VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 22288

Last change on this file since 22288 was 22137, checked in by vboxsync, 15 years ago

PGM: Relocate pSelfRC of the MMIO2 ram ranges since unmapped ones will otherwise not be updated. Fixes #4195.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 240.3 KB
Line 
1/* $Id: PGM.cpp 22137 2009-08-10 14:05:44Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include <VBox/hwaccm.h>
592#include "PGMInternal.h"
593#include <VBox/vm.h>
594
595#include <VBox/dbg.h>
596#include <VBox/param.h>
597#include <VBox/err.h>
598
599#include <iprt/asm.h>
600#include <iprt/assert.h>
601#include <iprt/env.h>
602#include <iprt/mem.h>
603#include <iprt/file.h>
604#include <iprt/string.h>
605#include <iprt/thread.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.5.x and later. */
612#define PGM_SAVED_STATE_VERSION 9
613/** Saved state data unit version for 2.2.2 and later. */
614#define PGM_SAVED_STATE_VERSION_2_2_2 8
615/** Saved state data unit version for 2.2.0. */
616#define PGM_SAVED_STATE_VERSION_RR_DESC 7
617/** Saved state data unit version. */
618#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
619
620
621/*******************************************************************************
622* Internal Functions *
623*******************************************************************************/
624static int pgmR3InitPaging(PVM pVM);
625static void pgmR3InitStats(PVM pVM);
626static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
629static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
632#ifdef VBOX_STRICT
633static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
634#endif
635static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
636static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
637static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
638static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
639static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
640
641#ifdef VBOX_WITH_DEBUGGER
642/** @todo Convert the first two commands to 'info' items. */
643static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# ifdef VBOX_STRICT
649static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650# endif
651static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
652#endif
653
654
655/*******************************************************************************
656* Global Variables *
657*******************************************************************************/
658#ifdef VBOX_WITH_DEBUGGER
659/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
660static const DBGCVARDESC g_aPgmErrorArgs[] =
661{
662 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
663 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
664};
665
666static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
667{
668 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
669 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
670 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
671};
672
673/** Command descriptors. */
674static const DBGCCMD g_aCmds[] =
675{
676 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
677 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
678 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
679 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
680 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
681 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
682#ifdef VBOX_STRICT
683 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
684#endif
685 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
686 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
687};
688#endif
689
690
691
692
693/*
694 * Shadow - 32-bit mode
695 */
696#define PGM_SHW_TYPE PGM_TYPE_32BIT
697#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
698#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
699#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
700#include "PGMShw.h"
701
702/* Guest - real mode */
703#define PGM_GST_TYPE PGM_TYPE_REAL
704#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
705#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
706#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
707#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
708#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
709#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
710#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
711#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
712#include "PGMBth.h"
713#include "PGMGstDefs.h"
714#include "PGMGst.h"
715#undef BTH_PGMPOOLKIND_PT_FOR_PT
716#undef BTH_PGMPOOLKIND_ROOT
717#undef PGM_BTH_NAME
718#undef PGM_BTH_NAME_RC_STR
719#undef PGM_BTH_NAME_R0_STR
720#undef PGM_GST_TYPE
721#undef PGM_GST_NAME
722#undef PGM_GST_NAME_RC_STR
723#undef PGM_GST_NAME_R0_STR
724
725/* Guest - protected mode */
726#define PGM_GST_TYPE PGM_TYPE_PROT
727#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
728#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
729#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
730#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
731#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
732#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
733#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
734#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
735#include "PGMBth.h"
736#include "PGMGstDefs.h"
737#include "PGMGst.h"
738#undef BTH_PGMPOOLKIND_PT_FOR_PT
739#undef BTH_PGMPOOLKIND_ROOT
740#undef PGM_BTH_NAME
741#undef PGM_BTH_NAME_RC_STR
742#undef PGM_BTH_NAME_R0_STR
743#undef PGM_GST_TYPE
744#undef PGM_GST_NAME
745#undef PGM_GST_NAME_RC_STR
746#undef PGM_GST_NAME_R0_STR
747
748/* Guest - 32-bit mode */
749#define PGM_GST_TYPE PGM_TYPE_32BIT
750#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
751#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
752#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
754#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
755#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
756#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
757#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
758#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
759#include "PGMBth.h"
760#include "PGMGstDefs.h"
761#include "PGMGst.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_BIG
763#undef BTH_PGMPOOLKIND_PT_FOR_PT
764#undef BTH_PGMPOOLKIND_ROOT
765#undef PGM_BTH_NAME
766#undef PGM_BTH_NAME_RC_STR
767#undef PGM_BTH_NAME_R0_STR
768#undef PGM_GST_TYPE
769#undef PGM_GST_NAME
770#undef PGM_GST_NAME_RC_STR
771#undef PGM_GST_NAME_R0_STR
772
773#undef PGM_SHW_TYPE
774#undef PGM_SHW_NAME
775#undef PGM_SHW_NAME_RC_STR
776#undef PGM_SHW_NAME_R0_STR
777
778
779/*
780 * Shadow - PAE mode
781 */
782#define PGM_SHW_TYPE PGM_TYPE_PAE
783#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
784#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
785#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
786#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
787#include "PGMShw.h"
788
789/* Guest - real mode */
790#define PGM_GST_TYPE PGM_TYPE_REAL
791#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
792#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
793#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
794#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
795#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
796#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
797#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
798#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
799#include "PGMGstDefs.h"
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_PT
802#undef BTH_PGMPOOLKIND_ROOT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - protected mode */
812#define PGM_GST_TYPE PGM_TYPE_PROT
813#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
820#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
821#include "PGMGstDefs.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_PT
824#undef BTH_PGMPOOLKIND_ROOT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833/* Guest - 32-bit mode */
834#define PGM_GST_TYPE PGM_TYPE_32BIT
835#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
836#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
837#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
838#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
839#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
840#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
841#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
842#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
843#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
844#include "PGMGstDefs.h"
845#include "PGMBth.h"
846#undef BTH_PGMPOOLKIND_PT_FOR_BIG
847#undef BTH_PGMPOOLKIND_PT_FOR_PT
848#undef BTH_PGMPOOLKIND_ROOT
849#undef PGM_BTH_NAME
850#undef PGM_BTH_NAME_RC_STR
851#undef PGM_BTH_NAME_R0_STR
852#undef PGM_GST_TYPE
853#undef PGM_GST_NAME
854#undef PGM_GST_NAME_RC_STR
855#undef PGM_GST_NAME_R0_STR
856
857/* Guest - PAE mode */
858#define PGM_GST_TYPE PGM_TYPE_PAE
859#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
860#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
861#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
862#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
863#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
864#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
865#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
866#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
867#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
868#include "PGMBth.h"
869#include "PGMGstDefs.h"
870#include "PGMGst.h"
871#undef BTH_PGMPOOLKIND_PT_FOR_BIG
872#undef BTH_PGMPOOLKIND_PT_FOR_PT
873#undef BTH_PGMPOOLKIND_ROOT
874#undef PGM_BTH_NAME
875#undef PGM_BTH_NAME_RC_STR
876#undef PGM_BTH_NAME_R0_STR
877#undef PGM_GST_TYPE
878#undef PGM_GST_NAME
879#undef PGM_GST_NAME_RC_STR
880#undef PGM_GST_NAME_R0_STR
881
882#undef PGM_SHW_TYPE
883#undef PGM_SHW_NAME
884#undef PGM_SHW_NAME_RC_STR
885#undef PGM_SHW_NAME_R0_STR
886
887
888/*
889 * Shadow - AMD64 mode
890 */
891#define PGM_SHW_TYPE PGM_TYPE_AMD64
892#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
893#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
894#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
895#include "PGMShw.h"
896
897#ifdef VBOX_WITH_64_BITS_GUESTS
898/* Guest - AMD64 mode */
899# define PGM_GST_TYPE PGM_TYPE_AMD64
900# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
901# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
902# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
903# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
904# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
905# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
906# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
907# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
908# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
909# include "PGMBth.h"
910# include "PGMGstDefs.h"
911# include "PGMGst.h"
912# undef BTH_PGMPOOLKIND_PT_FOR_BIG
913# undef BTH_PGMPOOLKIND_PT_FOR_PT
914# undef BTH_PGMPOOLKIND_ROOT
915# undef PGM_BTH_NAME
916# undef PGM_BTH_NAME_RC_STR
917# undef PGM_BTH_NAME_R0_STR
918# undef PGM_GST_TYPE
919# undef PGM_GST_NAME
920# undef PGM_GST_NAME_RC_STR
921# undef PGM_GST_NAME_R0_STR
922#endif /* VBOX_WITH_64_BITS_GUESTS */
923
924#undef PGM_SHW_TYPE
925#undef PGM_SHW_NAME
926#undef PGM_SHW_NAME_RC_STR
927#undef PGM_SHW_NAME_R0_STR
928
929
930/*
931 * Shadow - Nested paging mode
932 */
933#define PGM_SHW_TYPE PGM_TYPE_NESTED
934#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
935#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
936#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
937#include "PGMShw.h"
938
939/* Guest - real mode */
940#define PGM_GST_TYPE PGM_TYPE_REAL
941#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
942#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
943#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
944#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
945#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
946#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
947#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
948#include "PGMGstDefs.h"
949#include "PGMBth.h"
950#undef BTH_PGMPOOLKIND_PT_FOR_PT
951#undef PGM_BTH_NAME
952#undef PGM_BTH_NAME_RC_STR
953#undef PGM_BTH_NAME_R0_STR
954#undef PGM_GST_TYPE
955#undef PGM_GST_NAME
956#undef PGM_GST_NAME_RC_STR
957#undef PGM_GST_NAME_R0_STR
958
959/* Guest - protected mode */
960#define PGM_GST_TYPE PGM_TYPE_PROT
961#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
962#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
963#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
964#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
965#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
966#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
967#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
968#include "PGMGstDefs.h"
969#include "PGMBth.h"
970#undef BTH_PGMPOOLKIND_PT_FOR_PT
971#undef PGM_BTH_NAME
972#undef PGM_BTH_NAME_RC_STR
973#undef PGM_BTH_NAME_R0_STR
974#undef PGM_GST_TYPE
975#undef PGM_GST_NAME
976#undef PGM_GST_NAME_RC_STR
977#undef PGM_GST_NAME_R0_STR
978
979/* Guest - 32-bit mode */
980#define PGM_GST_TYPE PGM_TYPE_32BIT
981#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
982#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
983#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
984#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
985#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
986#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
987#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
988#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
989#include "PGMGstDefs.h"
990#include "PGMBth.h"
991#undef BTH_PGMPOOLKIND_PT_FOR_BIG
992#undef BTH_PGMPOOLKIND_PT_FOR_PT
993#undef PGM_BTH_NAME
994#undef PGM_BTH_NAME_RC_STR
995#undef PGM_BTH_NAME_R0_STR
996#undef PGM_GST_TYPE
997#undef PGM_GST_NAME
998#undef PGM_GST_NAME_RC_STR
999#undef PGM_GST_NAME_R0_STR
1000
1001/* Guest - PAE mode */
1002#define PGM_GST_TYPE PGM_TYPE_PAE
1003#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1004#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1005#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1006#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1007#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1008#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1009#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1010#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1011#include "PGMGstDefs.h"
1012#include "PGMBth.h"
1013#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1014#undef BTH_PGMPOOLKIND_PT_FOR_PT
1015#undef PGM_BTH_NAME
1016#undef PGM_BTH_NAME_RC_STR
1017#undef PGM_BTH_NAME_R0_STR
1018#undef PGM_GST_TYPE
1019#undef PGM_GST_NAME
1020#undef PGM_GST_NAME_RC_STR
1021#undef PGM_GST_NAME_R0_STR
1022
1023#ifdef VBOX_WITH_64_BITS_GUESTS
1024/* Guest - AMD64 mode */
1025# define PGM_GST_TYPE PGM_TYPE_AMD64
1026# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1027# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1028# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1029# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1030# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1031# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1032# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1033# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1034# include "PGMGstDefs.h"
1035# include "PGMBth.h"
1036# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1037# undef BTH_PGMPOOLKIND_PT_FOR_PT
1038# undef PGM_BTH_NAME
1039# undef PGM_BTH_NAME_RC_STR
1040# undef PGM_BTH_NAME_R0_STR
1041# undef PGM_GST_TYPE
1042# undef PGM_GST_NAME
1043# undef PGM_GST_NAME_RC_STR
1044# undef PGM_GST_NAME_R0_STR
1045#endif /* VBOX_WITH_64_BITS_GUESTS */
1046
1047#undef PGM_SHW_TYPE
1048#undef PGM_SHW_NAME
1049#undef PGM_SHW_NAME_RC_STR
1050#undef PGM_SHW_NAME_R0_STR
1051
1052
1053/*
1054 * Shadow - EPT
1055 */
1056#define PGM_SHW_TYPE PGM_TYPE_EPT
1057#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1058#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1059#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1060#include "PGMShw.h"
1061
1062/* Guest - real mode */
1063#define PGM_GST_TYPE PGM_TYPE_REAL
1064#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1065#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1066#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1067#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1068#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1069#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1070#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1071#include "PGMGstDefs.h"
1072#include "PGMBth.h"
1073#undef BTH_PGMPOOLKIND_PT_FOR_PT
1074#undef PGM_BTH_NAME
1075#undef PGM_BTH_NAME_RC_STR
1076#undef PGM_BTH_NAME_R0_STR
1077#undef PGM_GST_TYPE
1078#undef PGM_GST_NAME
1079#undef PGM_GST_NAME_RC_STR
1080#undef PGM_GST_NAME_R0_STR
1081
1082/* Guest - protected mode */
1083#define PGM_GST_TYPE PGM_TYPE_PROT
1084#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1085#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1086#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1087#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1088#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1089#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1090#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1091#include "PGMGstDefs.h"
1092#include "PGMBth.h"
1093#undef BTH_PGMPOOLKIND_PT_FOR_PT
1094#undef PGM_BTH_NAME
1095#undef PGM_BTH_NAME_RC_STR
1096#undef PGM_BTH_NAME_R0_STR
1097#undef PGM_GST_TYPE
1098#undef PGM_GST_NAME
1099#undef PGM_GST_NAME_RC_STR
1100#undef PGM_GST_NAME_R0_STR
1101
1102/* Guest - 32-bit mode */
1103#define PGM_GST_TYPE PGM_TYPE_32BIT
1104#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1105#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1106#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1107#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1108#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1109#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1110#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1111#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1112#include "PGMGstDefs.h"
1113#include "PGMBth.h"
1114#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1115#undef BTH_PGMPOOLKIND_PT_FOR_PT
1116#undef PGM_BTH_NAME
1117#undef PGM_BTH_NAME_RC_STR
1118#undef PGM_BTH_NAME_R0_STR
1119#undef PGM_GST_TYPE
1120#undef PGM_GST_NAME
1121#undef PGM_GST_NAME_RC_STR
1122#undef PGM_GST_NAME_R0_STR
1123
1124/* Guest - PAE mode */
1125#define PGM_GST_TYPE PGM_TYPE_PAE
1126#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1127#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1128#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1129#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1130#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1131#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1132#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1133#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1134#include "PGMGstDefs.h"
1135#include "PGMBth.h"
1136#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1137#undef BTH_PGMPOOLKIND_PT_FOR_PT
1138#undef PGM_BTH_NAME
1139#undef PGM_BTH_NAME_RC_STR
1140#undef PGM_BTH_NAME_R0_STR
1141#undef PGM_GST_TYPE
1142#undef PGM_GST_NAME
1143#undef PGM_GST_NAME_RC_STR
1144#undef PGM_GST_NAME_R0_STR
1145
1146#ifdef VBOX_WITH_64_BITS_GUESTS
1147/* Guest - AMD64 mode */
1148# define PGM_GST_TYPE PGM_TYPE_AMD64
1149# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1150# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1151# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1152# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1153# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1154# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1155# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1156# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1157# include "PGMGstDefs.h"
1158# include "PGMBth.h"
1159# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1160# undef BTH_PGMPOOLKIND_PT_FOR_PT
1161# undef PGM_BTH_NAME
1162# undef PGM_BTH_NAME_RC_STR
1163# undef PGM_BTH_NAME_R0_STR
1164# undef PGM_GST_TYPE
1165# undef PGM_GST_NAME
1166# undef PGM_GST_NAME_RC_STR
1167# undef PGM_GST_NAME_R0_STR
1168#endif /* VBOX_WITH_64_BITS_GUESTS */
1169
1170#undef PGM_SHW_TYPE
1171#undef PGM_SHW_NAME
1172#undef PGM_SHW_NAME_RC_STR
1173#undef PGM_SHW_NAME_R0_STR
1174
1175
1176
1177/**
1178 * Initiates the paging of VM.
1179 *
1180 * @returns VBox status code.
1181 * @param pVM Pointer to VM structure.
1182 */
1183VMMR3DECL(int) PGMR3Init(PVM pVM)
1184{
1185 LogFlow(("PGMR3Init:\n"));
1186 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1187 int rc;
1188
1189 /*
1190 * Assert alignment and sizes.
1191 */
1192 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1193 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1194
1195 /*
1196 * Init the structure.
1197 */
1198 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1199 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1200
1201 /* Init the per-CPU part. */
1202 for (unsigned i=0;i<pVM->cCPUs;i++)
1203 {
1204 PVMCPU pVCpu = &pVM->aCpus[i];
1205 PPGMCPU pPGM = &pVCpu->pgm.s;
1206
1207 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1208 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1209 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1210
1211 pPGM->enmShadowMode = PGMMODE_INVALID;
1212 pPGM->enmGuestMode = PGMMODE_INVALID;
1213
1214 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1215
1216 pPGM->pGstPaePdptR3 = NULL;
1217#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1218 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1219#endif
1220 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1221 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1222 {
1223 pPGM->apGstPaePDsR3[i] = NULL;
1224#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1225 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1226#endif
1227 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1228 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1229 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1230 }
1231
1232 pPGM->fA20Enabled = true;
1233 }
1234
1235 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1236 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1237 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1238
1239 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1240#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1241 true
1242#else
1243 false
1244#endif
1245 );
1246 AssertLogRelRCReturn(rc, rc);
1247
1248#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1249 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1250#else
1251 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1252#endif
1253 AssertLogRelRCReturn(rc, rc);
1254 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1255 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1256
1257 /*
1258 * Get the configured RAM size - to estimate saved state size.
1259 */
1260 uint64_t cbRam;
1261 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1262 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1263 cbRam = 0;
1264 else if (RT_SUCCESS(rc))
1265 {
1266 if (cbRam < PAGE_SIZE)
1267 cbRam = 0;
1268 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1269 }
1270 else
1271 {
1272 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1273 return rc;
1274 }
1275
1276 /*
1277 * Register callbacks, string formatters and the saved state data unit.
1278 */
1279#ifdef VBOX_STRICT
1280 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1281#endif
1282 PGMRegisterStringFormatTypes();
1283
1284 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1285 NULL, pgmR3Save, NULL,
1286 NULL, pgmR3Load, NULL);
1287 if (RT_FAILURE(rc))
1288 return rc;
1289
1290 /*
1291 * Initialize the PGM critical section and flush the phys TLBs
1292 */
1293 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1294 AssertRCReturn(rc, rc);
1295
1296 PGMR3PhysChunkInvalidateTLB(pVM);
1297 PGMPhysInvalidatePageR3MapTLB(pVM);
1298 PGMPhysInvalidatePageR0MapTLB(pVM);
1299 PGMPhysInvalidatePageGCMapTLB(pVM);
1300
1301 /*
1302 * For the time being we sport a full set of handy pages in addition to the base
1303 * memory to simplify things.
1304 */
1305 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1306 AssertRCReturn(rc, rc);
1307
1308 /*
1309 * Trees
1310 */
1311 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1312 if (RT_SUCCESS(rc))
1313 {
1314 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1315 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1316
1317 /*
1318 * Alocate the zero page.
1319 */
1320 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1321 }
1322 if (RT_SUCCESS(rc))
1323 {
1324 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1325 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1326 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1327 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1328
1329 /*
1330 * Init the paging.
1331 */
1332 rc = pgmR3InitPaging(pVM);
1333 }
1334 if (RT_SUCCESS(rc))
1335 {
1336 /*
1337 * Init the page pool.
1338 */
1339 rc = pgmR3PoolInit(pVM);
1340 }
1341 if (RT_SUCCESS(rc))
1342 {
1343 for (unsigned i=0;i<pVM->cCPUs;i++)
1344 {
1345 PVMCPU pVCpu = &pVM->aCpus[i];
1346
1347 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1348 if (RT_FAILURE(rc))
1349 break;
1350 }
1351 }
1352
1353 if (RT_SUCCESS(rc))
1354 {
1355 /*
1356 * Info & statistics
1357 */
1358 DBGFR3InfoRegisterInternal(pVM, "mode",
1359 "Shows the current paging mode. "
1360 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1361 pgmR3InfoMode);
1362 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1363 "Dumps all the entries in the top level paging table. No arguments.",
1364 pgmR3InfoCr3);
1365 DBGFR3InfoRegisterInternal(pVM, "phys",
1366 "Dumps all the physical address ranges. No arguments.",
1367 pgmR3PhysInfo);
1368 DBGFR3InfoRegisterInternal(pVM, "handlers",
1369 "Dumps physical, virtual and hyper virtual handlers. "
1370 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1371 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1372 pgmR3InfoHandlers);
1373 DBGFR3InfoRegisterInternal(pVM, "mappings",
1374 "Dumps guest mappings.",
1375 pgmR3MapInfo);
1376
1377 pgmR3InitStats(pVM);
1378
1379#ifdef VBOX_WITH_DEBUGGER
1380 /*
1381 * Debugger commands.
1382 */
1383 static bool s_fRegisteredCmds = false;
1384 if (!s_fRegisteredCmds)
1385 {
1386 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1387 if (RT_SUCCESS(rc))
1388 s_fRegisteredCmds = true;
1389 }
1390#endif
1391 return VINF_SUCCESS;
1392 }
1393
1394 /* Almost no cleanup necessary, MM frees all memory. */
1395 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1396
1397 return rc;
1398}
1399
1400
1401/**
1402 * Initializes the per-VCPU PGM.
1403 *
1404 * @returns VBox status code.
1405 * @param pVM The VM to operate on.
1406 */
1407VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1408{
1409 LogFlow(("PGMR3InitCPU\n"));
1410 return VINF_SUCCESS;
1411}
1412
1413
1414/**
1415 * Init paging.
1416 *
1417 * Since we need to check what mode the host is operating in before we can choose
1418 * the right paging functions for the host we have to delay this until R0 has
1419 * been initialized.
1420 *
1421 * @returns VBox status code.
1422 * @param pVM VM handle.
1423 */
1424static int pgmR3InitPaging(PVM pVM)
1425{
1426 /*
1427 * Force a recalculation of modes and switcher so everyone gets notified.
1428 */
1429 for (unsigned i=0;i<pVM->cCPUs;i++)
1430 {
1431 PVMCPU pVCpu = &pVM->aCpus[i];
1432
1433 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1434 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1435 }
1436
1437 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1438
1439 /*
1440 * Allocate static mapping space for whatever the cr3 register
1441 * points to and in the case of PAE mode to the 4 PDs.
1442 */
1443 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1444 if (RT_FAILURE(rc))
1445 {
1446 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1447 return rc;
1448 }
1449 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1450
1451 /*
1452 * Allocate pages for the three possible intermediate contexts
1453 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1454 * for the sake of simplicity. The AMD64 uses the PAE for the
1455 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1456 *
1457 * We assume that two page tables will be enought for the core code
1458 * mappings (HC virtual and identity).
1459 */
1460 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1470 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1471 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1472
1473 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1474 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1475 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1476 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1477 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1478 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1479
1480 /*
1481 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1482 */
1483 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1484 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1485 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1486
1487 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1488 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1489
1490 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1491 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1492 {
1493 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1494 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1495 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1496 }
1497
1498 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1499 {
1500 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1501 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1502 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1503 }
1504
1505 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1506 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1507 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1508 | HCPhysInterPaePDPT64;
1509
1510 /*
1511 * Initialize paging workers and mode from current host mode
1512 * and the guest running in real mode.
1513 */
1514 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1515 switch (pVM->pgm.s.enmHostMode)
1516 {
1517 case SUPPAGINGMODE_32_BIT:
1518 case SUPPAGINGMODE_32_BIT_GLOBAL:
1519 case SUPPAGINGMODE_PAE:
1520 case SUPPAGINGMODE_PAE_GLOBAL:
1521 case SUPPAGINGMODE_PAE_NX:
1522 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1523 break;
1524
1525 case SUPPAGINGMODE_AMD64:
1526 case SUPPAGINGMODE_AMD64_GLOBAL:
1527 case SUPPAGINGMODE_AMD64_NX:
1528 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1529#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1530 if (ARCH_BITS != 64)
1531 {
1532 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1533 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1534 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1535 }
1536#endif
1537 break;
1538 default:
1539 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1540 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1541 }
1542 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1543 if (RT_SUCCESS(rc))
1544 {
1545 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1546#if HC_ARCH_BITS == 64
1547 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1548 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1549 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1550 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1551 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1552 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1553 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1554#endif
1555
1556 return VINF_SUCCESS;
1557 }
1558
1559 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1560 return rc;
1561}
1562
1563
1564/**
1565 * Init statistics
1566 */
1567static void pgmR3InitStats(PVM pVM)
1568{
1569 PPGM pPGM = &pVM->pgm.s;
1570 int rc;
1571
1572 /* Common - misc variables */
1573 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1574 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1575 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1576 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1577 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1578 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1579 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1580 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1581
1582#ifdef VBOX_WITH_STATISTICS
1583
1584# define PGM_REG_COUNTER(a, b, c) \
1585 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1586 AssertRC(rc);
1587
1588# define PGM_REG_COUNTER_BYTES(a, b, c) \
1589 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1590 AssertRC(rc);
1591
1592# define PGM_REG_PROFILE(a, b, c) \
1593 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1594 AssertRC(rc);
1595
1596 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1597 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1598 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1599 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1600 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1601 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1602 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1603 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1604 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1605 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1606
1607 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1608 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1609 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1610 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1611 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1612 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1613 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1614 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1615
1616 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1617 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1618 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1619 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1620
1621 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1622 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1623 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1624 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1625
1626 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1627 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1628/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1629 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1630 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1631/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1632
1633 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1634 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1635 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1636 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1637 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1638 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1639 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1640 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1641
1642 /* GC only: */
1643 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1644 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1645 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1646 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1647
1648 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1649 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1650 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1651 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1652 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1653 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1654 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1655 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1656
1657# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1658 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1659 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1660 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1661 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1662 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1663 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1664# endif
1665
1666# undef PGM_REG_COUNTER
1667# undef PGM_REG_PROFILE
1668#endif
1669
1670 /*
1671 * Note! The layout below matches the member layout exactly!
1672 */
1673
1674 /*
1675 * Common - stats
1676 */
1677 for (unsigned i=0;i<pVM->cCPUs;i++)
1678 {
1679 PVMCPU pVCpu = &pVM->aCpus[i];
1680 PPGMCPU pPGM = &pVCpu->pgm.s;
1681
1682#define PGM_REG_COUNTER(a, b, c) \
1683 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1684 AssertRC(rc);
1685#define PGM_REG_PROFILE(a, b, c) \
1686 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1687 AssertRC(rc);
1688
1689 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1690
1691#ifdef VBOX_WITH_STATISTICS
1692 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1693 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1694 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1695 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1696 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1697 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1698
1699 /* R0 only: */
1700 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1701 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1702 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1703 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1704 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1705 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1706 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1707 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1708 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1709 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1710 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1711 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1712 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1713 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1714 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1715 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1716 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1717 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1718 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1719 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1720 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1721 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1722 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1723 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1724 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1725 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1726 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1727 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1728 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1729 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1730 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1731 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1732 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1733 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1734 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1735 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1736
1737 /* RZ only: */
1738 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1739 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1740 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1741 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1742 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1743 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1744 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1745 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1746 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1747 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1748 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1749 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1750 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1751 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1752 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1753 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1754 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1755 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1756 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1757 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1758 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1759 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1760 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1761 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1762 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1763 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1764 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1765 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1766 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1767 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1768 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1769 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1770 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1771 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1772 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1773 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1774 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1775 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1776 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1777 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1778 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1779 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1780 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1781 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1782 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1783 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1784
1785 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1786 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1787 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1788 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1789 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1790
1791 /* HC only: */
1792
1793 /* RZ & R3: */
1794 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1795 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1796 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1797 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1798 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1799 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1800 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1801 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1802 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1803 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1804 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1805 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1806 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1807 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1808 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1809 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1810 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1811 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1812 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1813 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1814 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1815 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1816 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageStale, "/PGM/CPU%d/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1817 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1818 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1819 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1820 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1821 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1822 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1823 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1824 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1825 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1826 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1827 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1828 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1829 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1830 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1831 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1832 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1833 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1834 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1835 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1836 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1837 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1838
1839 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1840 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1841 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1842 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1843 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1844 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1845 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1846 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1847 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1848 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1849 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1850 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1851 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1852 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1853 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1854 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1855 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1856 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1857 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1858 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1859 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1860 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1861 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1862 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1863 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1864 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1865 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1866 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1867 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1868 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1869 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1870 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1871 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1872 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1873 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1874 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1875 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1876 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1877 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1878 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1879 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1880 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1881 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1882#endif /* VBOX_WITH_STATISTICS */
1883
1884#undef PGM_REG_PROFILE
1885#undef PGM_REG_COUNTER
1886
1887 }
1888}
1889
1890
1891/**
1892 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1893 *
1894 * The dynamic mapping area will also be allocated and initialized at this
1895 * time. We could allocate it during PGMR3Init of course, but the mapping
1896 * wouldn't be allocated at that time preventing us from setting up the
1897 * page table entries with the dummy page.
1898 *
1899 * @returns VBox status code.
1900 * @param pVM VM handle.
1901 */
1902VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1903{
1904 RTGCPTR GCPtr;
1905 int rc;
1906
1907 /*
1908 * Reserve space for the dynamic mappings.
1909 */
1910 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1911 if (RT_SUCCESS(rc))
1912 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1913
1914 if ( RT_SUCCESS(rc)
1915 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1916 {
1917 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1918 if (RT_SUCCESS(rc))
1919 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1920 }
1921 if (RT_SUCCESS(rc))
1922 {
1923 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1924 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1925 }
1926 return rc;
1927}
1928
1929
1930/**
1931 * Ring-3 init finalizing.
1932 *
1933 * @returns VBox status code.
1934 * @param pVM The VM handle.
1935 */
1936VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1937{
1938 int rc;
1939
1940 /*
1941 * Reserve space for the dynamic mappings.
1942 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1943 */
1944 /* get the pointer to the page table entries. */
1945 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1946 AssertRelease(pMapping);
1947 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1948 const unsigned iPT = off >> X86_PD_SHIFT;
1949 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1950 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1951 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1952
1953 /* init cache */
1954 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1955 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1956 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1957
1958 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1959 {
1960 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1961 AssertRCReturn(rc, rc);
1962 }
1963
1964 /*
1965 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1966 * Intel only goes up to 36 bits, so we stick to 36 as well.
1967 */
1968 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1969 uint32_t u32Dummy, u32Features;
1970 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1971
1972 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1973 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1974 else
1975 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1976
1977 /*
1978 * Allocate memory if we're supposed to do that.
1979 */
1980 if (pVM->pgm.s.fRamPreAlloc)
1981 rc = pgmR3PhysRamPreAllocate(pVM);
1982
1983 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1984 return rc;
1985}
1986
1987
1988/**
1989 * Applies relocations to data and code managed by this component.
1990 *
1991 * This function will be called at init and whenever the VMM need to relocate it
1992 * self inside the GC.
1993 *
1994 * @param pVM The VM.
1995 * @param offDelta Relocation delta relative to old location.
1996 */
1997VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1998{
1999 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2000
2001 /*
2002 * Paging stuff.
2003 */
2004 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2005
2006 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2007
2008 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2009 for (unsigned i=0;i<pVM->cCPUs;i++)
2010 {
2011 PVMCPU pVCpu = &pVM->aCpus[i];
2012
2013 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2014
2015 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2016 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2017 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2018 }
2019
2020 /*
2021 * Trees.
2022 */
2023 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2024
2025 /*
2026 * Ram ranges.
2027 */
2028 if (pVM->pgm.s.pRamRangesR3)
2029 {
2030 /* Update the pSelfRC pointers and relink them. */
2031 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2032 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2033 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2034 pgmR3PhysRelinkRamRanges(pVM);
2035 }
2036
2037 /*
2038 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2039 * be mapped and thus not included in the above exercise.
2040 */
2041 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2042 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2043 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2044
2045 /*
2046 * Update the two page directories with all page table mappings.
2047 * (One or more of them have changed, that's why we're here.)
2048 */
2049 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2050 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2051 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2052
2053 /* Relocate GC addresses of Page Tables. */
2054 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2055 {
2056 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2057 {
2058 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2059 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2060 }
2061 }
2062
2063 /*
2064 * Dynamic page mapping area.
2065 */
2066 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2067 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2068 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2069
2070 /*
2071 * The Zero page.
2072 */
2073 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2074#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2075 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2076#else
2077 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2078#endif
2079
2080 /*
2081 * Physical and virtual handlers.
2082 */
2083 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2084 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2085 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2086
2087 /*
2088 * The page pool.
2089 */
2090 pgmR3PoolRelocate(pVM);
2091}
2092
2093
2094/**
2095 * Callback function for relocating a physical access handler.
2096 *
2097 * @returns 0 (continue enum)
2098 * @param pNode Pointer to a PGMPHYSHANDLER node.
2099 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2100 * not certain the delta will fit in a void pointer for all possible configs.
2101 */
2102static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2103{
2104 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2105 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2106 if (pHandler->pfnHandlerRC)
2107 pHandler->pfnHandlerRC += offDelta;
2108 if (pHandler->pvUserRC >= 0x10000)
2109 pHandler->pvUserRC += offDelta;
2110 return 0;
2111}
2112
2113
2114/**
2115 * Callback function for relocating a virtual access handler.
2116 *
2117 * @returns 0 (continue enum)
2118 * @param pNode Pointer to a PGMVIRTHANDLER node.
2119 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2120 * not certain the delta will fit in a void pointer for all possible configs.
2121 */
2122static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2123{
2124 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2125 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2126 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2127 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2128 Assert(pHandler->pfnHandlerRC);
2129 pHandler->pfnHandlerRC += offDelta;
2130 return 0;
2131}
2132
2133
2134/**
2135 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2136 *
2137 * @returns 0 (continue enum)
2138 * @param pNode Pointer to a PGMVIRTHANDLER node.
2139 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2140 * not certain the delta will fit in a void pointer for all possible configs.
2141 */
2142static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2143{
2144 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2145 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2146 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2147 Assert(pHandler->pfnHandlerRC);
2148 pHandler->pfnHandlerRC += offDelta;
2149 return 0;
2150}
2151
2152
2153/**
2154 * The VM is being reset.
2155 *
2156 * For the PGM component this means that any PD write monitors
2157 * needs to be removed.
2158 *
2159 * @param pVM VM handle.
2160 */
2161VMMR3DECL(void) PGMR3Reset(PVM pVM)
2162{
2163 int rc;
2164
2165 LogFlow(("PGMR3Reset:\n"));
2166 VM_ASSERT_EMT(pVM);
2167
2168 pgmLock(pVM);
2169
2170 /*
2171 * Unfix any fixed mappings and disable CR3 monitoring.
2172 */
2173 pVM->pgm.s.fMappingsFixed = false;
2174 pVM->pgm.s.GCPtrMappingFixed = 0;
2175 pVM->pgm.s.cbMappingFixed = 0;
2176
2177 /* Exit the guest paging mode before the pgm pool gets reset.
2178 * Important to clean up the amd64 case.
2179 */
2180 for (unsigned i=0;i<pVM->cCPUs;i++)
2181 {
2182 PVMCPU pVCpu = &pVM->aCpus[i];
2183
2184 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2185 AssertRC(rc);
2186 }
2187
2188#ifdef DEBUG
2189 DBGFR3InfoLog(pVM, "mappings", NULL);
2190 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2191#endif
2192
2193 /*
2194 * Switch mode back to real mode. (before resetting the pgm pool!)
2195 */
2196 for (unsigned i=0;i<pVM->cCPUs;i++)
2197 {
2198 PVMCPU pVCpu = &pVM->aCpus[i];
2199
2200 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2201 AssertRC(rc);
2202
2203 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2204 }
2205
2206 /*
2207 * Reset the shadow page pool.
2208 */
2209 pgmR3PoolReset(pVM);
2210
2211 for (unsigned i=0;i<pVM->cCPUs;i++)
2212 {
2213 PVMCPU pVCpu = &pVM->aCpus[i];
2214
2215 /*
2216 * Re-init other members.
2217 */
2218 pVCpu->pgm.s.fA20Enabled = true;
2219
2220 /*
2221 * Clear the FFs PGM owns.
2222 */
2223 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2224 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2225 }
2226
2227 /*
2228 * Reset (zero) RAM pages.
2229 */
2230 rc = pgmR3PhysRamReset(pVM);
2231 if (RT_SUCCESS(rc))
2232 {
2233 /*
2234 * Reset (zero) shadow ROM pages.
2235 */
2236 rc = pgmR3PhysRomReset(pVM);
2237 }
2238
2239 pgmUnlock(pVM);
2240 //return rc;
2241 AssertReleaseRC(rc);
2242}
2243
2244
2245#ifdef VBOX_STRICT
2246/**
2247 * VM state change callback for clearing fNoMorePhysWrites after
2248 * a snapshot has been created.
2249 */
2250static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2251{
2252 if (enmState == VMSTATE_RUNNING)
2253 pVM->pgm.s.fNoMorePhysWrites = false;
2254}
2255#endif
2256
2257
2258/**
2259 * Terminates the PGM.
2260 *
2261 * @returns VBox status code.
2262 * @param pVM Pointer to VM structure.
2263 */
2264VMMR3DECL(int) PGMR3Term(PVM pVM)
2265{
2266 PGMDeregisterStringFormatTypes();
2267 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2268}
2269
2270
2271/**
2272 * Terminates the per-VCPU PGM.
2273 *
2274 * Termination means cleaning up and freeing all resources,
2275 * the VM it self is at this point powered off or suspended.
2276 *
2277 * @returns VBox status code.
2278 * @param pVM The VM to operate on.
2279 */
2280VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2281{
2282 return 0;
2283}
2284
2285
2286/**
2287 * Find the ROM tracking structure for the given page.
2288 *
2289 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2290 * that it's a ROM page.
2291 * @param pVM The VM handle.
2292 * @param GCPhys The address of the ROM page.
2293 */
2294static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2295{
2296 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2297 pRomRange;
2298 pRomRange = pRomRange->CTX_SUFF(pNext))
2299 {
2300 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2301 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2302 return &pRomRange->aPages[off >> PAGE_SHIFT];
2303 }
2304 return NULL;
2305}
2306
2307
2308/**
2309 * Save zero indicator + bits for the specified page.
2310 *
2311 * @returns VBox status code, errors are logged/asserted before returning.
2312 * @param pVM The VM handle.
2313 * @param pSSH The saved state handle.
2314 * @param pPage The page to save.
2315 * @param GCPhys The address of the page.
2316 * @param pRam The ram range (for error logging).
2317 */
2318static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2319{
2320 int rc;
2321 if (PGM_PAGE_IS_ZERO(pPage))
2322 rc = SSMR3PutU8(pSSM, 0);
2323 else
2324 {
2325 void const *pvPage;
2326 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2327 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2328
2329 SSMR3PutU8(pSSM, 1);
2330 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2331 }
2332 return rc;
2333}
2334
2335
2336/**
2337 * Save a shadowed ROM page.
2338 *
2339 * Format: Type, protection, and two pages with zero indicators.
2340 *
2341 * @returns VBox status code, errors are logged/asserted before returning.
2342 * @param pVM The VM handle.
2343 * @param pSSH The saved state handle.
2344 * @param pPage The page to save.
2345 * @param GCPhys The address of the page.
2346 * @param pRam The ram range (for error logging).
2347 */
2348static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2349{
2350 /* Need to save both pages and the current state. */
2351 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2352 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2353
2354 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2355 SSMR3PutU8(pSSM, pRomPage->enmProt);
2356
2357 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2358 if (RT_SUCCESS(rc))
2359 {
2360 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2361 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2362 }
2363 return rc;
2364}
2365
2366/** PGM fields to save/load. */
2367static const SSMFIELD s_aPGMFields[] =
2368{
2369 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2370 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2371 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2372 SSMFIELD_ENTRY_TERM()
2373};
2374
2375static const SSMFIELD s_aPGMCpuFields[] =
2376{
2377 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2378 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2379 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2380 SSMFIELD_ENTRY_TERM()
2381};
2382
2383/* For loading old saved states. (pre-smp) */
2384typedef struct
2385{
2386 /** If set no conflict checks are required. (boolean) */
2387 bool fMappingsFixed;
2388 /** Size of fixed mapping */
2389 uint32_t cbMappingFixed;
2390 /** Base address (GC) of fixed mapping */
2391 RTGCPTR GCPtrMappingFixed;
2392 /** A20 gate mask.
2393 * Our current approach to A20 emulation is to let REM do it and don't bother
2394 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2395 * But whould need arrise, we'll subject physical addresses to this mask. */
2396 RTGCPHYS GCPhysA20Mask;
2397 /** A20 gate state - boolean! */
2398 bool fA20Enabled;
2399 /** The guest paging mode. */
2400 PGMMODE enmGuestMode;
2401} PGMOLD;
2402
2403static const SSMFIELD s_aPGMFields_Old[] =
2404{
2405 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2406 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2407 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2408 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2409 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2410 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2411 SSMFIELD_ENTRY_TERM()
2412};
2413
2414
2415/**
2416 * Execute state save operation.
2417 *
2418 * @returns VBox status code.
2419 * @param pVM VM Handle.
2420 * @param pSSM SSM operation handle.
2421 */
2422static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2423{
2424 int rc;
2425 unsigned i;
2426 PPGM pPGM = &pVM->pgm.s;
2427
2428 /*
2429 * Lock PGM and set the no-more-writes indicator.
2430 */
2431 pgmLock(pVM);
2432 pVM->pgm.s.fNoMorePhysWrites = true;
2433
2434 /*
2435 * Save basic data (required / unaffected by relocation).
2436 */
2437 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2438
2439 for (i=0;i<pVM->cCPUs;i++)
2440 {
2441 PVMCPU pVCpu = &pVM->aCpus[i];
2442
2443 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2444 }
2445
2446 /*
2447 * The guest mappings.
2448 */
2449 i = 0;
2450 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2451 {
2452 SSMR3PutU32( pSSM, i);
2453 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2454 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2455 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2456 }
2457 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2458
2459 /*
2460 * Ram ranges and the memory they describe.
2461 */
2462 i = 0;
2463 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2464 {
2465 /*
2466 * Save the ram range details.
2467 */
2468 SSMR3PutU32(pSSM, i);
2469 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2470 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2471 SSMR3PutGCPhys(pSSM, pRam->cb);
2472 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2473 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2474
2475 /*
2476 * Iterate the pages, only two special case.
2477 */
2478 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2479 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2480 {
2481 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2482 PPGMPAGE pPage = &pRam->aPages[iPage];
2483 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2484
2485 if (uType == PGMPAGETYPE_ROM_SHADOW)
2486 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2487 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2488 {
2489 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2490 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2491 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2492 }
2493 else
2494 {
2495 SSMR3PutU8(pSSM, uType);
2496 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2497 }
2498 if (RT_FAILURE(rc))
2499 break;
2500 }
2501 if (RT_FAILURE(rc))
2502 break;
2503 }
2504
2505 pgmUnlock(pVM);
2506 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2507}
2508
2509
2510/**
2511 * Load an ignored page.
2512 *
2513 * @returns VBox status code.
2514 * @param pSSM The saved state handle.
2515 */
2516static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2517{
2518 uint8_t abPage[PAGE_SIZE];
2519 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2520}
2521
2522
2523/**
2524 * Loads a page without any bits in the saved state, i.e. making sure it's
2525 * really zero.
2526 *
2527 * @returns VBox status code.
2528 * @param pVM The VM handle.
2529 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2530 * state).
2531 * @param pPage The guest page tracking structure.
2532 * @param GCPhys The page address.
2533 * @param pRam The ram range (logging).
2534 */
2535static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2536{
2537 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2538 && uType != PGMPAGETYPE_INVALID)
2539 return VERR_SSM_UNEXPECTED_DATA;
2540
2541 /* I think this should be sufficient. */
2542 if (!PGM_PAGE_IS_ZERO(pPage))
2543 return VERR_SSM_UNEXPECTED_DATA;
2544
2545 NOREF(pVM);
2546 NOREF(GCPhys);
2547 NOREF(pRam);
2548 return VINF_SUCCESS;
2549}
2550
2551
2552/**
2553 * Loads a page from the saved state.
2554 *
2555 * @returns VBox status code.
2556 * @param pVM The VM handle.
2557 * @param pSSM The SSM handle.
2558 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2559 * state).
2560 * @param pPage The guest page tracking structure.
2561 * @param GCPhys The page address.
2562 * @param pRam The ram range (logging).
2563 */
2564static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2565{
2566 int rc;
2567
2568 /*
2569 * Match up the type, dealing with MMIO2 aliases (dropped).
2570 */
2571 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2572 || uType == PGMPAGETYPE_INVALID,
2573 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2574 VERR_SSM_UNEXPECTED_DATA);
2575
2576 /*
2577 * Load the page.
2578 */
2579 void *pvPage;
2580 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2581 if (RT_SUCCESS(rc))
2582 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2583
2584 return rc;
2585}
2586
2587
2588/**
2589 * Loads a page (counter part to pgmR3SavePage).
2590 *
2591 * @returns VBox status code, fully bitched errors.
2592 * @param pVM The VM handle.
2593 * @param pSSM The SSM handle.
2594 * @param uType The page type.
2595 * @param pPage The page.
2596 * @param GCPhys The page address.
2597 * @param pRam The RAM range (for error messages).
2598 */
2599static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2600{
2601 uint8_t uState;
2602 int rc = SSMR3GetU8(pSSM, &uState);
2603 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2604 if (uState == 0 /* zero */)
2605 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2606 else if (uState == 1)
2607 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2608 else
2609 rc = VERR_INTERNAL_ERROR;
2610 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2611 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2612 rc);
2613 return VINF_SUCCESS;
2614}
2615
2616
2617/**
2618 * Loads a shadowed ROM page.
2619 *
2620 * @returns VBox status code, errors are fully bitched.
2621 * @param pVM The VM handle.
2622 * @param pSSM The saved state handle.
2623 * @param pPage The page.
2624 * @param GCPhys The page address.
2625 * @param pRam The RAM range (for error messages).
2626 */
2627static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2628{
2629 /*
2630 * Load and set the protection first, then load the two pages, the first
2631 * one is the active the other is the passive.
2632 */
2633 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2634 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2635
2636 uint8_t uProt;
2637 int rc = SSMR3GetU8(pSSM, &uProt);
2638 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2639 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2640 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2641 && enmProt < PGMROMPROT_END,
2642 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2643 VERR_SSM_UNEXPECTED_DATA);
2644
2645 if (pRomPage->enmProt != enmProt)
2646 {
2647 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2648 AssertLogRelRCReturn(rc, rc);
2649 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2650 }
2651
2652 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2653 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2654 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2655 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2656
2657 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2658 if (RT_SUCCESS(rc))
2659 {
2660 *pPageActive = *pPage;
2661 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2662 }
2663 return rc;
2664}
2665
2666
2667/**
2668 * Worker for pgmR3Load.
2669 *
2670 * @returns VBox status code.
2671 *
2672 * @param pVM The VM handle.
2673 * @param pSSM The SSM handle.
2674 * @param u32Version The saved state version.
2675 */
2676static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2677{
2678 PPGM pPGM = &pVM->pgm.s;
2679 int rc;
2680 uint32_t u32Sep;
2681
2682 /*
2683 * Load basic data (required / unaffected by relocation).
2684 */
2685 if (u32Version >= PGM_SAVED_STATE_VERSION)
2686 {
2687 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2688 AssertLogRelRCReturn(rc, rc);
2689
2690 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2691 {
2692 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2693 AssertLogRelRCReturn(rc, rc);
2694 }
2695 }
2696 else if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2697 {
2698 AssertRelease(pVM->cCPUs == 1);
2699
2700 PGMOLD pgmOld;
2701 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2702 AssertLogRelRCReturn(rc, rc);
2703
2704 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2705 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2706 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2707
2708 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2709 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2710 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2711 }
2712 else
2713 {
2714 AssertRelease(pVM->cCPUs == 1);
2715
2716 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2717 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2718 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2719
2720 uint32_t cbRamSizeIgnored;
2721 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2722 if (RT_FAILURE(rc))
2723 return rc;
2724 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2725
2726 uint32_t u32 = 0;
2727 SSMR3GetUInt(pSSM, &u32);
2728 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2729 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2730 RTUINT uGuestMode;
2731 SSMR3GetUInt(pSSM, &uGuestMode);
2732 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2733
2734 /* check separator. */
2735 SSMR3GetU32(pSSM, &u32Sep);
2736 if (RT_FAILURE(rc))
2737 return rc;
2738 if (u32Sep != (uint32_t)~0)
2739 {
2740 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2741 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2742 }
2743 }
2744
2745 /*
2746 * The guest mappings.
2747 */
2748 uint32_t i = 0;
2749 for (;; i++)
2750 {
2751 /* Check the seqence number / separator. */
2752 rc = SSMR3GetU32(pSSM, &u32Sep);
2753 if (RT_FAILURE(rc))
2754 return rc;
2755 if (u32Sep == ~0U)
2756 break;
2757 if (u32Sep != i)
2758 {
2759 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2760 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2761 }
2762
2763 /* get the mapping details. */
2764 char szDesc[256];
2765 szDesc[0] = '\0';
2766 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2767 if (RT_FAILURE(rc))
2768 return rc;
2769 RTGCPTR GCPtr;
2770 SSMR3GetGCPtr(pSSM, &GCPtr);
2771 RTGCPTR cPTs;
2772 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2773 if (RT_FAILURE(rc))
2774 return rc;
2775
2776 /* find matching range. */
2777 PPGMMAPPING pMapping;
2778 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2779 if ( pMapping->cPTs == cPTs
2780 && !strcmp(pMapping->pszDesc, szDesc))
2781 break;
2782 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2783 cPTs, szDesc, GCPtr),
2784 VERR_SSM_LOAD_CONFIG_MISMATCH);
2785
2786 /* relocate it. */
2787 if (pMapping->GCPtr != GCPtr)
2788 {
2789 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2790 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2791 }
2792 else
2793 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2794 }
2795
2796 /*
2797 * Ram range flags and bits.
2798 */
2799 i = 0;
2800 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2801 {
2802 /* Check the seqence number / separator. */
2803 rc = SSMR3GetU32(pSSM, &u32Sep);
2804 if (RT_FAILURE(rc))
2805 return rc;
2806 if (u32Sep == ~0U)
2807 break;
2808 if (u32Sep != i)
2809 {
2810 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2811 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2812 }
2813 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2814
2815 /* Get the range details. */
2816 RTGCPHYS GCPhys;
2817 SSMR3GetGCPhys(pSSM, &GCPhys);
2818 RTGCPHYS GCPhysLast;
2819 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2820 RTGCPHYS cb;
2821 SSMR3GetGCPhys(pSSM, &cb);
2822 uint8_t fHaveBits;
2823 rc = SSMR3GetU8(pSSM, &fHaveBits);
2824 if (RT_FAILURE(rc))
2825 return rc;
2826 if (fHaveBits & ~1)
2827 {
2828 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2829 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2830 }
2831 size_t cchDesc = 0;
2832 char szDesc[256];
2833 szDesc[0] = '\0';
2834 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2835 {
2836 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2837 if (RT_FAILURE(rc))
2838 return rc;
2839 /* Since we've modified the description strings in r45878, only compare
2840 them if the saved state is more recent. */
2841 if (u32Version != PGM_SAVED_STATE_VERSION_RR_DESC)
2842 cchDesc = strlen(szDesc);
2843 }
2844
2845 /*
2846 * Match it up with the current range.
2847 *
2848 * Note there is a hack for dealing with the high BIOS mapping
2849 * in the old saved state format, this means we might not have
2850 * a 1:1 match on success.
2851 */
2852 if ( ( GCPhys != pRam->GCPhys
2853 || GCPhysLast != pRam->GCPhysLast
2854 || cb != pRam->cb
2855 || ( cchDesc
2856 && strcmp(szDesc, pRam->pszDesc)) )
2857 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2858 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2859 || GCPhys != UINT32_C(0xfff80000)
2860 || GCPhysLast != UINT32_C(0xffffffff)
2861 || pRam->GCPhysLast != GCPhysLast
2862 || pRam->GCPhys < GCPhys
2863 || !fHaveBits)
2864 )
2865 {
2866 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2867 "State : %RGp-%RGp %RGp bytes %s %s\n",
2868 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2869 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2870 /*
2871 * If we're loading a state for debugging purpose, don't make a fuss if
2872 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2873 */
2874 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2875 || GCPhys < 8 * _1M)
2876 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2877
2878 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2879 continue;
2880 }
2881
2882 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2883 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2884 {
2885 /*
2886 * Load the pages one by one.
2887 */
2888 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2889 {
2890 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2891 PPGMPAGE pPage = &pRam->aPages[iPage];
2892 uint8_t uType;
2893 rc = SSMR3GetU8(pSSM, &uType);
2894 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2895 if (uType == PGMPAGETYPE_ROM_SHADOW)
2896 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2897 else
2898 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2899 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2900 }
2901 }
2902 else
2903 {
2904 /*
2905 * Old format.
2906 */
2907 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2908
2909 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2910 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2911 uint32_t fFlags = 0;
2912 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2913 {
2914 uint16_t u16Flags;
2915 rc = SSMR3GetU16(pSSM, &u16Flags);
2916 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2917 fFlags |= u16Flags;
2918 }
2919
2920 /* Load the bits */
2921 if ( !fHaveBits
2922 && GCPhysLast < UINT32_C(0xe0000000))
2923 {
2924 /*
2925 * Dynamic chunks.
2926 */
2927 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2928 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2929 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2930 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2931
2932 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2933 {
2934 uint8_t fPresent;
2935 rc = SSMR3GetU8(pSSM, &fPresent);
2936 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2937 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2938 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2939 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2940
2941 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2942 {
2943 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2944 PPGMPAGE pPage = &pRam->aPages[iPage];
2945 if (fPresent)
2946 {
2947 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2948 rc = pgmR3LoadPageToDevNull(pSSM);
2949 else
2950 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2951 }
2952 else
2953 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2954 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2955 }
2956 }
2957 }
2958 else if (pRam->pvR3)
2959 {
2960 /*
2961 * MMIO2.
2962 */
2963 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2964 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2965 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2966 AssertLogRelMsgReturn(pRam->pvR3,
2967 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2968 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2969
2970 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2971 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2972 }
2973 else if (GCPhysLast < UINT32_C(0xfff80000))
2974 {
2975 /*
2976 * PCI MMIO, no pages saved.
2977 */
2978 }
2979 else
2980 {
2981 /*
2982 * Load the 0xfff80000..0xffffffff BIOS range.
2983 * It starts with X reserved pages that we have to skip over since
2984 * the RAMRANGE create by the new code won't include those.
2985 */
2986 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2987 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2988 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2989 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2990 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2991 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2992 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2993
2994 /* Skip wasted reserved pages before the ROM. */
2995 while (GCPhys < pRam->GCPhys)
2996 {
2997 rc = pgmR3LoadPageToDevNull(pSSM);
2998 GCPhys += PAGE_SIZE;
2999 }
3000
3001 /* Load the bios pages. */
3002 cPages = pRam->cb >> PAGE_SHIFT;
3003 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3004 {
3005 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
3006 PPGMPAGE pPage = &pRam->aPages[iPage];
3007
3008 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
3009 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
3010 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3011 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
3012 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3013 }
3014 }
3015 }
3016 }
3017
3018 return rc;
3019}
3020
3021
3022/**
3023 * Execute state load operation.
3024 *
3025 * @returns VBox status code.
3026 * @param pVM VM Handle.
3027 * @param pSSM SSM operation handle.
3028 * @param u32Version Data layout version.
3029 */
3030static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
3031{
3032 int rc;
3033 PPGM pPGM = &pVM->pgm.s;
3034
3035 /*
3036 * Validate version.
3037 */
3038 if ( u32Version != PGM_SAVED_STATE_VERSION
3039 && u32Version != PGM_SAVED_STATE_VERSION_2_2_2
3040 && u32Version != PGM_SAVED_STATE_VERSION_RR_DESC
3041 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3042 {
3043 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
3044 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3045 }
3046
3047 /*
3048 * Call the reset function to make sure all the memory is cleared.
3049 */
3050 PGMR3Reset(pVM);
3051
3052 /*
3053 * Do the loading while owning the lock because a bunch of the functions
3054 * we're using requires this.
3055 */
3056 pgmLock(pVM);
3057 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
3058 pgmUnlock(pVM);
3059 if (RT_SUCCESS(rc))
3060 {
3061 /*
3062 * We require a full resync now.
3063 */
3064 for (unsigned i=0;i<pVM->cCPUs;i++)
3065 {
3066 PVMCPU pVCpu = &pVM->aCpus[i];
3067 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3068 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3069
3070 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3071 }
3072
3073 pgmR3HandlerPhysicalUpdateAll(pVM);
3074
3075 for (unsigned i=0;i<pVM->cCPUs;i++)
3076 {
3077 PVMCPU pVCpu = &pVM->aCpus[i];
3078
3079 /*
3080 * Change the paging mode.
3081 */
3082 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3083
3084 /* Restore pVM->pgm.s.GCPhysCR3. */
3085 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3086 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3087 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3088 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3089 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3090 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3091 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3092 else
3093 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3094 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3095 }
3096 }
3097
3098 return rc;
3099}
3100
3101
3102/**
3103 * Show paging mode.
3104 *
3105 * @param pVM VM Handle.
3106 * @param pHlp The info helpers.
3107 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3108 */
3109static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3110{
3111 /* digest argument. */
3112 bool fGuest, fShadow, fHost;
3113 if (pszArgs)
3114 pszArgs = RTStrStripL(pszArgs);
3115 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3116 fShadow = fHost = fGuest = true;
3117 else
3118 {
3119 fShadow = fHost = fGuest = false;
3120 if (strstr(pszArgs, "guest"))
3121 fGuest = true;
3122 if (strstr(pszArgs, "shadow"))
3123 fShadow = true;
3124 if (strstr(pszArgs, "host"))
3125 fHost = true;
3126 }
3127
3128 /** @todo SMP support! */
3129 /* print info. */
3130 if (fGuest)
3131 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3132 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3133 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3134 if (fShadow)
3135 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3136 if (fHost)
3137 {
3138 const char *psz;
3139 switch (pVM->pgm.s.enmHostMode)
3140 {
3141 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3142 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3143 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3144 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3145 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3146 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3147 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3148 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3149 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3150 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3151 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3152 default: psz = "unknown"; break;
3153 }
3154 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3155 }
3156}
3157
3158
3159/**
3160 * Dump registered MMIO ranges to the log.
3161 *
3162 * @param pVM VM Handle.
3163 * @param pHlp The info helpers.
3164 * @param pszArgs Arguments, ignored.
3165 */
3166static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3167{
3168 NOREF(pszArgs);
3169 pHlp->pfnPrintf(pHlp,
3170 "RAM ranges (pVM=%p)\n"
3171 "%.*s %.*s\n",
3172 pVM,
3173 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3174 sizeof(RTHCPTR) * 2, "pvHC ");
3175
3176 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3177 pHlp->pfnPrintf(pHlp,
3178 "%RGp-%RGp %RHv %s\n",
3179 pCur->GCPhys,
3180 pCur->GCPhysLast,
3181 pCur->pvR3,
3182 pCur->pszDesc);
3183}
3184
3185/**
3186 * Dump the page directory to the log.
3187 *
3188 * @param pVM VM Handle.
3189 * @param pHlp The info helpers.
3190 * @param pszArgs Arguments, ignored.
3191 */
3192static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3193{
3194 /** @todo SMP support!! */
3195 PVMCPU pVCpu = &pVM->aCpus[0];
3196
3197/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3198 /* Big pages supported? */
3199 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3200
3201 /* Global pages supported? */
3202 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3203
3204 NOREF(pszArgs);
3205
3206 /*
3207 * Get page directory addresses.
3208 */
3209 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3210 Assert(pPDSrc);
3211 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3212
3213 /*
3214 * Iterate the page directory.
3215 */
3216 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3217 {
3218 X86PDE PdeSrc = pPDSrc->a[iPD];
3219 if (PdeSrc.n.u1Present)
3220 {
3221 if (PdeSrc.b.u1Size && fPSE)
3222 pHlp->pfnPrintf(pHlp,
3223 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3224 iPD,
3225 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3226 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3227 else
3228 pHlp->pfnPrintf(pHlp,
3229 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3230 iPD,
3231 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3232 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3233 }
3234 }
3235}
3236
3237
3238/**
3239 * Service a VMMCALLRING3_PGM_LOCK call.
3240 *
3241 * @returns VBox status code.
3242 * @param pVM The VM handle.
3243 */
3244VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3245{
3246 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3247 AssertRC(rc);
3248 return rc;
3249}
3250
3251
3252/**
3253 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3254 *
3255 * @returns PGM_TYPE_*.
3256 * @param pgmMode The mode value to convert.
3257 */
3258DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3259{
3260 switch (pgmMode)
3261 {
3262 case PGMMODE_REAL: return PGM_TYPE_REAL;
3263 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3264 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3265 case PGMMODE_PAE:
3266 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3267 case PGMMODE_AMD64:
3268 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3269 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3270 case PGMMODE_EPT: return PGM_TYPE_EPT;
3271 default:
3272 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3273 }
3274}
3275
3276
3277/**
3278 * Gets the index into the paging mode data array of a SHW+GST mode.
3279 *
3280 * @returns PGM::paPagingData index.
3281 * @param uShwType The shadow paging mode type.
3282 * @param uGstType The guest paging mode type.
3283 */
3284DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3285{
3286 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3287 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3288 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3289 + (uGstType - PGM_TYPE_REAL);
3290}
3291
3292
3293/**
3294 * Gets the index into the paging mode data array of a SHW+GST mode.
3295 *
3296 * @returns PGM::paPagingData index.
3297 * @param enmShw The shadow paging mode.
3298 * @param enmGst The guest paging mode.
3299 */
3300DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3301{
3302 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3303 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3304 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3305}
3306
3307
3308/**
3309 * Calculates the max data index.
3310 * @returns The number of entries in the paging data array.
3311 */
3312DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3313{
3314 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3315}
3316
3317
3318/**
3319 * Initializes the paging mode data kept in PGM::paModeData.
3320 *
3321 * @param pVM The VM handle.
3322 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3323 * This is used early in the init process to avoid trouble with PDM
3324 * not being initialized yet.
3325 */
3326static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3327{
3328 PPGMMODEDATA pModeData;
3329 int rc;
3330
3331 /*
3332 * Allocate the array on the first call.
3333 */
3334 if (!pVM->pgm.s.paModeData)
3335 {
3336 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3337 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3338 }
3339
3340 /*
3341 * Initialize the array entries.
3342 */
3343 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3344 pModeData->uShwType = PGM_TYPE_32BIT;
3345 pModeData->uGstType = PGM_TYPE_REAL;
3346 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3347 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3348 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3349
3350 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3351 pModeData->uShwType = PGM_TYPE_32BIT;
3352 pModeData->uGstType = PGM_TYPE_PROT;
3353 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3354 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3355 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3356
3357 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3358 pModeData->uShwType = PGM_TYPE_32BIT;
3359 pModeData->uGstType = PGM_TYPE_32BIT;
3360 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3361 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3362 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3363
3364 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3365 pModeData->uShwType = PGM_TYPE_PAE;
3366 pModeData->uGstType = PGM_TYPE_REAL;
3367 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3368 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3369 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3370
3371 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3372 pModeData->uShwType = PGM_TYPE_PAE;
3373 pModeData->uGstType = PGM_TYPE_PROT;
3374 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3375 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3376 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3377
3378 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3379 pModeData->uShwType = PGM_TYPE_PAE;
3380 pModeData->uGstType = PGM_TYPE_32BIT;
3381 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3382 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3383 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3384
3385 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3386 pModeData->uShwType = PGM_TYPE_PAE;
3387 pModeData->uGstType = PGM_TYPE_PAE;
3388 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3389 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3390 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3391
3392#ifdef VBOX_WITH_64_BITS_GUESTS
3393 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3394 pModeData->uShwType = PGM_TYPE_AMD64;
3395 pModeData->uGstType = PGM_TYPE_AMD64;
3396 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3397 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3398 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3399#endif
3400
3401 /* The nested paging mode. */
3402 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3403 pModeData->uShwType = PGM_TYPE_NESTED;
3404 pModeData->uGstType = PGM_TYPE_REAL;
3405 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3406 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3407
3408 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3409 pModeData->uShwType = PGM_TYPE_NESTED;
3410 pModeData->uGstType = PGM_TYPE_PROT;
3411 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3412 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3413
3414 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3415 pModeData->uShwType = PGM_TYPE_NESTED;
3416 pModeData->uGstType = PGM_TYPE_32BIT;
3417 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3418 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3419
3420 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3421 pModeData->uShwType = PGM_TYPE_NESTED;
3422 pModeData->uGstType = PGM_TYPE_PAE;
3423 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3424 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3425
3426#ifdef VBOX_WITH_64_BITS_GUESTS
3427 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3428 pModeData->uShwType = PGM_TYPE_NESTED;
3429 pModeData->uGstType = PGM_TYPE_AMD64;
3430 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3431 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3432#endif
3433
3434 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3435 switch (pVM->pgm.s.enmHostMode)
3436 {
3437#if HC_ARCH_BITS == 32
3438 case SUPPAGINGMODE_32_BIT:
3439 case SUPPAGINGMODE_32_BIT_GLOBAL:
3440 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3441 {
3442 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3443 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3444 }
3445# ifdef VBOX_WITH_64_BITS_GUESTS
3446 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3447 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3448# endif
3449 break;
3450
3451 case SUPPAGINGMODE_PAE:
3452 case SUPPAGINGMODE_PAE_NX:
3453 case SUPPAGINGMODE_PAE_GLOBAL:
3454 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3455 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3456 {
3457 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3458 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3459 }
3460# ifdef VBOX_WITH_64_BITS_GUESTS
3461 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3462 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3463# endif
3464 break;
3465#endif /* HC_ARCH_BITS == 32 */
3466
3467#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3468 case SUPPAGINGMODE_AMD64:
3469 case SUPPAGINGMODE_AMD64_GLOBAL:
3470 case SUPPAGINGMODE_AMD64_NX:
3471 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3472# ifdef VBOX_WITH_64_BITS_GUESTS
3473 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3474# else
3475 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3476# endif
3477 {
3478 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3479 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3480 }
3481 break;
3482#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3483
3484 default:
3485 AssertFailed();
3486 break;
3487 }
3488
3489 /* Extended paging (EPT) / Intel VT-x */
3490 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3491 pModeData->uShwType = PGM_TYPE_EPT;
3492 pModeData->uGstType = PGM_TYPE_REAL;
3493 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3494 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3495 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3496
3497 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3498 pModeData->uShwType = PGM_TYPE_EPT;
3499 pModeData->uGstType = PGM_TYPE_PROT;
3500 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3501 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3502 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3503
3504 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3505 pModeData->uShwType = PGM_TYPE_EPT;
3506 pModeData->uGstType = PGM_TYPE_32BIT;
3507 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3508 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3509 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3510
3511 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3512 pModeData->uShwType = PGM_TYPE_EPT;
3513 pModeData->uGstType = PGM_TYPE_PAE;
3514 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3515 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3516 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3517
3518#ifdef VBOX_WITH_64_BITS_GUESTS
3519 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3520 pModeData->uShwType = PGM_TYPE_EPT;
3521 pModeData->uGstType = PGM_TYPE_AMD64;
3522 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3523 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3524 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3525#endif
3526 return VINF_SUCCESS;
3527}
3528
3529
3530/**
3531 * Switch to different (or relocated in the relocate case) mode data.
3532 *
3533 * @param pVM The VM handle.
3534 * @param pVCpu The VMCPU to operate on.
3535 * @param enmShw The the shadow paging mode.
3536 * @param enmGst The the guest paging mode.
3537 */
3538static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3539{
3540 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3541
3542 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3543 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3544
3545 /* shadow */
3546 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3547 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3548 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3549 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3550 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3551
3552 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3553 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3554
3555 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3556 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3557
3558
3559 /* guest */
3560 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3561 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3562 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3563 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3564 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3565 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3566 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3567 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3568 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3569 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3570 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3571 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3572
3573 /* both */
3574 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3575 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3576 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3577 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3578 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3579 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3580 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3581#ifdef VBOX_STRICT
3582 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3583#endif
3584 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3585 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3586
3587 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3588 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3589 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3590 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3591 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3592 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3593#ifdef VBOX_STRICT
3594 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3595#endif
3596 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3597 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3598
3599 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3600 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3601 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3602 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3603 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3604 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3605#ifdef VBOX_STRICT
3606 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3607#endif
3608 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3609 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3610}
3611
3612
3613/**
3614 * Calculates the shadow paging mode.
3615 *
3616 * @returns The shadow paging mode.
3617 * @param pVM VM handle.
3618 * @param enmGuestMode The guest mode.
3619 * @param enmHostMode The host mode.
3620 * @param enmShadowMode The current shadow mode.
3621 * @param penmSwitcher Where to store the switcher to use.
3622 * VMMSWITCHER_INVALID means no change.
3623 */
3624static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3625{
3626 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3627 switch (enmGuestMode)
3628 {
3629 /*
3630 * When switching to real or protected mode we don't change
3631 * anything since it's likely that we'll switch back pretty soon.
3632 *
3633 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3634 * and is supposed to determine which shadow paging and switcher to
3635 * use during init.
3636 */
3637 case PGMMODE_REAL:
3638 case PGMMODE_PROTECTED:
3639 if ( enmShadowMode != PGMMODE_INVALID
3640 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3641 break; /* (no change) */
3642
3643 switch (enmHostMode)
3644 {
3645 case SUPPAGINGMODE_32_BIT:
3646 case SUPPAGINGMODE_32_BIT_GLOBAL:
3647 enmShadowMode = PGMMODE_32_BIT;
3648 enmSwitcher = VMMSWITCHER_32_TO_32;
3649 break;
3650
3651 case SUPPAGINGMODE_PAE:
3652 case SUPPAGINGMODE_PAE_NX:
3653 case SUPPAGINGMODE_PAE_GLOBAL:
3654 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3655 enmShadowMode = PGMMODE_PAE;
3656 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3657#ifdef DEBUG_bird
3658 if (RTEnvExist("VBOX_32BIT"))
3659 {
3660 enmShadowMode = PGMMODE_32_BIT;
3661 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3662 }
3663#endif
3664 break;
3665
3666 case SUPPAGINGMODE_AMD64:
3667 case SUPPAGINGMODE_AMD64_GLOBAL:
3668 case SUPPAGINGMODE_AMD64_NX:
3669 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3670 enmShadowMode = PGMMODE_PAE;
3671 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3672#ifdef DEBUG_bird
3673 if (RTEnvExist("VBOX_32BIT"))
3674 {
3675 enmShadowMode = PGMMODE_32_BIT;
3676 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3677 }
3678#endif
3679 break;
3680
3681 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3682 }
3683 break;
3684
3685 case PGMMODE_32_BIT:
3686 switch (enmHostMode)
3687 {
3688 case SUPPAGINGMODE_32_BIT:
3689 case SUPPAGINGMODE_32_BIT_GLOBAL:
3690 enmShadowMode = PGMMODE_32_BIT;
3691 enmSwitcher = VMMSWITCHER_32_TO_32;
3692 break;
3693
3694 case SUPPAGINGMODE_PAE:
3695 case SUPPAGINGMODE_PAE_NX:
3696 case SUPPAGINGMODE_PAE_GLOBAL:
3697 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3698 enmShadowMode = PGMMODE_PAE;
3699 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3700#ifdef DEBUG_bird
3701 if (RTEnvExist("VBOX_32BIT"))
3702 {
3703 enmShadowMode = PGMMODE_32_BIT;
3704 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3705 }
3706#endif
3707 break;
3708
3709 case SUPPAGINGMODE_AMD64:
3710 case SUPPAGINGMODE_AMD64_GLOBAL:
3711 case SUPPAGINGMODE_AMD64_NX:
3712 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3713 enmShadowMode = PGMMODE_PAE;
3714 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3715#ifdef DEBUG_bird
3716 if (RTEnvExist("VBOX_32BIT"))
3717 {
3718 enmShadowMode = PGMMODE_32_BIT;
3719 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3720 }
3721#endif
3722 break;
3723
3724 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3725 }
3726 break;
3727
3728 case PGMMODE_PAE:
3729 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3730 switch (enmHostMode)
3731 {
3732 case SUPPAGINGMODE_32_BIT:
3733 case SUPPAGINGMODE_32_BIT_GLOBAL:
3734 enmShadowMode = PGMMODE_PAE;
3735 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3736 break;
3737
3738 case SUPPAGINGMODE_PAE:
3739 case SUPPAGINGMODE_PAE_NX:
3740 case SUPPAGINGMODE_PAE_GLOBAL:
3741 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3742 enmShadowMode = PGMMODE_PAE;
3743 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3744 break;
3745
3746 case SUPPAGINGMODE_AMD64:
3747 case SUPPAGINGMODE_AMD64_GLOBAL:
3748 case SUPPAGINGMODE_AMD64_NX:
3749 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3750 enmShadowMode = PGMMODE_PAE;
3751 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3752 break;
3753
3754 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3755 }
3756 break;
3757
3758 case PGMMODE_AMD64:
3759 case PGMMODE_AMD64_NX:
3760 switch (enmHostMode)
3761 {
3762 case SUPPAGINGMODE_32_BIT:
3763 case SUPPAGINGMODE_32_BIT_GLOBAL:
3764 enmShadowMode = PGMMODE_AMD64;
3765 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3766 break;
3767
3768 case SUPPAGINGMODE_PAE:
3769 case SUPPAGINGMODE_PAE_NX:
3770 case SUPPAGINGMODE_PAE_GLOBAL:
3771 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3772 enmShadowMode = PGMMODE_AMD64;
3773 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3774 break;
3775
3776 case SUPPAGINGMODE_AMD64:
3777 case SUPPAGINGMODE_AMD64_GLOBAL:
3778 case SUPPAGINGMODE_AMD64_NX:
3779 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3780 enmShadowMode = PGMMODE_AMD64;
3781 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3782 break;
3783
3784 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3785 }
3786 break;
3787
3788
3789 default:
3790 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3791 return PGMMODE_INVALID;
3792 }
3793 /* Override the shadow mode is nested paging is active. */
3794 if (HWACCMIsNestedPagingActive(pVM))
3795 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3796
3797 *penmSwitcher = enmSwitcher;
3798 return enmShadowMode;
3799}
3800
3801
3802/**
3803 * Performs the actual mode change.
3804 * This is called by PGMChangeMode and pgmR3InitPaging().
3805 *
3806 * @returns VBox status code. May suspend or power off the VM on error, but this
3807 * will trigger using FFs and not status codes.
3808 *
3809 * @param pVM VM handle.
3810 * @param pVCpu The VMCPU to operate on.
3811 * @param enmGuestMode The new guest mode. This is assumed to be different from
3812 * the current mode.
3813 */
3814VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3815{
3816 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3817 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3818
3819 /*
3820 * Calc the shadow mode and switcher.
3821 */
3822 VMMSWITCHER enmSwitcher;
3823 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3824 if (enmSwitcher != VMMSWITCHER_INVALID)
3825 {
3826 /*
3827 * Select new switcher.
3828 */
3829 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3830 if (RT_FAILURE(rc))
3831 {
3832 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3833 return rc;
3834 }
3835 }
3836
3837 /*
3838 * Exit old mode(s).
3839 */
3840 /* shadow */
3841 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3842 {
3843 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3844 if (PGM_SHW_PFN(Exit, pVCpu))
3845 {
3846 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3847 if (RT_FAILURE(rc))
3848 {
3849 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3850 return rc;
3851 }
3852 }
3853
3854 }
3855 else
3856 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3857
3858 /* guest */
3859 if (PGM_GST_PFN(Exit, pVCpu))
3860 {
3861 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3862 if (RT_FAILURE(rc))
3863 {
3864 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3865 return rc;
3866 }
3867 }
3868
3869 /*
3870 * Load new paging mode data.
3871 */
3872 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3873
3874 /*
3875 * Enter new shadow mode (if changed).
3876 */
3877 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3878 {
3879 int rc;
3880 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3881 switch (enmShadowMode)
3882 {
3883 case PGMMODE_32_BIT:
3884 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu);
3885 break;
3886 case PGMMODE_PAE:
3887 case PGMMODE_PAE_NX:
3888 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu);
3889 break;
3890 case PGMMODE_AMD64:
3891 case PGMMODE_AMD64_NX:
3892 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu);
3893 break;
3894 case PGMMODE_NESTED:
3895 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu);
3896 break;
3897 case PGMMODE_EPT:
3898 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu);
3899 break;
3900 case PGMMODE_REAL:
3901 case PGMMODE_PROTECTED:
3902 default:
3903 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3904 return VERR_INTERNAL_ERROR;
3905 }
3906 if (RT_FAILURE(rc))
3907 {
3908 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3909 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3910 return rc;
3911 }
3912 }
3913
3914 /*
3915 * Always flag the necessary updates
3916 */
3917 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3918
3919 /*
3920 * Enter the new guest and shadow+guest modes.
3921 */
3922 int rc = -1;
3923 int rc2 = -1;
3924 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3925 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3926 switch (enmGuestMode)
3927 {
3928 case PGMMODE_REAL:
3929 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3930 switch (pVCpu->pgm.s.enmShadowMode)
3931 {
3932 case PGMMODE_32_BIT:
3933 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3934 break;
3935 case PGMMODE_PAE:
3936 case PGMMODE_PAE_NX:
3937 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3938 break;
3939 case PGMMODE_NESTED:
3940 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3941 break;
3942 case PGMMODE_EPT:
3943 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3944 break;
3945 case PGMMODE_AMD64:
3946 case PGMMODE_AMD64_NX:
3947 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3948 default: AssertFailed(); break;
3949 }
3950 break;
3951
3952 case PGMMODE_PROTECTED:
3953 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3954 switch (pVCpu->pgm.s.enmShadowMode)
3955 {
3956 case PGMMODE_32_BIT:
3957 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3958 break;
3959 case PGMMODE_PAE:
3960 case PGMMODE_PAE_NX:
3961 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3962 break;
3963 case PGMMODE_NESTED:
3964 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3965 break;
3966 case PGMMODE_EPT:
3967 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3968 break;
3969 case PGMMODE_AMD64:
3970 case PGMMODE_AMD64_NX:
3971 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3972 default: AssertFailed(); break;
3973 }
3974 break;
3975
3976 case PGMMODE_32_BIT:
3977 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3978 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3979 switch (pVCpu->pgm.s.enmShadowMode)
3980 {
3981 case PGMMODE_32_BIT:
3982 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3983 break;
3984 case PGMMODE_PAE:
3985 case PGMMODE_PAE_NX:
3986 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3987 break;
3988 case PGMMODE_NESTED:
3989 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3990 break;
3991 case PGMMODE_EPT:
3992 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3993 break;
3994 case PGMMODE_AMD64:
3995 case PGMMODE_AMD64_NX:
3996 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3997 default: AssertFailed(); break;
3998 }
3999 break;
4000
4001 case PGMMODE_PAE_NX:
4002 case PGMMODE_PAE:
4003 {
4004 uint32_t u32Dummy, u32Features;
4005
4006 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
4007 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
4008 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
4009 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
4010
4011 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
4012 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
4013 switch (pVCpu->pgm.s.enmShadowMode)
4014 {
4015 case PGMMODE_PAE:
4016 case PGMMODE_PAE_NX:
4017 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
4018 break;
4019 case PGMMODE_NESTED:
4020 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
4021 break;
4022 case PGMMODE_EPT:
4023 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
4024 break;
4025 case PGMMODE_32_BIT:
4026 case PGMMODE_AMD64:
4027 case PGMMODE_AMD64_NX:
4028 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4029 default: AssertFailed(); break;
4030 }
4031 break;
4032 }
4033
4034#ifdef VBOX_WITH_64_BITS_GUESTS
4035 case PGMMODE_AMD64_NX:
4036 case PGMMODE_AMD64:
4037 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4038 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
4039 switch (pVCpu->pgm.s.enmShadowMode)
4040 {
4041 case PGMMODE_AMD64:
4042 case PGMMODE_AMD64_NX:
4043 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
4044 break;
4045 case PGMMODE_NESTED:
4046 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
4047 break;
4048 case PGMMODE_EPT:
4049 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
4050 break;
4051 case PGMMODE_32_BIT:
4052 case PGMMODE_PAE:
4053 case PGMMODE_PAE_NX:
4054 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4055 default: AssertFailed(); break;
4056 }
4057 break;
4058#endif
4059
4060 default:
4061 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4062 rc = VERR_NOT_IMPLEMENTED;
4063 break;
4064 }
4065
4066 /* status codes. */
4067 AssertRC(rc);
4068 AssertRC(rc2);
4069 if (RT_SUCCESS(rc))
4070 {
4071 rc = rc2;
4072 if (RT_SUCCESS(rc)) /* no informational status codes. */
4073 rc = VINF_SUCCESS;
4074 }
4075
4076 /* Notify HWACCM as well. */
4077 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4078 return rc;
4079}
4080
4081/**
4082 * Release the pgm lock if owned by the current VCPU
4083 *
4084 * @param pVM The VM to operate on.
4085 */
4086VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
4087{
4088 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
4089 PDMCritSectLeave(&pVM->pgm.s.CritSect);
4090}
4091
4092/**
4093 * Called by pgmPoolFlushAllInt prior to flushing the pool.
4094 *
4095 * @returns VBox status code, fully asserted.
4096 * @param pVM The VM handle.
4097 * @param pVCpu The VMCPU to operate on.
4098 */
4099int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
4100{
4101 /* Unmap the old CR3 value before flushing everything. */
4102 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
4103 AssertRC(rc);
4104
4105 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
4106 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4107 AssertRC(rc);
4108 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
4109 return rc;
4110}
4111
4112
4113/**
4114 * Called by pgmPoolFlushAllInt after flushing the pool.
4115 *
4116 * @returns VBox status code, fully asserted.
4117 * @param pVM The VM handle.
4118 * @param pVCpu The VMCPU to operate on.
4119 */
4120int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
4121{
4122 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4123 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
4124 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4125 AssertRCReturn(rc, rc);
4126 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
4127
4128 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
4129 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
4130 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
4131 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4132 return rc;
4133}
4134
4135
4136/**
4137 * Dumps a PAE shadow page table.
4138 *
4139 * @returns VBox status code (VINF_SUCCESS).
4140 * @param pVM The VM handle.
4141 * @param pPT Pointer to the page table.
4142 * @param u64Address The virtual address of the page table starts.
4143 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4144 * @param cMaxDepth The maxium depth.
4145 * @param pHlp Pointer to the output functions.
4146 */
4147static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4148{
4149 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4150 {
4151 X86PTEPAE Pte = pPT->a[i];
4152 if (Pte.n.u1Present)
4153 {
4154 pHlp->pfnPrintf(pHlp,
4155 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4156 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4157 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4158 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4159 Pte.n.u1Write ? 'W' : 'R',
4160 Pte.n.u1User ? 'U' : 'S',
4161 Pte.n.u1Accessed ? 'A' : '-',
4162 Pte.n.u1Dirty ? 'D' : '-',
4163 Pte.n.u1Global ? 'G' : '-',
4164 Pte.n.u1WriteThru ? "WT" : "--",
4165 Pte.n.u1CacheDisable? "CD" : "--",
4166 Pte.n.u1PAT ? "AT" : "--",
4167 Pte.n.u1NoExecute ? "NX" : "--",
4168 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4169 Pte.u & RT_BIT(10) ? '1' : '0',
4170 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4171 Pte.u & X86_PTE_PAE_PG_MASK);
4172 }
4173 }
4174 return VINF_SUCCESS;
4175}
4176
4177
4178/**
4179 * Dumps a PAE shadow page directory table.
4180 *
4181 * @returns VBox status code (VINF_SUCCESS).
4182 * @param pVM The VM handle.
4183 * @param HCPhys The physical address of the page directory table.
4184 * @param u64Address The virtual address of the page table starts.
4185 * @param cr4 The CR4, PSE is currently used.
4186 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4187 * @param cMaxDepth The maxium depth.
4188 * @param pHlp Pointer to the output functions.
4189 */
4190static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4191{
4192 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4193 if (!pPD)
4194 {
4195 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4196 fLongMode ? 16 : 8, u64Address, HCPhys);
4197 return VERR_INVALID_PARAMETER;
4198 }
4199 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4200
4201 int rc = VINF_SUCCESS;
4202 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4203 {
4204 X86PDEPAE Pde = pPD->a[i];
4205 if (Pde.n.u1Present)
4206 {
4207 if (fBigPagesSupported && Pde.b.u1Size)
4208 pHlp->pfnPrintf(pHlp,
4209 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4210 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4211 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4212 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4213 Pde.b.u1Write ? 'W' : 'R',
4214 Pde.b.u1User ? 'U' : 'S',
4215 Pde.b.u1Accessed ? 'A' : '-',
4216 Pde.b.u1Dirty ? 'D' : '-',
4217 Pde.b.u1Global ? 'G' : '-',
4218 Pde.b.u1WriteThru ? "WT" : "--",
4219 Pde.b.u1CacheDisable? "CD" : "--",
4220 Pde.b.u1PAT ? "AT" : "--",
4221 Pde.b.u1NoExecute ? "NX" : "--",
4222 Pde.u & RT_BIT_64(9) ? '1' : '0',
4223 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4224 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4225 Pde.u & X86_PDE_PAE_PG_MASK);
4226 else
4227 {
4228 pHlp->pfnPrintf(pHlp,
4229 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4230 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4231 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4232 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4233 Pde.n.u1Write ? 'W' : 'R',
4234 Pde.n.u1User ? 'U' : 'S',
4235 Pde.n.u1Accessed ? 'A' : '-',
4236 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4237 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4238 Pde.n.u1WriteThru ? "WT" : "--",
4239 Pde.n.u1CacheDisable? "CD" : "--",
4240 Pde.n.u1NoExecute ? "NX" : "--",
4241 Pde.u & RT_BIT_64(9) ? '1' : '0',
4242 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4243 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4244 Pde.u & X86_PDE_PAE_PG_MASK);
4245 if (cMaxDepth >= 1)
4246 {
4247 /** @todo what about using the page pool for mapping PTs? */
4248 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4249 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4250 PX86PTPAE pPT = NULL;
4251 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4252 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4253 else
4254 {
4255 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4256 {
4257 uint64_t off = u64AddressPT - pMap->GCPtr;
4258 if (off < pMap->cb)
4259 {
4260 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4261 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4262 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4263 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4264 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4265 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4266 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4267 }
4268 }
4269 }
4270 int rc2 = VERR_INVALID_PARAMETER;
4271 if (pPT)
4272 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4273 else
4274 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4275 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4276 if (rc2 < rc && RT_SUCCESS(rc))
4277 rc = rc2;
4278 }
4279 }
4280 }
4281 }
4282 return rc;
4283}
4284
4285
4286/**
4287 * Dumps a PAE shadow page directory pointer table.
4288 *
4289 * @returns VBox status code (VINF_SUCCESS).
4290 * @param pVM The VM handle.
4291 * @param HCPhys The physical address of the page directory pointer table.
4292 * @param u64Address The virtual address of the page table starts.
4293 * @param cr4 The CR4, PSE is currently used.
4294 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4295 * @param cMaxDepth The maxium depth.
4296 * @param pHlp Pointer to the output functions.
4297 */
4298static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4299{
4300 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4301 if (!pPDPT)
4302 {
4303 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4304 fLongMode ? 16 : 8, u64Address, HCPhys);
4305 return VERR_INVALID_PARAMETER;
4306 }
4307
4308 int rc = VINF_SUCCESS;
4309 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4310 for (unsigned i = 0; i < c; i++)
4311 {
4312 X86PDPE Pdpe = pPDPT->a[i];
4313 if (Pdpe.n.u1Present)
4314 {
4315 if (fLongMode)
4316 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4317 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4318 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4319 Pdpe.lm.u1Write ? 'W' : 'R',
4320 Pdpe.lm.u1User ? 'U' : 'S',
4321 Pdpe.lm.u1Accessed ? 'A' : '-',
4322 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4323 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4324 Pdpe.lm.u1WriteThru ? "WT" : "--",
4325 Pdpe.lm.u1CacheDisable? "CD" : "--",
4326 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4327 Pdpe.lm.u1NoExecute ? "NX" : "--",
4328 Pdpe.u & RT_BIT(9) ? '1' : '0',
4329 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4330 Pdpe.u & RT_BIT(11) ? '1' : '0',
4331 Pdpe.u & X86_PDPE_PG_MASK);
4332 else
4333 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4334 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4335 i << X86_PDPT_SHIFT,
4336 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4337 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4338 Pdpe.n.u1WriteThru ? "WT" : "--",
4339 Pdpe.n.u1CacheDisable? "CD" : "--",
4340 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4341 Pdpe.u & RT_BIT(9) ? '1' : '0',
4342 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4343 Pdpe.u & RT_BIT(11) ? '1' : '0',
4344 Pdpe.u & X86_PDPE_PG_MASK);
4345 if (cMaxDepth >= 1)
4346 {
4347 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4348 cr4, fLongMode, cMaxDepth - 1, pHlp);
4349 if (rc2 < rc && RT_SUCCESS(rc))
4350 rc = rc2;
4351 }
4352 }
4353 }
4354 return rc;
4355}
4356
4357
4358/**
4359 * Dumps a 32-bit shadow page table.
4360 *
4361 * @returns VBox status code (VINF_SUCCESS).
4362 * @param pVM The VM handle.
4363 * @param HCPhys The physical address of the table.
4364 * @param cr4 The CR4, PSE is currently used.
4365 * @param cMaxDepth The maxium depth.
4366 * @param pHlp Pointer to the output functions.
4367 */
4368static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4369{
4370 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4371 if (!pPML4)
4372 {
4373 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4374 return VERR_INVALID_PARAMETER;
4375 }
4376
4377 int rc = VINF_SUCCESS;
4378 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4379 {
4380 X86PML4E Pml4e = pPML4->a[i];
4381 if (Pml4e.n.u1Present)
4382 {
4383 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4384 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4385 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4386 u64Address,
4387 Pml4e.n.u1Write ? 'W' : 'R',
4388 Pml4e.n.u1User ? 'U' : 'S',
4389 Pml4e.n.u1Accessed ? 'A' : '-',
4390 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4391 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4392 Pml4e.n.u1WriteThru ? "WT" : "--",
4393 Pml4e.n.u1CacheDisable? "CD" : "--",
4394 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4395 Pml4e.n.u1NoExecute ? "NX" : "--",
4396 Pml4e.u & RT_BIT(9) ? '1' : '0',
4397 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4398 Pml4e.u & RT_BIT(11) ? '1' : '0',
4399 Pml4e.u & X86_PML4E_PG_MASK);
4400
4401 if (cMaxDepth >= 1)
4402 {
4403 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4404 if (rc2 < rc && RT_SUCCESS(rc))
4405 rc = rc2;
4406 }
4407 }
4408 }
4409 return rc;
4410}
4411
4412
4413/**
4414 * Dumps a 32-bit shadow page table.
4415 *
4416 * @returns VBox status code (VINF_SUCCESS).
4417 * @param pVM The VM handle.
4418 * @param pPT Pointer to the page table.
4419 * @param u32Address The virtual address this table starts at.
4420 * @param pHlp Pointer to the output functions.
4421 */
4422int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4423{
4424 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4425 {
4426 X86PTE Pte = pPT->a[i];
4427 if (Pte.n.u1Present)
4428 {
4429 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4430 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4431 u32Address + (i << X86_PT_SHIFT),
4432 Pte.n.u1Write ? 'W' : 'R',
4433 Pte.n.u1User ? 'U' : 'S',
4434 Pte.n.u1Accessed ? 'A' : '-',
4435 Pte.n.u1Dirty ? 'D' : '-',
4436 Pte.n.u1Global ? 'G' : '-',
4437 Pte.n.u1WriteThru ? "WT" : "--",
4438 Pte.n.u1CacheDisable? "CD" : "--",
4439 Pte.n.u1PAT ? "AT" : "--",
4440 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4441 Pte.u & RT_BIT(10) ? '1' : '0',
4442 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4443 Pte.u & X86_PDE_PG_MASK);
4444 }
4445 }
4446 return VINF_SUCCESS;
4447}
4448
4449
4450/**
4451 * Dumps a 32-bit shadow page directory and page tables.
4452 *
4453 * @returns VBox status code (VINF_SUCCESS).
4454 * @param pVM The VM handle.
4455 * @param cr3 The root of the hierarchy.
4456 * @param cr4 The CR4, PSE is currently used.
4457 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4458 * @param pHlp Pointer to the output functions.
4459 */
4460int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4461{
4462 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4463 if (!pPD)
4464 {
4465 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4466 return VERR_INVALID_PARAMETER;
4467 }
4468
4469 int rc = VINF_SUCCESS;
4470 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4471 {
4472 X86PDE Pde = pPD->a[i];
4473 if (Pde.n.u1Present)
4474 {
4475 const uint32_t u32Address = i << X86_PD_SHIFT;
4476 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4477 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4478 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4479 u32Address,
4480 Pde.b.u1Write ? 'W' : 'R',
4481 Pde.b.u1User ? 'U' : 'S',
4482 Pde.b.u1Accessed ? 'A' : '-',
4483 Pde.b.u1Dirty ? 'D' : '-',
4484 Pde.b.u1Global ? 'G' : '-',
4485 Pde.b.u1WriteThru ? "WT" : "--",
4486 Pde.b.u1CacheDisable? "CD" : "--",
4487 Pde.b.u1PAT ? "AT" : "--",
4488 Pde.u & RT_BIT_64(9) ? '1' : '0',
4489 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4490 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4491 Pde.u & X86_PDE4M_PG_MASK);
4492 else
4493 {
4494 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4495 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4496 u32Address,
4497 Pde.n.u1Write ? 'W' : 'R',
4498 Pde.n.u1User ? 'U' : 'S',
4499 Pde.n.u1Accessed ? 'A' : '-',
4500 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4501 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4502 Pde.n.u1WriteThru ? "WT" : "--",
4503 Pde.n.u1CacheDisable? "CD" : "--",
4504 Pde.u & RT_BIT_64(9) ? '1' : '0',
4505 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4506 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4507 Pde.u & X86_PDE_PG_MASK);
4508 if (cMaxDepth >= 1)
4509 {
4510 /** @todo what about using the page pool for mapping PTs? */
4511 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4512 PX86PT pPT = NULL;
4513 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4514 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4515 else
4516 {
4517 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4518 if (u32Address - pMap->GCPtr < pMap->cb)
4519 {
4520 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4521 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4522 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4523 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4524 pPT = pMap->aPTs[iPDE].pPTR3;
4525 }
4526 }
4527 int rc2 = VERR_INVALID_PARAMETER;
4528 if (pPT)
4529 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4530 else
4531 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4532 if (rc2 < rc && RT_SUCCESS(rc))
4533 rc = rc2;
4534 }
4535 }
4536 }
4537 }
4538
4539 return rc;
4540}
4541
4542
4543/**
4544 * Dumps a 32-bit shadow page table.
4545 *
4546 * @returns VBox status code (VINF_SUCCESS).
4547 * @param pVM The VM handle.
4548 * @param pPT Pointer to the page table.
4549 * @param u32Address The virtual address this table starts at.
4550 * @param PhysSearch Address to search for.
4551 */
4552int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4553{
4554 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4555 {
4556 X86PTE Pte = pPT->a[i];
4557 if (Pte.n.u1Present)
4558 {
4559 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4560 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4561 u32Address + (i << X86_PT_SHIFT),
4562 Pte.n.u1Write ? 'W' : 'R',
4563 Pte.n.u1User ? 'U' : 'S',
4564 Pte.n.u1Accessed ? 'A' : '-',
4565 Pte.n.u1Dirty ? 'D' : '-',
4566 Pte.n.u1Global ? 'G' : '-',
4567 Pte.n.u1WriteThru ? "WT" : "--",
4568 Pte.n.u1CacheDisable? "CD" : "--",
4569 Pte.n.u1PAT ? "AT" : "--",
4570 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4571 Pte.u & RT_BIT(10) ? '1' : '0',
4572 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4573 Pte.u & X86_PDE_PG_MASK));
4574
4575 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4576 {
4577 uint64_t fPageShw = 0;
4578 RTHCPHYS pPhysHC = 0;
4579
4580 /** @todo SMP support!! */
4581 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4582 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4583 }
4584 }
4585 }
4586 return VINF_SUCCESS;
4587}
4588
4589
4590/**
4591 * Dumps a 32-bit guest page directory and page tables.
4592 *
4593 * @returns VBox status code (VINF_SUCCESS).
4594 * @param pVM The VM handle.
4595 * @param cr3 The root of the hierarchy.
4596 * @param cr4 The CR4, PSE is currently used.
4597 * @param PhysSearch Address to search for.
4598 */
4599VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4600{
4601 bool fLongMode = false;
4602 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4603 PX86PD pPD = 0;
4604
4605 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4606 if (RT_FAILURE(rc) || !pPD)
4607 {
4608 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4609 return VERR_INVALID_PARAMETER;
4610 }
4611
4612 Log(("cr3=%08x cr4=%08x%s\n"
4613 "%-*s P - Present\n"
4614 "%-*s | R/W - Read (0) / Write (1)\n"
4615 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4616 "%-*s | | | A - Accessed\n"
4617 "%-*s | | | | D - Dirty\n"
4618 "%-*s | | | | | G - Global\n"
4619 "%-*s | | | | | | WT - Write thru\n"
4620 "%-*s | | | | | | | CD - Cache disable\n"
4621 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4622 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4623 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4624 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4625 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4626 "%-*s Level | | | | | | | | | | | | Page\n"
4627 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4628 - W U - - - -- -- -- -- -- 010 */
4629 , cr3, cr4, fLongMode ? " Long Mode" : "",
4630 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4631 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4632
4633 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4634 {
4635 X86PDE Pde = pPD->a[i];
4636 if (Pde.n.u1Present)
4637 {
4638 const uint32_t u32Address = i << X86_PD_SHIFT;
4639
4640 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4641 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4642 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4643 u32Address,
4644 Pde.b.u1Write ? 'W' : 'R',
4645 Pde.b.u1User ? 'U' : 'S',
4646 Pde.b.u1Accessed ? 'A' : '-',
4647 Pde.b.u1Dirty ? 'D' : '-',
4648 Pde.b.u1Global ? 'G' : '-',
4649 Pde.b.u1WriteThru ? "WT" : "--",
4650 Pde.b.u1CacheDisable? "CD" : "--",
4651 Pde.b.u1PAT ? "AT" : "--",
4652 Pde.u & RT_BIT(9) ? '1' : '0',
4653 Pde.u & RT_BIT(10) ? '1' : '0',
4654 Pde.u & RT_BIT(11) ? '1' : '0',
4655 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4656 /** @todo PhysSearch */
4657 else
4658 {
4659 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4660 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4661 u32Address,
4662 Pde.n.u1Write ? 'W' : 'R',
4663 Pde.n.u1User ? 'U' : 'S',
4664 Pde.n.u1Accessed ? 'A' : '-',
4665 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4666 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4667 Pde.n.u1WriteThru ? "WT" : "--",
4668 Pde.n.u1CacheDisable? "CD" : "--",
4669 Pde.u & RT_BIT(9) ? '1' : '0',
4670 Pde.u & RT_BIT(10) ? '1' : '0',
4671 Pde.u & RT_BIT(11) ? '1' : '0',
4672 Pde.u & X86_PDE_PG_MASK));
4673 ////if (cMaxDepth >= 1)
4674 {
4675 /** @todo what about using the page pool for mapping PTs? */
4676 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4677 PX86PT pPT = NULL;
4678
4679 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4680
4681 int rc2 = VERR_INVALID_PARAMETER;
4682 if (pPT)
4683 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4684 else
4685 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4686 if (rc2 < rc && RT_SUCCESS(rc))
4687 rc = rc2;
4688 }
4689 }
4690 }
4691 }
4692
4693 return rc;
4694}
4695
4696
4697/**
4698 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4699 *
4700 * @returns VBox status code (VINF_SUCCESS).
4701 * @param pVM The VM handle.
4702 * @param cr3 The root of the hierarchy.
4703 * @param cr4 The cr4, only PAE and PSE is currently used.
4704 * @param fLongMode Set if long mode, false if not long mode.
4705 * @param cMaxDepth Number of levels to dump.
4706 * @param pHlp Pointer to the output functions.
4707 */
4708VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4709{
4710 if (!pHlp)
4711 pHlp = DBGFR3InfoLogHlp();
4712 if (!cMaxDepth)
4713 return VINF_SUCCESS;
4714 const unsigned cch = fLongMode ? 16 : 8;
4715 pHlp->pfnPrintf(pHlp,
4716 "cr3=%08x cr4=%08x%s\n"
4717 "%-*s P - Present\n"
4718 "%-*s | R/W - Read (0) / Write (1)\n"
4719 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4720 "%-*s | | | A - Accessed\n"
4721 "%-*s | | | | D - Dirty\n"
4722 "%-*s | | | | | G - Global\n"
4723 "%-*s | | | | | | WT - Write thru\n"
4724 "%-*s | | | | | | | CD - Cache disable\n"
4725 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4726 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4727 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4728 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4729 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4730 "%-*s Level | | | | | | | | | | | | Page\n"
4731 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4732 - W U - - - -- -- -- -- -- 010 */
4733 , cr3, cr4, fLongMode ? " Long Mode" : "",
4734 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4735 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4736 if (cr4 & X86_CR4_PAE)
4737 {
4738 if (fLongMode)
4739 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4740 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4741 }
4742 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4743}
4744
4745#ifdef VBOX_WITH_DEBUGGER
4746
4747/**
4748 * The '.pgmram' command.
4749 *
4750 * @returns VBox status.
4751 * @param pCmd Pointer to the command descriptor (as registered).
4752 * @param pCmdHlp Pointer to command helper functions.
4753 * @param pVM Pointer to the current VM (if any).
4754 * @param paArgs Pointer to (readonly) array of arguments.
4755 * @param cArgs Number of arguments in the array.
4756 */
4757static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4758{
4759 /*
4760 * Validate input.
4761 */
4762 if (!pVM)
4763 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4764 if (!pVM->pgm.s.pRamRangesRC)
4765 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4766
4767 /*
4768 * Dump the ranges.
4769 */
4770 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4771 PPGMRAMRANGE pRam;
4772 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4773 {
4774 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4775 "%RGp - %RGp %p\n",
4776 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4777 if (RT_FAILURE(rc))
4778 return rc;
4779 }
4780
4781 return VINF_SUCCESS;
4782}
4783
4784
4785/**
4786 * The '.pgmmap' command.
4787 *
4788 * @returns VBox status.
4789 * @param pCmd Pointer to the command descriptor (as registered).
4790 * @param pCmdHlp Pointer to command helper functions.
4791 * @param pVM Pointer to the current VM (if any).
4792 * @param paArgs Pointer to (readonly) array of arguments.
4793 * @param cArgs Number of arguments in the array.
4794 */
4795static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4796{
4797 /*
4798 * Validate input.
4799 */
4800 if (!pVM)
4801 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4802 if (!pVM->pgm.s.pMappingsR3)
4803 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4804
4805 /*
4806 * Print message about the fixedness of the mappings.
4807 */
4808 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4809 if (RT_FAILURE(rc))
4810 return rc;
4811
4812 /*
4813 * Dump the ranges.
4814 */
4815 PPGMMAPPING pCur;
4816 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4817 {
4818 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4819 "%08x - %08x %s\n",
4820 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4821 if (RT_FAILURE(rc))
4822 return rc;
4823 }
4824
4825 return VINF_SUCCESS;
4826}
4827
4828
4829/**
4830 * The '.pgmerror' and '.pgmerroroff' commands.
4831 *
4832 * @returns VBox status.
4833 * @param pCmd Pointer to the command descriptor (as registered).
4834 * @param pCmdHlp Pointer to command helper functions.
4835 * @param pVM Pointer to the current VM (if any).
4836 * @param paArgs Pointer to (readonly) array of arguments.
4837 * @param cArgs Number of arguments in the array.
4838 */
4839static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4840{
4841 /*
4842 * Validate input.
4843 */
4844 if (!pVM)
4845 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4846 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4847 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4848
4849 if (!cArgs)
4850 {
4851 /*
4852 * Print the list of error injection locations with status.
4853 */
4854 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4855 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4856 }
4857 else
4858 {
4859
4860 /*
4861 * String switch on where to inject the error.
4862 */
4863 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4864 const char *pszWhere = paArgs[0].u.pszString;
4865 if (!strcmp(pszWhere, "handy"))
4866 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4867 else
4868 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4869 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4870 }
4871 return VINF_SUCCESS;
4872}
4873
4874
4875/**
4876 * The '.pgmsync' command.
4877 *
4878 * @returns VBox status.
4879 * @param pCmd Pointer to the command descriptor (as registered).
4880 * @param pCmdHlp Pointer to command helper functions.
4881 * @param pVM Pointer to the current VM (if any).
4882 * @param paArgs Pointer to (readonly) array of arguments.
4883 * @param cArgs Number of arguments in the array.
4884 */
4885static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4886{
4887 /** @todo SMP support */
4888 PVMCPU pVCpu = &pVM->aCpus[0];
4889
4890 /*
4891 * Validate input.
4892 */
4893 if (!pVM)
4894 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4895
4896 /*
4897 * Force page directory sync.
4898 */
4899 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4900
4901 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4902 if (RT_FAILURE(rc))
4903 return rc;
4904
4905 return VINF_SUCCESS;
4906}
4907
4908
4909#ifdef VBOX_STRICT
4910/**
4911 * The '.pgmassertcr3' command.
4912 *
4913 * @returns VBox status.
4914 * @param pCmd Pointer to the command descriptor (as registered).
4915 * @param pCmdHlp Pointer to command helper functions.
4916 * @param pVM Pointer to the current VM (if any).
4917 * @param paArgs Pointer to (readonly) array of arguments.
4918 * @param cArgs Number of arguments in the array.
4919 */
4920static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4921{
4922 /** @todo SMP support!! */
4923 PVMCPU pVCpu = &pVM->aCpus[0];
4924
4925 /*
4926 * Validate input.
4927 */
4928 if (!pVM)
4929 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4930
4931 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4932 if (RT_FAILURE(rc))
4933 return rc;
4934
4935 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4936
4937 return VINF_SUCCESS;
4938}
4939#endif /* VBOX_STRICT */
4940
4941
4942/**
4943 * The '.pgmsyncalways' command.
4944 *
4945 * @returns VBox status.
4946 * @param pCmd Pointer to the command descriptor (as registered).
4947 * @param pCmdHlp Pointer to command helper functions.
4948 * @param pVM Pointer to the current VM (if any).
4949 * @param paArgs Pointer to (readonly) array of arguments.
4950 * @param cArgs Number of arguments in the array.
4951 */
4952static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4953{
4954 /** @todo SMP support!! */
4955 PVMCPU pVCpu = &pVM->aCpus[0];
4956
4957 /*
4958 * Validate input.
4959 */
4960 if (!pVM)
4961 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4962
4963 /*
4964 * Force page directory sync.
4965 */
4966 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4967 {
4968 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4969 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4970 }
4971 else
4972 {
4973 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4974 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4975 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4976 }
4977}
4978
4979
4980/**
4981 * The '.pgmsyncalways' command.
4982 *
4983 * @returns VBox status.
4984 * @param pCmd Pointer to the command descriptor (as registered).
4985 * @param pCmdHlp Pointer to command helper functions.
4986 * @param pVM Pointer to the current VM (if any).
4987 * @param paArgs Pointer to (readonly) array of arguments.
4988 * @param cArgs Number of arguments in the array.
4989 */
4990static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4991{
4992 /*
4993 * Validate input.
4994 */
4995 if (!pVM)
4996 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4997 if ( cArgs < 1
4998 || cArgs > 2
4999 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
5000 || ( cArgs > 1
5001 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
5002 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
5003 if ( cArgs >= 2
5004 && strcmp(paArgs[1].u.pszString, "nozero"))
5005 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
5006 bool fIncZeroPgs = cArgs < 2;
5007
5008 /*
5009 * Open the output file and get the ram parameters.
5010 */
5011 RTFILE hFile;
5012 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
5013 if (RT_FAILURE(rc))
5014 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
5015
5016 uint32_t cbRamHole = 0;
5017 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
5018 uint64_t cbRam = 0;
5019 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
5020 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
5021
5022 /*
5023 * Dump the physical memory, page by page.
5024 */
5025 RTGCPHYS GCPhys = 0;
5026 char abZeroPg[PAGE_SIZE];
5027 RT_ZERO(abZeroPg);
5028
5029 pgmLock(pVM);
5030 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
5031 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
5032 pRam = pRam->pNextR3)
5033 {
5034 /* fill the gap */
5035 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
5036 {
5037 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
5038 {
5039 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5040 GCPhys += PAGE_SIZE;
5041 }
5042 }
5043
5044 PCPGMPAGE pPage = &pRam->aPages[0];
5045 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
5046 {
5047 if (PGM_PAGE_IS_ZERO(pPage))
5048 {
5049 if (fIncZeroPgs)
5050 {
5051 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5052 if (RT_FAILURE(rc))
5053 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5054 }
5055 }
5056 else
5057 {
5058 switch (PGM_PAGE_GET_TYPE(pPage))
5059 {
5060 case PGMPAGETYPE_RAM:
5061 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
5062 case PGMPAGETYPE_ROM:
5063 case PGMPAGETYPE_MMIO2:
5064 {
5065 void const *pvPage;
5066 PGMPAGEMAPLOCK Lock;
5067 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
5068 if (RT_SUCCESS(rc))
5069 {
5070 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
5071 PGMPhysReleasePageMappingLock(pVM, &Lock);
5072 if (RT_FAILURE(rc))
5073 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5074 }
5075 else
5076 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5077 break;
5078 }
5079
5080 default:
5081 AssertFailed();
5082 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
5083 case PGMPAGETYPE_MMIO:
5084 if (fIncZeroPgs)
5085 {
5086 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5087 if (RT_FAILURE(rc))
5088 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5089 }
5090 break;
5091 }
5092 }
5093
5094
5095 /* advance */
5096 GCPhys += PAGE_SIZE;
5097 pPage++;
5098 }
5099 }
5100 pgmUnlock(pVM);
5101
5102 RTFileClose(hFile);
5103 if (RT_SUCCESS(rc))
5104 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
5105 return VINF_SUCCESS;
5106}
5107
5108#endif /* VBOX_WITH_DEBUGGER */
5109
5110/**
5111 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
5112 */
5113typedef struct PGMCHECKINTARGS
5114{
5115 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
5116 PPGMPHYSHANDLER pPrevPhys;
5117 PPGMVIRTHANDLER pPrevVirt;
5118 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
5119 PVM pVM;
5120} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
5121
5122/**
5123 * Validate a node in the physical handler tree.
5124 *
5125 * @returns 0 on if ok, other wise 1.
5126 * @param pNode The handler node.
5127 * @param pvUser pVM.
5128 */
5129static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5130{
5131 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5132 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
5133 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5134 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5135 AssertReleaseMsg( !pArgs->pPrevPhys
5136 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
5137 ("pPrevPhys=%p %RGp-%RGp %s\n"
5138 " pCur=%p %RGp-%RGp %s\n",
5139 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
5140 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5141 pArgs->pPrevPhys = pCur;
5142 return 0;
5143}
5144
5145
5146/**
5147 * Validate a node in the virtual handler tree.
5148 *
5149 * @returns 0 on if ok, other wise 1.
5150 * @param pNode The handler node.
5151 * @param pvUser pVM.
5152 */
5153static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
5154{
5155 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5156 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
5157 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5158 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5159 AssertReleaseMsg( !pArgs->pPrevVirt
5160 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
5161 ("pPrevVirt=%p %RGv-%RGv %s\n"
5162 " pCur=%p %RGv-%RGv %s\n",
5163 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
5164 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5165 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
5166 {
5167 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
5168 ("pCur=%p %RGv-%RGv %s\n"
5169 "iPage=%d offVirtHandle=%#x expected %#x\n",
5170 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
5171 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
5172 }
5173 pArgs->pPrevVirt = pCur;
5174 return 0;
5175}
5176
5177
5178/**
5179 * Validate a node in the virtual handler tree.
5180 *
5181 * @returns 0 on if ok, other wise 1.
5182 * @param pNode The handler node.
5183 * @param pvUser pVM.
5184 */
5185static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5186{
5187 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5188 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
5189 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
5190 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
5191 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
5192 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5193 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5194 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5195 " pCur=%p %RGp-%RGp\n",
5196 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5197 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5198 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5199 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5200 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5201 " pCur=%p %RGp-%RGp\n",
5202 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5203 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5204 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
5205 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5206 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5207 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
5208 {
5209 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
5210 for (;;)
5211 {
5212 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
5213 AssertReleaseMsg(pCur2 != pCur,
5214 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5215 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5216 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5217 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5218 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5219 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5220 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5221 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5222 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5223 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5224 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5225 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5226 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5227 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5228 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5229 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5230 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5231 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5232 break;
5233 }
5234 }
5235
5236 pArgs->pPrevPhys2Virt = pCur;
5237 return 0;
5238}
5239
5240
5241/**
5242 * Perform an integrity check on the PGM component.
5243 *
5244 * @returns VINF_SUCCESS if everything is fine.
5245 * @returns VBox error status after asserting on integrity breach.
5246 * @param pVM The VM handle.
5247 */
5248VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5249{
5250 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5251
5252 /*
5253 * Check the trees.
5254 */
5255 int cErrors = 0;
5256 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5257 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5258 PGMCHECKINTARGS Args = s_LeftToRight;
5259 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5260 Args = s_RightToLeft;
5261 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5262 Args = s_LeftToRight;
5263 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5264 Args = s_RightToLeft;
5265 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5266 Args = s_LeftToRight;
5267 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5268 Args = s_RightToLeft;
5269 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5270 Args = s_LeftToRight;
5271 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5272 Args = s_RightToLeft;
5273 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5274
5275 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5276}
5277
5278
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette