/* $Id: PGM.cpp 7629 2008-03-28 15:07:31Z vboxsync $ */ /** @file * PGM - Page Manager and Monitor. (Mixing stuff here, not good?) */ /* * Copyright (C) 2006-2007 innotek GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /** @page pg_pgm PGM - The Page Manager and Monitor * * * * @section sec_pgm_modes Paging Modes * * There are three memory contexts: Host Context (HC), Guest Context (GC) * and intermediate context. When talking about paging HC can also be refered to * as "host paging", and GC refered to as "shadow paging". * * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode * is defined by the host operating system. The mode used in the shadow paging mode * depends on the host paging mode and what the mode the guest is currently in. The * following relation between the two is defined: * * @verbatim Host > 32-bit | PAE | AMD64 | Guest | | | | ==v================================ 32-bit 32-bit PAE PAE -------|--------|--------|--------| PAE PAE PAE PAE -------|--------|--------|--------| AMD64 AMD64 AMD64 AMD64 -------|--------|--------|--------| @endverbatim * * All configuration except those in the diagonal (upper left) are expected to * require special effort from the switcher (i.e. a bit slower). * * * * * @section sec_pgm_shw The Shadow Memory Context * * * [..] * * Because of guest context mappings requires PDPTR and PML4 entries to allow * writing on AMD64, the two upper levels will have fixed flags whatever the * guest is thinking of using there. So, when shadowing the PD level we will * calculate the effective flags of PD and all the higher levels. In legacy * PAE mode this only applies to the PWT and PCD bits (the rest are * ignored/reserved/MBZ). We will ignore those bits for the present. * * * * @section sec_pgm_int The Intermediate Memory Context * * The world switch goes thru an intermediate memory context which purpose it is * to provide different mappings of the switcher code. All guest mappings are also * present in this context. * * The switcher code is mapped at the same location as on the host, at an * identity mapped location (physical equals virtual address), and at the * hypervisor location. * * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This * simplifies switching guest CPU mode and consistency at the cost of more * code to do the work. All memory use for those page tables is located below * 4GB (this includes page tables for guest context mappings). * * * @subsection subsec_pgm_int_gc Guest Context Mappings * * During assignment and relocation of a guest context mapping the intermediate * memory context is used to verify the new location. * * Guest context mappings are currently restricted to below 4GB, for reasons * of simplicity. This may change when we implement AMD64 support. * * * * * @section sec_pgm_misc Misc * * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE * * The differences between legacy PAE and long mode PAE are: * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the * usual meanings while 6 is ignored (AMD). This means that upon switching to * legacy PAE mode we'll have to clear these bits and when going to long mode * they must be set. This applies to both intermediate and shadow contexts, * however we don't need to do it for the intermediate one since we're * executing with CR0.WP at that time. * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode * a page aligned one is required. * * * @section sec_pgm_handlers Access Handlers * * Placeholder. * * * @subsection sec_pgm_handlers_virt Virtual Access Handlers * * Placeholder. * * * @subsection sec_pgm_handlers_virt Virtual Access Handlers * * We currently implement three types of virtual access handlers: ALL, WRITE * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details. * * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the * rest of this section is going to be about these handlers. * * We'll go thru the life cycle of a handler and try make sense of it all, don't know * how successfull this is gonna be... * * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers * and create a new node that is inserted into the AVL tree (range key). Then * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE). * * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate. * * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers * via the current guest CR3 and update the physical page -> virtual handler * translation. Needless to say, this doesn't exactly scale very well. If any changes * are detected, it will flag a virtual bit update just like we did on registration. * PGMPHYS pages with changes will have their virtual handler state reset to NONE. * * 2b. The virtual bit update process will iterate all the pages covered by all the * virtual handlers and update the PGMPAGE virtual handler state to the max of all * virtual handlers on that page. * * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure * we don't miss any alias mappings of the monitored pages. * * 2d. SyncCR3 will then proceed with syncing the CR3 table. * * 3. \#PF(np,read) on a page in the range. This will cause it to be synced * read-only and resumed if it's a WRITE handler. If it's an ALL handler we * will call the handlers like in the next step. If the physical mapping has * changed we will - some time in the future - perform a handler callback * (optional) and update the physical -> virtual handler cache. * * 4. \#PF(,write) on a page in the range. This will cause the handler to * be invoked. * * 5. The guest invalidates the page and changes the physical backing or * unmaps it. This should cause the invalidation callback to be invoked * (it might not yet be 100% perfect). Exactly what happens next... is * this where we mess up and end up out of sync for a while? * * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister. * We will then set all PGMPAGEs in the physical -> virtual handler cache for * this handler to NONE and trigger a full PGM resync (basically the same * as int step 1). Which means 2 is executed again. * * * @subsubsection sub_sec_pgm_handler_virt_todo TODOs * * There is a bunch of things that needs to be done to make the virtual handlers * work 100% correctly and work more efficiently. * * The first bit hasn't been implemented yet because it's going to slow the * whole mess down even more, and besides it seems to be working reliably for * our current uses. OTOH, some of the optimizations might end up more or less * implementing the missing bits, so we'll see. * * On the optimization side, the first thing to do is to try avoid unnecessary * cache flushing. Then try team up with the shadowing code to track changes * in mappings by means of access to them (shadow in), updates to shadows pages, * invlpg, and shadow PT discarding (perhaps). * * Some idea that have popped up for optimization for current and new features: * - bitmap indicating where there are virtual handlers installed. * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!) * - Further optimize this by min/max (needs min/max avl getters). * - Shadow page table entry bit (if any left)? * */ /** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management. * * * Objectives: * - Guest RAM over-commitment using memory ballooning, * zero pages and general page sharing. * - Moving or mirroring a VM onto a different physical machine. * * * @subsection subsec_pgmPhys_Definitions Definitions * * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking * machinery assoicated with it. * * * * * @subsection subsec_pgmPhys_AllocPage Allocating a page. * * Initially we map *all* guest memory to the (per VM) zero page, which * means that none of the read functions will cause pages to be allocated. * * Exception, access bit in page tables that have been shared. This must * be handled, but we must also make sure PGMGst*Modify doesn't make * unnecessary modifications. * * Allocation points: * - PGMPhysWriteGCPhys and PGMPhysWrite. * - Replacing a zero page mapping at \#PF. * - Replacing a shared page mapping at \#PF. * - ROM registration (currently MMR3RomRegister). * - VM restore (pgmR3Load). * * For the first three it would make sense to keep a few pages handy * until we've reached the max memory commitment for the VM. * * For the ROM registration, we know exactly how many pages we need * and will request these from ring-0. For restore, we will save * the number of non-zero pages in the saved state and allocate * them up front. This would allow the ring-0 component to refuse * the request if the isn't sufficient memory available for VM use. * * Btw. for both ROM and restore allocations we won't be requiring * zeroed pages as they are going to be filled instantly. * * * @subsection subsec_pgmPhys_FreePage Freeing a page * * There are a few points where a page can be freed: * - After being replaced by the zero page. * - After being replaced by a shared page. * - After being ballooned by the guest additions. * - At reset. * - At restore. * * When freeing one or more pages they will be returned to the ring-0 * component and replaced by the zero page. * * The reasoning for clearing out all the pages on reset is that it will * return us to the exact same state as on power on, and may thereby help * us reduce the memory load on the system. Further it might have a * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation). * * On restore, as mention under the allocation topic, pages should be * freed / allocated depending on how many is actually required by the * new VM state. The simplest approach is to do like on reset, and free * all non-ROM pages and then allocate what we need. * * A measure to prevent some fragmentation, would be to let each allocation * chunk have some affinity towards the VM having allocated the most pages * from it. Also, try make sure to allocate from allocation chunks that * are almost full. Admittedly, both these measures might work counter to * our intentions and its probably not worth putting a lot of effort, * cpu time or memory into this. * * * @subsection subsec_pgmPhys_SharePage Sharing a page * * The basic idea is that there there will be a idle priority kernel * thread walking the non-shared VM pages hashing them and looking for * pages with the same checksum. If such pages are found, it will compare * them byte-by-byte to see if they actually are identical. If found to be * identical it will allocate a shared page, copy the content, check that * the page didn't change while doing this, and finally request both the * VMs to use the shared page instead. If the page is all zeros (special * checksum and byte-by-byte check) it will request the VM that owns it * to replace it with the zero page. * * To make this efficient, we will have to make sure not to try share a page * that will change its contents soon. This part requires the most work. * A simple idea would be to request the VM to write monitor the page for * a while to make sure it isn't modified any time soon. Also, it may * make sense to skip pages that are being write monitored since this * information is readily available to the thread if it works on the * per-VM guest memory structures (presently called PGMRAMRANGE). * * * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures * * The pages are organized in allocation chunks in ring-0, this is a necessity * if we wish to have an OS agnostic approach to this whole thing. (On Linux we * could easily work on a page-by-page basis if we liked. Whether this is possible * or efficient on NT I don't quite know.) Fragmentation within these chunks may * become a problem as part of the idea here is that we wish to return memory to * the host system. * * For instance, starting two VMs at the same time, they will both allocate the * guest memory on-demand and if permitted their page allocations will be * intermixed. Shut down one of the two VMs and it will be difficult to return * any memory to the host system because the page allocation for the two VMs are * mixed up in the same allocation chunks. * * To further complicate matters, when pages are freed because they have been * ballooned or become shared/zero the whole idea is that the page is supposed * to be reused by another VM or returned to the host system. This will cause * allocation chunks to contain pages belonging to different VMs and prevent * returning memory to the host when one of those VM shuts down. * * The only way to really deal with this problem is to move pages. This can * either be done at VM shutdown and or by the idle priority worker thread * that will be responsible for finding sharable/zero pages. The mechanisms * involved for coercing a VM to move a page (or to do it for it) will be * the same as when telling it to share/zero a page. * * * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost * * There's a difficult balance between keeping the per-page tracking structures * (global and guest page) easy to use and keeping them from eating too much * memory. We have limited virtual memory resources available when operating in * 32-bit kernel space (on 64-bit there'll it's quite a different story). The * tracking structures will be attemted designed such that we can deal with up * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones. * * * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space * * @see pg_GMM * * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM * * Fixed info is the physical address of the page (HCPhys) and the page id * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part. * Today we've restricting ourselves to 40(-12) bits because this is the current * restrictions of all AMD64 implementations (I think Barcelona will up this * to 48(-12) bits, not that it really matters) and I needed the bits for * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a * decent range for the page id: 2^(28+12) = 1024TB. * * In additions to these, we'll have to keep maintaining the page flags as we * currently do. Although it wouldn't harm to optimize these quite a bit, like * for instance the ROM shouldn't depend on having a write handler installed * in order for it to become read-only. A RO/RW bit should be considered so * that the page syncing code doesn't have to mess about checking multiple * flag combinations (ROM || RW handler || write monitored) in order to * figure out how to setup a shadow PTE. But this of course, is second * priority at present. Current this requires 12 bits, but could probably * be optimized to ~8. * * Then there's the 24 bits used to track which shadow page tables are * currently mapping a page for the purpose of speeding up physical * access handlers, and thereby the page pool cache. More bit for this * purpose wouldn't hurt IIRC. * * Then there is a new bit in which we need to record what kind of page * this is, shared, zero, normal or write-monitored-normal. This'll * require 2 bits. One bit might be needed for indicating whether a * write monitored page has been written to. And yet another one or * two for tracking migration status. 3-4 bits total then. * * Whatever is left will can be used to record the sharabilitiy of a * page. The page checksum will not be stored in the per-VM table as * the idle thread will not be permitted to do modifications to it. * It will instead have to keep its own working set of potentially * shareable pages and their check sums and stuff. * * For the present we'll keep the current packing of the * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course, * we'll have to change it to a struct with a total of 128-bits at * our disposal. * * The initial layout will be like this: * @verbatim RTHCPHYS HCPhys; The current stuff. 63:40 Current shadow PT tracking stuff. 39:12 The physical page frame number. 11:0 The current flags. uint32_t u28PageId : 28; The page id. uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }. uint32_t fWrittenTo : 1; Whether a write monitored page was written to. uint32_t u1Reserved : 1; Reserved for later. uint32_t u32Reserved; Reserved for later, mostly sharing stats. @endverbatim * * The final layout will be something like this: * @verbatim RTHCPHYS HCPhys; The current stuff. 63:48 High page id (12+). 47:12 The physical page frame number. 11:0 Low page id. uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way). uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}. uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}. uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}.. uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }. uint32_t fWrittenTo : 1; Whether a write monitored page was written to. uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats. uint32_t u32Tracking; The shadow PT tracking stuff, roughly. @endverbatim * * Cost wise, this means we'll double the cost for guest memory. There isn't anyway * around that I'm afraid. It means that the cost of dealing out 32GB of memory * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another * example, the VM heap cost when assigning 1GB to a VM will be: 4MB. * * A couple of cost examples for the total cost per-VM + kernel. * 32-bit Windows and 32-bit linux: * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB * 64-bit Windows and 64-bit linux: * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB * * UPDATE - 2007-09-27: * Will need a ballooned flag/state too because we cannot * trust the guest 100% and reporting the same page as ballooned more * than once will put the GMM off balance. * * * @subsection subsec_pgmPhys_Serializing Serializing Access * * Initially, we'll try a simple scheme: * * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified * by the EMT thread of that VM while in the pgm critsect. * - Other threads in the VM process that needs to make reliable use of * the per-VM RAM tracking structures will enter the critsect. * - No process external thread or kernel thread will ever try enter * the pgm critical section, as that just won't work. * - The idle thread (and similar threads) doesn't not need 100% reliable * data when performing it tasks as the EMT thread will be the one to * do the actual changes later anyway. So, as long as it only accesses * the main ram range, it can do so by somehow preventing the VM from * being destroyed while it works on it... * * - The over-commitment management, including the allocating/freeing * chunks, is serialized by a ring-0 mutex lock (a fast one since the * more mundane mutex implementation is broken on Linux). * - A separeate mutex is protecting the set of allocation chunks so * that pages can be shared or/and freed up while some other VM is * allocating more chunks. This mutex can be take from under the other * one, but not the otherway around. * * * @subsection subsec_pgmPhys_Request VM Request interface * * When in ring-0 it will become necessary to send requests to a VM so it can * for instance move a page while defragmenting during VM destroy. The idle * thread will make use of this interface to request VMs to setup shared * pages and to perform write monitoring of pages. * * I would propose an interface similar to the current VMReq interface, similar * in that it doesn't require locking and that the one sending the request may * wait for completion if it wishes to. This shouldn't be very difficult to * realize. * * The requests themselves are also pretty simple. They are basically: * -# Check that some precondition is still true. * -# Do the update. * -# Update all shadow page tables involved with the page. * * The 3rd step is identical to what we're already doing when updating a * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs. * * * * @section sec_pgmPhys_MappingCaches Mapping Caches * * In order to be able to map in and out memory and to be able to support * guest with more RAM than we've got virtual address space, we'll employing * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx) * and we'll create a similar one for ring-0 unless we decide to setup a dedicate * memory context for the HWACCM execution. * * * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3 * * We've considered implementing the ring-3 mapping cache page based but found * that this was bother some when one had to take into account TLBs+SMP and * portability (missing the necessary APIs on several platforms). There were * also some performance concerns with this approach which hadn't quite been * worked out. * * Instead, we'll be mapping allocation chunks into the VM process. This simplifies * matters greatly quite a bit since we don't need to invent any new ring-0 stuff, * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping * compared to the previous idea is that mapping or unmapping a 1MB chunk is more * costly than a single page, although how much more costly is uncertain. We'll * try address this by using a very big cache, preferably bigger than the actual * VM RAM size if possible. The current VM RAM sizes should give some idea for * 32-bit boxes, while on 64-bit we can probably get away with employing an * unlimited cache. * * The cache have to parts, as already indicated, the ring-3 side and the * ring-0 side. * * The ring-0 will be tied to the page allocator since it will operate on the * memory objects it contains. It will therefore require the first ring-0 mutex * discussed in @ref subsec_pgmPhys_Serializing. We * some double house keeping wrt to who has mapped what I think, since both * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions * * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll * require anyone that desires to do changes to the mapping cache to do that * from within this critsect. Alternatively, we could employ a separate critsect * for serializing changes to the mapping cache as this would reduce potential * contention with other threads accessing mappings unrelated to the changes * that are in process. We can see about this later, contention will show * up in the statistics anyway, so it'll be simple to tell. * * The organization of the ring-3 part will be very much like how the allocation * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid * having to walk the tree all the time, we'll have a couple of lookaside entries * like in we do for I/O ports and MMIO in IOM. * * The simplified flow of a PGMPhysRead/Write function: * -# Enter the PGM critsect. * -# Lookup GCPhys in the ram ranges and get the Page ID. * -# Calc the Allocation Chunk ID from the Page ID. * -# Check the lookaside entries and then the AVL tree for the Chunk ID. * If not found in cache: * -# Call ring-0 and request it to be mapped and supply * a chunk to be unmapped if the cache is maxed out already. * -# Insert the new mapping into the AVL tree (id + R3 address). * -# Update the relevant lookaside entry and return the mapping address. * -# Do the read/write according to monitoring flags and everything. * -# Leave the critsect. * * * @section sec_pgmPhys_Fallback Fallback * * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC * API and thus require a fallback. * * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator * will return to the ring-3 caller (and later ring-0) and asking it to seed * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a * "SeededAllocPages" call to ring-0. * * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable * all page sharing (zero page detection will continue). It will also force * all allocations to come from the VM which seeded the page. Both these * measures are taken to make sure that there will never be any need for * mapping anything into ring-3 - everything will be mapped already. * * Whether we'll continue to use the current MM locked memory management * for this I don't quite know (I'd prefer not to and just ditch that all * togther), we'll see what's simplest to do. * * * * @section sec_pgmPhys_Changes Changes * * Breakdown of the changes involved? */ /** Saved state data unit version. */ #define PGM_SAVED_STATE_VERSION 6 /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_PGM #include #include #include #include #include #include #include #include #include #include #include #include #include #include "PGMInternal.h" #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Internal Functions * *******************************************************************************/ static int pgmR3InitPaging(PVM pVM); static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser); static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser); static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser); #ifdef VBOX_STRICT static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser); #endif static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version); static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0); static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst); static PGMMODE pgmR3CalcShadowMode(PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher); #ifdef VBOX_WITH_STATISTICS static void pgmR3InitStats(PVM pVM); #endif #ifdef VBOX_WITH_DEBUGGER /** @todo all but the two last commands must be converted to 'info'. */ static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult); static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult); static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult); static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult); #endif /******************************************************************************* * Global Variables * *******************************************************************************/ #ifdef VBOX_WITH_DEBUGGER /** Command descriptors. */ static const DBGCCMD g_aCmds[] = { /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */ { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." }, { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." }, { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." }, { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." }, }; #endif #if 1/// @todo ndef RT_ARCH_AMD64 /* * Shadow - 32-bit mode */ #define PGM_SHW_TYPE PGM_TYPE_32BIT #define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name) #define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name) #define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name) #include "PGMShw.h" /* Guest - real mode */ #define PGM_GST_TYPE PGM_TYPE_REAL #define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS #include "PGMGst.h" #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - protected mode */ #define PGM_GST_TYPE PGM_TYPE_PROT #define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS #include "PGMGst.h" #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - 32-bit mode */ #define PGM_GST_TYPE PGM_TYPE_32BIT #define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB #include "PGMGst.h" #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR #undef PGM_SHW_TYPE #undef PGM_SHW_NAME #undef PGM_SHW_NAME_GC_STR #undef PGM_SHW_NAME_R0_STR #endif /* !RT_ARCH_AMD64 */ /* * Shadow - PAE mode */ #define PGM_SHW_TYPE PGM_TYPE_PAE #define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name) #define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name) #define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name) #include "PGMShw.h" /* Guest - real mode */ #define PGM_GST_TYPE PGM_TYPE_REAL #define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - protected mode */ #define PGM_GST_TYPE PGM_TYPE_PROT #define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - 32-bit mode */ #define PGM_GST_TYPE PGM_TYPE_32BIT #define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - PAE mode */ #define PGM_GST_TYPE PGM_TYPE_PAE #define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB #include "PGMGst.h" #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR #undef PGM_SHW_TYPE #undef PGM_SHW_NAME #undef PGM_SHW_NAME_GC_STR #undef PGM_SHW_NAME_R0_STR /* * Shadow - AMD64 mode */ #define PGM_SHW_TYPE PGM_TYPE_AMD64 #define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name) #define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name) #define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name) #include "PGMShw.h" /* Guest - real mode */ #define PGM_GST_TYPE PGM_TYPE_REAL #define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_REAL(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_REAL_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_REAL_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - protected mode */ #define PGM_GST_TYPE PGM_TYPE_PROT #define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_PROT(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_PROT_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_PROT_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR /* Guest - AMD64 mode */ #define PGM_GST_TYPE PGM_TYPE_AMD64 #define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name) #define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name) #define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name) #define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name) #define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) #define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) #define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT #define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB #include "PGMGst.h" #include "PGMBth.h" #undef BTH_PGMPOOLKIND_PT_FOR_BIG #undef BTH_PGMPOOLKIND_PT_FOR_PT #undef PGM_BTH_NAME #undef PGM_BTH_NAME_GC_STR #undef PGM_BTH_NAME_R0_STR #undef PGM_GST_TYPE #undef PGM_GST_NAME #undef PGM_GST_NAME_GC_STR #undef PGM_GST_NAME_R0_STR #undef PGM_SHW_TYPE #undef PGM_SHW_NAME #undef PGM_SHW_NAME_GC_STR #undef PGM_SHW_NAME_R0_STR /** * Initiates the paging of VM. * * @returns VBox status code. * @param pVM Pointer to VM structure. */ PGMR3DECL(int) PGMR3Init(PVM pVM) { LogFlow(("PGMR3Init:\n")); /* * Assert alignment and sizes. */ AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding)); /* * Init the structure. */ pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s); pVM->pgm.s.enmShadowMode = PGMMODE_INVALID; pVM->pgm.s.enmGuestMode = PGMMODE_INVALID; pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID; pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS; pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS; pVM->pgm.s.fA20Enabled = true; pVM->pgm.s.pGstPaePDPTRHC = NULL; pVM->pgm.s.pGstPaePDPTRGC = 0; for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++) { pVM->pgm.s.apGstPaePDsHC[i] = NULL; pVM->pgm.s.apGstPaePDsGC[i] = 0; pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS; } #ifdef VBOX_STRICT VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL); #endif /* * Get the configured RAM size - to estimate saved state size. */ uint64_t cbRam; int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam); if (rc == VERR_CFGM_VALUE_NOT_FOUND) cbRam = pVM->pgm.s.cbRamSize = 0; else if (VBOX_SUCCESS(rc)) { if (cbRam < PAGE_SIZE) cbRam = 0; cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE); pVM->pgm.s.cbRamSize = (RTUINT)cbRam; } else { AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc)); return rc; } /* * Register saved state data unit. */ rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM), NULL, pgmR3Save, NULL, NULL, pgmR3Load, NULL); if (VBOX_FAILURE(rc)) return rc; /* * Initialize the PGM critical section and flush the phys TLBs */ rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM"); AssertRCReturn(rc, rc); PGMR3PhysChunkInvalidateTLB(pVM); PGMPhysInvalidatePageR3MapTLB(pVM); PGMPhysInvalidatePageR0MapTLB(pVM); PGMPhysInvalidatePageGCMapTLB(pVM); /* * Trees */ rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC); if (VBOX_SUCCESS(rc)) { pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC); /* * Alocate the zero page. */ rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3); } if (VBOX_SUCCESS(rc)) { pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3); pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3); AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS); pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3); AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS); /* * Init the paging. */ rc = pgmR3InitPaging(pVM); } if (VBOX_SUCCESS(rc)) { /* * Init the page pool. */ rc = pgmR3PoolInit(pVM); } if (VBOX_SUCCESS(rc)) { /* * Info & statistics */ DBGFR3InfoRegisterInternal(pVM, "mode", "Shows the current paging mode. " "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.", pgmR3InfoMode); DBGFR3InfoRegisterInternal(pVM, "pgmcr3", "Dumps all the entries in the top level paging table. No arguments.", pgmR3InfoCr3); DBGFR3InfoRegisterInternal(pVM, "phys", "Dumps all the physical address ranges. No arguments.", pgmR3PhysInfo); DBGFR3InfoRegisterInternal(pVM, "handlers", "Dumps physical, virtual and hyper virtual handlers. " "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted." "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.", pgmR3InfoHandlers); DBGFR3InfoRegisterInternal(pVM, "mappings", "Dumps guest mappings.", pgmR3MapInfo); STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes."); #ifdef VBOX_WITH_STATISTICS pgmR3InitStats(pVM); #endif #ifdef VBOX_WITH_DEBUGGER /* * Debugger commands. */ static bool fRegisteredCmds = false; if (!fRegisteredCmds) { int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds)); if (VBOX_SUCCESS(rc)) fRegisteredCmds = true; } #endif return VINF_SUCCESS; } /* Almost no cleanup necessary, MM frees all memory. */ PDMR3CritSectDelete(&pVM->pgm.s.CritSect); return rc; } /** * Init paging. * * Since we need to check what mode the host is operating in before we can choose * the right paging functions for the host we have to delay this until R0 has * been initialized. * * @returns VBox status code. * @param pVM VM handle. */ static int pgmR3InitPaging(PVM pVM) { /* * Force a recalculation of modes and switcher so everyone gets notified. */ pVM->pgm.s.enmShadowMode = PGMMODE_INVALID; pVM->pgm.s.enmGuestMode = PGMMODE_INVALID; pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID; /* * Allocate static mapping space for whatever the cr3 register * points to and in the case of PAE mode to the 4 PDs. */ int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc)); return rc; } MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); /* * Allocate pages for the three possible intermediate contexts * (AMD64, PAE and plain 32-Bit). We maintain all three contexts * for the sake of simplicity. The AMD64 uses the PAE for the * lower levels, making the total number of pages 11 (3 + 7 + 1). * * We assume that two page tables will be enought for the core code * mappings (HC virtual and identity). */ pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); pVM->pgm.s.pInterPaePDPTR = (PX86PDPTR)MMR3PageAllocLow(pVM); pVM->pgm.s.pInterPaePDPTR64 = (PX86PDPTR)MMR3PageAllocLow(pVM); pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); if ( !pVM->pgm.s.pInterPD || !pVM->pgm.s.apInterPTs[0] || !pVM->pgm.s.apInterPTs[1] || !pVM->pgm.s.apInterPaePTs[0] || !pVM->pgm.s.apInterPaePTs[1] || !pVM->pgm.s.apInterPaePDs[0] || !pVM->pgm.s.apInterPaePDs[1] || !pVM->pgm.s.apInterPaePDs[2] || !pVM->pgm.s.apInterPaePDs[3] || !pVM->pgm.s.pInterPaePDPTR || !pVM->pgm.s.pInterPaePDPTR64 || !pVM->pgm.s.pInterPaePML4) { AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n")); return VERR_NO_PAGE_MEMORY; } pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD); AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK)); pVM->pgm.s.HCPhysInterPaePDPTR = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPTR); AssertRelease(pVM->pgm.s.HCPhysInterPaePDPTR != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPTR & PAGE_OFFSET_MASK)); pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4); AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK)); /* * Initialize the pages, setting up the PML4 and PDPTR for repetitive 4GB action. */ ASMMemZeroPage(pVM->pgm.s.pInterPD); ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]); ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]); ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]); ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]); ASMMemZeroPage(pVM->pgm.s.pInterPaePDPTR); for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++) { ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]); pVM->pgm.s.pInterPaePDPTR->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]); } for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPTR64->a); i++) { const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs); pVM->pgm.s.pInterPaePDPTR64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]); } RTHCPHYS HCPhysInterPaePDPTR64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPTR64); for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++) pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT | HCPhysInterPaePDPTR64; /* * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit). * We allocate pages for all three posibilities to in order to simplify mappings and * avoid resource failure during mode switches. So, we need to cover all levels of the * of the first 4GB down to PD level. * As with the intermediate context, AMD64 uses the PAE PDPTR and PDs. */ pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM); pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]); pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]); pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]); pVM->pgm.s.pHCPaePDPTR = (PX86PDPTR)MMR3PageAllocLow(pVM); pVM->pgm.s.pHCPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); if ( !pVM->pgm.s.pHC32BitPD || !pVM->pgm.s.apHCPaePDs[0] || !pVM->pgm.s.apHCPaePDs[1] || !pVM->pgm.s.apHCPaePDs[2] || !pVM->pgm.s.apHCPaePDs[3] || !pVM->pgm.s.pHCPaePDPTR || !pVM->pgm.s.pHCPaePML4) { AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n")); return VERR_NO_PAGE_MEMORY; } /* get physical addresses. */ pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD); Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD); pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]); pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]); pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]); pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]); pVM->pgm.s.HCPhysPaePDPTR = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPTR); pVM->pgm.s.HCPhysPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePML4); /* * Initialize the pages, setting up the PML4 and PDPTR for action below 4GB. */ ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE); ASMMemZero32(pVM->pgm.s.pHCPaePDPTR, PAGE_SIZE); for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++) { ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE); pVM->pgm.s.pHCPaePDPTR->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i]; /* The flags will be corrected when entering and leaving long mode. */ } ASMMemZero32(pVM->pgm.s.pHCPaePML4, PAGE_SIZE); pVM->pgm.s.pHCPaePML4->a[0].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.HCPhysPaePDPTR; CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD); /* * Initialize paging workers and mode from current host mode * and the guest running in real mode. */ pVM->pgm.s.enmHostMode = SUPGetPagingMode(); switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL_NX: break; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: #ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL if (ARCH_BITS != 64) { AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode)); LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode)); return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE; } #endif break; default: AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode)); return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE; } rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */); if (VBOX_SUCCESS(rc)) rc = pgmR3ChangeMode(pVM, PGMMODE_REAL); if (VBOX_SUCCESS(rc)) { LogFlow(("pgmR3InitPaging: returns successfully\n")); #if HC_ARCH_BITS == 64 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPTR=%VHp HCPhysPaePML4=%VHp\n", pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3], pVM->pgm.s.HCPhysPaePDPTR, pVM->pgm.s.HCPhysPaePML4)); LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPTR=%VHp HCPhysInterPaePML4=%VHp\n", pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPTR, pVM->pgm.s.HCPhysInterPaePML4)); LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPTR64=%VHp\n", MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]), MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPTR64))); #endif return VINF_SUCCESS; } LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc)); return rc; } #ifdef VBOX_WITH_STATISTICS /** * Init statistics */ static void pgmR3InitStats(PVM pVM) { PPGM pPGM = &pVM->pgm.s; STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling."); STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page."); STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page."); STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page."); STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict)."); STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory."); STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory."); STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory."); STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3."); STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body."); STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation."); STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking."); STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking."); STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking."); STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly."); STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses."); STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking."); STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses."); STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body."); STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables."); STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts."); STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed."); STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body."); STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults."); STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing."); STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings."); STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling."); STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers."); STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers."); STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM."); STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation."); STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap."); STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler."); STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler."); STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page."); STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known."); STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page."); STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page."); STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page."); STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page."); STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT."); STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings."); STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages."); STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers."); STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers."); STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address."); STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags)."); STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s)."); STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict."); STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults."); STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses."); STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled."); STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler."); STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict."); STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync."); STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync."); STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled."); STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler."); STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits."); STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses."); STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict."); STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called."); STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict."); STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling."); STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page."); STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page."); STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page."); STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict)."); STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory."); STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory."); STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory."); STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3."); STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation)."); STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling."); STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body."); STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation."); STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking."); STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking."); STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking."); STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly."); STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body."); STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit."); STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage."); STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit."); STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage."); STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body."); STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)"); STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)"); STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)"); STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)"); STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body."); STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section."); STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates."); STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets."); STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs."); STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs."); STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit."); STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry."); STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present."); STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry."); STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed."); STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed."); STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body."); STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section."); STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates."); STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets."); STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs."); STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs."); STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit."); STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry."); STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present."); STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry."); STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed."); STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed."); STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC."); STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC."); STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called."); STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body."); STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body."); STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs"); STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs"); STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs"); STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs"); STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram."); STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls."); STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits."); STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses."); STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks."); STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks."); STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits."); STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses."); STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced."); STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced."); STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages."); STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages."); STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages."); STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages."); STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages."); #ifdef PGMPOOL_WITH_GCPHYS_TRACKING STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings"); STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs."); STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2."); STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2"); STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long."); STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive)."); #endif for (unsigned i = 0; i < X86_PG_ENTRIES; i++) { /** @todo r=bird: We need a STAMR3RegisterF()! */ char szName[32]; RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i); int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n."); AssertRC(rc); RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i); rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n."); AssertRC(rc); RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i); rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n."); AssertRC(rc); } } #endif /* VBOX_WITH_STATISTICS */ /** * Init the PGM bits that rely on VMMR0 and MM to be fully initialized. * * The dynamic mapping area will also be allocated and initialized at this * time. We could allocate it during PGMR3Init of course, but the mapping * wouldn't be allocated at that time preventing us from setting up the * page table entries with the dummy page. * * @returns VBox status code. * @param pVM VM handle. */ PGMR3DECL(int) PGMR3InitDynMap(PVM pVM) { /* * Reserve space for mapping the paging pages into guest context. */ int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &pVM->pgm.s.pGC32BitPD); AssertRCReturn(rc, rc); MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); /* * Reserve space for the dynamic mappings. */ /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */ rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &pVM->pgm.s.pbDynPageMapBaseGC); if ( VBOX_SUCCESS(rc) && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT)) rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &pVM->pgm.s.pbDynPageMapBaseGC); if (VBOX_SUCCESS(rc)) { AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT)); MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); } return rc; } /** * Ring-3 init finalizing. * * @returns VBox status code. * @param pVM The VM handle. */ PGMR3DECL(int) PGMR3InitFinalize(PVM pVM) { /* * Map the paging pages into the guest context. */ RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD; AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR); int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0); AssertRCReturn(rc, rc); pVM->pgm.s.pGC32BitPD = GCPtr; GCPtr += PAGE_SIZE; GCPtr += PAGE_SIZE; /* reserved page */ for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++) { rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0); AssertRCReturn(rc, rc); pVM->pgm.s.apGCPaePDs[i] = GCPtr; GCPtr += PAGE_SIZE; } /* A bit of paranoia is justified. */ AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]); AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]); AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]); GCPtr += PAGE_SIZE; /* reserved page */ rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPTR, PAGE_SIZE, 0); AssertRCReturn(rc, rc); pVM->pgm.s.pGCPaePDPTR = GCPtr; GCPtr += PAGE_SIZE; GCPtr += PAGE_SIZE; /* reserved page */ rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePML4, PAGE_SIZE, 0); AssertRCReturn(rc, rc); pVM->pgm.s.pGCPaePML4 = GCPtr; GCPtr += PAGE_SIZE; GCPtr += PAGE_SIZE; /* reserved page */ /* * Reserve space for the dynamic mappings. * Initialize the dynamic mapping pages with dummy pages to simply the cache. */ /* get the pointer to the page table entries. */ PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC); AssertRelease(pMapping); const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr; const unsigned iPT = off >> X86_PD_SHIFT; const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK; pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]); pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]); /* init cache */ RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM); for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++) pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy; for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE) { rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0); AssertRCReturn(rc, rc); } return rc; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * @param pVM The VM. * @param offDelta Relocation delta relative to old location. */ PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta) { LogFlow(("PGMR3Relocate\n")); /* * Paging stuff. */ pVM->pgm.s.GCPtrCR3Mapping += offDelta; /** @todo move this into shadow and guest specific relocation functions. */ AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n")); pVM->pgm.s.pGC32BitPD += offDelta; pVM->pgm.s.pGuestPDGC += offDelta; for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++) pVM->pgm.s.apGCPaePDs[i] += offDelta; pVM->pgm.s.pGCPaePDPTR += offDelta; pVM->pgm.s.pGCPaePML4 += offDelta; pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */); pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode); PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta); PGM_GST_PFN(Relocate, pVM)(pVM, offDelta); PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta); /* * Trees. */ pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC); /* * Ram ranges. */ if (pVM->pgm.s.pRamRangesR3) { pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3); for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3) #ifdef VBOX_WITH_NEW_PHYS_CODE pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3); #else { pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3); if (pCur->pavHCChunkGC) pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC); } #endif } /* * Update the two page directories with all page table mappings. * (One or more of them have changed, that's why we're here.) */ pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3); for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3) pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3); /* Relocate GC addresses of Page Tables. */ for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3) { for (RTHCUINT i = 0; i < pCur->cPTs; i++) { pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3); pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3); } } /* * Dynamic page mapping area. */ pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta; pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta; pVM->pgm.s.pbDynPageMapBaseGC += offDelta; /* * The Zero page. */ pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3); AssertRelease(pVM->pgm.s.pvZeroPgR0); /* * Physical and virtual handlers. */ RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta); RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta); RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta); /* * The page pool. */ pgmR3PoolRelocate(pVM); } /** * Callback function for relocating a physical access handler. * * @returns 0 (continue enum) * @param pNode Pointer to a PGMPHYSHANDLER node. * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're * not certain the delta will fit in a void pointer for all possible configs. */ static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser) { PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode; RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser; if (pHandler->pfnHandlerGC) pHandler->pfnHandlerGC += offDelta; if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000) pHandler->pvUserGC += offDelta; return 0; } /** * Callback function for relocating a virtual access handler. * * @returns 0 (continue enum) * @param pNode Pointer to a PGMVIRTHANDLER node. * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're * not certain the delta will fit in a void pointer for all possible configs. */ static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser) { PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode; RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser; Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE); Assert(pHandler->pfnHandlerGC); pHandler->pfnHandlerGC += offDelta; return 0; } /** * Callback function for relocating a virtual access handler for the hypervisor mapping. * * @returns 0 (continue enum) * @param pNode Pointer to a PGMVIRTHANDLER node. * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're * not certain the delta will fit in a void pointer for all possible configs. */ static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser) { PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode; RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser; Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR); Assert(pHandler->pfnHandlerGC); pHandler->pfnHandlerGC += offDelta; return 0; } /** * The VM is being reset. * * For the PGM component this means that any PD write monitors * needs to be removed. * * @param pVM VM handle. */ PGMR3DECL(void) PGMR3Reset(PVM pVM) { LogFlow(("PGMR3Reset:\n")); VM_ASSERT_EMT(pVM); /* * Unfix any fixed mappings and disable CR3 monitoring. */ pVM->pgm.s.fMappingsFixed = false; pVM->pgm.s.GCPtrMappingFixed = 0; pVM->pgm.s.cbMappingFixed = 0; int rc = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM); AssertRC(rc); #ifdef DEBUG DBGFR3InfoLog(pVM, "mappings", NULL); DBGFR3InfoLog(pVM, "handlers", "all nostat"); #endif /* * Reset the shadow page pool. */ pgmR3PoolReset(pVM); /* * Re-init other members. */ pVM->pgm.s.fA20Enabled = true; /* * Clear the FFs PGM owns. */ VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3); VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL); /* * Zero memory. */ for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3) { unsigned iPage = pRam->cb >> PAGE_SHIFT; while (iPage-- > 0) { if (pRam->aPages[iPage].HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)) /** @todo PAGE FLAGS */ { /* shadow ram is reloaded elsewhere. */ Log4(("PGMR3Reset: not clearing phys page %RGp due to flags %RHp\n", pRam->GCPhys + (iPage << PAGE_SHIFT), pRam->aPages[iPage].HCPhys & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO))); /** @todo PAGE FLAGS */ continue; } if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { unsigned iChunk = iPage >> (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT); if (pRam->pavHCChunkHC[iChunk]) ASMMemZero32((char *)pRam->pavHCChunkHC[iChunk] + ((iPage << PAGE_SHIFT) & PGM_DYNAMIC_CHUNK_OFFSET_MASK), PAGE_SIZE); } else ASMMemZero32((char *)pRam->pvHC + (iPage << PAGE_SHIFT), PAGE_SIZE); } } #ifdef VBOX_WITH_NEW_PHYS_CODE /* * Zero shadow ROM pages. */ rc = pgmR3PhysRomReset(pVM); #endif /* * Switch mode back to real mode. */ rc = pgmR3ChangeMode(pVM, PGMMODE_REAL); AssertReleaseRC(rc); STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges); } /** * Terminates the PGM. * * @returns VBox status code. * @param pVM Pointer to VM structure. */ PGMR3DECL(int) PGMR3Term(PVM pVM) { return PDMR3CritSectDelete(&pVM->pgm.s.CritSect); } #ifdef VBOX_STRICT /** * VM state change callback for clearing fNoMorePhysWrites after * a snapshot has been created. */ static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser) { if (enmState == VMSTATE_RUNNING) pVM->pgm.s.fNoMorePhysWrites = false; } #endif /** * Execute state save operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM) { PPGM pPGM = &pVM->pgm.s; /* No more writes to physical memory after this point! */ pVM->pgm.s.fNoMorePhysWrites = true; /* * Save basic data (required / unaffected by relocation). */ #if 1 SSMR3PutBool(pSSM, pPGM->fMappingsFixed); #else SSMR3PutUInt(pSSM, pPGM->fMappingsFixed); #endif SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed); SSMR3PutU32(pSSM, pPGM->cbMappingFixed); SSMR3PutUInt(pSSM, pPGM->cbRamSize); SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask); SSMR3PutUInt(pSSM, pPGM->fA20Enabled); SSMR3PutUInt(pSSM, pPGM->fSyncFlags); SSMR3PutUInt(pSSM, pPGM->enmGuestMode); SSMR3PutU32(pSSM, ~0); /* Separator. */ /* * The guest mappings. */ uint32_t i = 0; for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++) { SSMR3PutU32(pSSM, i); SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */ SSMR3PutGCPtr(pSSM, pMapping->GCPtr); SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs); /* flags are done by the mapping owners! */ } SSMR3PutU32(pSSM, ~0); /* terminator. */ /* * Ram range flags and bits. */ i = 0; for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++) { /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */ SSMR3PutU32(pSSM, i); SSMR3PutGCPhys(pSSM, pRam->GCPhys); SSMR3PutGCPhys(pSSM, pRam->GCPhysLast); SSMR3PutGCPhys(pSSM, pRam->cb); SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */ /* Flags. */ const unsigned cPages = pRam->cb >> PAGE_SHIFT; for (unsigned iPage = 0; iPage < cPages; iPage++) SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */ /* any memory associated with the range. */ if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++) { if (pRam->pavHCChunkHC[iChunk]) { SSMR3PutU8(pSSM, 1); /* chunk present */ SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE); } else SSMR3PutU8(pSSM, 0); /* no chunk present */ } } else if (pRam->pvHC) { int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb); if (VBOX_FAILURE(rc)) { Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc)); return rc; } } } return SSMR3PutU32(pSSM, ~0); /* terminator. */ } /** * Execute state load operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. * @param u32Version Data layout version. */ static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version) { /* * Validate version. */ if (u32Version != PGM_SAVED_STATE_VERSION) { Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Call the reset function to make sure all the memory is cleared. */ PGMR3Reset(pVM); /* * Load basic data (required / unaffected by relocation). */ PPGM pPGM = &pVM->pgm.s; #if 1 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed); #else uint32_t u; SSMR3GetU32(pSSM, &u); pPGM->fMappingsFixed = u; #endif SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed); SSMR3GetU32(pSSM, &pPGM->cbMappingFixed); RTUINT cbRamSize; int rc = SSMR3GetU32(pSSM, &cbRamSize); if (VBOX_FAILURE(rc)) return rc; if (cbRamSize != pPGM->cbRamSize) return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH; SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask); SSMR3GetUInt(pSSM, &pPGM->fA20Enabled); SSMR3GetUInt(pSSM, &pPGM->fSyncFlags); RTUINT uGuestMode; SSMR3GetUInt(pSSM, &uGuestMode); pPGM->enmGuestMode = (PGMMODE)uGuestMode; /* check separator. */ uint32_t u32Sep; SSMR3GetU32(pSSM, &u32Sep); if (VBOX_FAILURE(rc)) return rc; if (u32Sep != (uint32_t)~0) { AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep)); return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; } /* * The guest mappings. */ uint32_t i = 0; for (;; i++) { /* Check the seqence number / separator. */ rc = SSMR3GetU32(pSSM, &u32Sep); if (VBOX_FAILURE(rc)) return rc; if (u32Sep == ~0U) break; if (u32Sep != i) { AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep)); return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; } /* get the mapping details. */ char szDesc[256]; szDesc[0] = '\0'; rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc)); if (VBOX_FAILURE(rc)) return rc; RTGCPTR GCPtr; SSMR3GetGCPtr(pSSM, &GCPtr); RTGCUINTPTR cPTs; rc = SSMR3GetU32(pSSM, &cPTs); if (VBOX_FAILURE(rc)) return rc; /* find matching range. */ PPGMMAPPING pMapping; for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3) if ( pMapping->cPTs == cPTs && !strcmp(pMapping->pszDesc, szDesc)) break; if (!pMapping) { LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n", cPTs, szDesc, GCPtr)); AssertFailed(); return VERR_SSM_LOAD_CONFIG_MISMATCH; } /* relocate it. */ if (pMapping->GCPtr != GCPtr) { AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr)); #if HC_ARCH_BITS == 64 LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc)); #endif pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr >> X86_PD_SHIFT, GCPtr >> X86_PD_SHIFT); } else Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr)); } /* * Ram range flags and bits. */ i = 0; for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++) { /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */ /* Check the seqence number / separator. */ rc = SSMR3GetU32(pSSM, &u32Sep); if (VBOX_FAILURE(rc)) return rc; if (u32Sep == ~0U) break; if (u32Sep != i) { AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep)); return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; } /* Get the range details. */ RTGCPHYS GCPhys; SSMR3GetGCPhys(pSSM, &GCPhys); RTGCPHYS GCPhysLast; SSMR3GetGCPhys(pSSM, &GCPhysLast); RTGCPHYS cb; SSMR3GetGCPhys(pSSM, &cb); uint8_t fHaveBits; rc = SSMR3GetU8(pSSM, &fHaveBits); if (VBOX_FAILURE(rc)) return rc; if (fHaveBits & ~1) { AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep)); return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; } /* Match it up with the current range. */ if ( GCPhys != pRam->GCPhys || GCPhysLast != pRam->GCPhysLast || cb != pRam->cb || fHaveBits != !!pRam->pvHC) { LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n" "State : %VGp-%VGp %VGp bytes %s\n", pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits", GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits")); /* * If we're loading a state for debugging purpose, don't make a fuss if * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches. */ if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT || GCPhys < 8 * _1M) AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH); RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT; while (cPages-- > 0) { uint16_t u16Ignore; SSMR3GetU16(pSSM, &u16Ignore); } continue; } /* Flags. */ const unsigned cPages = pRam->cb >> PAGE_SHIFT; for (unsigned iPage = 0; iPage < cPages; iPage++) { uint16_t u16 = 0; SSMR3GetU16(pSSM, &u16); u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6) | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) ); // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */ } /* any memory associated with the range. */ if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++) { uint8_t fValidChunk; rc = SSMR3GetU8(pSSM, &fValidChunk); if (VBOX_FAILURE(rc)) return rc; if (fValidChunk > 1) return VERR_SSM_DATA_UNIT_FORMAT_CHANGED; if (fValidChunk) { if (!pRam->pavHCChunkHC[iChunk]) { rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE); if (VBOX_FAILURE(rc)) return rc; } Assert(pRam->pavHCChunkHC[iChunk]); SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE); } /* else nothing to do */ } } else if (pRam->pvHC) { int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb); if (VBOX_FAILURE(rc)) { Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc)); return rc; } } } /* * We require a full resync now. */ VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL); VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL; pPGM->fPhysCacheFlushPending = true; pgmR3HandlerPhysicalUpdateAll(pVM); /* * Change the paging mode. */ return pgmR3ChangeMode(pVM, pPGM->enmGuestMode); } /** * Show paging mode. * * @param pVM VM Handle. * @param pHlp The info helpers. * @param pszArgs "all" (default), "guest", "shadow" or "host". */ static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { /* digest argument. */ bool fGuest, fShadow, fHost; if (pszArgs) pszArgs = RTStrStripL(pszArgs); if (!pszArgs || !*pszArgs || strstr(pszArgs, "all")) fShadow = fHost = fGuest = true; else { fShadow = fHost = fGuest = false; if (strstr(pszArgs, "guest")) fGuest = true; if (strstr(pszArgs, "shadow")) fShadow = true; if (strstr(pszArgs, "host")) fHost = true; } /* print info. */ if (fGuest) pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c, pVM->pgm.s.fA20Enabled ? "enabled" : "disabled"); if (fShadow) pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)); if (fHost) { const char *psz; switch (pVM->pgm.s.enmHostMode) { case SUPPAGINGMODE_INVALID: psz = "invalid"; break; case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break; case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break; case SUPPAGINGMODE_PAE: psz = "PAE"; break; case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break; case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break; case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break; case SUPPAGINGMODE_AMD64: psz = "AMD64"; break; case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break; case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break; case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break; default: psz = "unknown"; break; } pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz); } } /** * Dump registered MMIO ranges to the log. * * @param pVM VM Handle. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); pHlp->pfnPrintf(pHlp, "RAM ranges (pVM=%p)\n" "%.*s %.*s\n", pVM, sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ", sizeof(RTHCPTR) * 2, "pvHC "); for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3) pHlp->pfnPrintf(pHlp, "%RGp-%RGp %RHv %s\n", pCur->GCPhys, pCur->GCPhysLast, pCur->pvHC, pCur->pszDesc); } /** * Dump the page directory to the log. * * @param pVM VM Handle. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { /** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */ /* Big pages supported? */ const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE); /* Global pages supported? */ const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE); NOREF(pszArgs); /* * Get page directory addresses. */ PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC; Assert(pPDSrc); Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc); /* * Iterate the page directory. */ for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++) { X86PDE PdeSrc = pPDSrc->a[iPD]; if (PdeSrc.n.u1Present) { if (PdeSrc.b.u1Size && fPSE) { pHlp->pfnPrintf(pHlp, "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n", iPD, PdeSrc.u & X86_PDE_PG_MASK, PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE); } else { pHlp->pfnPrintf(pHlp, "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n", iPD, PdeSrc.u & X86_PDE4M_PG_MASK, PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE); } } } } /** * Serivce a VMMCALLHOST_PGM_LOCK call. * * @returns VBox status code. * @param pVM The VM handle. */ PDMR3DECL(int) PGMR3LockCall(PVM pVM) { return pgmLock(pVM); } /** * Converts a PGMMODE value to a PGM_TYPE_* \#define. * * @returns PGM_TYPE_*. * @param pgmMode The mode value to convert. */ DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode) { switch (pgmMode) { case PGMMODE_REAL: return PGM_TYPE_REAL; case PGMMODE_PROTECTED: return PGM_TYPE_PROT; case PGMMODE_32_BIT: return PGM_TYPE_32BIT; case PGMMODE_PAE: case PGMMODE_PAE_NX: return PGM_TYPE_PAE; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64; default: AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode)); } } /** * Gets the index into the paging mode data array of a SHW+GST mode. * * @returns PGM::paPagingData index. * @param uShwType The shadow paging mode type. * @param uGstType The guest paging mode type. */ DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType) { Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_AMD64); Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64); return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_32BIT + 1) + (uGstType - PGM_TYPE_REAL); } /** * Gets the index into the paging mode data array of a SHW+GST mode. * * @returns PGM::paPagingData index. * @param enmShw The shadow paging mode. * @param enmGst The guest paging mode. */ DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst) { Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX); Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX); return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst)); } /** * Calculates the max data index. * @returns The number of entries in the pagaing data array. */ DECLINLINE(unsigned) pgmModeDataMaxIndex(void) { return pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64) + 1; } /** * Initializes the paging mode data kept in PGM::paModeData. * * @param pVM The VM handle. * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now. * This is used early in the init process to avoid trouble with PDM * not being initialized yet. */ static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0) { PPGMMODEDATA pModeData; int rc; /* * Allocate the array on the first call. */ if (!pVM->pgm.s.paModeData) { pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex()); AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY); } /* * Initialize the array entries. */ pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)]; pModeData->uShwType = PGM_TYPE_32BIT; pModeData->uGstType = PGM_TYPE_REAL; rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)]; pModeData->uShwType = PGM_TYPE_32BIT; pModeData->uGstType = PGM_TYPE_PROT; rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)]; pModeData->uShwType = PGM_TYPE_32BIT; pModeData->uGstType = PGM_TYPE_32BIT; rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)]; pModeData->uShwType = PGM_TYPE_PAE; pModeData->uGstType = PGM_TYPE_REAL; rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)]; pModeData->uShwType = PGM_TYPE_PAE; pModeData->uGstType = PGM_TYPE_PROT; rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)]; pModeData->uShwType = PGM_TYPE_PAE; pModeData->uGstType = PGM_TYPE_32BIT; rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)]; pModeData->uShwType = PGM_TYPE_PAE; pModeData->uGstType = PGM_TYPE_PAE; rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_REAL)]; pModeData->uShwType = PGM_TYPE_AMD64; pModeData->uGstType = PGM_TYPE_REAL; rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_AMD64_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_PROT)]; pModeData->uShwType = PGM_TYPE_AMD64; pModeData->uGstType = PGM_TYPE_PROT; rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_AMD64_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)]; pModeData->uShwType = PGM_TYPE_AMD64; pModeData->uGstType = PGM_TYPE_AMD64; rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); rc = PGM_BTH_NAME_AMD64_AMD64(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc); return VINF_SUCCESS; } /** * Swtich to different (or relocated in the relocate case) mode data. * * @param pVM The VM handle. * @param enmShw The the shadow paging mode. * @param enmGst The the guest paging mode. */ static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst) { PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(enmShw, enmGst)]; Assert(pModeData->uGstType == pgmModeToType(enmGst)); Assert(pModeData->uShwType == pgmModeToType(enmShw)); /* shadow */ pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate; pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit; pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage; Assert(pVM->pgm.s.pfnR3ShwGetPage); pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage; pVM->pgm.s.pfnR3ShwGetPDEByIndex = pModeData->pfnR3ShwGetPDEByIndex; pVM->pgm.s.pfnR3ShwSetPDEByIndex = pModeData->pfnR3ShwSetPDEByIndex; pVM->pgm.s.pfnR3ShwModifyPDEByIndex = pModeData->pfnR3ShwModifyPDEByIndex; pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage; pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage; pVM->pgm.s.pfnGCShwGetPDEByIndex = pModeData->pfnGCShwGetPDEByIndex; pVM->pgm.s.pfnGCShwSetPDEByIndex = pModeData->pfnGCShwSetPDEByIndex; pVM->pgm.s.pfnGCShwModifyPDEByIndex = pModeData->pfnGCShwModifyPDEByIndex; pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage; pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage; pVM->pgm.s.pfnR0ShwGetPDEByIndex = pModeData->pfnR0ShwGetPDEByIndex; pVM->pgm.s.pfnR0ShwSetPDEByIndex = pModeData->pfnR0ShwSetPDEByIndex; pVM->pgm.s.pfnR0ShwModifyPDEByIndex = pModeData->pfnR0ShwModifyPDEByIndex; /* guest */ pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate; pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit; pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage; Assert(pVM->pgm.s.pfnR3GstGetPage); pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage; pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE; pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3; pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3; pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3; pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3; pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3; pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3; pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3; pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3; pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage; pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage; pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE; pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3; pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3; pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3; pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3; pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3; pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3; pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage; pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage; pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE; pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3; pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3; pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3; pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3; pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3; pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3; /* both */ pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate; pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler; pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage; pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3; Assert(pVM->pgm.s.pfnR3BthSyncCR3); pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage; pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage; pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage; #ifdef VBOX_STRICT pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3; #endif pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler; pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage; pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3; pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage; pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage; pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage; #ifdef VBOX_STRICT pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3; #endif pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler; pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage; pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3; pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage; pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage; pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage; #ifdef VBOX_STRICT pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3; #endif } #ifdef DEBUG_bird #include /* getenv() remove me! */ #endif /** * Calculates the shadow paging mode. * * @returns The shadow paging mode. * @param enmGuestMode The guest mode. * @param enmHostMode The host mode. * @param enmShadowMode The current shadow mode. * @param penmSwitcher Where to store the switcher to use. * VMMSWITCHER_INVALID means no change. */ static PGMMODE pgmR3CalcShadowMode(PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher) { VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID; switch (enmGuestMode) { /* * When switching to real or protected mode we don't change * anything since it's likely that we'll switch back pretty soon. * * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID * and is supposed to determin which shadow paging and switcher to * use during init. */ case PGMMODE_REAL: case PGMMODE_PROTECTED: if (enmShadowMode != PGMMODE_INVALID) break; /* (no change) */ switch (enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: enmShadowMode = PGMMODE_32_BIT; enmSwitcher = VMMSWITCHER_32_TO_32; break; case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_PAE_TO_PAE; #ifdef DEBUG_bird if (getenv("VBOX_32BIT")) { enmShadowMode = PGMMODE_32_BIT; enmSwitcher = VMMSWITCHER_PAE_TO_32; } #endif break; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_AMD64_TO_PAE; break; default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break; } break; case PGMMODE_32_BIT: switch (enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: enmShadowMode = PGMMODE_32_BIT; enmSwitcher = VMMSWITCHER_32_TO_32; break; case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_PAE_TO_PAE; #ifdef DEBUG_bird if (getenv("VBOX_32BIT")) { enmShadowMode = PGMMODE_32_BIT; enmSwitcher = VMMSWITCHER_PAE_TO_32; } #endif break; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_AMD64_TO_PAE; break; default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break; } break; case PGMMODE_PAE: case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */ switch (enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_32_TO_PAE; break; case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_PAE_TO_PAE; break; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_AMD64_TO_PAE; break; default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break; } break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: switch (enmHostMode) { case SUPPAGINGMODE_32_BIT: case SUPPAGINGMODE_32_BIT_GLOBAL: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_32_TO_AMD64; break; case SUPPAGINGMODE_PAE: case SUPPAGINGMODE_PAE_NX: case SUPPAGINGMODE_PAE_GLOBAL: case SUPPAGINGMODE_PAE_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_PAE_TO_AMD64; break; case SUPPAGINGMODE_AMD64: case SUPPAGINGMODE_AMD64_GLOBAL: case SUPPAGINGMODE_AMD64_NX: case SUPPAGINGMODE_AMD64_GLOBAL_NX: enmShadowMode = PGMMODE_PAE; enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64; break; default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break; } break; default: AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode)); return PGMMODE_INVALID; } *penmSwitcher = enmSwitcher; return enmShadowMode; } /** * Performs the actual mode change. * This is called by PGMChangeMode and pgmR3InitPaging(). * * @returns VBox status code. * @param pVM VM handle. * @param enmGuestMode The new guest mode. This is assumed to be different from * the current mode. */ int pgmR3ChangeMode(PVM pVM, PGMMODE enmGuestMode) { LogFlow(("pgmR3ChangeMode: Guest mode: %d -> %d\n", pVM->pgm.s.enmGuestMode, enmGuestMode)); STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges); /* * Calc the shadow mode and switcher. */ VMMSWITCHER enmSwitcher; PGMMODE enmShadowMode = pgmR3CalcShadowMode(enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher); if (enmSwitcher != VMMSWITCHER_INVALID) { /* * Select new switcher. */ int rc = VMMR3SelectSwitcher(pVM, enmSwitcher); if (VBOX_FAILURE(rc)) { AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc)); return rc; } } /* * Exit old mode(s). */ /* shadow */ if (enmShadowMode != pVM->pgm.s.enmShadowMode) { LogFlow(("pgmR3ChangeMode: Shadow mode: %d -> %d\n", pVM->pgm.s.enmShadowMode, enmShadowMode)); if (PGM_SHW_PFN(Exit, pVM)) { int rc = PGM_SHW_PFN(Exit, pVM)(pVM); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc)); return rc; } } } /* guest */ if (PGM_GST_PFN(Exit, pVM)) { int rc = PGM_GST_PFN(Exit, pVM)(pVM); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc)); return rc; } } /* * Load new paging mode data. */ pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode); /* * Enter new shadow mode (if changed). */ if (enmShadowMode != pVM->pgm.s.enmShadowMode) { int rc; pVM->pgm.s.enmShadowMode = enmShadowMode; switch (enmShadowMode) { case PGMMODE_32_BIT: rc = PGM_SHW_NAME_32BIT(Enter)(pVM); break; case PGMMODE_PAE: case PGMMODE_PAE_NX: rc = PGM_SHW_NAME_PAE(Enter)(pVM); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: rc = PGM_SHW_NAME_AMD64(Enter)(pVM); break; case PGMMODE_REAL: case PGMMODE_PROTECTED: default: AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode)); return VERR_INTERNAL_ERROR; } if (VBOX_FAILURE(rc)) { AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc)); pVM->pgm.s.enmShadowMode = PGMMODE_INVALID; return rc; } } /* * Enter the new guest and shadow+guest modes. */ int rc = -1; int rc2 = -1; RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS; pVM->pgm.s.enmGuestMode = enmGuestMode; switch (enmGuestMode) { case PGMMODE_REAL: rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS); switch (pVM->pgm.s.enmShadowMode) { case PGMMODE_32_BIT: rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS); break; case PGMMODE_PAE: case PGMMODE_PAE_NX: rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: rc2 = PGM_BTH_NAME_AMD64_REAL(Enter)(pVM, NIL_RTGCPHYS); break; default: AssertFailed(); break; } break; case PGMMODE_PROTECTED: rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS); switch (pVM->pgm.s.enmShadowMode) { case PGMMODE_32_BIT: rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS); break; case PGMMODE_PAE: case PGMMODE_PAE_NX: rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: rc2 = PGM_BTH_NAME_AMD64_PROT(Enter)(pVM, NIL_RTGCPHYS); break; default: AssertFailed(); break; } break; case PGMMODE_32_BIT: GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK; rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3); switch (pVM->pgm.s.enmShadowMode) { case PGMMODE_32_BIT: rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3); break; case PGMMODE_PAE: case PGMMODE_PAE_NX: rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3); break; case PGMMODE_AMD64: case PGMMODE_AMD64_NX: AssertMsgFailed(("Should use PAE shadow mode!\n")); default: AssertFailed(); break; } break; //case PGMMODE_PAE_NX: case PGMMODE_PAE: GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK; rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3); switch (pVM->pgm.s.enmShadowMode) { case PGMMODE_PAE: case PGMMODE_PAE_NX: rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3); break; case PGMMODE_32_BIT: case PGMMODE_AMD64: case PGMMODE_AMD64_NX: AssertMsgFailed(("Should use PAE shadow mode!\n")); default: AssertFailed(); break; } break; //case PGMMODE_AMD64_NX: case PGMMODE_AMD64: GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask and make CR3 64-bit in this case! */ rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3); switch (pVM->pgm.s.enmShadowMode) { case PGMMODE_AMD64: case PGMMODE_AMD64_NX: rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3); break; case PGMMODE_32_BIT: case PGMMODE_PAE: case PGMMODE_PAE_NX: AssertMsgFailed(("Should use AMD64 shadow mode!\n")); default: AssertFailed(); break; } break; default: AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode)); rc = VERR_NOT_IMPLEMENTED; break; } /* status codes. */ AssertRC(rc); AssertRC(rc2); if (VBOX_SUCCESS(rc)) { rc = rc2; if (VBOX_SUCCESS(rc)) /* no informational status codes. */ rc = VINF_SUCCESS; } /* * Notify SELM so it can update the TSSes with correct CR3s. */ SELMR3PagingModeChanged(pVM); /* Notify HWACCM as well. */ HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode); return rc; } /** * Dumps a PAE shadow page table. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param pPT Pointer to the page table. * @param u64Address The virtual address of the page table starts. * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table. * @param cMaxDepth The maxium depth. * @param pHlp Pointer to the output functions. */ static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp) { for (unsigned i = 0; i < ELEMENTS(pPT->a); i++) { X86PTEPAE Pte = pPT->a[i]; if (Pte.n.u1Present) { pHlp->pfnPrintf(pHlp, fLongMode /*P R S A D G WT CD AT NX 4M a p ? */ ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n" : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n", u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT), Pte.n.u1Write ? 'W' : 'R', Pte.n.u1User ? 'U' : 'S', Pte.n.u1Accessed ? 'A' : '-', Pte.n.u1Dirty ? 'D' : '-', Pte.n.u1Global ? 'G' : '-', Pte.n.u1WriteThru ? "WT" : "--", Pte.n.u1CacheDisable? "CD" : "--", Pte.n.u1PAT ? "AT" : "--", Pte.n.u1NoExecute ? "NX" : "--", Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-', Pte.u & RT_BIT(10) ? '1' : '0', Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-', Pte.u & X86_PTE_PAE_PG_MASK); } } return VINF_SUCCESS; } /** * Dumps a PAE shadow page directory table. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param HCPhys The physical address of the page directory table. * @param u64Address The virtual address of the page table starts. * @param cr4 The CR4, PSE is currently used. * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table. * @param cMaxDepth The maxium depth. * @param pHlp Pointer to the output functions. */ static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp) { PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys); if (!pPD) { pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n", fLongMode ? 16 : 8, u64Address, HCPhys); return VERR_INVALID_PARAMETER; } int rc = VINF_SUCCESS; for (unsigned i = 0; i < ELEMENTS(pPD->a); i++) { X86PDEPAE Pde = pPD->a[i]; if (Pde.n.u1Present) { if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size) pHlp->pfnPrintf(pHlp, fLongMode /*P R S A D G WT CD AT NX 4M a p ? */ ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n" : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n", u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT), Pde.b.u1Write ? 'W' : 'R', Pde.b.u1User ? 'U' : 'S', Pde.b.u1Accessed ? 'A' : '-', Pde.b.u1Dirty ? 'D' : '-', Pde.b.u1Global ? 'G' : '-', Pde.b.u1WriteThru ? "WT" : "--", Pde.b.u1CacheDisable? "CD" : "--", Pde.b.u1PAT ? "AT" : "--", Pde.b.u1NoExecute ? "NX" : "--", Pde.u & RT_BIT_64(9) ? '1' : '0', Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-', Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-', Pde.u & X86_PDE_PAE_PG_MASK); else { pHlp->pfnPrintf(pHlp, fLongMode /*P R S A D G WT CD AT NX 4M a p ? */ ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n" : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n", u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT), Pde.n.u1Write ? 'W' : 'R', Pde.n.u1User ? 'U' : 'S', Pde.n.u1Accessed ? 'A' : '-', Pde.n.u1Reserved0 ? '?' : '.', /* ignored */ Pde.n.u1Reserved1 ? '?' : '.', /* ignored */ Pde.n.u1WriteThru ? "WT" : "--", Pde.n.u1CacheDisable? "CD" : "--", Pde.n.u1NoExecute ? "NX" : "--", Pde.u & RT_BIT_64(9) ? '1' : '0', Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-', Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-', Pde.u & X86_PDE_PAE_PG_MASK); if (cMaxDepth >= 1) { /** @todo what about using the page pool for mapping PTs? */ uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT); RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK; PX86PTPAE pPT = NULL; if (!(Pde.u & PGM_PDFLAGS_MAPPING)) pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT); else { for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3) { uint64_t off = u64AddressPT - pMap->GCPtr; if (off < pMap->cb) { const int iPDE = (uint32_t)(off >> X86_PD_SHIFT); const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */ if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT) pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n", fLongMode ? 16 : 8, u64AddressPT, iPDE, iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT); pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub]; } } } int rc2 = VERR_INVALID_PARAMETER; if (pPT) rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp); else pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n", fLongMode ? 16 : 8, u64AddressPT, HCPhysPT); if (rc2 < rc && VBOX_SUCCESS(rc)) rc = rc2; } } } } return rc; } /** * Dumps a PAE shadow page directory pointer table. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param HCPhys The physical address of the page directory pointer table. * @param u64Address The virtual address of the page table starts. * @param cr4 The CR4, PSE is currently used. * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table. * @param cMaxDepth The maxium depth. * @param pHlp Pointer to the output functions. */ static int pgmR3DumpHierarchyHCPaePDPTR(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp) { PX86PDPTR pPDPTR = (PX86PDPTR)MMPagePhys2Page(pVM, HCPhys); if (!pPDPTR) { pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n", fLongMode ? 16 : 8, u64Address, HCPhys); return VERR_INVALID_PARAMETER; } int rc = VINF_SUCCESS; const unsigned c = fLongMode ? ELEMENTS(pPDPTR->a) : 4; for (unsigned i = 0; i < c; i++) { X86PDPE Pdpe = pPDPTR->a[i]; if (Pdpe.n.u1Present) { if (fLongMode) pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */ "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n", u64Address + ((uint64_t)i << X86_PDPTR_SHIFT), Pdpe.n.u1Write ? 'W' : 'R', Pdpe.n.u1User ? 'U' : 'S', Pdpe.n.u1Accessed ? 'A' : '-', Pdpe.n.u3Reserved & 1? '?' : '.', /* ignored */ Pdpe.n.u3Reserved & 4? '!' : '.', /* mbz */ Pdpe.n.u1WriteThru ? "WT" : "--", Pdpe.n.u1CacheDisable? "CD" : "--", Pdpe.n.u3Reserved & 2? "!" : "..",/* mbz */ Pdpe.n.u1NoExecute ? "NX" : "--", Pdpe.u & RT_BIT(9) ? '1' : '0', Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-', Pdpe.u & RT_BIT(11) ? '1' : '0', Pdpe.u & X86_PDPE_PG_MASK); else pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */ "%08x 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n", i << X86_PDPTR_SHIFT, Pdpe.n.u1Write ? '!' : '.', /* mbz */ Pdpe.n.u1User ? '!' : '.', /* mbz */ Pdpe.n.u1Accessed ? '!' : '.', /* mbz */ Pdpe.n.u3Reserved & 1? '!' : '.', /* mbz */ Pdpe.n.u3Reserved & 4? '!' : '.', /* mbz */ Pdpe.n.u1WriteThru ? "WT" : "--", Pdpe.n.u1CacheDisable? "CD" : "--", Pdpe.n.u3Reserved & 2? "!" : "..",/* mbz */ Pdpe.n.u1NoExecute ? "NX" : "--", Pdpe.u & RT_BIT(9) ? '1' : '0', Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-', Pdpe.u & RT_BIT(11) ? '1' : '0', Pdpe.u & X86_PDPE_PG_MASK); if (cMaxDepth >= 1) { int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPTR_SHIFT), cr4, fLongMode, cMaxDepth - 1, pHlp); if (rc2 < rc && VBOX_SUCCESS(rc)) rc = rc2; } } } return rc; } /** * Dumps a 32-bit shadow page table. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param HCPhys The physical address of the table. * @param cr4 The CR4, PSE is currently used. * @param cMaxDepth The maxium depth. * @param pHlp Pointer to the output functions. */ static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp) { PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys); if (!pPML4) { pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys); return VERR_INVALID_PARAMETER; } int rc = VINF_SUCCESS; for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++) { X86PML4E Pml4e = pPML4->a[i]; if (Pml4e.n.u1Present) { uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPTR_SHIFT - 1)) * 0xffff000000000000ULL); pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */ "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n", u64Address, Pml4e.n.u1Write ? 'W' : 'R', Pml4e.n.u1User ? 'U' : 'S', Pml4e.n.u1Accessed ? 'A' : '-', Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */ Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */ Pml4e.n.u1WriteThru ? "WT" : "--", Pml4e.n.u1CacheDisable? "CD" : "--", Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */ Pml4e.n.u1NoExecute ? "NX" : "--", Pml4e.u & RT_BIT(9) ? '1' : '0', Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-', Pml4e.u & RT_BIT(11) ? '1' : '0', Pml4e.u & X86_PML4E_PG_MASK); if (cMaxDepth >= 1) { int rc2 = pgmR3DumpHierarchyHCPaePDPTR(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp); if (rc2 < rc && VBOX_SUCCESS(rc)) rc = rc2; } } } return rc; } /** * Dumps a 32-bit shadow page table. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param pPT Pointer to the page table. * @param u32Address The virtual address this table starts at. * @param pHlp Pointer to the output functions. */ int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp) { for (unsigned i = 0; i < ELEMENTS(pPT->a); i++) { X86PTE Pte = pPT->a[i]; if (Pte.n.u1Present) { pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */ "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n", u32Address + (i << X86_PT_SHIFT), Pte.n.u1Write ? 'W' : 'R', Pte.n.u1User ? 'U' : 'S', Pte.n.u1Accessed ? 'A' : '-', Pte.n.u1Dirty ? 'D' : '-', Pte.n.u1Global ? 'G' : '-', Pte.n.u1WriteThru ? "WT" : "--", Pte.n.u1CacheDisable? "CD" : "--", Pte.n.u1PAT ? "AT" : "--", Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-', Pte.u & RT_BIT(10) ? '1' : '0', Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-', Pte.u & X86_PDE_PG_MASK); } } return VINF_SUCCESS; } /** * Dumps a 32-bit shadow page directory and page tables. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param cr3 The root of the hierarchy. * @param cr4 The CR4, PSE is currently used. * @param cMaxDepth How deep into the hierarchy the dumper should go. * @param pHlp Pointer to the output functions. */ int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp) { PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK); if (!pPD) { pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK); return VERR_INVALID_PARAMETER; } int rc = VINF_SUCCESS; for (unsigned i = 0; i < ELEMENTS(pPD->a); i++) { X86PDE Pde = pPD->a[i]; if (Pde.n.u1Present) { const uint32_t u32Address = i << X86_PD_SHIFT; if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size) pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */ "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n", u32Address, Pde.b.u1Write ? 'W' : 'R', Pde.b.u1User ? 'U' : 'S', Pde.b.u1Accessed ? 'A' : '-', Pde.b.u1Dirty ? 'D' : '-', Pde.b.u1Global ? 'G' : '-', Pde.b.u1WriteThru ? "WT" : "--", Pde.b.u1CacheDisable? "CD" : "--", Pde.b.u1PAT ? "AT" : "--", Pde.u & RT_BIT_64(9) ? '1' : '0', Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-', Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-', Pde.u & X86_PDE4M_PG_MASK); else { pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */ "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n", u32Address, Pde.n.u1Write ? 'W' : 'R', Pde.n.u1User ? 'U' : 'S', Pde.n.u1Accessed ? 'A' : '-', Pde.n.u1Reserved0 ? '?' : '.', /* ignored */ Pde.n.u1Reserved1 ? '?' : '.', /* ignored */ Pde.n.u1WriteThru ? "WT" : "--", Pde.n.u1CacheDisable? "CD" : "--", Pde.u & RT_BIT_64(9) ? '1' : '0', Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-', Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-', Pde.u & X86_PDE_PG_MASK); if (cMaxDepth >= 1) { /** @todo what about using the page pool for mapping PTs? */ RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK; PX86PT pPT = NULL; if (!(Pde.u & PGM_PDFLAGS_MAPPING)) pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys); else { for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3) if (u32Address - pMap->GCPtr < pMap->cb) { int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT; if (pMap->aPTs[iPDE].HCPhysPT != HCPhys) pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n", u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys); pPT = pMap->aPTs[iPDE].pPTR3; } } int rc2 = VERR_INVALID_PARAMETER; if (pPT) rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp); else pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys); if (rc2 < rc && VBOX_SUCCESS(rc)) rc = rc2; } } } } return rc; } /** * Dumps a 32-bit shadow page table. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param pPT Pointer to the page table. * @param u32Address The virtual address this table starts at. * @param PhysSearch Address to search for. */ int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch) { for (unsigned i = 0; i < ELEMENTS(pPT->a); i++) { X86PTE Pte = pPT->a[i]; if (Pte.n.u1Present) { Log(( /*P R S A D G WT CD AT NX 4M a m d */ "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n", u32Address + (i << X86_PT_SHIFT), Pte.n.u1Write ? 'W' : 'R', Pte.n.u1User ? 'U' : 'S', Pte.n.u1Accessed ? 'A' : '-', Pte.n.u1Dirty ? 'D' : '-', Pte.n.u1Global ? 'G' : '-', Pte.n.u1WriteThru ? "WT" : "--", Pte.n.u1CacheDisable? "CD" : "--", Pte.n.u1PAT ? "AT" : "--", Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-', Pte.u & RT_BIT(10) ? '1' : '0', Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-', Pte.u & X86_PDE_PG_MASK)); if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch) { uint64_t fPageShw = 0; RTHCPHYS pPhysHC = 0; PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC); Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw)); } } } return VINF_SUCCESS; } /** * Dumps a 32-bit guest page directory and page tables. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param cr3 The root of the hierarchy. * @param cr4 The CR4, PSE is currently used. * @param PhysSearch Address to search for. */ PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCPHYS PhysSearch) { bool fLongMode = false; const unsigned cch = fLongMode ? 16 : 8; NOREF(cch); PX86PD pPD = 0; int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD); if (VBOX_FAILURE(rc) || !pPD) { Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK)); return VERR_INVALID_PARAMETER; } Log(("cr3=%08x cr4=%08x%s\n" "%-*s P - Present\n" "%-*s | R/W - Read (0) / Write (1)\n" "%-*s | | U/S - User (1) / Supervisor (0)\n" "%-*s | | | A - Accessed\n" "%-*s | | | | D - Dirty\n" "%-*s | | | | | G - Global\n" "%-*s | | | | | | WT - Write thru\n" "%-*s | | | | | | | CD - Cache disable\n" "%-*s | | | | | | | | AT - Attribute table (PAT)\n" "%-*s | | | | | | | | | NX - No execute (K8)\n" "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n" "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n" "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n" "%-*s Level | | | | | | | | | | | | Page\n" /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx - W U - - - -- -- -- -- -- 010 */ , cr3, cr4, fLongMode ? " Long Mode" : "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address")); for (unsigned i = 0; i < ELEMENTS(pPD->a); i++) { X86PDE Pde = pPD->a[i]; if (Pde.n.u1Present) { const uint32_t u32Address = i << X86_PD_SHIFT; if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size) Log(( /*P R S A D G WT CD AT NX 4M a m d */ "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n", u32Address, Pde.b.u1Write ? 'W' : 'R', Pde.b.u1User ? 'U' : 'S', Pde.b.u1Accessed ? 'A' : '-', Pde.b.u1Dirty ? 'D' : '-', Pde.b.u1Global ? 'G' : '-', Pde.b.u1WriteThru ? "WT" : "--", Pde.b.u1CacheDisable? "CD" : "--", Pde.b.u1PAT ? "AT" : "--", Pde.u & RT_BIT(9) ? '1' : '0', Pde.u & RT_BIT(10) ? '1' : '0', Pde.u & RT_BIT(11) ? '1' : '0', Pde.u & X86_PDE4M_PG_MASK)); /** @todo PhysSearch */ else { Log(( /*P R S A D G WT CD AT NX 4M a m d */ "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n", u32Address, Pde.n.u1Write ? 'W' : 'R', Pde.n.u1User ? 'U' : 'S', Pde.n.u1Accessed ? 'A' : '-', Pde.n.u1Reserved0 ? '?' : '.', /* ignored */ Pde.n.u1Reserved1 ? '?' : '.', /* ignored */ Pde.n.u1WriteThru ? "WT" : "--", Pde.n.u1CacheDisable? "CD" : "--", Pde.u & RT_BIT(9) ? '1' : '0', Pde.u & RT_BIT(10) ? '1' : '0', Pde.u & RT_BIT(11) ? '1' : '0', Pde.u & X86_PDE_PG_MASK)); ////if (cMaxDepth >= 1) { /** @todo what about using the page pool for mapping PTs? */ RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK; PX86PT pPT = NULL; rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT); int rc2 = VERR_INVALID_PARAMETER; if (pPT) rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch); else Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys)); if (rc2 < rc && VBOX_SUCCESS(rc)) rc = rc2; } } } } return rc; } /** * Dumps a page table hierarchy use only physical addresses and cr4/lm flags. * * @returns VBox status code (VINF_SUCCESS). * @param pVM The VM handle. * @param cr3 The root of the hierarchy. * @param cr4 The cr4, only PAE and PSE is currently used. * @param fLongMode Set if long mode, false if not long mode. * @param cMaxDepth Number of levels to dump. * @param pHlp Pointer to the output functions. */ PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint32_t cr3, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp) { if (!pHlp) pHlp = DBGFR3InfoLogHlp(); if (!cMaxDepth) return VINF_SUCCESS; const unsigned cch = fLongMode ? 16 : 8; pHlp->pfnPrintf(pHlp, "cr3=%08x cr4=%08x%s\n" "%-*s P - Present\n" "%-*s | R/W - Read (0) / Write (1)\n" "%-*s | | U/S - User (1) / Supervisor (0)\n" "%-*s | | | A - Accessed\n" "%-*s | | | | D - Dirty\n" "%-*s | | | | | G - Global\n" "%-*s | | | | | | WT - Write thru\n" "%-*s | | | | | | | CD - Cache disable\n" "%-*s | | | | | | | | AT - Attribute table (PAT)\n" "%-*s | | | | | | | | | NX - No execute (K8)\n" "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n" "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n" "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n" "%-*s Level | | | | | | | | | | | | Page\n" /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx - W U - - - -- -- -- -- -- 010 */ , cr3, cr4, fLongMode ? " Long Mode" : "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"); if (cr4 & X86_CR4_PAE) { if (fLongMode) return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp); return pgmR3DumpHierarchyHCPaePDPTR(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp); } return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp); } #ifdef VBOX_WITH_DEBUGGER /** * The '.pgmram' command. * * @returns VBox status. * @param pCmd Pointer to the command descriptor (as registered). * @param pCmdHlp Pointer to command helper functions. * @param pVM Pointer to the current VM (if any). * @param paArgs Pointer to (readonly) array of arguments. * @param cArgs Number of arguments in the array. */ static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult) { /* * Validate input. */ if (!pVM) return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n"); if (!pVM->pgm.s.pRamRangesGC) return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n"); /* * Dump the ranges. */ int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n"); PPGMRAMRANGE pRam; for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3) { rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%VGp - %VGp %p\n", pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC); if (VBOX_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * The '.pgmmap' command. * * @returns VBox status. * @param pCmd Pointer to the command descriptor (as registered). * @param pCmdHlp Pointer to command helper functions. * @param pVM Pointer to the current VM (if any). * @param paArgs Pointer to (readonly) array of arguments. * @param cArgs Number of arguments in the array. */ static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult) { /* * Validate input. */ if (!pVM) return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n"); if (!pVM->pgm.s.pMappingsR3) return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n"); /* * Print message about the fixedness of the mappings. */ int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n"); if (VBOX_FAILURE(rc)) return rc; /* * Dump the ranges. */ PPGMMAPPING pCur; for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3) { rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "%08x - %08x %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc); if (VBOX_FAILURE(rc)) return rc; } return VINF_SUCCESS; } /** * The '.pgmsync' command. * * @returns VBox status. * @param pCmd Pointer to the command descriptor (as registered). * @param pCmdHlp Pointer to command helper functions. * @param pVM Pointer to the current VM (if any). * @param paArgs Pointer to (readonly) array of arguments. * @param cArgs Number of arguments in the array. */ static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult) { /* * Validate input. */ if (!pVM) return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n"); /* * Force page directory sync. */ VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n"); if (VBOX_FAILURE(rc)) return rc; return VINF_SUCCESS; } /** * The '.pgmsyncalways' command. * * @returns VBox status. * @param pCmd Pointer to the command descriptor (as registered). * @param pCmdHlp Pointer to command helper functions. * @param pVM Pointer to the current VM (if any). * @param paArgs Pointer to (readonly) array of arguments. * @param cArgs Number of arguments in the array. */ static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult) { /* * Validate input. */ if (!pVM) return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n"); /* * Force page directory sync. */ if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS) { ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS); return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n"); } else { ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS); VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3); return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n"); } } #endif /** * pvUser argument of the pgmR3CheckIntegrity*Node callbacks. */ typedef struct PGMCHECKINTARGS { bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */ PPGMPHYSHANDLER pPrevPhys; PPGMVIRTHANDLER pPrevVirt; PPGMPHYS2VIRTHANDLER pPrevPhys2Virt; PVM pVM; } PGMCHECKINTARGS, *PPGMCHECKINTARGS; /** * Validate a node in the physical handler tree. * * @returns 0 on if ok, other wise 1. * @param pNode The handler node. * @param pvUser pVM. */ static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser) { PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser; PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode; AssertReleaseReturn(!((uintptr_t)pCur & 7), 1); AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc)); AssertReleaseMsg( !pArgs->pPrevPhys || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key), ("pPrevPhys=%p %VGp-%VGp %s\n" " pCur=%p %VGp-%VGp %s\n", pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc, pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc)); pArgs->pPrevPhys = pCur; return 0; } /** * Validate a node in the virtual handler tree. * * @returns 0 on if ok, other wise 1. * @param pNode The handler node. * @param pvUser pVM. */ static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser) { PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser; PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode; AssertReleaseReturn(!((uintptr_t)pCur & 7), 1); AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc)); AssertReleaseMsg( !pArgs->pPrevVirt || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key), ("pPrevVirt=%p %VGv-%VGv %s\n" " pCur=%p %VGv-%VGv %s\n", pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc, pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc)); for (unsigned iPage = 0; iPage < pCur->cPages; iPage++) { AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]), ("pCur=%p %VGv-%VGv %s\n" "iPage=%d offVirtHandle=%#x expected %#x\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc, iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]))); } pArgs->pPrevVirt = pCur; return 0; } /** * Validate a node in the virtual handler tree. * * @returns 0 on if ok, other wise 1. * @param pNode The handler node. * @param pvUser pVM. */ static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser) { PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser; PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode; AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1); AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1); AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast)); AssertReleaseMsg( !pArgs->pPrevPhys2Virt || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key), ("pPrevPhys2Virt=%p %VGp-%VGp\n" " pCur=%p %VGp-%VGp\n", pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast, pCur, pCur->Core.Key, pCur->Core.KeyLast)); AssertReleaseMsg( !pArgs->pPrevPhys2Virt || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key), ("pPrevPhys2Virt=%p %VGp-%VGp\n" " pCur=%p %VGp-%VGp\n", pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast, pCur, pCur->Core.Key, pCur->Core.KeyLast)); AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD), ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias)); if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK) { PPGMPHYS2VIRTHANDLER pCur2 = pCur; for (;;) { pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); AssertReleaseMsg(pCur2 != pCur, (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias)); AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE, (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n" "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias, pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias)); AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE, (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n" "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias, pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias)); AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE, (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n" "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias, pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias)); if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)) break; } } pArgs->pPrevPhys2Virt = pCur; return 0; } /** * Perform an integrity check on the PGM component. * * @returns VINF_SUCCESS if everything is fine. * @returns VBox error status after asserting on integrity breach. * @param pVM The VM handle. */ PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM) { AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR); /* * Check the trees. */ int cErrors = 0; PGMCHECKINTARGS Args = { true, NULL, NULL, NULL, pVM }; cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args); Args.fLeftToRight = false; cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args); Args.fLeftToRight = true; cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args); Args.fLeftToRight = false; cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args); Args.fLeftToRight = true; cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args); Args.fLeftToRight = false; cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args); Args.fLeftToRight = true; cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args); Args.fLeftToRight = false; cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args); return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR; } /** * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX) * * @returns VBox status code. * @param pVM VM handle. * @param fEnable Enable or disable shadow mappings */ PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable) { pVM->pgm.s.fDisableMappings = !fEnable; uint32_t cb; int rc = PGMR3MappingsSize(pVM, &cb); AssertRCReturn(rc, rc); /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */ rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb); AssertRCReturn(rc, rc); return VINF_SUCCESS; }