VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 18291

Last change on this file since 18291 was 18291, checked in by vboxsync, 16 years ago

PGM: Map PGMRAMRANGES above 4GB outside HMA (see defect). Changed PGMR3MapPT to take a flag indicating whether PGMR3UnmapPT will be used; this way we can select a more optimal allocation function for the ram ranges. PGMMapResolveConflicts: Walk the list correctly after reloc. pgmMapClearShadowPDEs: Don't clear PGM_PLXFLAGS_MAPPING when we shouldn't (odd PAE cases).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 232.2 KB
Line 
1/* $Id: PGM.cpp 18291 2009-03-26 05:11:07Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#ifdef DEBUG_bird
602# include <iprt/env.h>
603#endif
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version. */
612#ifdef VBOX_WITH_NEW_PHYS_CODE
613# define PGM_SAVED_STATE_VERSION 7
614#else
615# define PGM_SAVED_STATE_VERSION 6
616#endif
617/** Saved state data unit version. */
618#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
619
620
621/*******************************************************************************
622* Internal Functions *
623*******************************************************************************/
624static int pgmR3InitPaging(PVM pVM);
625static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631#ifdef VBOX_STRICT
632static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
633#endif
634static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
635static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
636static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
637static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
638static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
639
640#ifdef VBOX_WITH_STATISTICS
641static void pgmR3InitStats(PVM pVM);
642#endif
643
644#ifdef VBOX_WITH_DEBUGGER
645/** @todo all but the two last commands must be converted to 'info'. */
646static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
649static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650# ifdef VBOX_STRICT
651static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
652# endif
653#endif
654
655
656/*******************************************************************************
657* Global Variables *
658*******************************************************************************/
659#ifdef VBOX_WITH_DEBUGGER
660/** Command descriptors. */
661static const DBGCCMD g_aCmds[] =
662{
663 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
664 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
665 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
666 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
667#ifdef VBOX_STRICT
668 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
669#endif
670 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
671};
672#endif
673
674
675
676
677/*
678 * Shadow - 32-bit mode
679 */
680#define PGM_SHW_TYPE PGM_TYPE_32BIT
681#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
682#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
683#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
684#include "PGMShw.h"
685
686/* Guest - real mode */
687#define PGM_GST_TYPE PGM_TYPE_REAL
688#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
689#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
690#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
691#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
692#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
693#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
694#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
695#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
696#include "PGMBth.h"
697#include "PGMGstDefs.h"
698#include "PGMGst.h"
699#undef BTH_PGMPOOLKIND_PT_FOR_PT
700#undef BTH_PGMPOOLKIND_ROOT
701#undef PGM_BTH_NAME
702#undef PGM_BTH_NAME_RC_STR
703#undef PGM_BTH_NAME_R0_STR
704#undef PGM_GST_TYPE
705#undef PGM_GST_NAME
706#undef PGM_GST_NAME_RC_STR
707#undef PGM_GST_NAME_R0_STR
708
709/* Guest - protected mode */
710#define PGM_GST_TYPE PGM_TYPE_PROT
711#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
712#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
713#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
714#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
715#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
716#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
717#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
718#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
719#include "PGMBth.h"
720#include "PGMGstDefs.h"
721#include "PGMGst.h"
722#undef BTH_PGMPOOLKIND_PT_FOR_PT
723#undef BTH_PGMPOOLKIND_ROOT
724#undef PGM_BTH_NAME
725#undef PGM_BTH_NAME_RC_STR
726#undef PGM_BTH_NAME_R0_STR
727#undef PGM_GST_TYPE
728#undef PGM_GST_NAME
729#undef PGM_GST_NAME_RC_STR
730#undef PGM_GST_NAME_R0_STR
731
732/* Guest - 32-bit mode */
733#define PGM_GST_TYPE PGM_TYPE_32BIT
734#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
735#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
736#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
737#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
738#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
739#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
740#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
741#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
742#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
743#include "PGMBth.h"
744#include "PGMGstDefs.h"
745#include "PGMGst.h"
746#undef BTH_PGMPOOLKIND_PT_FOR_BIG
747#undef BTH_PGMPOOLKIND_PT_FOR_PT
748#undef BTH_PGMPOOLKIND_ROOT
749#undef PGM_BTH_NAME
750#undef PGM_BTH_NAME_RC_STR
751#undef PGM_BTH_NAME_R0_STR
752#undef PGM_GST_TYPE
753#undef PGM_GST_NAME
754#undef PGM_GST_NAME_RC_STR
755#undef PGM_GST_NAME_R0_STR
756
757#undef PGM_SHW_TYPE
758#undef PGM_SHW_NAME
759#undef PGM_SHW_NAME_RC_STR
760#undef PGM_SHW_NAME_R0_STR
761
762
763/*
764 * Shadow - PAE mode
765 */
766#define PGM_SHW_TYPE PGM_TYPE_PAE
767#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
768#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
769#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
770#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
771#include "PGMShw.h"
772
773/* Guest - real mode */
774#define PGM_GST_TYPE PGM_TYPE_REAL
775#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
776#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
777#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
778#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
779#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
780#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
781#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
782#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
783#include "PGMGstDefs.h"
784#include "PGMBth.h"
785#undef BTH_PGMPOOLKIND_PT_FOR_PT
786#undef BTH_PGMPOOLKIND_ROOT
787#undef PGM_BTH_NAME
788#undef PGM_BTH_NAME_RC_STR
789#undef PGM_BTH_NAME_R0_STR
790#undef PGM_GST_TYPE
791#undef PGM_GST_NAME
792#undef PGM_GST_NAME_RC_STR
793#undef PGM_GST_NAME_R0_STR
794
795/* Guest - protected mode */
796#define PGM_GST_TYPE PGM_TYPE_PROT
797#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
798#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
799#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
800#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
801#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
802#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
803#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
804#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
805#include "PGMGstDefs.h"
806#include "PGMBth.h"
807#undef BTH_PGMPOOLKIND_PT_FOR_PT
808#undef BTH_PGMPOOLKIND_ROOT
809#undef PGM_BTH_NAME
810#undef PGM_BTH_NAME_RC_STR
811#undef PGM_BTH_NAME_R0_STR
812#undef PGM_GST_TYPE
813#undef PGM_GST_NAME
814#undef PGM_GST_NAME_RC_STR
815#undef PGM_GST_NAME_R0_STR
816
817/* Guest - 32-bit mode */
818#define PGM_GST_TYPE PGM_TYPE_32BIT
819#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
820#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
821#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
822#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
823#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
824#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
825#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
826#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
827#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
828#include "PGMGstDefs.h"
829#include "PGMBth.h"
830#undef BTH_PGMPOOLKIND_PT_FOR_BIG
831#undef BTH_PGMPOOLKIND_PT_FOR_PT
832#undef BTH_PGMPOOLKIND_ROOT
833#undef PGM_BTH_NAME
834#undef PGM_BTH_NAME_RC_STR
835#undef PGM_BTH_NAME_R0_STR
836#undef PGM_GST_TYPE
837#undef PGM_GST_NAME
838#undef PGM_GST_NAME_RC_STR
839#undef PGM_GST_NAME_R0_STR
840
841/* Guest - PAE mode */
842#define PGM_GST_TYPE PGM_TYPE_PAE
843#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
844#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
845#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
846#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
847#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
848#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
849#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
850#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
851#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
852#include "PGMBth.h"
853#include "PGMGstDefs.h"
854#include "PGMGst.h"
855#undef BTH_PGMPOOLKIND_PT_FOR_BIG
856#undef BTH_PGMPOOLKIND_PT_FOR_PT
857#undef BTH_PGMPOOLKIND_ROOT
858#undef PGM_BTH_NAME
859#undef PGM_BTH_NAME_RC_STR
860#undef PGM_BTH_NAME_R0_STR
861#undef PGM_GST_TYPE
862#undef PGM_GST_NAME
863#undef PGM_GST_NAME_RC_STR
864#undef PGM_GST_NAME_R0_STR
865
866#undef PGM_SHW_TYPE
867#undef PGM_SHW_NAME
868#undef PGM_SHW_NAME_RC_STR
869#undef PGM_SHW_NAME_R0_STR
870
871
872/*
873 * Shadow - AMD64 mode
874 */
875#define PGM_SHW_TYPE PGM_TYPE_AMD64
876#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
877#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
878#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
879#include "PGMShw.h"
880
881#ifdef VBOX_WITH_64_BITS_GUESTS
882/* Guest - AMD64 mode */
883# define PGM_GST_TYPE PGM_TYPE_AMD64
884# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
885# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
886# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
887# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
888# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
889# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
890# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
891# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
892# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
893# include "PGMBth.h"
894# include "PGMGstDefs.h"
895# include "PGMGst.h"
896# undef BTH_PGMPOOLKIND_PT_FOR_BIG
897# undef BTH_PGMPOOLKIND_PT_FOR_PT
898# undef BTH_PGMPOOLKIND_ROOT
899# undef PGM_BTH_NAME
900# undef PGM_BTH_NAME_RC_STR
901# undef PGM_BTH_NAME_R0_STR
902# undef PGM_GST_TYPE
903# undef PGM_GST_NAME
904# undef PGM_GST_NAME_RC_STR
905# undef PGM_GST_NAME_R0_STR
906#endif /* VBOX_WITH_64_BITS_GUESTS */
907
908#undef PGM_SHW_TYPE
909#undef PGM_SHW_NAME
910#undef PGM_SHW_NAME_RC_STR
911#undef PGM_SHW_NAME_R0_STR
912
913
914/*
915 * Shadow - Nested paging mode
916 */
917#define PGM_SHW_TYPE PGM_TYPE_NESTED
918#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
919#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
920#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
921#include "PGMShw.h"
922
923/* Guest - real mode */
924#define PGM_GST_TYPE PGM_TYPE_REAL
925#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
926#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
927#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
928#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
929#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
930#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
931#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
932#include "PGMGstDefs.h"
933#include "PGMBth.h"
934#undef BTH_PGMPOOLKIND_PT_FOR_PT
935#undef PGM_BTH_NAME
936#undef PGM_BTH_NAME_RC_STR
937#undef PGM_BTH_NAME_R0_STR
938#undef PGM_GST_TYPE
939#undef PGM_GST_NAME
940#undef PGM_GST_NAME_RC_STR
941#undef PGM_GST_NAME_R0_STR
942
943/* Guest - protected mode */
944#define PGM_GST_TYPE PGM_TYPE_PROT
945#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
946#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
947#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
948#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
949#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
950#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
951#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
952#include "PGMGstDefs.h"
953#include "PGMBth.h"
954#undef BTH_PGMPOOLKIND_PT_FOR_PT
955#undef PGM_BTH_NAME
956#undef PGM_BTH_NAME_RC_STR
957#undef PGM_BTH_NAME_R0_STR
958#undef PGM_GST_TYPE
959#undef PGM_GST_NAME
960#undef PGM_GST_NAME_RC_STR
961#undef PGM_GST_NAME_R0_STR
962
963/* Guest - 32-bit mode */
964#define PGM_GST_TYPE PGM_TYPE_32BIT
965#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
966#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
967#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
968#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
969#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
970#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
971#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
972#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
973#include "PGMGstDefs.h"
974#include "PGMBth.h"
975#undef BTH_PGMPOOLKIND_PT_FOR_BIG
976#undef BTH_PGMPOOLKIND_PT_FOR_PT
977#undef PGM_BTH_NAME
978#undef PGM_BTH_NAME_RC_STR
979#undef PGM_BTH_NAME_R0_STR
980#undef PGM_GST_TYPE
981#undef PGM_GST_NAME
982#undef PGM_GST_NAME_RC_STR
983#undef PGM_GST_NAME_R0_STR
984
985/* Guest - PAE mode */
986#define PGM_GST_TYPE PGM_TYPE_PAE
987#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
988#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
989#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
990#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
991#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
992#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
993#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
994#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
995#include "PGMGstDefs.h"
996#include "PGMBth.h"
997#undef BTH_PGMPOOLKIND_PT_FOR_BIG
998#undef BTH_PGMPOOLKIND_PT_FOR_PT
999#undef PGM_BTH_NAME
1000#undef PGM_BTH_NAME_RC_STR
1001#undef PGM_BTH_NAME_R0_STR
1002#undef PGM_GST_TYPE
1003#undef PGM_GST_NAME
1004#undef PGM_GST_NAME_RC_STR
1005#undef PGM_GST_NAME_R0_STR
1006
1007#ifdef VBOX_WITH_64_BITS_GUESTS
1008/* Guest - AMD64 mode */
1009# define PGM_GST_TYPE PGM_TYPE_AMD64
1010# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1011# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1012# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1013# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1014# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1015# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1016# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1017# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1018# include "PGMGstDefs.h"
1019# include "PGMBth.h"
1020# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1021# undef BTH_PGMPOOLKIND_PT_FOR_PT
1022# undef PGM_BTH_NAME
1023# undef PGM_BTH_NAME_RC_STR
1024# undef PGM_BTH_NAME_R0_STR
1025# undef PGM_GST_TYPE
1026# undef PGM_GST_NAME
1027# undef PGM_GST_NAME_RC_STR
1028# undef PGM_GST_NAME_R0_STR
1029#endif /* VBOX_WITH_64_BITS_GUESTS */
1030
1031#undef PGM_SHW_TYPE
1032#undef PGM_SHW_NAME
1033#undef PGM_SHW_NAME_RC_STR
1034#undef PGM_SHW_NAME_R0_STR
1035
1036
1037/*
1038 * Shadow - EPT
1039 */
1040#define PGM_SHW_TYPE PGM_TYPE_EPT
1041#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1042#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1043#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1044#include "PGMShw.h"
1045
1046/* Guest - real mode */
1047#define PGM_GST_TYPE PGM_TYPE_REAL
1048#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1049#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1050#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1051#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1052#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1053#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1054#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1055#include "PGMGstDefs.h"
1056#include "PGMBth.h"
1057#undef BTH_PGMPOOLKIND_PT_FOR_PT
1058#undef PGM_BTH_NAME
1059#undef PGM_BTH_NAME_RC_STR
1060#undef PGM_BTH_NAME_R0_STR
1061#undef PGM_GST_TYPE
1062#undef PGM_GST_NAME
1063#undef PGM_GST_NAME_RC_STR
1064#undef PGM_GST_NAME_R0_STR
1065
1066/* Guest - protected mode */
1067#define PGM_GST_TYPE PGM_TYPE_PROT
1068#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1069#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1070#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1071#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1072#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1073#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1074#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1075#include "PGMGstDefs.h"
1076#include "PGMBth.h"
1077#undef BTH_PGMPOOLKIND_PT_FOR_PT
1078#undef PGM_BTH_NAME
1079#undef PGM_BTH_NAME_RC_STR
1080#undef PGM_BTH_NAME_R0_STR
1081#undef PGM_GST_TYPE
1082#undef PGM_GST_NAME
1083#undef PGM_GST_NAME_RC_STR
1084#undef PGM_GST_NAME_R0_STR
1085
1086/* Guest - 32-bit mode */
1087#define PGM_GST_TYPE PGM_TYPE_32BIT
1088#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1089#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1090#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1091#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1092#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1093#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1094#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1095#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1096#include "PGMGstDefs.h"
1097#include "PGMBth.h"
1098#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1099#undef BTH_PGMPOOLKIND_PT_FOR_PT
1100#undef PGM_BTH_NAME
1101#undef PGM_BTH_NAME_RC_STR
1102#undef PGM_BTH_NAME_R0_STR
1103#undef PGM_GST_TYPE
1104#undef PGM_GST_NAME
1105#undef PGM_GST_NAME_RC_STR
1106#undef PGM_GST_NAME_R0_STR
1107
1108/* Guest - PAE mode */
1109#define PGM_GST_TYPE PGM_TYPE_PAE
1110#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1111#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1112#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1113#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1114#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1115#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1116#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1117#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1118#include "PGMGstDefs.h"
1119#include "PGMBth.h"
1120#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1121#undef BTH_PGMPOOLKIND_PT_FOR_PT
1122#undef PGM_BTH_NAME
1123#undef PGM_BTH_NAME_RC_STR
1124#undef PGM_BTH_NAME_R0_STR
1125#undef PGM_GST_TYPE
1126#undef PGM_GST_NAME
1127#undef PGM_GST_NAME_RC_STR
1128#undef PGM_GST_NAME_R0_STR
1129
1130#ifdef VBOX_WITH_64_BITS_GUESTS
1131/* Guest - AMD64 mode */
1132# define PGM_GST_TYPE PGM_TYPE_AMD64
1133# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1134# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1135# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1136# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1137# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1138# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1139# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1140# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1141# include "PGMGstDefs.h"
1142# include "PGMBth.h"
1143# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1144# undef BTH_PGMPOOLKIND_PT_FOR_PT
1145# undef PGM_BTH_NAME
1146# undef PGM_BTH_NAME_RC_STR
1147# undef PGM_BTH_NAME_R0_STR
1148# undef PGM_GST_TYPE
1149# undef PGM_GST_NAME
1150# undef PGM_GST_NAME_RC_STR
1151# undef PGM_GST_NAME_R0_STR
1152#endif /* VBOX_WITH_64_BITS_GUESTS */
1153
1154#undef PGM_SHW_TYPE
1155#undef PGM_SHW_NAME
1156#undef PGM_SHW_NAME_RC_STR
1157#undef PGM_SHW_NAME_R0_STR
1158
1159
1160
1161/**
1162 * Initiates the paging of VM.
1163 *
1164 * @returns VBox status code.
1165 * @param pVM Pointer to VM structure.
1166 */
1167VMMR3DECL(int) PGMR3Init(PVM pVM)
1168{
1169 LogFlow(("PGMR3Init:\n"));
1170 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1171 int rc;
1172
1173 /*
1174 * Assert alignment and sizes.
1175 */
1176 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1177
1178 /*
1179 * Init the structure.
1180 */
1181 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1182 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1183 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1184 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1185 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1186 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1187 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1188 pVM->pgm.s.fA20Enabled = true;
1189 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1190 pVM->pgm.s.pGstPaePdptR3 = NULL;
1191#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1192 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1193#endif
1194 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1195 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1196 {
1197 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1198#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1199 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1200#endif
1201 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1202 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1203 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1204 }
1205
1206 rc = CFGMR3QueryBoolDef(pCfgPGM, "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, false);
1207 AssertLogRelRCReturn(rc, rc);
1208
1209#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1210 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1211#else
1212 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1213#endif
1214 AssertLogRelRCReturn(rc, rc);
1215 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1216 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1217
1218 /*
1219 * Get the configured RAM size - to estimate saved state size.
1220 */
1221 uint64_t cbRam;
1222 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1223 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1224 cbRam = pVM->pgm.s.cbRamSize = 0;
1225 else if (RT_SUCCESS(rc))
1226 {
1227 if (cbRam < PAGE_SIZE)
1228 cbRam = 0;
1229 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1230 pVM->pgm.s.cbRamSize = (RTUINT)cbRam; /* pointless legacy, remove after enabling the new phys code. */
1231 }
1232 else
1233 {
1234 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1235 return rc;
1236 }
1237
1238 /*
1239 * Register callbacks, string formatters and the saved state data unit.
1240 */
1241#ifdef VBOX_STRICT
1242 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1243#endif
1244 PGMRegisterStringFormatTypes();
1245
1246 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1247 NULL, pgmR3Save, NULL,
1248 NULL, pgmR3Load, NULL);
1249 if (RT_FAILURE(rc))
1250 return rc;
1251
1252 /*
1253 * Initialize the PGM critical section and flush the phys TLBs
1254 */
1255 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1256 AssertRCReturn(rc, rc);
1257
1258 PGMR3PhysChunkInvalidateTLB(pVM);
1259 PGMPhysInvalidatePageR3MapTLB(pVM);
1260 PGMPhysInvalidatePageR0MapTLB(pVM);
1261 PGMPhysInvalidatePageGCMapTLB(pVM);
1262
1263#ifdef VBOX_WITH_NEW_PHYS_CODE
1264 /*
1265 * For the time being we sport a full set of handy pages in addition to the base
1266 * memory to simplify things.
1267 */
1268 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages));
1269 AssertRCReturn(rc, rc);
1270#endif
1271
1272 /*
1273 * Trees
1274 */
1275 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1276 if (RT_SUCCESS(rc))
1277 {
1278 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1279 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1280
1281 /*
1282 * Alocate the zero page.
1283 */
1284 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1285 }
1286 if (RT_SUCCESS(rc))
1287 {
1288 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1289 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1290 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1291 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1292
1293 /*
1294 * Init the paging.
1295 */
1296 rc = pgmR3InitPaging(pVM);
1297 }
1298 if (RT_SUCCESS(rc))
1299 {
1300 /*
1301 * Init the page pool.
1302 */
1303 rc = pgmR3PoolInit(pVM);
1304 }
1305 if (RT_SUCCESS(rc))
1306 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1307
1308 if (RT_SUCCESS(rc))
1309 {
1310 /*
1311 * Info & statistics
1312 */
1313 DBGFR3InfoRegisterInternal(pVM, "mode",
1314 "Shows the current paging mode. "
1315 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1316 pgmR3InfoMode);
1317 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1318 "Dumps all the entries in the top level paging table. No arguments.",
1319 pgmR3InfoCr3);
1320 DBGFR3InfoRegisterInternal(pVM, "phys",
1321 "Dumps all the physical address ranges. No arguments.",
1322 pgmR3PhysInfo);
1323 DBGFR3InfoRegisterInternal(pVM, "handlers",
1324 "Dumps physical, virtual and hyper virtual handlers. "
1325 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1326 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1327 pgmR3InfoHandlers);
1328 DBGFR3InfoRegisterInternal(pVM, "mappings",
1329 "Dumps guest mappings.",
1330 pgmR3MapInfo);
1331
1332 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1333 STAM_REL_REG(pVM, &pVM->pgm.s.cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1334#ifdef VBOX_WITH_STATISTICS
1335 pgmR3InitStats(pVM);
1336#endif
1337#ifdef VBOX_WITH_DEBUGGER
1338 /*
1339 * Debugger commands.
1340 */
1341 static bool s_fRegisteredCmds = false;
1342 if (!s_fRegisteredCmds)
1343 {
1344 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1345 if (RT_SUCCESS(rc))
1346 s_fRegisteredCmds = true;
1347 }
1348#endif
1349 return VINF_SUCCESS;
1350 }
1351
1352 /* Almost no cleanup necessary, MM frees all memory. */
1353 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1354
1355 return rc;
1356}
1357
1358
1359/**
1360 * Initializes the per-VCPU PGM.
1361 *
1362 * @returns VBox status code.
1363 * @param pVM The VM to operate on.
1364 */
1365VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1366{
1367 LogFlow(("PGMR3InitCPU\n"));
1368 return VINF_SUCCESS;
1369}
1370
1371
1372/**
1373 * Init paging.
1374 *
1375 * Since we need to check what mode the host is operating in before we can choose
1376 * the right paging functions for the host we have to delay this until R0 has
1377 * been initialized.
1378 *
1379 * @returns VBox status code.
1380 * @param pVM VM handle.
1381 */
1382static int pgmR3InitPaging(PVM pVM)
1383{
1384 /*
1385 * Force a recalculation of modes and switcher so everyone gets notified.
1386 */
1387 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1388 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1389 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1390
1391 /*
1392 * Allocate static mapping space for whatever the cr3 register
1393 * points to and in the case of PAE mode to the 4 PDs.
1394 */
1395 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1396 if (RT_FAILURE(rc))
1397 {
1398 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1399 return rc;
1400 }
1401 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1402
1403 /*
1404 * Allocate pages for the three possible intermediate contexts
1405 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1406 * for the sake of simplicity. The AMD64 uses the PAE for the
1407 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1408 *
1409 * We assume that two page tables will be enought for the core code
1410 * mappings (HC virtual and identity).
1411 */
1412 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1413 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1414 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1415 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1416 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1417 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1418 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1419 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1420 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1421 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1422 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1423 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1424 if ( !pVM->pgm.s.pInterPD
1425 || !pVM->pgm.s.apInterPTs[0]
1426 || !pVM->pgm.s.apInterPTs[1]
1427 || !pVM->pgm.s.apInterPaePTs[0]
1428 || !pVM->pgm.s.apInterPaePTs[1]
1429 || !pVM->pgm.s.apInterPaePDs[0]
1430 || !pVM->pgm.s.apInterPaePDs[1]
1431 || !pVM->pgm.s.apInterPaePDs[2]
1432 || !pVM->pgm.s.apInterPaePDs[3]
1433 || !pVM->pgm.s.pInterPaePDPT
1434 || !pVM->pgm.s.pInterPaePDPT64
1435 || !pVM->pgm.s.pInterPaePML4)
1436 {
1437 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1438 return VERR_NO_PAGE_MEMORY;
1439 }
1440
1441 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1442 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1443 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1444 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1445 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1446 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1447
1448 /*
1449 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1450 */
1451 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1452 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1453 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1454
1455 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1456 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1457
1458 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1459 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1460 {
1461 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1462 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1463 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1464 }
1465
1466 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1467 {
1468 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1469 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1470 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1471 }
1472
1473 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1474 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1475 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1476 | HCPhysInterPaePDPT64;
1477
1478 /*
1479 * Initialize paging workers and mode from current host mode
1480 * and the guest running in real mode.
1481 */
1482 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1483 switch (pVM->pgm.s.enmHostMode)
1484 {
1485 case SUPPAGINGMODE_32_BIT:
1486 case SUPPAGINGMODE_32_BIT_GLOBAL:
1487 case SUPPAGINGMODE_PAE:
1488 case SUPPAGINGMODE_PAE_GLOBAL:
1489 case SUPPAGINGMODE_PAE_NX:
1490 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1491 break;
1492
1493 case SUPPAGINGMODE_AMD64:
1494 case SUPPAGINGMODE_AMD64_GLOBAL:
1495 case SUPPAGINGMODE_AMD64_NX:
1496 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1497#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1498 if (ARCH_BITS != 64)
1499 {
1500 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1501 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1502 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1503 }
1504#endif
1505 break;
1506 default:
1507 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1508 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1509 }
1510 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1511 if (RT_SUCCESS(rc))
1512 {
1513 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1514#if HC_ARCH_BITS == 64
1515 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1516 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1517 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1518 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1519 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1520 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1521 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1522#endif
1523
1524 return VINF_SUCCESS;
1525 }
1526
1527 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1528 return rc;
1529}
1530
1531
1532#ifdef VBOX_WITH_STATISTICS
1533/**
1534 * Init statistics
1535 */
1536static void pgmR3InitStats(PVM pVM)
1537{
1538 PPGM pPGM = &pVM->pgm.s;
1539 unsigned i;
1540
1541 /*
1542 * Note! The layout of this function matches the member layout exactly!
1543 */
1544
1545 /* Common - misc variables */
1546 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1547 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1548 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1549 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1550 STAM_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1551 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1552 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1553
1554 /* Common - stats */
1555#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1556 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1557 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1558 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1559 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1560 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1561 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1562#endif
1563 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1564 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1565 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1566 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1567 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1568 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1569
1570 /* R3 only: */
1571 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1572 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1573 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1574 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1575#ifndef VBOX_WITH_NEW_PHYS_CODE
1576 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1577 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1578#endif
1579
1580 /* R0 only: */
1581 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1582 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1583 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1584 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1585 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1586 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1587 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1588 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1589 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1590 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1591 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1592 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1593 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1594 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1595 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1596 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1597 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1598 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1599 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1600 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1601 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1602 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1603 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1604 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1605 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1606 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1607 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1608 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1609 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1610 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1611 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1612 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1613 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1614 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1615 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1616 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1617
1618 /* GC only: */
1619 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1620 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1621 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1622 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1623
1624 /* RZ only: */
1625 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1660 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1664 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1665 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1666 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1667 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1668 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1669 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1670 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1671 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1672 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1673 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1674 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1675 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1676
1677 /* HC only: */
1678
1679 /* RZ & R3: */
1680 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1681 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1682 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1683 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1684 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1685 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1686 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1687 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1688 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1690 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1691 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1692 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1693 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1694 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1695 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1696 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1697 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1698 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1699 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1700 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1701 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1702 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1703 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1704 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1705 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1706 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1707 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1708 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1709 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1710 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1711 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1712 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1713 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1714 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1715 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1716 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1717 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1718 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1719 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1720 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1721 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1722 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1723 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1724 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1725 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1726 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1727/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1728 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1729 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1730 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1731 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1732 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1733 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1734
1735 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1736 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1737 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1738 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1739 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1740 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1741 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1742 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1743 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1745 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1746 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1747 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1748 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1749 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1750 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1751 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1752 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1753 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1754 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1755 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1756 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1757 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1758 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1759 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1760 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1761 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1762 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1763 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1764 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1765 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1766 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1767 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1768 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1769 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1770 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1771 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1772 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1773 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1774 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1775 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1776 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1777 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1778 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1779 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1780 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1781 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1782/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1783 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1784 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1785 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1786 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1787 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1788 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1789
1790}
1791#endif /* VBOX_WITH_STATISTICS */
1792
1793
1794/**
1795 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1796 *
1797 * The dynamic mapping area will also be allocated and initialized at this
1798 * time. We could allocate it during PGMR3Init of course, but the mapping
1799 * wouldn't be allocated at that time preventing us from setting up the
1800 * page table entries with the dummy page.
1801 *
1802 * @returns VBox status code.
1803 * @param pVM VM handle.
1804 */
1805VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1806{
1807 RTGCPTR GCPtr;
1808 int rc;
1809
1810 /*
1811 * Reserve space for the dynamic mappings.
1812 */
1813 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1814 if (RT_SUCCESS(rc))
1815 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1816
1817 if ( RT_SUCCESS(rc)
1818 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1819 {
1820 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1821 if (RT_SUCCESS(rc))
1822 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1823 }
1824 if (RT_SUCCESS(rc))
1825 {
1826 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1827 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1828 }
1829 return rc;
1830}
1831
1832
1833/**
1834 * Ring-3 init finalizing.
1835 *
1836 * @returns VBox status code.
1837 * @param pVM The VM handle.
1838 */
1839VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1840{
1841 int rc;
1842
1843 /*
1844 * Reserve space for the dynamic mappings.
1845 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1846 */
1847 /* get the pointer to the page table entries. */
1848 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1849 AssertRelease(pMapping);
1850 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1851 const unsigned iPT = off >> X86_PD_SHIFT;
1852 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1853 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1854 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1855
1856 /* init cache */
1857 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1858 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1859 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1860
1861 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1862 {
1863 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1864 AssertRCReturn(rc, rc);
1865 }
1866
1867 /*
1868 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1869 * Intel only goes up to 36 bits, so we stick to 36 as well.
1870 */
1871 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1872 uint32_t u32Dummy, u32Features;
1873 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1874
1875 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1876 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1877 else
1878 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1879
1880 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1881 return rc;
1882}
1883
1884
1885/**
1886 * Applies relocations to data and code managed by this component.
1887 *
1888 * This function will be called at init and whenever the VMM need to relocate it
1889 * self inside the GC.
1890 *
1891 * @param pVM The VM.
1892 * @param offDelta Relocation delta relative to old location.
1893 */
1894VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1895{
1896 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1897
1898 /*
1899 * Paging stuff.
1900 */
1901 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1902 /** @todo move this into shadow and guest specific relocation functions. */
1903 pVM->pgm.s.pGst32BitPdRC += offDelta;
1904 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1905 {
1906 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1907 }
1908 pVM->pgm.s.pGstPaePdptRC += offDelta;
1909
1910 pVM->pgm.s.pShwPageCR3RC += offDelta;
1911
1912 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1913 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1914
1915 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1916 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1917 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1918
1919 /*
1920 * Trees.
1921 */
1922 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1923
1924 /*
1925 * Ram ranges.
1926 */
1927 if (pVM->pgm.s.pRamRangesR3)
1928 {
1929 /* Update the pSelfRC pointers and relink them. */
1930 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1931 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
1932 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
1933 pgmR3PhysRelinkRamRanges(pVM);
1934 }
1935
1936 /*
1937 * Update the two page directories with all page table mappings.
1938 * (One or more of them have changed, that's why we're here.)
1939 */
1940 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1941 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1942 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1943
1944 /* Relocate GC addresses of Page Tables. */
1945 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1946 {
1947 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1948 {
1949 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1950 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1951 }
1952 }
1953
1954 /*
1955 * Dynamic page mapping area.
1956 */
1957 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1958 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1959 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1960
1961 /*
1962 * The Zero page.
1963 */
1964 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1965#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1966 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
1967#else
1968 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
1969#endif
1970
1971 /*
1972 * Physical and virtual handlers.
1973 */
1974 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1975 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1976 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1977
1978 /*
1979 * The page pool.
1980 */
1981 pgmR3PoolRelocate(pVM);
1982}
1983
1984
1985/**
1986 * Callback function for relocating a physical access handler.
1987 *
1988 * @returns 0 (continue enum)
1989 * @param pNode Pointer to a PGMPHYSHANDLER node.
1990 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1991 * not certain the delta will fit in a void pointer for all possible configs.
1992 */
1993static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1994{
1995 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1996 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1997 if (pHandler->pfnHandlerRC)
1998 pHandler->pfnHandlerRC += offDelta;
1999 if (pHandler->pvUserRC >= 0x10000)
2000 pHandler->pvUserRC += offDelta;
2001 return 0;
2002}
2003
2004
2005/**
2006 * Callback function for relocating a virtual access handler.
2007 *
2008 * @returns 0 (continue enum)
2009 * @param pNode Pointer to a PGMVIRTHANDLER node.
2010 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2011 * not certain the delta will fit in a void pointer for all possible configs.
2012 */
2013static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2014{
2015 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2016 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2017 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2018 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2019 Assert(pHandler->pfnHandlerRC);
2020 pHandler->pfnHandlerRC += offDelta;
2021 return 0;
2022}
2023
2024
2025/**
2026 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2027 *
2028 * @returns 0 (continue enum)
2029 * @param pNode Pointer to a PGMVIRTHANDLER node.
2030 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2031 * not certain the delta will fit in a void pointer for all possible configs.
2032 */
2033static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2034{
2035 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2036 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2037 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2038 Assert(pHandler->pfnHandlerRC);
2039 pHandler->pfnHandlerRC += offDelta;
2040 return 0;
2041}
2042
2043
2044/**
2045 * The VM is being reset.
2046 *
2047 * For the PGM component this means that any PD write monitors
2048 * needs to be removed.
2049 *
2050 * @param pVM VM handle.
2051 */
2052VMMR3DECL(void) PGMR3Reset(PVM pVM)
2053{
2054 LogFlow(("PGMR3Reset:\n"));
2055 VM_ASSERT_EMT(pVM);
2056
2057 pgmLock(pVM);
2058
2059 /*
2060 * Unfix any fixed mappings and disable CR3 monitoring.
2061 */
2062 pVM->pgm.s.fMappingsFixed = false;
2063 pVM->pgm.s.GCPtrMappingFixed = 0;
2064 pVM->pgm.s.cbMappingFixed = 0;
2065
2066 /* Exit the guest paging mode before the pgm pool gets reset.
2067 * Important to clean up the amd64 case.
2068 */
2069 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2070 AssertRC(rc);
2071#ifdef DEBUG
2072 DBGFR3InfoLog(pVM, "mappings", NULL);
2073 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2074#endif
2075
2076 /*
2077 * Reset the shadow page pool.
2078 */
2079 pgmR3PoolReset(pVM);
2080
2081 /*
2082 * Re-init other members.
2083 */
2084 pVM->pgm.s.fA20Enabled = true;
2085
2086 /*
2087 * Clear the FFs PGM owns.
2088 */
2089 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2090 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2091
2092 /*
2093 * Reset (zero) RAM pages.
2094 */
2095 rc = pgmR3PhysRamReset(pVM);
2096 if (RT_SUCCESS(rc))
2097 {
2098#ifdef VBOX_WITH_NEW_PHYS_CODE
2099 /*
2100 * Reset (zero) shadow ROM pages.
2101 */
2102 rc = pgmR3PhysRomReset(pVM);
2103#endif
2104 if (RT_SUCCESS(rc))
2105 {
2106 /*
2107 * Switch mode back to real mode.
2108 */
2109 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2110 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2111 }
2112 }
2113
2114 pgmUnlock(pVM);
2115 //return rc;
2116 AssertReleaseRC(rc);
2117}
2118
2119
2120#ifdef VBOX_STRICT
2121/**
2122 * VM state change callback for clearing fNoMorePhysWrites after
2123 * a snapshot has been created.
2124 */
2125static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2126{
2127 if (enmState == VMSTATE_RUNNING)
2128 pVM->pgm.s.fNoMorePhysWrites = false;
2129}
2130#endif
2131
2132
2133/**
2134 * Terminates the PGM.
2135 *
2136 * @returns VBox status code.
2137 * @param pVM Pointer to VM structure.
2138 */
2139VMMR3DECL(int) PGMR3Term(PVM pVM)
2140{
2141 PGMDeregisterStringFormatTypes();
2142 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2143}
2144
2145
2146/**
2147 * Terminates the per-VCPU PGM.
2148 *
2149 * Termination means cleaning up and freeing all resources,
2150 * the VM it self is at this point powered off or suspended.
2151 *
2152 * @returns VBox status code.
2153 * @param pVM The VM to operate on.
2154 */
2155VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2156{
2157 return 0;
2158}
2159
2160#ifdef VBOX_WITH_NEW_PHYS_CODE
2161
2162/**
2163 * Find the ROM tracking structure for the given page.
2164 *
2165 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2166 * that it's a ROM page.
2167 * @param pVM The VM handle.
2168 * @param GCPhys The address of the ROM page.
2169 */
2170static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2171{
2172 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2173 pRomRange;
2174 pRomRange = pRomRange->CTX_SUFF(pNext))
2175 {
2176 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2177 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2178 return &pRomRange->aPages[off >> PAGE_SHIFT];
2179 }
2180 return NULL;
2181}
2182
2183
2184/**
2185 * Save zero indicator + bits for the specified page.
2186 *
2187 * @returns VBox status code, errors are logged/asserted before returning.
2188 * @param pVM The VM handle.
2189 * @param pSSH The saved state handle.
2190 * @param pPage The page to save.
2191 * @param GCPhys The address of the page.
2192 * @param pRam The ram range (for error logging).
2193 */
2194static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2195{
2196 int rc;
2197 if (PGM_PAGE_IS_ZERO(pPage))
2198 rc = SSMR3PutU8(pSSM, 0);
2199 else
2200 {
2201 void const *pvPage;
2202 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2203 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2204
2205 SSMR3PutU8(pSSM, 1);
2206 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2207 }
2208 return rc;
2209}
2210
2211
2212/**
2213 * Save a shadowed ROM page.
2214 *
2215 * Format: Type, protection, and two pages with zero indicators.
2216 *
2217 * @returns VBox status code, errors are logged/asserted before returning.
2218 * @param pVM The VM handle.
2219 * @param pSSH The saved state handle.
2220 * @param pPage The page to save.
2221 * @param GCPhys The address of the page.
2222 * @param pRam The ram range (for error logging).
2223 */
2224static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2225{
2226 /* Need to save both pages and the current state. */
2227 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2228 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2229
2230 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2231 SSMR3PutU8(pSSM, pRomPage->enmProt);
2232
2233 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2234 if (RT_SUCCESS(rc))
2235 {
2236 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2237 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2238 }
2239 return rc;
2240}
2241
2242/** PGM fields to save/load. */
2243static SSMFIELD s_aPGMFields[] =
2244{
2245 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2246 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2247 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2248 SSMFIELD_ENTRY( PGM, fA20Enabled),
2249 SSMFIELD_ENTRY_GCPHYS( PGM, GCPhysA20Mask),
2250 SSMFIELD_ENTRY( PGM, enmGuestMode),
2251 SSMFIELD_ENTRY_TERM()
2252};
2253#endif /* VBOX_WITH_NEW_PHYS_CODE */
2254
2255
2256/**
2257 * Execute state save operation.
2258 *
2259 * @returns VBox status code.
2260 * @param pVM VM Handle.
2261 * @param pSSM SSM operation handle.
2262 */
2263static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2264{
2265 int rc;
2266 PPGM pPGM = &pVM->pgm.s;
2267
2268 /*
2269 * Lock PGM and set the no-more-writes indicator.
2270 */
2271#ifdef VBOX_WITH_NEW_PHYS_CODE
2272 pgmLock(pVM);
2273#endif
2274 pVM->pgm.s.fNoMorePhysWrites = true;
2275
2276 /*
2277 * Save basic data (required / unaffected by relocation).
2278 */
2279#ifdef VBOX_WITH_NEW_PHYS_CODE
2280 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2281#else
2282 SSMR3PutBool( pSSM, pPGM->fMappingsFixed);
2283 SSMR3PutGCPtr( pSSM, pPGM->GCPtrMappingFixed);
2284 SSMR3PutU32( pSSM, pPGM->cbMappingFixed);
2285 SSMR3PutUInt( pSSM, pPGM->cbRamSize);
2286 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2287 SSMR3PutUInt( pSSM, pPGM->fA20Enabled);
2288 SSMR3PutUInt( pSSM, pPGM->fSyncFlags);
2289 SSMR3PutUInt( pSSM, pPGM->enmGuestMode);
2290 SSMR3PutU32( pSSM, ~0); /* Separator. */
2291#endif
2292
2293 /*
2294 * The guest mappings.
2295 */
2296 uint32_t i = 0;
2297 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2298 {
2299 SSMR3PutU32( pSSM, i);
2300 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2301 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2302 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2303 }
2304 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2305
2306 /*
2307 * Ram ranges and the memory they describe.
2308 */
2309 i = 0;
2310 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2311 {
2312 /*
2313 * Save the ram range details.
2314 */
2315 SSMR3PutU32(pSSM, i);
2316 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2317 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2318 SSMR3PutGCPhys(pSSM, pRam->cb);
2319 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2320#ifdef VBOX_WITH_NEW_PHYS_CODE
2321 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2322
2323 /*
2324 * Iterate the pages, only two special case.
2325 */
2326 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2327 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2328 {
2329 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2330 PPGMPAGE pPage = &pRam->aPages[iPage];
2331 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2332
2333 if (uType == PGMPAGETYPE_ROM_SHADOW)
2334 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2335 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2336 {
2337 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2338 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2339 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2340 }
2341 else
2342 {
2343 SSMR3PutU8(pSSM, uType);
2344 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2345 }
2346 if (RT_FAILURE(rc))
2347 break;
2348 }
2349 if (RT_FAILURE(rc))
2350 break;
2351
2352#else /* !VBOX_WITH_NEW_PHYS_CODE */
2353 /* Flags. */
2354 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2355 for (unsigned iPage = 0; iPage < cPages; iPage++)
2356 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2357
2358 /* Any memory associated with the range. */
2359 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2360 {
2361 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2362 {
2363 if (pRam->paChunkR3Ptrs[iChunk])
2364 {
2365 SSMR3PutU8(pSSM, 1); /* chunk present */
2366 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2367 }
2368 else
2369 SSMR3PutU8(pSSM, 0); /* no chunk present */
2370 }
2371 }
2372 else if (pRam->pvR3)
2373 {
2374 rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2375 if (RT_FAILURE(rc))
2376 {
2377 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2378 return rc;
2379 }
2380 }
2381#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2382 }
2383
2384#ifdef VBOX_WITH_NEW_PHYS_CODE
2385 pgmUnlock(pVM);
2386#endif
2387 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2388}
2389
2390
2391#ifdef VBOX_WITH_NEW_PHYS_CODE
2392
2393/**
2394 * Load an ignored page.
2395 *
2396 * @returns VBox status code.
2397 * @param pSSM The saved state handle.
2398 */
2399static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2400{
2401 uint8_t abPage[PAGE_SIZE];
2402 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2403}
2404
2405
2406/**
2407 * Loads a page without any bits in the saved state, i.e. making sure it's
2408 * really zero.
2409 *
2410 * @returns VBox status code.
2411 * @param pVM The VM handle.
2412 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2413 * state).
2414 * @param pPage The guest page tracking structure.
2415 * @param GCPhys The page address.
2416 * @param pRam The ram range (logging).
2417 */
2418static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2419{
2420 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2421 && uType != PGMPAGETYPE_INVALID)
2422 return VERR_SSM_UNEXPECTED_DATA;
2423
2424 /* I think this should be sufficient. */
2425 if (!PGM_PAGE_IS_ZERO(pPage))
2426 return VERR_SSM_UNEXPECTED_DATA;
2427
2428 NOREF(pVM);
2429 NOREF(GCPhys);
2430 NOREF(pRam);
2431 return VINF_SUCCESS;
2432}
2433
2434
2435/**
2436 * Loads a page from the saved state.
2437 *
2438 * @returns VBox status code.
2439 * @param pVM The VM handle.
2440 * @param pSSM The SSM handle.
2441 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2442 * state).
2443 * @param pPage The guest page tracking structure.
2444 * @param GCPhys The page address.
2445 * @param pRam The ram range (logging).
2446 */
2447static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2448{
2449 int rc;
2450
2451 /*
2452 * Match up the type, dealing with MMIO2 aliases (dropped).
2453 */
2454 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2455 || uType == PGMPAGETYPE_INVALID,
2456 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2457 VERR_SSM_UNEXPECTED_DATA);
2458
2459 /*
2460 * Load the page.
2461 */
2462 void *pvPage;
2463 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2464 if (RT_SUCCESS(rc))
2465 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2466
2467 return rc;
2468}
2469
2470
2471/**
2472 * Loads a page (counter part to pgmR3SavePage).
2473 *
2474 * @returns VBox status code, fully bitched errors.
2475 * @param pVM The VM handle.
2476 * @param pSSM The SSM handle.
2477 * @param uType The page type.
2478 * @param pPage The page.
2479 * @param GCPhys The page address.
2480 * @param pRam The RAM range (for error messages).
2481 */
2482static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2483{
2484 uint8_t uState;
2485 int rc = SSMR3GetU8(pSSM, &uState);
2486 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2487 if (uState == 0 /* zero */)
2488 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2489 else if (uState == 1)
2490 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2491 else
2492 rc = VERR_INTERNAL_ERROR;
2493 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2494 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2495 rc);
2496 return VINF_SUCCESS;
2497}
2498
2499
2500/**
2501 * Loads a shadowed ROM page.
2502 *
2503 * @returns VBox status code, errors are fully bitched.
2504 * @param pVM The VM handle.
2505 * @param pSSM The saved state handle.
2506 * @param pPage The page.
2507 * @param GCPhys The page address.
2508 * @param pRam The RAM range (for error messages).
2509 */
2510static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2511{
2512 /*
2513 * Load and set the protection first, then load the two pages, the first
2514 * one is the active the other is the passive.
2515 */
2516 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2517 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2518
2519 uint8_t uProt;
2520 int rc = SSMR3GetU8(pSSM, &uProt);
2521 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2522 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2523 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2524 && enmProt < PGMROMPROT_END,
2525 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2526 VERR_SSM_UNEXPECTED_DATA);
2527
2528 if (pRomPage->enmProt != enmProt)
2529 {
2530 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2531 AssertLogRelRCReturn(rc, rc);
2532 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2533 }
2534
2535 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2536 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2537 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2538 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2539
2540 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2541 if (RT_SUCCESS(rc))
2542 {
2543 *pPageActive = *pPage;
2544 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2545 }
2546 return rc;
2547}
2548
2549#endif /* VBOX_WITH_NEW_PHYS_CODE */
2550
2551/**
2552 * Worker for pgmR3Load.
2553 *
2554 * @returns VBox status code.
2555 *
2556 * @param pVM The VM handle.
2557 * @param pSSM The SSM handle.
2558 * @param u32Version The saved state version.
2559 */
2560static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2561{
2562 int rc;
2563 PPGM pPGM = &pVM->pgm.s;
2564 uint32_t u32Sep;
2565
2566 /*
2567 * Load basic data (required / unaffected by relocation).
2568 */
2569#ifdef VBOX_WITH_NEW_PHYS_CODE
2570 if (u32Version >= PGM_SAVED_STATE_VERSION)
2571 {
2572 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2573 AssertLogRelRCReturn(rc, rc);
2574 }
2575 else
2576#endif
2577 {
2578 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2579 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2580 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2581
2582 RTUINT cbRamSize;
2583 rc = SSMR3GetU32(pSSM, &cbRamSize);
2584 if (RT_FAILURE(rc))
2585 return rc;
2586 AssertLogRelMsgReturn(cbRamSize == pPGM->cbRamSize, ("%#x != %#x\n", cbRamSize, pPGM->cbRamSize),
2587 VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH);
2588 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2589
2590 uint32_t u32 = 0;
2591 SSMR3GetUInt(pSSM, &u32);
2592 pPGM->fA20Enabled = !!u32;
2593 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2594 RTUINT uGuestMode;
2595 SSMR3GetUInt(pSSM, &uGuestMode);
2596 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2597
2598 /* check separator. */
2599 SSMR3GetU32(pSSM, &u32Sep);
2600 if (RT_FAILURE(rc))
2601 return rc;
2602 if (u32Sep != (uint32_t)~0)
2603 {
2604 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2605 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2606 }
2607 }
2608
2609 /*
2610 * The guest mappings.
2611 */
2612 uint32_t i = 0;
2613 for (;; i++)
2614 {
2615 /* Check the seqence number / separator. */
2616 rc = SSMR3GetU32(pSSM, &u32Sep);
2617 if (RT_FAILURE(rc))
2618 return rc;
2619 if (u32Sep == ~0U)
2620 break;
2621 if (u32Sep != i)
2622 {
2623 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2624 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2625 }
2626
2627 /* get the mapping details. */
2628 char szDesc[256];
2629 szDesc[0] = '\0';
2630 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2631 if (RT_FAILURE(rc))
2632 return rc;
2633 RTGCPTR GCPtr;
2634 SSMR3GetGCPtr(pSSM, &GCPtr);
2635 RTGCPTR cPTs;
2636 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2637 if (RT_FAILURE(rc))
2638 return rc;
2639
2640 /* find matching range. */
2641 PPGMMAPPING pMapping;
2642 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2643 if ( pMapping->cPTs == cPTs
2644 && !strcmp(pMapping->pszDesc, szDesc))
2645 break;
2646 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2647 cPTs, szDesc, GCPtr),
2648 VERR_SSM_LOAD_CONFIG_MISMATCH);
2649
2650 /* relocate it. */
2651 if (pMapping->GCPtr != GCPtr)
2652 {
2653 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2654 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2655 }
2656 else
2657 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2658 }
2659
2660 /*
2661 * Ram range flags and bits.
2662 */
2663 i = 0;
2664 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2665 {
2666 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2667
2668 /* Check the seqence number / separator. */
2669 rc = SSMR3GetU32(pSSM, &u32Sep);
2670 if (RT_FAILURE(rc))
2671 return rc;
2672 if (u32Sep == ~0U)
2673 break;
2674 if (u32Sep != i)
2675 {
2676 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2677 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2678 }
2679
2680 /* Get the range details. */
2681 RTGCPHYS GCPhys;
2682 SSMR3GetGCPhys(pSSM, &GCPhys);
2683 RTGCPHYS GCPhysLast;
2684 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2685 RTGCPHYS cb;
2686 SSMR3GetGCPhys(pSSM, &cb);
2687 uint8_t fHaveBits;
2688 rc = SSMR3GetU8(pSSM, &fHaveBits);
2689 if (RT_FAILURE(rc))
2690 return rc;
2691 if (fHaveBits & ~1)
2692 {
2693 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2694 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2695 }
2696 char szDesc[256];
2697 szDesc[0] = '\0';
2698#ifdef VBOX_WITH_NEW_PHYS_CODE
2699 if (u32Version >= PGM_SAVED_STATE_VERSION)
2700 {
2701 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2702 if (RT_FAILURE(rc))
2703 return rc;
2704 }
2705#endif
2706
2707 /*
2708 * Match it up with the current range.
2709 *
2710 * Note there is a hack for dealing with the high BIOS mapping
2711 * in the old saved state format, this means we might not have
2712 * a 1:1 match on success.
2713 */
2714 if ( ( GCPhys != pRam->GCPhys
2715 || GCPhysLast != pRam->GCPhysLast
2716 || cb != pRam->cb
2717#ifdef VBOX_WITH_NEW_PHYS_CODE
2718 || (szDesc[0] && strcmp(szDesc, pRam->pszDesc))
2719#else
2720 || fHaveBits != !!pRam->pvR3
2721#endif
2722 )
2723#ifdef VBOX_WITH_NEW_PHYS_CODE
2724 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2725 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2726 || GCPhys != UINT32_C(0xfff80000)
2727 || GCPhysLast != UINT32_C(0xffffffff)
2728 || pRam->GCPhysLast != GCPhysLast
2729 || pRam->GCPhys < GCPhys
2730 || !fHaveBits)
2731#endif
2732 )
2733 {
2734 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2735 "State : %RGp-%RGp %RGp bytes %s %s\n",
2736 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2737 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2738 /*
2739 * If we're loading a state for debugging purpose, don't make a fuss if
2740 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2741 */
2742 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2743 || GCPhys < 8 * _1M)
2744 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2745
2746#ifdef VBOX_WITH_NEW_PHYS_CODE
2747 if (u32Version > PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2748 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2749 else
2750#else
2751 {
2752 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2753 while (cPages-- > 0)
2754 {
2755 uint16_t u16Ignore;
2756 SSMR3GetU16(pSSM, &u16Ignore);
2757 }
2758 }
2759#endif
2760 continue;
2761 }
2762
2763 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2764
2765#ifdef VBOX_WITH_NEW_PHYS_CODE
2766 if (u32Version >= PGM_SAVED_STATE_VERSION)
2767 {
2768 /*
2769 * Load the pages one by one.
2770 */
2771 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2772 {
2773 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2774 PPGMPAGE pPage = &pRam->aPages[iPage];
2775 uint8_t uType;
2776 rc = SSMR3GetU8(pSSM, &uType);
2777 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2778 if (uType == PGMPAGETYPE_ROM_SHADOW)
2779 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2780 else
2781 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2782 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2783 }
2784 }
2785 else
2786 {
2787 /*
2788 * Old format.
2789 */
2790 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2791
2792 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2793 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2794 uint32_t fFlags = 0;
2795 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2796 {
2797 uint16_t u16Flags;
2798 rc = SSMR3GetU16(pSSM, &u16Flags);
2799 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2800 fFlags |= u16Flags;
2801 }
2802
2803 /* Load the bits */
2804 if ( !fHaveBits
2805 && GCPhysLast < UINT32_C(0xe0000000))
2806 {
2807 /*
2808 * Dynamic chunks.
2809 */
2810 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2811 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2812 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2813 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2814
2815 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2816 {
2817 uint8_t fPresent;
2818 rc = SSMR3GetU8(pSSM, &fPresent);
2819 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2820 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2821 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2822 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2823
2824 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2825 {
2826 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2827 PPGMPAGE pPage = &pRam->aPages[iPage];
2828 if (fPresent)
2829 {
2830 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2831 rc = pgmR3LoadPageToDevNull(pSSM);
2832 else
2833 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2834 }
2835 else
2836 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2837 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2838 }
2839 }
2840 }
2841 else if (pRam->pvR3)
2842 {
2843 /*
2844 * MMIO2.
2845 */
2846 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2847 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2848 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2849 AssertLogRelMsgReturn(pRam->pvR3,
2850 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2851 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2852
2853 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2854 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2855 }
2856 else if (GCPhysLast < UINT32_C(0xfff80000))
2857 {
2858 /*
2859 * PCI MMIO, no pages saved.
2860 */
2861 }
2862 else
2863 {
2864 /*
2865 * Load the 0xfff80000..0xffffffff BIOS range.
2866 * It starts with X reserved pages that we have to skip over since
2867 * the RAMRANGE create by the new code won't include those.
2868 */
2869 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2870 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2871 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2872 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2873 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2874 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2875 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2876
2877 /* Skip wasted reserved pages before the ROM. */
2878 while (GCPhys < pRam->GCPhys)
2879 {
2880 rc = pgmR3LoadPageToDevNull(pSSM);
2881 GCPhys += PAGE_SIZE;
2882 }
2883
2884 /* Load the bios pages. */
2885 cPages = pRam->cb >> PAGE_SHIFT;
2886 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2887 {
2888 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2889 PPGMPAGE pPage = &pRam->aPages[iPage];
2890
2891 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2892 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2893 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2894 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2895 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2896 }
2897 }
2898 }
2899
2900#else /* !VBOX_WITH_NEW_PHYS_CODE */
2901 /* Flags. */
2902 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2903 {
2904 uint16_t u16 = 0;
2905 SSMR3GetU16(pSSM, &u16);
2906 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2907 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2908 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2909 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2910 }
2911
2912 /* any memory associated with the range. */
2913 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2914 {
2915 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2916 {
2917 uint8_t fValidChunk;
2918
2919 rc = SSMR3GetU8(pSSM, &fValidChunk);
2920 if (RT_FAILURE(rc))
2921 return rc;
2922 if (fValidChunk > 1)
2923 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2924
2925 if (fValidChunk)
2926 {
2927 if (!pRam->paChunkR3Ptrs[iChunk])
2928 {
2929 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2930 if (RT_FAILURE(rc))
2931 return rc;
2932 }
2933 Assert(pRam->paChunkR3Ptrs[iChunk]);
2934
2935 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2936 }
2937 /* else nothing to do */
2938 }
2939 }
2940 else if (pRam->pvR3)
2941 {
2942 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2943 if (RT_FAILURE(rc))
2944 {
2945 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2946 return rc;
2947 }
2948 }
2949#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2950 }
2951
2952 return rc;
2953}
2954
2955
2956/**
2957 * Execute state load operation.
2958 *
2959 * @returns VBox status code.
2960 * @param pVM VM Handle.
2961 * @param pSSM SSM operation handle.
2962 * @param u32Version Data layout version.
2963 */
2964static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2965{
2966 int rc;
2967 PPGM pPGM = &pVM->pgm.s;
2968
2969 /*
2970 * Validate version.
2971 */
2972 if ( u32Version != PGM_SAVED_STATE_VERSION
2973#ifdef VBOX_WITH_NEW_PHYS_CODE
2974 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2975#endif
2976 )
2977 {
2978 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2979 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2980 }
2981
2982 /*
2983 * Call the reset function to make sure all the memory is cleared.
2984 */
2985 PGMR3Reset(pVM);
2986
2987 /*
2988 * Do the loading while owning the lock because a bunch of the functions
2989 * we're using requires this.
2990 */
2991 pgmLock(pVM);
2992 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
2993 pgmUnlock(pVM);
2994 if (RT_SUCCESS(rc))
2995 {
2996 /*
2997 * We require a full resync now.
2998 */
2999 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
3000 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3001 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3002 pPGM->fPhysCacheFlushPending = true;
3003 pgmR3HandlerPhysicalUpdateAll(pVM);
3004
3005 /*
3006 * Change the paging mode.
3007 */
3008 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
3009
3010 /* Restore pVM->pgm.s.GCPhysCR3. */
3011 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3012 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
3013 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
3014 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3015 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
3016 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3017 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3018 else
3019 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3020 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
3021 }
3022
3023 return rc;
3024}
3025
3026
3027/**
3028 * Show paging mode.
3029 *
3030 * @param pVM VM Handle.
3031 * @param pHlp The info helpers.
3032 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3033 */
3034static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3035{
3036 /* digest argument. */
3037 bool fGuest, fShadow, fHost;
3038 if (pszArgs)
3039 pszArgs = RTStrStripL(pszArgs);
3040 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3041 fShadow = fHost = fGuest = true;
3042 else
3043 {
3044 fShadow = fHost = fGuest = false;
3045 if (strstr(pszArgs, "guest"))
3046 fGuest = true;
3047 if (strstr(pszArgs, "shadow"))
3048 fShadow = true;
3049 if (strstr(pszArgs, "host"))
3050 fHost = true;
3051 }
3052
3053 /* print info. */
3054 if (fGuest)
3055 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3056 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
3057 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
3058 if (fShadow)
3059 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
3060 if (fHost)
3061 {
3062 const char *psz;
3063 switch (pVM->pgm.s.enmHostMode)
3064 {
3065 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3066 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3067 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3068 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3069 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3070 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3071 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3072 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3073 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3074 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3075 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3076 default: psz = "unknown"; break;
3077 }
3078 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3079 }
3080}
3081
3082
3083/**
3084 * Dump registered MMIO ranges to the log.
3085 *
3086 * @param pVM VM Handle.
3087 * @param pHlp The info helpers.
3088 * @param pszArgs Arguments, ignored.
3089 */
3090static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3091{
3092 NOREF(pszArgs);
3093 pHlp->pfnPrintf(pHlp,
3094 "RAM ranges (pVM=%p)\n"
3095 "%.*s %.*s\n",
3096 pVM,
3097 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3098 sizeof(RTHCPTR) * 2, "pvHC ");
3099
3100 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3101 pHlp->pfnPrintf(pHlp,
3102 "%RGp-%RGp %RHv %s\n",
3103 pCur->GCPhys,
3104 pCur->GCPhysLast,
3105 pCur->pvR3,
3106 pCur->pszDesc);
3107}
3108
3109/**
3110 * Dump the page directory to the log.
3111 *
3112 * @param pVM VM Handle.
3113 * @param pHlp The info helpers.
3114 * @param pszArgs Arguments, ignored.
3115 */
3116static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3117{
3118/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3119 /* Big pages supported? */
3120 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
3121
3122 /* Global pages supported? */
3123 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
3124
3125 NOREF(pszArgs);
3126
3127 /*
3128 * Get page directory addresses.
3129 */
3130 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3131 Assert(pPDSrc);
3132 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3133
3134 /*
3135 * Iterate the page directory.
3136 */
3137 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3138 {
3139 X86PDE PdeSrc = pPDSrc->a[iPD];
3140 if (PdeSrc.n.u1Present)
3141 {
3142 if (PdeSrc.b.u1Size && fPSE)
3143 pHlp->pfnPrintf(pHlp,
3144 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3145 iPD,
3146 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3147 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3148 else
3149 pHlp->pfnPrintf(pHlp,
3150 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3151 iPD,
3152 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3153 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3154 }
3155 }
3156}
3157
3158
3159/**
3160 * Serivce a VMMCALLHOST_PGM_LOCK call.
3161 *
3162 * @returns VBox status code.
3163 * @param pVM The VM handle.
3164 */
3165VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3166{
3167 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3168 AssertRC(rc);
3169 return rc;
3170}
3171
3172
3173/**
3174 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3175 *
3176 * @returns PGM_TYPE_*.
3177 * @param pgmMode The mode value to convert.
3178 */
3179DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3180{
3181 switch (pgmMode)
3182 {
3183 case PGMMODE_REAL: return PGM_TYPE_REAL;
3184 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3185 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3186 case PGMMODE_PAE:
3187 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3188 case PGMMODE_AMD64:
3189 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3190 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3191 case PGMMODE_EPT: return PGM_TYPE_EPT;
3192 default:
3193 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3194 }
3195}
3196
3197
3198/**
3199 * Gets the index into the paging mode data array of a SHW+GST mode.
3200 *
3201 * @returns PGM::paPagingData index.
3202 * @param uShwType The shadow paging mode type.
3203 * @param uGstType The guest paging mode type.
3204 */
3205DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3206{
3207 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3208 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3209 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3210 + (uGstType - PGM_TYPE_REAL);
3211}
3212
3213
3214/**
3215 * Gets the index into the paging mode data array of a SHW+GST mode.
3216 *
3217 * @returns PGM::paPagingData index.
3218 * @param enmShw The shadow paging mode.
3219 * @param enmGst The guest paging mode.
3220 */
3221DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3222{
3223 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3224 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3225 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3226}
3227
3228
3229/**
3230 * Calculates the max data index.
3231 * @returns The number of entries in the paging data array.
3232 */
3233DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3234{
3235 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3236}
3237
3238
3239/**
3240 * Initializes the paging mode data kept in PGM::paModeData.
3241 *
3242 * @param pVM The VM handle.
3243 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3244 * This is used early in the init process to avoid trouble with PDM
3245 * not being initialized yet.
3246 */
3247static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3248{
3249 PPGMMODEDATA pModeData;
3250 int rc;
3251
3252 /*
3253 * Allocate the array on the first call.
3254 */
3255 if (!pVM->pgm.s.paModeData)
3256 {
3257 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3258 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3259 }
3260
3261 /*
3262 * Initialize the array entries.
3263 */
3264 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3265 pModeData->uShwType = PGM_TYPE_32BIT;
3266 pModeData->uGstType = PGM_TYPE_REAL;
3267 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3268 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3269 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3270
3271 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3272 pModeData->uShwType = PGM_TYPE_32BIT;
3273 pModeData->uGstType = PGM_TYPE_PROT;
3274 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3275 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3276 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3277
3278 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3279 pModeData->uShwType = PGM_TYPE_32BIT;
3280 pModeData->uGstType = PGM_TYPE_32BIT;
3281 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3282 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3283 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3284
3285 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3286 pModeData->uShwType = PGM_TYPE_PAE;
3287 pModeData->uGstType = PGM_TYPE_REAL;
3288 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3289 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3290 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3291
3292 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3293 pModeData->uShwType = PGM_TYPE_PAE;
3294 pModeData->uGstType = PGM_TYPE_PROT;
3295 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3296 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3297 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3298
3299 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3300 pModeData->uShwType = PGM_TYPE_PAE;
3301 pModeData->uGstType = PGM_TYPE_32BIT;
3302 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3303 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3304 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3305
3306 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3307 pModeData->uShwType = PGM_TYPE_PAE;
3308 pModeData->uGstType = PGM_TYPE_PAE;
3309 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3310 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3311 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3312
3313#ifdef VBOX_WITH_64_BITS_GUESTS
3314 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3315 pModeData->uShwType = PGM_TYPE_AMD64;
3316 pModeData->uGstType = PGM_TYPE_AMD64;
3317 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3318 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3319 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3320#endif
3321
3322 /* The nested paging mode. */
3323 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3324 pModeData->uShwType = PGM_TYPE_NESTED;
3325 pModeData->uGstType = PGM_TYPE_REAL;
3326 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3327 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3328
3329 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3330 pModeData->uShwType = PGM_TYPE_NESTED;
3331 pModeData->uGstType = PGM_TYPE_PROT;
3332 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3333 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3334
3335 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3336 pModeData->uShwType = PGM_TYPE_NESTED;
3337 pModeData->uGstType = PGM_TYPE_32BIT;
3338 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3339 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3340
3341 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3342 pModeData->uShwType = PGM_TYPE_NESTED;
3343 pModeData->uGstType = PGM_TYPE_PAE;
3344 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3345 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3346
3347#ifdef VBOX_WITH_64_BITS_GUESTS
3348 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3349 pModeData->uShwType = PGM_TYPE_NESTED;
3350 pModeData->uGstType = PGM_TYPE_AMD64;
3351 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3352 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3353#endif
3354
3355 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3356 switch (pVM->pgm.s.enmHostMode)
3357 {
3358#if HC_ARCH_BITS == 32
3359 case SUPPAGINGMODE_32_BIT:
3360 case SUPPAGINGMODE_32_BIT_GLOBAL:
3361 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3362 {
3363 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3364 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3365 }
3366# ifdef VBOX_WITH_64_BITS_GUESTS
3367 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3368 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3369# endif
3370 break;
3371
3372 case SUPPAGINGMODE_PAE:
3373 case SUPPAGINGMODE_PAE_NX:
3374 case SUPPAGINGMODE_PAE_GLOBAL:
3375 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3376 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3377 {
3378 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3379 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3380 }
3381# ifdef VBOX_WITH_64_BITS_GUESTS
3382 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3383 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3384# endif
3385 break;
3386#endif /* HC_ARCH_BITS == 32 */
3387
3388#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3389 case SUPPAGINGMODE_AMD64:
3390 case SUPPAGINGMODE_AMD64_GLOBAL:
3391 case SUPPAGINGMODE_AMD64_NX:
3392 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3393# ifdef VBOX_WITH_64_BITS_GUESTS
3394 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3395# else
3396 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3397# endif
3398 {
3399 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3400 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3401 }
3402 break;
3403#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3404
3405 default:
3406 AssertFailed();
3407 break;
3408 }
3409
3410 /* Extended paging (EPT) / Intel VT-x */
3411 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3412 pModeData->uShwType = PGM_TYPE_EPT;
3413 pModeData->uGstType = PGM_TYPE_REAL;
3414 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3415 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3416 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3417
3418 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3419 pModeData->uShwType = PGM_TYPE_EPT;
3420 pModeData->uGstType = PGM_TYPE_PROT;
3421 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3422 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3423 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3424
3425 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3426 pModeData->uShwType = PGM_TYPE_EPT;
3427 pModeData->uGstType = PGM_TYPE_32BIT;
3428 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3429 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3430 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3431
3432 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3433 pModeData->uShwType = PGM_TYPE_EPT;
3434 pModeData->uGstType = PGM_TYPE_PAE;
3435 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3436 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3437 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3438
3439#ifdef VBOX_WITH_64_BITS_GUESTS
3440 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3441 pModeData->uShwType = PGM_TYPE_EPT;
3442 pModeData->uGstType = PGM_TYPE_AMD64;
3443 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3444 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3445 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3446#endif
3447 return VINF_SUCCESS;
3448}
3449
3450
3451/**
3452 * Switch to different (or relocated in the relocate case) mode data.
3453 *
3454 * @param pVM The VM handle.
3455 * @param enmShw The the shadow paging mode.
3456 * @param enmGst The the guest paging mode.
3457 */
3458static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3459{
3460 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3461
3462 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3463 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3464
3465 /* shadow */
3466 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3467 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3468 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3469 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3470 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3471
3472 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3473 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3474
3475 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3476 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3477
3478
3479 /* guest */
3480 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3481 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3482 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3483 Assert(pVM->pgm.s.pfnR3GstGetPage);
3484 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3485 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3486 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3487 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3488 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3489 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3490 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3491 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3492
3493 /* both */
3494 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3495 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3496 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3497 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3498 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3499 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3500 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3501#ifdef VBOX_STRICT
3502 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3503#endif
3504 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3505 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3506
3507 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3508 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3509 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3510 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3511 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3512 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3513#ifdef VBOX_STRICT
3514 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3515#endif
3516 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3517 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3518
3519 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3520 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3521 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3522 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3523 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3524 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3525#ifdef VBOX_STRICT
3526 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3527#endif
3528 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3529 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3530}
3531
3532
3533/**
3534 * Calculates the shadow paging mode.
3535 *
3536 * @returns The shadow paging mode.
3537 * @param pVM VM handle.
3538 * @param enmGuestMode The guest mode.
3539 * @param enmHostMode The host mode.
3540 * @param enmShadowMode The current shadow mode.
3541 * @param penmSwitcher Where to store the switcher to use.
3542 * VMMSWITCHER_INVALID means no change.
3543 */
3544static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3545{
3546 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3547 switch (enmGuestMode)
3548 {
3549 /*
3550 * When switching to real or protected mode we don't change
3551 * anything since it's likely that we'll switch back pretty soon.
3552 *
3553 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3554 * and is supposed to determine which shadow paging and switcher to
3555 * use during init.
3556 */
3557 case PGMMODE_REAL:
3558 case PGMMODE_PROTECTED:
3559 if ( enmShadowMode != PGMMODE_INVALID
3560 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3561 break; /* (no change) */
3562
3563 switch (enmHostMode)
3564 {
3565 case SUPPAGINGMODE_32_BIT:
3566 case SUPPAGINGMODE_32_BIT_GLOBAL:
3567 enmShadowMode = PGMMODE_32_BIT;
3568 enmSwitcher = VMMSWITCHER_32_TO_32;
3569 break;
3570
3571 case SUPPAGINGMODE_PAE:
3572 case SUPPAGINGMODE_PAE_NX:
3573 case SUPPAGINGMODE_PAE_GLOBAL:
3574 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3575 enmShadowMode = PGMMODE_PAE;
3576 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3577#ifdef DEBUG_bird
3578 if (RTEnvExist("VBOX_32BIT"))
3579 {
3580 enmShadowMode = PGMMODE_32_BIT;
3581 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3582 }
3583#endif
3584 break;
3585
3586 case SUPPAGINGMODE_AMD64:
3587 case SUPPAGINGMODE_AMD64_GLOBAL:
3588 case SUPPAGINGMODE_AMD64_NX:
3589 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3590 enmShadowMode = PGMMODE_PAE;
3591 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3592#ifdef DEBUG_bird
3593 if (RTEnvExist("VBOX_32BIT"))
3594 {
3595 enmShadowMode = PGMMODE_32_BIT;
3596 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3597 }
3598#endif
3599 break;
3600
3601 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3602 }
3603 break;
3604
3605 case PGMMODE_32_BIT:
3606 switch (enmHostMode)
3607 {
3608 case SUPPAGINGMODE_32_BIT:
3609 case SUPPAGINGMODE_32_BIT_GLOBAL:
3610 enmShadowMode = PGMMODE_32_BIT;
3611 enmSwitcher = VMMSWITCHER_32_TO_32;
3612 break;
3613
3614 case SUPPAGINGMODE_PAE:
3615 case SUPPAGINGMODE_PAE_NX:
3616 case SUPPAGINGMODE_PAE_GLOBAL:
3617 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3618 enmShadowMode = PGMMODE_PAE;
3619 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3620#ifdef DEBUG_bird
3621 if (RTEnvExist("VBOX_32BIT"))
3622 {
3623 enmShadowMode = PGMMODE_32_BIT;
3624 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3625 }
3626#endif
3627 break;
3628
3629 case SUPPAGINGMODE_AMD64:
3630 case SUPPAGINGMODE_AMD64_GLOBAL:
3631 case SUPPAGINGMODE_AMD64_NX:
3632 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3633 enmShadowMode = PGMMODE_PAE;
3634 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3635#ifdef DEBUG_bird
3636 if (RTEnvExist("VBOX_32BIT"))
3637 {
3638 enmShadowMode = PGMMODE_32_BIT;
3639 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3640 }
3641#endif
3642 break;
3643
3644 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3645 }
3646 break;
3647
3648 case PGMMODE_PAE:
3649 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3650 switch (enmHostMode)
3651 {
3652 case SUPPAGINGMODE_32_BIT:
3653 case SUPPAGINGMODE_32_BIT_GLOBAL:
3654 enmShadowMode = PGMMODE_PAE;
3655 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3656 break;
3657
3658 case SUPPAGINGMODE_PAE:
3659 case SUPPAGINGMODE_PAE_NX:
3660 case SUPPAGINGMODE_PAE_GLOBAL:
3661 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3662 enmShadowMode = PGMMODE_PAE;
3663 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3664 break;
3665
3666 case SUPPAGINGMODE_AMD64:
3667 case SUPPAGINGMODE_AMD64_GLOBAL:
3668 case SUPPAGINGMODE_AMD64_NX:
3669 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3670 enmShadowMode = PGMMODE_PAE;
3671 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3672 break;
3673
3674 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3675 }
3676 break;
3677
3678 case PGMMODE_AMD64:
3679 case PGMMODE_AMD64_NX:
3680 switch (enmHostMode)
3681 {
3682 case SUPPAGINGMODE_32_BIT:
3683 case SUPPAGINGMODE_32_BIT_GLOBAL:
3684 enmShadowMode = PGMMODE_AMD64;
3685 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3686 break;
3687
3688 case SUPPAGINGMODE_PAE:
3689 case SUPPAGINGMODE_PAE_NX:
3690 case SUPPAGINGMODE_PAE_GLOBAL:
3691 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3692 enmShadowMode = PGMMODE_AMD64;
3693 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3694 break;
3695
3696 case SUPPAGINGMODE_AMD64:
3697 case SUPPAGINGMODE_AMD64_GLOBAL:
3698 case SUPPAGINGMODE_AMD64_NX:
3699 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3700 enmShadowMode = PGMMODE_AMD64;
3701 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3702 break;
3703
3704 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3705 }
3706 break;
3707
3708
3709 default:
3710 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3711 return PGMMODE_INVALID;
3712 }
3713 /* Override the shadow mode is nested paging is active. */
3714 if (HWACCMIsNestedPagingActive(pVM))
3715 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3716
3717 *penmSwitcher = enmSwitcher;
3718 return enmShadowMode;
3719}
3720
3721
3722/**
3723 * Performs the actual mode change.
3724 * This is called by PGMChangeMode and pgmR3InitPaging().
3725 *
3726 * @returns VBox status code.
3727 * @param pVM VM handle.
3728 * @param enmGuestMode The new guest mode. This is assumed to be different from
3729 * the current mode.
3730 */
3731VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3732{
3733 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3734 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3735
3736 /*
3737 * Calc the shadow mode and switcher.
3738 */
3739 VMMSWITCHER enmSwitcher;
3740 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3741 if (enmSwitcher != VMMSWITCHER_INVALID)
3742 {
3743 /*
3744 * Select new switcher.
3745 */
3746 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3747 if (RT_FAILURE(rc))
3748 {
3749 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3750 return rc;
3751 }
3752 }
3753
3754 /*
3755 * Exit old mode(s).
3756 */
3757 /* shadow */
3758 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3759 {
3760 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3761 if (PGM_SHW_PFN(Exit, pVM))
3762 {
3763 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3764 if (RT_FAILURE(rc))
3765 {
3766 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3767 return rc;
3768 }
3769 }
3770
3771 }
3772 else
3773 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3774
3775 /* guest */
3776 if (PGM_GST_PFN(Exit, pVM))
3777 {
3778 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3779 if (RT_FAILURE(rc))
3780 {
3781 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3782 return rc;
3783 }
3784 }
3785
3786 /*
3787 * Load new paging mode data.
3788 */
3789 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3790
3791 /*
3792 * Enter new shadow mode (if changed).
3793 */
3794 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3795 {
3796 int rc;
3797 pVM->pgm.s.enmShadowMode = enmShadowMode;
3798 switch (enmShadowMode)
3799 {
3800 case PGMMODE_32_BIT:
3801 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3802 break;
3803 case PGMMODE_PAE:
3804 case PGMMODE_PAE_NX:
3805 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3806 break;
3807 case PGMMODE_AMD64:
3808 case PGMMODE_AMD64_NX:
3809 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3810 break;
3811 case PGMMODE_NESTED:
3812 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3813 break;
3814 case PGMMODE_EPT:
3815 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3816 break;
3817 case PGMMODE_REAL:
3818 case PGMMODE_PROTECTED:
3819 default:
3820 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3821 return VERR_INTERNAL_ERROR;
3822 }
3823 if (RT_FAILURE(rc))
3824 {
3825 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3826 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3827 return rc;
3828 }
3829 }
3830
3831 /*
3832 * Always flag the necessary updates
3833 */
3834 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3835
3836 /*
3837 * Enter the new guest and shadow+guest modes.
3838 */
3839 int rc = -1;
3840 int rc2 = -1;
3841 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3842 pVM->pgm.s.enmGuestMode = enmGuestMode;
3843 switch (enmGuestMode)
3844 {
3845 case PGMMODE_REAL:
3846 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3847 switch (pVM->pgm.s.enmShadowMode)
3848 {
3849 case PGMMODE_32_BIT:
3850 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3851 break;
3852 case PGMMODE_PAE:
3853 case PGMMODE_PAE_NX:
3854 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3855 break;
3856 case PGMMODE_NESTED:
3857 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3858 break;
3859 case PGMMODE_EPT:
3860 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3861 break;
3862 case PGMMODE_AMD64:
3863 case PGMMODE_AMD64_NX:
3864 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3865 default: AssertFailed(); break;
3866 }
3867 break;
3868
3869 case PGMMODE_PROTECTED:
3870 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3871 switch (pVM->pgm.s.enmShadowMode)
3872 {
3873 case PGMMODE_32_BIT:
3874 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3875 break;
3876 case PGMMODE_PAE:
3877 case PGMMODE_PAE_NX:
3878 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3879 break;
3880 case PGMMODE_NESTED:
3881 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3882 break;
3883 case PGMMODE_EPT:
3884 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3885 break;
3886 case PGMMODE_AMD64:
3887 case PGMMODE_AMD64_NX:
3888 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3889 default: AssertFailed(); break;
3890 }
3891 break;
3892
3893 case PGMMODE_32_BIT:
3894 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3895 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3896 switch (pVM->pgm.s.enmShadowMode)
3897 {
3898 case PGMMODE_32_BIT:
3899 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3900 break;
3901 case PGMMODE_PAE:
3902 case PGMMODE_PAE_NX:
3903 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3904 break;
3905 case PGMMODE_NESTED:
3906 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3907 break;
3908 case PGMMODE_EPT:
3909 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3910 break;
3911 case PGMMODE_AMD64:
3912 case PGMMODE_AMD64_NX:
3913 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3914 default: AssertFailed(); break;
3915 }
3916 break;
3917
3918 case PGMMODE_PAE_NX:
3919 case PGMMODE_PAE:
3920 {
3921 uint32_t u32Dummy, u32Features;
3922
3923 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3924 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3925 {
3926 /* Pause first, then inform Main. */
3927 rc = VMR3SuspendNoSave(pVM);
3928 AssertRC(rc);
3929
3930 VMSetRuntimeError(pVM, true, "PAEmode",
3931 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3932 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3933 return VINF_SUCCESS;
3934 }
3935 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3936 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3937 switch (pVM->pgm.s.enmShadowMode)
3938 {
3939 case PGMMODE_PAE:
3940 case PGMMODE_PAE_NX:
3941 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3942 break;
3943 case PGMMODE_NESTED:
3944 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3945 break;
3946 case PGMMODE_EPT:
3947 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3948 break;
3949 case PGMMODE_32_BIT:
3950 case PGMMODE_AMD64:
3951 case PGMMODE_AMD64_NX:
3952 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3953 default: AssertFailed(); break;
3954 }
3955 break;
3956 }
3957
3958#ifdef VBOX_WITH_64_BITS_GUESTS
3959 case PGMMODE_AMD64_NX:
3960 case PGMMODE_AMD64:
3961 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3962 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3963 switch (pVM->pgm.s.enmShadowMode)
3964 {
3965 case PGMMODE_AMD64:
3966 case PGMMODE_AMD64_NX:
3967 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3968 break;
3969 case PGMMODE_NESTED:
3970 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3971 break;
3972 case PGMMODE_EPT:
3973 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3974 break;
3975 case PGMMODE_32_BIT:
3976 case PGMMODE_PAE:
3977 case PGMMODE_PAE_NX:
3978 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3979 default: AssertFailed(); break;
3980 }
3981 break;
3982#endif
3983
3984 default:
3985 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3986 rc = VERR_NOT_IMPLEMENTED;
3987 break;
3988 }
3989
3990 /* status codes. */
3991 AssertRC(rc);
3992 AssertRC(rc2);
3993 if (RT_SUCCESS(rc))
3994 {
3995 rc = rc2;
3996 if (RT_SUCCESS(rc)) /* no informational status codes. */
3997 rc = VINF_SUCCESS;
3998 }
3999
4000 /* Notify HWACCM as well. */
4001 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
4002 return rc;
4003}
4004
4005
4006/**
4007 * Dumps a PAE shadow page table.
4008 *
4009 * @returns VBox status code (VINF_SUCCESS).
4010 * @param pVM The VM handle.
4011 * @param pPT Pointer to the page table.
4012 * @param u64Address The virtual address of the page table starts.
4013 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4014 * @param cMaxDepth The maxium depth.
4015 * @param pHlp Pointer to the output functions.
4016 */
4017static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4018{
4019 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4020 {
4021 X86PTEPAE Pte = pPT->a[i];
4022 if (Pte.n.u1Present)
4023 {
4024 pHlp->pfnPrintf(pHlp,
4025 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4026 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4027 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4028 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4029 Pte.n.u1Write ? 'W' : 'R',
4030 Pte.n.u1User ? 'U' : 'S',
4031 Pte.n.u1Accessed ? 'A' : '-',
4032 Pte.n.u1Dirty ? 'D' : '-',
4033 Pte.n.u1Global ? 'G' : '-',
4034 Pte.n.u1WriteThru ? "WT" : "--",
4035 Pte.n.u1CacheDisable? "CD" : "--",
4036 Pte.n.u1PAT ? "AT" : "--",
4037 Pte.n.u1NoExecute ? "NX" : "--",
4038 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4039 Pte.u & RT_BIT(10) ? '1' : '0',
4040 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4041 Pte.u & X86_PTE_PAE_PG_MASK);
4042 }
4043 }
4044 return VINF_SUCCESS;
4045}
4046
4047
4048/**
4049 * Dumps a PAE shadow page directory table.
4050 *
4051 * @returns VBox status code (VINF_SUCCESS).
4052 * @param pVM The VM handle.
4053 * @param HCPhys The physical address of the page directory table.
4054 * @param u64Address The virtual address of the page table starts.
4055 * @param cr4 The CR4, PSE is currently used.
4056 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4057 * @param cMaxDepth The maxium depth.
4058 * @param pHlp Pointer to the output functions.
4059 */
4060static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4061{
4062 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4063 if (!pPD)
4064 {
4065 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4066 fLongMode ? 16 : 8, u64Address, HCPhys);
4067 return VERR_INVALID_PARAMETER;
4068 }
4069 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4070
4071 int rc = VINF_SUCCESS;
4072 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4073 {
4074 X86PDEPAE Pde = pPD->a[i];
4075 if (Pde.n.u1Present)
4076 {
4077 if (fBigPagesSupported && Pde.b.u1Size)
4078 pHlp->pfnPrintf(pHlp,
4079 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4080 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4081 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4082 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4083 Pde.b.u1Write ? 'W' : 'R',
4084 Pde.b.u1User ? 'U' : 'S',
4085 Pde.b.u1Accessed ? 'A' : '-',
4086 Pde.b.u1Dirty ? 'D' : '-',
4087 Pde.b.u1Global ? 'G' : '-',
4088 Pde.b.u1WriteThru ? "WT" : "--",
4089 Pde.b.u1CacheDisable? "CD" : "--",
4090 Pde.b.u1PAT ? "AT" : "--",
4091 Pde.b.u1NoExecute ? "NX" : "--",
4092 Pde.u & RT_BIT_64(9) ? '1' : '0',
4093 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4094 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4095 Pde.u & X86_PDE_PAE_PG_MASK);
4096 else
4097 {
4098 pHlp->pfnPrintf(pHlp,
4099 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4100 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4101 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4102 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4103 Pde.n.u1Write ? 'W' : 'R',
4104 Pde.n.u1User ? 'U' : 'S',
4105 Pde.n.u1Accessed ? 'A' : '-',
4106 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4107 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4108 Pde.n.u1WriteThru ? "WT" : "--",
4109 Pde.n.u1CacheDisable? "CD" : "--",
4110 Pde.n.u1NoExecute ? "NX" : "--",
4111 Pde.u & RT_BIT_64(9) ? '1' : '0',
4112 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4113 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4114 Pde.u & X86_PDE_PAE_PG_MASK);
4115 if (cMaxDepth >= 1)
4116 {
4117 /** @todo what about using the page pool for mapping PTs? */
4118 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4119 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4120 PX86PTPAE pPT = NULL;
4121 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4122 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4123 else
4124 {
4125 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4126 {
4127 uint64_t off = u64AddressPT - pMap->GCPtr;
4128 if (off < pMap->cb)
4129 {
4130 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4131 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4132 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4133 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4134 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4135 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4136 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4137 }
4138 }
4139 }
4140 int rc2 = VERR_INVALID_PARAMETER;
4141 if (pPT)
4142 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4143 else
4144 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4145 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4146 if (rc2 < rc && RT_SUCCESS(rc))
4147 rc = rc2;
4148 }
4149 }
4150 }
4151 }
4152 return rc;
4153}
4154
4155
4156/**
4157 * Dumps a PAE shadow page directory pointer table.
4158 *
4159 * @returns VBox status code (VINF_SUCCESS).
4160 * @param pVM The VM handle.
4161 * @param HCPhys The physical address of the page directory pointer table.
4162 * @param u64Address The virtual address of the page table starts.
4163 * @param cr4 The CR4, PSE is currently used.
4164 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4165 * @param cMaxDepth The maxium depth.
4166 * @param pHlp Pointer to the output functions.
4167 */
4168static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4169{
4170 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4171 if (!pPDPT)
4172 {
4173 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4174 fLongMode ? 16 : 8, u64Address, HCPhys);
4175 return VERR_INVALID_PARAMETER;
4176 }
4177
4178 int rc = VINF_SUCCESS;
4179 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4180 for (unsigned i = 0; i < c; i++)
4181 {
4182 X86PDPE Pdpe = pPDPT->a[i];
4183 if (Pdpe.n.u1Present)
4184 {
4185 if (fLongMode)
4186 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4187 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4188 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4189 Pdpe.lm.u1Write ? 'W' : 'R',
4190 Pdpe.lm.u1User ? 'U' : 'S',
4191 Pdpe.lm.u1Accessed ? 'A' : '-',
4192 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4193 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4194 Pdpe.lm.u1WriteThru ? "WT" : "--",
4195 Pdpe.lm.u1CacheDisable? "CD" : "--",
4196 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4197 Pdpe.lm.u1NoExecute ? "NX" : "--",
4198 Pdpe.u & RT_BIT(9) ? '1' : '0',
4199 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4200 Pdpe.u & RT_BIT(11) ? '1' : '0',
4201 Pdpe.u & X86_PDPE_PG_MASK);
4202 else
4203 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4204 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4205 i << X86_PDPT_SHIFT,
4206 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4207 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4208 Pdpe.n.u1WriteThru ? "WT" : "--",
4209 Pdpe.n.u1CacheDisable? "CD" : "--",
4210 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4211 Pdpe.u & RT_BIT(9) ? '1' : '0',
4212 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4213 Pdpe.u & RT_BIT(11) ? '1' : '0',
4214 Pdpe.u & X86_PDPE_PG_MASK);
4215 if (cMaxDepth >= 1)
4216 {
4217 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4218 cr4, fLongMode, cMaxDepth - 1, pHlp);
4219 if (rc2 < rc && RT_SUCCESS(rc))
4220 rc = rc2;
4221 }
4222 }
4223 }
4224 return rc;
4225}
4226
4227
4228/**
4229 * Dumps a 32-bit shadow page table.
4230 *
4231 * @returns VBox status code (VINF_SUCCESS).
4232 * @param pVM The VM handle.
4233 * @param HCPhys The physical address of the table.
4234 * @param cr4 The CR4, PSE is currently used.
4235 * @param cMaxDepth The maxium depth.
4236 * @param pHlp Pointer to the output functions.
4237 */
4238static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4239{
4240 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4241 if (!pPML4)
4242 {
4243 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4244 return VERR_INVALID_PARAMETER;
4245 }
4246
4247 int rc = VINF_SUCCESS;
4248 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4249 {
4250 X86PML4E Pml4e = pPML4->a[i];
4251 if (Pml4e.n.u1Present)
4252 {
4253 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4254 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4255 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4256 u64Address,
4257 Pml4e.n.u1Write ? 'W' : 'R',
4258 Pml4e.n.u1User ? 'U' : 'S',
4259 Pml4e.n.u1Accessed ? 'A' : '-',
4260 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4261 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4262 Pml4e.n.u1WriteThru ? "WT" : "--",
4263 Pml4e.n.u1CacheDisable? "CD" : "--",
4264 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4265 Pml4e.n.u1NoExecute ? "NX" : "--",
4266 Pml4e.u & RT_BIT(9) ? '1' : '0',
4267 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4268 Pml4e.u & RT_BIT(11) ? '1' : '0',
4269 Pml4e.u & X86_PML4E_PG_MASK);
4270
4271 if (cMaxDepth >= 1)
4272 {
4273 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4274 if (rc2 < rc && RT_SUCCESS(rc))
4275 rc = rc2;
4276 }
4277 }
4278 }
4279 return rc;
4280}
4281
4282
4283/**
4284 * Dumps a 32-bit shadow page table.
4285 *
4286 * @returns VBox status code (VINF_SUCCESS).
4287 * @param pVM The VM handle.
4288 * @param pPT Pointer to the page table.
4289 * @param u32Address The virtual address this table starts at.
4290 * @param pHlp Pointer to the output functions.
4291 */
4292int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4293{
4294 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4295 {
4296 X86PTE Pte = pPT->a[i];
4297 if (Pte.n.u1Present)
4298 {
4299 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4300 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4301 u32Address + (i << X86_PT_SHIFT),
4302 Pte.n.u1Write ? 'W' : 'R',
4303 Pte.n.u1User ? 'U' : 'S',
4304 Pte.n.u1Accessed ? 'A' : '-',
4305 Pte.n.u1Dirty ? 'D' : '-',
4306 Pte.n.u1Global ? 'G' : '-',
4307 Pte.n.u1WriteThru ? "WT" : "--",
4308 Pte.n.u1CacheDisable? "CD" : "--",
4309 Pte.n.u1PAT ? "AT" : "--",
4310 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4311 Pte.u & RT_BIT(10) ? '1' : '0',
4312 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4313 Pte.u & X86_PDE_PG_MASK);
4314 }
4315 }
4316 return VINF_SUCCESS;
4317}
4318
4319
4320/**
4321 * Dumps a 32-bit shadow page directory and page tables.
4322 *
4323 * @returns VBox status code (VINF_SUCCESS).
4324 * @param pVM The VM handle.
4325 * @param cr3 The root of the hierarchy.
4326 * @param cr4 The CR4, PSE is currently used.
4327 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4328 * @param pHlp Pointer to the output functions.
4329 */
4330int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4331{
4332 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4333 if (!pPD)
4334 {
4335 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4336 return VERR_INVALID_PARAMETER;
4337 }
4338
4339 int rc = VINF_SUCCESS;
4340 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4341 {
4342 X86PDE Pde = pPD->a[i];
4343 if (Pde.n.u1Present)
4344 {
4345 const uint32_t u32Address = i << X86_PD_SHIFT;
4346 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4347 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4348 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4349 u32Address,
4350 Pde.b.u1Write ? 'W' : 'R',
4351 Pde.b.u1User ? 'U' : 'S',
4352 Pde.b.u1Accessed ? 'A' : '-',
4353 Pde.b.u1Dirty ? 'D' : '-',
4354 Pde.b.u1Global ? 'G' : '-',
4355 Pde.b.u1WriteThru ? "WT" : "--",
4356 Pde.b.u1CacheDisable? "CD" : "--",
4357 Pde.b.u1PAT ? "AT" : "--",
4358 Pde.u & RT_BIT_64(9) ? '1' : '0',
4359 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4360 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4361 Pde.u & X86_PDE4M_PG_MASK);
4362 else
4363 {
4364 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4365 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4366 u32Address,
4367 Pde.n.u1Write ? 'W' : 'R',
4368 Pde.n.u1User ? 'U' : 'S',
4369 Pde.n.u1Accessed ? 'A' : '-',
4370 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4371 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4372 Pde.n.u1WriteThru ? "WT" : "--",
4373 Pde.n.u1CacheDisable? "CD" : "--",
4374 Pde.u & RT_BIT_64(9) ? '1' : '0',
4375 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4376 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4377 Pde.u & X86_PDE_PG_MASK);
4378 if (cMaxDepth >= 1)
4379 {
4380 /** @todo what about using the page pool for mapping PTs? */
4381 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4382 PX86PT pPT = NULL;
4383 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4384 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4385 else
4386 {
4387 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4388 if (u32Address - pMap->GCPtr < pMap->cb)
4389 {
4390 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4391 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4392 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4393 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4394 pPT = pMap->aPTs[iPDE].pPTR3;
4395 }
4396 }
4397 int rc2 = VERR_INVALID_PARAMETER;
4398 if (pPT)
4399 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4400 else
4401 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4402 if (rc2 < rc && RT_SUCCESS(rc))
4403 rc = rc2;
4404 }
4405 }
4406 }
4407 }
4408
4409 return rc;
4410}
4411
4412
4413/**
4414 * Dumps a 32-bit shadow page table.
4415 *
4416 * @returns VBox status code (VINF_SUCCESS).
4417 * @param pVM The VM handle.
4418 * @param pPT Pointer to the page table.
4419 * @param u32Address The virtual address this table starts at.
4420 * @param PhysSearch Address to search for.
4421 */
4422int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4423{
4424 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4425 {
4426 X86PTE Pte = pPT->a[i];
4427 if (Pte.n.u1Present)
4428 {
4429 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4430 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4431 u32Address + (i << X86_PT_SHIFT),
4432 Pte.n.u1Write ? 'W' : 'R',
4433 Pte.n.u1User ? 'U' : 'S',
4434 Pte.n.u1Accessed ? 'A' : '-',
4435 Pte.n.u1Dirty ? 'D' : '-',
4436 Pte.n.u1Global ? 'G' : '-',
4437 Pte.n.u1WriteThru ? "WT" : "--",
4438 Pte.n.u1CacheDisable? "CD" : "--",
4439 Pte.n.u1PAT ? "AT" : "--",
4440 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4441 Pte.u & RT_BIT(10) ? '1' : '0',
4442 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4443 Pte.u & X86_PDE_PG_MASK));
4444
4445 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4446 {
4447 uint64_t fPageShw = 0;
4448 RTHCPHYS pPhysHC = 0;
4449
4450 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4451 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4452 }
4453 }
4454 }
4455 return VINF_SUCCESS;
4456}
4457
4458
4459/**
4460 * Dumps a 32-bit guest page directory and page tables.
4461 *
4462 * @returns VBox status code (VINF_SUCCESS).
4463 * @param pVM The VM handle.
4464 * @param cr3 The root of the hierarchy.
4465 * @param cr4 The CR4, PSE is currently used.
4466 * @param PhysSearch Address to search for.
4467 */
4468VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4469{
4470 bool fLongMode = false;
4471 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4472 PX86PD pPD = 0;
4473
4474 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4475 if (RT_FAILURE(rc) || !pPD)
4476 {
4477 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4478 return VERR_INVALID_PARAMETER;
4479 }
4480
4481 Log(("cr3=%08x cr4=%08x%s\n"
4482 "%-*s P - Present\n"
4483 "%-*s | R/W - Read (0) / Write (1)\n"
4484 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4485 "%-*s | | | A - Accessed\n"
4486 "%-*s | | | | D - Dirty\n"
4487 "%-*s | | | | | G - Global\n"
4488 "%-*s | | | | | | WT - Write thru\n"
4489 "%-*s | | | | | | | CD - Cache disable\n"
4490 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4491 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4492 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4493 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4494 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4495 "%-*s Level | | | | | | | | | | | | Page\n"
4496 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4497 - W U - - - -- -- -- -- -- 010 */
4498 , cr3, cr4, fLongMode ? " Long Mode" : "",
4499 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4500 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4501
4502 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4503 {
4504 X86PDE Pde = pPD->a[i];
4505 if (Pde.n.u1Present)
4506 {
4507 const uint32_t u32Address = i << X86_PD_SHIFT;
4508
4509 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4510 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4511 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4512 u32Address,
4513 Pde.b.u1Write ? 'W' : 'R',
4514 Pde.b.u1User ? 'U' : 'S',
4515 Pde.b.u1Accessed ? 'A' : '-',
4516 Pde.b.u1Dirty ? 'D' : '-',
4517 Pde.b.u1Global ? 'G' : '-',
4518 Pde.b.u1WriteThru ? "WT" : "--",
4519 Pde.b.u1CacheDisable? "CD" : "--",
4520 Pde.b.u1PAT ? "AT" : "--",
4521 Pde.u & RT_BIT(9) ? '1' : '0',
4522 Pde.u & RT_BIT(10) ? '1' : '0',
4523 Pde.u & RT_BIT(11) ? '1' : '0',
4524 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4525 /** @todo PhysSearch */
4526 else
4527 {
4528 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4529 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4530 u32Address,
4531 Pde.n.u1Write ? 'W' : 'R',
4532 Pde.n.u1User ? 'U' : 'S',
4533 Pde.n.u1Accessed ? 'A' : '-',
4534 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4535 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4536 Pde.n.u1WriteThru ? "WT" : "--",
4537 Pde.n.u1CacheDisable? "CD" : "--",
4538 Pde.u & RT_BIT(9) ? '1' : '0',
4539 Pde.u & RT_BIT(10) ? '1' : '0',
4540 Pde.u & RT_BIT(11) ? '1' : '0',
4541 Pde.u & X86_PDE_PG_MASK));
4542 ////if (cMaxDepth >= 1)
4543 {
4544 /** @todo what about using the page pool for mapping PTs? */
4545 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4546 PX86PT pPT = NULL;
4547
4548 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4549
4550 int rc2 = VERR_INVALID_PARAMETER;
4551 if (pPT)
4552 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4553 else
4554 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4555 if (rc2 < rc && RT_SUCCESS(rc))
4556 rc = rc2;
4557 }
4558 }
4559 }
4560 }
4561
4562 return rc;
4563}
4564
4565
4566/**
4567 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4568 *
4569 * @returns VBox status code (VINF_SUCCESS).
4570 * @param pVM The VM handle.
4571 * @param cr3 The root of the hierarchy.
4572 * @param cr4 The cr4, only PAE and PSE is currently used.
4573 * @param fLongMode Set if long mode, false if not long mode.
4574 * @param cMaxDepth Number of levels to dump.
4575 * @param pHlp Pointer to the output functions.
4576 */
4577VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4578{
4579 if (!pHlp)
4580 pHlp = DBGFR3InfoLogHlp();
4581 if (!cMaxDepth)
4582 return VINF_SUCCESS;
4583 const unsigned cch = fLongMode ? 16 : 8;
4584 pHlp->pfnPrintf(pHlp,
4585 "cr3=%08x cr4=%08x%s\n"
4586 "%-*s P - Present\n"
4587 "%-*s | R/W - Read (0) / Write (1)\n"
4588 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4589 "%-*s | | | A - Accessed\n"
4590 "%-*s | | | | D - Dirty\n"
4591 "%-*s | | | | | G - Global\n"
4592 "%-*s | | | | | | WT - Write thru\n"
4593 "%-*s | | | | | | | CD - Cache disable\n"
4594 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4595 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4596 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4597 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4598 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4599 "%-*s Level | | | | | | | | | | | | Page\n"
4600 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4601 - W U - - - -- -- -- -- -- 010 */
4602 , cr3, cr4, fLongMode ? " Long Mode" : "",
4603 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4604 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4605 if (cr4 & X86_CR4_PAE)
4606 {
4607 if (fLongMode)
4608 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4609 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4610 }
4611 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4612}
4613
4614#ifdef VBOX_WITH_DEBUGGER
4615
4616/**
4617 * The '.pgmram' command.
4618 *
4619 * @returns VBox status.
4620 * @param pCmd Pointer to the command descriptor (as registered).
4621 * @param pCmdHlp Pointer to command helper functions.
4622 * @param pVM Pointer to the current VM (if any).
4623 * @param paArgs Pointer to (readonly) array of arguments.
4624 * @param cArgs Number of arguments in the array.
4625 */
4626static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4627{
4628 /*
4629 * Validate input.
4630 */
4631 if (!pVM)
4632 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4633 if (!pVM->pgm.s.pRamRangesRC)
4634 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4635
4636 /*
4637 * Dump the ranges.
4638 */
4639 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4640 PPGMRAMRANGE pRam;
4641 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4642 {
4643 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4644 "%RGp - %RGp %p\n",
4645 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4646 if (RT_FAILURE(rc))
4647 return rc;
4648 }
4649
4650 return VINF_SUCCESS;
4651}
4652
4653
4654/**
4655 * The '.pgmmap' command.
4656 *
4657 * @returns VBox status.
4658 * @param pCmd Pointer to the command descriptor (as registered).
4659 * @param pCmdHlp Pointer to command helper functions.
4660 * @param pVM Pointer to the current VM (if any).
4661 * @param paArgs Pointer to (readonly) array of arguments.
4662 * @param cArgs Number of arguments in the array.
4663 */
4664static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4665{
4666 /*
4667 * Validate input.
4668 */
4669 if (!pVM)
4670 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4671 if (!pVM->pgm.s.pMappingsR3)
4672 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4673
4674 /*
4675 * Print message about the fixedness of the mappings.
4676 */
4677 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4678 if (RT_FAILURE(rc))
4679 return rc;
4680
4681 /*
4682 * Dump the ranges.
4683 */
4684 PPGMMAPPING pCur;
4685 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4686 {
4687 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4688 "%08x - %08x %s\n",
4689 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4690 if (RT_FAILURE(rc))
4691 return rc;
4692 }
4693
4694 return VINF_SUCCESS;
4695}
4696
4697
4698/**
4699 * The '.pgmsync' command.
4700 *
4701 * @returns VBox status.
4702 * @param pCmd Pointer to the command descriptor (as registered).
4703 * @param pCmdHlp Pointer to command helper functions.
4704 * @param pVM Pointer to the current VM (if any).
4705 * @param paArgs Pointer to (readonly) array of arguments.
4706 * @param cArgs Number of arguments in the array.
4707 */
4708static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4709{
4710 /*
4711 * Validate input.
4712 */
4713 if (!pVM)
4714 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4715
4716 /*
4717 * Force page directory sync.
4718 */
4719 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4720
4721 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4722 if (RT_FAILURE(rc))
4723 return rc;
4724
4725 return VINF_SUCCESS;
4726}
4727
4728
4729#ifdef VBOX_STRICT
4730/**
4731 * The '.pgmassertcr3' command.
4732 *
4733 * @returns VBox status.
4734 * @param pCmd Pointer to the command descriptor (as registered).
4735 * @param pCmdHlp Pointer to command helper functions.
4736 * @param pVM Pointer to the current VM (if any).
4737 * @param paArgs Pointer to (readonly) array of arguments.
4738 * @param cArgs Number of arguments in the array.
4739 */
4740static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4741{
4742 /*
4743 * Validate input.
4744 */
4745 if (!pVM)
4746 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4747
4748 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4749 if (RT_FAILURE(rc))
4750 return rc;
4751
4752 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4753
4754 return VINF_SUCCESS;
4755}
4756#endif /* VBOX_STRICT */
4757
4758
4759/**
4760 * The '.pgmsyncalways' command.
4761 *
4762 * @returns VBox status.
4763 * @param pCmd Pointer to the command descriptor (as registered).
4764 * @param pCmdHlp Pointer to command helper functions.
4765 * @param pVM Pointer to the current VM (if any).
4766 * @param paArgs Pointer to (readonly) array of arguments.
4767 * @param cArgs Number of arguments in the array.
4768 */
4769static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4770{
4771 /*
4772 * Validate input.
4773 */
4774 if (!pVM)
4775 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4776
4777 /*
4778 * Force page directory sync.
4779 */
4780 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4781 {
4782 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4783 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4784 }
4785 else
4786 {
4787 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4788 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4789 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4790 }
4791}
4792
4793#endif /* VBOX_WITH_DEBUGGER */
4794
4795/**
4796 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4797 */
4798typedef struct PGMCHECKINTARGS
4799{
4800 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4801 PPGMPHYSHANDLER pPrevPhys;
4802 PPGMVIRTHANDLER pPrevVirt;
4803 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4804 PVM pVM;
4805} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4806
4807/**
4808 * Validate a node in the physical handler tree.
4809 *
4810 * @returns 0 on if ok, other wise 1.
4811 * @param pNode The handler node.
4812 * @param pvUser pVM.
4813 */
4814static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4815{
4816 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4817 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4818 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4819 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4820 AssertReleaseMsg( !pArgs->pPrevPhys
4821 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4822 ("pPrevPhys=%p %RGp-%RGp %s\n"
4823 " pCur=%p %RGp-%RGp %s\n",
4824 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4825 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4826 pArgs->pPrevPhys = pCur;
4827 return 0;
4828}
4829
4830
4831/**
4832 * Validate a node in the virtual handler tree.
4833 *
4834 * @returns 0 on if ok, other wise 1.
4835 * @param pNode The handler node.
4836 * @param pvUser pVM.
4837 */
4838static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4839{
4840 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4841 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4842 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4843 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4844 AssertReleaseMsg( !pArgs->pPrevVirt
4845 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4846 ("pPrevVirt=%p %RGv-%RGv %s\n"
4847 " pCur=%p %RGv-%RGv %s\n",
4848 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4849 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4850 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4851 {
4852 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4853 ("pCur=%p %RGv-%RGv %s\n"
4854 "iPage=%d offVirtHandle=%#x expected %#x\n",
4855 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4856 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4857 }
4858 pArgs->pPrevVirt = pCur;
4859 return 0;
4860}
4861
4862
4863/**
4864 * Validate a node in the virtual handler tree.
4865 *
4866 * @returns 0 on if ok, other wise 1.
4867 * @param pNode The handler node.
4868 * @param pvUser pVM.
4869 */
4870static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4871{
4872 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4873 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4874 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4875 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4876 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4877 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4878 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4879 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4880 " pCur=%p %RGp-%RGp\n",
4881 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4882 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4883 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4884 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4885 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4886 " pCur=%p %RGp-%RGp\n",
4887 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4888 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4889 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4890 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4891 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4892 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4893 {
4894 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4895 for (;;)
4896 {
4897 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4898 AssertReleaseMsg(pCur2 != pCur,
4899 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4900 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4901 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4902 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4903 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4904 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4905 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4906 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4907 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4908 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4909 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4910 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4911 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4912 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4913 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4914 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4915 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4916 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4917 break;
4918 }
4919 }
4920
4921 pArgs->pPrevPhys2Virt = pCur;
4922 return 0;
4923}
4924
4925
4926/**
4927 * Perform an integrity check on the PGM component.
4928 *
4929 * @returns VINF_SUCCESS if everything is fine.
4930 * @returns VBox error status after asserting on integrity breach.
4931 * @param pVM The VM handle.
4932 */
4933VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4934{
4935 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4936
4937 /*
4938 * Check the trees.
4939 */
4940 int cErrors = 0;
4941 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4942 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4943 PGMCHECKINTARGS Args = s_LeftToRight;
4944 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4945 Args = s_RightToLeft;
4946 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4947 Args = s_LeftToRight;
4948 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4949 Args = s_RightToLeft;
4950 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4951 Args = s_LeftToRight;
4952 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4953 Args = s_RightToLeft;
4954 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4955 Args = s_LeftToRight;
4956 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4957 Args = s_RightToLeft;
4958 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4959
4960 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4961}
4962
4963
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette