VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 11043

Last change on this file since 11043 was 10823, checked in by vboxsync, 16 years ago

Duplicate code

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 202.9 KB
Line 
1/* $Id: PGM.cpp 10823 2008-07-23 09:04:56Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636#endif
637
638
639/*******************************************************************************
640* Global Variables *
641*******************************************************************************/
642#ifdef VBOX_WITH_DEBUGGER
643/** Command descriptors. */
644static const DBGCCMD g_aCmds[] =
645{
646 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
647 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
648 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
649 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
650#ifdef VBOX_STRICT
651 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
652#endif
653 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
654};
655#endif
656
657
658
659
660/*
661 * Shadow - 32-bit mode
662 */
663#define PGM_SHW_TYPE PGM_TYPE_32BIT
664#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
665#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
666#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
667#include "PGMShw.h"
668
669/* Guest - real mode */
670#define PGM_GST_TYPE PGM_TYPE_REAL
671#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
672#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
673#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
674#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
675#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
676#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
677#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
678#include "PGMGst.h"
679#include "PGMBth.h"
680#undef BTH_PGMPOOLKIND_PT_FOR_PT
681#undef PGM_BTH_NAME
682#undef PGM_BTH_NAME_GC_STR
683#undef PGM_BTH_NAME_R0_STR
684#undef PGM_GST_TYPE
685#undef PGM_GST_NAME
686#undef PGM_GST_NAME_GC_STR
687#undef PGM_GST_NAME_R0_STR
688
689/* Guest - protected mode */
690#define PGM_GST_TYPE PGM_TYPE_PROT
691#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
692#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
693#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
694#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
695#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
696#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
697#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
698#include "PGMGst.h"
699#include "PGMBth.h"
700#undef BTH_PGMPOOLKIND_PT_FOR_PT
701#undef PGM_BTH_NAME
702#undef PGM_BTH_NAME_GC_STR
703#undef PGM_BTH_NAME_R0_STR
704#undef PGM_GST_TYPE
705#undef PGM_GST_NAME
706#undef PGM_GST_NAME_GC_STR
707#undef PGM_GST_NAME_R0_STR
708
709/* Guest - 32-bit mode */
710#define PGM_GST_TYPE PGM_TYPE_32BIT
711#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
712#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
713#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
714#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
715#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
716#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
717#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
718#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
719#include "PGMGst.h"
720#include "PGMBth.h"
721#undef BTH_PGMPOOLKIND_PT_FOR_BIG
722#undef BTH_PGMPOOLKIND_PT_FOR_PT
723#undef PGM_BTH_NAME
724#undef PGM_BTH_NAME_GC_STR
725#undef PGM_BTH_NAME_R0_STR
726#undef PGM_GST_TYPE
727#undef PGM_GST_NAME
728#undef PGM_GST_NAME_GC_STR
729#undef PGM_GST_NAME_R0_STR
730
731#undef PGM_SHW_TYPE
732#undef PGM_SHW_NAME
733#undef PGM_SHW_NAME_GC_STR
734#undef PGM_SHW_NAME_R0_STR
735
736
737/*
738 * Shadow - PAE mode
739 */
740#define PGM_SHW_TYPE PGM_TYPE_PAE
741#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
742#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
743#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
744#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
745#include "PGMShw.h"
746
747/* Guest - real mode */
748#define PGM_GST_TYPE PGM_TYPE_REAL
749#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
750#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
751#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
752#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
753#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
754#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
755#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
756#include "PGMBth.h"
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef PGM_BTH_NAME
759#undef PGM_BTH_NAME_GC_STR
760#undef PGM_BTH_NAME_R0_STR
761#undef PGM_GST_TYPE
762#undef PGM_GST_NAME
763#undef PGM_GST_NAME_GC_STR
764#undef PGM_GST_NAME_R0_STR
765
766/* Guest - protected mode */
767#define PGM_GST_TYPE PGM_TYPE_PROT
768#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
769#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
770#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
771#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
772#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
773#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
774#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
775#include "PGMBth.h"
776#undef BTH_PGMPOOLKIND_PT_FOR_PT
777#undef PGM_BTH_NAME
778#undef PGM_BTH_NAME_GC_STR
779#undef PGM_BTH_NAME_R0_STR
780#undef PGM_GST_TYPE
781#undef PGM_GST_NAME
782#undef PGM_GST_NAME_GC_STR
783#undef PGM_GST_NAME_R0_STR
784
785/* Guest - 32-bit mode */
786#define PGM_GST_TYPE PGM_TYPE_32BIT
787#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
788#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
789#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
790#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
791#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
792#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
793#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
794#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
795#include "PGMBth.h"
796#undef BTH_PGMPOOLKIND_PT_FOR_BIG
797#undef BTH_PGMPOOLKIND_PT_FOR_PT
798#undef PGM_BTH_NAME
799#undef PGM_BTH_NAME_GC_STR
800#undef PGM_BTH_NAME_R0_STR
801#undef PGM_GST_TYPE
802#undef PGM_GST_NAME
803#undef PGM_GST_NAME_GC_STR
804#undef PGM_GST_NAME_R0_STR
805
806/* Guest - PAE mode */
807#define PGM_GST_TYPE PGM_TYPE_PAE
808#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
809#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
810#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
811#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
812#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
813#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
814#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
815#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
816#include "PGMGst.h"
817#include "PGMBth.h"
818#undef BTH_PGMPOOLKIND_PT_FOR_BIG
819#undef BTH_PGMPOOLKIND_PT_FOR_PT
820#undef PGM_BTH_NAME
821#undef PGM_BTH_NAME_GC_STR
822#undef PGM_BTH_NAME_R0_STR
823#undef PGM_GST_TYPE
824#undef PGM_GST_NAME
825#undef PGM_GST_NAME_GC_STR
826#undef PGM_GST_NAME_R0_STR
827
828#undef PGM_SHW_TYPE
829#undef PGM_SHW_NAME
830#undef PGM_SHW_NAME_GC_STR
831#undef PGM_SHW_NAME_R0_STR
832
833
834/*
835 * Shadow - AMD64 mode
836 */
837#define PGM_SHW_TYPE PGM_TYPE_AMD64
838#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
839#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
840#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
841#include "PGMShw.h"
842
843/* Guest - AMD64 mode */
844#define PGM_GST_TYPE PGM_TYPE_AMD64
845#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
846#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
847#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
848#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
849#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
850#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
851#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
852#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
853#include "PGMGst.h"
854#include "PGMBth.h"
855#undef BTH_PGMPOOLKIND_PT_FOR_BIG
856#undef BTH_PGMPOOLKIND_PT_FOR_PT
857#undef PGM_BTH_NAME
858#undef PGM_BTH_NAME_GC_STR
859#undef PGM_BTH_NAME_R0_STR
860#undef PGM_GST_TYPE
861#undef PGM_GST_NAME
862#undef PGM_GST_NAME_GC_STR
863#undef PGM_GST_NAME_R0_STR
864
865#undef PGM_SHW_TYPE
866#undef PGM_SHW_NAME
867#undef PGM_SHW_NAME_GC_STR
868#undef PGM_SHW_NAME_R0_STR
869
870/*
871 * Shadow - Nested paging mode
872 */
873#define PGM_SHW_TYPE PGM_TYPE_NESTED
874#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
875#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
876#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
877#include "PGMShw.h"
878
879/* Guest - real mode */
880#define PGM_GST_TYPE PGM_TYPE_REAL
881#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
882#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
883#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
884#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
885#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
886#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
887#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
888#include "PGMBth.h"
889#undef BTH_PGMPOOLKIND_PT_FOR_PT
890#undef PGM_BTH_NAME
891#undef PGM_BTH_NAME_GC_STR
892#undef PGM_BTH_NAME_R0_STR
893#undef PGM_GST_TYPE
894#undef PGM_GST_NAME
895#undef PGM_GST_NAME_GC_STR
896#undef PGM_GST_NAME_R0_STR
897
898/* Guest - protected mode */
899#define PGM_GST_TYPE PGM_TYPE_PROT
900#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
901#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
902#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
903#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
904#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
905#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
906#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
907#include "PGMBth.h"
908#undef BTH_PGMPOOLKIND_PT_FOR_PT
909#undef PGM_BTH_NAME
910#undef PGM_BTH_NAME_GC_STR
911#undef PGM_BTH_NAME_R0_STR
912#undef PGM_GST_TYPE
913#undef PGM_GST_NAME
914#undef PGM_GST_NAME_GC_STR
915#undef PGM_GST_NAME_R0_STR
916
917/* Guest - 32-bit mode */
918#define PGM_GST_TYPE PGM_TYPE_32BIT
919#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
920#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
921#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
922#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
923#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
924#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
925#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
926#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
927#include "PGMBth.h"
928#undef BTH_PGMPOOLKIND_PT_FOR_BIG
929#undef BTH_PGMPOOLKIND_PT_FOR_PT
930#undef PGM_BTH_NAME
931#undef PGM_BTH_NAME_GC_STR
932#undef PGM_BTH_NAME_R0_STR
933#undef PGM_GST_TYPE
934#undef PGM_GST_NAME
935#undef PGM_GST_NAME_GC_STR
936#undef PGM_GST_NAME_R0_STR
937
938/* Guest - PAE mode */
939#define PGM_GST_TYPE PGM_TYPE_PAE
940#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
941#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
942#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
943#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
944#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
945#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
946#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
947#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
948#include "PGMBth.h"
949#undef BTH_PGMPOOLKIND_PT_FOR_BIG
950#undef BTH_PGMPOOLKIND_PT_FOR_PT
951#undef PGM_BTH_NAME
952#undef PGM_BTH_NAME_GC_STR
953#undef PGM_BTH_NAME_R0_STR
954#undef PGM_GST_TYPE
955#undef PGM_GST_NAME
956#undef PGM_GST_NAME_GC_STR
957#undef PGM_GST_NAME_R0_STR
958
959/* Guest - AMD64 mode */
960#define PGM_GST_TYPE PGM_TYPE_AMD64
961#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
962#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
963#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
964#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
965#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
966#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
967#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
968#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
969#include "PGMBth.h"
970#undef BTH_PGMPOOLKIND_PT_FOR_BIG
971#undef BTH_PGMPOOLKIND_PT_FOR_PT
972#undef PGM_BTH_NAME
973#undef PGM_BTH_NAME_GC_STR
974#undef PGM_BTH_NAME_R0_STR
975#undef PGM_GST_TYPE
976#undef PGM_GST_NAME
977#undef PGM_GST_NAME_GC_STR
978#undef PGM_GST_NAME_R0_STR
979
980#undef PGM_SHW_TYPE
981#undef PGM_SHW_NAME
982#undef PGM_SHW_NAME_GC_STR
983#undef PGM_SHW_NAME_R0_STR
984
985
986#ifdef PGM_WITH_EPT
987/*
988 * Shadow - EPT
989 */
990#define PGM_SHW_TYPE PGM_TYPE_EPT
991#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
992#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_EPT_STR(name)
993#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
994#include "PGMShw.h"
995
996/* Guest - real mode */
997#define PGM_GST_TYPE PGM_TYPE_REAL
998#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
999#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
1000#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1001#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1002#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_REAL_STR(name)
1003#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1004#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1005#include "PGMBth.h"
1006#undef BTH_PGMPOOLKIND_PT_FOR_PT
1007#undef PGM_BTH_NAME
1008#undef PGM_BTH_NAME_GC_STR
1009#undef PGM_BTH_NAME_R0_STR
1010#undef PGM_GST_TYPE
1011#undef PGM_GST_NAME
1012#undef PGM_GST_NAME_GC_STR
1013#undef PGM_GST_NAME_R0_STR
1014
1015/* Guest - protected mode */
1016#define PGM_GST_TYPE PGM_TYPE_PROT
1017#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1018#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
1019#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1020#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1021#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PROT_STR(name)
1022#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1023#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1024#include "PGMBth.h"
1025#undef BTH_PGMPOOLKIND_PT_FOR_PT
1026#undef PGM_BTH_NAME
1027#undef PGM_BTH_NAME_GC_STR
1028#undef PGM_BTH_NAME_R0_STR
1029#undef PGM_GST_TYPE
1030#undef PGM_GST_NAME
1031#undef PGM_GST_NAME_GC_STR
1032#undef PGM_GST_NAME_R0_STR
1033
1034/* Guest - 32-bit mode */
1035#define PGM_GST_TYPE PGM_TYPE_32BIT
1036#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1037#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
1038#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1039#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1040#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_32BIT_STR(name)
1041#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1042#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1043#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1044#include "PGMBth.h"
1045#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1046#undef BTH_PGMPOOLKIND_PT_FOR_PT
1047#undef PGM_BTH_NAME
1048#undef PGM_BTH_NAME_GC_STR
1049#undef PGM_BTH_NAME_R0_STR
1050#undef PGM_GST_TYPE
1051#undef PGM_GST_NAME
1052#undef PGM_GST_NAME_GC_STR
1053#undef PGM_GST_NAME_R0_STR
1054
1055/* Guest - PAE mode */
1056#define PGM_GST_TYPE PGM_TYPE_PAE
1057#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1058#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
1059#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1060#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1061#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PAE_STR(name)
1062#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1063#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1064#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1065#include "PGMBth.h"
1066#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_GC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_GC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076/* Guest - AMD64 mode */
1077#define PGM_GST_TYPE PGM_TYPE_AMD64
1078#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1079#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
1080#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1081#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1082#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_AMD64_STR(name)
1083#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1084#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1085#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1086#include "PGMBth.h"
1087#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1088#undef BTH_PGMPOOLKIND_PT_FOR_PT
1089#undef PGM_BTH_NAME
1090#undef PGM_BTH_NAME_GC_STR
1091#undef PGM_BTH_NAME_R0_STR
1092#undef PGM_GST_TYPE
1093#undef PGM_GST_NAME
1094#undef PGM_GST_NAME_GC_STR
1095#undef PGM_GST_NAME_R0_STR
1096
1097#undef PGM_SHW_TYPE
1098#undef PGM_SHW_NAME
1099#undef PGM_SHW_NAME_GC_STR
1100#undef PGM_SHW_NAME_R0_STR
1101#endif /* PGM_WITH_EPT */
1102
1103/**
1104 * Initiates the paging of VM.
1105 *
1106 * @returns VBox status code.
1107 * @param pVM Pointer to VM structure.
1108 */
1109PGMR3DECL(int) PGMR3Init(PVM pVM)
1110{
1111 LogFlow(("PGMR3Init:\n"));
1112
1113 /*
1114 * Assert alignment and sizes.
1115 */
1116 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1117
1118 /*
1119 * Init the structure.
1120 */
1121 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1122 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1123 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1124 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1125 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1126 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1127 pVM->pgm.s.fA20Enabled = true;
1128 pVM->pgm.s.pGstPaePDPTHC = NULL;
1129 pVM->pgm.s.pGstPaePDPTGC = 0;
1130 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1131 {
1132 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1133 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1134 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1135 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1136 }
1137
1138#ifdef VBOX_STRICT
1139 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1140#endif
1141
1142 /*
1143 * Get the configured RAM size - to estimate saved state size.
1144 */
1145 uint64_t cbRam;
1146 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1147 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1148 cbRam = pVM->pgm.s.cbRamSize = 0;
1149 else if (VBOX_SUCCESS(rc))
1150 {
1151 if (cbRam < PAGE_SIZE)
1152 cbRam = 0;
1153 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1154 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1155 }
1156 else
1157 {
1158 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1159 return rc;
1160 }
1161
1162 /*
1163 * Register saved state data unit.
1164 */
1165 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1166 NULL, pgmR3Save, NULL,
1167 NULL, pgmR3Load, NULL);
1168 if (VBOX_FAILURE(rc))
1169 return rc;
1170
1171 /*
1172 * Initialize the PGM critical section and flush the phys TLBs
1173 */
1174 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1175 AssertRCReturn(rc, rc);
1176
1177 PGMR3PhysChunkInvalidateTLB(pVM);
1178 PGMPhysInvalidatePageR3MapTLB(pVM);
1179 PGMPhysInvalidatePageR0MapTLB(pVM);
1180 PGMPhysInvalidatePageGCMapTLB(pVM);
1181
1182 /*
1183 * Trees
1184 */
1185 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1186 if (VBOX_SUCCESS(rc))
1187 {
1188 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1189
1190 /*
1191 * Alocate the zero page.
1192 */
1193 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1194 }
1195 if (VBOX_SUCCESS(rc))
1196 {
1197 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3);
1198 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1199 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1200 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1201 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1202
1203 /*
1204 * Init the paging.
1205 */
1206 rc = pgmR3InitPaging(pVM);
1207 }
1208 if (VBOX_SUCCESS(rc))
1209 {
1210 /*
1211 * Init the page pool.
1212 */
1213 rc = pgmR3PoolInit(pVM);
1214 }
1215 if (VBOX_SUCCESS(rc))
1216 {
1217 /*
1218 * Info & statistics
1219 */
1220 DBGFR3InfoRegisterInternal(pVM, "mode",
1221 "Shows the current paging mode. "
1222 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1223 pgmR3InfoMode);
1224 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1225 "Dumps all the entries in the top level paging table. No arguments.",
1226 pgmR3InfoCr3);
1227 DBGFR3InfoRegisterInternal(pVM, "phys",
1228 "Dumps all the physical address ranges. No arguments.",
1229 pgmR3PhysInfo);
1230 DBGFR3InfoRegisterInternal(pVM, "handlers",
1231 "Dumps physical, virtual and hyper virtual handlers. "
1232 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1233 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1234 pgmR3InfoHandlers);
1235 DBGFR3InfoRegisterInternal(pVM, "mappings",
1236 "Dumps guest mappings.",
1237 pgmR3MapInfo);
1238
1239 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1240#ifdef VBOX_WITH_STATISTICS
1241 pgmR3InitStats(pVM);
1242#endif
1243#ifdef VBOX_WITH_DEBUGGER
1244 /*
1245 * Debugger commands.
1246 */
1247 static bool fRegisteredCmds = false;
1248 if (!fRegisteredCmds)
1249 {
1250 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1251 if (VBOX_SUCCESS(rc))
1252 fRegisteredCmds = true;
1253 }
1254#endif
1255 return VINF_SUCCESS;
1256 }
1257
1258 /* Almost no cleanup necessary, MM frees all memory. */
1259 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1260
1261 return rc;
1262}
1263
1264
1265/**
1266 * Init paging.
1267 *
1268 * Since we need to check what mode the host is operating in before we can choose
1269 * the right paging functions for the host we have to delay this until R0 has
1270 * been initialized.
1271 *
1272 * @returns VBox status code.
1273 * @param pVM VM handle.
1274 */
1275static int pgmR3InitPaging(PVM pVM)
1276{
1277 /*
1278 * Force a recalculation of modes and switcher so everyone gets notified.
1279 */
1280 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1281 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1282 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1283
1284 /*
1285 * Allocate static mapping space for whatever the cr3 register
1286 * points to and in the case of PAE mode to the 4 PDs.
1287 */
1288 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1289 if (VBOX_FAILURE(rc))
1290 {
1291 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1292 return rc;
1293 }
1294 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1295
1296 /*
1297 * Allocate pages for the three possible intermediate contexts
1298 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1299 * for the sake of simplicity. The AMD64 uses the PAE for the
1300 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1301 *
1302 * We assume that two page tables will be enought for the core code
1303 * mappings (HC virtual and identity).
1304 */
1305 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1306 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1307 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1308 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1309 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1310 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1311 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1312 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1313 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1314 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1315 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1316 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1317 if ( !pVM->pgm.s.pInterPD
1318 || !pVM->pgm.s.apInterPTs[0]
1319 || !pVM->pgm.s.apInterPTs[1]
1320 || !pVM->pgm.s.apInterPaePTs[0]
1321 || !pVM->pgm.s.apInterPaePTs[1]
1322 || !pVM->pgm.s.apInterPaePDs[0]
1323 || !pVM->pgm.s.apInterPaePDs[1]
1324 || !pVM->pgm.s.apInterPaePDs[2]
1325 || !pVM->pgm.s.apInterPaePDs[3]
1326 || !pVM->pgm.s.pInterPaePDPT
1327 || !pVM->pgm.s.pInterPaePDPT64
1328 || !pVM->pgm.s.pInterPaePML4)
1329 {
1330 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1331 return VERR_NO_PAGE_MEMORY;
1332 }
1333
1334 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1335 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1336 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1337 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1338 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1339 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1340
1341 /*
1342 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1343 */
1344 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1345 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1346 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1347
1348 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1349 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1350
1351 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1352 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1353 {
1354 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1355 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1356 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1357 }
1358
1359 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1360 {
1361 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1362 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1363 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1364 }
1365
1366 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1367 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1368 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1369 | HCPhysInterPaePDPT64;
1370
1371 /*
1372 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1373 * We allocate pages for all three posibilities to in order to simplify mappings and
1374 * avoid resource failure during mode switches. So, we need to cover all levels of the
1375 * of the first 4GB down to PD level.
1376 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1377 */
1378 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1379 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1380 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1381 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1382 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1383 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1384 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1385 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1386 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1387 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1388
1389 if ( !pVM->pgm.s.pHC32BitPD
1390 || !pVM->pgm.s.apHCPaePDs[0]
1391 || !pVM->pgm.s.apHCPaePDs[1]
1392 || !pVM->pgm.s.apHCPaePDs[2]
1393 || !pVM->pgm.s.apHCPaePDs[3]
1394 || !pVM->pgm.s.pHCPaePDPT
1395 || !pVM->pgm.s.pHCNestedRoot)
1396 {
1397 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1398 return VERR_NO_PAGE_MEMORY;
1399 }
1400
1401 /* get physical addresses. */
1402 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1403 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1404 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1405 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1406 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1407 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1408 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1409 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1410
1411 /*
1412 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1413 */
1414 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1415 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1416 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1417 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1418 {
1419 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1420 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1421 /* The flags will be corrected when entering and leaving long mode. */
1422 }
1423
1424 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1425
1426 /*
1427 * Initialize paging workers and mode from current host mode
1428 * and the guest running in real mode.
1429 */
1430 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1431 switch (pVM->pgm.s.enmHostMode)
1432 {
1433 case SUPPAGINGMODE_32_BIT:
1434 case SUPPAGINGMODE_32_BIT_GLOBAL:
1435 case SUPPAGINGMODE_PAE:
1436 case SUPPAGINGMODE_PAE_GLOBAL:
1437 case SUPPAGINGMODE_PAE_NX:
1438 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1439 break;
1440
1441 case SUPPAGINGMODE_AMD64:
1442 case SUPPAGINGMODE_AMD64_GLOBAL:
1443 case SUPPAGINGMODE_AMD64_NX:
1444 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1445#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1446 if (ARCH_BITS != 64)
1447 {
1448 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1449 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1450 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1451 }
1452#endif
1453 break;
1454 default:
1455 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1456 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1457 }
1458 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1459 if (VBOX_SUCCESS(rc))
1460 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1461 if (VBOX_SUCCESS(rc))
1462 {
1463 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1464#if HC_ARCH_BITS == 64
1465 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1466 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1467 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1468 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1469 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1470 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1471 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1472 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1473 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1474 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1475#endif
1476
1477 return VINF_SUCCESS;
1478 }
1479
1480 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1481 return rc;
1482}
1483
1484
1485#ifdef VBOX_WITH_STATISTICS
1486/**
1487 * Init statistics
1488 */
1489static void pgmR3InitStats(PVM pVM)
1490{
1491 PPGM pPGM = &pVM->pgm.s;
1492 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1493 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1494 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1495 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1496 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1497 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1498 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1499 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1500 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1501 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1502 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1503 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1504 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1505 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1506 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1507 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1508 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1509 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1510 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1511 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1512 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1513 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1514
1515 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1516 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1517 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1518 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1519 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1520 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1521 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1522 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1523 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1524 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1525 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1526 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1527 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1528 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1529 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1530 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1531 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1532 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1533 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1534
1535 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1536 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1537 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1538 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1539 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1540 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1541 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1542 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1543
1544 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1545 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1546 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1547 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1548 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1549 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1550 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1551
1552 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1553 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1554 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1555 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1556 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1557 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1558 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1559
1560 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1561 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1562
1563 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1564 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1565 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1566
1567 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1568 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1569
1570 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1571 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1572
1573 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1574 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1575
1576 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1577 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1578 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1579
1580 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1581 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1582 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1583 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1584 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1585 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1586 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1587 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1588 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1589 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1590 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1591
1592 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1593 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1594 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1595 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1596 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1597 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1598 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1599
1600 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1601 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1602 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1603 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1604
1605 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1606 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1607 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1608 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1609 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1610
1611 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1612 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1613 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1614 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1615 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1616 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1617 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1618 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1619 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1620 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1621 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1622 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1623
1624 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1625 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1626 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1627 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1628 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1629 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1630 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1631 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1632 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1633 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1634 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1635 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1636
1637 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1638 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1639 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1640
1641 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1642 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1643
1644 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1645 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1646 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1647 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1648
1649 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1650 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1651
1652 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1653 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1654 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1655 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1656 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1657 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1658 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1659 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1660 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1661 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1662 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1663 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1664 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1665
1666#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1667 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1668 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1669 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1670 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1671 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1672 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1673#endif
1674
1675 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1676 {
1677 /** @todo r=bird: We need a STAMR3RegisterF()! */
1678 char szName[32];
1679
1680 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1681 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1682 AssertRC(rc);
1683
1684 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1685 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1686 AssertRC(rc);
1687
1688 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1689 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1690 AssertRC(rc);
1691 }
1692}
1693#endif /* VBOX_WITH_STATISTICS */
1694
1695/**
1696 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1697 *
1698 * The dynamic mapping area will also be allocated and initialized at this
1699 * time. We could allocate it during PGMR3Init of course, but the mapping
1700 * wouldn't be allocated at that time preventing us from setting up the
1701 * page table entries with the dummy page.
1702 *
1703 * @returns VBox status code.
1704 * @param pVM VM handle.
1705 */
1706PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1707{
1708 RTGCPTR GCPtr;
1709 /*
1710 * Reserve space for mapping the paging pages into guest context.
1711 */
1712 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1713 AssertRCReturn(rc, rc);
1714 pVM->pgm.s.pGC32BitPD = GCPtr;
1715 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1716
1717 /*
1718 * Reserve space for the dynamic mappings.
1719 */
1720 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1721 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1722 if (VBOX_SUCCESS(rc))
1723 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1724
1725 if ( VBOX_SUCCESS(rc)
1726 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1727 {
1728 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1729 if (VBOX_SUCCESS(rc))
1730 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1731 }
1732 if (VBOX_SUCCESS(rc))
1733 {
1734 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1735 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1736 }
1737 return rc;
1738}
1739
1740
1741/**
1742 * Ring-3 init finalizing.
1743 *
1744 * @returns VBox status code.
1745 * @param pVM The VM handle.
1746 */
1747PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1748{
1749 /*
1750 * Map the paging pages into the guest context.
1751 */
1752 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1753 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1754
1755 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1756 AssertRCReturn(rc, rc);
1757 pVM->pgm.s.pGC32BitPD = GCPtr;
1758 GCPtr += PAGE_SIZE;
1759 GCPtr += PAGE_SIZE; /* reserved page */
1760
1761 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1762 {
1763 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1764 AssertRCReturn(rc, rc);
1765 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1766 GCPtr += PAGE_SIZE;
1767 }
1768 /* A bit of paranoia is justified. */
1769 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1770 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1771 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1772 GCPtr += PAGE_SIZE; /* reserved page */
1773
1774 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1775 AssertRCReturn(rc, rc);
1776 pVM->pgm.s.pGCPaePDPT = GCPtr;
1777 GCPtr += PAGE_SIZE;
1778 GCPtr += PAGE_SIZE; /* reserved page */
1779
1780
1781 /*
1782 * Reserve space for the dynamic mappings.
1783 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1784 */
1785 /* get the pointer to the page table entries. */
1786 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1787 AssertRelease(pMapping);
1788 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1789 const unsigned iPT = off >> X86_PD_SHIFT;
1790 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1791 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1792 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1793
1794 /* init cache */
1795 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1796 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1797 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1798
1799 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1800 {
1801 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1802 AssertRCReturn(rc, rc);
1803 }
1804
1805 return rc;
1806}
1807
1808
1809/**
1810 * Applies relocations to data and code managed by this
1811 * component. This function will be called at init and
1812 * whenever the VMM need to relocate it self inside the GC.
1813 *
1814 * @param pVM The VM.
1815 * @param offDelta Relocation delta relative to old location.
1816 */
1817PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1818{
1819 LogFlow(("PGMR3Relocate\n"));
1820
1821 /*
1822 * Paging stuff.
1823 */
1824 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1825 /** @todo move this into shadow and guest specific relocation functions. */
1826 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1827 pVM->pgm.s.pGC32BitPD += offDelta;
1828 pVM->pgm.s.pGuestPDGC += offDelta;
1829 AssertCompile(ELEMENTS(pVM->pgm.s.apGCPaePDs) == ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1830 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1831 {
1832 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1833 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1834 }
1835 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1836 pVM->pgm.s.pGCPaePDPT += offDelta;
1837
1838 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1839 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1840
1841 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1842 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1843 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1844
1845 /*
1846 * Trees.
1847 */
1848 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1849
1850 /*
1851 * Ram ranges.
1852 */
1853 if (pVM->pgm.s.pRamRangesR3)
1854 {
1855 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1856 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1857#ifdef VBOX_WITH_NEW_PHYS_CODE
1858 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1859#else
1860 {
1861 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1862 if (pCur->pavHCChunkGC)
1863 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1864 }
1865#endif
1866 }
1867
1868 /*
1869 * Update the two page directories with all page table mappings.
1870 * (One or more of them have changed, that's why we're here.)
1871 */
1872 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1873 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1874 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1875
1876 /* Relocate GC addresses of Page Tables. */
1877 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1878 {
1879 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1880 {
1881 pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3);
1882 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3);
1883 }
1884 }
1885
1886 /*
1887 * Dynamic page mapping area.
1888 */
1889 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1890 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1891 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1892
1893 /*
1894 * The Zero page.
1895 */
1896 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1897 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1898
1899 /*
1900 * Physical and virtual handlers.
1901 */
1902 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1903 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1904 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1905
1906 /*
1907 * The page pool.
1908 */
1909 pgmR3PoolRelocate(pVM);
1910}
1911
1912
1913/**
1914 * Callback function for relocating a physical access handler.
1915 *
1916 * @returns 0 (continue enum)
1917 * @param pNode Pointer to a PGMPHYSHANDLER node.
1918 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1919 * not certain the delta will fit in a void pointer for all possible configs.
1920 */
1921static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1922{
1923 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1924 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1925 if (pHandler->pfnHandlerGC)
1926 pHandler->pfnHandlerGC += offDelta;
1927 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1928 pHandler->pvUserGC += offDelta;
1929 return 0;
1930}
1931
1932
1933/**
1934 * Callback function for relocating a virtual access handler.
1935 *
1936 * @returns 0 (continue enum)
1937 * @param pNode Pointer to a PGMVIRTHANDLER node.
1938 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1939 * not certain the delta will fit in a void pointer for all possible configs.
1940 */
1941static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1942{
1943 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1944 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1945 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1946 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1947 Assert(pHandler->pfnHandlerGC);
1948 pHandler->pfnHandlerGC += offDelta;
1949 return 0;
1950}
1951
1952
1953/**
1954 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1955 *
1956 * @returns 0 (continue enum)
1957 * @param pNode Pointer to a PGMVIRTHANDLER node.
1958 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1959 * not certain the delta will fit in a void pointer for all possible configs.
1960 */
1961static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1962{
1963 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1964 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1965 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1966 Assert(pHandler->pfnHandlerGC);
1967 pHandler->pfnHandlerGC += offDelta;
1968 return 0;
1969}
1970
1971
1972/**
1973 * The VM is being reset.
1974 *
1975 * For the PGM component this means that any PD write monitors
1976 * needs to be removed.
1977 *
1978 * @param pVM VM handle.
1979 */
1980PGMR3DECL(void) PGMR3Reset(PVM pVM)
1981{
1982 LogFlow(("PGMR3Reset:\n"));
1983 VM_ASSERT_EMT(pVM);
1984
1985 pgmLock(pVM);
1986
1987 /*
1988 * Unfix any fixed mappings and disable CR3 monitoring.
1989 */
1990 pVM->pgm.s.fMappingsFixed = false;
1991 pVM->pgm.s.GCPtrMappingFixed = 0;
1992 pVM->pgm.s.cbMappingFixed = 0;
1993
1994 /* Exit the guest paging mode before the pgm pool gets reset.
1995 * Important to clean up the amd64 case.
1996 */
1997 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
1998 AssertRC(rc);
1999#ifdef DEBUG
2000 DBGFR3InfoLog(pVM, "mappings", NULL);
2001 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2002#endif
2003
2004 /*
2005 * Reset the shadow page pool.
2006 */
2007 pgmR3PoolReset(pVM);
2008
2009 /*
2010 * Re-init other members.
2011 */
2012 pVM->pgm.s.fA20Enabled = true;
2013
2014 /*
2015 * Clear the FFs PGM owns.
2016 */
2017 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2018 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2019
2020 /*
2021 * Reset (zero) RAM pages.
2022 */
2023 rc = pgmR3PhysRamReset(pVM);
2024 if (RT_SUCCESS(rc))
2025 {
2026#ifdef VBOX_WITH_NEW_PHYS_CODE
2027 /*
2028 * Reset (zero) shadow ROM pages.
2029 */
2030 rc = pgmR3PhysRomReset(pVM);
2031#endif
2032 if (RT_SUCCESS(rc))
2033 {
2034 /*
2035 * Switch mode back to real mode.
2036 */
2037 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2038 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2039 }
2040 }
2041
2042 pgmUnlock(pVM);
2043 //return rc;
2044 AssertReleaseRC(rc);
2045}
2046
2047
2048#ifdef VBOX_STRICT
2049/**
2050 * VM state change callback for clearing fNoMorePhysWrites after
2051 * a snapshot has been created.
2052 */
2053static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2054{
2055 if (enmState == VMSTATE_RUNNING)
2056 pVM->pgm.s.fNoMorePhysWrites = false;
2057}
2058#endif
2059
2060
2061/**
2062 * Terminates the PGM.
2063 *
2064 * @returns VBox status code.
2065 * @param pVM Pointer to VM structure.
2066 */
2067PGMR3DECL(int) PGMR3Term(PVM pVM)
2068{
2069 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2070}
2071
2072
2073/**
2074 * Execute state save operation.
2075 *
2076 * @returns VBox status code.
2077 * @param pVM VM Handle.
2078 * @param pSSM SSM operation handle.
2079 */
2080static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2081{
2082 PPGM pPGM = &pVM->pgm.s;
2083
2084 /* No more writes to physical memory after this point! */
2085 pVM->pgm.s.fNoMorePhysWrites = true;
2086
2087 /*
2088 * Save basic data (required / unaffected by relocation).
2089 */
2090#if 1
2091 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2092#else
2093 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2094#endif
2095 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2096 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2097 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2098 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2099 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2100 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2101 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2102 SSMR3PutU32(pSSM, ~0); /* Separator. */
2103
2104 /*
2105 * The guest mappings.
2106 */
2107 uint32_t i = 0;
2108 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2109 {
2110 SSMR3PutU32(pSSM, i);
2111 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2112 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2113 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2114 /* flags are done by the mapping owners! */
2115 }
2116 SSMR3PutU32(pSSM, ~0); /* terminator. */
2117
2118 /*
2119 * Ram range flags and bits.
2120 */
2121 i = 0;
2122 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2123 {
2124 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2125
2126 SSMR3PutU32(pSSM, i);
2127 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2128 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2129 SSMR3PutGCPhys(pSSM, pRam->cb);
2130 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
2131
2132 /* Flags. */
2133 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2134 for (unsigned iPage = 0; iPage < cPages; iPage++)
2135 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2136
2137 /* any memory associated with the range. */
2138 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2139 {
2140 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2141 {
2142 if (pRam->pavHCChunkHC[iChunk])
2143 {
2144 SSMR3PutU8(pSSM, 1); /* chunk present */
2145 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2146 }
2147 else
2148 SSMR3PutU8(pSSM, 0); /* no chunk present */
2149 }
2150 }
2151 else if (pRam->pvHC)
2152 {
2153 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
2154 if (VBOX_FAILURE(rc))
2155 {
2156 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2157 return rc;
2158 }
2159 }
2160 }
2161 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2162}
2163
2164
2165/**
2166 * Execute state load operation.
2167 *
2168 * @returns VBox status code.
2169 * @param pVM VM Handle.
2170 * @param pSSM SSM operation handle.
2171 * @param u32Version Data layout version.
2172 */
2173static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2174{
2175 /*
2176 * Validate version.
2177 */
2178 if (u32Version != PGM_SAVED_STATE_VERSION)
2179 {
2180 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2181 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2182 }
2183
2184 /*
2185 * Call the reset function to make sure all the memory is cleared.
2186 */
2187 PGMR3Reset(pVM);
2188
2189 /*
2190 * Load basic data (required / unaffected by relocation).
2191 */
2192 PPGM pPGM = &pVM->pgm.s;
2193#if 1
2194 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2195#else
2196 uint32_t u;
2197 SSMR3GetU32(pSSM, &u);
2198 pPGM->fMappingsFixed = u;
2199#endif
2200 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2201 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2202
2203 RTUINT cbRamSize;
2204 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2205 if (VBOX_FAILURE(rc))
2206 return rc;
2207 if (cbRamSize != pPGM->cbRamSize)
2208 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2209 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2210 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2211 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2212 RTUINT uGuestMode;
2213 SSMR3GetUInt(pSSM, &uGuestMode);
2214 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2215
2216 /* check separator. */
2217 uint32_t u32Sep;
2218 SSMR3GetU32(pSSM, &u32Sep);
2219 if (VBOX_FAILURE(rc))
2220 return rc;
2221 if (u32Sep != (uint32_t)~0)
2222 {
2223 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2224 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2225 }
2226
2227 /*
2228 * The guest mappings.
2229 */
2230 uint32_t i = 0;
2231 for (;; i++)
2232 {
2233 /* Check the seqence number / separator. */
2234 rc = SSMR3GetU32(pSSM, &u32Sep);
2235 if (VBOX_FAILURE(rc))
2236 return rc;
2237 if (u32Sep == ~0U)
2238 break;
2239 if (u32Sep != i)
2240 {
2241 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2242 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2243 }
2244
2245 /* get the mapping details. */
2246 char szDesc[256];
2247 szDesc[0] = '\0';
2248 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2249 if (VBOX_FAILURE(rc))
2250 return rc;
2251 RTGCPTR GCPtr;
2252 SSMR3GetGCPtr(pSSM, &GCPtr);
2253 RTGCUINTPTR cPTs;
2254 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2255 if (VBOX_FAILURE(rc))
2256 return rc;
2257
2258 /* find matching range. */
2259 PPGMMAPPING pMapping;
2260 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2261 if ( pMapping->cPTs == cPTs
2262 && !strcmp(pMapping->pszDesc, szDesc))
2263 break;
2264 if (!pMapping)
2265 {
2266 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2267 cPTs, szDesc, GCPtr));
2268 AssertFailed();
2269 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2270 }
2271
2272 /* relocate it. */
2273 if (pMapping->GCPtr != GCPtr)
2274 {
2275 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2276#if HC_ARCH_BITS == 64
2277LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2278#endif
2279 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2280 }
2281 else
2282 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2283 }
2284
2285 /*
2286 * Ram range flags and bits.
2287 */
2288 i = 0;
2289 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2290 {
2291 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2292 /* Check the seqence number / separator. */
2293 rc = SSMR3GetU32(pSSM, &u32Sep);
2294 if (VBOX_FAILURE(rc))
2295 return rc;
2296 if (u32Sep == ~0U)
2297 break;
2298 if (u32Sep != i)
2299 {
2300 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2301 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2302 }
2303
2304 /* Get the range details. */
2305 RTGCPHYS GCPhys;
2306 SSMR3GetGCPhys(pSSM, &GCPhys);
2307 RTGCPHYS GCPhysLast;
2308 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2309 RTGCPHYS cb;
2310 SSMR3GetGCPhys(pSSM, &cb);
2311 uint8_t fHaveBits;
2312 rc = SSMR3GetU8(pSSM, &fHaveBits);
2313 if (VBOX_FAILURE(rc))
2314 return rc;
2315 if (fHaveBits & ~1)
2316 {
2317 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2318 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2319 }
2320
2321 /* Match it up with the current range. */
2322 if ( GCPhys != pRam->GCPhys
2323 || GCPhysLast != pRam->GCPhysLast
2324 || cb != pRam->cb
2325 || fHaveBits != !!pRam->pvHC)
2326 {
2327 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2328 "State : %VGp-%VGp %VGp bytes %s\n",
2329 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2330 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2331 /*
2332 * If we're loading a state for debugging purpose, don't make a fuss if
2333 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2334 */
2335 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2336 || GCPhys < 8 * _1M)
2337 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2338
2339 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2340 while (cPages-- > 0)
2341 {
2342 uint16_t u16Ignore;
2343 SSMR3GetU16(pSSM, &u16Ignore);
2344 }
2345 continue;
2346 }
2347
2348 /* Flags. */
2349 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2350 for (unsigned iPage = 0; iPage < cPages; iPage++)
2351 {
2352 uint16_t u16 = 0;
2353 SSMR3GetU16(pSSM, &u16);
2354 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2355 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2356 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2357 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2358 }
2359
2360 /* any memory associated with the range. */
2361 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2362 {
2363 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2364 {
2365 uint8_t fValidChunk;
2366
2367 rc = SSMR3GetU8(pSSM, &fValidChunk);
2368 if (VBOX_FAILURE(rc))
2369 return rc;
2370 if (fValidChunk > 1)
2371 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2372
2373 if (fValidChunk)
2374 {
2375 if (!pRam->pavHCChunkHC[iChunk])
2376 {
2377 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2378 if (VBOX_FAILURE(rc))
2379 return rc;
2380 }
2381 Assert(pRam->pavHCChunkHC[iChunk]);
2382
2383 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2384 }
2385 /* else nothing to do */
2386 }
2387 }
2388 else if (pRam->pvHC)
2389 {
2390 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2391 if (VBOX_FAILURE(rc))
2392 {
2393 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2394 return rc;
2395 }
2396 }
2397 }
2398
2399 /*
2400 * We require a full resync now.
2401 */
2402 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2403 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2404 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2405 pPGM->fPhysCacheFlushPending = true;
2406 pgmR3HandlerPhysicalUpdateAll(pVM);
2407
2408 /*
2409 * Change the paging mode.
2410 */
2411 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2412
2413 /* Restore pVM->pgm.s.GCPhysCR3. */
2414 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2415 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2416 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2417 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2418 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2419 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2420 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2421 else
2422 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2423 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2424
2425 return rc;
2426}
2427
2428
2429/**
2430 * Show paging mode.
2431 *
2432 * @param pVM VM Handle.
2433 * @param pHlp The info helpers.
2434 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2435 */
2436static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2437{
2438 /* digest argument. */
2439 bool fGuest, fShadow, fHost;
2440 if (pszArgs)
2441 pszArgs = RTStrStripL(pszArgs);
2442 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2443 fShadow = fHost = fGuest = true;
2444 else
2445 {
2446 fShadow = fHost = fGuest = false;
2447 if (strstr(pszArgs, "guest"))
2448 fGuest = true;
2449 if (strstr(pszArgs, "shadow"))
2450 fShadow = true;
2451 if (strstr(pszArgs, "host"))
2452 fHost = true;
2453 }
2454
2455 /* print info. */
2456 if (fGuest)
2457 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2458 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2459 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2460 if (fShadow)
2461 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2462 if (fHost)
2463 {
2464 const char *psz;
2465 switch (pVM->pgm.s.enmHostMode)
2466 {
2467 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2468 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2469 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2470 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2471 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2472 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2473 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2474 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2475 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2476 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2477 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2478 default: psz = "unknown"; break;
2479 }
2480 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2481 }
2482}
2483
2484
2485/**
2486 * Dump registered MMIO ranges to the log.
2487 *
2488 * @param pVM VM Handle.
2489 * @param pHlp The info helpers.
2490 * @param pszArgs Arguments, ignored.
2491 */
2492static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2493{
2494 NOREF(pszArgs);
2495 pHlp->pfnPrintf(pHlp,
2496 "RAM ranges (pVM=%p)\n"
2497 "%.*s %.*s\n",
2498 pVM,
2499 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2500 sizeof(RTHCPTR) * 2, "pvHC ");
2501
2502 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2503 pHlp->pfnPrintf(pHlp,
2504 "%RGp-%RGp %RHv %s\n",
2505 pCur->GCPhys,
2506 pCur->GCPhysLast,
2507 pCur->pvHC,
2508 pCur->pszDesc);
2509}
2510
2511/**
2512 * Dump the page directory to the log.
2513 *
2514 * @param pVM VM Handle.
2515 * @param pHlp The info helpers.
2516 * @param pszArgs Arguments, ignored.
2517 */
2518static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2519{
2520/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2521 /* Big pages supported? */
2522 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2523
2524 /* Global pages supported? */
2525 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2526
2527 NOREF(pszArgs);
2528
2529 /*
2530 * Get page directory addresses.
2531 */
2532 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2533 Assert(pPDSrc);
2534 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2535
2536 /*
2537 * Iterate the page directory.
2538 */
2539 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2540 {
2541 X86PDE PdeSrc = pPDSrc->a[iPD];
2542 if (PdeSrc.n.u1Present)
2543 {
2544 if (PdeSrc.b.u1Size && fPSE)
2545 {
2546 pHlp->pfnPrintf(pHlp,
2547 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2548 iPD,
2549 PdeSrc.u & X86_PDE_PG_MASK,
2550 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2551 }
2552 else
2553 {
2554 pHlp->pfnPrintf(pHlp,
2555 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2556 iPD,
2557 PdeSrc.u & X86_PDE4M_PG_MASK,
2558 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2559 }
2560 }
2561 }
2562}
2563
2564
2565/**
2566 * Serivce a VMMCALLHOST_PGM_LOCK call.
2567 *
2568 * @returns VBox status code.
2569 * @param pVM The VM handle.
2570 */
2571PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2572{
2573 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2574 AssertRC(rc);
2575 return rc;
2576}
2577
2578
2579/**
2580 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2581 *
2582 * @returns PGM_TYPE_*.
2583 * @param pgmMode The mode value to convert.
2584 */
2585DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2586{
2587 switch (pgmMode)
2588 {
2589 case PGMMODE_REAL: return PGM_TYPE_REAL;
2590 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2591 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2592 case PGMMODE_PAE:
2593 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2594 case PGMMODE_AMD64:
2595 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2596 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2597 case PGMMODE_EPT: return PGM_TYPE_EPT;
2598 default:
2599 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2600 }
2601}
2602
2603
2604/**
2605 * Gets the index into the paging mode data array of a SHW+GST mode.
2606 *
2607 * @returns PGM::paPagingData index.
2608 * @param uShwType The shadow paging mode type.
2609 * @param uGstType The guest paging mode type.
2610 */
2611DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2612{
2613 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_NESTED);
2614 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2615 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2616 + (uGstType - PGM_TYPE_REAL);
2617}
2618
2619
2620/**
2621 * Gets the index into the paging mode data array of a SHW+GST mode.
2622 *
2623 * @returns PGM::paPagingData index.
2624 * @param enmShw The shadow paging mode.
2625 * @param enmGst The guest paging mode.
2626 */
2627DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2628{
2629 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2630 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2631 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2632}
2633
2634
2635/**
2636 * Calculates the max data index.
2637 * @returns The number of entries in the paging data array.
2638 */
2639DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2640{
2641 return pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64) + 1;
2642}
2643
2644
2645/**
2646 * Initializes the paging mode data kept in PGM::paModeData.
2647 *
2648 * @param pVM The VM handle.
2649 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2650 * This is used early in the init process to avoid trouble with PDM
2651 * not being initialized yet.
2652 */
2653static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2654{
2655 PPGMMODEDATA pModeData;
2656 int rc;
2657
2658 /*
2659 * Allocate the array on the first call.
2660 */
2661 if (!pVM->pgm.s.paModeData)
2662 {
2663 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2664 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2665 }
2666
2667 /*
2668 * Initialize the array entries.
2669 */
2670 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2671 pModeData->uShwType = PGM_TYPE_32BIT;
2672 pModeData->uGstType = PGM_TYPE_REAL;
2673 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2674 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2675 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2676
2677 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2678 pModeData->uShwType = PGM_TYPE_32BIT;
2679 pModeData->uGstType = PGM_TYPE_PROT;
2680 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2681 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2682 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2683
2684 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2685 pModeData->uShwType = PGM_TYPE_32BIT;
2686 pModeData->uGstType = PGM_TYPE_32BIT;
2687 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2688 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2689 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2690
2691 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2692 pModeData->uShwType = PGM_TYPE_PAE;
2693 pModeData->uGstType = PGM_TYPE_REAL;
2694 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2695 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2696 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2697
2698 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2699 pModeData->uShwType = PGM_TYPE_PAE;
2700 pModeData->uGstType = PGM_TYPE_PROT;
2701 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2702 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2703 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2704
2705 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2706 pModeData->uShwType = PGM_TYPE_PAE;
2707 pModeData->uGstType = PGM_TYPE_32BIT;
2708 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2709 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2710 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2711
2712 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2713 pModeData->uShwType = PGM_TYPE_PAE;
2714 pModeData->uGstType = PGM_TYPE_PAE;
2715 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2716 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2717 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2718
2719 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2720 pModeData->uShwType = PGM_TYPE_AMD64;
2721 pModeData->uGstType = PGM_TYPE_AMD64;
2722 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2723 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2724 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2725
2726 /* The nested paging mode. */
2727 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2728 pModeData->uShwType = PGM_TYPE_NESTED;
2729 pModeData->uGstType = PGM_TYPE_REAL;
2730 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2731 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732
2733 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2734 pModeData->uShwType = PGM_TYPE_NESTED;
2735 pModeData->uGstType = PGM_TYPE_PROT;
2736 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2737 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2738
2739 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2740 pModeData->uShwType = PGM_TYPE_NESTED;
2741 pModeData->uGstType = PGM_TYPE_32BIT;
2742 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744
2745 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2746 pModeData->uShwType = PGM_TYPE_NESTED;
2747 pModeData->uGstType = PGM_TYPE_PAE;
2748 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750
2751 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2752 pModeData->uShwType = PGM_TYPE_NESTED;
2753 pModeData->uGstType = PGM_TYPE_AMD64;
2754 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756
2757 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2758 switch(pVM->pgm.s.enmHostMode)
2759 {
2760 case SUPPAGINGMODE_32_BIT:
2761 case SUPPAGINGMODE_32_BIT_GLOBAL:
2762 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2763 {
2764 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2765 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766 }
2767 break;
2768
2769 case SUPPAGINGMODE_PAE:
2770 case SUPPAGINGMODE_PAE_NX:
2771 case SUPPAGINGMODE_PAE_GLOBAL:
2772 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2773 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2774 {
2775 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2776 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 }
2778 break;
2779
2780 case SUPPAGINGMODE_AMD64:
2781 case SUPPAGINGMODE_AMD64_GLOBAL:
2782 case SUPPAGINGMODE_AMD64_NX:
2783 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2784 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2785 {
2786 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2787 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788 }
2789 break;
2790 default:
2791 AssertFailed();
2792 break;
2793 }
2794
2795#ifdef PGM_WITH_EPT
2796 /* Extended paging (EPT) / Intel VT-x */
2797 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2798 pModeData->uShwType = PGM_TYPE_EPT;
2799 pModeData->uGstType = PGM_TYPE_REAL;
2800 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2801 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2802 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803
2804 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2805 pModeData->uShwType = PGM_TYPE_EPT;
2806 pModeData->uGstType = PGM_TYPE_PROT;
2807 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2808 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2809 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810
2811 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2812 pModeData->uShwType = PGM_TYPE_EPT;
2813 pModeData->uGstType = PGM_TYPE_32BIT;
2814 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2816 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2817
2818 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2819 pModeData->uShwType = PGM_TYPE_EPT;
2820 pModeData->uGstType = PGM_TYPE_PAE;
2821 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2822 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2823 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824
2825 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2826 pModeData->uShwType = PGM_TYPE_EPT;
2827 pModeData->uGstType = PGM_TYPE_AMD64;
2828 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2829 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2830 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831#endif /* PGM_WITH_EPT */
2832 return VINF_SUCCESS;
2833}
2834
2835
2836/**
2837 * Switch to different (or relocated in the relocate case) mode data.
2838 *
2839 * @param pVM The VM handle.
2840 * @param enmShw The the shadow paging mode.
2841 * @param enmGst The the guest paging mode.
2842 */
2843static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2844{
2845 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2846
2847 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2848 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2849
2850 /* shadow */
2851 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2852 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2853 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2854 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2855 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2856
2857 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2858 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2859
2860 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2861 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2862
2863
2864 /* guest */
2865 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2866 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2867 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2868 Assert(pVM->pgm.s.pfnR3GstGetPage);
2869 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2870 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2871 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2872 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2873 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2874 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2875 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2876 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2877 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2878 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2879
2880 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2881 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2882 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2883 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2884 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2885 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2886 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2887 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2888 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2889
2890 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2891 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2892 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2893 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2894 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2895 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2896 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2897 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2898 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2899
2900
2901 /* both */
2902 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2903 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2904 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2905 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2906 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2907 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2908 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2909 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2910#ifdef VBOX_STRICT
2911 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2912#endif
2913
2914 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2915 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2916 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2917 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2918 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2919 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2920#ifdef VBOX_STRICT
2921 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2922#endif
2923
2924 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2925 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2926 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2927 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2928 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2929 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2930#ifdef VBOX_STRICT
2931 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2932#endif
2933}
2934
2935
2936#ifdef DEBUG_bird
2937#include <stdlib.h> /* getenv() remove me! */
2938#endif
2939
2940/**
2941 * Calculates the shadow paging mode.
2942 *
2943 * @returns The shadow paging mode.
2944 * @param pVM VM handle.
2945 * @param enmGuestMode The guest mode.
2946 * @param enmHostMode The host mode.
2947 * @param enmShadowMode The current shadow mode.
2948 * @param penmSwitcher Where to store the switcher to use.
2949 * VMMSWITCHER_INVALID means no change.
2950 */
2951static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2952{
2953 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2954 switch (enmGuestMode)
2955 {
2956 /*
2957 * When switching to real or protected mode we don't change
2958 * anything since it's likely that we'll switch back pretty soon.
2959 *
2960 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2961 * and is supposed to determine which shadow paging and switcher to
2962 * use during init.
2963 */
2964 case PGMMODE_REAL:
2965 case PGMMODE_PROTECTED:
2966 if ( enmShadowMode != PGMMODE_INVALID
2967 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2968 break; /* (no change) */
2969
2970 switch (enmHostMode)
2971 {
2972 case SUPPAGINGMODE_32_BIT:
2973 case SUPPAGINGMODE_32_BIT_GLOBAL:
2974 enmShadowMode = PGMMODE_32_BIT;
2975 enmSwitcher = VMMSWITCHER_32_TO_32;
2976 break;
2977
2978 case SUPPAGINGMODE_PAE:
2979 case SUPPAGINGMODE_PAE_NX:
2980 case SUPPAGINGMODE_PAE_GLOBAL:
2981 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2982 enmShadowMode = PGMMODE_PAE;
2983 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2984#ifdef DEBUG_bird
2985if (getenv("VBOX_32BIT"))
2986{
2987 enmShadowMode = PGMMODE_32_BIT;
2988 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2989}
2990#endif
2991 break;
2992
2993 case SUPPAGINGMODE_AMD64:
2994 case SUPPAGINGMODE_AMD64_GLOBAL:
2995 case SUPPAGINGMODE_AMD64_NX:
2996 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2997 enmShadowMode = PGMMODE_PAE;
2998 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2999 break;
3000
3001 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3002 }
3003 break;
3004
3005 case PGMMODE_32_BIT:
3006 switch (enmHostMode)
3007 {
3008 case SUPPAGINGMODE_32_BIT:
3009 case SUPPAGINGMODE_32_BIT_GLOBAL:
3010 enmShadowMode = PGMMODE_32_BIT;
3011 enmSwitcher = VMMSWITCHER_32_TO_32;
3012 break;
3013
3014 case SUPPAGINGMODE_PAE:
3015 case SUPPAGINGMODE_PAE_NX:
3016 case SUPPAGINGMODE_PAE_GLOBAL:
3017 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3018 enmShadowMode = PGMMODE_PAE;
3019 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3020#ifdef DEBUG_bird
3021if (getenv("VBOX_32BIT"))
3022{
3023 enmShadowMode = PGMMODE_32_BIT;
3024 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3025}
3026#endif
3027 break;
3028
3029 case SUPPAGINGMODE_AMD64:
3030 case SUPPAGINGMODE_AMD64_GLOBAL:
3031 case SUPPAGINGMODE_AMD64_NX:
3032 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3033 enmShadowMode = PGMMODE_PAE;
3034 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3035 break;
3036
3037 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3038 }
3039 break;
3040
3041 case PGMMODE_PAE:
3042 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3043 switch (enmHostMode)
3044 {
3045 case SUPPAGINGMODE_32_BIT:
3046 case SUPPAGINGMODE_32_BIT_GLOBAL:
3047 enmShadowMode = PGMMODE_PAE;
3048 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3049 break;
3050
3051 case SUPPAGINGMODE_PAE:
3052 case SUPPAGINGMODE_PAE_NX:
3053 case SUPPAGINGMODE_PAE_GLOBAL:
3054 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3055 enmShadowMode = PGMMODE_PAE;
3056 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3057 break;
3058
3059 case SUPPAGINGMODE_AMD64:
3060 case SUPPAGINGMODE_AMD64_GLOBAL:
3061 case SUPPAGINGMODE_AMD64_NX:
3062 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3063 enmShadowMode = PGMMODE_PAE;
3064 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3065 break;
3066
3067 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3068 }
3069 break;
3070
3071 case PGMMODE_AMD64:
3072 case PGMMODE_AMD64_NX:
3073 switch (enmHostMode)
3074 {
3075 case SUPPAGINGMODE_32_BIT:
3076 case SUPPAGINGMODE_32_BIT_GLOBAL:
3077 enmShadowMode = PGMMODE_PAE;
3078 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3079 break;
3080
3081 case SUPPAGINGMODE_PAE:
3082 case SUPPAGINGMODE_PAE_NX:
3083 case SUPPAGINGMODE_PAE_GLOBAL:
3084 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3085 enmShadowMode = PGMMODE_PAE;
3086 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3087 break;
3088
3089 case SUPPAGINGMODE_AMD64:
3090 case SUPPAGINGMODE_AMD64_GLOBAL:
3091 case SUPPAGINGMODE_AMD64_NX:
3092 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3093 enmShadowMode = PGMMODE_AMD64;
3094 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3095 break;
3096
3097 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3098 }
3099 break;
3100
3101
3102 default:
3103 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3104 return PGMMODE_INVALID;
3105 }
3106 /* Override the shadow mode is nested paging is active. */
3107 if (HWACCMIsNestedPagingActive(pVM))
3108 enmShadowMode = HWACCMGetPagingMode(pVM);
3109
3110 *penmSwitcher = enmSwitcher;
3111 return enmShadowMode;
3112}
3113
3114/**
3115 * Performs the actual mode change.
3116 * This is called by PGMChangeMode and pgmR3InitPaging().
3117 *
3118 * @returns VBox status code.
3119 * @param pVM VM handle.
3120 * @param enmGuestMode The new guest mode. This is assumed to be different from
3121 * the current mode.
3122 */
3123PGMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3124{
3125 LogFlow(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3126 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3127
3128 /*
3129 * Calc the shadow mode and switcher.
3130 */
3131 VMMSWITCHER enmSwitcher;
3132 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3133 if (enmSwitcher != VMMSWITCHER_INVALID)
3134 {
3135 /*
3136 * Select new switcher.
3137 */
3138 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3139 if (VBOX_FAILURE(rc))
3140 {
3141 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3142 return rc;
3143 }
3144 }
3145
3146 /*
3147 * Exit old mode(s).
3148 */
3149 /* shadow */
3150 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3151 {
3152 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3153 if (PGM_SHW_PFN(Exit, pVM))
3154 {
3155 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3156 if (VBOX_FAILURE(rc))
3157 {
3158 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3159 return rc;
3160 }
3161 }
3162
3163 }
3164
3165 /* guest */
3166 if (PGM_GST_PFN(Exit, pVM))
3167 {
3168 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3169 if (VBOX_FAILURE(rc))
3170 {
3171 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3172 return rc;
3173 }
3174 }
3175
3176 /*
3177 * Load new paging mode data.
3178 */
3179 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3180
3181 /*
3182 * Enter new shadow mode (if changed).
3183 */
3184 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3185 {
3186 int rc;
3187 pVM->pgm.s.enmShadowMode = enmShadowMode;
3188 switch (enmShadowMode)
3189 {
3190 case PGMMODE_32_BIT:
3191 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3192 break;
3193 case PGMMODE_PAE:
3194 case PGMMODE_PAE_NX:
3195 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3196 break;
3197 case PGMMODE_AMD64:
3198 case PGMMODE_AMD64_NX:
3199 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3200 break;
3201 case PGMMODE_NESTED:
3202 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3203 break;
3204#ifdef PGM_WITH_EPT
3205 case PGMMODE_EPT:
3206 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3207 break;
3208#endif
3209 case PGMMODE_REAL:
3210 case PGMMODE_PROTECTED:
3211 default:
3212 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3213 return VERR_INTERNAL_ERROR;
3214 }
3215 if (VBOX_FAILURE(rc))
3216 {
3217 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3218 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3219 return rc;
3220 }
3221 }
3222
3223 /*
3224 * Enter the new guest and shadow+guest modes.
3225 */
3226 int rc = -1;
3227 int rc2 = -1;
3228 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3229 pVM->pgm.s.enmGuestMode = enmGuestMode;
3230 switch (enmGuestMode)
3231 {
3232 case PGMMODE_REAL:
3233 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3234 switch (pVM->pgm.s.enmShadowMode)
3235 {
3236 case PGMMODE_32_BIT:
3237 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3238 break;
3239 case PGMMODE_PAE:
3240 case PGMMODE_PAE_NX:
3241 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3242 break;
3243 case PGMMODE_NESTED:
3244 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3245 break;
3246#ifdef PGM_WITH_EPT
3247 case PGMMODE_EPT:
3248 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3249 break;
3250#endif
3251 case PGMMODE_AMD64:
3252 case PGMMODE_AMD64_NX:
3253 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3254 default: AssertFailed(); break;
3255 }
3256 break;
3257
3258 case PGMMODE_PROTECTED:
3259 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3260 switch (pVM->pgm.s.enmShadowMode)
3261 {
3262 case PGMMODE_32_BIT:
3263 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3264 break;
3265 case PGMMODE_PAE:
3266 case PGMMODE_PAE_NX:
3267 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3268 break;
3269 case PGMMODE_NESTED:
3270 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3271 break;
3272#ifdef PGM_WITH_EPT
3273 case PGMMODE_EPT:
3274 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3275 break;
3276#endif
3277 case PGMMODE_AMD64:
3278 case PGMMODE_AMD64_NX:
3279 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3280 default: AssertFailed(); break;
3281 }
3282 break;
3283
3284 case PGMMODE_32_BIT:
3285 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3286 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3287 switch (pVM->pgm.s.enmShadowMode)
3288 {
3289 case PGMMODE_32_BIT:
3290 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3291 break;
3292 case PGMMODE_PAE:
3293 case PGMMODE_PAE_NX:
3294 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3295 break;
3296 case PGMMODE_NESTED:
3297 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3298 break;
3299#ifdef PGM_WITH_EPT
3300 case PGMMODE_EPT:
3301 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3302 break;
3303#endif
3304 case PGMMODE_AMD64:
3305 case PGMMODE_AMD64_NX:
3306 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3307 default: AssertFailed(); break;
3308 }
3309 break;
3310
3311 case PGMMODE_PAE_NX: /* VT-x/AMD-V only */
3312 Assert(HWACCMIsEnabled(pVM));
3313 /* no break */
3314
3315 case PGMMODE_PAE:
3316 {
3317 uint32_t u32Dummy, u32Features;
3318
3319 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3320 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3321 {
3322 /* Pause first, then inform Main. */
3323 rc = VMR3SuspendNoSave(pVM);
3324 AssertRC(rc);
3325
3326 VMSetRuntimeError(pVM, true, "PAEmode",
3327 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage."));
3328 /* we must return TRUE here otherwise the recompiler will assert */
3329 return VINF_SUCCESS;
3330 }
3331 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3332 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3333 switch (pVM->pgm.s.enmShadowMode)
3334 {
3335 case PGMMODE_PAE:
3336 case PGMMODE_PAE_NX:
3337 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3338 break;
3339 case PGMMODE_NESTED:
3340 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3341 break;
3342#ifdef PGM_WITH_EPT
3343 case PGMMODE_EPT:
3344 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3345 break;
3346#endif
3347 case PGMMODE_32_BIT:
3348 case PGMMODE_AMD64:
3349 case PGMMODE_AMD64_NX:
3350 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3351 default: AssertFailed(); break;
3352 }
3353 break;
3354 }
3355
3356 case PGMMODE_AMD64_NX:
3357 case PGMMODE_AMD64:
3358 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3359 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3360 switch (pVM->pgm.s.enmShadowMode)
3361 {
3362 case PGMMODE_AMD64:
3363 case PGMMODE_AMD64_NX:
3364 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3365 break;
3366 case PGMMODE_NESTED:
3367 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3368 break;
3369#ifdef PGM_WITH_EPT
3370 case PGMMODE_EPT:
3371 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3372 break;
3373#endif
3374 case PGMMODE_32_BIT:
3375 case PGMMODE_PAE:
3376 case PGMMODE_PAE_NX:
3377 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3378 default: AssertFailed(); break;
3379 }
3380 break;
3381
3382 default:
3383 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3384 rc = VERR_NOT_IMPLEMENTED;
3385 break;
3386 }
3387
3388 /* status codes. */
3389 AssertRC(rc);
3390 AssertRC(rc2);
3391 if (VBOX_SUCCESS(rc))
3392 {
3393 rc = rc2;
3394 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3395 rc = VINF_SUCCESS;
3396 }
3397
3398 /*
3399 * Notify SELM so it can update the TSSes with correct CR3s.
3400 */
3401 SELMR3PagingModeChanged(pVM);
3402
3403 /* Notify HWACCM as well. */
3404 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3405 return rc;
3406}
3407
3408
3409/**
3410 * Dumps a PAE shadow page table.
3411 *
3412 * @returns VBox status code (VINF_SUCCESS).
3413 * @param pVM The VM handle.
3414 * @param pPT Pointer to the page table.
3415 * @param u64Address The virtual address of the page table starts.
3416 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3417 * @param cMaxDepth The maxium depth.
3418 * @param pHlp Pointer to the output functions.
3419 */
3420static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3421{
3422 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3423 {
3424 X86PTEPAE Pte = pPT->a[i];
3425 if (Pte.n.u1Present)
3426 {
3427 pHlp->pfnPrintf(pHlp,
3428 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3429 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3430 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3431 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3432 Pte.n.u1Write ? 'W' : 'R',
3433 Pte.n.u1User ? 'U' : 'S',
3434 Pte.n.u1Accessed ? 'A' : '-',
3435 Pte.n.u1Dirty ? 'D' : '-',
3436 Pte.n.u1Global ? 'G' : '-',
3437 Pte.n.u1WriteThru ? "WT" : "--",
3438 Pte.n.u1CacheDisable? "CD" : "--",
3439 Pte.n.u1PAT ? "AT" : "--",
3440 Pte.n.u1NoExecute ? "NX" : "--",
3441 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3442 Pte.u & RT_BIT(10) ? '1' : '0',
3443 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3444 Pte.u & X86_PTE_PAE_PG_MASK);
3445 }
3446 }
3447 return VINF_SUCCESS;
3448}
3449
3450
3451/**
3452 * Dumps a PAE shadow page directory table.
3453 *
3454 * @returns VBox status code (VINF_SUCCESS).
3455 * @param pVM The VM handle.
3456 * @param HCPhys The physical address of the page directory table.
3457 * @param u64Address The virtual address of the page table starts.
3458 * @param cr4 The CR4, PSE is currently used.
3459 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3460 * @param cMaxDepth The maxium depth.
3461 * @param pHlp Pointer to the output functions.
3462 */
3463static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3464{
3465 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3466 if (!pPD)
3467 {
3468 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3469 fLongMode ? 16 : 8, u64Address, HCPhys);
3470 return VERR_INVALID_PARAMETER;
3471 }
3472 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3473
3474 int rc = VINF_SUCCESS;
3475 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3476 {
3477 X86PDEPAE Pde = pPD->a[i];
3478 if (Pde.n.u1Present)
3479 {
3480 if (fBigPagesSupported && Pde.b.u1Size)
3481 pHlp->pfnPrintf(pHlp,
3482 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3483 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3484 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3485 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3486 Pde.b.u1Write ? 'W' : 'R',
3487 Pde.b.u1User ? 'U' : 'S',
3488 Pde.b.u1Accessed ? 'A' : '-',
3489 Pde.b.u1Dirty ? 'D' : '-',
3490 Pde.b.u1Global ? 'G' : '-',
3491 Pde.b.u1WriteThru ? "WT" : "--",
3492 Pde.b.u1CacheDisable? "CD" : "--",
3493 Pde.b.u1PAT ? "AT" : "--",
3494 Pde.b.u1NoExecute ? "NX" : "--",
3495 Pde.u & RT_BIT_64(9) ? '1' : '0',
3496 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3497 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3498 Pde.u & X86_PDE_PAE_PG_MASK);
3499 else
3500 {
3501 pHlp->pfnPrintf(pHlp,
3502 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3503 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3504 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3505 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3506 Pde.n.u1Write ? 'W' : 'R',
3507 Pde.n.u1User ? 'U' : 'S',
3508 Pde.n.u1Accessed ? 'A' : '-',
3509 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3510 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3511 Pde.n.u1WriteThru ? "WT" : "--",
3512 Pde.n.u1CacheDisable? "CD" : "--",
3513 Pde.n.u1NoExecute ? "NX" : "--",
3514 Pde.u & RT_BIT_64(9) ? '1' : '0',
3515 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3516 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3517 Pde.u & X86_PDE_PAE_PG_MASK);
3518 if (cMaxDepth >= 1)
3519 {
3520 /** @todo what about using the page pool for mapping PTs? */
3521 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3522 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3523 PX86PTPAE pPT = NULL;
3524 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3525 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3526 else
3527 {
3528 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3529 {
3530 uint64_t off = u64AddressPT - pMap->GCPtr;
3531 if (off < pMap->cb)
3532 {
3533 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3534 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3535 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3536 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3537 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3538 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3539 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3540 }
3541 }
3542 }
3543 int rc2 = VERR_INVALID_PARAMETER;
3544 if (pPT)
3545 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3546 else
3547 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3548 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3549 if (rc2 < rc && VBOX_SUCCESS(rc))
3550 rc = rc2;
3551 }
3552 }
3553 }
3554 }
3555 return rc;
3556}
3557
3558
3559/**
3560 * Dumps a PAE shadow page directory pointer table.
3561 *
3562 * @returns VBox status code (VINF_SUCCESS).
3563 * @param pVM The VM handle.
3564 * @param HCPhys The physical address of the page directory pointer table.
3565 * @param u64Address The virtual address of the page table starts.
3566 * @param cr4 The CR4, PSE is currently used.
3567 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3568 * @param cMaxDepth The maxium depth.
3569 * @param pHlp Pointer to the output functions.
3570 */
3571static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3572{
3573 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3574 if (!pPDPT)
3575 {
3576 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3577 fLongMode ? 16 : 8, u64Address, HCPhys);
3578 return VERR_INVALID_PARAMETER;
3579 }
3580
3581 int rc = VINF_SUCCESS;
3582 const unsigned c = fLongMode ? ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3583 for (unsigned i = 0; i < c; i++)
3584 {
3585 X86PDPE Pdpe = pPDPT->a[i];
3586 if (Pdpe.n.u1Present)
3587 {
3588 if (fLongMode)
3589 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3590 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3591 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3592 Pdpe.lm.u1Write ? 'W' : 'R',
3593 Pdpe.lm.u1User ? 'U' : 'S',
3594 Pdpe.lm.u1Accessed ? 'A' : '-',
3595 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3596 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3597 Pdpe.lm.u1WriteThru ? "WT" : "--",
3598 Pdpe.lm.u1CacheDisable? "CD" : "--",
3599 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3600 Pdpe.lm.u1NoExecute ? "NX" : "--",
3601 Pdpe.u & RT_BIT(9) ? '1' : '0',
3602 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3603 Pdpe.u & RT_BIT(11) ? '1' : '0',
3604 Pdpe.u & X86_PDPE_PG_MASK);
3605 else
3606 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3607 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3608 i << X86_PDPT_SHIFT,
3609 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3610 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3611 Pdpe.n.u1WriteThru ? "WT" : "--",
3612 Pdpe.n.u1CacheDisable? "CD" : "--",
3613 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3614 Pdpe.u & RT_BIT(9) ? '1' : '0',
3615 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3616 Pdpe.u & RT_BIT(11) ? '1' : '0',
3617 Pdpe.u & X86_PDPE_PG_MASK);
3618 if (cMaxDepth >= 1)
3619 {
3620 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3621 cr4, fLongMode, cMaxDepth - 1, pHlp);
3622 if (rc2 < rc && VBOX_SUCCESS(rc))
3623 rc = rc2;
3624 }
3625 }
3626 }
3627 return rc;
3628}
3629
3630
3631/**
3632 * Dumps a 32-bit shadow page table.
3633 *
3634 * @returns VBox status code (VINF_SUCCESS).
3635 * @param pVM The VM handle.
3636 * @param HCPhys The physical address of the table.
3637 * @param cr4 The CR4, PSE is currently used.
3638 * @param cMaxDepth The maxium depth.
3639 * @param pHlp Pointer to the output functions.
3640 */
3641static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3642{
3643 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3644 if (!pPML4)
3645 {
3646 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3647 return VERR_INVALID_PARAMETER;
3648 }
3649
3650 int rc = VINF_SUCCESS;
3651 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3652 {
3653 X86PML4E Pml4e = pPML4->a[i];
3654 if (Pml4e.n.u1Present)
3655 {
3656 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3657 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3658 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3659 u64Address,
3660 Pml4e.n.u1Write ? 'W' : 'R',
3661 Pml4e.n.u1User ? 'U' : 'S',
3662 Pml4e.n.u1Accessed ? 'A' : '-',
3663 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3664 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3665 Pml4e.n.u1WriteThru ? "WT" : "--",
3666 Pml4e.n.u1CacheDisable? "CD" : "--",
3667 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3668 Pml4e.n.u1NoExecute ? "NX" : "--",
3669 Pml4e.u & RT_BIT(9) ? '1' : '0',
3670 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3671 Pml4e.u & RT_BIT(11) ? '1' : '0',
3672 Pml4e.u & X86_PML4E_PG_MASK);
3673
3674 if (cMaxDepth >= 1)
3675 {
3676 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3677 if (rc2 < rc && VBOX_SUCCESS(rc))
3678 rc = rc2;
3679 }
3680 }
3681 }
3682 return rc;
3683}
3684
3685
3686/**
3687 * Dumps a 32-bit shadow page table.
3688 *
3689 * @returns VBox status code (VINF_SUCCESS).
3690 * @param pVM The VM handle.
3691 * @param pPT Pointer to the page table.
3692 * @param u32Address The virtual address this table starts at.
3693 * @param pHlp Pointer to the output functions.
3694 */
3695int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3696{
3697 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3698 {
3699 X86PTE Pte = pPT->a[i];
3700 if (Pte.n.u1Present)
3701 {
3702 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3703 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3704 u32Address + (i << X86_PT_SHIFT),
3705 Pte.n.u1Write ? 'W' : 'R',
3706 Pte.n.u1User ? 'U' : 'S',
3707 Pte.n.u1Accessed ? 'A' : '-',
3708 Pte.n.u1Dirty ? 'D' : '-',
3709 Pte.n.u1Global ? 'G' : '-',
3710 Pte.n.u1WriteThru ? "WT" : "--",
3711 Pte.n.u1CacheDisable? "CD" : "--",
3712 Pte.n.u1PAT ? "AT" : "--",
3713 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3714 Pte.u & RT_BIT(10) ? '1' : '0',
3715 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3716 Pte.u & X86_PDE_PG_MASK);
3717 }
3718 }
3719 return VINF_SUCCESS;
3720}
3721
3722
3723/**
3724 * Dumps a 32-bit shadow page directory and page tables.
3725 *
3726 * @returns VBox status code (VINF_SUCCESS).
3727 * @param pVM The VM handle.
3728 * @param cr3 The root of the hierarchy.
3729 * @param cr4 The CR4, PSE is currently used.
3730 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3731 * @param pHlp Pointer to the output functions.
3732 */
3733int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3734{
3735 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3736 if (!pPD)
3737 {
3738 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3739 return VERR_INVALID_PARAMETER;
3740 }
3741
3742 int rc = VINF_SUCCESS;
3743 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3744 {
3745 X86PDE Pde = pPD->a[i];
3746 if (Pde.n.u1Present)
3747 {
3748 const uint32_t u32Address = i << X86_PD_SHIFT;
3749 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3750 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3751 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3752 u32Address,
3753 Pde.b.u1Write ? 'W' : 'R',
3754 Pde.b.u1User ? 'U' : 'S',
3755 Pde.b.u1Accessed ? 'A' : '-',
3756 Pde.b.u1Dirty ? 'D' : '-',
3757 Pde.b.u1Global ? 'G' : '-',
3758 Pde.b.u1WriteThru ? "WT" : "--",
3759 Pde.b.u1CacheDisable? "CD" : "--",
3760 Pde.b.u1PAT ? "AT" : "--",
3761 Pde.u & RT_BIT_64(9) ? '1' : '0',
3762 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3763 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3764 Pde.u & X86_PDE4M_PG_MASK);
3765 else
3766 {
3767 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3768 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3769 u32Address,
3770 Pde.n.u1Write ? 'W' : 'R',
3771 Pde.n.u1User ? 'U' : 'S',
3772 Pde.n.u1Accessed ? 'A' : '-',
3773 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3774 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3775 Pde.n.u1WriteThru ? "WT" : "--",
3776 Pde.n.u1CacheDisable? "CD" : "--",
3777 Pde.u & RT_BIT_64(9) ? '1' : '0',
3778 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3779 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3780 Pde.u & X86_PDE_PG_MASK);
3781 if (cMaxDepth >= 1)
3782 {
3783 /** @todo what about using the page pool for mapping PTs? */
3784 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3785 PX86PT pPT = NULL;
3786 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3787 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3788 else
3789 {
3790 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3791 if (u32Address - pMap->GCPtr < pMap->cb)
3792 {
3793 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3794 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3795 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3796 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3797 pPT = pMap->aPTs[iPDE].pPTR3;
3798 }
3799 }
3800 int rc2 = VERR_INVALID_PARAMETER;
3801 if (pPT)
3802 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3803 else
3804 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3805 if (rc2 < rc && VBOX_SUCCESS(rc))
3806 rc = rc2;
3807 }
3808 }
3809 }
3810 }
3811
3812 return rc;
3813}
3814
3815
3816/**
3817 * Dumps a 32-bit shadow page table.
3818 *
3819 * @returns VBox status code (VINF_SUCCESS).
3820 * @param pVM The VM handle.
3821 * @param pPT Pointer to the page table.
3822 * @param u32Address The virtual address this table starts at.
3823 * @param PhysSearch Address to search for.
3824 */
3825int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3826{
3827 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3828 {
3829 X86PTE Pte = pPT->a[i];
3830 if (Pte.n.u1Present)
3831 {
3832 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3833 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3834 u32Address + (i << X86_PT_SHIFT),
3835 Pte.n.u1Write ? 'W' : 'R',
3836 Pte.n.u1User ? 'U' : 'S',
3837 Pte.n.u1Accessed ? 'A' : '-',
3838 Pte.n.u1Dirty ? 'D' : '-',
3839 Pte.n.u1Global ? 'G' : '-',
3840 Pte.n.u1WriteThru ? "WT" : "--",
3841 Pte.n.u1CacheDisable? "CD" : "--",
3842 Pte.n.u1PAT ? "AT" : "--",
3843 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3844 Pte.u & RT_BIT(10) ? '1' : '0',
3845 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3846 Pte.u & X86_PDE_PG_MASK));
3847
3848 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3849 {
3850 uint64_t fPageShw = 0;
3851 RTHCPHYS pPhysHC = 0;
3852
3853 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3854 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3855 }
3856 }
3857 }
3858 return VINF_SUCCESS;
3859}
3860
3861
3862/**
3863 * Dumps a 32-bit guest page directory and page tables.
3864 *
3865 * @returns VBox status code (VINF_SUCCESS).
3866 * @param pVM The VM handle.
3867 * @param cr3 The root of the hierarchy.
3868 * @param cr4 The CR4, PSE is currently used.
3869 * @param PhysSearch Address to search for.
3870 */
3871PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3872{
3873 bool fLongMode = false;
3874 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3875 PX86PD pPD = 0;
3876
3877 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3878 if (VBOX_FAILURE(rc) || !pPD)
3879 {
3880 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3881 return VERR_INVALID_PARAMETER;
3882 }
3883
3884 Log(("cr3=%08x cr4=%08x%s\n"
3885 "%-*s P - Present\n"
3886 "%-*s | R/W - Read (0) / Write (1)\n"
3887 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3888 "%-*s | | | A - Accessed\n"
3889 "%-*s | | | | D - Dirty\n"
3890 "%-*s | | | | | G - Global\n"
3891 "%-*s | | | | | | WT - Write thru\n"
3892 "%-*s | | | | | | | CD - Cache disable\n"
3893 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3894 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3895 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3896 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3897 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3898 "%-*s Level | | | | | | | | | | | | Page\n"
3899 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3900 - W U - - - -- -- -- -- -- 010 */
3901 , cr3, cr4, fLongMode ? " Long Mode" : "",
3902 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3903 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3904
3905 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3906 {
3907 X86PDE Pde = pPD->a[i];
3908 if (Pde.n.u1Present)
3909 {
3910 const uint32_t u32Address = i << X86_PD_SHIFT;
3911
3912 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3913 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3914 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3915 u32Address,
3916 Pde.b.u1Write ? 'W' : 'R',
3917 Pde.b.u1User ? 'U' : 'S',
3918 Pde.b.u1Accessed ? 'A' : '-',
3919 Pde.b.u1Dirty ? 'D' : '-',
3920 Pde.b.u1Global ? 'G' : '-',
3921 Pde.b.u1WriteThru ? "WT" : "--",
3922 Pde.b.u1CacheDisable? "CD" : "--",
3923 Pde.b.u1PAT ? "AT" : "--",
3924 Pde.u & RT_BIT(9) ? '1' : '0',
3925 Pde.u & RT_BIT(10) ? '1' : '0',
3926 Pde.u & RT_BIT(11) ? '1' : '0',
3927 Pde.u & X86_PDE4M_PG_MASK));
3928 /** @todo PhysSearch */
3929 else
3930 {
3931 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3932 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3933 u32Address,
3934 Pde.n.u1Write ? 'W' : 'R',
3935 Pde.n.u1User ? 'U' : 'S',
3936 Pde.n.u1Accessed ? 'A' : '-',
3937 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3938 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3939 Pde.n.u1WriteThru ? "WT" : "--",
3940 Pde.n.u1CacheDisable? "CD" : "--",
3941 Pde.u & RT_BIT(9) ? '1' : '0',
3942 Pde.u & RT_BIT(10) ? '1' : '0',
3943 Pde.u & RT_BIT(11) ? '1' : '0',
3944 Pde.u & X86_PDE_PG_MASK));
3945 ////if (cMaxDepth >= 1)
3946 {
3947 /** @todo what about using the page pool for mapping PTs? */
3948 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3949 PX86PT pPT = NULL;
3950
3951 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3952
3953 int rc2 = VERR_INVALID_PARAMETER;
3954 if (pPT)
3955 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3956 else
3957 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3958 if (rc2 < rc && VBOX_SUCCESS(rc))
3959 rc = rc2;
3960 }
3961 }
3962 }
3963 }
3964
3965 return rc;
3966}
3967
3968
3969/**
3970 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3971 *
3972 * @returns VBox status code (VINF_SUCCESS).
3973 * @param pVM The VM handle.
3974 * @param cr3 The root of the hierarchy.
3975 * @param cr4 The cr4, only PAE and PSE is currently used.
3976 * @param fLongMode Set if long mode, false if not long mode.
3977 * @param cMaxDepth Number of levels to dump.
3978 * @param pHlp Pointer to the output functions.
3979 */
3980PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3981{
3982 if (!pHlp)
3983 pHlp = DBGFR3InfoLogHlp();
3984 if (!cMaxDepth)
3985 return VINF_SUCCESS;
3986 const unsigned cch = fLongMode ? 16 : 8;
3987 pHlp->pfnPrintf(pHlp,
3988 "cr3=%08x cr4=%08x%s\n"
3989 "%-*s P - Present\n"
3990 "%-*s | R/W - Read (0) / Write (1)\n"
3991 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3992 "%-*s | | | A - Accessed\n"
3993 "%-*s | | | | D - Dirty\n"
3994 "%-*s | | | | | G - Global\n"
3995 "%-*s | | | | | | WT - Write thru\n"
3996 "%-*s | | | | | | | CD - Cache disable\n"
3997 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3998 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3999 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4000 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4001 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4002 "%-*s Level | | | | | | | | | | | | Page\n"
4003 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4004 - W U - - - -- -- -- -- -- 010 */
4005 , cr3, cr4, fLongMode ? " Long Mode" : "",
4006 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4007 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4008 if (cr4 & X86_CR4_PAE)
4009 {
4010 if (fLongMode)
4011 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4012 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4013 }
4014 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4015}
4016
4017
4018
4019#ifdef VBOX_WITH_DEBUGGER
4020/**
4021 * The '.pgmram' command.
4022 *
4023 * @returns VBox status.
4024 * @param pCmd Pointer to the command descriptor (as registered).
4025 * @param pCmdHlp Pointer to command helper functions.
4026 * @param pVM Pointer to the current VM (if any).
4027 * @param paArgs Pointer to (readonly) array of arguments.
4028 * @param cArgs Number of arguments in the array.
4029 */
4030static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4031{
4032 /*
4033 * Validate input.
4034 */
4035 if (!pVM)
4036 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4037 if (!pVM->pgm.s.pRamRangesGC)
4038 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4039
4040 /*
4041 * Dump the ranges.
4042 */
4043 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4044 PPGMRAMRANGE pRam;
4045 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4046 {
4047 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4048 "%VGp - %VGp %p\n",
4049 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
4050 if (VBOX_FAILURE(rc))
4051 return rc;
4052 }
4053
4054 return VINF_SUCCESS;
4055}
4056
4057
4058/**
4059 * The '.pgmmap' command.
4060 *
4061 * @returns VBox status.
4062 * @param pCmd Pointer to the command descriptor (as registered).
4063 * @param pCmdHlp Pointer to command helper functions.
4064 * @param pVM Pointer to the current VM (if any).
4065 * @param paArgs Pointer to (readonly) array of arguments.
4066 * @param cArgs Number of arguments in the array.
4067 */
4068static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4069{
4070 /*
4071 * Validate input.
4072 */
4073 if (!pVM)
4074 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4075 if (!pVM->pgm.s.pMappingsR3)
4076 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4077
4078 /*
4079 * Print message about the fixedness of the mappings.
4080 */
4081 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4082 if (VBOX_FAILURE(rc))
4083 return rc;
4084
4085 /*
4086 * Dump the ranges.
4087 */
4088 PPGMMAPPING pCur;
4089 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4090 {
4091 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4092 "%08x - %08x %s\n",
4093 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4094 if (VBOX_FAILURE(rc))
4095 return rc;
4096 }
4097
4098 return VINF_SUCCESS;
4099}
4100
4101
4102/**
4103 * The '.pgmsync' command.
4104 *
4105 * @returns VBox status.
4106 * @param pCmd Pointer to the command descriptor (as registered).
4107 * @param pCmdHlp Pointer to command helper functions.
4108 * @param pVM Pointer to the current VM (if any).
4109 * @param paArgs Pointer to (readonly) array of arguments.
4110 * @param cArgs Number of arguments in the array.
4111 */
4112static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4113{
4114 /*
4115 * Validate input.
4116 */
4117 if (!pVM)
4118 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4119
4120 /*
4121 * Force page directory sync.
4122 */
4123 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4124
4125 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4126 if (VBOX_FAILURE(rc))
4127 return rc;
4128
4129 return VINF_SUCCESS;
4130}
4131
4132
4133#ifdef VBOX_STRICT
4134/**
4135 * The '.pgmassertcr3' command.
4136 *
4137 * @returns VBox status.
4138 * @param pCmd Pointer to the command descriptor (as registered).
4139 * @param pCmdHlp Pointer to command helper functions.
4140 * @param pVM Pointer to the current VM (if any).
4141 * @param paArgs Pointer to (readonly) array of arguments.
4142 * @param cArgs Number of arguments in the array.
4143 */
4144static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4145{
4146 /*
4147 * Validate input.
4148 */
4149 if (!pVM)
4150 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4151
4152 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4153 if (VBOX_FAILURE(rc))
4154 return rc;
4155
4156 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4157
4158 return VINF_SUCCESS;
4159}
4160#endif
4161
4162/**
4163 * The '.pgmsyncalways' command.
4164 *
4165 * @returns VBox status.
4166 * @param pCmd Pointer to the command descriptor (as registered).
4167 * @param pCmdHlp Pointer to command helper functions.
4168 * @param pVM Pointer to the current VM (if any).
4169 * @param paArgs Pointer to (readonly) array of arguments.
4170 * @param cArgs Number of arguments in the array.
4171 */
4172static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4173{
4174 /*
4175 * Validate input.
4176 */
4177 if (!pVM)
4178 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4179
4180 /*
4181 * Force page directory sync.
4182 */
4183 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4184 {
4185 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4186 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4187 }
4188 else
4189 {
4190 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4191 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4192 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4193 }
4194}
4195
4196#endif
4197
4198/**
4199 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4200 */
4201typedef struct PGMCHECKINTARGS
4202{
4203 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4204 PPGMPHYSHANDLER pPrevPhys;
4205 PPGMVIRTHANDLER pPrevVirt;
4206 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4207 PVM pVM;
4208} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4209
4210/**
4211 * Validate a node in the physical handler tree.
4212 *
4213 * @returns 0 on if ok, other wise 1.
4214 * @param pNode The handler node.
4215 * @param pvUser pVM.
4216 */
4217static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4218{
4219 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4220 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4221 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4222 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4223 AssertReleaseMsg( !pArgs->pPrevPhys
4224 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4225 ("pPrevPhys=%p %VGp-%VGp %s\n"
4226 " pCur=%p %VGp-%VGp %s\n",
4227 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4228 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4229 pArgs->pPrevPhys = pCur;
4230 return 0;
4231}
4232
4233
4234/**
4235 * Validate a node in the virtual handler tree.
4236 *
4237 * @returns 0 on if ok, other wise 1.
4238 * @param pNode The handler node.
4239 * @param pvUser pVM.
4240 */
4241static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4242{
4243 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4244 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4245 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4246 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4247 AssertReleaseMsg( !pArgs->pPrevVirt
4248 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4249 ("pPrevVirt=%p %VGv-%VGv %s\n"
4250 " pCur=%p %VGv-%VGv %s\n",
4251 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4252 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4253 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4254 {
4255 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4256 ("pCur=%p %VGv-%VGv %s\n"
4257 "iPage=%d offVirtHandle=%#x expected %#x\n",
4258 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4259 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4260 }
4261 pArgs->pPrevVirt = pCur;
4262 return 0;
4263}
4264
4265
4266/**
4267 * Validate a node in the virtual handler tree.
4268 *
4269 * @returns 0 on if ok, other wise 1.
4270 * @param pNode The handler node.
4271 * @param pvUser pVM.
4272 */
4273static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4274{
4275 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4276 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4277 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4278 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4279 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4280 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4281 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4282 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4283 " pCur=%p %VGp-%VGp\n",
4284 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4285 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4286 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4287 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4288 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4289 " pCur=%p %VGp-%VGp\n",
4290 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4291 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4292 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4293 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4294 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4295 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4296 {
4297 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4298 for (;;)
4299 {
4300 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4301 AssertReleaseMsg(pCur2 != pCur,
4302 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4303 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4304 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4305 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4306 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4307 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4308 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4309 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4310 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4311 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4312 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4313 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4314 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4315 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4316 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4317 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4318 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4319 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4320 break;
4321 }
4322 }
4323
4324 pArgs->pPrevPhys2Virt = pCur;
4325 return 0;
4326}
4327
4328
4329/**
4330 * Perform an integrity check on the PGM component.
4331 *
4332 * @returns VINF_SUCCESS if everything is fine.
4333 * @returns VBox error status after asserting on integrity breach.
4334 * @param pVM The VM handle.
4335 */
4336PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4337{
4338 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4339
4340 /*
4341 * Check the trees.
4342 */
4343 int cErrors = 0;
4344 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4345 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4346 PGMCHECKINTARGS Args = s_LeftToRight;
4347 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4348 Args = s_RightToLeft;
4349 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4350 Args = s_LeftToRight;
4351 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4352 Args = s_RightToLeft;
4353 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4354 Args = s_LeftToRight;
4355 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4356 Args = s_RightToLeft;
4357 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4358 Args = s_LeftToRight;
4359 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4360 Args = s_RightToLeft;
4361 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4362
4363 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4364}
4365
4366
4367/**
4368 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4369 *
4370 * @returns VBox status code.
4371 * @param pVM VM handle.
4372 * @param fEnable Enable or disable shadow mappings
4373 */
4374PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4375{
4376 pVM->pgm.s.fDisableMappings = !fEnable;
4377
4378 uint32_t cb;
4379 int rc = PGMR3MappingsSize(pVM, &cb);
4380 AssertRCReturn(rc, rc);
4381
4382 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4383 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4384 AssertRCReturn(rc, rc);
4385
4386 return VINF_SUCCESS;
4387}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette