VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 31593

Last change on this file since 31593 was 31593, checked in by vboxsync, 14 years ago

PGM,IOM: MMIO optimization - hacking in progress. (still disabled)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 226.2 KB
Line 
1/* $Id: PGM.cpp 31593 2010-08-12 00:52:52Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be refered to
30 * as "host paging", and GC refered to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
484 * however on 32-bit darwin the ring-0 code is running in a different memory
485 * context and therefore needs a separate cache. In raw-mode context we also
486 * need a separate cache. The 32-bit darwin mapping cache and the one for
487 * raw-mode context share a lot of code, see PGMRZDYNMAP.
488 *
489 *
490 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
491 *
492 * We've considered implementing the ring-3 mapping cache page based but found
493 * that this was bother some when one had to take into account TLBs+SMP and
494 * portability (missing the necessary APIs on several platforms). There were
495 * also some performance concerns with this approach which hadn't quite been
496 * worked out.
497 *
498 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
499 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
500 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
501 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
502 * costly than a single page, although how much more costly is uncertain. We'll
503 * try address this by using a very big cache, preferably bigger than the actual
504 * VM RAM size if possible. The current VM RAM sizes should give some idea for
505 * 32-bit boxes, while on 64-bit we can probably get away with employing an
506 * unlimited cache.
507 *
508 * The cache have to parts, as already indicated, the ring-3 side and the
509 * ring-0 side.
510 *
511 * The ring-0 will be tied to the page allocator since it will operate on the
512 * memory objects it contains. It will therefore require the first ring-0 mutex
513 * discussed in @ref subsec_pgmPhys_Serializing. We
514 * some double house keeping wrt to who has mapped what I think, since both
515 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
516 *
517 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
518 * require anyone that desires to do changes to the mapping cache to do that
519 * from within this critsect. Alternatively, we could employ a separate critsect
520 * for serializing changes to the mapping cache as this would reduce potential
521 * contention with other threads accessing mappings unrelated to the changes
522 * that are in process. We can see about this later, contention will show
523 * up in the statistics anyway, so it'll be simple to tell.
524 *
525 * The organization of the ring-3 part will be very much like how the allocation
526 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
527 * having to walk the tree all the time, we'll have a couple of lookaside entries
528 * like in we do for I/O ports and MMIO in IOM.
529 *
530 * The simplified flow of a PGMPhysRead/Write function:
531 * -# Enter the PGM critsect.
532 * -# Lookup GCPhys in the ram ranges and get the Page ID.
533 * -# Calc the Allocation Chunk ID from the Page ID.
534 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
535 * If not found in cache:
536 * -# Call ring-0 and request it to be mapped and supply
537 * a chunk to be unmapped if the cache is maxed out already.
538 * -# Insert the new mapping into the AVL tree (id + R3 address).
539 * -# Update the relevant lookaside entry and return the mapping address.
540 * -# Do the read/write according to monitoring flags and everything.
541 * -# Leave the critsect.
542 *
543 *
544 * @section sec_pgmPhys_Fallback Fallback
545 *
546 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
547 * API and thus require a fallback.
548 *
549 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
550 * will return to the ring-3 caller (and later ring-0) and asking it to seed
551 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
552 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
553 * "SeededAllocPages" call to ring-0.
554 *
555 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
556 * all page sharing (zero page detection will continue). It will also force
557 * all allocations to come from the VM which seeded the page. Both these
558 * measures are taken to make sure that there will never be any need for
559 * mapping anything into ring-3 - everything will be mapped already.
560 *
561 * Whether we'll continue to use the current MM locked memory management
562 * for this I don't quite know (I'd prefer not to and just ditch that all
563 * togther), we'll see what's simplest to do.
564 *
565 *
566 *
567 * @section sec_pgmPhys_Changes Changes
568 *
569 * Breakdown of the changes involved?
570 */
571
572/*******************************************************************************
573* Header Files *
574*******************************************************************************/
575#define LOG_GROUP LOG_GROUP_PGM
576#include <VBox/dbgf.h>
577#include <VBox/pgm.h>
578#include <VBox/cpum.h>
579#include <VBox/iom.h>
580#include <VBox/sup.h>
581#include <VBox/mm.h>
582#include <VBox/em.h>
583#include <VBox/stam.h>
584#include <VBox/rem.h>
585#include <VBox/selm.h>
586#include <VBox/ssm.h>
587#include <VBox/hwaccm.h>
588#include "PGMInternal.h"
589#include <VBox/vm.h>
590#include "PGMInline.h"
591
592#include <VBox/dbg.h>
593#include <VBox/param.h>
594#include <VBox/err.h>
595
596#include <iprt/asm.h>
597#include <iprt/asm-amd64-x86.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static int pgmR3InitStats(PVM pVM);
611static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
617#ifdef VBOX_STRICT
618static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
619#endif
620static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
621static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
622static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
623
624#ifdef VBOX_WITH_DEBUGGER
625/** @todo Convert the first two commands to 'info' items. */
626static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
627static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
629static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630# ifdef VBOX_STRICT
631static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632# endif
633static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634#endif
635
636
637/*******************************************************************************
638* Global Variables *
639*******************************************************************************/
640#ifdef VBOX_WITH_DEBUGGER
641/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
642static const DBGCVARDESC g_aPgmErrorArgs[] =
643{
644 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
645 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
646};
647
648static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
649{
650 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
651 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
652 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
653};
654
655/** Command descriptors. */
656static const DBGCCMD g_aCmds[] =
657{
658 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
659 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
660 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
661 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
662 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
663#ifdef VBOX_STRICT
664 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
665#endif
666#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
667 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
668 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
669#endif
670 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
671 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
672};
673#endif
674
675
676
677
678/*
679 * Shadow - 32-bit mode
680 */
681#define PGM_SHW_TYPE PGM_TYPE_32BIT
682#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
683#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
684#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
685#include "PGMShw.h"
686
687/* Guest - real mode */
688#define PGM_GST_TYPE PGM_TYPE_REAL
689#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
690#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
691#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
692#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
693#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
694#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
695#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
696#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
697#include "PGMBth.h"
698#include "PGMGstDefs.h"
699#include "PGMGst.h"
700#undef BTH_PGMPOOLKIND_PT_FOR_PT
701#undef BTH_PGMPOOLKIND_ROOT
702#undef PGM_BTH_NAME
703#undef PGM_BTH_NAME_RC_STR
704#undef PGM_BTH_NAME_R0_STR
705#undef PGM_GST_TYPE
706#undef PGM_GST_NAME
707#undef PGM_GST_NAME_RC_STR
708#undef PGM_GST_NAME_R0_STR
709
710/* Guest - protected mode */
711#define PGM_GST_TYPE PGM_TYPE_PROT
712#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
713#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
714#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
715#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
716#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
717#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
718#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
719#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
720#include "PGMBth.h"
721#include "PGMGstDefs.h"
722#include "PGMGst.h"
723#undef BTH_PGMPOOLKIND_PT_FOR_PT
724#undef BTH_PGMPOOLKIND_ROOT
725#undef PGM_BTH_NAME
726#undef PGM_BTH_NAME_RC_STR
727#undef PGM_BTH_NAME_R0_STR
728#undef PGM_GST_TYPE
729#undef PGM_GST_NAME
730#undef PGM_GST_NAME_RC_STR
731#undef PGM_GST_NAME_R0_STR
732
733/* Guest - 32-bit mode */
734#define PGM_GST_TYPE PGM_TYPE_32BIT
735#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
736#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
737#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
738#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
739#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
740#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
741#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
742#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
743#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
744#include "PGMBth.h"
745#include "PGMGstDefs.h"
746#include "PGMGst.h"
747#undef BTH_PGMPOOLKIND_PT_FOR_BIG
748#undef BTH_PGMPOOLKIND_PT_FOR_PT
749#undef BTH_PGMPOOLKIND_ROOT
750#undef PGM_BTH_NAME
751#undef PGM_BTH_NAME_RC_STR
752#undef PGM_BTH_NAME_R0_STR
753#undef PGM_GST_TYPE
754#undef PGM_GST_NAME
755#undef PGM_GST_NAME_RC_STR
756#undef PGM_GST_NAME_R0_STR
757
758#undef PGM_SHW_TYPE
759#undef PGM_SHW_NAME
760#undef PGM_SHW_NAME_RC_STR
761#undef PGM_SHW_NAME_R0_STR
762
763
764/*
765 * Shadow - PAE mode
766 */
767#define PGM_SHW_TYPE PGM_TYPE_PAE
768#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
769#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
770#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
771#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
772#include "PGMShw.h"
773
774/* Guest - real mode */
775#define PGM_GST_TYPE PGM_TYPE_REAL
776#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
777#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
778#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
779#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
780#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
781#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
782#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
783#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
784#include "PGMGstDefs.h"
785#include "PGMBth.h"
786#undef BTH_PGMPOOLKIND_PT_FOR_PT
787#undef BTH_PGMPOOLKIND_ROOT
788#undef PGM_BTH_NAME
789#undef PGM_BTH_NAME_RC_STR
790#undef PGM_BTH_NAME_R0_STR
791#undef PGM_GST_TYPE
792#undef PGM_GST_NAME
793#undef PGM_GST_NAME_RC_STR
794#undef PGM_GST_NAME_R0_STR
795
796/* Guest - protected mode */
797#define PGM_GST_TYPE PGM_TYPE_PROT
798#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
799#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
800#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
801#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
802#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
803#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
804#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
805#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
806#include "PGMGstDefs.h"
807#include "PGMBth.h"
808#undef BTH_PGMPOOLKIND_PT_FOR_PT
809#undef BTH_PGMPOOLKIND_ROOT
810#undef PGM_BTH_NAME
811#undef PGM_BTH_NAME_RC_STR
812#undef PGM_BTH_NAME_R0_STR
813#undef PGM_GST_TYPE
814#undef PGM_GST_NAME
815#undef PGM_GST_NAME_RC_STR
816#undef PGM_GST_NAME_R0_STR
817
818/* Guest - 32-bit mode */
819#define PGM_GST_TYPE PGM_TYPE_32BIT
820#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
821#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
822#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
823#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
824#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
825#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
826#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
827#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
828#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
829#include "PGMGstDefs.h"
830#include "PGMBth.h"
831#undef BTH_PGMPOOLKIND_PT_FOR_BIG
832#undef BTH_PGMPOOLKIND_PT_FOR_PT
833#undef BTH_PGMPOOLKIND_ROOT
834#undef PGM_BTH_NAME
835#undef PGM_BTH_NAME_RC_STR
836#undef PGM_BTH_NAME_R0_STR
837#undef PGM_GST_TYPE
838#undef PGM_GST_NAME
839#undef PGM_GST_NAME_RC_STR
840#undef PGM_GST_NAME_R0_STR
841
842/* Guest - PAE mode */
843#define PGM_GST_TYPE PGM_TYPE_PAE
844#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
845#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
846#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
847#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
848#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
849#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
850#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
851#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
852#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
853#include "PGMBth.h"
854#include "PGMGstDefs.h"
855#include "PGMGst.h"
856#undef BTH_PGMPOOLKIND_PT_FOR_BIG
857#undef BTH_PGMPOOLKIND_PT_FOR_PT
858#undef BTH_PGMPOOLKIND_ROOT
859#undef PGM_BTH_NAME
860#undef PGM_BTH_NAME_RC_STR
861#undef PGM_BTH_NAME_R0_STR
862#undef PGM_GST_TYPE
863#undef PGM_GST_NAME
864#undef PGM_GST_NAME_RC_STR
865#undef PGM_GST_NAME_R0_STR
866
867#undef PGM_SHW_TYPE
868#undef PGM_SHW_NAME
869#undef PGM_SHW_NAME_RC_STR
870#undef PGM_SHW_NAME_R0_STR
871
872
873/*
874 * Shadow - AMD64 mode
875 */
876#define PGM_SHW_TYPE PGM_TYPE_AMD64
877#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
878#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
879#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
880#include "PGMShw.h"
881
882#ifdef VBOX_WITH_64_BITS_GUESTS
883/* Guest - AMD64 mode */
884# define PGM_GST_TYPE PGM_TYPE_AMD64
885# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
886# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
887# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
888# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
889# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
890# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
891# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
892# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
893# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
894# include "PGMBth.h"
895# include "PGMGstDefs.h"
896# include "PGMGst.h"
897# undef BTH_PGMPOOLKIND_PT_FOR_BIG
898# undef BTH_PGMPOOLKIND_PT_FOR_PT
899# undef BTH_PGMPOOLKIND_ROOT
900# undef PGM_BTH_NAME
901# undef PGM_BTH_NAME_RC_STR
902# undef PGM_BTH_NAME_R0_STR
903# undef PGM_GST_TYPE
904# undef PGM_GST_NAME
905# undef PGM_GST_NAME_RC_STR
906# undef PGM_GST_NAME_R0_STR
907#endif /* VBOX_WITH_64_BITS_GUESTS */
908
909#undef PGM_SHW_TYPE
910#undef PGM_SHW_NAME
911#undef PGM_SHW_NAME_RC_STR
912#undef PGM_SHW_NAME_R0_STR
913
914
915/*
916 * Shadow - Nested paging mode
917 */
918#define PGM_SHW_TYPE PGM_TYPE_NESTED
919#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
920#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
921#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
922#include "PGMShw.h"
923
924/* Guest - real mode */
925#define PGM_GST_TYPE PGM_TYPE_REAL
926#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
927#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
928#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
929#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
930#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
931#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
932#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
933#include "PGMGstDefs.h"
934#include "PGMBth.h"
935#undef BTH_PGMPOOLKIND_PT_FOR_PT
936#undef PGM_BTH_NAME
937#undef PGM_BTH_NAME_RC_STR
938#undef PGM_BTH_NAME_R0_STR
939#undef PGM_GST_TYPE
940#undef PGM_GST_NAME
941#undef PGM_GST_NAME_RC_STR
942#undef PGM_GST_NAME_R0_STR
943
944/* Guest - protected mode */
945#define PGM_GST_TYPE PGM_TYPE_PROT
946#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
947#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
948#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
949#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
950#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
951#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
952#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
953#include "PGMGstDefs.h"
954#include "PGMBth.h"
955#undef BTH_PGMPOOLKIND_PT_FOR_PT
956#undef PGM_BTH_NAME
957#undef PGM_BTH_NAME_RC_STR
958#undef PGM_BTH_NAME_R0_STR
959#undef PGM_GST_TYPE
960#undef PGM_GST_NAME
961#undef PGM_GST_NAME_RC_STR
962#undef PGM_GST_NAME_R0_STR
963
964/* Guest - 32-bit mode */
965#define PGM_GST_TYPE PGM_TYPE_32BIT
966#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
967#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
968#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
969#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
970#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
971#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
972#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
973#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
974#include "PGMGstDefs.h"
975#include "PGMBth.h"
976#undef BTH_PGMPOOLKIND_PT_FOR_BIG
977#undef BTH_PGMPOOLKIND_PT_FOR_PT
978#undef PGM_BTH_NAME
979#undef PGM_BTH_NAME_RC_STR
980#undef PGM_BTH_NAME_R0_STR
981#undef PGM_GST_TYPE
982#undef PGM_GST_NAME
983#undef PGM_GST_NAME_RC_STR
984#undef PGM_GST_NAME_R0_STR
985
986/* Guest - PAE mode */
987#define PGM_GST_TYPE PGM_TYPE_PAE
988#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
989#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
990#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
991#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
992#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
993#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
994#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
995#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
996#include "PGMGstDefs.h"
997#include "PGMBth.h"
998#undef BTH_PGMPOOLKIND_PT_FOR_BIG
999#undef BTH_PGMPOOLKIND_PT_FOR_PT
1000#undef PGM_BTH_NAME
1001#undef PGM_BTH_NAME_RC_STR
1002#undef PGM_BTH_NAME_R0_STR
1003#undef PGM_GST_TYPE
1004#undef PGM_GST_NAME
1005#undef PGM_GST_NAME_RC_STR
1006#undef PGM_GST_NAME_R0_STR
1007
1008#ifdef VBOX_WITH_64_BITS_GUESTS
1009/* Guest - AMD64 mode */
1010# define PGM_GST_TYPE PGM_TYPE_AMD64
1011# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1012# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1013# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1014# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1015# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1016# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1017# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1018# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1019# include "PGMGstDefs.h"
1020# include "PGMBth.h"
1021# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1022# undef BTH_PGMPOOLKIND_PT_FOR_PT
1023# undef PGM_BTH_NAME
1024# undef PGM_BTH_NAME_RC_STR
1025# undef PGM_BTH_NAME_R0_STR
1026# undef PGM_GST_TYPE
1027# undef PGM_GST_NAME
1028# undef PGM_GST_NAME_RC_STR
1029# undef PGM_GST_NAME_R0_STR
1030#endif /* VBOX_WITH_64_BITS_GUESTS */
1031
1032#undef PGM_SHW_TYPE
1033#undef PGM_SHW_NAME
1034#undef PGM_SHW_NAME_RC_STR
1035#undef PGM_SHW_NAME_R0_STR
1036
1037
1038/*
1039 * Shadow - EPT
1040 */
1041#define PGM_SHW_TYPE PGM_TYPE_EPT
1042#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1043#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1044#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1045#include "PGMShw.h"
1046
1047/* Guest - real mode */
1048#define PGM_GST_TYPE PGM_TYPE_REAL
1049#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1050#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1051#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1052#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1053#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1054#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1055#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1056#include "PGMGstDefs.h"
1057#include "PGMBth.h"
1058#undef BTH_PGMPOOLKIND_PT_FOR_PT
1059#undef PGM_BTH_NAME
1060#undef PGM_BTH_NAME_RC_STR
1061#undef PGM_BTH_NAME_R0_STR
1062#undef PGM_GST_TYPE
1063#undef PGM_GST_NAME
1064#undef PGM_GST_NAME_RC_STR
1065#undef PGM_GST_NAME_R0_STR
1066
1067/* Guest - protected mode */
1068#define PGM_GST_TYPE PGM_TYPE_PROT
1069#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1070#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1071#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1072#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1073#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1074#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1075#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1076#include "PGMGstDefs.h"
1077#include "PGMBth.h"
1078#undef BTH_PGMPOOLKIND_PT_FOR_PT
1079#undef PGM_BTH_NAME
1080#undef PGM_BTH_NAME_RC_STR
1081#undef PGM_BTH_NAME_R0_STR
1082#undef PGM_GST_TYPE
1083#undef PGM_GST_NAME
1084#undef PGM_GST_NAME_RC_STR
1085#undef PGM_GST_NAME_R0_STR
1086
1087/* Guest - 32-bit mode */
1088#define PGM_GST_TYPE PGM_TYPE_32BIT
1089#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1090#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1091#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1092#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1093#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1094#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1095#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1096#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1097#include "PGMGstDefs.h"
1098#include "PGMBth.h"
1099#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1100#undef BTH_PGMPOOLKIND_PT_FOR_PT
1101#undef PGM_BTH_NAME
1102#undef PGM_BTH_NAME_RC_STR
1103#undef PGM_BTH_NAME_R0_STR
1104#undef PGM_GST_TYPE
1105#undef PGM_GST_NAME
1106#undef PGM_GST_NAME_RC_STR
1107#undef PGM_GST_NAME_R0_STR
1108
1109/* Guest - PAE mode */
1110#define PGM_GST_TYPE PGM_TYPE_PAE
1111#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1112#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1113#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1114#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1115#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1116#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1117#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1118#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1119#include "PGMGstDefs.h"
1120#include "PGMBth.h"
1121#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1122#undef BTH_PGMPOOLKIND_PT_FOR_PT
1123#undef PGM_BTH_NAME
1124#undef PGM_BTH_NAME_RC_STR
1125#undef PGM_BTH_NAME_R0_STR
1126#undef PGM_GST_TYPE
1127#undef PGM_GST_NAME
1128#undef PGM_GST_NAME_RC_STR
1129#undef PGM_GST_NAME_R0_STR
1130
1131#ifdef VBOX_WITH_64_BITS_GUESTS
1132/* Guest - AMD64 mode */
1133# define PGM_GST_TYPE PGM_TYPE_AMD64
1134# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1135# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1136# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1137# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1138# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1139# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1140# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1141# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1142# include "PGMGstDefs.h"
1143# include "PGMBth.h"
1144# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1145# undef BTH_PGMPOOLKIND_PT_FOR_PT
1146# undef PGM_BTH_NAME
1147# undef PGM_BTH_NAME_RC_STR
1148# undef PGM_BTH_NAME_R0_STR
1149# undef PGM_GST_TYPE
1150# undef PGM_GST_NAME
1151# undef PGM_GST_NAME_RC_STR
1152# undef PGM_GST_NAME_R0_STR
1153#endif /* VBOX_WITH_64_BITS_GUESTS */
1154
1155#undef PGM_SHW_TYPE
1156#undef PGM_SHW_NAME
1157#undef PGM_SHW_NAME_RC_STR
1158#undef PGM_SHW_NAME_R0_STR
1159
1160
1161
1162/**
1163 * Initiates the paging of VM.
1164 *
1165 * @returns VBox status code.
1166 * @param pVM Pointer to VM structure.
1167 */
1168VMMR3DECL(int) PGMR3Init(PVM pVM)
1169{
1170 LogFlow(("PGMR3Init:\n"));
1171 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1172 int rc;
1173
1174 /*
1175 * Assert alignment and sizes.
1176 */
1177 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1178 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1179 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1180
1181 /*
1182 * Init the structure.
1183 */
1184#ifdef PGM_WITHOUT_MAPPINGS
1185 pVM->pgm.s.fMappingsDisabled = true;
1186#endif
1187 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1188 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1189
1190 /* Init the per-CPU part. */
1191 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1192 {
1193 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1194 PPGMCPU pPGM = &pVCpu->pgm.s;
1195
1196 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1197 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1198 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1199
1200 pPGM->enmShadowMode = PGMMODE_INVALID;
1201 pPGM->enmGuestMode = PGMMODE_INVALID;
1202
1203 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1204
1205 pPGM->pGst32BitPdR3 = NULL;
1206 pPGM->pGstPaePdptR3 = NULL;
1207 pPGM->pGstAmd64Pml4R3 = NULL;
1208#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1209 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1210 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1211 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1212#endif
1213 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1214 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1215 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1216 {
1217 pPGM->apGstPaePDsR3[i] = NULL;
1218#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1219 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1220#endif
1221 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1222 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1223 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1224 }
1225
1226 pPGM->fA20Enabled = true;
1227 }
1228
1229 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1230 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1231 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1232
1233 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1234#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1235 true
1236#else
1237 false
1238#endif
1239 );
1240 AssertLogRelRCReturn(rc, rc);
1241
1242#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1243 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1244#else
1245 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1246#endif
1247 AssertLogRelRCReturn(rc, rc);
1248 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1249 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1250
1251 /*
1252 * Get the configured RAM size - to estimate saved state size.
1253 */
1254 uint64_t cbRam;
1255 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1256 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1257 cbRam = 0;
1258 else if (RT_SUCCESS(rc))
1259 {
1260 if (cbRam < PAGE_SIZE)
1261 cbRam = 0;
1262 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1263 }
1264 else
1265 {
1266 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1267 return rc;
1268 }
1269
1270#ifdef VBOX_WITH_STATISTICS
1271 /*
1272 * Allocate memory for the statistics before someone tries to use them.
1273 */
1274 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1275 void *pv;
1276 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1277 AssertRCReturn(rc, rc);
1278
1279 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1280 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1281 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1282 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1283
1284 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1285 {
1286 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1287 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1288 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1289
1290 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1291 }
1292#endif /* VBOX_WITH_STATISTICS */
1293
1294 /*
1295 * Register callbacks, string formatters and the saved state data unit.
1296 */
1297#ifdef VBOX_STRICT
1298 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1299#endif
1300 PGMRegisterStringFormatTypes();
1301
1302 rc = pgmR3InitSavedState(pVM, cbRam);
1303 if (RT_FAILURE(rc))
1304 return rc;
1305
1306 /*
1307 * Initialize the PGM critical section and flush the phys TLBs
1308 */
1309 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1310 AssertRCReturn(rc, rc);
1311
1312 PGMR3PhysChunkInvalidateTLB(pVM);
1313 PGMPhysInvalidatePageMapTLB(pVM);
1314
1315 /*
1316 * For the time being we sport a full set of handy pages in addition to the base
1317 * memory to simplify things.
1318 */
1319 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1320 AssertRCReturn(rc, rc);
1321
1322 /*
1323 * Trees
1324 */
1325 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1326 if (RT_SUCCESS(rc))
1327 {
1328 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1329 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1330
1331 /*
1332 * Allocate the zero page.
1333 */
1334 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1335 }
1336 if (RT_SUCCESS(rc))
1337 {
1338 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1339 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1340 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1341 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1342
1343 /*
1344 * Allocate the invalid MMIO page.
1345 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1346 */
1347 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1348 }
1349 if (RT_SUCCESS(rc))
1350 {
1351 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1352 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1353 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1354 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1355
1356 /*
1357 * Init the paging.
1358 */
1359 rc = pgmR3InitPaging(pVM);
1360 }
1361 if (RT_SUCCESS(rc))
1362 {
1363 /*
1364 * Init the page pool.
1365 */
1366 rc = pgmR3PoolInit(pVM);
1367 }
1368 if (RT_SUCCESS(rc))
1369 {
1370 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1371 {
1372 PVMCPU pVCpu = &pVM->aCpus[i];
1373 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1374 if (RT_FAILURE(rc))
1375 break;
1376 }
1377 }
1378
1379 if (RT_SUCCESS(rc))
1380 {
1381 /*
1382 * Info & statistics
1383 */
1384 DBGFR3InfoRegisterInternal(pVM, "mode",
1385 "Shows the current paging mode. "
1386 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1387 pgmR3InfoMode);
1388 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1389 "Dumps all the entries in the top level paging table. No arguments.",
1390 pgmR3InfoCr3);
1391 DBGFR3InfoRegisterInternal(pVM, "phys",
1392 "Dumps all the physical address ranges. No arguments.",
1393 pgmR3PhysInfo);
1394 DBGFR3InfoRegisterInternal(pVM, "handlers",
1395 "Dumps physical, virtual and hyper virtual handlers. "
1396 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1397 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1398 pgmR3InfoHandlers);
1399 DBGFR3InfoRegisterInternal(pVM, "mappings",
1400 "Dumps guest mappings.",
1401 pgmR3MapInfo);
1402
1403 pgmR3InitStats(pVM);
1404
1405#ifdef VBOX_WITH_DEBUGGER
1406 /*
1407 * Debugger commands.
1408 */
1409 static bool s_fRegisteredCmds = false;
1410 if (!s_fRegisteredCmds)
1411 {
1412 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1413 if (RT_SUCCESS(rc2))
1414 s_fRegisteredCmds = true;
1415 }
1416#endif
1417 return VINF_SUCCESS;
1418 }
1419
1420 /* Almost no cleanup necessary, MM frees all memory. */
1421 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1422
1423 return rc;
1424}
1425
1426
1427/**
1428 * Initializes the per-VCPU PGM.
1429 *
1430 * @returns VBox status code.
1431 * @param pVM The VM to operate on.
1432 */
1433VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1434{
1435 LogFlow(("PGMR3InitCPU\n"));
1436 return VINF_SUCCESS;
1437}
1438
1439
1440/**
1441 * Init paging.
1442 *
1443 * Since we need to check what mode the host is operating in before we can choose
1444 * the right paging functions for the host we have to delay this until R0 has
1445 * been initialized.
1446 *
1447 * @returns VBox status code.
1448 * @param pVM VM handle.
1449 */
1450static int pgmR3InitPaging(PVM pVM)
1451{
1452 /*
1453 * Force a recalculation of modes and switcher so everyone gets notified.
1454 */
1455 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1456 {
1457 PVMCPU pVCpu = &pVM->aCpus[i];
1458
1459 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1460 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1461 }
1462
1463 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1464
1465 /*
1466 * Allocate static mapping space for whatever the cr3 register
1467 * points to and in the case of PAE mode to the 4 PDs.
1468 */
1469 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1470 if (RT_FAILURE(rc))
1471 {
1472 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1473 return rc;
1474 }
1475 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1476
1477 /*
1478 * Allocate pages for the three possible intermediate contexts
1479 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1480 * for the sake of simplicity. The AMD64 uses the PAE for the
1481 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1482 *
1483 * We assume that two page tables will be enought for the core code
1484 * mappings (HC virtual and identity).
1485 */
1486 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1487 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1488 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1489 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1490 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1491 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1492 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1493 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1494 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1495 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1496 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1497 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1498
1499 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1500 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1501 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1502 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1503 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1504 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1505
1506 /*
1507 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1508 */
1509 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1510 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1511 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1512
1513 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1514 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1515
1516 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1517 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1518 {
1519 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1520 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1521 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1522 }
1523
1524 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1525 {
1526 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1527 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1528 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1529 }
1530
1531 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1532 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1533 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1534 | HCPhysInterPaePDPT64;
1535
1536 /*
1537 * Initialize paging workers and mode from current host mode
1538 * and the guest running in real mode.
1539 */
1540 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1541 switch (pVM->pgm.s.enmHostMode)
1542 {
1543 case SUPPAGINGMODE_32_BIT:
1544 case SUPPAGINGMODE_32_BIT_GLOBAL:
1545 case SUPPAGINGMODE_PAE:
1546 case SUPPAGINGMODE_PAE_GLOBAL:
1547 case SUPPAGINGMODE_PAE_NX:
1548 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1549 break;
1550
1551 case SUPPAGINGMODE_AMD64:
1552 case SUPPAGINGMODE_AMD64_GLOBAL:
1553 case SUPPAGINGMODE_AMD64_NX:
1554 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1555#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1556 if (ARCH_BITS != 64)
1557 {
1558 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1559 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1560 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1561 }
1562#endif
1563 break;
1564 default:
1565 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1566 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1567 }
1568 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1569 if (RT_SUCCESS(rc))
1570 {
1571 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1572#if HC_ARCH_BITS == 64
1573 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1574 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1575 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1576 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1577 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1578 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1579 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1580#endif
1581 return VINF_SUCCESS;
1582 }
1583
1584 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1585 return rc;
1586}
1587
1588
1589/**
1590 * Init statistics
1591 * @returns VBox status code.
1592 */
1593static int pgmR3InitStats(PVM pVM)
1594{
1595 PPGM pPGM = &pVM->pgm.s;
1596 int rc;
1597
1598 /*
1599 * Release statistics.
1600 */
1601 /* Common - misc variables */
1602 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1603 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1604 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1605 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1606 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1607 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1608 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1609 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1610 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1611 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1612 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1613 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1614 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1615 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1616 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1617 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1618 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1619
1620 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1621 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1622 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1623 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1624
1625 /* Live save */
1626 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1627 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1628 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1629 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1630 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1631 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1632 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1633 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1634 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1635 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1636 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1637 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1638 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1639 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1640 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1641 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1642 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1643 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1644
1645#ifdef VBOX_WITH_STATISTICS
1646
1647# define PGM_REG_COUNTER(a, b, c) \
1648 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1649 AssertRC(rc);
1650
1651# define PGM_REG_COUNTER_BYTES(a, b, c) \
1652 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1653 AssertRC(rc);
1654
1655# define PGM_REG_PROFILE(a, b, c) \
1656 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1657 AssertRC(rc);
1658
1659 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1660
1661 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1662 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1663 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1664 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1665
1666 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1667 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1668 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1669 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1670 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1671 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1672 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1673 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1674 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1675 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1676
1677 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1678 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1679 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1680 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1681 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1682 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1683
1684 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1685 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1686 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1687 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1688 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1689 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1690 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1691 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1692
1693 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1694 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1695 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1696 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1697
1698 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1699 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1700 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1701 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1702 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1703 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1704 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1705 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1706
1707 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1708 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1709/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1710 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1711 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1712/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1713
1714 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1715 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1716 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1717 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1718 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1719 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1720 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1721 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1722
1723 /* GC only: */
1724 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1725 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1726
1727 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1728 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1729 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1730 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1731 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1732 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1733 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1734 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1735
1736 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1737 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1738 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1739 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1740 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1741 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1742 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1743
1744# undef PGM_REG_COUNTER
1745# undef PGM_REG_PROFILE
1746#endif
1747
1748 /*
1749 * Note! The layout below matches the member layout exactly!
1750 */
1751
1752 /*
1753 * Common - stats
1754 */
1755 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1756 {
1757 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1758
1759#define PGM_REG_COUNTER(a, b, c) \
1760 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1761 AssertRC(rc);
1762#define PGM_REG_PROFILE(a, b, c) \
1763 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1764 AssertRC(rc);
1765
1766 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1767
1768#ifdef VBOX_WITH_STATISTICS
1769 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1770
1771# if 0 /* rarely useful; leave for debugging. */
1772 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1773 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1774 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1775 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1776 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1777 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1778# endif
1779 /* R0 only: */
1780 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1781 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1782
1783 /* RZ only: */
1784 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1785 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1786 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1787 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1788 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1789 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1790 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1791 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1792 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1793 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1794 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is releated to the guest mappings.");
1795 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1796 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1797 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1798 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1799 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1800 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1801 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1802 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1803 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1804 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1805 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1806 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysicalOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysicalOpt", "Number of the physical access handler traps using the optimization.");
1807 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1808 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1809 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1810 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1811 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1812 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1813 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1814 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1815 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1816 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1817 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1818 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1819 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1820 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1821 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1822 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1823 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1824 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1825 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1826 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1827#if 0 /* rarely useful; leave for debugging. */
1828 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1829 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1830 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1831#endif
1832 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1833 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1834 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1835 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1836 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1837
1838 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1839 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1840 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1841 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1842 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1843 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1844 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1845 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1846 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1847 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1848 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1849 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restorting to subset flushes.");
1850 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1851 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1852 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1853 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1854 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1855 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1856 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1858 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1859 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1860 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1861 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1862 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1863 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1864 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1865 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1866 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1867 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1868 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1869 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1870 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1871 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1872 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1873 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1874
1875 /* HC only: */
1876
1877 /* RZ & R3: */
1878 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1879 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1880 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1881 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1882 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1883 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1884 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1885 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1886 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1887 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1888 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1890 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1891 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1895 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1904 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1918 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1919 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1922 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1923 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1924 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1925
1926 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1927 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1928 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1929 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1930 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1931 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1932 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1933 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1934 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1935 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1936 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1937 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1938 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1939 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1940 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1941 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1942 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1943 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1944 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1945 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1946 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1947 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1948 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1949 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1950 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1951 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1952 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1953 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1954 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1955 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1956 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1957 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1958 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1959 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1960 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1961 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1962 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1963 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1964 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1965 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1966 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1967 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1968 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1969 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1970#endif /* VBOX_WITH_STATISTICS */
1971
1972#undef PGM_REG_PROFILE
1973#undef PGM_REG_COUNTER
1974
1975 }
1976
1977 return VINF_SUCCESS;
1978}
1979
1980
1981/**
1982 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1983 *
1984 * The dynamic mapping area will also be allocated and initialized at this
1985 * time. We could allocate it during PGMR3Init of course, but the mapping
1986 * wouldn't be allocated at that time preventing us from setting up the
1987 * page table entries with the dummy page.
1988 *
1989 * @returns VBox status code.
1990 * @param pVM VM handle.
1991 */
1992VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1993{
1994 RTGCPTR GCPtr;
1995 int rc;
1996
1997 /*
1998 * Reserve space for the dynamic mappings.
1999 */
2000 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2001 if (RT_SUCCESS(rc))
2002 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2003
2004 if ( RT_SUCCESS(rc)
2005 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2006 {
2007 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2008 if (RT_SUCCESS(rc))
2009 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2010 }
2011 if (RT_SUCCESS(rc))
2012 {
2013 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2014 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2015 }
2016 return rc;
2017}
2018
2019
2020/**
2021 * Ring-3 init finalizing.
2022 *
2023 * @returns VBox status code.
2024 * @param pVM The VM handle.
2025 */
2026VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2027{
2028 int rc;
2029
2030 /*
2031 * Reserve space for the dynamic mappings.
2032 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2033 */
2034 /* get the pointer to the page table entries. */
2035 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2036 AssertRelease(pMapping);
2037 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2038 const unsigned iPT = off >> X86_PD_SHIFT;
2039 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2040 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2041 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2042
2043 /* init cache area */
2044 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2045 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2046 {
2047 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2048 AssertRCReturn(rc, rc);
2049 }
2050
2051 /*
2052 * Determin the max physical address width (MAXPHYADDR) and apply it to
2053 * all the mask members and stuff.
2054 */
2055 uint32_t cMaxPhysAddrWidth;
2056 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2057 if ( uMaxExtLeaf >= 0x80000008
2058 && uMaxExtLeaf <= 0x80000fff)
2059 {
2060 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2061 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2062 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2063 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2064 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2065 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2066 }
2067 else
2068 {
2069 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2070 cMaxPhysAddrWidth = 48;
2071 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2072 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2073 }
2074
2075 pVM->pgm.s.GCPhysInvAddrMask = 0;
2076 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2077 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2078
2079 /*
2080 * Initialize the invalid paging entry masks, assuming NX is disabled.
2081 */
2082 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2083 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2084 {
2085 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2086
2087 /** @todo The manuals are not entirely clear whether the physical
2088 * address width is relevant. See table 5-9 in the intel
2089 * manual vs the PDE4M descriptions. Write testcase (NP). */
2090 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2091 | X86_PDE4M_MBZ_MASK;
2092
2093 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2094 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2095 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2096 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2097
2098 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2099 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2100 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2101 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2102 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2103 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2104 }
2105
2106 /*
2107 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2108 * Intel only goes up to 36 bits, so we stick to 36 as well.
2109 * Update: More recent intel manuals specifies 40 bits just like AMD.
2110 */
2111 uint32_t u32Dummy, u32Features;
2112 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2113 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2114 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2115 else
2116 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2117
2118 /*
2119 * Allocate memory if we're supposed to do that.
2120 */
2121 if (pVM->pgm.s.fRamPreAlloc)
2122 rc = pgmR3PhysRamPreAllocate(pVM);
2123
2124 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2125 return rc;
2126}
2127
2128
2129/**
2130 * Applies relocations to data and code managed by this component.
2131 *
2132 * This function will be called at init and whenever the VMM need to relocate it
2133 * self inside the GC.
2134 *
2135 * @param pVM The VM.
2136 * @param offDelta Relocation delta relative to old location.
2137 */
2138VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2139{
2140 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2141
2142 /*
2143 * Paging stuff.
2144 */
2145 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2146
2147 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2148
2149 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2150 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2151 {
2152 PVMCPU pVCpu = &pVM->aCpus[i];
2153
2154 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2155
2156 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2157 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2158 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2159 }
2160
2161 /*
2162 * Trees.
2163 */
2164 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2165
2166 /*
2167 * Ram ranges.
2168 */
2169 if (pVM->pgm.s.pRamRangesR3)
2170 {
2171 /* Update the pSelfRC pointers and relink them. */
2172 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2173 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2174 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2175 pgmR3PhysRelinkRamRanges(pVM);
2176 }
2177
2178 /*
2179 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2180 * be mapped and thus not included in the above exercise.
2181 */
2182 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2183 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2184 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2185
2186 /*
2187 * Update the two page directories with all page table mappings.
2188 * (One or more of them have changed, that's why we're here.)
2189 */
2190 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2191 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2192 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2193
2194 /* Relocate GC addresses of Page Tables. */
2195 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2196 {
2197 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2198 {
2199 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2200 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2201 }
2202 }
2203
2204 /*
2205 * Dynamic page mapping area.
2206 */
2207 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2208 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2209 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2210
2211 if (pVM->pgm.s.pRCDynMap)
2212 {
2213 pVM->pgm.s.pRCDynMap += offDelta;
2214 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2215
2216 pDynMap->paPages += offDelta;
2217 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2218
2219 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2220 {
2221 paPages[iPage].pvPage += offDelta;
2222 paPages[iPage].uPte.pv += offDelta;
2223 }
2224 }
2225
2226 /*
2227 * The Zero page.
2228 */
2229 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2230#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2231 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2232#else
2233 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2234#endif
2235
2236 /*
2237 * Physical and virtual handlers.
2238 */
2239 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2240 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2241 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2242 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2243
2244 /*
2245 * The page pool.
2246 */
2247 pgmR3PoolRelocate(pVM);
2248
2249#ifdef VBOX_WITH_STATISTICS
2250 /*
2251 * Statistics.
2252 */
2253 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2254 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2255 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2256#endif
2257}
2258
2259
2260/**
2261 * Callback function for relocating a physical access handler.
2262 *
2263 * @returns 0 (continue enum)
2264 * @param pNode Pointer to a PGMPHYSHANDLER node.
2265 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2266 * not certain the delta will fit in a void pointer for all possible configs.
2267 */
2268static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2269{
2270 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2271 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2272 if (pHandler->pfnHandlerRC)
2273 pHandler->pfnHandlerRC += offDelta;
2274 if (pHandler->pvUserRC >= 0x10000)
2275 pHandler->pvUserRC += offDelta;
2276 return 0;
2277}
2278
2279
2280/**
2281 * Callback function for relocating a virtual access handler.
2282 *
2283 * @returns 0 (continue enum)
2284 * @param pNode Pointer to a PGMVIRTHANDLER node.
2285 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2286 * not certain the delta will fit in a void pointer for all possible configs.
2287 */
2288static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2289{
2290 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2291 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2292 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2293 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2294 Assert(pHandler->pfnHandlerRC);
2295 pHandler->pfnHandlerRC += offDelta;
2296 return 0;
2297}
2298
2299
2300/**
2301 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2302 *
2303 * @returns 0 (continue enum)
2304 * @param pNode Pointer to a PGMVIRTHANDLER node.
2305 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2306 * not certain the delta will fit in a void pointer for all possible configs.
2307 */
2308static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2309{
2310 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2311 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2312 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2313 Assert(pHandler->pfnHandlerRC);
2314 pHandler->pfnHandlerRC += offDelta;
2315 return 0;
2316}
2317
2318
2319/**
2320 * Resets a virtual CPU when unplugged.
2321 *
2322 * @param pVM The VM handle.
2323 * @param pVCpu The virtual CPU handle.
2324 */
2325VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2326{
2327 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2328 AssertRC(rc);
2329
2330 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2331 AssertRC(rc);
2332
2333 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2334
2335 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2336
2337 /*
2338 * Re-init other members.
2339 */
2340 pVCpu->pgm.s.fA20Enabled = true;
2341
2342 /*
2343 * Clear the FFs PGM owns.
2344 */
2345 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2346 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2347}
2348
2349
2350/**
2351 * The VM is being reset.
2352 *
2353 * For the PGM component this means that any PD write monitors
2354 * needs to be removed.
2355 *
2356 * @param pVM VM handle.
2357 */
2358VMMR3DECL(void) PGMR3Reset(PVM pVM)
2359{
2360 int rc;
2361
2362 LogFlow(("PGMR3Reset:\n"));
2363 VM_ASSERT_EMT(pVM);
2364
2365 pgmLock(pVM);
2366
2367 /*
2368 * Unfix any fixed mappings and disable CR3 monitoring.
2369 */
2370 pVM->pgm.s.fMappingsFixed = false;
2371 pVM->pgm.s.fMappingsFixedRestored = false;
2372 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2373 pVM->pgm.s.cbMappingFixed = 0;
2374
2375 /*
2376 * Exit the guest paging mode before the pgm pool gets reset.
2377 * Important to clean up the amd64 case.
2378 */
2379 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2380 {
2381 PVMCPU pVCpu = &pVM->aCpus[i];
2382 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2383 AssertRC(rc);
2384 }
2385
2386#ifdef DEBUG
2387 DBGFR3InfoLog(pVM, "mappings", NULL);
2388 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2389#endif
2390
2391 /*
2392 * Switch mode back to real mode. (before resetting the pgm pool!)
2393 */
2394 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2395 {
2396 PVMCPU pVCpu = &pVM->aCpus[i];
2397
2398 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2399 AssertRC(rc);
2400
2401 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2402 }
2403
2404 /*
2405 * Reset the shadow page pool.
2406 */
2407 pgmR3PoolReset(pVM);
2408
2409 /*
2410 * Re-init various other members and clear the FFs that PGM owns.
2411 */
2412 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2413 {
2414 PVMCPU pVCpu = &pVM->aCpus[i];
2415
2416 pVCpu->pgm.s.fA20Enabled = true;
2417 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2418 PGMNotifyNxeChanged(pVCpu, false);
2419
2420 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2421 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2422 }
2423
2424 /*
2425 * Reset (zero) RAM and shadow ROM pages.
2426 */
2427 rc = pgmR3PhysRamReset(pVM);
2428 if (RT_SUCCESS(rc))
2429 rc = pgmR3PhysRomReset(pVM);
2430
2431
2432 pgmUnlock(pVM);
2433 AssertReleaseRC(rc);
2434}
2435
2436
2437#ifdef VBOX_STRICT
2438/**
2439 * VM state change callback for clearing fNoMorePhysWrites after
2440 * a snapshot has been created.
2441 */
2442static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2443{
2444 if ( enmState == VMSTATE_RUNNING
2445 || enmState == VMSTATE_RESUMING)
2446 pVM->pgm.s.fNoMorePhysWrites = false;
2447}
2448#endif
2449
2450
2451/**
2452 * Terminates the PGM.
2453 *
2454 * @returns VBox status code.
2455 * @param pVM Pointer to VM structure.
2456 */
2457VMMR3DECL(int) PGMR3Term(PVM pVM)
2458{
2459 /* Must free shared pages here. */
2460 pgmLock(pVM);
2461 pgmR3PhysRamTerm(pVM);
2462 pgmR3PhysRomTerm(pVM);
2463 pgmUnlock(pVM);
2464
2465 PGMDeregisterStringFormatTypes();
2466 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2467}
2468
2469
2470/**
2471 * Terminates the per-VCPU PGM.
2472 *
2473 * Termination means cleaning up and freeing all resources,
2474 * the VM it self is at this point powered off or suspended.
2475 *
2476 * @returns VBox status code.
2477 * @param pVM The VM to operate on.
2478 */
2479VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2480{
2481 return 0;
2482}
2483
2484
2485/**
2486 * Show paging mode.
2487 *
2488 * @param pVM VM Handle.
2489 * @param pHlp The info helpers.
2490 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2491 */
2492static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2493{
2494 /* digest argument. */
2495 bool fGuest, fShadow, fHost;
2496 if (pszArgs)
2497 pszArgs = RTStrStripL(pszArgs);
2498 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2499 fShadow = fHost = fGuest = true;
2500 else
2501 {
2502 fShadow = fHost = fGuest = false;
2503 if (strstr(pszArgs, "guest"))
2504 fGuest = true;
2505 if (strstr(pszArgs, "shadow"))
2506 fShadow = true;
2507 if (strstr(pszArgs, "host"))
2508 fHost = true;
2509 }
2510
2511 /** @todo SMP support! */
2512 /* print info. */
2513 if (fGuest)
2514 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2515 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2516 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2517 if (fShadow)
2518 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2519 if (fHost)
2520 {
2521 const char *psz;
2522 switch (pVM->pgm.s.enmHostMode)
2523 {
2524 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2525 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2526 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2527 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2528 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2529 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2530 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2531 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2532 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2533 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2534 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2535 default: psz = "unknown"; break;
2536 }
2537 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2538 }
2539}
2540
2541
2542/**
2543 * Dump registered MMIO ranges to the log.
2544 *
2545 * @param pVM VM Handle.
2546 * @param pHlp The info helpers.
2547 * @param pszArgs Arguments, ignored.
2548 */
2549static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2550{
2551 NOREF(pszArgs);
2552 pHlp->pfnPrintf(pHlp,
2553 "RAM ranges (pVM=%p)\n"
2554 "%.*s %.*s\n",
2555 pVM,
2556 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2557 sizeof(RTHCPTR) * 2, "pvHC ");
2558
2559 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2560 pHlp->pfnPrintf(pHlp,
2561 "%RGp-%RGp %RHv %s\n",
2562 pCur->GCPhys,
2563 pCur->GCPhysLast,
2564 pCur->pvR3,
2565 pCur->pszDesc);
2566}
2567
2568/**
2569 * Dump the page directory to the log.
2570 *
2571 * @param pVM VM Handle.
2572 * @param pHlp The info helpers.
2573 * @param pszArgs Arguments, ignored.
2574 */
2575static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2576{
2577 /** @todo SMP support!! */
2578 PVMCPU pVCpu = &pVM->aCpus[0];
2579
2580/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2581 /* Big pages supported? */
2582 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2583
2584 /* Global pages supported? */
2585 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2586
2587 NOREF(pszArgs);
2588
2589 /*
2590 * Get page directory addresses.
2591 */
2592 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2593 Assert(pPDSrc);
2594 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2595
2596 /*
2597 * Iterate the page directory.
2598 */
2599 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2600 {
2601 X86PDE PdeSrc = pPDSrc->a[iPD];
2602 if (PdeSrc.n.u1Present)
2603 {
2604 if (PdeSrc.b.u1Size && fPSE)
2605 pHlp->pfnPrintf(pHlp,
2606 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2607 iPD,
2608 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2609 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2610 else
2611 pHlp->pfnPrintf(pHlp,
2612 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2613 iPD,
2614 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2615 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2616 }
2617 }
2618}
2619
2620
2621/**
2622 * Service a VMMCALLRING3_PGM_LOCK call.
2623 *
2624 * @returns VBox status code.
2625 * @param pVM The VM handle.
2626 */
2627VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2628{
2629 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2630 AssertRC(rc);
2631 return rc;
2632}
2633
2634
2635/**
2636 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2637 *
2638 * @returns PGM_TYPE_*.
2639 * @param pgmMode The mode value to convert.
2640 */
2641DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2642{
2643 switch (pgmMode)
2644 {
2645 case PGMMODE_REAL: return PGM_TYPE_REAL;
2646 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2647 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2648 case PGMMODE_PAE:
2649 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2650 case PGMMODE_AMD64:
2651 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2652 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2653 case PGMMODE_EPT: return PGM_TYPE_EPT;
2654 default:
2655 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2656 }
2657}
2658
2659
2660/**
2661 * Gets the index into the paging mode data array of a SHW+GST mode.
2662 *
2663 * @returns PGM::paPagingData index.
2664 * @param uShwType The shadow paging mode type.
2665 * @param uGstType The guest paging mode type.
2666 */
2667DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2668{
2669 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2670 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2671 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2672 + (uGstType - PGM_TYPE_REAL);
2673}
2674
2675
2676/**
2677 * Gets the index into the paging mode data array of a SHW+GST mode.
2678 *
2679 * @returns PGM::paPagingData index.
2680 * @param enmShw The shadow paging mode.
2681 * @param enmGst The guest paging mode.
2682 */
2683DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2684{
2685 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2686 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2687 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2688}
2689
2690
2691/**
2692 * Calculates the max data index.
2693 * @returns The number of entries in the paging data array.
2694 */
2695DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2696{
2697 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2698}
2699
2700
2701/**
2702 * Initializes the paging mode data kept in PGM::paModeData.
2703 *
2704 * @param pVM The VM handle.
2705 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2706 * This is used early in the init process to avoid trouble with PDM
2707 * not being initialized yet.
2708 */
2709static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2710{
2711 PPGMMODEDATA pModeData;
2712 int rc;
2713
2714 /*
2715 * Allocate the array on the first call.
2716 */
2717 if (!pVM->pgm.s.paModeData)
2718 {
2719 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2720 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2721 }
2722
2723 /*
2724 * Initialize the array entries.
2725 */
2726 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2727 pModeData->uShwType = PGM_TYPE_32BIT;
2728 pModeData->uGstType = PGM_TYPE_REAL;
2729 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2730 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2731 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732
2733 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2734 pModeData->uShwType = PGM_TYPE_32BIT;
2735 pModeData->uGstType = PGM_TYPE_PROT;
2736 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2737 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2738 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2739
2740 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2741 pModeData->uShwType = PGM_TYPE_32BIT;
2742 pModeData->uGstType = PGM_TYPE_32BIT;
2743 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2745 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746
2747 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2748 pModeData->uShwType = PGM_TYPE_PAE;
2749 pModeData->uGstType = PGM_TYPE_REAL;
2750 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2752 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753
2754 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2755 pModeData->uShwType = PGM_TYPE_PAE;
2756 pModeData->uGstType = PGM_TYPE_PROT;
2757 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2759 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2760
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2762 pModeData->uShwType = PGM_TYPE_PAE;
2763 pModeData->uGstType = PGM_TYPE_32BIT;
2764 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2767
2768 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2769 pModeData->uShwType = PGM_TYPE_PAE;
2770 pModeData->uGstType = PGM_TYPE_PAE;
2771 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2773 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2774
2775#ifdef VBOX_WITH_64_BITS_GUESTS
2776 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2777 pModeData->uShwType = PGM_TYPE_AMD64;
2778 pModeData->uGstType = PGM_TYPE_AMD64;
2779 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2780 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2781 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2782#endif
2783
2784 /* The nested paging mode. */
2785 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2786 pModeData->uShwType = PGM_TYPE_NESTED;
2787 pModeData->uGstType = PGM_TYPE_REAL;
2788 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2789 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790
2791 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2792 pModeData->uShwType = PGM_TYPE_NESTED;
2793 pModeData->uGstType = PGM_TYPE_PROT;
2794 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2795 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796
2797 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2798 pModeData->uShwType = PGM_TYPE_NESTED;
2799 pModeData->uGstType = PGM_TYPE_32BIT;
2800 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2801 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2802
2803 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2804 pModeData->uShwType = PGM_TYPE_NESTED;
2805 pModeData->uGstType = PGM_TYPE_PAE;
2806 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2807 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2808
2809#ifdef VBOX_WITH_64_BITS_GUESTS
2810 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2811 pModeData->uShwType = PGM_TYPE_NESTED;
2812 pModeData->uGstType = PGM_TYPE_AMD64;
2813 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2814 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815#endif
2816
2817 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2818 switch (pVM->pgm.s.enmHostMode)
2819 {
2820#if HC_ARCH_BITS == 32
2821 case SUPPAGINGMODE_32_BIT:
2822 case SUPPAGINGMODE_32_BIT_GLOBAL:
2823 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2824 {
2825 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2826 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 }
2828# ifdef VBOX_WITH_64_BITS_GUESTS
2829 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2830 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831# endif
2832 break;
2833
2834 case SUPPAGINGMODE_PAE:
2835 case SUPPAGINGMODE_PAE_NX:
2836 case SUPPAGINGMODE_PAE_GLOBAL:
2837 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2838 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2839 {
2840 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2841 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2842 }
2843# ifdef VBOX_WITH_64_BITS_GUESTS
2844 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2845 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2846# endif
2847 break;
2848#endif /* HC_ARCH_BITS == 32 */
2849
2850#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2851 case SUPPAGINGMODE_AMD64:
2852 case SUPPAGINGMODE_AMD64_GLOBAL:
2853 case SUPPAGINGMODE_AMD64_NX:
2854 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2855# ifdef VBOX_WITH_64_BITS_GUESTS
2856 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2857# else
2858 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2859# endif
2860 {
2861 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2862 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2863 }
2864 break;
2865#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2866
2867 default:
2868 AssertFailed();
2869 break;
2870 }
2871
2872 /* Extended paging (EPT) / Intel VT-x */
2873 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2874 pModeData->uShwType = PGM_TYPE_EPT;
2875 pModeData->uGstType = PGM_TYPE_REAL;
2876 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2877 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2878 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2879
2880 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2881 pModeData->uShwType = PGM_TYPE_EPT;
2882 pModeData->uGstType = PGM_TYPE_PROT;
2883 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2885 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2886
2887 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2888 pModeData->uShwType = PGM_TYPE_EPT;
2889 pModeData->uGstType = PGM_TYPE_32BIT;
2890 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2891 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2892 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2893
2894 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2895 pModeData->uShwType = PGM_TYPE_EPT;
2896 pModeData->uGstType = PGM_TYPE_PAE;
2897 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2898 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2899 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2900
2901#ifdef VBOX_WITH_64_BITS_GUESTS
2902 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2903 pModeData->uShwType = PGM_TYPE_EPT;
2904 pModeData->uGstType = PGM_TYPE_AMD64;
2905 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2906 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908#endif
2909 return VINF_SUCCESS;
2910}
2911
2912
2913/**
2914 * Switch to different (or relocated in the relocate case) mode data.
2915 *
2916 * @param pVM The VM handle.
2917 * @param pVCpu The VMCPU to operate on.
2918 * @param enmShw The the shadow paging mode.
2919 * @param enmGst The the guest paging mode.
2920 */
2921static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2922{
2923 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2924
2925 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2926 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2927
2928 /* shadow */
2929 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2930 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2931 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2932 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2933 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2934
2935 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2936 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2937
2938 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2939 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2940
2941
2942 /* guest */
2943 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2944 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2945 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2946 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2947 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2948 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2949 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2950 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2951 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2952 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2953 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2954 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2955
2956 /* both */
2957 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2958 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2959 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2960 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2961 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2962 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2963#ifdef VBOX_STRICT
2964 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2965#endif
2966 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2967 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2968
2969 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2970 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2971 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2972 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2973 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2974#ifdef VBOX_STRICT
2975 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2976#endif
2977 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2978 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2979
2980 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2981 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2982 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2983 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2984 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2985#ifdef VBOX_STRICT
2986 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2987#endif
2988 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2989 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2990}
2991
2992
2993/**
2994 * Calculates the shadow paging mode.
2995 *
2996 * @returns The shadow paging mode.
2997 * @param pVM VM handle.
2998 * @param enmGuestMode The guest mode.
2999 * @param enmHostMode The host mode.
3000 * @param enmShadowMode The current shadow mode.
3001 * @param penmSwitcher Where to store the switcher to use.
3002 * VMMSWITCHER_INVALID means no change.
3003 */
3004static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3005{
3006 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3007 switch (enmGuestMode)
3008 {
3009 /*
3010 * When switching to real or protected mode we don't change
3011 * anything since it's likely that we'll switch back pretty soon.
3012 *
3013 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3014 * and is supposed to determine which shadow paging and switcher to
3015 * use during init.
3016 */
3017 case PGMMODE_REAL:
3018 case PGMMODE_PROTECTED:
3019 if ( enmShadowMode != PGMMODE_INVALID
3020 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3021 break; /* (no change) */
3022
3023 switch (enmHostMode)
3024 {
3025 case SUPPAGINGMODE_32_BIT:
3026 case SUPPAGINGMODE_32_BIT_GLOBAL:
3027 enmShadowMode = PGMMODE_32_BIT;
3028 enmSwitcher = VMMSWITCHER_32_TO_32;
3029 break;
3030
3031 case SUPPAGINGMODE_PAE:
3032 case SUPPAGINGMODE_PAE_NX:
3033 case SUPPAGINGMODE_PAE_GLOBAL:
3034 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3035 enmShadowMode = PGMMODE_PAE;
3036 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3037#ifdef DEBUG_bird
3038 if (RTEnvExist("VBOX_32BIT"))
3039 {
3040 enmShadowMode = PGMMODE_32_BIT;
3041 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3042 }
3043#endif
3044 break;
3045
3046 case SUPPAGINGMODE_AMD64:
3047 case SUPPAGINGMODE_AMD64_GLOBAL:
3048 case SUPPAGINGMODE_AMD64_NX:
3049 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3050 enmShadowMode = PGMMODE_PAE;
3051 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3052#ifdef DEBUG_bird
3053 if (RTEnvExist("VBOX_32BIT"))
3054 {
3055 enmShadowMode = PGMMODE_32_BIT;
3056 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3057 }
3058#endif
3059 break;
3060
3061 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3062 }
3063 break;
3064
3065 case PGMMODE_32_BIT:
3066 switch (enmHostMode)
3067 {
3068 case SUPPAGINGMODE_32_BIT:
3069 case SUPPAGINGMODE_32_BIT_GLOBAL:
3070 enmShadowMode = PGMMODE_32_BIT;
3071 enmSwitcher = VMMSWITCHER_32_TO_32;
3072 break;
3073
3074 case SUPPAGINGMODE_PAE:
3075 case SUPPAGINGMODE_PAE_NX:
3076 case SUPPAGINGMODE_PAE_GLOBAL:
3077 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3078 enmShadowMode = PGMMODE_PAE;
3079 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3080#ifdef DEBUG_bird
3081 if (RTEnvExist("VBOX_32BIT"))
3082 {
3083 enmShadowMode = PGMMODE_32_BIT;
3084 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3085 }
3086#endif
3087 break;
3088
3089 case SUPPAGINGMODE_AMD64:
3090 case SUPPAGINGMODE_AMD64_GLOBAL:
3091 case SUPPAGINGMODE_AMD64_NX:
3092 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3093 enmShadowMode = PGMMODE_PAE;
3094 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3095#ifdef DEBUG_bird
3096 if (RTEnvExist("VBOX_32BIT"))
3097 {
3098 enmShadowMode = PGMMODE_32_BIT;
3099 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3100 }
3101#endif
3102 break;
3103
3104 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3105 }
3106 break;
3107
3108 case PGMMODE_PAE:
3109 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3110 switch (enmHostMode)
3111 {
3112 case SUPPAGINGMODE_32_BIT:
3113 case SUPPAGINGMODE_32_BIT_GLOBAL:
3114 enmShadowMode = PGMMODE_PAE;
3115 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3116 break;
3117
3118 case SUPPAGINGMODE_PAE:
3119 case SUPPAGINGMODE_PAE_NX:
3120 case SUPPAGINGMODE_PAE_GLOBAL:
3121 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3122 enmShadowMode = PGMMODE_PAE;
3123 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3124 break;
3125
3126 case SUPPAGINGMODE_AMD64:
3127 case SUPPAGINGMODE_AMD64_GLOBAL:
3128 case SUPPAGINGMODE_AMD64_NX:
3129 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3130 enmShadowMode = PGMMODE_PAE;
3131 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3132 break;
3133
3134 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3135 }
3136 break;
3137
3138 case PGMMODE_AMD64:
3139 case PGMMODE_AMD64_NX:
3140 switch (enmHostMode)
3141 {
3142 case SUPPAGINGMODE_32_BIT:
3143 case SUPPAGINGMODE_32_BIT_GLOBAL:
3144 enmShadowMode = PGMMODE_AMD64;
3145 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3146 break;
3147
3148 case SUPPAGINGMODE_PAE:
3149 case SUPPAGINGMODE_PAE_NX:
3150 case SUPPAGINGMODE_PAE_GLOBAL:
3151 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3152 enmShadowMode = PGMMODE_AMD64;
3153 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3154 break;
3155
3156 case SUPPAGINGMODE_AMD64:
3157 case SUPPAGINGMODE_AMD64_GLOBAL:
3158 case SUPPAGINGMODE_AMD64_NX:
3159 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3160 enmShadowMode = PGMMODE_AMD64;
3161 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3162 break;
3163
3164 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3165 }
3166 break;
3167
3168
3169 default:
3170 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3171 *penmSwitcher = VMMSWITCHER_INVALID;
3172 return PGMMODE_INVALID;
3173 }
3174 /* Override the shadow mode is nested paging is active. */
3175 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3176 if (pVM->pgm.s.fNestedPaging)
3177 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3178
3179 *penmSwitcher = enmSwitcher;
3180 return enmShadowMode;
3181}
3182
3183
3184/**
3185 * Performs the actual mode change.
3186 * This is called by PGMChangeMode and pgmR3InitPaging().
3187 *
3188 * @returns VBox status code. May suspend or power off the VM on error, but this
3189 * will trigger using FFs and not status codes.
3190 *
3191 * @param pVM VM handle.
3192 * @param pVCpu The VMCPU to operate on.
3193 * @param enmGuestMode The new guest mode. This is assumed to be different from
3194 * the current mode.
3195 */
3196VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3197{
3198 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3199 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3200
3201 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3202 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3203
3204 /*
3205 * Calc the shadow mode and switcher.
3206 */
3207 VMMSWITCHER enmSwitcher;
3208 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3209
3210#ifdef VBOX_WITH_RAW_MODE
3211 if (enmSwitcher != VMMSWITCHER_INVALID)
3212 {
3213 /*
3214 * Select new switcher.
3215 */
3216 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3217 if (RT_FAILURE(rc))
3218 {
3219 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3220 return rc;
3221 }
3222 }
3223#endif
3224
3225 /*
3226 * Exit old mode(s).
3227 */
3228#if HC_ARCH_BITS == 32
3229 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3230 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3231 && enmShadowMode == PGMMODE_NESTED);
3232#else
3233 const bool fForceShwEnterExit = false;
3234#endif
3235 /* shadow */
3236 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3237 || fForceShwEnterExit)
3238 {
3239 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3240 if (PGM_SHW_PFN(Exit, pVCpu))
3241 {
3242 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3243 if (RT_FAILURE(rc))
3244 {
3245 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3246 return rc;
3247 }
3248 }
3249
3250 }
3251 else
3252 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3253
3254 /* guest */
3255 if (PGM_GST_PFN(Exit, pVCpu))
3256 {
3257 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3258 if (RT_FAILURE(rc))
3259 {
3260 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3261 return rc;
3262 }
3263 }
3264
3265 /*
3266 * Load new paging mode data.
3267 */
3268 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3269
3270 /*
3271 * Enter new shadow mode (if changed).
3272 */
3273 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3274 || fForceShwEnterExit)
3275 {
3276 int rc;
3277 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3278 switch (enmShadowMode)
3279 {
3280 case PGMMODE_32_BIT:
3281 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3282 break;
3283 case PGMMODE_PAE:
3284 case PGMMODE_PAE_NX:
3285 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3286 break;
3287 case PGMMODE_AMD64:
3288 case PGMMODE_AMD64_NX:
3289 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3290 break;
3291 case PGMMODE_NESTED:
3292 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3293 break;
3294 case PGMMODE_EPT:
3295 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3296 break;
3297 case PGMMODE_REAL:
3298 case PGMMODE_PROTECTED:
3299 default:
3300 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3301 return VERR_INTERNAL_ERROR;
3302 }
3303 if (RT_FAILURE(rc))
3304 {
3305 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3306 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3307 return rc;
3308 }
3309 }
3310
3311 /*
3312 * Always flag the necessary updates
3313 */
3314 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3315
3316 /*
3317 * Enter the new guest and shadow+guest modes.
3318 */
3319 int rc = -1;
3320 int rc2 = -1;
3321 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3322 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3323 switch (enmGuestMode)
3324 {
3325 case PGMMODE_REAL:
3326 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3327 switch (pVCpu->pgm.s.enmShadowMode)
3328 {
3329 case PGMMODE_32_BIT:
3330 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3331 break;
3332 case PGMMODE_PAE:
3333 case PGMMODE_PAE_NX:
3334 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3335 break;
3336 case PGMMODE_NESTED:
3337 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3338 break;
3339 case PGMMODE_EPT:
3340 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3341 break;
3342 case PGMMODE_AMD64:
3343 case PGMMODE_AMD64_NX:
3344 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3345 default: AssertFailed(); break;
3346 }
3347 break;
3348
3349 case PGMMODE_PROTECTED:
3350 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3351 switch (pVCpu->pgm.s.enmShadowMode)
3352 {
3353 case PGMMODE_32_BIT:
3354 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3355 break;
3356 case PGMMODE_PAE:
3357 case PGMMODE_PAE_NX:
3358 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3359 break;
3360 case PGMMODE_NESTED:
3361 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3362 break;
3363 case PGMMODE_EPT:
3364 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3365 break;
3366 case PGMMODE_AMD64:
3367 case PGMMODE_AMD64_NX:
3368 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3369 default: AssertFailed(); break;
3370 }
3371 break;
3372
3373 case PGMMODE_32_BIT:
3374 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3375 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3376 switch (pVCpu->pgm.s.enmShadowMode)
3377 {
3378 case PGMMODE_32_BIT:
3379 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3380 break;
3381 case PGMMODE_PAE:
3382 case PGMMODE_PAE_NX:
3383 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3384 break;
3385 case PGMMODE_NESTED:
3386 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3387 break;
3388 case PGMMODE_EPT:
3389 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3390 break;
3391 case PGMMODE_AMD64:
3392 case PGMMODE_AMD64_NX:
3393 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3394 default: AssertFailed(); break;
3395 }
3396 break;
3397
3398 case PGMMODE_PAE_NX:
3399 case PGMMODE_PAE:
3400 {
3401 uint32_t u32Dummy, u32Features;
3402
3403 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3404 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3405 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3406 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3407
3408 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3409 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3410 switch (pVCpu->pgm.s.enmShadowMode)
3411 {
3412 case PGMMODE_PAE:
3413 case PGMMODE_PAE_NX:
3414 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3415 break;
3416 case PGMMODE_NESTED:
3417 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3418 break;
3419 case PGMMODE_EPT:
3420 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3421 break;
3422 case PGMMODE_32_BIT:
3423 case PGMMODE_AMD64:
3424 case PGMMODE_AMD64_NX:
3425 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3426 default: AssertFailed(); break;
3427 }
3428 break;
3429 }
3430
3431#ifdef VBOX_WITH_64_BITS_GUESTS
3432 case PGMMODE_AMD64_NX:
3433 case PGMMODE_AMD64:
3434 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3435 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3436 switch (pVCpu->pgm.s.enmShadowMode)
3437 {
3438 case PGMMODE_AMD64:
3439 case PGMMODE_AMD64_NX:
3440 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3441 break;
3442 case PGMMODE_NESTED:
3443 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3444 break;
3445 case PGMMODE_EPT:
3446 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3447 break;
3448 case PGMMODE_32_BIT:
3449 case PGMMODE_PAE:
3450 case PGMMODE_PAE_NX:
3451 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3452 default: AssertFailed(); break;
3453 }
3454 break;
3455#endif
3456
3457 default:
3458 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3459 rc = VERR_NOT_IMPLEMENTED;
3460 break;
3461 }
3462
3463 /* status codes. */
3464 AssertRC(rc);
3465 AssertRC(rc2);
3466 if (RT_SUCCESS(rc))
3467 {
3468 rc = rc2;
3469 if (RT_SUCCESS(rc)) /* no informational status codes. */
3470 rc = VINF_SUCCESS;
3471 }
3472
3473 /* Notify HWACCM as well. */
3474 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3475 return rc;
3476}
3477
3478
3479/**
3480 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3481 *
3482 * @returns VBox status code, fully asserted.
3483 * @param pVM The VM handle.
3484 * @param pVCpu The VMCPU to operate on.
3485 */
3486int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3487{
3488 /* Unmap the old CR3 value before flushing everything. */
3489 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3490 AssertRC(rc);
3491
3492 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3493 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3494 AssertRC(rc);
3495 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3496 return rc;
3497}
3498
3499
3500/**
3501 * Called by pgmPoolFlushAllInt after flushing the pool.
3502 *
3503 * @returns VBox status code, fully asserted.
3504 * @param pVM The VM handle.
3505 * @param pVCpu The VMCPU to operate on.
3506 */
3507int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3508{
3509 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3510 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3511 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3512 AssertRCReturn(rc, rc);
3513 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3514
3515 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3516 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3517 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3518 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3519 return rc;
3520}
3521
3522
3523/**
3524 * Dumps a PAE shadow page table.
3525 *
3526 * @returns VBox status code (VINF_SUCCESS).
3527 * @param pVM The VM handle.
3528 * @param pPT Pointer to the page table.
3529 * @param u64Address The virtual address of the page table starts.
3530 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3531 * @param cMaxDepth The maxium depth.
3532 * @param pHlp Pointer to the output functions.
3533 */
3534static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3535{
3536 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3537 {
3538 X86PTEPAE Pte = pPT->a[i];
3539 if (Pte.n.u1Present)
3540 {
3541 pHlp->pfnPrintf(pHlp,
3542 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3543 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3544 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3545 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3546 Pte.n.u1Write ? 'W' : 'R',
3547 Pte.n.u1User ? 'U' : 'S',
3548 Pte.n.u1Accessed ? 'A' : '-',
3549 Pte.n.u1Dirty ? 'D' : '-',
3550 Pte.n.u1Global ? 'G' : '-',
3551 Pte.n.u1WriteThru ? "WT" : "--",
3552 Pte.n.u1CacheDisable? "CD" : "--",
3553 Pte.n.u1PAT ? "AT" : "--",
3554 Pte.n.u1NoExecute ? "NX" : "--",
3555 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3556 Pte.u & RT_BIT(10) ? '1' : '0',
3557 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3558 Pte.u & X86_PTE_PAE_PG_MASK);
3559 }
3560 }
3561 return VINF_SUCCESS;
3562}
3563
3564
3565/**
3566 * Dumps a PAE shadow page directory table.
3567 *
3568 * @returns VBox status code (VINF_SUCCESS).
3569 * @param pVM The VM handle.
3570 * @param HCPhys The physical address of the page directory table.
3571 * @param u64Address The virtual address of the page table starts.
3572 * @param cr4 The CR4, PSE is currently used.
3573 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3574 * @param cMaxDepth The maxium depth.
3575 * @param pHlp Pointer to the output functions.
3576 */
3577static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3578{
3579 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3580 if (!pPD)
3581 {
3582 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3583 fLongMode ? 16 : 8, u64Address, HCPhys);
3584 return VERR_INVALID_PARAMETER;
3585 }
3586 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3587
3588 int rc = VINF_SUCCESS;
3589 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3590 {
3591 X86PDEPAE Pde = pPD->a[i];
3592 if (Pde.n.u1Present)
3593 {
3594 if (fBigPagesSupported && Pde.b.u1Size)
3595 pHlp->pfnPrintf(pHlp,
3596 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3597 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3598 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3599 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3600 Pde.b.u1Write ? 'W' : 'R',
3601 Pde.b.u1User ? 'U' : 'S',
3602 Pde.b.u1Accessed ? 'A' : '-',
3603 Pde.b.u1Dirty ? 'D' : '-',
3604 Pde.b.u1Global ? 'G' : '-',
3605 Pde.b.u1WriteThru ? "WT" : "--",
3606 Pde.b.u1CacheDisable? "CD" : "--",
3607 Pde.b.u1PAT ? "AT" : "--",
3608 Pde.b.u1NoExecute ? "NX" : "--",
3609 Pde.u & RT_BIT_64(9) ? '1' : '0',
3610 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3611 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3612 Pde.u & X86_PDE_PAE_PG_MASK);
3613 else
3614 {
3615 pHlp->pfnPrintf(pHlp,
3616 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3617 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3618 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3619 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3620 Pde.n.u1Write ? 'W' : 'R',
3621 Pde.n.u1User ? 'U' : 'S',
3622 Pde.n.u1Accessed ? 'A' : '-',
3623 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3624 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3625 Pde.n.u1WriteThru ? "WT" : "--",
3626 Pde.n.u1CacheDisable? "CD" : "--",
3627 Pde.n.u1NoExecute ? "NX" : "--",
3628 Pde.u & RT_BIT_64(9) ? '1' : '0',
3629 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3630 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3631 Pde.u & X86_PDE_PAE_PG_MASK);
3632 if (cMaxDepth >= 1)
3633 {
3634 /** @todo what about using the page pool for mapping PTs? */
3635 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3636 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3637 PX86PTPAE pPT = NULL;
3638 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3639 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3640 else
3641 {
3642 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3643 {
3644 uint64_t off = u64AddressPT - pMap->GCPtr;
3645 if (off < pMap->cb)
3646 {
3647 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3648 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3649 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3650 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3651 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3652 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3653 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3654 }
3655 }
3656 }
3657 int rc2 = VERR_INVALID_PARAMETER;
3658 if (pPT)
3659 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3660 else
3661 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3662 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3663 if (rc2 < rc && RT_SUCCESS(rc))
3664 rc = rc2;
3665 }
3666 }
3667 }
3668 }
3669 return rc;
3670}
3671
3672
3673/**
3674 * Dumps a PAE shadow page directory pointer table.
3675 *
3676 * @returns VBox status code (VINF_SUCCESS).
3677 * @param pVM The VM handle.
3678 * @param HCPhys The physical address of the page directory pointer table.
3679 * @param u64Address The virtual address of the page table starts.
3680 * @param cr4 The CR4, PSE is currently used.
3681 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3682 * @param cMaxDepth The maxium depth.
3683 * @param pHlp Pointer to the output functions.
3684 */
3685static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3686{
3687 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3688 if (!pPDPT)
3689 {
3690 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3691 fLongMode ? 16 : 8, u64Address, HCPhys);
3692 return VERR_INVALID_PARAMETER;
3693 }
3694
3695 int rc = VINF_SUCCESS;
3696 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3697 for (unsigned i = 0; i < c; i++)
3698 {
3699 X86PDPE Pdpe = pPDPT->a[i];
3700 if (Pdpe.n.u1Present)
3701 {
3702 if (fLongMode)
3703 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3704 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3705 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3706 Pdpe.lm.u1Write ? 'W' : 'R',
3707 Pdpe.lm.u1User ? 'U' : 'S',
3708 Pdpe.lm.u1Accessed ? 'A' : '-',
3709 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3710 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3711 Pdpe.lm.u1WriteThru ? "WT" : "--",
3712 Pdpe.lm.u1CacheDisable? "CD" : "--",
3713 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3714 Pdpe.lm.u1NoExecute ? "NX" : "--",
3715 Pdpe.u & RT_BIT(9) ? '1' : '0',
3716 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3717 Pdpe.u & RT_BIT(11) ? '1' : '0',
3718 Pdpe.u & X86_PDPE_PG_MASK);
3719 else
3720 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3721 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3722 i << X86_PDPT_SHIFT,
3723 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3724 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3725 Pdpe.n.u1WriteThru ? "WT" : "--",
3726 Pdpe.n.u1CacheDisable? "CD" : "--",
3727 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3728 Pdpe.u & RT_BIT(9) ? '1' : '0',
3729 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3730 Pdpe.u & RT_BIT(11) ? '1' : '0',
3731 Pdpe.u & X86_PDPE_PG_MASK);
3732 if (cMaxDepth >= 1)
3733 {
3734 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3735 cr4, fLongMode, cMaxDepth - 1, pHlp);
3736 if (rc2 < rc && RT_SUCCESS(rc))
3737 rc = rc2;
3738 }
3739 }
3740 }
3741 return rc;
3742}
3743
3744
3745/**
3746 * Dumps a 32-bit shadow page table.
3747 *
3748 * @returns VBox status code (VINF_SUCCESS).
3749 * @param pVM The VM handle.
3750 * @param HCPhys The physical address of the table.
3751 * @param cr4 The CR4, PSE is currently used.
3752 * @param cMaxDepth The maxium depth.
3753 * @param pHlp Pointer to the output functions.
3754 */
3755static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3756{
3757 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3758 if (!pPML4)
3759 {
3760 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3761 return VERR_INVALID_PARAMETER;
3762 }
3763
3764 int rc = VINF_SUCCESS;
3765 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3766 {
3767 X86PML4E Pml4e = pPML4->a[i];
3768 if (Pml4e.n.u1Present)
3769 {
3770 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3771 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3772 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3773 u64Address,
3774 Pml4e.n.u1Write ? 'W' : 'R',
3775 Pml4e.n.u1User ? 'U' : 'S',
3776 Pml4e.n.u1Accessed ? 'A' : '-',
3777 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3778 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3779 Pml4e.n.u1WriteThru ? "WT" : "--",
3780 Pml4e.n.u1CacheDisable? "CD" : "--",
3781 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3782 Pml4e.n.u1NoExecute ? "NX" : "--",
3783 Pml4e.u & RT_BIT(9) ? '1' : '0',
3784 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3785 Pml4e.u & RT_BIT(11) ? '1' : '0',
3786 Pml4e.u & X86_PML4E_PG_MASK);
3787
3788 if (cMaxDepth >= 1)
3789 {
3790 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3791 if (rc2 < rc && RT_SUCCESS(rc))
3792 rc = rc2;
3793 }
3794 }
3795 }
3796 return rc;
3797}
3798
3799
3800/**
3801 * Dumps a 32-bit shadow page table.
3802 *
3803 * @returns VBox status code (VINF_SUCCESS).
3804 * @param pVM The VM handle.
3805 * @param pPT Pointer to the page table.
3806 * @param u32Address The virtual address this table starts at.
3807 * @param pHlp Pointer to the output functions.
3808 */
3809int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3810{
3811 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3812 {
3813 X86PTE Pte = pPT->a[i];
3814 if (Pte.n.u1Present)
3815 {
3816 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3817 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3818 u32Address + (i << X86_PT_SHIFT),
3819 Pte.n.u1Write ? 'W' : 'R',
3820 Pte.n.u1User ? 'U' : 'S',
3821 Pte.n.u1Accessed ? 'A' : '-',
3822 Pte.n.u1Dirty ? 'D' : '-',
3823 Pte.n.u1Global ? 'G' : '-',
3824 Pte.n.u1WriteThru ? "WT" : "--",
3825 Pte.n.u1CacheDisable? "CD" : "--",
3826 Pte.n.u1PAT ? "AT" : "--",
3827 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3828 Pte.u & RT_BIT(10) ? '1' : '0',
3829 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3830 Pte.u & X86_PDE_PG_MASK);
3831 }
3832 }
3833 return VINF_SUCCESS;
3834}
3835
3836
3837/**
3838 * Dumps a 32-bit shadow page directory and page tables.
3839 *
3840 * @returns VBox status code (VINF_SUCCESS).
3841 * @param pVM The VM handle.
3842 * @param cr3 The root of the hierarchy.
3843 * @param cr4 The CR4, PSE is currently used.
3844 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3845 * @param pHlp Pointer to the output functions.
3846 */
3847int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3848{
3849 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3850 if (!pPD)
3851 {
3852 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3853 return VERR_INVALID_PARAMETER;
3854 }
3855
3856 int rc = VINF_SUCCESS;
3857 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3858 {
3859 X86PDE Pde = pPD->a[i];
3860 if (Pde.n.u1Present)
3861 {
3862 const uint32_t u32Address = i << X86_PD_SHIFT;
3863 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3864 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3865 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3866 u32Address,
3867 Pde.b.u1Write ? 'W' : 'R',
3868 Pde.b.u1User ? 'U' : 'S',
3869 Pde.b.u1Accessed ? 'A' : '-',
3870 Pde.b.u1Dirty ? 'D' : '-',
3871 Pde.b.u1Global ? 'G' : '-',
3872 Pde.b.u1WriteThru ? "WT" : "--",
3873 Pde.b.u1CacheDisable? "CD" : "--",
3874 Pde.b.u1PAT ? "AT" : "--",
3875 Pde.u & RT_BIT_64(9) ? '1' : '0',
3876 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3877 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3878 Pde.u & X86_PDE4M_PG_MASK);
3879 else
3880 {
3881 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3882 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3883 u32Address,
3884 Pde.n.u1Write ? 'W' : 'R',
3885 Pde.n.u1User ? 'U' : 'S',
3886 Pde.n.u1Accessed ? 'A' : '-',
3887 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3888 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3889 Pde.n.u1WriteThru ? "WT" : "--",
3890 Pde.n.u1CacheDisable? "CD" : "--",
3891 Pde.u & RT_BIT_64(9) ? '1' : '0',
3892 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3893 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3894 Pde.u & X86_PDE_PG_MASK);
3895 if (cMaxDepth >= 1)
3896 {
3897 /** @todo what about using the page pool for mapping PTs? */
3898 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3899 PX86PT pPT = NULL;
3900 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3901 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3902 else
3903 {
3904 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3905 if (u32Address - pMap->GCPtr < pMap->cb)
3906 {
3907 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3908 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3909 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3910 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3911 pPT = pMap->aPTs[iPDE].pPTR3;
3912 }
3913 }
3914 int rc2 = VERR_INVALID_PARAMETER;
3915 if (pPT)
3916 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3917 else
3918 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3919 if (rc2 < rc && RT_SUCCESS(rc))
3920 rc = rc2;
3921 }
3922 }
3923 }
3924 }
3925
3926 return rc;
3927}
3928
3929
3930/**
3931 * Dumps a 32-bit shadow page table.
3932 *
3933 * @returns VBox status code (VINF_SUCCESS).
3934 * @param pVM The VM handle.
3935 * @param pPT Pointer to the page table.
3936 * @param u32Address The virtual address this table starts at.
3937 * @param PhysSearch Address to search for.
3938 */
3939int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3940{
3941 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3942 {
3943 X86PTE Pte = pPT->a[i];
3944 if (Pte.n.u1Present)
3945 {
3946 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3947 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3948 u32Address + (i << X86_PT_SHIFT),
3949 Pte.n.u1Write ? 'W' : 'R',
3950 Pte.n.u1User ? 'U' : 'S',
3951 Pte.n.u1Accessed ? 'A' : '-',
3952 Pte.n.u1Dirty ? 'D' : '-',
3953 Pte.n.u1Global ? 'G' : '-',
3954 Pte.n.u1WriteThru ? "WT" : "--",
3955 Pte.n.u1CacheDisable? "CD" : "--",
3956 Pte.n.u1PAT ? "AT" : "--",
3957 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3958 Pte.u & RT_BIT(10) ? '1' : '0',
3959 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3960 Pte.u & X86_PDE_PG_MASK));
3961
3962 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3963 {
3964 uint64_t fPageShw = 0;
3965 RTHCPHYS pPhysHC = 0;
3966
3967 /** @todo SMP support!! */
3968 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3969 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3970 }
3971 }
3972 }
3973 return VINF_SUCCESS;
3974}
3975
3976
3977/**
3978 * Dumps a 32-bit guest page directory and page tables.
3979 *
3980 * @returns VBox status code (VINF_SUCCESS).
3981 * @param pVM The VM handle.
3982 * @param cr3 The root of the hierarchy.
3983 * @param cr4 The CR4, PSE is currently used.
3984 * @param PhysSearch Address to search for.
3985 */
3986VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3987{
3988 bool fLongMode = false;
3989 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3990 PX86PD pPD = 0;
3991 PGMPAGEMAPLOCK LockCr3;
3992
3993 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, cr3 & X86_CR3_PAGE_MASK, (const void **)&pPD, &LockCr3);
3994 if ( RT_FAILURE(rc)
3995 || !pPD)
3996 {
3997 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3998 return VERR_INVALID_PARAMETER;
3999 }
4000
4001 Log(("cr3=%08x cr4=%08x%s\n"
4002 "%-*s P - Present\n"
4003 "%-*s | R/W - Read (0) / Write (1)\n"
4004 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4005 "%-*s | | | A - Accessed\n"
4006 "%-*s | | | | D - Dirty\n"
4007 "%-*s | | | | | G - Global\n"
4008 "%-*s | | | | | | WT - Write thru\n"
4009 "%-*s | | | | | | | CD - Cache disable\n"
4010 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4011 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4012 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4013 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4014 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4015 "%-*s Level | | | | | | | | | | | | Page\n"
4016 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4017 - W U - - - -- -- -- -- -- 010 */
4018 , cr3, cr4, fLongMode ? " Long Mode" : "",
4019 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4020 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4021
4022 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4023 {
4024 X86PDE Pde = pPD->a[i];
4025 if (Pde.n.u1Present)
4026 {
4027 const uint32_t u32Address = i << X86_PD_SHIFT;
4028
4029 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4030 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4031 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4032 u32Address,
4033 Pde.b.u1Write ? 'W' : 'R',
4034 Pde.b.u1User ? 'U' : 'S',
4035 Pde.b.u1Accessed ? 'A' : '-',
4036 Pde.b.u1Dirty ? 'D' : '-',
4037 Pde.b.u1Global ? 'G' : '-',
4038 Pde.b.u1WriteThru ? "WT" : "--",
4039 Pde.b.u1CacheDisable? "CD" : "--",
4040 Pde.b.u1PAT ? "AT" : "--",
4041 Pde.u & RT_BIT(9) ? '1' : '0',
4042 Pde.u & RT_BIT(10) ? '1' : '0',
4043 Pde.u & RT_BIT(11) ? '1' : '0',
4044 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4045 /** @todo PhysSearch */
4046 else
4047 {
4048 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4049 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4050 u32Address,
4051 Pde.n.u1Write ? 'W' : 'R',
4052 Pde.n.u1User ? 'U' : 'S',
4053 Pde.n.u1Accessed ? 'A' : '-',
4054 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4055 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4056 Pde.n.u1WriteThru ? "WT" : "--",
4057 Pde.n.u1CacheDisable? "CD" : "--",
4058 Pde.u & RT_BIT(9) ? '1' : '0',
4059 Pde.u & RT_BIT(10) ? '1' : '0',
4060 Pde.u & RT_BIT(11) ? '1' : '0',
4061 Pde.u & X86_PDE_PG_MASK));
4062 ////if (cMaxDepth >= 1)
4063 {
4064 /** @todo what about using the page pool for mapping PTs? */
4065 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4066 PX86PT pPT = NULL;
4067 PGMPAGEMAPLOCK LockPT;
4068
4069 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, (const void **)&pPT, &LockPT);
4070
4071 int rc2 = VERR_INVALID_PARAMETER;
4072 if (pPT)
4073 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4074 else
4075 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4076
4077 if (rc == VINF_SUCCESS)
4078 PGMPhysReleasePageMappingLock(pVM, &LockPT);
4079
4080 if (rc2 < rc && RT_SUCCESS(rc))
4081 rc = rc2;
4082 }
4083 }
4084 }
4085 }
4086 PGMPhysReleasePageMappingLock(pVM, &LockCr3);
4087 return rc;
4088}
4089
4090
4091/**
4092 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4093 *
4094 * @returns VBox status code (VINF_SUCCESS).
4095 * @param pVM The VM handle.
4096 * @param cr3 The root of the hierarchy.
4097 * @param cr4 The cr4, only PAE and PSE is currently used.
4098 * @param fLongMode Set if long mode, false if not long mode.
4099 * @param cMaxDepth Number of levels to dump.
4100 * @param pHlp Pointer to the output functions.
4101 */
4102VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4103{
4104 if (!pHlp)
4105 pHlp = DBGFR3InfoLogHlp();
4106 if (!cMaxDepth)
4107 return VINF_SUCCESS;
4108 const unsigned cch = fLongMode ? 16 : 8;
4109 pHlp->pfnPrintf(pHlp,
4110 "cr3=%08x cr4=%08x%s\n"
4111 "%-*s P - Present\n"
4112 "%-*s | R/W - Read (0) / Write (1)\n"
4113 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4114 "%-*s | | | A - Accessed\n"
4115 "%-*s | | | | D - Dirty\n"
4116 "%-*s | | | | | G - Global\n"
4117 "%-*s | | | | | | WT - Write thru\n"
4118 "%-*s | | | | | | | CD - Cache disable\n"
4119 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4120 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4121 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4122 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4123 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4124 "%-*s Level | | | | | | | | | | | | Page\n"
4125 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4126 - W U - - - -- -- -- -- -- 010 */
4127 , cr3, cr4, fLongMode ? " Long Mode" : "",
4128 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4129 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4130 if (cr4 & X86_CR4_PAE)
4131 {
4132 if (fLongMode)
4133 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4134 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4135 }
4136 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4137}
4138
4139#ifdef VBOX_WITH_DEBUGGER
4140
4141/**
4142 * The '.pgmram' command.
4143 *
4144 * @returns VBox status.
4145 * @param pCmd Pointer to the command descriptor (as registered).
4146 * @param pCmdHlp Pointer to command helper functions.
4147 * @param pVM Pointer to the current VM (if any).
4148 * @param paArgs Pointer to (readonly) array of arguments.
4149 * @param cArgs Number of arguments in the array.
4150 */
4151static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4152{
4153 /*
4154 * Validate input.
4155 */
4156 if (!pVM)
4157 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4158 if (!pVM->pgm.s.pRamRangesRC)
4159 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4160
4161 /*
4162 * Dump the ranges.
4163 */
4164 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4165 PPGMRAMRANGE pRam;
4166 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4167 {
4168 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4169 "%RGp - %RGp %p\n",
4170 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4171 if (RT_FAILURE(rc))
4172 return rc;
4173 }
4174
4175 return VINF_SUCCESS;
4176}
4177
4178
4179/**
4180 * The '.pgmerror' and '.pgmerroroff' commands.
4181 *
4182 * @returns VBox status.
4183 * @param pCmd Pointer to the command descriptor (as registered).
4184 * @param pCmdHlp Pointer to command helper functions.
4185 * @param pVM Pointer to the current VM (if any).
4186 * @param paArgs Pointer to (readonly) array of arguments.
4187 * @param cArgs Number of arguments in the array.
4188 */
4189static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4190{
4191 /*
4192 * Validate input.
4193 */
4194 if (!pVM)
4195 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4196 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4197 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4198
4199 if (!cArgs)
4200 {
4201 /*
4202 * Print the list of error injection locations with status.
4203 */
4204 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4205 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4206 }
4207 else
4208 {
4209
4210 /*
4211 * String switch on where to inject the error.
4212 */
4213 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4214 const char *pszWhere = paArgs[0].u.pszString;
4215 if (!strcmp(pszWhere, "handy"))
4216 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4217 else
4218 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4219 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4220 }
4221 return VINF_SUCCESS;
4222}
4223
4224
4225/**
4226 * The '.pgmsync' command.
4227 *
4228 * @returns VBox status.
4229 * @param pCmd Pointer to the command descriptor (as registered).
4230 * @param pCmdHlp Pointer to command helper functions.
4231 * @param pVM Pointer to the current VM (if any).
4232 * @param paArgs Pointer to (readonly) array of arguments.
4233 * @param cArgs Number of arguments in the array.
4234 */
4235static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4236{
4237 /** @todo SMP support */
4238 PVMCPU pVCpu = &pVM->aCpus[0];
4239
4240 /*
4241 * Validate input.
4242 */
4243 if (!pVM)
4244 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4245
4246 /*
4247 * Force page directory sync.
4248 */
4249 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4250
4251 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4252 if (RT_FAILURE(rc))
4253 return rc;
4254
4255 return VINF_SUCCESS;
4256}
4257
4258
4259#ifdef VBOX_STRICT
4260/**
4261 * The '.pgmassertcr3' command.
4262 *
4263 * @returns VBox status.
4264 * @param pCmd Pointer to the command descriptor (as registered).
4265 * @param pCmdHlp Pointer to command helper functions.
4266 * @param pVM Pointer to the current VM (if any).
4267 * @param paArgs Pointer to (readonly) array of arguments.
4268 * @param cArgs Number of arguments in the array.
4269 */
4270static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4271{
4272 /** @todo SMP support!! */
4273 PVMCPU pVCpu = &pVM->aCpus[0];
4274
4275 /*
4276 * Validate input.
4277 */
4278 if (!pVM)
4279 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4280
4281 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4282 if (RT_FAILURE(rc))
4283 return rc;
4284
4285 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4286
4287 return VINF_SUCCESS;
4288}
4289#endif /* VBOX_STRICT */
4290
4291
4292/**
4293 * The '.pgmsyncalways' command.
4294 *
4295 * @returns VBox status.
4296 * @param pCmd Pointer to the command descriptor (as registered).
4297 * @param pCmdHlp Pointer to command helper functions.
4298 * @param pVM Pointer to the current VM (if any).
4299 * @param paArgs Pointer to (readonly) array of arguments.
4300 * @param cArgs Number of arguments in the array.
4301 */
4302static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4303{
4304 /** @todo SMP support!! */
4305 PVMCPU pVCpu = &pVM->aCpus[0];
4306
4307 /*
4308 * Validate input.
4309 */
4310 if (!pVM)
4311 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4312
4313 /*
4314 * Force page directory sync.
4315 */
4316 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4317 {
4318 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4319 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4320 }
4321 else
4322 {
4323 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4324 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4325 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4326 }
4327}
4328
4329
4330/**
4331 * The '.pgmsyncalways' command.
4332 *
4333 * @returns VBox status.
4334 * @param pCmd Pointer to the command descriptor (as registered).
4335 * @param pCmdHlp Pointer to command helper functions.
4336 * @param pVM Pointer to the current VM (if any).
4337 * @param paArgs Pointer to (readonly) array of arguments.
4338 * @param cArgs Number of arguments in the array.
4339 */
4340static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4341{
4342 /*
4343 * Validate input.
4344 */
4345 if (!pVM)
4346 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4347 if ( cArgs < 1
4348 || cArgs > 2
4349 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4350 || ( cArgs > 1
4351 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4352 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4353 if ( cArgs >= 2
4354 && strcmp(paArgs[1].u.pszString, "nozero"))
4355 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4356 bool fIncZeroPgs = cArgs < 2;
4357
4358 /*
4359 * Open the output file and get the ram parameters.
4360 */
4361 RTFILE hFile;
4362 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4363 if (RT_FAILURE(rc))
4364 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4365
4366 uint32_t cbRamHole = 0;
4367 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4368 uint64_t cbRam = 0;
4369 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4370 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4371
4372 /*
4373 * Dump the physical memory, page by page.
4374 */
4375 RTGCPHYS GCPhys = 0;
4376 char abZeroPg[PAGE_SIZE];
4377 RT_ZERO(abZeroPg);
4378
4379 pgmLock(pVM);
4380 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4381 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4382 pRam = pRam->pNextR3)
4383 {
4384 /* fill the gap */
4385 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4386 {
4387 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4388 {
4389 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4390 GCPhys += PAGE_SIZE;
4391 }
4392 }
4393
4394 PCPGMPAGE pPage = &pRam->aPages[0];
4395 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4396 {
4397 if ( PGM_PAGE_IS_ZERO(pPage)
4398 || PGM_PAGE_IS_BALLOONED(pPage))
4399 {
4400 if (fIncZeroPgs)
4401 {
4402 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4403 if (RT_FAILURE(rc))
4404 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4405 }
4406 }
4407 else
4408 {
4409 switch (PGM_PAGE_GET_TYPE(pPage))
4410 {
4411 case PGMPAGETYPE_RAM:
4412 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4413 case PGMPAGETYPE_ROM:
4414 case PGMPAGETYPE_MMIO2:
4415 {
4416 void const *pvPage;
4417 PGMPAGEMAPLOCK Lock;
4418 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4419 if (RT_SUCCESS(rc))
4420 {
4421 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4422 PGMPhysReleasePageMappingLock(pVM, &Lock);
4423 if (RT_FAILURE(rc))
4424 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4425 }
4426 else
4427 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4428 break;
4429 }
4430
4431 default:
4432 AssertFailed();
4433 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4434 case PGMPAGETYPE_MMIO:
4435 if (fIncZeroPgs)
4436 {
4437 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4438 if (RT_FAILURE(rc))
4439 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4440 }
4441 break;
4442 }
4443 }
4444
4445
4446 /* advance */
4447 GCPhys += PAGE_SIZE;
4448 pPage++;
4449 }
4450 }
4451 pgmUnlock(pVM);
4452
4453 RTFileClose(hFile);
4454 if (RT_SUCCESS(rc))
4455 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4456 return VINF_SUCCESS;
4457}
4458
4459#endif /* VBOX_WITH_DEBUGGER */
4460
4461/**
4462 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4463 */
4464typedef struct PGMCHECKINTARGS
4465{
4466 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4467 PPGMPHYSHANDLER pPrevPhys;
4468 PPGMVIRTHANDLER pPrevVirt;
4469 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4470 PVM pVM;
4471} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4472
4473/**
4474 * Validate a node in the physical handler tree.
4475 *
4476 * @returns 0 on if ok, other wise 1.
4477 * @param pNode The handler node.
4478 * @param pvUser pVM.
4479 */
4480static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4481{
4482 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4483 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4484 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4485 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4486 AssertReleaseMsg( !pArgs->pPrevPhys
4487 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4488 ("pPrevPhys=%p %RGp-%RGp %s\n"
4489 " pCur=%p %RGp-%RGp %s\n",
4490 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4491 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4492 pArgs->pPrevPhys = pCur;
4493 return 0;
4494}
4495
4496
4497/**
4498 * Validate a node in the virtual handler tree.
4499 *
4500 * @returns 0 on if ok, other wise 1.
4501 * @param pNode The handler node.
4502 * @param pvUser pVM.
4503 */
4504static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4505{
4506 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4507 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4508 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4509 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4510 AssertReleaseMsg( !pArgs->pPrevVirt
4511 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4512 ("pPrevVirt=%p %RGv-%RGv %s\n"
4513 " pCur=%p %RGv-%RGv %s\n",
4514 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4515 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4516 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4517 {
4518 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4519 ("pCur=%p %RGv-%RGv %s\n"
4520 "iPage=%d offVirtHandle=%#x expected %#x\n",
4521 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4522 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4523 }
4524 pArgs->pPrevVirt = pCur;
4525 return 0;
4526}
4527
4528
4529/**
4530 * Validate a node in the virtual handler tree.
4531 *
4532 * @returns 0 on if ok, other wise 1.
4533 * @param pNode The handler node.
4534 * @param pvUser pVM.
4535 */
4536static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4537{
4538 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4539 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4540 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4541 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4542 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4543 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4544 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4545 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4546 " pCur=%p %RGp-%RGp\n",
4547 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4548 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4549 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4550 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4551 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4552 " pCur=%p %RGp-%RGp\n",
4553 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4554 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4555 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4556 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4557 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4558 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4559 {
4560 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4561 for (;;)
4562 {
4563 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4564 AssertReleaseMsg(pCur2 != pCur,
4565 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4566 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4567 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4568 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4569 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4570 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4571 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4572 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4573 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4574 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4575 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4576 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4577 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4578 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4579 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4580 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4581 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4582 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4583 break;
4584 }
4585 }
4586
4587 pArgs->pPrevPhys2Virt = pCur;
4588 return 0;
4589}
4590
4591
4592/**
4593 * Perform an integrity check on the PGM component.
4594 *
4595 * @returns VINF_SUCCESS if everything is fine.
4596 * @returns VBox error status after asserting on integrity breach.
4597 * @param pVM The VM handle.
4598 */
4599VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4600{
4601 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4602
4603 /*
4604 * Check the trees.
4605 */
4606 int cErrors = 0;
4607 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4608 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4609 PGMCHECKINTARGS Args = s_LeftToRight;
4610 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4611 Args = s_RightToLeft;
4612 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4613 Args = s_LeftToRight;
4614 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4615 Args = s_RightToLeft;
4616 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4617 Args = s_LeftToRight;
4618 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4619 Args = s_RightToLeft;
4620 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4621 Args = s_LeftToRight;
4622 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4623 Args = s_RightToLeft;
4624 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4625
4626 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4627}
4628
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette