VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 11299

Last change on this file since 11299 was 11299, checked in by vboxsync, 16 years ago

mm: MMHyperXXToGC -> MMHyperXXToRC.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 202.9 KB
Line 
1/* $Id: PGM.cpp 11299 2008-08-08 22:56:56Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635# ifdef VBOX_STRICT
636static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637# endif
638#endif
639
640
641/*******************************************************************************
642* Global Variables *
643*******************************************************************************/
644#ifdef VBOX_WITH_DEBUGGER
645/** Command descriptors. */
646static const DBGCCMD g_aCmds[] =
647{
648 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
649 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
650 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
651 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
652#ifdef VBOX_STRICT
653 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
654#endif
655 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
656};
657#endif
658
659
660
661
662/*
663 * Shadow - 32-bit mode
664 */
665#define PGM_SHW_TYPE PGM_TYPE_32BIT
666#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
667#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
668#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
669#include "PGMShw.h"
670
671/* Guest - real mode */
672#define PGM_GST_TYPE PGM_TYPE_REAL
673#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
674#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
675#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
676#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
677#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
678#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
679#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
680#include "PGMGst.h"
681#include "PGMBth.h"
682#undef BTH_PGMPOOLKIND_PT_FOR_PT
683#undef PGM_BTH_NAME
684#undef PGM_BTH_NAME_GC_STR
685#undef PGM_BTH_NAME_R0_STR
686#undef PGM_GST_TYPE
687#undef PGM_GST_NAME
688#undef PGM_GST_NAME_GC_STR
689#undef PGM_GST_NAME_R0_STR
690
691/* Guest - protected mode */
692#define PGM_GST_TYPE PGM_TYPE_PROT
693#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
694#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
695#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
696#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
697#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
698#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
699#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
700#include "PGMGst.h"
701#include "PGMBth.h"
702#undef BTH_PGMPOOLKIND_PT_FOR_PT
703#undef PGM_BTH_NAME
704#undef PGM_BTH_NAME_GC_STR
705#undef PGM_BTH_NAME_R0_STR
706#undef PGM_GST_TYPE
707#undef PGM_GST_NAME
708#undef PGM_GST_NAME_GC_STR
709#undef PGM_GST_NAME_R0_STR
710
711/* Guest - 32-bit mode */
712#define PGM_GST_TYPE PGM_TYPE_32BIT
713#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
714#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
715#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
716#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
717#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
718#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
719#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
720#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
721#include "PGMGst.h"
722#include "PGMBth.h"
723#undef BTH_PGMPOOLKIND_PT_FOR_BIG
724#undef BTH_PGMPOOLKIND_PT_FOR_PT
725#undef PGM_BTH_NAME
726#undef PGM_BTH_NAME_GC_STR
727#undef PGM_BTH_NAME_R0_STR
728#undef PGM_GST_TYPE
729#undef PGM_GST_NAME
730#undef PGM_GST_NAME_GC_STR
731#undef PGM_GST_NAME_R0_STR
732
733#undef PGM_SHW_TYPE
734#undef PGM_SHW_NAME
735#undef PGM_SHW_NAME_GC_STR
736#undef PGM_SHW_NAME_R0_STR
737
738
739/*
740 * Shadow - PAE mode
741 */
742#define PGM_SHW_TYPE PGM_TYPE_PAE
743#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
744#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
745#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
746#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
747#include "PGMShw.h"
748
749/* Guest - real mode */
750#define PGM_GST_TYPE PGM_TYPE_REAL
751#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
752#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
753#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
754#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
755#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
756#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
757#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
758#include "PGMBth.h"
759#undef BTH_PGMPOOLKIND_PT_FOR_PT
760#undef PGM_BTH_NAME
761#undef PGM_BTH_NAME_GC_STR
762#undef PGM_BTH_NAME_R0_STR
763#undef PGM_GST_TYPE
764#undef PGM_GST_NAME
765#undef PGM_GST_NAME_GC_STR
766#undef PGM_GST_NAME_R0_STR
767
768/* Guest - protected mode */
769#define PGM_GST_TYPE PGM_TYPE_PROT
770#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
771#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
772#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
773#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
774#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
775#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
776#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
777#include "PGMBth.h"
778#undef BTH_PGMPOOLKIND_PT_FOR_PT
779#undef PGM_BTH_NAME
780#undef PGM_BTH_NAME_GC_STR
781#undef PGM_BTH_NAME_R0_STR
782#undef PGM_GST_TYPE
783#undef PGM_GST_NAME
784#undef PGM_GST_NAME_GC_STR
785#undef PGM_GST_NAME_R0_STR
786
787/* Guest - 32-bit mode */
788#define PGM_GST_TYPE PGM_TYPE_32BIT
789#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
790#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
791#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
792#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
793#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
794#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
795#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
796#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
797#include "PGMBth.h"
798#undef BTH_PGMPOOLKIND_PT_FOR_BIG
799#undef BTH_PGMPOOLKIND_PT_FOR_PT
800#undef PGM_BTH_NAME
801#undef PGM_BTH_NAME_GC_STR
802#undef PGM_BTH_NAME_R0_STR
803#undef PGM_GST_TYPE
804#undef PGM_GST_NAME
805#undef PGM_GST_NAME_GC_STR
806#undef PGM_GST_NAME_R0_STR
807
808/* Guest - PAE mode */
809#define PGM_GST_TYPE PGM_TYPE_PAE
810#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
811#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
812#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
813#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
814#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
815#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
816#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
817#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
818#include "PGMGst.h"
819#include "PGMBth.h"
820#undef BTH_PGMPOOLKIND_PT_FOR_BIG
821#undef BTH_PGMPOOLKIND_PT_FOR_PT
822#undef PGM_BTH_NAME
823#undef PGM_BTH_NAME_GC_STR
824#undef PGM_BTH_NAME_R0_STR
825#undef PGM_GST_TYPE
826#undef PGM_GST_NAME
827#undef PGM_GST_NAME_GC_STR
828#undef PGM_GST_NAME_R0_STR
829
830#undef PGM_SHW_TYPE
831#undef PGM_SHW_NAME
832#undef PGM_SHW_NAME_GC_STR
833#undef PGM_SHW_NAME_R0_STR
834
835
836/*
837 * Shadow - AMD64 mode
838 */
839#define PGM_SHW_TYPE PGM_TYPE_AMD64
840#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
841#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
842#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
843#include "PGMShw.h"
844
845/* Guest - AMD64 mode */
846#define PGM_GST_TYPE PGM_TYPE_AMD64
847#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
848#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
849#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
850#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
851#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
852#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
853#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
854#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
855#include "PGMGst.h"
856#include "PGMBth.h"
857#undef BTH_PGMPOOLKIND_PT_FOR_BIG
858#undef BTH_PGMPOOLKIND_PT_FOR_PT
859#undef PGM_BTH_NAME
860#undef PGM_BTH_NAME_GC_STR
861#undef PGM_BTH_NAME_R0_STR
862#undef PGM_GST_TYPE
863#undef PGM_GST_NAME
864#undef PGM_GST_NAME_GC_STR
865#undef PGM_GST_NAME_R0_STR
866
867#undef PGM_SHW_TYPE
868#undef PGM_SHW_NAME
869#undef PGM_SHW_NAME_GC_STR
870#undef PGM_SHW_NAME_R0_STR
871
872/*
873 * Shadow - Nested paging mode
874 */
875#define PGM_SHW_TYPE PGM_TYPE_NESTED
876#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
877#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
878#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
879#include "PGMShw.h"
880
881/* Guest - real mode */
882#define PGM_GST_TYPE PGM_TYPE_REAL
883#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
884#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
885#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
886#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
887#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
888#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
889#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
890#include "PGMBth.h"
891#undef BTH_PGMPOOLKIND_PT_FOR_PT
892#undef PGM_BTH_NAME
893#undef PGM_BTH_NAME_GC_STR
894#undef PGM_BTH_NAME_R0_STR
895#undef PGM_GST_TYPE
896#undef PGM_GST_NAME
897#undef PGM_GST_NAME_GC_STR
898#undef PGM_GST_NAME_R0_STR
899
900/* Guest - protected mode */
901#define PGM_GST_TYPE PGM_TYPE_PROT
902#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
903#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
904#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
905#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
906#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
907#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
908#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
909#include "PGMBth.h"
910#undef BTH_PGMPOOLKIND_PT_FOR_PT
911#undef PGM_BTH_NAME
912#undef PGM_BTH_NAME_GC_STR
913#undef PGM_BTH_NAME_R0_STR
914#undef PGM_GST_TYPE
915#undef PGM_GST_NAME
916#undef PGM_GST_NAME_GC_STR
917#undef PGM_GST_NAME_R0_STR
918
919/* Guest - 32-bit mode */
920#define PGM_GST_TYPE PGM_TYPE_32BIT
921#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
922#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
923#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
924#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
925#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
926#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
927#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
928#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
929#include "PGMBth.h"
930#undef BTH_PGMPOOLKIND_PT_FOR_BIG
931#undef BTH_PGMPOOLKIND_PT_FOR_PT
932#undef PGM_BTH_NAME
933#undef PGM_BTH_NAME_GC_STR
934#undef PGM_BTH_NAME_R0_STR
935#undef PGM_GST_TYPE
936#undef PGM_GST_NAME
937#undef PGM_GST_NAME_GC_STR
938#undef PGM_GST_NAME_R0_STR
939
940/* Guest - PAE mode */
941#define PGM_GST_TYPE PGM_TYPE_PAE
942#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
943#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
944#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
945#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
946#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
947#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
948#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
949#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
950#include "PGMBth.h"
951#undef BTH_PGMPOOLKIND_PT_FOR_BIG
952#undef BTH_PGMPOOLKIND_PT_FOR_PT
953#undef PGM_BTH_NAME
954#undef PGM_BTH_NAME_GC_STR
955#undef PGM_BTH_NAME_R0_STR
956#undef PGM_GST_TYPE
957#undef PGM_GST_NAME
958#undef PGM_GST_NAME_GC_STR
959#undef PGM_GST_NAME_R0_STR
960
961/* Guest - AMD64 mode */
962#define PGM_GST_TYPE PGM_TYPE_AMD64
963#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
964#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
965#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
966#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
967#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
968#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
969#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
970#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
971#include "PGMBth.h"
972#undef BTH_PGMPOOLKIND_PT_FOR_BIG
973#undef BTH_PGMPOOLKIND_PT_FOR_PT
974#undef PGM_BTH_NAME
975#undef PGM_BTH_NAME_GC_STR
976#undef PGM_BTH_NAME_R0_STR
977#undef PGM_GST_TYPE
978#undef PGM_GST_NAME
979#undef PGM_GST_NAME_GC_STR
980#undef PGM_GST_NAME_R0_STR
981
982#undef PGM_SHW_TYPE
983#undef PGM_SHW_NAME
984#undef PGM_SHW_NAME_GC_STR
985#undef PGM_SHW_NAME_R0_STR
986
987
988#ifdef PGM_WITH_EPT
989/*
990 * Shadow - EPT
991 */
992#define PGM_SHW_TYPE PGM_TYPE_EPT
993#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
994#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_EPT_STR(name)
995#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
996#include "PGMShw.h"
997
998/* Guest - real mode */
999#define PGM_GST_TYPE PGM_TYPE_REAL
1000#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1001#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
1002#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1003#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1004#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_REAL_STR(name)
1005#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1006#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1007#include "PGMBth.h"
1008#undef BTH_PGMPOOLKIND_PT_FOR_PT
1009#undef PGM_BTH_NAME
1010#undef PGM_BTH_NAME_GC_STR
1011#undef PGM_BTH_NAME_R0_STR
1012#undef PGM_GST_TYPE
1013#undef PGM_GST_NAME
1014#undef PGM_GST_NAME_GC_STR
1015#undef PGM_GST_NAME_R0_STR
1016
1017/* Guest - protected mode */
1018#define PGM_GST_TYPE PGM_TYPE_PROT
1019#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1020#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
1021#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1022#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1023#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PROT_STR(name)
1024#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1025#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1026#include "PGMBth.h"
1027#undef BTH_PGMPOOLKIND_PT_FOR_PT
1028#undef PGM_BTH_NAME
1029#undef PGM_BTH_NAME_GC_STR
1030#undef PGM_BTH_NAME_R0_STR
1031#undef PGM_GST_TYPE
1032#undef PGM_GST_NAME
1033#undef PGM_GST_NAME_GC_STR
1034#undef PGM_GST_NAME_R0_STR
1035
1036/* Guest - 32-bit mode */
1037#define PGM_GST_TYPE PGM_TYPE_32BIT
1038#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1039#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
1040#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1041#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1042#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_32BIT_STR(name)
1043#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1044#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1045#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1046#include "PGMBth.h"
1047#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1048#undef BTH_PGMPOOLKIND_PT_FOR_PT
1049#undef PGM_BTH_NAME
1050#undef PGM_BTH_NAME_GC_STR
1051#undef PGM_BTH_NAME_R0_STR
1052#undef PGM_GST_TYPE
1053#undef PGM_GST_NAME
1054#undef PGM_GST_NAME_GC_STR
1055#undef PGM_GST_NAME_R0_STR
1056
1057/* Guest - PAE mode */
1058#define PGM_GST_TYPE PGM_TYPE_PAE
1059#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1060#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
1061#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1062#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1063#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_PAE_STR(name)
1064#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1065#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1066#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1067#include "PGMBth.h"
1068#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1069#undef BTH_PGMPOOLKIND_PT_FOR_PT
1070#undef PGM_BTH_NAME
1071#undef PGM_BTH_NAME_GC_STR
1072#undef PGM_BTH_NAME_R0_STR
1073#undef PGM_GST_TYPE
1074#undef PGM_GST_NAME
1075#undef PGM_GST_NAME_GC_STR
1076#undef PGM_GST_NAME_R0_STR
1077
1078/* Guest - AMD64 mode */
1079#define PGM_GST_TYPE PGM_TYPE_AMD64
1080#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1081#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
1082#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1083#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1084#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_EPT_AMD64_STR(name)
1085#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1086#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1087#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1088#include "PGMBth.h"
1089#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1090#undef BTH_PGMPOOLKIND_PT_FOR_PT
1091#undef PGM_BTH_NAME
1092#undef PGM_BTH_NAME_GC_STR
1093#undef PGM_BTH_NAME_R0_STR
1094#undef PGM_GST_TYPE
1095#undef PGM_GST_NAME
1096#undef PGM_GST_NAME_GC_STR
1097#undef PGM_GST_NAME_R0_STR
1098
1099#undef PGM_SHW_TYPE
1100#undef PGM_SHW_NAME
1101#undef PGM_SHW_NAME_GC_STR
1102#undef PGM_SHW_NAME_R0_STR
1103#endif /* PGM_WITH_EPT */
1104
1105/**
1106 * Initiates the paging of VM.
1107 *
1108 * @returns VBox status code.
1109 * @param pVM Pointer to VM structure.
1110 */
1111PGMR3DECL(int) PGMR3Init(PVM pVM)
1112{
1113 LogFlow(("PGMR3Init:\n"));
1114
1115 /*
1116 * Assert alignment and sizes.
1117 */
1118 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1119
1120 /*
1121 * Init the structure.
1122 */
1123 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1124 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1125 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1126 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1127 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1128 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1129 pVM->pgm.s.fA20Enabled = true;
1130 pVM->pgm.s.pGstPaePDPTHC = NULL;
1131 pVM->pgm.s.pGstPaePDPTGC = 0;
1132 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1133 {
1134 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1135 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1136 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1137 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1138 }
1139
1140#ifdef VBOX_STRICT
1141 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1142#endif
1143
1144 /*
1145 * Get the configured RAM size - to estimate saved state size.
1146 */
1147 uint64_t cbRam;
1148 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1149 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1150 cbRam = pVM->pgm.s.cbRamSize = 0;
1151 else if (VBOX_SUCCESS(rc))
1152 {
1153 if (cbRam < PAGE_SIZE)
1154 cbRam = 0;
1155 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1156 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1157 }
1158 else
1159 {
1160 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1161 return rc;
1162 }
1163
1164 /*
1165 * Register saved state data unit.
1166 */
1167 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1168 NULL, pgmR3Save, NULL,
1169 NULL, pgmR3Load, NULL);
1170 if (VBOX_FAILURE(rc))
1171 return rc;
1172
1173 /*
1174 * Initialize the PGM critical section and flush the phys TLBs
1175 */
1176 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1177 AssertRCReturn(rc, rc);
1178
1179 PGMR3PhysChunkInvalidateTLB(pVM);
1180 PGMPhysInvalidatePageR3MapTLB(pVM);
1181 PGMPhysInvalidatePageR0MapTLB(pVM);
1182 PGMPhysInvalidatePageGCMapTLB(pVM);
1183
1184 /*
1185 * Trees
1186 */
1187 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1188 if (VBOX_SUCCESS(rc))
1189 {
1190 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1191
1192 /*
1193 * Alocate the zero page.
1194 */
1195 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1196 }
1197 if (VBOX_SUCCESS(rc))
1198 {
1199 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1200 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1201 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1202 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1203 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1204
1205 /*
1206 * Init the paging.
1207 */
1208 rc = pgmR3InitPaging(pVM);
1209 }
1210 if (VBOX_SUCCESS(rc))
1211 {
1212 /*
1213 * Init the page pool.
1214 */
1215 rc = pgmR3PoolInit(pVM);
1216 }
1217 if (VBOX_SUCCESS(rc))
1218 {
1219 /*
1220 * Info & statistics
1221 */
1222 DBGFR3InfoRegisterInternal(pVM, "mode",
1223 "Shows the current paging mode. "
1224 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1225 pgmR3InfoMode);
1226 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1227 "Dumps all the entries in the top level paging table. No arguments.",
1228 pgmR3InfoCr3);
1229 DBGFR3InfoRegisterInternal(pVM, "phys",
1230 "Dumps all the physical address ranges. No arguments.",
1231 pgmR3PhysInfo);
1232 DBGFR3InfoRegisterInternal(pVM, "handlers",
1233 "Dumps physical, virtual and hyper virtual handlers. "
1234 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1235 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1236 pgmR3InfoHandlers);
1237 DBGFR3InfoRegisterInternal(pVM, "mappings",
1238 "Dumps guest mappings.",
1239 pgmR3MapInfo);
1240
1241 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1242#ifdef VBOX_WITH_STATISTICS
1243 pgmR3InitStats(pVM);
1244#endif
1245#ifdef VBOX_WITH_DEBUGGER
1246 /*
1247 * Debugger commands.
1248 */
1249 static bool fRegisteredCmds = false;
1250 if (!fRegisteredCmds)
1251 {
1252 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1253 if (VBOX_SUCCESS(rc))
1254 fRegisteredCmds = true;
1255 }
1256#endif
1257 return VINF_SUCCESS;
1258 }
1259
1260 /* Almost no cleanup necessary, MM frees all memory. */
1261 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1262
1263 return rc;
1264}
1265
1266
1267/**
1268 * Init paging.
1269 *
1270 * Since we need to check what mode the host is operating in before we can choose
1271 * the right paging functions for the host we have to delay this until R0 has
1272 * been initialized.
1273 *
1274 * @returns VBox status code.
1275 * @param pVM VM handle.
1276 */
1277static int pgmR3InitPaging(PVM pVM)
1278{
1279 /*
1280 * Force a recalculation of modes and switcher so everyone gets notified.
1281 */
1282 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1283 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1284 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1285
1286 /*
1287 * Allocate static mapping space for whatever the cr3 register
1288 * points to and in the case of PAE mode to the 4 PDs.
1289 */
1290 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1291 if (VBOX_FAILURE(rc))
1292 {
1293 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1294 return rc;
1295 }
1296 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1297
1298 /*
1299 * Allocate pages for the three possible intermediate contexts
1300 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1301 * for the sake of simplicity. The AMD64 uses the PAE for the
1302 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1303 *
1304 * We assume that two page tables will be enought for the core code
1305 * mappings (HC virtual and identity).
1306 */
1307 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1308 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1309 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1310 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1311 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1312 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1313 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1314 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1315 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1316 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1317 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1318 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1319 if ( !pVM->pgm.s.pInterPD
1320 || !pVM->pgm.s.apInterPTs[0]
1321 || !pVM->pgm.s.apInterPTs[1]
1322 || !pVM->pgm.s.apInterPaePTs[0]
1323 || !pVM->pgm.s.apInterPaePTs[1]
1324 || !pVM->pgm.s.apInterPaePDs[0]
1325 || !pVM->pgm.s.apInterPaePDs[1]
1326 || !pVM->pgm.s.apInterPaePDs[2]
1327 || !pVM->pgm.s.apInterPaePDs[3]
1328 || !pVM->pgm.s.pInterPaePDPT
1329 || !pVM->pgm.s.pInterPaePDPT64
1330 || !pVM->pgm.s.pInterPaePML4)
1331 {
1332 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1333 return VERR_NO_PAGE_MEMORY;
1334 }
1335
1336 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1337 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1338 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1339 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1340 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1341 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1342
1343 /*
1344 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1345 */
1346 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1347 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1348 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1349
1350 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1351 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1352
1353 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1354 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1355 {
1356 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1357 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1358 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1359 }
1360
1361 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1362 {
1363 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1364 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1365 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1366 }
1367
1368 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1369 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1370 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1371 | HCPhysInterPaePDPT64;
1372
1373 /*
1374 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1375 * We allocate pages for all three posibilities to in order to simplify mappings and
1376 * avoid resource failure during mode switches. So, we need to cover all levels of the
1377 * of the first 4GB down to PD level.
1378 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1379 */
1380 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1381 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1382 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1383 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1384 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1385 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1386 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1387 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1388 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1389 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1390
1391 if ( !pVM->pgm.s.pHC32BitPD
1392 || !pVM->pgm.s.apHCPaePDs[0]
1393 || !pVM->pgm.s.apHCPaePDs[1]
1394 || !pVM->pgm.s.apHCPaePDs[2]
1395 || !pVM->pgm.s.apHCPaePDs[3]
1396 || !pVM->pgm.s.pHCPaePDPT
1397 || !pVM->pgm.s.pHCNestedRoot)
1398 {
1399 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1400 return VERR_NO_PAGE_MEMORY;
1401 }
1402
1403 /* get physical addresses. */
1404 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1405 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1406 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1407 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1408 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1409 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1410 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1411 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1412
1413 /*
1414 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1415 */
1416 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1417 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1418 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1419 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1420 {
1421 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1422 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1423 /* The flags will be corrected when entering and leaving long mode. */
1424 }
1425
1426 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1427
1428 /*
1429 * Initialize paging workers and mode from current host mode
1430 * and the guest running in real mode.
1431 */
1432 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1433 switch (pVM->pgm.s.enmHostMode)
1434 {
1435 case SUPPAGINGMODE_32_BIT:
1436 case SUPPAGINGMODE_32_BIT_GLOBAL:
1437 case SUPPAGINGMODE_PAE:
1438 case SUPPAGINGMODE_PAE_GLOBAL:
1439 case SUPPAGINGMODE_PAE_NX:
1440 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1441 break;
1442
1443 case SUPPAGINGMODE_AMD64:
1444 case SUPPAGINGMODE_AMD64_GLOBAL:
1445 case SUPPAGINGMODE_AMD64_NX:
1446 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1447#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1448 if (ARCH_BITS != 64)
1449 {
1450 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1451 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1452 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1453 }
1454#endif
1455 break;
1456 default:
1457 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1458 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1459 }
1460 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1461 if (VBOX_SUCCESS(rc))
1462 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1463 if (VBOX_SUCCESS(rc))
1464 {
1465 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1466#if HC_ARCH_BITS == 64
1467 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1468 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1469 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1470 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1471 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1472 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1473 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1474 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1475 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1476 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1477#endif
1478
1479 return VINF_SUCCESS;
1480 }
1481
1482 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1483 return rc;
1484}
1485
1486
1487#ifdef VBOX_WITH_STATISTICS
1488/**
1489 * Init statistics
1490 */
1491static void pgmR3InitStats(PVM pVM)
1492{
1493 PPGM pPGM = &pVM->pgm.s;
1494 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1495 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1496 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1497 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1498 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1499 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1500 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1501 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1502 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1503 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1504 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1505 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1506 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1507 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1508 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1509 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1510 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1511 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1512 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1513 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1514 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1515 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1516
1517 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1518 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1519 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1520 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1521 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1522 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1523 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1524 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1525 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1526 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1527 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1528 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1529 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1530 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1531 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1532 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1533 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1534 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1535 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1536
1537 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1538 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1539 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1540 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1541 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1542 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1543 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1544 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1545
1546 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1547 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1548 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1549 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1550 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1551 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1552 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1553
1554 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1555 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1556 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1557 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1558 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1559 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1560 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1561
1562 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1563 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1564
1565 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1566 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1567 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1568
1569 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1570 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1571
1572 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1573 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1574
1575 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1576 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1577
1578 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1579 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1580 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1581
1582 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1583 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1584 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1585 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1586 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1587 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1588 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1589 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1590 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1591 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1592 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1593
1594 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1595 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1596 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1597 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1598 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1599 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1600 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1601
1602 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1603 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1604 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1605 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1606
1607 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1608 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1609 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1610 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1611 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1612
1613 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1614 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1615 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1616 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1617 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1618 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1619 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1620 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1621 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1622 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1623 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1624 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1625
1626 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1627 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1628 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1629 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1630 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1631 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1632 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1633 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1634 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1635 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1636 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1637 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1638
1639 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1640 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1641 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1642
1643 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1644 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1645
1646 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1647 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1648 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1649 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1650
1651 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1652 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1653
1654 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1655 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1656 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1657 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1658 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1659 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1660 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1661 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1662 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1663 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1664 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1665 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1666 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1667
1668#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1669 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1670 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1671 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1672 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1673 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1674 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1675#endif
1676
1677 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1678 {
1679 /** @todo r=bird: We need a STAMR3RegisterF()! */
1680 char szName[32];
1681
1682 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1683 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1684 AssertRC(rc);
1685
1686 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1687 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1688 AssertRC(rc);
1689
1690 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1691 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1692 AssertRC(rc);
1693 }
1694}
1695#endif /* VBOX_WITH_STATISTICS */
1696
1697/**
1698 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1699 *
1700 * The dynamic mapping area will also be allocated and initialized at this
1701 * time. We could allocate it during PGMR3Init of course, but the mapping
1702 * wouldn't be allocated at that time preventing us from setting up the
1703 * page table entries with the dummy page.
1704 *
1705 * @returns VBox status code.
1706 * @param pVM VM handle.
1707 */
1708PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1709{
1710 RTGCPTR GCPtr;
1711 /*
1712 * Reserve space for mapping the paging pages into guest context.
1713 */
1714 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1715 AssertRCReturn(rc, rc);
1716 pVM->pgm.s.pGC32BitPD = GCPtr;
1717 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1718
1719 /*
1720 * Reserve space for the dynamic mappings.
1721 */
1722 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1723 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1724 if (VBOX_SUCCESS(rc))
1725 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1726
1727 if ( VBOX_SUCCESS(rc)
1728 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1729 {
1730 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1731 if (VBOX_SUCCESS(rc))
1732 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1733 }
1734 if (VBOX_SUCCESS(rc))
1735 {
1736 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1737 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1738 }
1739 return rc;
1740}
1741
1742
1743/**
1744 * Ring-3 init finalizing.
1745 *
1746 * @returns VBox status code.
1747 * @param pVM The VM handle.
1748 */
1749PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1750{
1751 /*
1752 * Map the paging pages into the guest context.
1753 */
1754 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1755 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1756
1757 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1758 AssertRCReturn(rc, rc);
1759 pVM->pgm.s.pGC32BitPD = GCPtr;
1760 GCPtr += PAGE_SIZE;
1761 GCPtr += PAGE_SIZE; /* reserved page */
1762
1763 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1764 {
1765 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1766 AssertRCReturn(rc, rc);
1767 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1768 GCPtr += PAGE_SIZE;
1769 }
1770 /* A bit of paranoia is justified. */
1771 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1772 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1773 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1774 GCPtr += PAGE_SIZE; /* reserved page */
1775
1776 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1777 AssertRCReturn(rc, rc);
1778 pVM->pgm.s.pGCPaePDPT = GCPtr;
1779 GCPtr += PAGE_SIZE;
1780 GCPtr += PAGE_SIZE; /* reserved page */
1781
1782
1783 /*
1784 * Reserve space for the dynamic mappings.
1785 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1786 */
1787 /* get the pointer to the page table entries. */
1788 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1789 AssertRelease(pMapping);
1790 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1791 const unsigned iPT = off >> X86_PD_SHIFT;
1792 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1793 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1794 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1795
1796 /* init cache */
1797 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1798 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1799 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1800
1801 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1802 {
1803 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1804 AssertRCReturn(rc, rc);
1805 }
1806
1807 return rc;
1808}
1809
1810
1811/**
1812 * Applies relocations to data and code managed by this
1813 * component. This function will be called at init and
1814 * whenever the VMM need to relocate it self inside the GC.
1815 *
1816 * @param pVM The VM.
1817 * @param offDelta Relocation delta relative to old location.
1818 */
1819PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1820{
1821 LogFlow(("PGMR3Relocate\n"));
1822
1823 /*
1824 * Paging stuff.
1825 */
1826 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1827 /** @todo move this into shadow and guest specific relocation functions. */
1828 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1829 pVM->pgm.s.pGC32BitPD += offDelta;
1830 pVM->pgm.s.pGuestPDGC += offDelta;
1831 AssertCompile(ELEMENTS(pVM->pgm.s.apGCPaePDs) == ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1832 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1833 {
1834 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1835 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1836 }
1837 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1838 pVM->pgm.s.pGCPaePDPT += offDelta;
1839
1840 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1841 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1842
1843 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1844 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1845 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1846
1847 /*
1848 * Trees.
1849 */
1850 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1851
1852 /*
1853 * Ram ranges.
1854 */
1855 if (pVM->pgm.s.pRamRangesR3)
1856 {
1857 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1858 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1859#ifdef VBOX_WITH_NEW_PHYS_CODE
1860 pCur->pNextGC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1861#else
1862 {
1863 pCur->pNextGC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1864 if (pCur->pavHCChunkGC)
1865 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1866 }
1867#endif
1868 }
1869
1870 /*
1871 * Update the two page directories with all page table mappings.
1872 * (One or more of them have changed, that's why we're here.)
1873 */
1874 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1875 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1876 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1877
1878 /* Relocate GC addresses of Page Tables. */
1879 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1880 {
1881 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1882 {
1883 pCur->aPTs[i].pPTGC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1884 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1885 }
1886 }
1887
1888 /*
1889 * Dynamic page mapping area.
1890 */
1891 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1892 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1893 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1894
1895 /*
1896 * The Zero page.
1897 */
1898 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1899 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1900
1901 /*
1902 * Physical and virtual handlers.
1903 */
1904 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1905 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1906 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1907
1908 /*
1909 * The page pool.
1910 */
1911 pgmR3PoolRelocate(pVM);
1912}
1913
1914
1915/**
1916 * Callback function for relocating a physical access handler.
1917 *
1918 * @returns 0 (continue enum)
1919 * @param pNode Pointer to a PGMPHYSHANDLER node.
1920 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1921 * not certain the delta will fit in a void pointer for all possible configs.
1922 */
1923static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1924{
1925 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1926 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1927 if (pHandler->pfnHandlerGC)
1928 pHandler->pfnHandlerGC += offDelta;
1929 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1930 pHandler->pvUserGC += offDelta;
1931 return 0;
1932}
1933
1934
1935/**
1936 * Callback function for relocating a virtual access handler.
1937 *
1938 * @returns 0 (continue enum)
1939 * @param pNode Pointer to a PGMVIRTHANDLER node.
1940 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1941 * not certain the delta will fit in a void pointer for all possible configs.
1942 */
1943static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1944{
1945 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1946 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1947 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1948 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1949 Assert(pHandler->pfnHandlerGC);
1950 pHandler->pfnHandlerGC += offDelta;
1951 return 0;
1952}
1953
1954
1955/**
1956 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1957 *
1958 * @returns 0 (continue enum)
1959 * @param pNode Pointer to a PGMVIRTHANDLER node.
1960 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1961 * not certain the delta will fit in a void pointer for all possible configs.
1962 */
1963static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1964{
1965 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1966 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1967 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1968 Assert(pHandler->pfnHandlerGC);
1969 pHandler->pfnHandlerGC += offDelta;
1970 return 0;
1971}
1972
1973
1974/**
1975 * The VM is being reset.
1976 *
1977 * For the PGM component this means that any PD write monitors
1978 * needs to be removed.
1979 *
1980 * @param pVM VM handle.
1981 */
1982PGMR3DECL(void) PGMR3Reset(PVM pVM)
1983{
1984 LogFlow(("PGMR3Reset:\n"));
1985 VM_ASSERT_EMT(pVM);
1986
1987 pgmLock(pVM);
1988
1989 /*
1990 * Unfix any fixed mappings and disable CR3 monitoring.
1991 */
1992 pVM->pgm.s.fMappingsFixed = false;
1993 pVM->pgm.s.GCPtrMappingFixed = 0;
1994 pVM->pgm.s.cbMappingFixed = 0;
1995
1996 /* Exit the guest paging mode before the pgm pool gets reset.
1997 * Important to clean up the amd64 case.
1998 */
1999 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2000 AssertRC(rc);
2001#ifdef DEBUG
2002 DBGFR3InfoLog(pVM, "mappings", NULL);
2003 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2004#endif
2005
2006 /*
2007 * Reset the shadow page pool.
2008 */
2009 pgmR3PoolReset(pVM);
2010
2011 /*
2012 * Re-init other members.
2013 */
2014 pVM->pgm.s.fA20Enabled = true;
2015
2016 /*
2017 * Clear the FFs PGM owns.
2018 */
2019 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2020 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2021
2022 /*
2023 * Reset (zero) RAM pages.
2024 */
2025 rc = pgmR3PhysRamReset(pVM);
2026 if (RT_SUCCESS(rc))
2027 {
2028#ifdef VBOX_WITH_NEW_PHYS_CODE
2029 /*
2030 * Reset (zero) shadow ROM pages.
2031 */
2032 rc = pgmR3PhysRomReset(pVM);
2033#endif
2034 if (RT_SUCCESS(rc))
2035 {
2036 /*
2037 * Switch mode back to real mode.
2038 */
2039 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2040 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2041 }
2042 }
2043
2044 pgmUnlock(pVM);
2045 //return rc;
2046 AssertReleaseRC(rc);
2047}
2048
2049
2050#ifdef VBOX_STRICT
2051/**
2052 * VM state change callback for clearing fNoMorePhysWrites after
2053 * a snapshot has been created.
2054 */
2055static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2056{
2057 if (enmState == VMSTATE_RUNNING)
2058 pVM->pgm.s.fNoMorePhysWrites = false;
2059}
2060#endif
2061
2062
2063/**
2064 * Terminates the PGM.
2065 *
2066 * @returns VBox status code.
2067 * @param pVM Pointer to VM structure.
2068 */
2069PGMR3DECL(int) PGMR3Term(PVM pVM)
2070{
2071 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2072}
2073
2074
2075/**
2076 * Execute state save operation.
2077 *
2078 * @returns VBox status code.
2079 * @param pVM VM Handle.
2080 * @param pSSM SSM operation handle.
2081 */
2082static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2083{
2084 PPGM pPGM = &pVM->pgm.s;
2085
2086 /* No more writes to physical memory after this point! */
2087 pVM->pgm.s.fNoMorePhysWrites = true;
2088
2089 /*
2090 * Save basic data (required / unaffected by relocation).
2091 */
2092#if 1
2093 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2094#else
2095 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2096#endif
2097 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2098 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2099 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2100 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2101 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2102 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2103 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2104 SSMR3PutU32(pSSM, ~0); /* Separator. */
2105
2106 /*
2107 * The guest mappings.
2108 */
2109 uint32_t i = 0;
2110 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2111 {
2112 SSMR3PutU32(pSSM, i);
2113 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2114 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2115 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2116 /* flags are done by the mapping owners! */
2117 }
2118 SSMR3PutU32(pSSM, ~0); /* terminator. */
2119
2120 /*
2121 * Ram range flags and bits.
2122 */
2123 i = 0;
2124 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2125 {
2126 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2127
2128 SSMR3PutU32(pSSM, i);
2129 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2130 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2131 SSMR3PutGCPhys(pSSM, pRam->cb);
2132 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
2133
2134 /* Flags. */
2135 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2136 for (unsigned iPage = 0; iPage < cPages; iPage++)
2137 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2138
2139 /* any memory associated with the range. */
2140 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2141 {
2142 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2143 {
2144 if (pRam->pavHCChunkHC[iChunk])
2145 {
2146 SSMR3PutU8(pSSM, 1); /* chunk present */
2147 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2148 }
2149 else
2150 SSMR3PutU8(pSSM, 0); /* no chunk present */
2151 }
2152 }
2153 else if (pRam->pvHC)
2154 {
2155 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
2156 if (VBOX_FAILURE(rc))
2157 {
2158 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2159 return rc;
2160 }
2161 }
2162 }
2163 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2164}
2165
2166
2167/**
2168 * Execute state load operation.
2169 *
2170 * @returns VBox status code.
2171 * @param pVM VM Handle.
2172 * @param pSSM SSM operation handle.
2173 * @param u32Version Data layout version.
2174 */
2175static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2176{
2177 /*
2178 * Validate version.
2179 */
2180 if (u32Version != PGM_SAVED_STATE_VERSION)
2181 {
2182 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2183 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2184 }
2185
2186 /*
2187 * Call the reset function to make sure all the memory is cleared.
2188 */
2189 PGMR3Reset(pVM);
2190
2191 /*
2192 * Load basic data (required / unaffected by relocation).
2193 */
2194 PPGM pPGM = &pVM->pgm.s;
2195#if 1
2196 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2197#else
2198 uint32_t u;
2199 SSMR3GetU32(pSSM, &u);
2200 pPGM->fMappingsFixed = u;
2201#endif
2202 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2203 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2204
2205 RTUINT cbRamSize;
2206 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2207 if (VBOX_FAILURE(rc))
2208 return rc;
2209 if (cbRamSize != pPGM->cbRamSize)
2210 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2211 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2212 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2213 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2214 RTUINT uGuestMode;
2215 SSMR3GetUInt(pSSM, &uGuestMode);
2216 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2217
2218 /* check separator. */
2219 uint32_t u32Sep;
2220 SSMR3GetU32(pSSM, &u32Sep);
2221 if (VBOX_FAILURE(rc))
2222 return rc;
2223 if (u32Sep != (uint32_t)~0)
2224 {
2225 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2226 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2227 }
2228
2229 /*
2230 * The guest mappings.
2231 */
2232 uint32_t i = 0;
2233 for (;; i++)
2234 {
2235 /* Check the seqence number / separator. */
2236 rc = SSMR3GetU32(pSSM, &u32Sep);
2237 if (VBOX_FAILURE(rc))
2238 return rc;
2239 if (u32Sep == ~0U)
2240 break;
2241 if (u32Sep != i)
2242 {
2243 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2244 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2245 }
2246
2247 /* get the mapping details. */
2248 char szDesc[256];
2249 szDesc[0] = '\0';
2250 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2251 if (VBOX_FAILURE(rc))
2252 return rc;
2253 RTGCPTR GCPtr;
2254 SSMR3GetGCPtr(pSSM, &GCPtr);
2255 RTGCUINTPTR cPTs;
2256 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2257 if (VBOX_FAILURE(rc))
2258 return rc;
2259
2260 /* find matching range. */
2261 PPGMMAPPING pMapping;
2262 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2263 if ( pMapping->cPTs == cPTs
2264 && !strcmp(pMapping->pszDesc, szDesc))
2265 break;
2266 if (!pMapping)
2267 {
2268 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2269 cPTs, szDesc, GCPtr));
2270 AssertFailed();
2271 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2272 }
2273
2274 /* relocate it. */
2275 if (pMapping->GCPtr != GCPtr)
2276 {
2277 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2278#if HC_ARCH_BITS == 64
2279LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2280#endif
2281 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2282 }
2283 else
2284 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2285 }
2286
2287 /*
2288 * Ram range flags and bits.
2289 */
2290 i = 0;
2291 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2292 {
2293 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2294 /* Check the seqence number / separator. */
2295 rc = SSMR3GetU32(pSSM, &u32Sep);
2296 if (VBOX_FAILURE(rc))
2297 return rc;
2298 if (u32Sep == ~0U)
2299 break;
2300 if (u32Sep != i)
2301 {
2302 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2303 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2304 }
2305
2306 /* Get the range details. */
2307 RTGCPHYS GCPhys;
2308 SSMR3GetGCPhys(pSSM, &GCPhys);
2309 RTGCPHYS GCPhysLast;
2310 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2311 RTGCPHYS cb;
2312 SSMR3GetGCPhys(pSSM, &cb);
2313 uint8_t fHaveBits;
2314 rc = SSMR3GetU8(pSSM, &fHaveBits);
2315 if (VBOX_FAILURE(rc))
2316 return rc;
2317 if (fHaveBits & ~1)
2318 {
2319 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2320 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2321 }
2322
2323 /* Match it up with the current range. */
2324 if ( GCPhys != pRam->GCPhys
2325 || GCPhysLast != pRam->GCPhysLast
2326 || cb != pRam->cb
2327 || fHaveBits != !!pRam->pvHC)
2328 {
2329 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2330 "State : %VGp-%VGp %VGp bytes %s\n",
2331 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2332 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2333 /*
2334 * If we're loading a state for debugging purpose, don't make a fuss if
2335 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2336 */
2337 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2338 || GCPhys < 8 * _1M)
2339 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2340
2341 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2342 while (cPages-- > 0)
2343 {
2344 uint16_t u16Ignore;
2345 SSMR3GetU16(pSSM, &u16Ignore);
2346 }
2347 continue;
2348 }
2349
2350 /* Flags. */
2351 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2352 for (unsigned iPage = 0; iPage < cPages; iPage++)
2353 {
2354 uint16_t u16 = 0;
2355 SSMR3GetU16(pSSM, &u16);
2356 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2357 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2358 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2359 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2360 }
2361
2362 /* any memory associated with the range. */
2363 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2364 {
2365 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2366 {
2367 uint8_t fValidChunk;
2368
2369 rc = SSMR3GetU8(pSSM, &fValidChunk);
2370 if (VBOX_FAILURE(rc))
2371 return rc;
2372 if (fValidChunk > 1)
2373 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2374
2375 if (fValidChunk)
2376 {
2377 if (!pRam->pavHCChunkHC[iChunk])
2378 {
2379 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2380 if (VBOX_FAILURE(rc))
2381 return rc;
2382 }
2383 Assert(pRam->pavHCChunkHC[iChunk]);
2384
2385 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2386 }
2387 /* else nothing to do */
2388 }
2389 }
2390 else if (pRam->pvHC)
2391 {
2392 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2393 if (VBOX_FAILURE(rc))
2394 {
2395 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2396 return rc;
2397 }
2398 }
2399 }
2400
2401 /*
2402 * We require a full resync now.
2403 */
2404 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2405 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2406 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2407 pPGM->fPhysCacheFlushPending = true;
2408 pgmR3HandlerPhysicalUpdateAll(pVM);
2409
2410 /*
2411 * Change the paging mode.
2412 */
2413 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2414
2415 /* Restore pVM->pgm.s.GCPhysCR3. */
2416 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2417 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2418 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2419 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2420 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2421 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2422 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2423 else
2424 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2425 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2426
2427 return rc;
2428}
2429
2430
2431/**
2432 * Show paging mode.
2433 *
2434 * @param pVM VM Handle.
2435 * @param pHlp The info helpers.
2436 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2437 */
2438static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2439{
2440 /* digest argument. */
2441 bool fGuest, fShadow, fHost;
2442 if (pszArgs)
2443 pszArgs = RTStrStripL(pszArgs);
2444 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2445 fShadow = fHost = fGuest = true;
2446 else
2447 {
2448 fShadow = fHost = fGuest = false;
2449 if (strstr(pszArgs, "guest"))
2450 fGuest = true;
2451 if (strstr(pszArgs, "shadow"))
2452 fShadow = true;
2453 if (strstr(pszArgs, "host"))
2454 fHost = true;
2455 }
2456
2457 /* print info. */
2458 if (fGuest)
2459 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2460 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2461 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2462 if (fShadow)
2463 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2464 if (fHost)
2465 {
2466 const char *psz;
2467 switch (pVM->pgm.s.enmHostMode)
2468 {
2469 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2470 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2471 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2472 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2473 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2474 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2475 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2476 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2477 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2478 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2479 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2480 default: psz = "unknown"; break;
2481 }
2482 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2483 }
2484}
2485
2486
2487/**
2488 * Dump registered MMIO ranges to the log.
2489 *
2490 * @param pVM VM Handle.
2491 * @param pHlp The info helpers.
2492 * @param pszArgs Arguments, ignored.
2493 */
2494static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2495{
2496 NOREF(pszArgs);
2497 pHlp->pfnPrintf(pHlp,
2498 "RAM ranges (pVM=%p)\n"
2499 "%.*s %.*s\n",
2500 pVM,
2501 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2502 sizeof(RTHCPTR) * 2, "pvHC ");
2503
2504 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2505 pHlp->pfnPrintf(pHlp,
2506 "%RGp-%RGp %RHv %s\n",
2507 pCur->GCPhys,
2508 pCur->GCPhysLast,
2509 pCur->pvHC,
2510 pCur->pszDesc);
2511}
2512
2513/**
2514 * Dump the page directory to the log.
2515 *
2516 * @param pVM VM Handle.
2517 * @param pHlp The info helpers.
2518 * @param pszArgs Arguments, ignored.
2519 */
2520static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2521{
2522/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2523 /* Big pages supported? */
2524 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2525
2526 /* Global pages supported? */
2527 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2528
2529 NOREF(pszArgs);
2530
2531 /*
2532 * Get page directory addresses.
2533 */
2534 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2535 Assert(pPDSrc);
2536 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2537
2538 /*
2539 * Iterate the page directory.
2540 */
2541 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2542 {
2543 X86PDE PdeSrc = pPDSrc->a[iPD];
2544 if (PdeSrc.n.u1Present)
2545 {
2546 if (PdeSrc.b.u1Size && fPSE)
2547 {
2548 pHlp->pfnPrintf(pHlp,
2549 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2550 iPD,
2551 PdeSrc.u & X86_PDE_PG_MASK,
2552 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2553 }
2554 else
2555 {
2556 pHlp->pfnPrintf(pHlp,
2557 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2558 iPD,
2559 PdeSrc.u & X86_PDE4M_PG_MASK,
2560 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2561 }
2562 }
2563 }
2564}
2565
2566
2567/**
2568 * Serivce a VMMCALLHOST_PGM_LOCK call.
2569 *
2570 * @returns VBox status code.
2571 * @param pVM The VM handle.
2572 */
2573PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2574{
2575 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2576 AssertRC(rc);
2577 return rc;
2578}
2579
2580
2581/**
2582 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2583 *
2584 * @returns PGM_TYPE_*.
2585 * @param pgmMode The mode value to convert.
2586 */
2587DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2588{
2589 switch (pgmMode)
2590 {
2591 case PGMMODE_REAL: return PGM_TYPE_REAL;
2592 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2593 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2594 case PGMMODE_PAE:
2595 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2596 case PGMMODE_AMD64:
2597 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2598 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2599 case PGMMODE_EPT: return PGM_TYPE_EPT;
2600 default:
2601 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2602 }
2603}
2604
2605
2606/**
2607 * Gets the index into the paging mode data array of a SHW+GST mode.
2608 *
2609 * @returns PGM::paPagingData index.
2610 * @param uShwType The shadow paging mode type.
2611 * @param uGstType The guest paging mode type.
2612 */
2613DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2614{
2615 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_NESTED);
2616 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2617 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2618 + (uGstType - PGM_TYPE_REAL);
2619}
2620
2621
2622/**
2623 * Gets the index into the paging mode data array of a SHW+GST mode.
2624 *
2625 * @returns PGM::paPagingData index.
2626 * @param enmShw The shadow paging mode.
2627 * @param enmGst The guest paging mode.
2628 */
2629DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2630{
2631 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2632 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2633 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2634}
2635
2636
2637/**
2638 * Calculates the max data index.
2639 * @returns The number of entries in the paging data array.
2640 */
2641DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2642{
2643 return pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64) + 1;
2644}
2645
2646
2647/**
2648 * Initializes the paging mode data kept in PGM::paModeData.
2649 *
2650 * @param pVM The VM handle.
2651 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2652 * This is used early in the init process to avoid trouble with PDM
2653 * not being initialized yet.
2654 */
2655static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2656{
2657 PPGMMODEDATA pModeData;
2658 int rc;
2659
2660 /*
2661 * Allocate the array on the first call.
2662 */
2663 if (!pVM->pgm.s.paModeData)
2664 {
2665 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2666 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2667 }
2668
2669 /*
2670 * Initialize the array entries.
2671 */
2672 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2673 pModeData->uShwType = PGM_TYPE_32BIT;
2674 pModeData->uGstType = PGM_TYPE_REAL;
2675 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2676 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2677 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2678
2679 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2680 pModeData->uShwType = PGM_TYPE_32BIT;
2681 pModeData->uGstType = PGM_TYPE_PROT;
2682 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2683 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2684 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685
2686 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2687 pModeData->uShwType = PGM_TYPE_32BIT;
2688 pModeData->uGstType = PGM_TYPE_32BIT;
2689 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2690 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2691 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2692
2693 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2694 pModeData->uShwType = PGM_TYPE_PAE;
2695 pModeData->uGstType = PGM_TYPE_REAL;
2696 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2697 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2698 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2699
2700 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2701 pModeData->uShwType = PGM_TYPE_PAE;
2702 pModeData->uGstType = PGM_TYPE_PROT;
2703 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2704 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2705 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2706
2707 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2708 pModeData->uShwType = PGM_TYPE_PAE;
2709 pModeData->uGstType = PGM_TYPE_32BIT;
2710 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2711 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2712 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2713
2714 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2715 pModeData->uShwType = PGM_TYPE_PAE;
2716 pModeData->uGstType = PGM_TYPE_PAE;
2717 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2718 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2719 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720
2721 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2722 pModeData->uShwType = PGM_TYPE_AMD64;
2723 pModeData->uGstType = PGM_TYPE_AMD64;
2724 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2725 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2726 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2727
2728 /* The nested paging mode. */
2729 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2730 pModeData->uShwType = PGM_TYPE_NESTED;
2731 pModeData->uGstType = PGM_TYPE_REAL;
2732 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734
2735 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2736 pModeData->uShwType = PGM_TYPE_NESTED;
2737 pModeData->uGstType = PGM_TYPE_PROT;
2738 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2739 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2740
2741 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2742 pModeData->uShwType = PGM_TYPE_NESTED;
2743 pModeData->uGstType = PGM_TYPE_32BIT;
2744 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2745 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746
2747 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2748 pModeData->uShwType = PGM_TYPE_NESTED;
2749 pModeData->uGstType = PGM_TYPE_PAE;
2750 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2752
2753 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2754 pModeData->uShwType = PGM_TYPE_NESTED;
2755 pModeData->uGstType = PGM_TYPE_AMD64;
2756 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758
2759 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2760 switch(pVM->pgm.s.enmHostMode)
2761 {
2762 case SUPPAGINGMODE_32_BIT:
2763 case SUPPAGINGMODE_32_BIT_GLOBAL:
2764 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2765 {
2766 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2767 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2768 }
2769 break;
2770
2771 case SUPPAGINGMODE_PAE:
2772 case SUPPAGINGMODE_PAE_NX:
2773 case SUPPAGINGMODE_PAE_GLOBAL:
2774 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2775 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2776 {
2777 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2778 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779 }
2780 break;
2781
2782 case SUPPAGINGMODE_AMD64:
2783 case SUPPAGINGMODE_AMD64_GLOBAL:
2784 case SUPPAGINGMODE_AMD64_NX:
2785 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2786 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2787 {
2788 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2789 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790 }
2791 break;
2792 default:
2793 AssertFailed();
2794 break;
2795 }
2796
2797#ifdef PGM_WITH_EPT
2798 /* Extended paging (EPT) / Intel VT-x */
2799 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2800 pModeData->uShwType = PGM_TYPE_EPT;
2801 pModeData->uGstType = PGM_TYPE_REAL;
2802 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805
2806 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2807 pModeData->uShwType = PGM_TYPE_EPT;
2808 pModeData->uGstType = PGM_TYPE_PROT;
2809 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2811 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812
2813 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2814 pModeData->uShwType = PGM_TYPE_EPT;
2815 pModeData->uGstType = PGM_TYPE_32BIT;
2816 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2817 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819
2820 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2821 pModeData->uShwType = PGM_TYPE_EPT;
2822 pModeData->uGstType = PGM_TYPE_PAE;
2823 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2826
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2828 pModeData->uShwType = PGM_TYPE_EPT;
2829 pModeData->uGstType = PGM_TYPE_AMD64;
2830 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2832 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833#endif /* PGM_WITH_EPT */
2834 return VINF_SUCCESS;
2835}
2836
2837
2838/**
2839 * Switch to different (or relocated in the relocate case) mode data.
2840 *
2841 * @param pVM The VM handle.
2842 * @param enmShw The the shadow paging mode.
2843 * @param enmGst The the guest paging mode.
2844 */
2845static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2846{
2847 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2848
2849 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2850 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2851
2852 /* shadow */
2853 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2854 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2855 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2856 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2857 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2858
2859 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2860 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2861
2862 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2863 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2864
2865
2866 /* guest */
2867 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2868 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2869 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2870 Assert(pVM->pgm.s.pfnR3GstGetPage);
2871 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2872 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2873 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2874 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2875 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2876 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2877 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2878 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2879 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2880 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2881
2882 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2883 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2884 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2885 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2886 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2887 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2888 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2889 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2890 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2891
2892 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2893 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2894 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2895 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2896 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2897 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2898 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2899 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2900 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2901
2902
2903 /* both */
2904 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2905 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2906 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2907 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2908 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2909 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2910 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2911 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2912#ifdef VBOX_STRICT
2913 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2914#endif
2915
2916 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2917 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2918 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2919 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2920 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2921 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2922#ifdef VBOX_STRICT
2923 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2924#endif
2925
2926 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2927 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2928 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2929 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2930 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2931 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2932#ifdef VBOX_STRICT
2933 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2934#endif
2935}
2936
2937
2938#ifdef DEBUG_bird
2939#include <stdlib.h> /* getenv() remove me! */
2940#endif
2941
2942/**
2943 * Calculates the shadow paging mode.
2944 *
2945 * @returns The shadow paging mode.
2946 * @param pVM VM handle.
2947 * @param enmGuestMode The guest mode.
2948 * @param enmHostMode The host mode.
2949 * @param enmShadowMode The current shadow mode.
2950 * @param penmSwitcher Where to store the switcher to use.
2951 * VMMSWITCHER_INVALID means no change.
2952 */
2953static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2954{
2955 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2956 switch (enmGuestMode)
2957 {
2958 /*
2959 * When switching to real or protected mode we don't change
2960 * anything since it's likely that we'll switch back pretty soon.
2961 *
2962 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2963 * and is supposed to determine which shadow paging and switcher to
2964 * use during init.
2965 */
2966 case PGMMODE_REAL:
2967 case PGMMODE_PROTECTED:
2968 if ( enmShadowMode != PGMMODE_INVALID
2969 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2970 break; /* (no change) */
2971
2972 switch (enmHostMode)
2973 {
2974 case SUPPAGINGMODE_32_BIT:
2975 case SUPPAGINGMODE_32_BIT_GLOBAL:
2976 enmShadowMode = PGMMODE_32_BIT;
2977 enmSwitcher = VMMSWITCHER_32_TO_32;
2978 break;
2979
2980 case SUPPAGINGMODE_PAE:
2981 case SUPPAGINGMODE_PAE_NX:
2982 case SUPPAGINGMODE_PAE_GLOBAL:
2983 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2984 enmShadowMode = PGMMODE_PAE;
2985 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2986#ifdef DEBUG_bird
2987if (getenv("VBOX_32BIT"))
2988{
2989 enmShadowMode = PGMMODE_32_BIT;
2990 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2991}
2992#endif
2993 break;
2994
2995 case SUPPAGINGMODE_AMD64:
2996 case SUPPAGINGMODE_AMD64_GLOBAL:
2997 case SUPPAGINGMODE_AMD64_NX:
2998 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2999 enmShadowMode = PGMMODE_PAE;
3000 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3001 break;
3002
3003 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3004 }
3005 break;
3006
3007 case PGMMODE_32_BIT:
3008 switch (enmHostMode)
3009 {
3010 case SUPPAGINGMODE_32_BIT:
3011 case SUPPAGINGMODE_32_BIT_GLOBAL:
3012 enmShadowMode = PGMMODE_32_BIT;
3013 enmSwitcher = VMMSWITCHER_32_TO_32;
3014 break;
3015
3016 case SUPPAGINGMODE_PAE:
3017 case SUPPAGINGMODE_PAE_NX:
3018 case SUPPAGINGMODE_PAE_GLOBAL:
3019 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3020 enmShadowMode = PGMMODE_PAE;
3021 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3022#ifdef DEBUG_bird
3023if (getenv("VBOX_32BIT"))
3024{
3025 enmShadowMode = PGMMODE_32_BIT;
3026 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3027}
3028#endif
3029 break;
3030
3031 case SUPPAGINGMODE_AMD64:
3032 case SUPPAGINGMODE_AMD64_GLOBAL:
3033 case SUPPAGINGMODE_AMD64_NX:
3034 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3035 enmShadowMode = PGMMODE_PAE;
3036 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3037 break;
3038
3039 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3040 }
3041 break;
3042
3043 case PGMMODE_PAE:
3044 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3045 switch (enmHostMode)
3046 {
3047 case SUPPAGINGMODE_32_BIT:
3048 case SUPPAGINGMODE_32_BIT_GLOBAL:
3049 enmShadowMode = PGMMODE_PAE;
3050 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3051 break;
3052
3053 case SUPPAGINGMODE_PAE:
3054 case SUPPAGINGMODE_PAE_NX:
3055 case SUPPAGINGMODE_PAE_GLOBAL:
3056 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3057 enmShadowMode = PGMMODE_PAE;
3058 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3059 break;
3060
3061 case SUPPAGINGMODE_AMD64:
3062 case SUPPAGINGMODE_AMD64_GLOBAL:
3063 case SUPPAGINGMODE_AMD64_NX:
3064 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3065 enmShadowMode = PGMMODE_PAE;
3066 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3067 break;
3068
3069 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3070 }
3071 break;
3072
3073 case PGMMODE_AMD64:
3074 case PGMMODE_AMD64_NX:
3075 switch (enmHostMode)
3076 {
3077 case SUPPAGINGMODE_32_BIT:
3078 case SUPPAGINGMODE_32_BIT_GLOBAL:
3079 enmShadowMode = PGMMODE_PAE;
3080 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3081 break;
3082
3083 case SUPPAGINGMODE_PAE:
3084 case SUPPAGINGMODE_PAE_NX:
3085 case SUPPAGINGMODE_PAE_GLOBAL:
3086 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3087 enmShadowMode = PGMMODE_PAE;
3088 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3089 break;
3090
3091 case SUPPAGINGMODE_AMD64:
3092 case SUPPAGINGMODE_AMD64_GLOBAL:
3093 case SUPPAGINGMODE_AMD64_NX:
3094 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3095 enmShadowMode = PGMMODE_AMD64;
3096 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3097 break;
3098
3099 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3100 }
3101 break;
3102
3103
3104 default:
3105 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3106 return PGMMODE_INVALID;
3107 }
3108 /* Override the shadow mode is nested paging is active. */
3109 if (HWACCMIsNestedPagingActive(pVM))
3110 enmShadowMode = HWACCMGetPagingMode(pVM);
3111
3112 *penmSwitcher = enmSwitcher;
3113 return enmShadowMode;
3114}
3115
3116/**
3117 * Performs the actual mode change.
3118 * This is called by PGMChangeMode and pgmR3InitPaging().
3119 *
3120 * @returns VBox status code.
3121 * @param pVM VM handle.
3122 * @param enmGuestMode The new guest mode. This is assumed to be different from
3123 * the current mode.
3124 */
3125PGMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3126{
3127 LogFlow(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3128 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3129
3130 /*
3131 * Calc the shadow mode and switcher.
3132 */
3133 VMMSWITCHER enmSwitcher;
3134 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3135 if (enmSwitcher != VMMSWITCHER_INVALID)
3136 {
3137 /*
3138 * Select new switcher.
3139 */
3140 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3141 if (VBOX_FAILURE(rc))
3142 {
3143 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3144 return rc;
3145 }
3146 }
3147
3148 /*
3149 * Exit old mode(s).
3150 */
3151 /* shadow */
3152 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3153 {
3154 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3155 if (PGM_SHW_PFN(Exit, pVM))
3156 {
3157 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3158 if (VBOX_FAILURE(rc))
3159 {
3160 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3161 return rc;
3162 }
3163 }
3164
3165 }
3166
3167 /* guest */
3168 if (PGM_GST_PFN(Exit, pVM))
3169 {
3170 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3171 if (VBOX_FAILURE(rc))
3172 {
3173 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3174 return rc;
3175 }
3176 }
3177
3178 /*
3179 * Load new paging mode data.
3180 */
3181 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3182
3183 /*
3184 * Enter new shadow mode (if changed).
3185 */
3186 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3187 {
3188 int rc;
3189 pVM->pgm.s.enmShadowMode = enmShadowMode;
3190 switch (enmShadowMode)
3191 {
3192 case PGMMODE_32_BIT:
3193 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3194 break;
3195 case PGMMODE_PAE:
3196 case PGMMODE_PAE_NX:
3197 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3198 break;
3199 case PGMMODE_AMD64:
3200 case PGMMODE_AMD64_NX:
3201 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3202 break;
3203 case PGMMODE_NESTED:
3204 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3205 break;
3206#ifdef PGM_WITH_EPT
3207 case PGMMODE_EPT:
3208 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3209 break;
3210#endif
3211 case PGMMODE_REAL:
3212 case PGMMODE_PROTECTED:
3213 default:
3214 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3215 return VERR_INTERNAL_ERROR;
3216 }
3217 if (VBOX_FAILURE(rc))
3218 {
3219 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3220 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3221 return rc;
3222 }
3223 }
3224
3225 /*
3226 * Enter the new guest and shadow+guest modes.
3227 */
3228 int rc = -1;
3229 int rc2 = -1;
3230 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3231 pVM->pgm.s.enmGuestMode = enmGuestMode;
3232 switch (enmGuestMode)
3233 {
3234 case PGMMODE_REAL:
3235 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3236 switch (pVM->pgm.s.enmShadowMode)
3237 {
3238 case PGMMODE_32_BIT:
3239 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3240 break;
3241 case PGMMODE_PAE:
3242 case PGMMODE_PAE_NX:
3243 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3244 break;
3245 case PGMMODE_NESTED:
3246 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3247 break;
3248#ifdef PGM_WITH_EPT
3249 case PGMMODE_EPT:
3250 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3251 break;
3252#endif
3253 case PGMMODE_AMD64:
3254 case PGMMODE_AMD64_NX:
3255 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3256 default: AssertFailed(); break;
3257 }
3258 break;
3259
3260 case PGMMODE_PROTECTED:
3261 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3262 switch (pVM->pgm.s.enmShadowMode)
3263 {
3264 case PGMMODE_32_BIT:
3265 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3266 break;
3267 case PGMMODE_PAE:
3268 case PGMMODE_PAE_NX:
3269 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3270 break;
3271 case PGMMODE_NESTED:
3272 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3273 break;
3274#ifdef PGM_WITH_EPT
3275 case PGMMODE_EPT:
3276 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3277 break;
3278#endif
3279 case PGMMODE_AMD64:
3280 case PGMMODE_AMD64_NX:
3281 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3282 default: AssertFailed(); break;
3283 }
3284 break;
3285
3286 case PGMMODE_32_BIT:
3287 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3288 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3289 switch (pVM->pgm.s.enmShadowMode)
3290 {
3291 case PGMMODE_32_BIT:
3292 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3293 break;
3294 case PGMMODE_PAE:
3295 case PGMMODE_PAE_NX:
3296 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3297 break;
3298 case PGMMODE_NESTED:
3299 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3300 break;
3301#ifdef PGM_WITH_EPT
3302 case PGMMODE_EPT:
3303 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3304 break;
3305#endif
3306 case PGMMODE_AMD64:
3307 case PGMMODE_AMD64_NX:
3308 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3309 default: AssertFailed(); break;
3310 }
3311 break;
3312
3313 case PGMMODE_PAE_NX: /* VT-x/AMD-V only */
3314 Assert(HWACCMIsEnabled(pVM));
3315 /* no break */
3316
3317 case PGMMODE_PAE:
3318 {
3319 uint32_t u32Dummy, u32Features;
3320
3321 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3322 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3323 {
3324 /* Pause first, then inform Main. */
3325 rc = VMR3SuspendNoSave(pVM);
3326 AssertRC(rc);
3327
3328 VMSetRuntimeError(pVM, true, "PAEmode",
3329 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage."));
3330 /* we must return TRUE here otherwise the recompiler will assert */
3331 return VINF_SUCCESS;
3332 }
3333 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3334 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3335 switch (pVM->pgm.s.enmShadowMode)
3336 {
3337 case PGMMODE_PAE:
3338 case PGMMODE_PAE_NX:
3339 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3340 break;
3341 case PGMMODE_NESTED:
3342 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3343 break;
3344#ifdef PGM_WITH_EPT
3345 case PGMMODE_EPT:
3346 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3347 break;
3348#endif
3349 case PGMMODE_32_BIT:
3350 case PGMMODE_AMD64:
3351 case PGMMODE_AMD64_NX:
3352 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3353 default: AssertFailed(); break;
3354 }
3355 break;
3356 }
3357
3358 case PGMMODE_AMD64_NX:
3359 case PGMMODE_AMD64:
3360 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3361 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3362 switch (pVM->pgm.s.enmShadowMode)
3363 {
3364 case PGMMODE_AMD64:
3365 case PGMMODE_AMD64_NX:
3366 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3367 break;
3368 case PGMMODE_NESTED:
3369 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3370 break;
3371#ifdef PGM_WITH_EPT
3372 case PGMMODE_EPT:
3373 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3374 break;
3375#endif
3376 case PGMMODE_32_BIT:
3377 case PGMMODE_PAE:
3378 case PGMMODE_PAE_NX:
3379 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3380 default: AssertFailed(); break;
3381 }
3382 break;
3383
3384 default:
3385 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3386 rc = VERR_NOT_IMPLEMENTED;
3387 break;
3388 }
3389
3390 /* status codes. */
3391 AssertRC(rc);
3392 AssertRC(rc2);
3393 if (VBOX_SUCCESS(rc))
3394 {
3395 rc = rc2;
3396 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3397 rc = VINF_SUCCESS;
3398 }
3399
3400 /*
3401 * Notify SELM so it can update the TSSes with correct CR3s.
3402 */
3403 SELMR3PagingModeChanged(pVM);
3404
3405 /* Notify HWACCM as well. */
3406 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3407 return rc;
3408}
3409
3410
3411/**
3412 * Dumps a PAE shadow page table.
3413 *
3414 * @returns VBox status code (VINF_SUCCESS).
3415 * @param pVM The VM handle.
3416 * @param pPT Pointer to the page table.
3417 * @param u64Address The virtual address of the page table starts.
3418 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3419 * @param cMaxDepth The maxium depth.
3420 * @param pHlp Pointer to the output functions.
3421 */
3422static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3423{
3424 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3425 {
3426 X86PTEPAE Pte = pPT->a[i];
3427 if (Pte.n.u1Present)
3428 {
3429 pHlp->pfnPrintf(pHlp,
3430 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3431 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3432 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3433 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3434 Pte.n.u1Write ? 'W' : 'R',
3435 Pte.n.u1User ? 'U' : 'S',
3436 Pte.n.u1Accessed ? 'A' : '-',
3437 Pte.n.u1Dirty ? 'D' : '-',
3438 Pte.n.u1Global ? 'G' : '-',
3439 Pte.n.u1WriteThru ? "WT" : "--",
3440 Pte.n.u1CacheDisable? "CD" : "--",
3441 Pte.n.u1PAT ? "AT" : "--",
3442 Pte.n.u1NoExecute ? "NX" : "--",
3443 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3444 Pte.u & RT_BIT(10) ? '1' : '0',
3445 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3446 Pte.u & X86_PTE_PAE_PG_MASK);
3447 }
3448 }
3449 return VINF_SUCCESS;
3450}
3451
3452
3453/**
3454 * Dumps a PAE shadow page directory table.
3455 *
3456 * @returns VBox status code (VINF_SUCCESS).
3457 * @param pVM The VM handle.
3458 * @param HCPhys The physical address of the page directory table.
3459 * @param u64Address The virtual address of the page table starts.
3460 * @param cr4 The CR4, PSE is currently used.
3461 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3462 * @param cMaxDepth The maxium depth.
3463 * @param pHlp Pointer to the output functions.
3464 */
3465static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3466{
3467 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3468 if (!pPD)
3469 {
3470 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3471 fLongMode ? 16 : 8, u64Address, HCPhys);
3472 return VERR_INVALID_PARAMETER;
3473 }
3474 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3475
3476 int rc = VINF_SUCCESS;
3477 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3478 {
3479 X86PDEPAE Pde = pPD->a[i];
3480 if (Pde.n.u1Present)
3481 {
3482 if (fBigPagesSupported && Pde.b.u1Size)
3483 pHlp->pfnPrintf(pHlp,
3484 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3485 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3486 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3487 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3488 Pde.b.u1Write ? 'W' : 'R',
3489 Pde.b.u1User ? 'U' : 'S',
3490 Pde.b.u1Accessed ? 'A' : '-',
3491 Pde.b.u1Dirty ? 'D' : '-',
3492 Pde.b.u1Global ? 'G' : '-',
3493 Pde.b.u1WriteThru ? "WT" : "--",
3494 Pde.b.u1CacheDisable? "CD" : "--",
3495 Pde.b.u1PAT ? "AT" : "--",
3496 Pde.b.u1NoExecute ? "NX" : "--",
3497 Pde.u & RT_BIT_64(9) ? '1' : '0',
3498 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3499 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3500 Pde.u & X86_PDE_PAE_PG_MASK);
3501 else
3502 {
3503 pHlp->pfnPrintf(pHlp,
3504 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3505 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3506 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3507 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3508 Pde.n.u1Write ? 'W' : 'R',
3509 Pde.n.u1User ? 'U' : 'S',
3510 Pde.n.u1Accessed ? 'A' : '-',
3511 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3512 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3513 Pde.n.u1WriteThru ? "WT" : "--",
3514 Pde.n.u1CacheDisable? "CD" : "--",
3515 Pde.n.u1NoExecute ? "NX" : "--",
3516 Pde.u & RT_BIT_64(9) ? '1' : '0',
3517 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3518 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3519 Pde.u & X86_PDE_PAE_PG_MASK);
3520 if (cMaxDepth >= 1)
3521 {
3522 /** @todo what about using the page pool for mapping PTs? */
3523 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3524 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3525 PX86PTPAE pPT = NULL;
3526 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3527 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3528 else
3529 {
3530 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3531 {
3532 uint64_t off = u64AddressPT - pMap->GCPtr;
3533 if (off < pMap->cb)
3534 {
3535 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3536 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3537 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3538 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3539 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3540 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3541 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3542 }
3543 }
3544 }
3545 int rc2 = VERR_INVALID_PARAMETER;
3546 if (pPT)
3547 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3548 else
3549 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3550 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3551 if (rc2 < rc && VBOX_SUCCESS(rc))
3552 rc = rc2;
3553 }
3554 }
3555 }
3556 }
3557 return rc;
3558}
3559
3560
3561/**
3562 * Dumps a PAE shadow page directory pointer table.
3563 *
3564 * @returns VBox status code (VINF_SUCCESS).
3565 * @param pVM The VM handle.
3566 * @param HCPhys The physical address of the page directory pointer table.
3567 * @param u64Address The virtual address of the page table starts.
3568 * @param cr4 The CR4, PSE is currently used.
3569 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3570 * @param cMaxDepth The maxium depth.
3571 * @param pHlp Pointer to the output functions.
3572 */
3573static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3574{
3575 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3576 if (!pPDPT)
3577 {
3578 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3579 fLongMode ? 16 : 8, u64Address, HCPhys);
3580 return VERR_INVALID_PARAMETER;
3581 }
3582
3583 int rc = VINF_SUCCESS;
3584 const unsigned c = fLongMode ? ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3585 for (unsigned i = 0; i < c; i++)
3586 {
3587 X86PDPE Pdpe = pPDPT->a[i];
3588 if (Pdpe.n.u1Present)
3589 {
3590 if (fLongMode)
3591 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3592 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3593 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3594 Pdpe.lm.u1Write ? 'W' : 'R',
3595 Pdpe.lm.u1User ? 'U' : 'S',
3596 Pdpe.lm.u1Accessed ? 'A' : '-',
3597 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3598 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3599 Pdpe.lm.u1WriteThru ? "WT" : "--",
3600 Pdpe.lm.u1CacheDisable? "CD" : "--",
3601 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3602 Pdpe.lm.u1NoExecute ? "NX" : "--",
3603 Pdpe.u & RT_BIT(9) ? '1' : '0',
3604 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3605 Pdpe.u & RT_BIT(11) ? '1' : '0',
3606 Pdpe.u & X86_PDPE_PG_MASK);
3607 else
3608 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3609 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3610 i << X86_PDPT_SHIFT,
3611 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3612 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3613 Pdpe.n.u1WriteThru ? "WT" : "--",
3614 Pdpe.n.u1CacheDisable? "CD" : "--",
3615 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3616 Pdpe.u & RT_BIT(9) ? '1' : '0',
3617 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3618 Pdpe.u & RT_BIT(11) ? '1' : '0',
3619 Pdpe.u & X86_PDPE_PG_MASK);
3620 if (cMaxDepth >= 1)
3621 {
3622 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3623 cr4, fLongMode, cMaxDepth - 1, pHlp);
3624 if (rc2 < rc && VBOX_SUCCESS(rc))
3625 rc = rc2;
3626 }
3627 }
3628 }
3629 return rc;
3630}
3631
3632
3633/**
3634 * Dumps a 32-bit shadow page table.
3635 *
3636 * @returns VBox status code (VINF_SUCCESS).
3637 * @param pVM The VM handle.
3638 * @param HCPhys The physical address of the table.
3639 * @param cr4 The CR4, PSE is currently used.
3640 * @param cMaxDepth The maxium depth.
3641 * @param pHlp Pointer to the output functions.
3642 */
3643static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3644{
3645 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3646 if (!pPML4)
3647 {
3648 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3649 return VERR_INVALID_PARAMETER;
3650 }
3651
3652 int rc = VINF_SUCCESS;
3653 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3654 {
3655 X86PML4E Pml4e = pPML4->a[i];
3656 if (Pml4e.n.u1Present)
3657 {
3658 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3659 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3660 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3661 u64Address,
3662 Pml4e.n.u1Write ? 'W' : 'R',
3663 Pml4e.n.u1User ? 'U' : 'S',
3664 Pml4e.n.u1Accessed ? 'A' : '-',
3665 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3666 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3667 Pml4e.n.u1WriteThru ? "WT" : "--",
3668 Pml4e.n.u1CacheDisable? "CD" : "--",
3669 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3670 Pml4e.n.u1NoExecute ? "NX" : "--",
3671 Pml4e.u & RT_BIT(9) ? '1' : '0',
3672 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3673 Pml4e.u & RT_BIT(11) ? '1' : '0',
3674 Pml4e.u & X86_PML4E_PG_MASK);
3675
3676 if (cMaxDepth >= 1)
3677 {
3678 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3679 if (rc2 < rc && VBOX_SUCCESS(rc))
3680 rc = rc2;
3681 }
3682 }
3683 }
3684 return rc;
3685}
3686
3687
3688/**
3689 * Dumps a 32-bit shadow page table.
3690 *
3691 * @returns VBox status code (VINF_SUCCESS).
3692 * @param pVM The VM handle.
3693 * @param pPT Pointer to the page table.
3694 * @param u32Address The virtual address this table starts at.
3695 * @param pHlp Pointer to the output functions.
3696 */
3697int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3698{
3699 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3700 {
3701 X86PTE Pte = pPT->a[i];
3702 if (Pte.n.u1Present)
3703 {
3704 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3705 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3706 u32Address + (i << X86_PT_SHIFT),
3707 Pte.n.u1Write ? 'W' : 'R',
3708 Pte.n.u1User ? 'U' : 'S',
3709 Pte.n.u1Accessed ? 'A' : '-',
3710 Pte.n.u1Dirty ? 'D' : '-',
3711 Pte.n.u1Global ? 'G' : '-',
3712 Pte.n.u1WriteThru ? "WT" : "--",
3713 Pte.n.u1CacheDisable? "CD" : "--",
3714 Pte.n.u1PAT ? "AT" : "--",
3715 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3716 Pte.u & RT_BIT(10) ? '1' : '0',
3717 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3718 Pte.u & X86_PDE_PG_MASK);
3719 }
3720 }
3721 return VINF_SUCCESS;
3722}
3723
3724
3725/**
3726 * Dumps a 32-bit shadow page directory and page tables.
3727 *
3728 * @returns VBox status code (VINF_SUCCESS).
3729 * @param pVM The VM handle.
3730 * @param cr3 The root of the hierarchy.
3731 * @param cr4 The CR4, PSE is currently used.
3732 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3733 * @param pHlp Pointer to the output functions.
3734 */
3735int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3736{
3737 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3738 if (!pPD)
3739 {
3740 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3741 return VERR_INVALID_PARAMETER;
3742 }
3743
3744 int rc = VINF_SUCCESS;
3745 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3746 {
3747 X86PDE Pde = pPD->a[i];
3748 if (Pde.n.u1Present)
3749 {
3750 const uint32_t u32Address = i << X86_PD_SHIFT;
3751 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3752 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3753 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3754 u32Address,
3755 Pde.b.u1Write ? 'W' : 'R',
3756 Pde.b.u1User ? 'U' : 'S',
3757 Pde.b.u1Accessed ? 'A' : '-',
3758 Pde.b.u1Dirty ? 'D' : '-',
3759 Pde.b.u1Global ? 'G' : '-',
3760 Pde.b.u1WriteThru ? "WT" : "--",
3761 Pde.b.u1CacheDisable? "CD" : "--",
3762 Pde.b.u1PAT ? "AT" : "--",
3763 Pde.u & RT_BIT_64(9) ? '1' : '0',
3764 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3765 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3766 Pde.u & X86_PDE4M_PG_MASK);
3767 else
3768 {
3769 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3770 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3771 u32Address,
3772 Pde.n.u1Write ? 'W' : 'R',
3773 Pde.n.u1User ? 'U' : 'S',
3774 Pde.n.u1Accessed ? 'A' : '-',
3775 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3776 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3777 Pde.n.u1WriteThru ? "WT" : "--",
3778 Pde.n.u1CacheDisable? "CD" : "--",
3779 Pde.u & RT_BIT_64(9) ? '1' : '0',
3780 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3781 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3782 Pde.u & X86_PDE_PG_MASK);
3783 if (cMaxDepth >= 1)
3784 {
3785 /** @todo what about using the page pool for mapping PTs? */
3786 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3787 PX86PT pPT = NULL;
3788 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3789 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3790 else
3791 {
3792 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3793 if (u32Address - pMap->GCPtr < pMap->cb)
3794 {
3795 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3796 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3797 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3798 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3799 pPT = pMap->aPTs[iPDE].pPTR3;
3800 }
3801 }
3802 int rc2 = VERR_INVALID_PARAMETER;
3803 if (pPT)
3804 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3805 else
3806 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3807 if (rc2 < rc && VBOX_SUCCESS(rc))
3808 rc = rc2;
3809 }
3810 }
3811 }
3812 }
3813
3814 return rc;
3815}
3816
3817
3818/**
3819 * Dumps a 32-bit shadow page table.
3820 *
3821 * @returns VBox status code (VINF_SUCCESS).
3822 * @param pVM The VM handle.
3823 * @param pPT Pointer to the page table.
3824 * @param u32Address The virtual address this table starts at.
3825 * @param PhysSearch Address to search for.
3826 */
3827int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3828{
3829 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3830 {
3831 X86PTE Pte = pPT->a[i];
3832 if (Pte.n.u1Present)
3833 {
3834 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3835 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3836 u32Address + (i << X86_PT_SHIFT),
3837 Pte.n.u1Write ? 'W' : 'R',
3838 Pte.n.u1User ? 'U' : 'S',
3839 Pte.n.u1Accessed ? 'A' : '-',
3840 Pte.n.u1Dirty ? 'D' : '-',
3841 Pte.n.u1Global ? 'G' : '-',
3842 Pte.n.u1WriteThru ? "WT" : "--",
3843 Pte.n.u1CacheDisable? "CD" : "--",
3844 Pte.n.u1PAT ? "AT" : "--",
3845 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3846 Pte.u & RT_BIT(10) ? '1' : '0',
3847 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3848 Pte.u & X86_PDE_PG_MASK));
3849
3850 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3851 {
3852 uint64_t fPageShw = 0;
3853 RTHCPHYS pPhysHC = 0;
3854
3855 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3856 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3857 }
3858 }
3859 }
3860 return VINF_SUCCESS;
3861}
3862
3863
3864/**
3865 * Dumps a 32-bit guest page directory and page tables.
3866 *
3867 * @returns VBox status code (VINF_SUCCESS).
3868 * @param pVM The VM handle.
3869 * @param cr3 The root of the hierarchy.
3870 * @param cr4 The CR4, PSE is currently used.
3871 * @param PhysSearch Address to search for.
3872 */
3873PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3874{
3875 bool fLongMode = false;
3876 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3877 PX86PD pPD = 0;
3878
3879 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3880 if (VBOX_FAILURE(rc) || !pPD)
3881 {
3882 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3883 return VERR_INVALID_PARAMETER;
3884 }
3885
3886 Log(("cr3=%08x cr4=%08x%s\n"
3887 "%-*s P - Present\n"
3888 "%-*s | R/W - Read (0) / Write (1)\n"
3889 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3890 "%-*s | | | A - Accessed\n"
3891 "%-*s | | | | D - Dirty\n"
3892 "%-*s | | | | | G - Global\n"
3893 "%-*s | | | | | | WT - Write thru\n"
3894 "%-*s | | | | | | | CD - Cache disable\n"
3895 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3896 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3897 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3898 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3899 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3900 "%-*s Level | | | | | | | | | | | | Page\n"
3901 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3902 - W U - - - -- -- -- -- -- 010 */
3903 , cr3, cr4, fLongMode ? " Long Mode" : "",
3904 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3905 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3906
3907 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3908 {
3909 X86PDE Pde = pPD->a[i];
3910 if (Pde.n.u1Present)
3911 {
3912 const uint32_t u32Address = i << X86_PD_SHIFT;
3913
3914 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3915 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3916 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3917 u32Address,
3918 Pde.b.u1Write ? 'W' : 'R',
3919 Pde.b.u1User ? 'U' : 'S',
3920 Pde.b.u1Accessed ? 'A' : '-',
3921 Pde.b.u1Dirty ? 'D' : '-',
3922 Pde.b.u1Global ? 'G' : '-',
3923 Pde.b.u1WriteThru ? "WT" : "--",
3924 Pde.b.u1CacheDisable? "CD" : "--",
3925 Pde.b.u1PAT ? "AT" : "--",
3926 Pde.u & RT_BIT(9) ? '1' : '0',
3927 Pde.u & RT_BIT(10) ? '1' : '0',
3928 Pde.u & RT_BIT(11) ? '1' : '0',
3929 Pde.u & X86_PDE4M_PG_MASK));
3930 /** @todo PhysSearch */
3931 else
3932 {
3933 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3934 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3935 u32Address,
3936 Pde.n.u1Write ? 'W' : 'R',
3937 Pde.n.u1User ? 'U' : 'S',
3938 Pde.n.u1Accessed ? 'A' : '-',
3939 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3940 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3941 Pde.n.u1WriteThru ? "WT" : "--",
3942 Pde.n.u1CacheDisable? "CD" : "--",
3943 Pde.u & RT_BIT(9) ? '1' : '0',
3944 Pde.u & RT_BIT(10) ? '1' : '0',
3945 Pde.u & RT_BIT(11) ? '1' : '0',
3946 Pde.u & X86_PDE_PG_MASK));
3947 ////if (cMaxDepth >= 1)
3948 {
3949 /** @todo what about using the page pool for mapping PTs? */
3950 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3951 PX86PT pPT = NULL;
3952
3953 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3954
3955 int rc2 = VERR_INVALID_PARAMETER;
3956 if (pPT)
3957 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3958 else
3959 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3960 if (rc2 < rc && VBOX_SUCCESS(rc))
3961 rc = rc2;
3962 }
3963 }
3964 }
3965 }
3966
3967 return rc;
3968}
3969
3970
3971/**
3972 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3973 *
3974 * @returns VBox status code (VINF_SUCCESS).
3975 * @param pVM The VM handle.
3976 * @param cr3 The root of the hierarchy.
3977 * @param cr4 The cr4, only PAE and PSE is currently used.
3978 * @param fLongMode Set if long mode, false if not long mode.
3979 * @param cMaxDepth Number of levels to dump.
3980 * @param pHlp Pointer to the output functions.
3981 */
3982PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3983{
3984 if (!pHlp)
3985 pHlp = DBGFR3InfoLogHlp();
3986 if (!cMaxDepth)
3987 return VINF_SUCCESS;
3988 const unsigned cch = fLongMode ? 16 : 8;
3989 pHlp->pfnPrintf(pHlp,
3990 "cr3=%08x cr4=%08x%s\n"
3991 "%-*s P - Present\n"
3992 "%-*s | R/W - Read (0) / Write (1)\n"
3993 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3994 "%-*s | | | A - Accessed\n"
3995 "%-*s | | | | D - Dirty\n"
3996 "%-*s | | | | | G - Global\n"
3997 "%-*s | | | | | | WT - Write thru\n"
3998 "%-*s | | | | | | | CD - Cache disable\n"
3999 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4000 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4001 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4002 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4003 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4004 "%-*s Level | | | | | | | | | | | | Page\n"
4005 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4006 - W U - - - -- -- -- -- -- 010 */
4007 , cr3, cr4, fLongMode ? " Long Mode" : "",
4008 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4009 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4010 if (cr4 & X86_CR4_PAE)
4011 {
4012 if (fLongMode)
4013 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4014 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4015 }
4016 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4017}
4018
4019
4020
4021#ifdef VBOX_WITH_DEBUGGER
4022/**
4023 * The '.pgmram' command.
4024 *
4025 * @returns VBox status.
4026 * @param pCmd Pointer to the command descriptor (as registered).
4027 * @param pCmdHlp Pointer to command helper functions.
4028 * @param pVM Pointer to the current VM (if any).
4029 * @param paArgs Pointer to (readonly) array of arguments.
4030 * @param cArgs Number of arguments in the array.
4031 */
4032static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4033{
4034 /*
4035 * Validate input.
4036 */
4037 if (!pVM)
4038 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4039 if (!pVM->pgm.s.pRamRangesGC)
4040 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4041
4042 /*
4043 * Dump the ranges.
4044 */
4045 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4046 PPGMRAMRANGE pRam;
4047 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4048 {
4049 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4050 "%VGp - %VGp %p\n",
4051 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
4052 if (VBOX_FAILURE(rc))
4053 return rc;
4054 }
4055
4056 return VINF_SUCCESS;
4057}
4058
4059
4060/**
4061 * The '.pgmmap' command.
4062 *
4063 * @returns VBox status.
4064 * @param pCmd Pointer to the command descriptor (as registered).
4065 * @param pCmdHlp Pointer to command helper functions.
4066 * @param pVM Pointer to the current VM (if any).
4067 * @param paArgs Pointer to (readonly) array of arguments.
4068 * @param cArgs Number of arguments in the array.
4069 */
4070static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4071{
4072 /*
4073 * Validate input.
4074 */
4075 if (!pVM)
4076 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4077 if (!pVM->pgm.s.pMappingsR3)
4078 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4079
4080 /*
4081 * Print message about the fixedness of the mappings.
4082 */
4083 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4084 if (VBOX_FAILURE(rc))
4085 return rc;
4086
4087 /*
4088 * Dump the ranges.
4089 */
4090 PPGMMAPPING pCur;
4091 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4092 {
4093 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4094 "%08x - %08x %s\n",
4095 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4096 if (VBOX_FAILURE(rc))
4097 return rc;
4098 }
4099
4100 return VINF_SUCCESS;
4101}
4102
4103
4104/**
4105 * The '.pgmsync' command.
4106 *
4107 * @returns VBox status.
4108 * @param pCmd Pointer to the command descriptor (as registered).
4109 * @param pCmdHlp Pointer to command helper functions.
4110 * @param pVM Pointer to the current VM (if any).
4111 * @param paArgs Pointer to (readonly) array of arguments.
4112 * @param cArgs Number of arguments in the array.
4113 */
4114static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4115{
4116 /*
4117 * Validate input.
4118 */
4119 if (!pVM)
4120 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4121
4122 /*
4123 * Force page directory sync.
4124 */
4125 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4126
4127 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4128 if (VBOX_FAILURE(rc))
4129 return rc;
4130
4131 return VINF_SUCCESS;
4132}
4133
4134
4135#ifdef VBOX_STRICT
4136/**
4137 * The '.pgmassertcr3' command.
4138 *
4139 * @returns VBox status.
4140 * @param pCmd Pointer to the command descriptor (as registered).
4141 * @param pCmdHlp Pointer to command helper functions.
4142 * @param pVM Pointer to the current VM (if any).
4143 * @param paArgs Pointer to (readonly) array of arguments.
4144 * @param cArgs Number of arguments in the array.
4145 */
4146static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4147{
4148 /*
4149 * Validate input.
4150 */
4151 if (!pVM)
4152 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4153
4154 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4155 if (VBOX_FAILURE(rc))
4156 return rc;
4157
4158 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4159
4160 return VINF_SUCCESS;
4161}
4162#endif
4163
4164/**
4165 * The '.pgmsyncalways' command.
4166 *
4167 * @returns VBox status.
4168 * @param pCmd Pointer to the command descriptor (as registered).
4169 * @param pCmdHlp Pointer to command helper functions.
4170 * @param pVM Pointer to the current VM (if any).
4171 * @param paArgs Pointer to (readonly) array of arguments.
4172 * @param cArgs Number of arguments in the array.
4173 */
4174static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4175{
4176 /*
4177 * Validate input.
4178 */
4179 if (!pVM)
4180 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4181
4182 /*
4183 * Force page directory sync.
4184 */
4185 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4186 {
4187 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4188 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4189 }
4190 else
4191 {
4192 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4193 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4194 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4195 }
4196}
4197
4198#endif
4199
4200/**
4201 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4202 */
4203typedef struct PGMCHECKINTARGS
4204{
4205 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4206 PPGMPHYSHANDLER pPrevPhys;
4207 PPGMVIRTHANDLER pPrevVirt;
4208 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4209 PVM pVM;
4210} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4211
4212/**
4213 * Validate a node in the physical handler tree.
4214 *
4215 * @returns 0 on if ok, other wise 1.
4216 * @param pNode The handler node.
4217 * @param pvUser pVM.
4218 */
4219static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4220{
4221 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4222 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4223 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4224 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4225 AssertReleaseMsg( !pArgs->pPrevPhys
4226 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4227 ("pPrevPhys=%p %VGp-%VGp %s\n"
4228 " pCur=%p %VGp-%VGp %s\n",
4229 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4230 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4231 pArgs->pPrevPhys = pCur;
4232 return 0;
4233}
4234
4235
4236/**
4237 * Validate a node in the virtual handler tree.
4238 *
4239 * @returns 0 on if ok, other wise 1.
4240 * @param pNode The handler node.
4241 * @param pvUser pVM.
4242 */
4243static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4244{
4245 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4246 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4247 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4248 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4249 AssertReleaseMsg( !pArgs->pPrevVirt
4250 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4251 ("pPrevVirt=%p %VGv-%VGv %s\n"
4252 " pCur=%p %VGv-%VGv %s\n",
4253 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4254 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4255 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4256 {
4257 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4258 ("pCur=%p %VGv-%VGv %s\n"
4259 "iPage=%d offVirtHandle=%#x expected %#x\n",
4260 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4261 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4262 }
4263 pArgs->pPrevVirt = pCur;
4264 return 0;
4265}
4266
4267
4268/**
4269 * Validate a node in the virtual handler tree.
4270 *
4271 * @returns 0 on if ok, other wise 1.
4272 * @param pNode The handler node.
4273 * @param pvUser pVM.
4274 */
4275static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4276{
4277 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4278 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4279 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4280 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4281 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4282 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4283 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4284 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4285 " pCur=%p %VGp-%VGp\n",
4286 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4287 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4288 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4289 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4290 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4291 " pCur=%p %VGp-%VGp\n",
4292 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4293 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4294 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4295 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4296 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4297 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4298 {
4299 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4300 for (;;)
4301 {
4302 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4303 AssertReleaseMsg(pCur2 != pCur,
4304 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4305 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4306 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4307 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4308 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4309 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4310 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4311 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4312 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4313 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4314 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4315 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4316 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4317 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4318 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4319 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4320 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4321 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4322 break;
4323 }
4324 }
4325
4326 pArgs->pPrevPhys2Virt = pCur;
4327 return 0;
4328}
4329
4330
4331/**
4332 * Perform an integrity check on the PGM component.
4333 *
4334 * @returns VINF_SUCCESS if everything is fine.
4335 * @returns VBox error status after asserting on integrity breach.
4336 * @param pVM The VM handle.
4337 */
4338PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4339{
4340 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4341
4342 /*
4343 * Check the trees.
4344 */
4345 int cErrors = 0;
4346 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4347 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4348 PGMCHECKINTARGS Args = s_LeftToRight;
4349 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4350 Args = s_RightToLeft;
4351 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4352 Args = s_LeftToRight;
4353 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4354 Args = s_RightToLeft;
4355 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4356 Args = s_LeftToRight;
4357 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4358 Args = s_RightToLeft;
4359 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4360 Args = s_LeftToRight;
4361 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4362 Args = s_RightToLeft;
4363 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4364
4365 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4366}
4367
4368
4369/**
4370 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4371 *
4372 * @returns VBox status code.
4373 * @param pVM VM handle.
4374 * @param fEnable Enable or disable shadow mappings
4375 */
4376PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4377{
4378 pVM->pgm.s.fDisableMappings = !fEnable;
4379
4380 uint32_t cb;
4381 int rc = PGMR3MappingsSize(pVM, &cb);
4382 AssertRCReturn(rc, rc);
4383
4384 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4385 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4386 AssertRCReturn(rc, rc);
4387
4388 return VINF_SUCCESS;
4389}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette