 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2395 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2396 RTUINT uGuestMode;
2397 SSMR3GetUInt(pSSM, &uGuestMode);
2398 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2399
2400 /* check separator. */
2401 uint32_t u32Sep;
2402 SSMR3GetU32(pSSM, &u32Sep);
2403 if (RT_FAILURE(rc))
2404 return rc;
2405 if (u32Sep != (uint32_t)~0)
2406 {
2407 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2408 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2409 }
2410
2411 /*
2412 * The guest mappings.
2413 */
2414 uint32_t i = 0;
2415 for (;; i++)
2416 {
2417 /* Check the seqence number / separator. */
2418 rc = SSMR3GetU32(pSSM, &u32Sep);
2419 if (RT_FAILURE(rc))
2420 return rc;
2421 if (u32Sep == ~0U)
2422 break;
2423 if (u32Sep != i)
2424 {
2425 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2426 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2427 }
2428
2429 /* get the mapping details. */
2430 char szDesc[256];
2431 szDesc[0] = '\0';
2432 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2433 if (RT_FAILURE(rc))
2434 return rc;
2435 RTGCPTR GCPtr;
2436 SSMR3GetGCPtr(pSSM, &GCPtr);
2437 RTGCPTR cPTs;
2438 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2439 if (RT_FAILURE(rc))
2440 return rc;
2441
2442 /* find matching range. */
2443 PPGMMAPPING pMapping;
2444 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2445 if ( pMapping->cPTs == cPTs
2446 && !strcmp(pMapping->pszDesc, szDesc))
2447 break;
2448 if (!pMapping)
2449 {
2450 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2451 cPTs, szDesc, GCPtr));
2452 AssertFailed();
2453 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2454 }
2455
2456 /* relocate it. */
2457 if (pMapping->GCPtr != GCPtr)
2458 {
2459 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2460 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2461 }
2462 else
2463 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2464 }
2465
2466 /*
2467 * Ram range flags and bits.
2468 */
2469 i = 0;
2470 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2471 {
2472 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2473 /* Check the seqence number / separator. */
2474 rc = SSMR3GetU32(pSSM, &u32Sep);
2475 if (RT_FAILURE(rc))
2476 return rc;
2477 if (u32Sep == ~0U)
2478 break;
2479 if (u32Sep != i)
2480 {
2481 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2482 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2483 }
2484
2485 /* Get the range details. */
2486 RTGCPHYS GCPhys;
2487 SSMR3GetGCPhys(pSSM, &GCPhys);
2488 RTGCPHYS GCPhysLast;
2489 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2490 RTGCPHYS cb;
2491 SSMR3GetGCPhys(pSSM, &cb);
2492 uint8_t fHaveBits;
2493 rc = SSMR3GetU8(pSSM, &fHaveBits);
2494 if (RT_FAILURE(rc))
2495 return rc;
2496 if (fHaveBits & ~1)
2497 {
2498 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2499 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2500 }
2501
2502 /* Match it up with the current range. */
2503 if ( GCPhys != pRam->GCPhys
2504 || GCPhysLast != pRam->GCPhysLast
2505 || cb != pRam->cb
2506 || fHaveBits != !!pRam->pvR3)
2507 {
2508 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2509 "State : %RGp-%RGp %RGp bytes %s\n",
2510 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2511 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2512 /*
2513 * If we're loading a state for debugging purpose, don't make a fuss if
2514 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2515 */
2516 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2517 || GCPhys < 8 * _1M)
2518 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2519
2520 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2521 while (cPages-- > 0)
2522 {
2523 uint16_t u16Ignore;
2524 SSMR3GetU16(pSSM, &u16Ignore);
2525 }
2526 continue;
2527 }
2528
2529 /* Flags. */
2530 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2531 for (unsigned iPage = 0; iPage < cPages; iPage++)
2532 {
2533 uint16_t u16 = 0;
2534 SSMR3GetU16(pSSM, &u16);
2535 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2536 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2537 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2538 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2539 }
2540
2541 /* any memory associated with the range. */
2542 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2543 {
2544 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2545 {
2546 uint8_t fValidChunk;
2547
2548 rc = SSMR3GetU8(pSSM, &fValidChunk);
2549 if (RT_FAILURE(rc))
2550 return rc;
2551 if (fValidChunk > 1)
2552 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2553
2554 if (fValidChunk)
2555 {
2556 if (!pRam->paChunkR3Ptrs[iChunk])
2557 {
2558 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2559 if (RT_FAILURE(rc))
2560 return rc;
2561 }
2562 Assert(pRam->paChunkR3Ptrs[iChunk]);
2563
2564 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2565 }
2566 /* else nothing to do */
2567 }
2568 }
2569 else if (pRam->pvR3)
2570 {
2571 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2572 if (RT_FAILURE(rc))
2573 {
2574 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2575 return rc;
2576 }
2577 }
2578 }
2579
2580 /*
2581 * We require a full resync now.
2582 */
2583 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2584 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2585 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2586 pPGM->fPhysCacheFlushPending = true;
2587 pgmR3HandlerPhysicalUpdateAll(pVM);
2588
2589 /*
2590 * Change the paging mode.
2591 */
2592 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2593
2594 /* Restore pVM->pgm.s.GCPhysCR3. */
2595 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2596 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2597 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2598 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2599 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2600 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2601 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2602 else
2603 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2604 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2605
2606 return rc;
2607}
2608
2609
2610/**
2611 * Show paging mode.
2612 *
2613 * @param pVM VM Handle.
2614 * @param pHlp The info helpers.
2615 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2616 */
2617static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2618{
2619 /* digest argument. */
2620 bool fGuest, fShadow, fHost;
2621 if (pszArgs)
2622 pszArgs = RTStrStripL(pszArgs);
2623 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2624 fShadow = fHost = fGuest = true;
2625 else
2626 {
2627 fShadow = fHost = fGuest = false;
2628 if (strstr(pszArgs, "guest"))
2629 fGuest = true;
2630 if (strstr(pszArgs, "shadow"))
2631 fShadow = true;
2632 if (strstr(pszArgs, "host"))
2633 fHost = true;
2634 }
2635
2636 /* print info. */
2637 if (fGuest)
2638 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2639 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2640 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2641 if (fShadow)
2642 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2643 if (fHost)
2644 {
2645 const char *psz;
2646 switch (pVM->pgm.s.enmHostMode)
2647 {
2648 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2649 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2650 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2651 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2652 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2653 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2654 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2655 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2656 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2657 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2658 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2659 default: psz = "unknown"; break;
2660 }
2661 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2662 }
2663}
2664
2665
2666/**
2667 * Dump registered MMIO ranges to the log.
2668 *
2669 * @param pVM VM Handle.
2670 * @param pHlp The info helpers.
2671 * @param pszArgs Arguments, ignored.
2672 */
2673static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2674{
2675 NOREF(pszArgs);
2676 pHlp->pfnPrintf(pHlp,
2677 "RAM ranges (pVM=%p)\n"
2678 "%.*s %.*s\n",
2679 pVM,
2680 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2681 sizeof(RTHCPTR) * 2, "pvHC ");
2682
2683 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2684 pHlp->pfnPrintf(pHlp,
2685 "%RGp-%RGp %RHv %s\n",
2686 pCur->GCPhys,
2687 pCur->GCPhysLast,
2688 pCur->pvR3,
2689 pCur->pszDesc);
2690}
2691
2692/**
2693 * Dump the page directory to the log.
2694 *
2695 * @param pVM VM Handle.
2696 * @param pHlp The info helpers.
2697 * @param pszArgs Arguments, ignored.
2698 */
2699static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2700{
2701/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2702 /* Big pages supported? */
2703 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2704
2705 /* Global pages supported? */
2706 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2707
2708 NOREF(pszArgs);
2709
2710 /*
2711 * Get page directory addresses.
2712 */
2713 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2714 Assert(pPDSrc);
2715 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2716
2717 /*
2718 * Iterate the page directory.
2719 */
2720 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2721 {
2722 X86PDE PdeSrc = pPDSrc->a[iPD];
2723 if (PdeSrc.n.u1Present)
2724 {
2725 if (PdeSrc.b.u1Size && fPSE)
2726 pHlp->pfnPrintf(pHlp,
2727 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2728 iPD,
2729 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2730 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2731 else
2732 pHlp->pfnPrintf(pHlp,
2733 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2734 iPD,
2735 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2736 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2737 }
2738 }
2739}
2740
2741
2742/**
2743 * Serivce a VMMCALLHOST_PGM_LOCK call.
2744 *
2745 * @returns VBox status code.
2746 * @param pVM The VM handle.
2747 */
2748VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2749{
2750 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2751 AssertRC(rc);
2752 return rc;
2753}
2754
2755
2756/**
2757 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2758 *
2759 * @returns PGM_TYPE_*.
2760 * @param pgmMode The mode value to convert.
2761 */
2762DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2763{
2764 switch (pgmMode)
2765 {
2766 case PGMMODE_REAL: return PGM_TYPE_REAL;
2767 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2768 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2769 case PGMMODE_PAE:
2770 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2771 case PGMMODE_AMD64:
2772 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2773 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2774 case PGMMODE_EPT: return PGM_TYPE_EPT;
2775 default:
2776 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2777 }
2778}
2779
2780
2781/**
2782 * Gets the index into the paging mode data array of a SHW+GST mode.
2783 *
2784 * @returns PGM::paPagingData index.
2785 * @param uShwType The shadow paging mode type.
2786 * @param uGstType The guest paging mode type.
2787 */
2788DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2789{
2790 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2791 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2792 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2793 + (uGstType - PGM_TYPE_REAL);
2794}
2795
2796
2797/**
2798 * Gets the index into the paging mode data array of a SHW+GST mode.
2799 *
2800 * @returns PGM::paPagingData index.
2801 * @param enmShw The shadow paging mode.
2802 * @param enmGst The guest paging mode.
2803 */
2804DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2805{
2806 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2807 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2808 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2809}
2810
2811
2812/**
2813 * Calculates the max data index.
2814 * @returns The number of entries in the paging data array.
2815 */
2816DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2817{
2818 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2819}
2820
2821
2822/**
2823 * Initializes the paging mode data kept in PGM::paModeData.
2824 *
2825 * @param pVM The VM handle.
2826 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2827 * This is used early in the init process to avoid trouble with PDM
2828 * not being initialized yet.
2829 */
2830static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2831{
2832 PPGMMODEDATA pModeData;
2833 int rc;
2834
2835 /*
2836 * Allocate the array on the first call.
2837 */
2838 if (!pVM->pgm.s.paModeData)
2839 {
2840 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2841 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2842 }
2843
2844 /*
2845 * Initialize the array entries.
2846 */
2847 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2848 pModeData->uShwType = PGM_TYPE_32BIT;
2849 pModeData->uGstType = PGM_TYPE_REAL;
2850 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2851 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853
2854 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2855 pModeData->uShwType = PGM_TYPE_32BIT;
2856 pModeData->uGstType = PGM_TYPE_PROT;
2857 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2858 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2859 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2860
2861 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2862 pModeData->uShwType = PGM_TYPE_32BIT;
2863 pModeData->uGstType = PGM_TYPE_32BIT;
2864 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2866 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2867
2868 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2869 pModeData->uShwType = PGM_TYPE_PAE;
2870 pModeData->uGstType = PGM_TYPE_REAL;
2871 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2872 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2873 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2874
2875 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2876 pModeData->uShwType = PGM_TYPE_PAE;
2877 pModeData->uGstType = PGM_TYPE_PROT;
2878 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2879 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2880 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2881
2882 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2883 pModeData->uShwType = PGM_TYPE_PAE;
2884 pModeData->uGstType = PGM_TYPE_32BIT;
2885 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2886 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2887 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2888
2889 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2890 pModeData->uShwType = PGM_TYPE_PAE;
2891 pModeData->uGstType = PGM_TYPE_PAE;
2892 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2893 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895
2896#ifdef VBOX_WITH_64_BITS_GUESTS
2897 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2898 pModeData->uShwType = PGM_TYPE_AMD64;
2899 pModeData->uGstType = PGM_TYPE_AMD64;
2900 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903#endif
2904
2905 /* The nested paging mode. */
2906 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2907 pModeData->uShwType = PGM_TYPE_NESTED;
2908 pModeData->uGstType = PGM_TYPE_REAL;
2909 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911
2912 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2913 pModeData->uShwType = PGM_TYPE_NESTED;
2914 pModeData->uGstType = PGM_TYPE_PROT;
2915 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917
2918 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2919 pModeData->uShwType = PGM_TYPE_NESTED;
2920 pModeData->uGstType = PGM_TYPE_32BIT;
2921 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2922 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923
2924 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2925 pModeData->uShwType = PGM_TYPE_NESTED;
2926 pModeData->uGstType = PGM_TYPE_PAE;
2927 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2928 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2929
2930#ifdef VBOX_WITH_64_BITS_GUESTS
2931 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2932 pModeData->uShwType = PGM_TYPE_NESTED;
2933 pModeData->uGstType = PGM_TYPE_AMD64;
2934 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2935 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2936#endif
2937
2938 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2939 switch (pVM->pgm.s.enmHostMode)
2940 {
2941#if HC_ARCH_BITS == 32
2942 case SUPPAGINGMODE_32_BIT:
2943 case SUPPAGINGMODE_32_BIT_GLOBAL:
2944 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2945 {
2946 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2947 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2948 }
2949# ifdef VBOX_WITH_64_BITS_GUESTS
2950 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2951 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2952# endif
2953 break;
2954
2955 case SUPPAGINGMODE_PAE:
2956 case SUPPAGINGMODE_PAE_NX:
2957 case SUPPAGINGMODE_PAE_GLOBAL:
2958 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2959 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2960 {
2961 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2962 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2963 }
2964# ifdef VBOX_WITH_64_BITS_GUESTS
2965 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2966 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2967# endif
2968 break;
2969#endif /* HC_ARCH_BITS == 32 */
2970
2971#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2972 case SUPPAGINGMODE_AMD64:
2973 case SUPPAGINGMODE_AMD64_GLOBAL:
2974 case SUPPAGINGMODE_AMD64_NX:
2975 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2976# ifdef VBOX_WITH_64_BITS_GUESTS
2977 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2978# else
2979 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2980# endif
2981 {
2982 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2983 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2984 }
2985 break;
2986#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2987
2988 default:
2989 AssertFailed();
2990 break;
2991 }
2992
2993 /* Extended paging (EPT) / Intel VT-x */
2994 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2995 pModeData->uShwType = PGM_TYPE_EPT;
2996 pModeData->uGstType = PGM_TYPE_REAL;
2997 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2998 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2999 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3000
3001 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3002 pModeData->uShwType = PGM_TYPE_EPT;
3003 pModeData->uGstType = PGM_TYPE_PROT;
3004 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3005 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3006 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3007
3008 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3009 pModeData->uShwType = PGM_TYPE_EPT;
3010 pModeData->uGstType = PGM_TYPE_32BIT;
3011 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3012 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3013 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3014
3015 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3016 pModeData->uShwType = PGM_TYPE_EPT;
3017 pModeData->uGstType = PGM_TYPE_PAE;
3018 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3019 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3020 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3021
3022#ifdef VBOX_WITH_64_BITS_GUESTS
3023 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3024 pModeData->uShwType = PGM_TYPE_EPT;
3025 pModeData->uGstType = PGM_TYPE_AMD64;
3026 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3027 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3028 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3029#endif
3030 return VINF_SUCCESS;
3031}
3032
3033
3034/**
3035 * Switch to different (or relocated in the relocate case) mode data.
3036 *
3037 * @param pVM The VM handle.
3038 * @param enmShw The the shadow paging mode.
3039 * @param enmGst The the guest paging mode.
3040 */
3041static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3042{
3043 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3044
3045 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3046 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3047
3048 /* shadow */
3049 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3050 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3051 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3052 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3053 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3054
3055 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3056 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3057
3058 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3059 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3060
3061
3062 /* guest */
3063 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3064 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3065 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3066 Assert(pVM->pgm.s.pfnR3GstGetPage);
3067 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3068 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3069#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3070 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
3071 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
3072#endif
3073#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3074 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3075 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3076 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3077 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3078#endif
3079 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3080 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3081 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3082#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3083 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3084 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3085#endif
3086#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3087 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3088 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3089#endif
3090 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3091 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3092 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3093#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3094 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3095 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3096#endif
3097#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3098 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3099 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3100#endif
3101
3102 /* both */
3103 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3104 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3105 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3106 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3107 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3108 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3109 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3110#ifdef VBOX_STRICT
3111 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3112#endif
3113 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3114 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3115
3116 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3117 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3118 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3119 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3120 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3121 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3122#ifdef VBOX_STRICT
3123 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3124#endif
3125 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3126 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3127
3128 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3129 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3130 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3131 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3132 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3133 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3134#ifdef VBOX_STRICT
3135 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3136#endif
3137 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3138 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3139}
3140
3141
3142/**
3143 * Calculates the shadow paging mode.
3144 *
3145 * @returns The shadow paging mode.
3146 * @param pVM VM handle.
3147 * @param enmGuestMode The guest mode.
3148 * @param enmHostMode The host mode.
3149 * @param enmShadowMode The current shadow mode.
3150 * @param penmSwitcher Where to store the switcher to use.
3151 * VMMSWITCHER_INVALID means no change.
3152 */
3153static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3154{
3155 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3156 switch (enmGuestMode)
3157 {
3158 /*
3159 * When switching to real or protected mode we don't change
3160 * anything since it's likely that we'll switch back pretty soon.
3161 *
3162 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3163 * and is supposed to determine which shadow paging and switcher to
3164 * use during init.
3165 */
3166 case PGMMODE_REAL:
3167 case PGMMODE_PROTECTED:
3168 if ( enmShadowMode != PGMMODE_INVALID
3169 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3170 break; /* (no change) */
3171
3172 switch (enmHostMode)
3173 {
3174 case SUPPAGINGMODE_32_BIT:
3175 case SUPPAGINGMODE_32_BIT_GLOBAL:
3176 enmShadowMode = PGMMODE_32_BIT;
3177 enmSwitcher = VMMSWITCHER_32_TO_32;
3178 break;
3179
3180 case SUPPAGINGMODE_PAE:
3181 case SUPPAGINGMODE_PAE_NX:
3182 case SUPPAGINGMODE_PAE_GLOBAL:
3183 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3184 enmShadowMode = PGMMODE_PAE;
3185 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3186#ifdef DEBUG_bird
3187 if (RTEnvExist("VBOX_32BIT"))
3188 {
3189 enmShadowMode = PGMMODE_32_BIT;
3190 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3191 }
3192#endif
3193 break;
3194
3195 case SUPPAGINGMODE_AMD64:
3196 case SUPPAGINGMODE_AMD64_GLOBAL:
3197 case SUPPAGINGMODE_AMD64_NX:
3198 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3199 enmShadowMode = PGMMODE_PAE;
3200 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3201#ifdef DEBUG_bird
3202 if (RTEnvExist("VBOX_32BIT"))
3203 {
3204 enmShadowMode = PGMMODE_32_BIT;
3205 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3206 }
3207#endif
3208 break;
3209
3210 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3211 }
3212 break;
3213
3214 case PGMMODE_32_BIT:
3215 switch (enmHostMode)
3216 {
3217 case SUPPAGINGMODE_32_BIT:
3218 case SUPPAGINGMODE_32_BIT_GLOBAL:
3219 enmShadowMode = PGMMODE_32_BIT;
3220 enmSwitcher = VMMSWITCHER_32_TO_32;
3221 break;
3222
3223 case SUPPAGINGMODE_PAE:
3224 case SUPPAGINGMODE_PAE_NX:
3225 case SUPPAGINGMODE_PAE_GLOBAL:
3226 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3227 enmShadowMode = PGMMODE_PAE;
3228 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3229#ifdef DEBUG_bird
3230 if (RTEnvExist("VBOX_32BIT"))
3231 {
3232 enmShadowMode = PGMMODE_32_BIT;
3233 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3234 }
3235#endif
3236 break;
3237
3238 case SUPPAGINGMODE_AMD64:
3239 case SUPPAGINGMODE_AMD64_GLOBAL:
3240 case SUPPAGINGMODE_AMD64_NX:
3241 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3242 enmShadowMode = PGMMODE_PAE;
3243 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3244#ifdef DEBUG_bird
3245 if (RTEnvExist("VBOX_32BIT"))
3246 {
3247 enmShadowMode = PGMMODE_32_BIT;
3248 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3249 }
3250#endif
3251 break;
3252
3253 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3254 }
3255 break;
3256
3257 case PGMMODE_PAE:
3258 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3259 switch (enmHostMode)
3260 {
3261 case SUPPAGINGMODE_32_BIT:
3262 case SUPPAGINGMODE_32_BIT_GLOBAL:
3263 enmShadowMode = PGMMODE_PAE;
3264 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3265 break;
3266
3267 case SUPPAGINGMODE_PAE:
3268 case SUPPAGINGMODE_PAE_NX:
3269 case SUPPAGINGMODE_PAE_GLOBAL:
3270 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3271 enmShadowMode = PGMMODE_PAE;
3272 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3273 break;
3274
3275 case SUPPAGINGMODE_AMD64:
3276 case SUPPAGINGMODE_AMD64_GLOBAL:
3277 case SUPPAGINGMODE_AMD64_NX:
3278 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3279 enmShadowMode = PGMMODE_PAE;
3280 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3281 break;
3282
3283 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3284 }
3285 break;
3286
3287 case PGMMODE_AMD64:
3288 case PGMMODE_AMD64_NX:
3289 switch (enmHostMode)
3290 {
3291 case SUPPAGINGMODE_32_BIT:
3292 case SUPPAGINGMODE_32_BIT_GLOBAL:
3293 enmShadowMode = PGMMODE_AMD64;
3294 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3295 break;
3296
3297 case SUPPAGINGMODE_PAE:
3298 case SUPPAGINGMODE_PAE_NX:
3299 case SUPPAGINGMODE_PAE_GLOBAL:
3300 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3301 enmShadowMode = PGMMODE_AMD64;
3302 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3303 break;
3304
3305 case SUPPAGINGMODE_AMD64:
3306 case SUPPAGINGMODE_AMD64_GLOBAL:
3307 case SUPPAGINGMODE_AMD64_NX:
3308 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3309 enmShadowMode = PGMMODE_AMD64;
3310 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3311 break;
3312
3313 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3314 }
3315 break;
3316
3317
3318 default:
3319 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3320 return PGMMODE_INVALID;
3321 }
3322 /* Override the shadow mode is nested paging is active. */
3323 if (HWACCMIsNestedPagingActive(pVM))
3324 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3325
3326 *penmSwitcher = enmSwitcher;
3327 return enmShadowMode;
3328}
3329
3330
3331/**
3332 * Performs the actual mode change.
3333 * This is called by PGMChangeMode and pgmR3InitPaging().
3334 *
3335 * @returns VBox status code.
3336 * @param pVM VM handle.
3337 * @param enmGuestMode The new guest mode. This is assumed to be different from
3338 * the current mode.
3339 */
3340VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3341{
3342 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3343 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3344
3345 /*
3346 * Calc the shadow mode and switcher.
3347 */
3348 VMMSWITCHER enmSwitcher;
3349 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3350 if (enmSwitcher != VMMSWITCHER_INVALID)
3351 {
3352 /*
3353 * Select new switcher.
3354 */
3355 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3356 if (RT_FAILURE(rc))
3357 {
3358 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3359 return rc;
3360 }
3361 }
3362
3363 /*
3364 * Exit old mode(s).
3365 */
3366 /* shadow */
3367 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3368 {
3369 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3370 if (PGM_SHW_PFN(Exit, pVM))
3371 {
3372 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3373 if (RT_FAILURE(rc))
3374 {
3375 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3376 return rc;
3377 }
3378 }
3379
3380 }
3381 else
3382 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3383
3384 /* guest */
3385 if (PGM_GST_PFN(Exit, pVM))
3386 {
3387 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3388 if (RT_FAILURE(rc))
3389 {
3390 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3391 return rc;
3392 }
3393 }
3394
3395 /*
3396 * Load new paging mode data.
3397 */
3398 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3399
3400 /*
3401 * Enter new shadow mode (if changed).
3402 */
3403 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3404 {
3405 int rc;
3406 pVM->pgm.s.enmShadowMode = enmShadowMode;
3407 switch (enmShadowMode)
3408 {
3409 case PGMMODE_32_BIT:
3410 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3411 break;
3412 case PGMMODE_PAE:
3413 case PGMMODE_PAE_NX:
3414 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3415 break;
3416 case PGMMODE_AMD64:
3417 case PGMMODE_AMD64_NX:
3418 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3419 break;
3420 case PGMMODE_NESTED:
3421 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3422 break;
3423 case PGMMODE_EPT:
3424 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3425 break;
3426 case PGMMODE_REAL:
3427 case PGMMODE_PROTECTED:
3428 default:
3429 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3430 return VERR_INTERNAL_ERROR;
3431 }
3432 if (RT_FAILURE(rc))
3433 {
3434 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3435 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3436 return rc;
3437 }
3438 }
3439
3440#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3441 /** @todo This is a bug!
3442 *
3443 * We must flush the PGM pool cache if the guest mode changes; we don't always
3444 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3445 * the shadow page tables.
3446 *
3447 * That only applies when switching between paging and non-paging modes.
3448 */
3449 /** @todo A20 setting */
3450 if ( pVM->pgm.s.CTX_SUFF(pPool)
3451 && !HWACCMIsNestedPagingActive(pVM)
3452 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3453 {
3454 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3455 pgmPoolFlushAll(pVM);
3456 }
3457#endif
3458
3459 /*
3460 * Enter the new guest and shadow+guest modes.
3461 */
3462 int rc = -1;
3463 int rc2 = -1;
3464 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3465 pVM->pgm.s.enmGuestMode = enmGuestMode;
3466 switch (enmGuestMode)
3467 {
3468 case PGMMODE_REAL:
3469 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3470 switch (pVM->pgm.s.enmShadowMode)
3471 {
3472 case PGMMODE_32_BIT:
3473 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3474 break;
3475 case PGMMODE_PAE:
3476 case PGMMODE_PAE_NX:
3477 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3478 break;
3479 case PGMMODE_NESTED:
3480 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3481 break;
3482 case PGMMODE_EPT:
3483 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3484 break;
3485 case PGMMODE_AMD64:
3486 case PGMMODE_AMD64_NX:
3487 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3488 default: AssertFailed(); break;
3489 }
3490 break;
3491
3492 case PGMMODE_PROTECTED:
3493 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3494 switch (pVM->pgm.s.enmShadowMode)
3495 {
3496 case PGMMODE_32_BIT:
3497 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3498 break;
3499 case PGMMODE_PAE:
3500 case PGMMODE_PAE_NX:
3501 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3502 break;
3503 case PGMMODE_NESTED:
3504 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3505 break;
3506 case PGMMODE_EPT:
3507 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3508 break;
3509 case PGMMODE_AMD64:
3510 case PGMMODE_AMD64_NX:
3511 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3512 default: AssertFailed(); break;
3513 }
3514 break;
3515
3516 case PGMMODE_32_BIT:
3517 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3518 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3519 switch (pVM->pgm.s.enmShadowMode)
3520 {
3521 case PGMMODE_32_BIT:
3522 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3523 break;
3524 case PGMMODE_PAE:
3525 case PGMMODE_PAE_NX:
3526 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3527 break;
3528 case PGMMODE_NESTED:
3529 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3530 break;
3531 case PGMMODE_EPT:
3532 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3533 break;
3534 case PGMMODE_AMD64:
3535 case PGMMODE_AMD64_NX:
3536 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3537 default: AssertFailed(); break;
3538 }
3539 break;
3540
3541 case PGMMODE_PAE_NX:
3542 case PGMMODE_PAE:
3543 {
3544 uint32_t u32Dummy, u32Features;
3545
3546 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3547 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3548 {
3549 /* Pause first, then inform Main. */
3550 rc = VMR3SuspendNoSave(pVM);
3551 AssertRC(rc);
3552
3553 VMSetRuntimeError(pVM, true, "PAEmode",
3554 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3555 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3556 return VINF_SUCCESS;
3557 }
3558 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3559 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3560 switch (pVM->pgm.s.enmShadowMode)
3561 {
3562 case PGMMODE_PAE:
3563 case PGMMODE_PAE_NX:
3564 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3565 break;
3566 case PGMMODE_NESTED:
3567 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3568 break;
3569 case PGMMODE_EPT:
3570 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3571 break;
3572 case PGMMODE_32_BIT:
3573 case PGMMODE_AMD64:
3574 case PGMMODE_AMD64_NX:
3575 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3576 default: AssertFailed(); break;
3577 }
3578 break;
3579 }
3580
3581#ifdef VBOX_WITH_64_BITS_GUESTS
3582 case PGMMODE_AMD64_NX:
3583 case PGMMODE_AMD64:
3584 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3585 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3586 switch (pVM->pgm.s.enmShadowMode)
3587 {
3588 case PGMMODE_AMD64:
3589 case PGMMODE_AMD64_NX:
3590 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3591 break;
3592 case PGMMODE_NESTED:
3593 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3594 break;
3595 case PGMMODE_EPT:
3596 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3597 break;
3598 case PGMMODE_32_BIT:
3599 case PGMMODE_PAE:
3600 case PGMMODE_PAE_NX:
3601 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3602 default: AssertFailed(); break;
3603 }
3604 break;
3605#endif
3606
3607 default:
3608 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3609 rc = VERR_NOT_IMPLEMENTED;
3610 break;
3611 }
3612
3613 /* status codes. */
3614 AssertRC(rc);
3615 AssertRC(rc2);
3616 if (RT_SUCCESS(rc))
3617 {
3618 rc = rc2;
3619 if (RT_SUCCESS(rc)) /* no informational status codes. */
3620 rc = VINF_SUCCESS;
3621 }
3622
3623 /*
3624 * Notify SELM so it can update the TSSes with correct CR3s.
3625 */
3626 SELMR3PagingModeChanged(pVM);
3627
3628 /* Notify HWACCM as well. */
3629 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3630 return rc;
3631}
3632
3633
3634/**
3635 * Dumps a PAE shadow page table.
3636 *
3637 * @returns VBox status code (VINF_SUCCESS).
3638 * @param pVM The VM handle.
3639 * @param pPT Pointer to the page table.
3640 * @param u64Address The virtual address of the page table starts.
3641 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3642 * @param cMaxDepth The maxium depth.
3643 * @param pHlp Pointer to the output functions.
3644 */
3645static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3646{
3647 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3648 {
3649 X86PTEPAE Pte = pPT->a[i];
3650 if (Pte.n.u1Present)
3651 {
3652 pHlp->pfnPrintf(pHlp,
3653 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3654 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3655 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3656 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3657 Pte.n.u1Write ? 'W' : 'R',
3658 Pte.n.u1User ? 'U' : 'S',
3659 Pte.n.u1Accessed ? 'A' : '-',
3660 Pte.n.u1Dirty ? 'D' : '-',
3661 Pte.n.u1Global ? 'G' : '-',
3662 Pte.n.u1WriteThru ? "WT" : "--",
3663 Pte.n.u1CacheDisable? "CD" : "--",
3664 Pte.n.u1PAT ? "AT" : "--",
3665 Pte.n.u1NoExecute ? "NX" : "--",
3666 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3667 Pte.u & RT_BIT(10) ? '1' : '0',
3668 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3669 Pte.u & X86_PTE_PAE_PG_MASK);
3670 }
3671 }
3672 return VINF_SUCCESS;
3673}
3674
3675
3676/**
3677 * Dumps a PAE shadow page directory table.
3678 *
3679 * @returns VBox status code (VINF_SUCCESS).
3680 * @param pVM The VM handle.
3681 * @param HCPhys The physical address of the page directory table.
3682 * @param u64Address The virtual address of the page table starts.
3683 * @param cr4 The CR4, PSE is currently used.
3684 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3685 * @param cMaxDepth The maxium depth.
3686 * @param pHlp Pointer to the output functions.
3687 */
3688static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3689{
3690 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3691 if (!pPD)
3692 {
3693 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3694 fLongMode ? 16 : 8, u64Address, HCPhys);
3695 return VERR_INVALID_PARAMETER;
3696 }
3697 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3698
3699 int rc = VINF_SUCCESS;
3700 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3701 {
3702 X86PDEPAE Pde = pPD->a[i];
3703 if (Pde.n.u1Present)
3704 {
3705 if (fBigPagesSupported && Pde.b.u1Size)
3706 pHlp->pfnPrintf(pHlp,
3707 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3708 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3709 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3710 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3711 Pde.b.u1Write ? 'W' : 'R',
3712 Pde.b.u1User ? 'U' : 'S',
3713 Pde.b.u1Accessed ? 'A' : '-',
3714 Pde.b.u1Dirty ? 'D' : '-',
3715 Pde.b.u1Global ? 'G' : '-',
3716 Pde.b.u1WriteThru ? "WT" : "--",
3717 Pde.b.u1CacheDisable? "CD" : "--",
3718 Pde.b.u1PAT ? "AT" : "--",
3719 Pde.b.u1NoExecute ? "NX" : "--",
3720 Pde.u & RT_BIT_64(9) ? '1' : '0',
3721 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3722 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3723 Pde.u & X86_PDE_PAE_PG_MASK);
3724 else
3725 {
3726 pHlp->pfnPrintf(pHlp,
3727 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3728 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3729 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3730 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3731 Pde.n.u1Write ? 'W' : 'R',
3732 Pde.n.u1User ? 'U' : 'S',
3733 Pde.n.u1Accessed ? 'A' : '-',
3734 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3735 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3736 Pde.n.u1WriteThru ? "WT" : "--",
3737 Pde.n.u1CacheDisable? "CD" : "--",
3738 Pde.n.u1NoExecute ? "NX" : "--",
3739 Pde.u & RT_BIT_64(9) ? '1' : '0',
3740 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3741 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3742 Pde.u & X86_PDE_PAE_PG_MASK);
3743 if (cMaxDepth >= 1)
3744 {
3745 /** @todo what about using the page pool for mapping PTs? */
3746 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3747 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3748 PX86PTPAE pPT = NULL;
3749 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3750 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3751 else
3752 {
3753 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3754 {
3755 uint64_t off = u64AddressPT - pMap->GCPtr;
3756 if (off < pMap->cb)
3757 {
3758 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3759 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3760 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3761 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3762 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3763 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3764 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3765 }
3766 }
3767 }
3768 int rc2 = VERR_INVALID_PARAMETER;
3769 if (pPT)
3770 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3771 else
3772 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3773 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3774 if (rc2 < rc && RT_SUCCESS(rc))
3775 rc = rc2;
3776 }
3777 }
3778 }
3779 }
3780 return rc;
3781}
3782
3783
3784/**
3785 * Dumps a PAE shadow page directory pointer table.
3786 *
3787 * @returns VBox status code (VINF_SUCCESS).
3788 * @param pVM The VM handle.
3789 * @param HCPhys The physical address of the page directory pointer table.
3790 * @param u64Address The virtual address of the page table starts.
3791 * @param cr4 The CR4, PSE is currently used.
3792 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3793 * @param cMaxDepth The maxium depth.
3794 * @param pHlp Pointer to the output functions.
3795 */
3796static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3797{
3798 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3799 if (!pPDPT)
3800 {
3801 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3802 fLongMode ? 16 : 8, u64Address, HCPhys);
3803 return VERR_INVALID_PARAMETER;
3804 }
3805
3806 int rc = VINF_SUCCESS;
3807 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3808 for (unsigned i = 0; i < c; i++)
3809 {
3810 X86PDPE Pdpe = pPDPT->a[i];
3811 if (Pdpe.n.u1Present)
3812 {
3813 if (fLongMode)
3814 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3815 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3816 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3817 Pdpe.lm.u1Write ? 'W' : 'R',
3818 Pdpe.lm.u1User ? 'U' : 'S',
3819 Pdpe.lm.u1Accessed ? 'A' : '-',
3820 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3821 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3822 Pdpe.lm.u1WriteThru ? "WT" : "--",
3823 Pdpe.lm.u1CacheDisable? "CD" : "--",
3824 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3825 Pdpe.lm.u1NoExecute ? "NX" : "--",
3826 Pdpe.u & RT_BIT(9) ? '1' : '0',
3827 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3828 Pdpe.u & RT_BIT(11) ? '1' : '0',
3829 Pdpe.u & X86_PDPE_PG_MASK);
3830 else
3831 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3832 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3833 i << X86_PDPT_SHIFT,
3834 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3835 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3836 Pdpe.n.u1WriteThru ? "WT" : "--",
3837 Pdpe.n.u1CacheDisable? "CD" : "--",
3838 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3839 Pdpe.u & RT_BIT(9) ? '1' : '0',
3840 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3841 Pdpe.u & RT_BIT(11) ? '1' : '0',
3842 Pdpe.u & X86_PDPE_PG_MASK);
3843 if (cMaxDepth >= 1)
3844 {
3845 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3846 cr4, fLongMode, cMaxDepth - 1, pHlp);
3847 if (rc2 < rc && RT_SUCCESS(rc))
3848 rc = rc2;
3849 }
3850 }
3851 }
3852 return rc;
3853}
3854
3855
3856/**
3857 * Dumps a 32-bit shadow page table.
3858 *
3859 * @returns VBox status code (VINF_SUCCESS).
3860 * @param pVM The VM handle.
3861 * @param HCPhys The physical address of the table.
3862 * @param cr4 The CR4, PSE is currently used.
3863 * @param cMaxDepth The maxium depth.
3864 * @param pHlp Pointer to the output functions.
3865 */
3866static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3867{
3868 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3869 if (!pPML4)
3870 {
3871 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3872 return VERR_INVALID_PARAMETER;
3873 }
3874
3875 int rc = VINF_SUCCESS;
3876 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3877 {
3878 X86PML4E Pml4e = pPML4->a[i];
3879 if (Pml4e.n.u1Present)
3880 {
3881 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3882 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3883 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3884 u64Address,
3885 Pml4e.n.u1Write ? 'W' : 'R',
3886 Pml4e.n.u1User ? 'U' : 'S',
3887 Pml4e.n.u1Accessed ? 'A' : '-',
3888 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3889 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3890 Pml4e.n.u1WriteThru ? "WT" : "--",
3891 Pml4e.n.u1CacheDisable? "CD" : "--",
3892 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3893 Pml4e.n.u1NoExecute ? "NX" : "--",
3894 Pml4e.u & RT_BIT(9) ? '1' : '0',
3895 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3896 Pml4e.u & RT_BIT(11) ? '1' : '0',
3897 Pml4e.u & X86_PML4E_PG_MASK);
3898
3899 if (cMaxDepth >= 1)
3900 {
3901 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3902 if (rc2 < rc && RT_SUCCESS(rc))
3903 rc = rc2;
3904 }
3905 }
3906 }
3907 return rc;
3908}
3909
3910
3911/**
3912 * Dumps a 32-bit shadow page table.
3913 *
3914 * @returns VBox status code (VINF_SUCCESS).
3915 * @param pVM The VM handle.
3916 * @param pPT Pointer to the page table.
3917 * @param u32Address The virtual address this table starts at.
3918 * @param pHlp Pointer to the output functions.
3919 */
3920int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3921{
3922 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3923 {
3924 X86PTE Pte = pPT->a[i];
3925 if (Pte.n.u1Present)
3926 {
3927 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3928 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3929 u32Address + (i << X86_PT_SHIFT),
3930 Pte.n.u1Write ? 'W' : 'R',
3931 Pte.n.u1User ? 'U' : 'S',
3932 Pte.n.u1Accessed ? 'A' : '-',
3933 Pte.n.u1Dirty ? 'D' : '-',
3934 Pte.n.u1Global ? 'G' : '-',
3935 Pte.n.u1WriteThru ? "WT" : "--",
3936 Pte.n.u1CacheDisable? "CD" : "--",
3937 Pte.n.u1PAT ? "AT" : "--",
3938 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3939 Pte.u & RT_BIT(10) ? '1' : '0',
3940 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3941 Pte.u & X86_PDE_PG_MASK);
3942 }
3943 }
3944 return VINF_SUCCESS;
3945}
3946
3947
3948/**
3949 * Dumps a 32-bit shadow page directory and page tables.
3950 *
3951 * @returns VBox status code (VINF_SUCCESS).
3952 * @param pVM The VM handle.
3953 * @param cr3 The root of the hierarchy.
3954 * @param cr4 The CR4, PSE is currently used.
3955 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3956 * @param pHlp Pointer to the output functions.
3957 */
3958int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3959{
3960 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3961 if (!pPD)
3962 {
3963 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3964 return VERR_INVALID_PARAMETER;
3965 }
3966
3967 int rc = VINF_SUCCESS;
3968 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3969 {
3970 X86PDE Pde = pPD->a[i];
3971 if (Pde.n.u1Present)
3972 {
3973 const uint32_t u32Address = i << X86_PD_SHIFT;
3974 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3975 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3976 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3977 u32Address,
3978 Pde.b.u1Write ? 'W' : 'R',
3979 Pde.b.u1User ? 'U' : 'S',
3980 Pde.b.u1Accessed ? 'A' : '-',
3981 Pde.b.u1Dirty ? 'D' : '-',
3982 Pde.b.u1Global ? 'G' : '-',
3983 Pde.b.u1WriteThru ? "WT" : "--",
3984 Pde.b.u1CacheDisable? "CD" : "--",
3985 Pde.b.u1PAT ? "AT" : "--",
3986 Pde.u & RT_BIT_64(9) ? '1' : '0',
3987 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3988 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3989 Pde.u & X86_PDE4M_PG_MASK);
3990 else
3991 {
3992 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3993 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3994 u32Address,
3995 Pde.n.u1Write ? 'W' : 'R',
3996 Pde.n.u1User ? 'U' : 'S',
3997 Pde.n.u1Accessed ? 'A' : '-',
3998 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3999 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4000 Pde.n.u1WriteThru ? "WT" : "--",
4001 Pde.n.u1CacheDisable? "CD" : "--",
4002 Pde.u & RT_BIT_64(9) ? '1' : '0',
4003 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4004 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4005 Pde.u & X86_PDE_PG_MASK);
4006 if (cMaxDepth >= 1)
4007 {
4008 /** @todo what about using the page pool for mapping PTs? */
4009 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4010 PX86PT pPT = NULL;
4011 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4012 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4013 else
4014 {
4015 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4016 if (u32Address - pMap->GCPtr < pMap->cb)
4017 {
4018 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4019 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4020 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4021 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4022 pPT = pMap->aPTs[iPDE].pPTR3;
4023 }
4024 }
4025 int rc2 = VERR_INVALID_PARAMETER;
4026 if (pPT)
4027 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4028 else
4029 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4030 if (rc2 < rc && RT_SUCCESS(rc))
4031 rc = rc2;
4032 }
4033 }
4034 }
4035 }
4036
4037 return rc;
4038}
4039
4040
4041/**
4042 * Dumps a 32-bit shadow page table.
4043 *
4044 * @returns VBox status code (VINF_SUCCESS).
4045 * @param pVM The VM handle.
4046 * @param pPT Pointer to the page table.
4047 * @param u32Address The virtual address this table starts at.
4048 * @param PhysSearch Address to search for.
4049 */
4050int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4051{
4052 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4053 {
4054 X86PTE Pte = pPT->a[i];
4055 if (Pte.n.u1Present)
4056 {
4057 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4058 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4059 u32Address + (i << X86_PT_SHIFT),
4060 Pte.n.u1Write ? 'W' : 'R',
4061 Pte.n.u1User ? 'U' : 'S',
4062 Pte.n.u1Accessed ? 'A' : '-',
4063 Pte.n.u1Dirty ? 'D' : '-',
4064 Pte.n.u1Global ? 'G' : '-',
4065 Pte.n.u1WriteThru ? "WT" : "--",
4066 Pte.n.u1CacheDisable? "CD" : "--",
4067 Pte.n.u1PAT ? "AT" : "--",
4068 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4069 Pte.u & RT_BIT(10) ? '1' : '0',
4070 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4071 Pte.u & X86_PDE_PG_MASK));
4072
4073 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4074 {
4075 uint64_t fPageShw = 0;
4076 RTHCPHYS pPhysHC = 0;
4077
4078 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4079 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4080 }
4081 }
4082 }
4083 return VINF_SUCCESS;
4084}
4085
4086
4087/**
4088 * Dumps a 32-bit guest page directory and page tables.
4089 *
4090 * @returns VBox status code (VINF_SUCCESS).
4091 * @param pVM The VM handle.
4092 * @param cr3 The root of the hierarchy.
4093 * @param cr4 The CR4, PSE is currently used.
4094 * @param PhysSearch Address to search for.
4095 */
4096VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4097{
4098 bool fLongMode = false;
4099 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4100 PX86PD pPD = 0;
4101
4102 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4103 if (RT_FAILURE(rc) || !pPD)
4104 {
4105 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4106 return VERR_INVALID_PARAMETER;
4107 }
4108
4109 Log(("cr3=%08x cr4=%08x%s\n"
4110 "%-*s P - Present\n"
4111 "%-*s | R/W - Read (0) / Write (1)\n"
4112 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4113 "%-*s | | | A - Accessed\n"
4114 "%-*s | | | | D - Dirty\n"
4115 "%-*s | | | | | G - Global\n"
4116 "%-*s | | | | | | WT - Write thru\n"
4117 "%-*s | | | | | | | CD - Cache disable\n"
4118 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4119 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4120 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4121 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4122 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4123 "%-*s Level | | | | | | | | | | | | Page\n"
4124 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4125 - W U - - - -- -- -- -- -- 010 */
4126 , cr3, cr4, fLongMode ? " Long Mode" : "",
4127 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4128 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4129
4130 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4131 {
4132 X86PDE Pde = pPD->a[i];
4133 if (Pde.n.u1Present)
4134 {
4135 const uint32_t u32Address = i << X86_PD_SHIFT;
4136
4137 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4138 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4139 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4140 u32Address,
4141 Pde.b.u1Write ? 'W' : 'R',
4142 Pde.b.u1User ? 'U' : 'S',
4143 Pde.b.u1Accessed ? 'A' : '-',
4144 Pde.b.u1Dirty ? 'D' : '-',
4145 Pde.b.u1Global ? 'G' : '-',
4146 Pde.b.u1WriteThru ? "WT" : "--",
4147 Pde.b.u1CacheDisable? "CD" : "--",
4148 Pde.b.u1PAT ? "AT" : "--",
4149 Pde.u & RT_BIT(9) ? '1' : '0',
4150 Pde.u & RT_BIT(10) ? '1' : '0',
4151 Pde.u & RT_BIT(11) ? '1' : '0',
4152 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4153 /** @todo PhysSearch */
4154 else
4155 {
4156 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4157 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4158 u32Address,
4159 Pde.n.u1Write ? 'W' : 'R',
4160 Pde.n.u1User ? 'U' : 'S',
4161 Pde.n.u1Accessed ? 'A' : '-',
4162 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4163 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4164 Pde.n.u1WriteThru ? "WT" : "--",
4165 Pde.n.u1CacheDisable? "CD" : "--",
4166 Pde.u & RT_BIT(9) ? '1' : '0',
4167 Pde.u & RT_BIT(10) ? '1' : '0',
4168 Pde.u & RT_BIT(11) ? '1' : '0',
4169 Pde.u & X86_PDE_PG_MASK));
4170 ////if (cMaxDepth >= 1)
4171 {
4172 /** @todo what about using the page pool for mapping PTs? */
4173 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4174 PX86PT pPT = NULL;
4175
4176 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4177
4178 int rc2 = VERR_INVALID_PARAMETER;
4179 if (pPT)
4180 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4181 else
4182 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4183 if (rc2 < rc && RT_SUCCESS(rc))
4184 rc = rc2;
4185 }
4186 }
4187 }
4188 }
4189
4190 return rc;
4191}
4192
4193
4194/**
4195 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4196 *
4197 * @returns VBox status code (VINF_SUCCESS).
4198 * @param pVM The VM handle.
4199 * @param cr3 The root of the hierarchy.
4200 * @param cr4 The cr4, only PAE and PSE is currently used.
4201 * @param fLongMode Set if long mode, false if not long mode.
4202 * @param cMaxDepth Number of levels to dump.
4203 * @param pHlp Pointer to the output functions.
4204 */
4205VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4206{
4207 if (!pHlp)
4208 pHlp = DBGFR3InfoLogHlp();
4209 if (!cMaxDepth)
4210 return VINF_SUCCESS;
4211 const unsigned cch = fLongMode ? 16 : 8;
4212 pHlp->pfnPrintf(pHlp,
4213 "cr3=%08x cr4=%08x%s\n"
4214 "%-*s P - Present\n"
4215 "%-*s | R/W - Read (0) / Write (1)\n"
4216 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4217 "%-*s | | | A - Accessed\n"
4218 "%-*s | | | | D - Dirty\n"
4219 "%-*s | | | | | G - Global\n"
4220 "%-*s | | | | | | WT - Write thru\n"
4221 "%-*s | | | | | | | CD - Cache disable\n"
4222 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4223 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4224 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4225 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4226 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4227 "%-*s Level | | | | | | | | | | | | Page\n"
4228 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4229 - W U - - - -- -- -- -- -- 010 */
4230 , cr3, cr4, fLongMode ? " Long Mode" : "",
4231 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4232 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4233 if (cr4 & X86_CR4_PAE)
4234 {
4235 if (fLongMode)
4236 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4237 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4238 }
4239 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4240}
4241
4242#ifdef VBOX_WITH_DEBUGGER
4243
4244/**
4245 * The '.pgmram' command.
4246 *
4247 * @returns VBox status.
4248 * @param pCmd Pointer to the command descriptor (as registered).
4249 * @param pCmdHlp Pointer to command helper functions.
4250 * @param pVM Pointer to the current VM (if any).
4251 * @param paArgs Pointer to (readonly) array of arguments.
4252 * @param cArgs Number of arguments in the array.
4253 */
4254static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4255{
4256 /*
4257 * Validate input.
4258 */
4259 if (!pVM)
4260 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4261 if (!pVM->pgm.s.pRamRangesRC)
4262 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4263
4264 /*
4265 * Dump the ranges.
4266 */
4267 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4268 PPGMRAMRANGE pRam;
4269 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4270 {
4271 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4272 "%RGp - %RGp %p\n",
4273 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4274 if (RT_FAILURE(rc))
4275 return rc;
4276 }
4277
4278 return VINF_SUCCESS;
4279}
4280
4281
4282/**
4283 * The '.pgmmap' command.
4284 *
4285 * @returns VBox status.
4286 * @param pCmd Pointer to the command descriptor (as registered).
4287 * @param pCmdHlp Pointer to command helper functions.
4288 * @param pVM Pointer to the current VM (if any).
4289 * @param paArgs Pointer to (readonly) array of arguments.
4290 * @param cArgs Number of arguments in the array.
4291 */
4292static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4293{
4294 /*
4295 * Validate input.
4296 */
4297 if (!pVM)
4298 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4299 if (!pVM->pgm.s.pMappingsR3)
4300 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4301
4302 /*
4303 * Print message about the fixedness of the mappings.
4304 */
4305 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4306 if (RT_FAILURE(rc))
4307 return rc;
4308
4309 /*
4310 * Dump the ranges.
4311 */
4312 PPGMMAPPING pCur;
4313 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4314 {
4315 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4316 "%08x - %08x %s\n",
4317 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4318 if (RT_FAILURE(rc))
4319 return rc;
4320 }
4321
4322 return VINF_SUCCESS;
4323}
4324
4325
4326/**
4327 * The '.pgmsync' command.
4328 *
4329 * @returns VBox status.
4330 * @param pCmd Pointer to the command descriptor (as registered).
4331 * @param pCmdHlp Pointer to command helper functions.
4332 * @param pVM Pointer to the current VM (if any).
4333 * @param paArgs Pointer to (readonly) array of arguments.
4334 * @param cArgs Number of arguments in the array.
4335 */
4336static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4337{
4338 /*
4339 * Validate input.
4340 */
4341 if (!pVM)
4342 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4343
4344 /*
4345 * Force page directory sync.
4346 */
4347 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4348
4349 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4350 if (RT_FAILURE(rc))
4351 return rc;
4352
4353 return VINF_SUCCESS;
4354}
4355
4356
4357#ifdef VBOX_STRICT
4358/**
4359 * The '.pgmassertcr3' command.
4360 *
4361 * @returns VBox status.
4362 * @param pCmd Pointer to the command descriptor (as registered).
4363 * @param pCmdHlp Pointer to command helper functions.
4364 * @param pVM Pointer to the current VM (if any).
4365 * @param paArgs Pointer to (readonly) array of arguments.
4366 * @param cArgs Number of arguments in the array.
4367 */
4368static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4369{
4370 /*
4371 * Validate input.
4372 */
4373 if (!pVM)
4374 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4375
4376 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4377 if (RT_FAILURE(rc))
4378 return rc;
4379
4380 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4381
4382 return VINF_SUCCESS;
4383}
4384#endif /* VBOX_STRICT */
4385
4386
4387/**
4388 * The '.pgmsyncalways' command.
4389 *
4390 * @returns VBox status.
4391 * @param pCmd Pointer to the command descriptor (as registered).
4392 * @param pCmdHlp Pointer to command helper functions.
4393 * @param pVM Pointer to the current VM (if any).
4394 * @param paArgs Pointer to (readonly) array of arguments.
4395 * @param cArgs Number of arguments in the array.
4396 */
4397static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4398{
4399 /*
4400 * Validate input.
4401 */
4402 if (!pVM)
4403 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4404
4405 /*
4406 * Force page directory sync.
4407 */
4408 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4409 {
4410 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4411 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4412 }
4413 else
4414 {
4415 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4416 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4417 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4418 }
4419}
4420
4421#endif /* VBOX_WITH_DEBUGGER */
4422
4423/**
4424 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4425 */
4426typedef struct PGMCHECKINTARGS
4427{
4428 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4429 PPGMPHYSHANDLER pPrevPhys;
4430 PPGMVIRTHANDLER pPrevVirt;
4431 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4432 PVM pVM;
4433} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4434
4435/**
4436 * Validate a node in the physical handler tree.
4437 *
4438 * @returns 0 on if ok, other wise 1.
4439 * @param pNode The handler node.
4440 * @param pvUser pVM.
4441 */
4442static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4443{
4444 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4445 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4446 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4447 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4448 AssertReleaseMsg( !pArgs->pPrevPhys
4449 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4450 ("pPrevPhys=%p %RGp-%RGp %s\n"
4451 " pCur=%p %RGp-%RGp %s\n",
4452 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4453 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4454 pArgs->pPrevPhys = pCur;
4455 return 0;
4456}
4457
4458
4459/**
4460 * Validate a node in the virtual handler tree.
4461 *
4462 * @returns 0 on if ok, other wise 1.
4463 * @param pNode The handler node.
4464 * @param pvUser pVM.
4465 */
4466static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4467{
4468 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4469 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4470 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4471 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4472 AssertReleaseMsg( !pArgs->pPrevVirt
4473 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4474 ("pPrevVirt=%p %RGv-%RGv %s\n"
4475 " pCur=%p %RGv-%RGv %s\n",
4476 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4477 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4478 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4479 {
4480 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4481 ("pCur=%p %RGv-%RGv %s\n"
4482 "iPage=%d offVirtHandle=%#x expected %#x\n",
4483 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4484 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4485 }
4486 pArgs->pPrevVirt = pCur;
4487 return 0;
4488}
4489
4490
4491/**
4492 * Validate a node in the virtual handler tree.
4493 *
4494 * @returns 0 on if ok, other wise 1.
4495 * @param pNode The handler node.
4496 * @param pvUser pVM.
4497 */
4498static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4499{
4500 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4501 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4502 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4503 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4504 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4505 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4506 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4507 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4508 " pCur=%p %RGp-%RGp\n",
4509 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4510 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4511 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4512 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4513 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4514 " pCur=%p %RGp-%RGp\n",
4515 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4516 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4517 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4518 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4519 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4520 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4521 {
4522 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4523 for (;;)
4524 {
4525 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4526 AssertReleaseMsg(pCur2 != pCur,
4527 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4528 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4529 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4530 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4531 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4532 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4533 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4534 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4535 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4536 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4537 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4538 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4539 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4540 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4541 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4542 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4543 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4544 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4545 break;
4546 }
4547 }
4548
4549 pArgs->pPrevPhys2Virt = pCur;
4550 return 0;
4551}
4552
4553
4554/**
4555 * Perform an integrity check on the PGM component.
4556 *
4557 * @returns VINF_SUCCESS if everything is fine.
4558 * @returns VBox error status after asserting on integrity breach.
4559 * @param pVM The VM handle.
4560 */
4561VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4562{
4563 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4564
4565 /*
4566 * Check the trees.
4567 */
4568 int cErrors = 0;
4569 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4570 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4571 PGMCHECKINTARGS Args = s_LeftToRight;
4572 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4573 Args = s_RightToLeft;
4574 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4575 Args = s_LeftToRight;
4576 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4577 Args = s_RightToLeft;
4578 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4579 Args = s_LeftToRight;
4580 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4581 Args = s_RightToLeft;
4582 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4583 Args = s_LeftToRight;
4584 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4585 Args = s_RightToLeft;
4586 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4587
4588 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4589}
4590
4591
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette