VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 13071

Last change on this file since 13071 was 13067, checked in by vboxsync, 16 years ago

#1865: More PGM changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 197.9 KB
Line 
1/* $Id: PGM.cpp 13067 2008-10-08 10:11:24Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608
609/*******************************************************************************
610* Internal Functions *
611*******************************************************************************/
612static int pgmR3InitPaging(PVM pVM);
613static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
615static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
616static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
617static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
618static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
619#ifdef VBOX_STRICT
620static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
621#endif
622static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
623static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
624static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
625static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
626static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
627
628#ifdef VBOX_WITH_STATISTICS
629static void pgmR3InitStats(PVM pVM);
630#endif
631
632#ifdef VBOX_WITH_DEBUGGER
633/** @todo all but the two last commands must be converted to 'info'. */
634static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638# ifdef VBOX_STRICT
639static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# endif
641#endif
642
643
644/*******************************************************************************
645* Global Variables *
646*******************************************************************************/
647#ifdef VBOX_WITH_DEBUGGER
648/** Command descriptors. */
649static const DBGCCMD g_aCmds[] =
650{
651 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
652 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
653 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
654 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
655#ifdef VBOX_STRICT
656 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
657#endif
658 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
659};
660#endif
661
662
663
664
665/*
666 * Shadow - 32-bit mode
667 */
668#define PGM_SHW_TYPE PGM_TYPE_32BIT
669#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
670#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
671#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
672#include "PGMShw.h"
673
674/* Guest - real mode */
675#define PGM_GST_TYPE PGM_TYPE_REAL
676#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
677#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
678#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
679#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
680#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
681#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
682#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
683#include "PGMGst.h"
684#include "PGMBth.h"
685#undef BTH_PGMPOOLKIND_PT_FOR_PT
686#undef PGM_BTH_NAME
687#undef PGM_BTH_NAME_RC_STR
688#undef PGM_BTH_NAME_R0_STR
689#undef PGM_GST_TYPE
690#undef PGM_GST_NAME
691#undef PGM_GST_NAME_RC_STR
692#undef PGM_GST_NAME_R0_STR
693
694/* Guest - protected mode */
695#define PGM_GST_TYPE PGM_TYPE_PROT
696#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
697#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
698#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
699#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
700#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
701#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
702#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
703#include "PGMGst.h"
704#include "PGMBth.h"
705#undef BTH_PGMPOOLKIND_PT_FOR_PT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - 32-bit mode */
715#define PGM_GST_TYPE PGM_TYPE_32BIT
716#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
723#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
724#include "PGMGst.h"
725#include "PGMBth.h"
726#undef BTH_PGMPOOLKIND_PT_FOR_BIG
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef PGM_BTH_NAME
729#undef PGM_BTH_NAME_RC_STR
730#undef PGM_BTH_NAME_R0_STR
731#undef PGM_GST_TYPE
732#undef PGM_GST_NAME
733#undef PGM_GST_NAME_RC_STR
734#undef PGM_GST_NAME_R0_STR
735
736#undef PGM_SHW_TYPE
737#undef PGM_SHW_NAME
738#undef PGM_SHW_NAME_RC_STR
739#undef PGM_SHW_NAME_R0_STR
740
741
742/*
743 * Shadow - PAE mode
744 */
745#define PGM_SHW_TYPE PGM_TYPE_PAE
746#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
747#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
748#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
750#include "PGMShw.h"
751
752/* Guest - real mode */
753#define PGM_GST_TYPE PGM_TYPE_REAL
754#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
755#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
756#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
757#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
758#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
759#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
760#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
761#include "PGMBth.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_PT
763#undef PGM_BTH_NAME
764#undef PGM_BTH_NAME_RC_STR
765#undef PGM_BTH_NAME_R0_STR
766#undef PGM_GST_TYPE
767#undef PGM_GST_NAME
768#undef PGM_GST_NAME_RC_STR
769#undef PGM_GST_NAME_R0_STR
770
771/* Guest - protected mode */
772#define PGM_GST_TYPE PGM_TYPE_PROT
773#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
774#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
775#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
776#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
777#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
778#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
779#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
780#include "PGMBth.h"
781#undef BTH_PGMPOOLKIND_PT_FOR_PT
782#undef PGM_BTH_NAME
783#undef PGM_BTH_NAME_RC_STR
784#undef PGM_BTH_NAME_R0_STR
785#undef PGM_GST_TYPE
786#undef PGM_GST_NAME
787#undef PGM_GST_NAME_RC_STR
788#undef PGM_GST_NAME_R0_STR
789
790/* Guest - 32-bit mode */
791#define PGM_GST_TYPE PGM_TYPE_32BIT
792#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
793#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
794#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
795#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
796#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
797#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
798#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
799#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_BIG
802#undef BTH_PGMPOOLKIND_PT_FOR_PT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - PAE mode */
812#define PGM_GST_TYPE PGM_TYPE_PAE
813#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
820#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
821#include "PGMGst.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_BIG
824#undef BTH_PGMPOOLKIND_PT_FOR_PT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833#undef PGM_SHW_TYPE
834#undef PGM_SHW_NAME
835#undef PGM_SHW_NAME_RC_STR
836#undef PGM_SHW_NAME_R0_STR
837
838
839/*
840 * Shadow - AMD64 mode
841 */
842#define PGM_SHW_TYPE PGM_TYPE_AMD64
843#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
844#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
845#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
846#include "PGMShw.h"
847
848/* Guest - AMD64 mode */
849#define PGM_GST_TYPE PGM_TYPE_AMD64
850#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
851#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
852#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
853#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
854#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
855#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
856#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
857#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
858#include "PGMGst.h"
859#include "PGMBth.h"
860#undef BTH_PGMPOOLKIND_PT_FOR_BIG
861#undef BTH_PGMPOOLKIND_PT_FOR_PT
862#undef PGM_BTH_NAME
863#undef PGM_BTH_NAME_RC_STR
864#undef PGM_BTH_NAME_R0_STR
865#undef PGM_GST_TYPE
866#undef PGM_GST_NAME
867#undef PGM_GST_NAME_RC_STR
868#undef PGM_GST_NAME_R0_STR
869
870#undef PGM_SHW_TYPE
871#undef PGM_SHW_NAME
872#undef PGM_SHW_NAME_RC_STR
873#undef PGM_SHW_NAME_R0_STR
874
875/*
876 * Shadow - Nested paging mode
877 */
878#define PGM_SHW_TYPE PGM_TYPE_NESTED
879#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
880#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
881#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
882#include "PGMShw.h"
883
884/* Guest - real mode */
885#define PGM_GST_TYPE PGM_TYPE_REAL
886#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
887#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
888#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
889#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
890#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
891#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
892#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
893#include "PGMBth.h"
894#undef BTH_PGMPOOLKIND_PT_FOR_PT
895#undef PGM_BTH_NAME
896#undef PGM_BTH_NAME_RC_STR
897#undef PGM_BTH_NAME_R0_STR
898#undef PGM_GST_TYPE
899#undef PGM_GST_NAME
900#undef PGM_GST_NAME_RC_STR
901#undef PGM_GST_NAME_R0_STR
902
903/* Guest - protected mode */
904#define PGM_GST_TYPE PGM_TYPE_PROT
905#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
906#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
907#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
908#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
909#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
910#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
911#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
912#include "PGMBth.h"
913#undef BTH_PGMPOOLKIND_PT_FOR_PT
914#undef PGM_BTH_NAME
915#undef PGM_BTH_NAME_RC_STR
916#undef PGM_BTH_NAME_R0_STR
917#undef PGM_GST_TYPE
918#undef PGM_GST_NAME
919#undef PGM_GST_NAME_RC_STR
920#undef PGM_GST_NAME_R0_STR
921
922/* Guest - 32-bit mode */
923#define PGM_GST_TYPE PGM_TYPE_32BIT
924#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
925#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
926#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
927#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
928#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
929#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
930#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
931#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
932#include "PGMBth.h"
933#undef BTH_PGMPOOLKIND_PT_FOR_BIG
934#undef BTH_PGMPOOLKIND_PT_FOR_PT
935#undef PGM_BTH_NAME
936#undef PGM_BTH_NAME_RC_STR
937#undef PGM_BTH_NAME_R0_STR
938#undef PGM_GST_TYPE
939#undef PGM_GST_NAME
940#undef PGM_GST_NAME_RC_STR
941#undef PGM_GST_NAME_R0_STR
942
943/* Guest - PAE mode */
944#define PGM_GST_TYPE PGM_TYPE_PAE
945#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
946#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
947#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
948#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
949#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
950#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
951#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
952#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
953#include "PGMBth.h"
954#undef BTH_PGMPOOLKIND_PT_FOR_BIG
955#undef BTH_PGMPOOLKIND_PT_FOR_PT
956#undef PGM_BTH_NAME
957#undef PGM_BTH_NAME_RC_STR
958#undef PGM_BTH_NAME_R0_STR
959#undef PGM_GST_TYPE
960#undef PGM_GST_NAME
961#undef PGM_GST_NAME_RC_STR
962#undef PGM_GST_NAME_R0_STR
963
964/* Guest - AMD64 mode */
965#define PGM_GST_TYPE PGM_TYPE_AMD64
966#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
967#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
968#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
969#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
970#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
971#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
972#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
973#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
974#include "PGMBth.h"
975#undef BTH_PGMPOOLKIND_PT_FOR_BIG
976#undef BTH_PGMPOOLKIND_PT_FOR_PT
977#undef PGM_BTH_NAME
978#undef PGM_BTH_NAME_RC_STR
979#undef PGM_BTH_NAME_R0_STR
980#undef PGM_GST_TYPE
981#undef PGM_GST_NAME
982#undef PGM_GST_NAME_RC_STR
983#undef PGM_GST_NAME_R0_STR
984
985#undef PGM_SHW_TYPE
986#undef PGM_SHW_NAME
987#undef PGM_SHW_NAME_RC_STR
988#undef PGM_SHW_NAME_R0_STR
989
990/*
991 * Shadow - EPT
992 */
993#define PGM_SHW_TYPE PGM_TYPE_EPT
994#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
995#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
996#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
997#include "PGMShw.h"
998
999/* Guest - real mode */
1000#define PGM_GST_TYPE PGM_TYPE_REAL
1001#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1002#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1003#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1004#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1005#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1006#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1007#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1008#include "PGMBth.h"
1009#undef BTH_PGMPOOLKIND_PT_FOR_PT
1010#undef PGM_BTH_NAME
1011#undef PGM_BTH_NAME_RC_STR
1012#undef PGM_BTH_NAME_R0_STR
1013#undef PGM_GST_TYPE
1014#undef PGM_GST_NAME
1015#undef PGM_GST_NAME_RC_STR
1016#undef PGM_GST_NAME_R0_STR
1017
1018/* Guest - protected mode */
1019#define PGM_GST_TYPE PGM_TYPE_PROT
1020#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1021#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1022#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1023#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1024#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1025#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1026#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1027#include "PGMBth.h"
1028#undef BTH_PGMPOOLKIND_PT_FOR_PT
1029#undef PGM_BTH_NAME
1030#undef PGM_BTH_NAME_RC_STR
1031#undef PGM_BTH_NAME_R0_STR
1032#undef PGM_GST_TYPE
1033#undef PGM_GST_NAME
1034#undef PGM_GST_NAME_RC_STR
1035#undef PGM_GST_NAME_R0_STR
1036
1037/* Guest - 32-bit mode */
1038#define PGM_GST_TYPE PGM_TYPE_32BIT
1039#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1040#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1041#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1042#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1043#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1044#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1045#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1046#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1047#include "PGMBth.h"
1048#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058/* Guest - PAE mode */
1059#define PGM_GST_TYPE PGM_TYPE_PAE
1060#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1061#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1064#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1067#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1070#undef BTH_PGMPOOLKIND_PT_FOR_PT
1071#undef PGM_BTH_NAME
1072#undef PGM_BTH_NAME_RC_STR
1073#undef PGM_BTH_NAME_R0_STR
1074#undef PGM_GST_TYPE
1075#undef PGM_GST_NAME
1076#undef PGM_GST_NAME_RC_STR
1077#undef PGM_GST_NAME_R0_STR
1078
1079/* Guest - AMD64 mode */
1080#define PGM_GST_TYPE PGM_TYPE_AMD64
1081#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1082#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1083#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1084#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1085#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1086#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1087#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1088#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_RC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_RC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100#undef PGM_SHW_TYPE
1101#undef PGM_SHW_NAME
1102#undef PGM_SHW_NAME_RC_STR
1103#undef PGM_SHW_NAME_R0_STR
1104
1105/**
1106 * Initiates the paging of VM.
1107 *
1108 * @returns VBox status code.
1109 * @param pVM Pointer to VM structure.
1110 */
1111VMMR3DECL(int) PGMR3Init(PVM pVM)
1112{
1113 LogFlow(("PGMR3Init:\n"));
1114
1115 /*
1116 * Assert alignment and sizes.
1117 */
1118 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1119
1120 /*
1121 * Init the structure.
1122 */
1123 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1124 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1125 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1126 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1127 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1128 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1129 pVM->pgm.s.fA20Enabled = true;
1130 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1131 pVM->pgm.s.pGstPaePDPTHC = NULL;
1132 pVM->pgm.s.pGstPaePDPTGC = 0;
1133 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1134 {
1135 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1136 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1137 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1138 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1139 }
1140
1141#ifdef VBOX_STRICT
1142 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1143#endif
1144
1145 /*
1146 * Get the configured RAM size - to estimate saved state size.
1147 */
1148 uint64_t cbRam;
1149 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1150 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1151 cbRam = pVM->pgm.s.cbRamSize = 0;
1152 else if (VBOX_SUCCESS(rc))
1153 {
1154 if (cbRam < PAGE_SIZE)
1155 cbRam = 0;
1156 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1157 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1158 }
1159 else
1160 {
1161 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1162 return rc;
1163 }
1164
1165 /*
1166 * Register saved state data unit.
1167 */
1168 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1169 NULL, pgmR3Save, NULL,
1170 NULL, pgmR3Load, NULL);
1171 if (VBOX_FAILURE(rc))
1172 return rc;
1173
1174 /*
1175 * Initialize the PGM critical section and flush the phys TLBs
1176 */
1177 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1178 AssertRCReturn(rc, rc);
1179
1180 PGMR3PhysChunkInvalidateTLB(pVM);
1181 PGMPhysInvalidatePageR3MapTLB(pVM);
1182 PGMPhysInvalidatePageR0MapTLB(pVM);
1183 PGMPhysInvalidatePageGCMapTLB(pVM);
1184
1185 /*
1186 * Trees
1187 */
1188 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1189 if (VBOX_SUCCESS(rc))
1190 {
1191 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1192 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1193
1194 /*
1195 * Alocate the zero page.
1196 */
1197 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1198 }
1199 if (VBOX_SUCCESS(rc))
1200 {
1201 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1202 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1203 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1204 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1205 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1206
1207 /*
1208 * Init the paging.
1209 */
1210 rc = pgmR3InitPaging(pVM);
1211 }
1212 if (VBOX_SUCCESS(rc))
1213 {
1214 /*
1215 * Init the page pool.
1216 */
1217 rc = pgmR3PoolInit(pVM);
1218 }
1219 if (VBOX_SUCCESS(rc))
1220 {
1221 /*
1222 * Info & statistics
1223 */
1224 DBGFR3InfoRegisterInternal(pVM, "mode",
1225 "Shows the current paging mode. "
1226 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1227 pgmR3InfoMode);
1228 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1229 "Dumps all the entries in the top level paging table. No arguments.",
1230 pgmR3InfoCr3);
1231 DBGFR3InfoRegisterInternal(pVM, "phys",
1232 "Dumps all the physical address ranges. No arguments.",
1233 pgmR3PhysInfo);
1234 DBGFR3InfoRegisterInternal(pVM, "handlers",
1235 "Dumps physical, virtual and hyper virtual handlers. "
1236 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1237 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1238 pgmR3InfoHandlers);
1239 DBGFR3InfoRegisterInternal(pVM, "mappings",
1240 "Dumps guest mappings.",
1241 pgmR3MapInfo);
1242
1243 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1244#ifdef VBOX_WITH_STATISTICS
1245 pgmR3InitStats(pVM);
1246#endif
1247#ifdef VBOX_WITH_DEBUGGER
1248 /*
1249 * Debugger commands.
1250 */
1251 static bool fRegisteredCmds = false;
1252 if (!fRegisteredCmds)
1253 {
1254 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1255 if (VBOX_SUCCESS(rc))
1256 fRegisteredCmds = true;
1257 }
1258#endif
1259 return VINF_SUCCESS;
1260 }
1261
1262 /* Almost no cleanup necessary, MM frees all memory. */
1263 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1264
1265 return rc;
1266}
1267
1268
1269/**
1270 * Init paging.
1271 *
1272 * Since we need to check what mode the host is operating in before we can choose
1273 * the right paging functions for the host we have to delay this until R0 has
1274 * been initialized.
1275 *
1276 * @returns VBox status code.
1277 * @param pVM VM handle.
1278 */
1279static int pgmR3InitPaging(PVM pVM)
1280{
1281 /*
1282 * Force a recalculation of modes and switcher so everyone gets notified.
1283 */
1284 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1285 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1286 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1287
1288 /*
1289 * Allocate static mapping space for whatever the cr3 register
1290 * points to and in the case of PAE mode to the 4 PDs.
1291 */
1292 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1293 if (VBOX_FAILURE(rc))
1294 {
1295 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1296 return rc;
1297 }
1298 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1299
1300 /*
1301 * Allocate pages for the three possible intermediate contexts
1302 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1303 * for the sake of simplicity. The AMD64 uses the PAE for the
1304 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1305 *
1306 * We assume that two page tables will be enought for the core code
1307 * mappings (HC virtual and identity).
1308 */
1309 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1310 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1311 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1312 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1313 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1314 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1315 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1316 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1317 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1318 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1319 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1320 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1321 if ( !pVM->pgm.s.pInterPD
1322 || !pVM->pgm.s.apInterPTs[0]
1323 || !pVM->pgm.s.apInterPTs[1]
1324 || !pVM->pgm.s.apInterPaePTs[0]
1325 || !pVM->pgm.s.apInterPaePTs[1]
1326 || !pVM->pgm.s.apInterPaePDs[0]
1327 || !pVM->pgm.s.apInterPaePDs[1]
1328 || !pVM->pgm.s.apInterPaePDs[2]
1329 || !pVM->pgm.s.apInterPaePDs[3]
1330 || !pVM->pgm.s.pInterPaePDPT
1331 || !pVM->pgm.s.pInterPaePDPT64
1332 || !pVM->pgm.s.pInterPaePML4)
1333 {
1334 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1335 return VERR_NO_PAGE_MEMORY;
1336 }
1337
1338 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1339 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1340 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1341 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1342 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1343 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1344
1345 /*
1346 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1347 */
1348 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1349 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1350 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1351
1352 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1353 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1354
1355 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1356 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1357 {
1358 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1359 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1360 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1361 }
1362
1363 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1364 {
1365 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1366 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1367 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1368 }
1369
1370 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1371 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1372 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1373 | HCPhysInterPaePDPT64;
1374
1375 /*
1376 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1377 * We allocate pages for all three posibilities to in order to simplify mappings and
1378 * avoid resource failure during mode switches. So, we need to cover all levels of the
1379 * of the first 4GB down to PD level.
1380 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1381 */
1382 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1383 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1384 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1385 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1386 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1387 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1388 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1389 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1390 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1391 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1392
1393 if ( !pVM->pgm.s.pHC32BitPD
1394 || !pVM->pgm.s.apHCPaePDs[0]
1395 || !pVM->pgm.s.apHCPaePDs[1]
1396 || !pVM->pgm.s.apHCPaePDs[2]
1397 || !pVM->pgm.s.apHCPaePDs[3]
1398 || !pVM->pgm.s.pHCPaePDPT
1399 || !pVM->pgm.s.pHCNestedRoot)
1400 {
1401 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1402 return VERR_NO_PAGE_MEMORY;
1403 }
1404
1405 /* get physical addresses. */
1406 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1407 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1408 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1409 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1410 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1411 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1412 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1413 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1414
1415 /*
1416 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1417 */
1418 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1419 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1420 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1421 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1422 {
1423 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1424 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1425 /* The flags will be corrected when entering and leaving long mode. */
1426 }
1427
1428 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1429
1430 /*
1431 * Initialize paging workers and mode from current host mode
1432 * and the guest running in real mode.
1433 */
1434 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1435 switch (pVM->pgm.s.enmHostMode)
1436 {
1437 case SUPPAGINGMODE_32_BIT:
1438 case SUPPAGINGMODE_32_BIT_GLOBAL:
1439 case SUPPAGINGMODE_PAE:
1440 case SUPPAGINGMODE_PAE_GLOBAL:
1441 case SUPPAGINGMODE_PAE_NX:
1442 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1443 break;
1444
1445 case SUPPAGINGMODE_AMD64:
1446 case SUPPAGINGMODE_AMD64_GLOBAL:
1447 case SUPPAGINGMODE_AMD64_NX:
1448 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1449#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1450 if (ARCH_BITS != 64)
1451 {
1452 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1453 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1454 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1455 }
1456#endif
1457 break;
1458 default:
1459 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1460 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1461 }
1462 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1463 if (VBOX_SUCCESS(rc))
1464 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1465 if (VBOX_SUCCESS(rc))
1466 {
1467 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1468#if HC_ARCH_BITS == 64
1469 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1470 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1471 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1472 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1473 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1474 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1475 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1476 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1477 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1478 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1479#endif
1480
1481 return VINF_SUCCESS;
1482 }
1483
1484 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1485 return rc;
1486}
1487
1488
1489#ifdef VBOX_WITH_STATISTICS
1490/**
1491 * Init statistics
1492 */
1493static void pgmR3InitStats(PVM pVM)
1494{
1495 PPGM pPGM = &pVM->pgm.s;
1496
1497 /*
1498 * Note! The layout of this function matches the member layout exactly!
1499 */
1500
1501 /* R3 only: */
1502
1503 /* GC only: */
1504 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GCInvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1505
1506 /* RZ only: */
1507
1508 /* R0 only: */
1509
1510 /* RZ & R3: */
1511 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1512 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1513 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1514 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1515 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1516 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1517 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1518 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1519 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1520 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1521 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1522 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1523 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1524 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1525 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1526 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1527 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1528 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1529 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1530 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1531 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1532 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1533 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1534 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1535 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1536 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1537 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1538 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1539 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1540 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1541 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1542 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1543 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1544 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1545
1546
1547 /* TODO: */
1548
1549 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1550 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1551 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1552 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1553 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1554 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1555 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1556 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1557 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1558 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1559 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1560 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1561 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1562 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1563 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1564 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1565 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1566 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1567 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1568
1569 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1570 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1571 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1572 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1573 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1574 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1575 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1576 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1577
1578 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1579 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1580 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1581 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1582 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1583 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1584 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1585
1586 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1587 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1588 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1589 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1590 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1591 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1592 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1593
1594 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1595 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1596
1597 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1598 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1599 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1600
1601 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1602 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1603
1604 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1605 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1606
1607 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1608 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1609
1610 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1611 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1612 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1613
1614 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1615 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1616
1617 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1618
1619
1620 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1621 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1622 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1623 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1624 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1625
1626
1627 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1628 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1629 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1630
1631 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1632 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1633
1634 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1635 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1636 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1637 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1638
1639 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1640 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1641
1642 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1643 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1644 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1645 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1646 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1647 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1648 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1649 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1650 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1651 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1652 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1653 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1654 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1655
1656#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1657 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1658 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1659 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1660 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1661 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1662 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1663#endif
1664
1665 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1666 {
1667 /** @todo r=bird: We need a STAMR3RegisterF()! */
1668 char szName[32];
1669
1670 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1671 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1672 AssertRC(rc);
1673
1674 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1675 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1676 AssertRC(rc);
1677
1678 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1679 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1680 AssertRC(rc);
1681 }
1682}
1683#endif /* VBOX_WITH_STATISTICS */
1684
1685/**
1686 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1687 *
1688 * The dynamic mapping area will also be allocated and initialized at this
1689 * time. We could allocate it during PGMR3Init of course, but the mapping
1690 * wouldn't be allocated at that time preventing us from setting up the
1691 * page table entries with the dummy page.
1692 *
1693 * @returns VBox status code.
1694 * @param pVM VM handle.
1695 */
1696VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1697{
1698 RTGCPTR GCPtr;
1699 /*
1700 * Reserve space for mapping the paging pages into guest context.
1701 */
1702 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1703 AssertRCReturn(rc, rc);
1704 pVM->pgm.s.pGC32BitPD = GCPtr;
1705 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1706
1707 /*
1708 * Reserve space for the dynamic mappings.
1709 */
1710 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1711 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1712 if (VBOX_SUCCESS(rc))
1713 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1714
1715 if ( VBOX_SUCCESS(rc)
1716 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1717 {
1718 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1719 if (VBOX_SUCCESS(rc))
1720 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1721 }
1722 if (VBOX_SUCCESS(rc))
1723 {
1724 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1725 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1726 }
1727 return rc;
1728}
1729
1730
1731/**
1732 * Ring-3 init finalizing.
1733 *
1734 * @returns VBox status code.
1735 * @param pVM The VM handle.
1736 */
1737VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1738{
1739 /*
1740 * Map the paging pages into the guest context.
1741 */
1742 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1743 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1744
1745 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1746 AssertRCReturn(rc, rc);
1747 pVM->pgm.s.pGC32BitPD = GCPtr;
1748 GCPtr += PAGE_SIZE;
1749 GCPtr += PAGE_SIZE; /* reserved page */
1750
1751 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1752 {
1753 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1754 AssertRCReturn(rc, rc);
1755 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1756 GCPtr += PAGE_SIZE;
1757 }
1758 /* A bit of paranoia is justified. */
1759 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1760 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1761 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1762 GCPtr += PAGE_SIZE; /* reserved page */
1763
1764 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1765 AssertRCReturn(rc, rc);
1766 pVM->pgm.s.pGCPaePDPT = GCPtr;
1767 GCPtr += PAGE_SIZE;
1768 GCPtr += PAGE_SIZE; /* reserved page */
1769
1770
1771 /*
1772 * Reserve space for the dynamic mappings.
1773 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1774 */
1775 /* get the pointer to the page table entries. */
1776 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1777 AssertRelease(pMapping);
1778 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1779 const unsigned iPT = off >> X86_PD_SHIFT;
1780 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1781 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1782 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1783
1784 /* init cache */
1785 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1786 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1787 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1788
1789 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1790 {
1791 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1792 AssertRCReturn(rc, rc);
1793 }
1794
1795 /* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); Intel only goes up to 36 bits, so
1796 * we stick to 36 as well.
1797 *
1798 * @todo How to test for the 40 bits support? Long mode seems to be the test criterium.
1799 */
1800 uint32_t u32Dummy, u32Features;
1801 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1802
1803 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1804 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1805 else
1806 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1807
1808 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %VGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1809
1810 return rc;
1811}
1812
1813
1814/**
1815 * Applies relocations to data and code managed by this
1816 * component. This function will be called at init and
1817 * whenever the VMM need to relocate it self inside the GC.
1818 *
1819 * @param pVM The VM.
1820 * @param offDelta Relocation delta relative to old location.
1821 */
1822VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1823{
1824 LogFlow(("PGMR3Relocate\n"));
1825
1826 /*
1827 * Paging stuff.
1828 */
1829 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1830 /** @todo move this into shadow and guest specific relocation functions. */
1831 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1832 pVM->pgm.s.pGC32BitPD += offDelta;
1833 pVM->pgm.s.pGuestPDGC += offDelta;
1834 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1835 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1836 {
1837 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1838 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1839 }
1840 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1841 pVM->pgm.s.pGCPaePDPT += offDelta;
1842
1843 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1844 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1845
1846 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1847 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1848 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1849
1850 /*
1851 * Trees.
1852 */
1853 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1854
1855 /*
1856 * Ram ranges.
1857 */
1858 if (pVM->pgm.s.pRamRangesR3)
1859 {
1860 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1861 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1862 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1863 }
1864
1865 /*
1866 * Update the two page directories with all page table mappings.
1867 * (One or more of them have changed, that's why we're here.)
1868 */
1869 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1870 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1871 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1872
1873 /* Relocate GC addresses of Page Tables. */
1874 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1875 {
1876 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1877 {
1878 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1879 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1880 }
1881 }
1882
1883 /*
1884 * Dynamic page mapping area.
1885 */
1886 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1887 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1888 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1889
1890 /*
1891 * The Zero page.
1892 */
1893 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1894 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1895
1896 /*
1897 * Physical and virtual handlers.
1898 */
1899 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1900 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1901 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1902
1903 /*
1904 * The page pool.
1905 */
1906 pgmR3PoolRelocate(pVM);
1907}
1908
1909
1910/**
1911 * Callback function for relocating a physical access handler.
1912 *
1913 * @returns 0 (continue enum)
1914 * @param pNode Pointer to a PGMPHYSHANDLER node.
1915 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1916 * not certain the delta will fit in a void pointer for all possible configs.
1917 */
1918static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1919{
1920 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1921 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1922 if (pHandler->pfnHandlerRC)
1923 pHandler->pfnHandlerRC += offDelta;
1924 if (pHandler->pvUserRC >= 0x10000)
1925 pHandler->pvUserRC += offDelta;
1926 return 0;
1927}
1928
1929
1930/**
1931 * Callback function for relocating a virtual access handler.
1932 *
1933 * @returns 0 (continue enum)
1934 * @param pNode Pointer to a PGMVIRTHANDLER node.
1935 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1936 * not certain the delta will fit in a void pointer for all possible configs.
1937 */
1938static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1939{
1940 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1941 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1942 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1943 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1944 Assert(pHandler->pfnHandlerRC);
1945 pHandler->pfnHandlerRC += offDelta;
1946 return 0;
1947}
1948
1949
1950/**
1951 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1952 *
1953 * @returns 0 (continue enum)
1954 * @param pNode Pointer to a PGMVIRTHANDLER node.
1955 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1956 * not certain the delta will fit in a void pointer for all possible configs.
1957 */
1958static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1959{
1960 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1961 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1962 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1963 Assert(pHandler->pfnHandlerRC);
1964 pHandler->pfnHandlerRC += offDelta;
1965 return 0;
1966}
1967
1968
1969/**
1970 * The VM is being reset.
1971 *
1972 * For the PGM component this means that any PD write monitors
1973 * needs to be removed.
1974 *
1975 * @param pVM VM handle.
1976 */
1977VMMR3DECL(void) PGMR3Reset(PVM pVM)
1978{
1979 LogFlow(("PGMR3Reset:\n"));
1980 VM_ASSERT_EMT(pVM);
1981
1982 pgmLock(pVM);
1983
1984 /*
1985 * Unfix any fixed mappings and disable CR3 monitoring.
1986 */
1987 pVM->pgm.s.fMappingsFixed = false;
1988 pVM->pgm.s.GCPtrMappingFixed = 0;
1989 pVM->pgm.s.cbMappingFixed = 0;
1990
1991 /* Exit the guest paging mode before the pgm pool gets reset.
1992 * Important to clean up the amd64 case.
1993 */
1994 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
1995 AssertRC(rc);
1996#ifdef DEBUG
1997 DBGFR3InfoLog(pVM, "mappings", NULL);
1998 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1999#endif
2000
2001 /*
2002 * Reset the shadow page pool.
2003 */
2004 pgmR3PoolReset(pVM);
2005
2006 /*
2007 * Re-init other members.
2008 */
2009 pVM->pgm.s.fA20Enabled = true;
2010
2011 /*
2012 * Clear the FFs PGM owns.
2013 */
2014 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2015 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2016
2017 /*
2018 * Reset (zero) RAM pages.
2019 */
2020 rc = pgmR3PhysRamReset(pVM);
2021 if (RT_SUCCESS(rc))
2022 {
2023#ifdef VBOX_WITH_NEW_PHYS_CODE
2024 /*
2025 * Reset (zero) shadow ROM pages.
2026 */
2027 rc = pgmR3PhysRomReset(pVM);
2028#endif
2029 if (RT_SUCCESS(rc))
2030 {
2031 /*
2032 * Switch mode back to real mode.
2033 */
2034 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2035 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2036 }
2037 }
2038
2039 pgmUnlock(pVM);
2040 //return rc;
2041 AssertReleaseRC(rc);
2042}
2043
2044
2045#ifdef VBOX_STRICT
2046/**
2047 * VM state change callback for clearing fNoMorePhysWrites after
2048 * a snapshot has been created.
2049 */
2050static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2051{
2052 if (enmState == VMSTATE_RUNNING)
2053 pVM->pgm.s.fNoMorePhysWrites = false;
2054}
2055#endif
2056
2057
2058/**
2059 * Terminates the PGM.
2060 *
2061 * @returns VBox status code.
2062 * @param pVM Pointer to VM structure.
2063 */
2064VMMR3DECL(int) PGMR3Term(PVM pVM)
2065{
2066 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2067}
2068
2069
2070/**
2071 * Execute state save operation.
2072 *
2073 * @returns VBox status code.
2074 * @param pVM VM Handle.
2075 * @param pSSM SSM operation handle.
2076 */
2077static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2078{
2079 PPGM pPGM = &pVM->pgm.s;
2080
2081 /* No more writes to physical memory after this point! */
2082 pVM->pgm.s.fNoMorePhysWrites = true;
2083
2084 /*
2085 * Save basic data (required / unaffected by relocation).
2086 */
2087#if 1
2088 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2089#else
2090 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2091#endif
2092 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2093 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2094 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2095 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2096 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2097 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2098 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2099 SSMR3PutU32(pSSM, ~0); /* Separator. */
2100
2101 /*
2102 * The guest mappings.
2103 */
2104 uint32_t i = 0;
2105 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2106 {
2107 SSMR3PutU32(pSSM, i);
2108 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2109 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2110 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2111 /* flags are done by the mapping owners! */
2112 }
2113 SSMR3PutU32(pSSM, ~0); /* terminator. */
2114
2115 /*
2116 * Ram range flags and bits.
2117 */
2118 i = 0;
2119 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2120 {
2121 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2122
2123 SSMR3PutU32(pSSM, i);
2124 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2125 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2126 SSMR3PutGCPhys(pSSM, pRam->cb);
2127 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2128
2129 /* Flags. */
2130 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2131 for (unsigned iPage = 0; iPage < cPages; iPage++)
2132 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2133
2134 /* any memory associated with the range. */
2135 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2136 {
2137 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2138 {
2139 if (pRam->paChunkR3Ptrs[iChunk])
2140 {
2141 SSMR3PutU8(pSSM, 1); /* chunk present */
2142 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2143 }
2144 else
2145 SSMR3PutU8(pSSM, 0); /* no chunk present */
2146 }
2147 }
2148 else if (pRam->pvR3)
2149 {
2150 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2151 if (VBOX_FAILURE(rc))
2152 {
2153 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2154 return rc;
2155 }
2156 }
2157 }
2158 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2159}
2160
2161
2162/**
2163 * Execute state load operation.
2164 *
2165 * @returns VBox status code.
2166 * @param pVM VM Handle.
2167 * @param pSSM SSM operation handle.
2168 * @param u32Version Data layout version.
2169 */
2170static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2171{
2172 /*
2173 * Validate version.
2174 */
2175 if (u32Version != PGM_SAVED_STATE_VERSION)
2176 {
2177 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2178 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2179 }
2180
2181 /*
2182 * Call the reset function to make sure all the memory is cleared.
2183 */
2184 PGMR3Reset(pVM);
2185
2186 /*
2187 * Load basic data (required / unaffected by relocation).
2188 */
2189 PPGM pPGM = &pVM->pgm.s;
2190#if 1
2191 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2192#else
2193 uint32_t u;
2194 SSMR3GetU32(pSSM, &u);
2195 pPGM->fMappingsFixed = u;
2196#endif
2197 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2198 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2199
2200 RTUINT cbRamSize;
2201 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2202 if (VBOX_FAILURE(rc))
2203 return rc;
2204 if (cbRamSize != pPGM->cbRamSize)
2205 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2206 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2207 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2208 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2209 RTUINT uGuestMode;
2210 SSMR3GetUInt(pSSM, &uGuestMode);
2211 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2212
2213 /* check separator. */
2214 uint32_t u32Sep;
2215 SSMR3GetU32(pSSM, &u32Sep);
2216 if (VBOX_FAILURE(rc))
2217 return rc;
2218 if (u32Sep != (uint32_t)~0)
2219 {
2220 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2221 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2222 }
2223
2224 /*
2225 * The guest mappings.
2226 */
2227 uint32_t i = 0;
2228 for (;; i++)
2229 {
2230 /* Check the seqence number / separator. */
2231 rc = SSMR3GetU32(pSSM, &u32Sep);
2232 if (VBOX_FAILURE(rc))
2233 return rc;
2234 if (u32Sep == ~0U)
2235 break;
2236 if (u32Sep != i)
2237 {
2238 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2239 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2240 }
2241
2242 /* get the mapping details. */
2243 char szDesc[256];
2244 szDesc[0] = '\0';
2245 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2246 if (VBOX_FAILURE(rc))
2247 return rc;
2248 RTGCPTR GCPtr;
2249 SSMR3GetGCPtr(pSSM, &GCPtr);
2250 RTGCUINTPTR cPTs;
2251 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2252 if (VBOX_FAILURE(rc))
2253 return rc;
2254
2255 /* find matching range. */
2256 PPGMMAPPING pMapping;
2257 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2258 if ( pMapping->cPTs == cPTs
2259 && !strcmp(pMapping->pszDesc, szDesc))
2260 break;
2261 if (!pMapping)
2262 {
2263 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2264 cPTs, szDesc, GCPtr));
2265 AssertFailed();
2266 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2267 }
2268
2269 /* relocate it. */
2270 if (pMapping->GCPtr != GCPtr)
2271 {
2272 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2273#if HC_ARCH_BITS == 64
2274LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2275#endif
2276 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2277 }
2278 else
2279 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2280 }
2281
2282 /*
2283 * Ram range flags and bits.
2284 */
2285 i = 0;
2286 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2287 {
2288 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2289 /* Check the seqence number / separator. */
2290 rc = SSMR3GetU32(pSSM, &u32Sep);
2291 if (VBOX_FAILURE(rc))
2292 return rc;
2293 if (u32Sep == ~0U)
2294 break;
2295 if (u32Sep != i)
2296 {
2297 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2298 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2299 }
2300
2301 /* Get the range details. */
2302 RTGCPHYS GCPhys;
2303 SSMR3GetGCPhys(pSSM, &GCPhys);
2304 RTGCPHYS GCPhysLast;
2305 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2306 RTGCPHYS cb;
2307 SSMR3GetGCPhys(pSSM, &cb);
2308 uint8_t fHaveBits;
2309 rc = SSMR3GetU8(pSSM, &fHaveBits);
2310 if (VBOX_FAILURE(rc))
2311 return rc;
2312 if (fHaveBits & ~1)
2313 {
2314 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2315 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2316 }
2317
2318 /* Match it up with the current range. */
2319 if ( GCPhys != pRam->GCPhys
2320 || GCPhysLast != pRam->GCPhysLast
2321 || cb != pRam->cb
2322 || fHaveBits != !!pRam->pvR3)
2323 {
2324 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2325 "State : %RGp-%RGp %RGp bytes %s\n",
2326 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2327 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2328 /*
2329 * If we're loading a state for debugging purpose, don't make a fuss if
2330 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2331 */
2332 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2333 || GCPhys < 8 * _1M)
2334 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2335
2336 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2337 while (cPages-- > 0)
2338 {
2339 uint16_t u16Ignore;
2340 SSMR3GetU16(pSSM, &u16Ignore);
2341 }
2342 continue;
2343 }
2344
2345 /* Flags. */
2346 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2347 for (unsigned iPage = 0; iPage < cPages; iPage++)
2348 {
2349 uint16_t u16 = 0;
2350 SSMR3GetU16(pSSM, &u16);
2351 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2352 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2353 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2354 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2355 }
2356
2357 /* any memory associated with the range. */
2358 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2359 {
2360 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2361 {
2362 uint8_t fValidChunk;
2363
2364 rc = SSMR3GetU8(pSSM, &fValidChunk);
2365 if (VBOX_FAILURE(rc))
2366 return rc;
2367 if (fValidChunk > 1)
2368 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2369
2370 if (fValidChunk)
2371 {
2372 if (!pRam->paChunkR3Ptrs[iChunk])
2373 {
2374 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2375 if (VBOX_FAILURE(rc))
2376 return rc;
2377 }
2378 Assert(pRam->paChunkR3Ptrs[iChunk]);
2379
2380 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2381 }
2382 /* else nothing to do */
2383 }
2384 }
2385 else if (pRam->pvR3)
2386 {
2387 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2388 if (VBOX_FAILURE(rc))
2389 {
2390 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2391 return rc;
2392 }
2393 }
2394 }
2395
2396 /*
2397 * We require a full resync now.
2398 */
2399 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2400 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2401 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2402 pPGM->fPhysCacheFlushPending = true;
2403 pgmR3HandlerPhysicalUpdateAll(pVM);
2404
2405 /*
2406 * Change the paging mode.
2407 */
2408 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2409
2410 /* Restore pVM->pgm.s.GCPhysCR3. */
2411 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2412 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2413 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2414 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2415 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2416 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2417 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2418 else
2419 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2420 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2421
2422 return rc;
2423}
2424
2425
2426/**
2427 * Show paging mode.
2428 *
2429 * @param pVM VM Handle.
2430 * @param pHlp The info helpers.
2431 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2432 */
2433static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2434{
2435 /* digest argument. */
2436 bool fGuest, fShadow, fHost;
2437 if (pszArgs)
2438 pszArgs = RTStrStripL(pszArgs);
2439 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2440 fShadow = fHost = fGuest = true;
2441 else
2442 {
2443 fShadow = fHost = fGuest = false;
2444 if (strstr(pszArgs, "guest"))
2445 fGuest = true;
2446 if (strstr(pszArgs, "shadow"))
2447 fShadow = true;
2448 if (strstr(pszArgs, "host"))
2449 fHost = true;
2450 }
2451
2452 /* print info. */
2453 if (fGuest)
2454 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2455 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2456 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2457 if (fShadow)
2458 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2459 if (fHost)
2460 {
2461 const char *psz;
2462 switch (pVM->pgm.s.enmHostMode)
2463 {
2464 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2465 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2466 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2467 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2468 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2469 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2470 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2471 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2472 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2473 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2474 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2475 default: psz = "unknown"; break;
2476 }
2477 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2478 }
2479}
2480
2481
2482/**
2483 * Dump registered MMIO ranges to the log.
2484 *
2485 * @param pVM VM Handle.
2486 * @param pHlp The info helpers.
2487 * @param pszArgs Arguments, ignored.
2488 */
2489static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2490{
2491 NOREF(pszArgs);
2492 pHlp->pfnPrintf(pHlp,
2493 "RAM ranges (pVM=%p)\n"
2494 "%.*s %.*s\n",
2495 pVM,
2496 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2497 sizeof(RTHCPTR) * 2, "pvHC ");
2498
2499 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2500 pHlp->pfnPrintf(pHlp,
2501 "%RGp-%RGp %RHv %s\n",
2502 pCur->GCPhys,
2503 pCur->GCPhysLast,
2504 pCur->pvR3,
2505 pCur->pszDesc);
2506}
2507
2508/**
2509 * Dump the page directory to the log.
2510 *
2511 * @param pVM VM Handle.
2512 * @param pHlp The info helpers.
2513 * @param pszArgs Arguments, ignored.
2514 */
2515static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2516{
2517/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2518 /* Big pages supported? */
2519 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2520
2521 /* Global pages supported? */
2522 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2523
2524 NOREF(pszArgs);
2525
2526 /*
2527 * Get page directory addresses.
2528 */
2529 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2530 Assert(pPDSrc);
2531 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2532
2533 /*
2534 * Iterate the page directory.
2535 */
2536 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2537 {
2538 X86PDE PdeSrc = pPDSrc->a[iPD];
2539 if (PdeSrc.n.u1Present)
2540 {
2541 if (PdeSrc.b.u1Size && fPSE)
2542 {
2543 pHlp->pfnPrintf(pHlp,
2544 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2545 iPD,
2546 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2547 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2548 }
2549 else
2550 {
2551 pHlp->pfnPrintf(pHlp,
2552 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2553 iPD,
2554 PdeSrc.u & X86_PDE_PG_MASK,
2555 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2556 }
2557 }
2558 }
2559}
2560
2561
2562/**
2563 * Serivce a VMMCALLHOST_PGM_LOCK call.
2564 *
2565 * @returns VBox status code.
2566 * @param pVM The VM handle.
2567 */
2568VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2569{
2570 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2571 AssertRC(rc);
2572 return rc;
2573}
2574
2575
2576/**
2577 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2578 *
2579 * @returns PGM_TYPE_*.
2580 * @param pgmMode The mode value to convert.
2581 */
2582DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2583{
2584 switch (pgmMode)
2585 {
2586 case PGMMODE_REAL: return PGM_TYPE_REAL;
2587 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2588 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2589 case PGMMODE_PAE:
2590 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2591 case PGMMODE_AMD64:
2592 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2593 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2594 case PGMMODE_EPT: return PGM_TYPE_EPT;
2595 default:
2596 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2597 }
2598}
2599
2600
2601/**
2602 * Gets the index into the paging mode data array of a SHW+GST mode.
2603 *
2604 * @returns PGM::paPagingData index.
2605 * @param uShwType The shadow paging mode type.
2606 * @param uGstType The guest paging mode type.
2607 */
2608DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2609{
2610 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2611 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2612 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2613 + (uGstType - PGM_TYPE_REAL);
2614}
2615
2616
2617/**
2618 * Gets the index into the paging mode data array of a SHW+GST mode.
2619 *
2620 * @returns PGM::paPagingData index.
2621 * @param enmShw The shadow paging mode.
2622 * @param enmGst The guest paging mode.
2623 */
2624DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2625{
2626 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2627 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2628 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2629}
2630
2631
2632/**
2633 * Calculates the max data index.
2634 * @returns The number of entries in the paging data array.
2635 */
2636DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2637{
2638 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2639}
2640
2641
2642/**
2643 * Initializes the paging mode data kept in PGM::paModeData.
2644 *
2645 * @param pVM The VM handle.
2646 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2647 * This is used early in the init process to avoid trouble with PDM
2648 * not being initialized yet.
2649 */
2650static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2651{
2652 PPGMMODEDATA pModeData;
2653 int rc;
2654
2655 /*
2656 * Allocate the array on the first call.
2657 */
2658 if (!pVM->pgm.s.paModeData)
2659 {
2660 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2661 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2662 }
2663
2664 /*
2665 * Initialize the array entries.
2666 */
2667 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2668 pModeData->uShwType = PGM_TYPE_32BIT;
2669 pModeData->uGstType = PGM_TYPE_REAL;
2670 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2671 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2672 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2673
2674 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2675 pModeData->uShwType = PGM_TYPE_32BIT;
2676 pModeData->uGstType = PGM_TYPE_PROT;
2677 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2678 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2679 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2680
2681 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2682 pModeData->uShwType = PGM_TYPE_32BIT;
2683 pModeData->uGstType = PGM_TYPE_32BIT;
2684 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2686 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2687
2688 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2689 pModeData->uShwType = PGM_TYPE_PAE;
2690 pModeData->uGstType = PGM_TYPE_REAL;
2691 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2692 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2693 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2694
2695 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2696 pModeData->uShwType = PGM_TYPE_PAE;
2697 pModeData->uGstType = PGM_TYPE_PROT;
2698 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2699 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2700 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2701
2702 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2703 pModeData->uShwType = PGM_TYPE_PAE;
2704 pModeData->uGstType = PGM_TYPE_32BIT;
2705 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2706 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2707 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2708
2709 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2710 pModeData->uShwType = PGM_TYPE_PAE;
2711 pModeData->uGstType = PGM_TYPE_PAE;
2712 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2713 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2715
2716 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2717 pModeData->uShwType = PGM_TYPE_AMD64;
2718 pModeData->uGstType = PGM_TYPE_AMD64;
2719 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2722
2723 /* The nested paging mode. */
2724 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2725 pModeData->uShwType = PGM_TYPE_NESTED;
2726 pModeData->uGstType = PGM_TYPE_REAL;
2727 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2728 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2729
2730 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2731 pModeData->uShwType = PGM_TYPE_NESTED;
2732 pModeData->uGstType = PGM_TYPE_PROT;
2733 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735
2736 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2737 pModeData->uShwType = PGM_TYPE_NESTED;
2738 pModeData->uGstType = PGM_TYPE_32BIT;
2739 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2740 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2741
2742 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2743 pModeData->uShwType = PGM_TYPE_NESTED;
2744 pModeData->uGstType = PGM_TYPE_PAE;
2745 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2747
2748 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2749 pModeData->uShwType = PGM_TYPE_NESTED;
2750 pModeData->uGstType = PGM_TYPE_AMD64;
2751 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2752 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753
2754 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2755 switch(pVM->pgm.s.enmHostMode)
2756 {
2757 case SUPPAGINGMODE_32_BIT:
2758 case SUPPAGINGMODE_32_BIT_GLOBAL:
2759 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2760 {
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2762 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763 }
2764 break;
2765
2766 case SUPPAGINGMODE_PAE:
2767 case SUPPAGINGMODE_PAE_NX:
2768 case SUPPAGINGMODE_PAE_GLOBAL:
2769 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2770 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2771 {
2772 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2773 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2774 }
2775 break;
2776
2777 case SUPPAGINGMODE_AMD64:
2778 case SUPPAGINGMODE_AMD64_GLOBAL:
2779 case SUPPAGINGMODE_AMD64_NX:
2780 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2781 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2782 {
2783 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2784 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785 }
2786 break;
2787 default:
2788 AssertFailed();
2789 break;
2790 }
2791
2792 /* Extended paging (EPT) / Intel VT-x */
2793 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2794 pModeData->uShwType = PGM_TYPE_EPT;
2795 pModeData->uGstType = PGM_TYPE_REAL;
2796 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2797 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2799
2800 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2801 pModeData->uShwType = PGM_TYPE_EPT;
2802 pModeData->uGstType = PGM_TYPE_PROT;
2803 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2806
2807 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2808 pModeData->uShwType = PGM_TYPE_EPT;
2809 pModeData->uGstType = PGM_TYPE_32BIT;
2810 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2811 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2813
2814 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2815 pModeData->uShwType = PGM_TYPE_EPT;
2816 pModeData->uGstType = PGM_TYPE_PAE;
2817 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2820
2821 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2822 pModeData->uShwType = PGM_TYPE_EPT;
2823 pModeData->uGstType = PGM_TYPE_AMD64;
2824 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2826 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 return VINF_SUCCESS;
2828}
2829
2830
2831/**
2832 * Switch to different (or relocated in the relocate case) mode data.
2833 *
2834 * @param pVM The VM handle.
2835 * @param enmShw The the shadow paging mode.
2836 * @param enmGst The the guest paging mode.
2837 */
2838static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2839{
2840 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2841
2842 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2843 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2844
2845 /* shadow */
2846 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2847 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2848 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2849 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2850 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2851
2852 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2853 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2854
2855 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2856 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2857
2858
2859 /* guest */
2860 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2861 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2862 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2863 Assert(pVM->pgm.s.pfnR3GstGetPage);
2864 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2865 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2866 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2867 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2868 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2869 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2870 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2871 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2872 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2873 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2874
2875 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2876 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2877 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2878 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2879 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2880 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2881 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2882 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2883 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2884
2885 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2886 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2887 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2888 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2889 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2890 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2891 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2892 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2893 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2894
2895
2896 /* both */
2897 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2898 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2899 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2900 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2901 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2902 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2903 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2904#ifdef VBOX_STRICT
2905 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2906#endif
2907
2908 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2909 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2910 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2911 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2912 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2913 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2914#ifdef VBOX_STRICT
2915 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2916#endif
2917
2918 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2919 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2920 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2921 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2922 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2923 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2924#ifdef VBOX_STRICT
2925 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2926#endif
2927}
2928
2929
2930#ifdef DEBUG_bird
2931#include <stdlib.h> /* getenv() remove me! */
2932#endif
2933
2934/**
2935 * Calculates the shadow paging mode.
2936 *
2937 * @returns The shadow paging mode.
2938 * @param pVM VM handle.
2939 * @param enmGuestMode The guest mode.
2940 * @param enmHostMode The host mode.
2941 * @param enmShadowMode The current shadow mode.
2942 * @param penmSwitcher Where to store the switcher to use.
2943 * VMMSWITCHER_INVALID means no change.
2944 */
2945static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2946{
2947 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2948 switch (enmGuestMode)
2949 {
2950 /*
2951 * When switching to real or protected mode we don't change
2952 * anything since it's likely that we'll switch back pretty soon.
2953 *
2954 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2955 * and is supposed to determine which shadow paging and switcher to
2956 * use during init.
2957 */
2958 case PGMMODE_REAL:
2959 case PGMMODE_PROTECTED:
2960 if ( enmShadowMode != PGMMODE_INVALID
2961 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2962 break; /* (no change) */
2963
2964 switch (enmHostMode)
2965 {
2966 case SUPPAGINGMODE_32_BIT:
2967 case SUPPAGINGMODE_32_BIT_GLOBAL:
2968 enmShadowMode = PGMMODE_32_BIT;
2969 enmSwitcher = VMMSWITCHER_32_TO_32;
2970 break;
2971
2972 case SUPPAGINGMODE_PAE:
2973 case SUPPAGINGMODE_PAE_NX:
2974 case SUPPAGINGMODE_PAE_GLOBAL:
2975 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2976 enmShadowMode = PGMMODE_PAE;
2977 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2978#ifdef DEBUG_bird
2979if (getenv("VBOX_32BIT"))
2980{
2981 enmShadowMode = PGMMODE_32_BIT;
2982 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2983}
2984#endif
2985 break;
2986
2987 case SUPPAGINGMODE_AMD64:
2988 case SUPPAGINGMODE_AMD64_GLOBAL:
2989 case SUPPAGINGMODE_AMD64_NX:
2990 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2991 enmShadowMode = PGMMODE_PAE;
2992 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2993 break;
2994
2995 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2996 }
2997 break;
2998
2999 case PGMMODE_32_BIT:
3000 switch (enmHostMode)
3001 {
3002 case SUPPAGINGMODE_32_BIT:
3003 case SUPPAGINGMODE_32_BIT_GLOBAL:
3004 enmShadowMode = PGMMODE_32_BIT;
3005 enmSwitcher = VMMSWITCHER_32_TO_32;
3006 break;
3007
3008 case SUPPAGINGMODE_PAE:
3009 case SUPPAGINGMODE_PAE_NX:
3010 case SUPPAGINGMODE_PAE_GLOBAL:
3011 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3012 enmShadowMode = PGMMODE_PAE;
3013 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3014#ifdef DEBUG_bird
3015if (getenv("VBOX_32BIT"))
3016{
3017 enmShadowMode = PGMMODE_32_BIT;
3018 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3019}
3020#endif
3021 break;
3022
3023 case SUPPAGINGMODE_AMD64:
3024 case SUPPAGINGMODE_AMD64_GLOBAL:
3025 case SUPPAGINGMODE_AMD64_NX:
3026 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3027 enmShadowMode = PGMMODE_PAE;
3028 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3029 break;
3030
3031 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3032 }
3033 break;
3034
3035 case PGMMODE_PAE:
3036 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3037 switch (enmHostMode)
3038 {
3039 case SUPPAGINGMODE_32_BIT:
3040 case SUPPAGINGMODE_32_BIT_GLOBAL:
3041 enmShadowMode = PGMMODE_PAE;
3042 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3043 break;
3044
3045 case SUPPAGINGMODE_PAE:
3046 case SUPPAGINGMODE_PAE_NX:
3047 case SUPPAGINGMODE_PAE_GLOBAL:
3048 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3049 enmShadowMode = PGMMODE_PAE;
3050 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3051 break;
3052
3053 case SUPPAGINGMODE_AMD64:
3054 case SUPPAGINGMODE_AMD64_GLOBAL:
3055 case SUPPAGINGMODE_AMD64_NX:
3056 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3057 enmShadowMode = PGMMODE_PAE;
3058 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3059 break;
3060
3061 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3062 }
3063 break;
3064
3065 case PGMMODE_AMD64:
3066 case PGMMODE_AMD64_NX:
3067 switch (enmHostMode)
3068 {
3069 case SUPPAGINGMODE_32_BIT:
3070 case SUPPAGINGMODE_32_BIT_GLOBAL:
3071 enmShadowMode = PGMMODE_PAE;
3072 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3073 break;
3074
3075 case SUPPAGINGMODE_PAE:
3076 case SUPPAGINGMODE_PAE_NX:
3077 case SUPPAGINGMODE_PAE_GLOBAL:
3078 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3079 enmShadowMode = PGMMODE_PAE;
3080 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3081 break;
3082
3083 case SUPPAGINGMODE_AMD64:
3084 case SUPPAGINGMODE_AMD64_GLOBAL:
3085 case SUPPAGINGMODE_AMD64_NX:
3086 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3087 enmShadowMode = PGMMODE_AMD64;
3088 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3089 break;
3090
3091 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3092 }
3093 break;
3094
3095
3096 default:
3097 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3098 return PGMMODE_INVALID;
3099 }
3100 /* Override the shadow mode is nested paging is active. */
3101 if (HWACCMIsNestedPagingActive(pVM))
3102 enmShadowMode = HWACCMGetPagingMode(pVM);
3103
3104 *penmSwitcher = enmSwitcher;
3105 return enmShadowMode;
3106}
3107
3108/**
3109 * Performs the actual mode change.
3110 * This is called by PGMChangeMode and pgmR3InitPaging().
3111 *
3112 * @returns VBox status code.
3113 * @param pVM VM handle.
3114 * @param enmGuestMode The new guest mode. This is assumed to be different from
3115 * the current mode.
3116 */
3117VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3118{
3119 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3120 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3121
3122 /*
3123 * Calc the shadow mode and switcher.
3124 */
3125 VMMSWITCHER enmSwitcher;
3126 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3127 if (enmSwitcher != VMMSWITCHER_INVALID)
3128 {
3129 /*
3130 * Select new switcher.
3131 */
3132 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3133 if (VBOX_FAILURE(rc))
3134 {
3135 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3136 return rc;
3137 }
3138 }
3139
3140 /*
3141 * Exit old mode(s).
3142 */
3143 /* shadow */
3144 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3145 {
3146 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3147 if (PGM_SHW_PFN(Exit, pVM))
3148 {
3149 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3150 if (VBOX_FAILURE(rc))
3151 {
3152 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3153 return rc;
3154 }
3155 }
3156
3157 }
3158 else
3159 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3160
3161 /* guest */
3162 if (PGM_GST_PFN(Exit, pVM))
3163 {
3164 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3165 if (VBOX_FAILURE(rc))
3166 {
3167 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3168 return rc;
3169 }
3170 }
3171
3172 /*
3173 * Load new paging mode data.
3174 */
3175 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3176
3177 /*
3178 * Enter new shadow mode (if changed).
3179 */
3180 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3181 {
3182 int rc;
3183 pVM->pgm.s.enmShadowMode = enmShadowMode;
3184 switch (enmShadowMode)
3185 {
3186 case PGMMODE_32_BIT:
3187 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3188 break;
3189 case PGMMODE_PAE:
3190 case PGMMODE_PAE_NX:
3191 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3192 break;
3193 case PGMMODE_AMD64:
3194 case PGMMODE_AMD64_NX:
3195 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3196 break;
3197 case PGMMODE_NESTED:
3198 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3199 break;
3200 case PGMMODE_EPT:
3201 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3202 break;
3203 case PGMMODE_REAL:
3204 case PGMMODE_PROTECTED:
3205 default:
3206 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3207 return VERR_INTERNAL_ERROR;
3208 }
3209 if (VBOX_FAILURE(rc))
3210 {
3211 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3212 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3213 return rc;
3214 }
3215 }
3216
3217 /* We must flush the PGM pool cache if the guest mode changes; we don't always
3218 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3219 * the shadow page tables.
3220 *
3221 * That only applies when switching between paging and non-paging modes.
3222 *
3223 * @todo A20 setting
3224 */
3225 if ( pVM->pgm.s.CTX_SUFF(pPool)
3226 && !HWACCMIsNestedPagingActive(pVM)
3227 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3228 {
3229 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3230 pgmPoolFlushAll(pVM);
3231 }
3232
3233 /*
3234 * Enter the new guest and shadow+guest modes.
3235 */
3236 int rc = -1;
3237 int rc2 = -1;
3238 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3239 pVM->pgm.s.enmGuestMode = enmGuestMode;
3240 switch (enmGuestMode)
3241 {
3242 case PGMMODE_REAL:
3243 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3244 switch (pVM->pgm.s.enmShadowMode)
3245 {
3246 case PGMMODE_32_BIT:
3247 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3248 break;
3249 case PGMMODE_PAE:
3250 case PGMMODE_PAE_NX:
3251 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3252 break;
3253 case PGMMODE_NESTED:
3254 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3255 break;
3256 case PGMMODE_EPT:
3257 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3258 break;
3259 case PGMMODE_AMD64:
3260 case PGMMODE_AMD64_NX:
3261 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3262 default: AssertFailed(); break;
3263 }
3264 break;
3265
3266 case PGMMODE_PROTECTED:
3267 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3268 switch (pVM->pgm.s.enmShadowMode)
3269 {
3270 case PGMMODE_32_BIT:
3271 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3272 break;
3273 case PGMMODE_PAE:
3274 case PGMMODE_PAE_NX:
3275 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3276 break;
3277 case PGMMODE_NESTED:
3278 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3279 break;
3280 case PGMMODE_EPT:
3281 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3282 break;
3283 case PGMMODE_AMD64:
3284 case PGMMODE_AMD64_NX:
3285 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3286 default: AssertFailed(); break;
3287 }
3288 break;
3289
3290 case PGMMODE_32_BIT:
3291 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3292 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3293 switch (pVM->pgm.s.enmShadowMode)
3294 {
3295 case PGMMODE_32_BIT:
3296 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3297 break;
3298 case PGMMODE_PAE:
3299 case PGMMODE_PAE_NX:
3300 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3301 break;
3302 case PGMMODE_NESTED:
3303 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3304 break;
3305 case PGMMODE_EPT:
3306 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3307 break;
3308 case PGMMODE_AMD64:
3309 case PGMMODE_AMD64_NX:
3310 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3311 default: AssertFailed(); break;
3312 }
3313 break;
3314
3315 case PGMMODE_PAE_NX:
3316 case PGMMODE_PAE:
3317 {
3318 uint32_t u32Dummy, u32Features;
3319
3320 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3321 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3322 {
3323 /* Pause first, then inform Main. */
3324 rc = VMR3SuspendNoSave(pVM);
3325 AssertRC(rc);
3326
3327 VMSetRuntimeError(pVM, true, "PAEmode",
3328 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3329 /* we must return TRUE here otherwise the recompiler will assert */
3330 return VINF_SUCCESS;
3331 }
3332 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3333 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3334 switch (pVM->pgm.s.enmShadowMode)
3335 {
3336 case PGMMODE_PAE:
3337 case PGMMODE_PAE_NX:
3338 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3339 break;
3340 case PGMMODE_NESTED:
3341 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3342 break;
3343 case PGMMODE_EPT:
3344 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3345 break;
3346 case PGMMODE_32_BIT:
3347 case PGMMODE_AMD64:
3348 case PGMMODE_AMD64_NX:
3349 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3350 default: AssertFailed(); break;
3351 }
3352 break;
3353 }
3354
3355 case PGMMODE_AMD64_NX:
3356 case PGMMODE_AMD64:
3357 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3358 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3359 switch (pVM->pgm.s.enmShadowMode)
3360 {
3361 case PGMMODE_AMD64:
3362 case PGMMODE_AMD64_NX:
3363 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3364 break;
3365 case PGMMODE_NESTED:
3366 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3367 break;
3368 case PGMMODE_EPT:
3369 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3370 break;
3371 case PGMMODE_32_BIT:
3372 case PGMMODE_PAE:
3373 case PGMMODE_PAE_NX:
3374 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3375 default: AssertFailed(); break;
3376 }
3377 break;
3378
3379 default:
3380 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3381 rc = VERR_NOT_IMPLEMENTED;
3382 break;
3383 }
3384
3385 /* status codes. */
3386 AssertRC(rc);
3387 AssertRC(rc2);
3388 if (VBOX_SUCCESS(rc))
3389 {
3390 rc = rc2;
3391 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3392 rc = VINF_SUCCESS;
3393 }
3394
3395 /*
3396 * Notify SELM so it can update the TSSes with correct CR3s.
3397 */
3398 SELMR3PagingModeChanged(pVM);
3399
3400 /* Notify HWACCM as well. */
3401 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3402 return rc;
3403}
3404
3405
3406/**
3407 * Dumps a PAE shadow page table.
3408 *
3409 * @returns VBox status code (VINF_SUCCESS).
3410 * @param pVM The VM handle.
3411 * @param pPT Pointer to the page table.
3412 * @param u64Address The virtual address of the page table starts.
3413 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3414 * @param cMaxDepth The maxium depth.
3415 * @param pHlp Pointer to the output functions.
3416 */
3417static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3418{
3419 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3420 {
3421 X86PTEPAE Pte = pPT->a[i];
3422 if (Pte.n.u1Present)
3423 {
3424 pHlp->pfnPrintf(pHlp,
3425 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3426 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3427 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3428 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3429 Pte.n.u1Write ? 'W' : 'R',
3430 Pte.n.u1User ? 'U' : 'S',
3431 Pte.n.u1Accessed ? 'A' : '-',
3432 Pte.n.u1Dirty ? 'D' : '-',
3433 Pte.n.u1Global ? 'G' : '-',
3434 Pte.n.u1WriteThru ? "WT" : "--",
3435 Pte.n.u1CacheDisable? "CD" : "--",
3436 Pte.n.u1PAT ? "AT" : "--",
3437 Pte.n.u1NoExecute ? "NX" : "--",
3438 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3439 Pte.u & RT_BIT(10) ? '1' : '0',
3440 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3441 Pte.u & X86_PTE_PAE_PG_MASK);
3442 }
3443 }
3444 return VINF_SUCCESS;
3445}
3446
3447
3448/**
3449 * Dumps a PAE shadow page directory table.
3450 *
3451 * @returns VBox status code (VINF_SUCCESS).
3452 * @param pVM The VM handle.
3453 * @param HCPhys The physical address of the page directory table.
3454 * @param u64Address The virtual address of the page table starts.
3455 * @param cr4 The CR4, PSE is currently used.
3456 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3457 * @param cMaxDepth The maxium depth.
3458 * @param pHlp Pointer to the output functions.
3459 */
3460static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3461{
3462 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3463 if (!pPD)
3464 {
3465 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3466 fLongMode ? 16 : 8, u64Address, HCPhys);
3467 return VERR_INVALID_PARAMETER;
3468 }
3469 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3470
3471 int rc = VINF_SUCCESS;
3472 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3473 {
3474 X86PDEPAE Pde = pPD->a[i];
3475 if (Pde.n.u1Present)
3476 {
3477 if (fBigPagesSupported && Pde.b.u1Size)
3478 pHlp->pfnPrintf(pHlp,
3479 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3480 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3481 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3482 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3483 Pde.b.u1Write ? 'W' : 'R',
3484 Pde.b.u1User ? 'U' : 'S',
3485 Pde.b.u1Accessed ? 'A' : '-',
3486 Pde.b.u1Dirty ? 'D' : '-',
3487 Pde.b.u1Global ? 'G' : '-',
3488 Pde.b.u1WriteThru ? "WT" : "--",
3489 Pde.b.u1CacheDisable? "CD" : "--",
3490 Pde.b.u1PAT ? "AT" : "--",
3491 Pde.b.u1NoExecute ? "NX" : "--",
3492 Pde.u & RT_BIT_64(9) ? '1' : '0',
3493 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3494 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3495 Pde.u & X86_PDE_PAE_PG_MASK);
3496 else
3497 {
3498 pHlp->pfnPrintf(pHlp,
3499 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3500 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3501 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3502 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3503 Pde.n.u1Write ? 'W' : 'R',
3504 Pde.n.u1User ? 'U' : 'S',
3505 Pde.n.u1Accessed ? 'A' : '-',
3506 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3507 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3508 Pde.n.u1WriteThru ? "WT" : "--",
3509 Pde.n.u1CacheDisable? "CD" : "--",
3510 Pde.n.u1NoExecute ? "NX" : "--",
3511 Pde.u & RT_BIT_64(9) ? '1' : '0',
3512 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3513 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3514 Pde.u & X86_PDE_PAE_PG_MASK);
3515 if (cMaxDepth >= 1)
3516 {
3517 /** @todo what about using the page pool for mapping PTs? */
3518 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3519 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3520 PX86PTPAE pPT = NULL;
3521 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3522 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3523 else
3524 {
3525 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3526 {
3527 uint64_t off = u64AddressPT - pMap->GCPtr;
3528 if (off < pMap->cb)
3529 {
3530 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3531 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3532 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3533 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3534 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3535 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3536 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3537 }
3538 }
3539 }
3540 int rc2 = VERR_INVALID_PARAMETER;
3541 if (pPT)
3542 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3543 else
3544 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3545 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3546 if (rc2 < rc && VBOX_SUCCESS(rc))
3547 rc = rc2;
3548 }
3549 }
3550 }
3551 }
3552 return rc;
3553}
3554
3555
3556/**
3557 * Dumps a PAE shadow page directory pointer table.
3558 *
3559 * @returns VBox status code (VINF_SUCCESS).
3560 * @param pVM The VM handle.
3561 * @param HCPhys The physical address of the page directory pointer table.
3562 * @param u64Address The virtual address of the page table starts.
3563 * @param cr4 The CR4, PSE is currently used.
3564 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3565 * @param cMaxDepth The maxium depth.
3566 * @param pHlp Pointer to the output functions.
3567 */
3568static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3569{
3570 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3571 if (!pPDPT)
3572 {
3573 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3574 fLongMode ? 16 : 8, u64Address, HCPhys);
3575 return VERR_INVALID_PARAMETER;
3576 }
3577
3578 int rc = VINF_SUCCESS;
3579 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3580 for (unsigned i = 0; i < c; i++)
3581 {
3582 X86PDPE Pdpe = pPDPT->a[i];
3583 if (Pdpe.n.u1Present)
3584 {
3585 if (fLongMode)
3586 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3587 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3588 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3589 Pdpe.lm.u1Write ? 'W' : 'R',
3590 Pdpe.lm.u1User ? 'U' : 'S',
3591 Pdpe.lm.u1Accessed ? 'A' : '-',
3592 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3593 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3594 Pdpe.lm.u1WriteThru ? "WT" : "--",
3595 Pdpe.lm.u1CacheDisable? "CD" : "--",
3596 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3597 Pdpe.lm.u1NoExecute ? "NX" : "--",
3598 Pdpe.u & RT_BIT(9) ? '1' : '0',
3599 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3600 Pdpe.u & RT_BIT(11) ? '1' : '0',
3601 Pdpe.u & X86_PDPE_PG_MASK);
3602 else
3603 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3604 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3605 i << X86_PDPT_SHIFT,
3606 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3607 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3608 Pdpe.n.u1WriteThru ? "WT" : "--",
3609 Pdpe.n.u1CacheDisable? "CD" : "--",
3610 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3611 Pdpe.u & RT_BIT(9) ? '1' : '0',
3612 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3613 Pdpe.u & RT_BIT(11) ? '1' : '0',
3614 Pdpe.u & X86_PDPE_PG_MASK);
3615 if (cMaxDepth >= 1)
3616 {
3617 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3618 cr4, fLongMode, cMaxDepth - 1, pHlp);
3619 if (rc2 < rc && VBOX_SUCCESS(rc))
3620 rc = rc2;
3621 }
3622 }
3623 }
3624 return rc;
3625}
3626
3627
3628/**
3629 * Dumps a 32-bit shadow page table.
3630 *
3631 * @returns VBox status code (VINF_SUCCESS).
3632 * @param pVM The VM handle.
3633 * @param HCPhys The physical address of the table.
3634 * @param cr4 The CR4, PSE is currently used.
3635 * @param cMaxDepth The maxium depth.
3636 * @param pHlp Pointer to the output functions.
3637 */
3638static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3639{
3640 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3641 if (!pPML4)
3642 {
3643 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3644 return VERR_INVALID_PARAMETER;
3645 }
3646
3647 int rc = VINF_SUCCESS;
3648 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3649 {
3650 X86PML4E Pml4e = pPML4->a[i];
3651 if (Pml4e.n.u1Present)
3652 {
3653 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3654 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3655 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3656 u64Address,
3657 Pml4e.n.u1Write ? 'W' : 'R',
3658 Pml4e.n.u1User ? 'U' : 'S',
3659 Pml4e.n.u1Accessed ? 'A' : '-',
3660 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3661 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3662 Pml4e.n.u1WriteThru ? "WT" : "--",
3663 Pml4e.n.u1CacheDisable? "CD" : "--",
3664 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3665 Pml4e.n.u1NoExecute ? "NX" : "--",
3666 Pml4e.u & RT_BIT(9) ? '1' : '0',
3667 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3668 Pml4e.u & RT_BIT(11) ? '1' : '0',
3669 Pml4e.u & X86_PML4E_PG_MASK);
3670
3671 if (cMaxDepth >= 1)
3672 {
3673 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3674 if (rc2 < rc && VBOX_SUCCESS(rc))
3675 rc = rc2;
3676 }
3677 }
3678 }
3679 return rc;
3680}
3681
3682
3683/**
3684 * Dumps a 32-bit shadow page table.
3685 *
3686 * @returns VBox status code (VINF_SUCCESS).
3687 * @param pVM The VM handle.
3688 * @param pPT Pointer to the page table.
3689 * @param u32Address The virtual address this table starts at.
3690 * @param pHlp Pointer to the output functions.
3691 */
3692int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3693{
3694 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3695 {
3696 X86PTE Pte = pPT->a[i];
3697 if (Pte.n.u1Present)
3698 {
3699 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3700 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3701 u32Address + (i << X86_PT_SHIFT),
3702 Pte.n.u1Write ? 'W' : 'R',
3703 Pte.n.u1User ? 'U' : 'S',
3704 Pte.n.u1Accessed ? 'A' : '-',
3705 Pte.n.u1Dirty ? 'D' : '-',
3706 Pte.n.u1Global ? 'G' : '-',
3707 Pte.n.u1WriteThru ? "WT" : "--",
3708 Pte.n.u1CacheDisable? "CD" : "--",
3709 Pte.n.u1PAT ? "AT" : "--",
3710 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3711 Pte.u & RT_BIT(10) ? '1' : '0',
3712 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3713 Pte.u & X86_PDE_PG_MASK);
3714 }
3715 }
3716 return VINF_SUCCESS;
3717}
3718
3719
3720/**
3721 * Dumps a 32-bit shadow page directory and page tables.
3722 *
3723 * @returns VBox status code (VINF_SUCCESS).
3724 * @param pVM The VM handle.
3725 * @param cr3 The root of the hierarchy.
3726 * @param cr4 The CR4, PSE is currently used.
3727 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3728 * @param pHlp Pointer to the output functions.
3729 */
3730int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3731{
3732 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3733 if (!pPD)
3734 {
3735 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3736 return VERR_INVALID_PARAMETER;
3737 }
3738
3739 int rc = VINF_SUCCESS;
3740 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3741 {
3742 X86PDE Pde = pPD->a[i];
3743 if (Pde.n.u1Present)
3744 {
3745 const uint32_t u32Address = i << X86_PD_SHIFT;
3746 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3747 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3748 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3749 u32Address,
3750 Pde.b.u1Write ? 'W' : 'R',
3751 Pde.b.u1User ? 'U' : 'S',
3752 Pde.b.u1Accessed ? 'A' : '-',
3753 Pde.b.u1Dirty ? 'D' : '-',
3754 Pde.b.u1Global ? 'G' : '-',
3755 Pde.b.u1WriteThru ? "WT" : "--",
3756 Pde.b.u1CacheDisable? "CD" : "--",
3757 Pde.b.u1PAT ? "AT" : "--",
3758 Pde.u & RT_BIT_64(9) ? '1' : '0',
3759 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3760 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3761 Pde.u & X86_PDE4M_PG_MASK);
3762 else
3763 {
3764 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3765 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3766 u32Address,
3767 Pde.n.u1Write ? 'W' : 'R',
3768 Pde.n.u1User ? 'U' : 'S',
3769 Pde.n.u1Accessed ? 'A' : '-',
3770 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3771 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3772 Pde.n.u1WriteThru ? "WT" : "--",
3773 Pde.n.u1CacheDisable? "CD" : "--",
3774 Pde.u & RT_BIT_64(9) ? '1' : '0',
3775 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3776 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3777 Pde.u & X86_PDE_PG_MASK);
3778 if (cMaxDepth >= 1)
3779 {
3780 /** @todo what about using the page pool for mapping PTs? */
3781 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3782 PX86PT pPT = NULL;
3783 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3784 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3785 else
3786 {
3787 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3788 if (u32Address - pMap->GCPtr < pMap->cb)
3789 {
3790 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3791 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3792 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3793 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3794 pPT = pMap->aPTs[iPDE].pPTR3;
3795 }
3796 }
3797 int rc2 = VERR_INVALID_PARAMETER;
3798 if (pPT)
3799 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3800 else
3801 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3802 if (rc2 < rc && VBOX_SUCCESS(rc))
3803 rc = rc2;
3804 }
3805 }
3806 }
3807 }
3808
3809 return rc;
3810}
3811
3812
3813/**
3814 * Dumps a 32-bit shadow page table.
3815 *
3816 * @returns VBox status code (VINF_SUCCESS).
3817 * @param pVM The VM handle.
3818 * @param pPT Pointer to the page table.
3819 * @param u32Address The virtual address this table starts at.
3820 * @param PhysSearch Address to search for.
3821 */
3822int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3823{
3824 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3825 {
3826 X86PTE Pte = pPT->a[i];
3827 if (Pte.n.u1Present)
3828 {
3829 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3830 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3831 u32Address + (i << X86_PT_SHIFT),
3832 Pte.n.u1Write ? 'W' : 'R',
3833 Pte.n.u1User ? 'U' : 'S',
3834 Pte.n.u1Accessed ? 'A' : '-',
3835 Pte.n.u1Dirty ? 'D' : '-',
3836 Pte.n.u1Global ? 'G' : '-',
3837 Pte.n.u1WriteThru ? "WT" : "--",
3838 Pte.n.u1CacheDisable? "CD" : "--",
3839 Pte.n.u1PAT ? "AT" : "--",
3840 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3841 Pte.u & RT_BIT(10) ? '1' : '0',
3842 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3843 Pte.u & X86_PDE_PG_MASK));
3844
3845 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3846 {
3847 uint64_t fPageShw = 0;
3848 RTHCPHYS pPhysHC = 0;
3849
3850 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3851 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3852 }
3853 }
3854 }
3855 return VINF_SUCCESS;
3856}
3857
3858
3859/**
3860 * Dumps a 32-bit guest page directory and page tables.
3861 *
3862 * @returns VBox status code (VINF_SUCCESS).
3863 * @param pVM The VM handle.
3864 * @param cr3 The root of the hierarchy.
3865 * @param cr4 The CR4, PSE is currently used.
3866 * @param PhysSearch Address to search for.
3867 */
3868VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3869{
3870 bool fLongMode = false;
3871 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3872 PX86PD pPD = 0;
3873
3874 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3875 if (VBOX_FAILURE(rc) || !pPD)
3876 {
3877 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3878 return VERR_INVALID_PARAMETER;
3879 }
3880
3881 Log(("cr3=%08x cr4=%08x%s\n"
3882 "%-*s P - Present\n"
3883 "%-*s | R/W - Read (0) / Write (1)\n"
3884 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3885 "%-*s | | | A - Accessed\n"
3886 "%-*s | | | | D - Dirty\n"
3887 "%-*s | | | | | G - Global\n"
3888 "%-*s | | | | | | WT - Write thru\n"
3889 "%-*s | | | | | | | CD - Cache disable\n"
3890 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3891 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3892 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3893 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3894 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3895 "%-*s Level | | | | | | | | | | | | Page\n"
3896 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3897 - W U - - - -- -- -- -- -- 010 */
3898 , cr3, cr4, fLongMode ? " Long Mode" : "",
3899 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3900 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3901
3902 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3903 {
3904 X86PDE Pde = pPD->a[i];
3905 if (Pde.n.u1Present)
3906 {
3907 const uint32_t u32Address = i << X86_PD_SHIFT;
3908
3909 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3910 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3911 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3912 u32Address,
3913 Pde.b.u1Write ? 'W' : 'R',
3914 Pde.b.u1User ? 'U' : 'S',
3915 Pde.b.u1Accessed ? 'A' : '-',
3916 Pde.b.u1Dirty ? 'D' : '-',
3917 Pde.b.u1Global ? 'G' : '-',
3918 Pde.b.u1WriteThru ? "WT" : "--",
3919 Pde.b.u1CacheDisable? "CD" : "--",
3920 Pde.b.u1PAT ? "AT" : "--",
3921 Pde.u & RT_BIT(9) ? '1' : '0',
3922 Pde.u & RT_BIT(10) ? '1' : '0',
3923 Pde.u & RT_BIT(11) ? '1' : '0',
3924 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3925 /** @todo PhysSearch */
3926 else
3927 {
3928 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3929 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3930 u32Address,
3931 Pde.n.u1Write ? 'W' : 'R',
3932 Pde.n.u1User ? 'U' : 'S',
3933 Pde.n.u1Accessed ? 'A' : '-',
3934 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3935 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3936 Pde.n.u1WriteThru ? "WT" : "--",
3937 Pde.n.u1CacheDisable? "CD" : "--",
3938 Pde.u & RT_BIT(9) ? '1' : '0',
3939 Pde.u & RT_BIT(10) ? '1' : '0',
3940 Pde.u & RT_BIT(11) ? '1' : '0',
3941 Pde.u & X86_PDE_PG_MASK));
3942 ////if (cMaxDepth >= 1)
3943 {
3944 /** @todo what about using the page pool for mapping PTs? */
3945 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3946 PX86PT pPT = NULL;
3947
3948 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3949
3950 int rc2 = VERR_INVALID_PARAMETER;
3951 if (pPT)
3952 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3953 else
3954 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3955 if (rc2 < rc && VBOX_SUCCESS(rc))
3956 rc = rc2;
3957 }
3958 }
3959 }
3960 }
3961
3962 return rc;
3963}
3964
3965
3966/**
3967 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3968 *
3969 * @returns VBox status code (VINF_SUCCESS).
3970 * @param pVM The VM handle.
3971 * @param cr3 The root of the hierarchy.
3972 * @param cr4 The cr4, only PAE and PSE is currently used.
3973 * @param fLongMode Set if long mode, false if not long mode.
3974 * @param cMaxDepth Number of levels to dump.
3975 * @param pHlp Pointer to the output functions.
3976 */
3977VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3978{
3979 if (!pHlp)
3980 pHlp = DBGFR3InfoLogHlp();
3981 if (!cMaxDepth)
3982 return VINF_SUCCESS;
3983 const unsigned cch = fLongMode ? 16 : 8;
3984 pHlp->pfnPrintf(pHlp,
3985 "cr3=%08x cr4=%08x%s\n"
3986 "%-*s P - Present\n"
3987 "%-*s | R/W - Read (0) / Write (1)\n"
3988 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3989 "%-*s | | | A - Accessed\n"
3990 "%-*s | | | | D - Dirty\n"
3991 "%-*s | | | | | G - Global\n"
3992 "%-*s | | | | | | WT - Write thru\n"
3993 "%-*s | | | | | | | CD - Cache disable\n"
3994 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3995 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3996 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3997 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3998 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3999 "%-*s Level | | | | | | | | | | | | Page\n"
4000 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4001 - W U - - - -- -- -- -- -- 010 */
4002 , cr3, cr4, fLongMode ? " Long Mode" : "",
4003 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4004 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4005 if (cr4 & X86_CR4_PAE)
4006 {
4007 if (fLongMode)
4008 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4009 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4010 }
4011 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4012}
4013
4014
4015
4016#ifdef VBOX_WITH_DEBUGGER
4017/**
4018 * The '.pgmram' command.
4019 *
4020 * @returns VBox status.
4021 * @param pCmd Pointer to the command descriptor (as registered).
4022 * @param pCmdHlp Pointer to command helper functions.
4023 * @param pVM Pointer to the current VM (if any).
4024 * @param paArgs Pointer to (readonly) array of arguments.
4025 * @param cArgs Number of arguments in the array.
4026 */
4027static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4028{
4029 /*
4030 * Validate input.
4031 */
4032 if (!pVM)
4033 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4034 if (!pVM->pgm.s.pRamRangesRC)
4035 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4036
4037 /*
4038 * Dump the ranges.
4039 */
4040 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4041 PPGMRAMRANGE pRam;
4042 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4043 {
4044 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4045 "%RGp - %RGp %p\n",
4046 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4047 if (VBOX_FAILURE(rc))
4048 return rc;
4049 }
4050
4051 return VINF_SUCCESS;
4052}
4053
4054
4055/**
4056 * The '.pgmmap' command.
4057 *
4058 * @returns VBox status.
4059 * @param pCmd Pointer to the command descriptor (as registered).
4060 * @param pCmdHlp Pointer to command helper functions.
4061 * @param pVM Pointer to the current VM (if any).
4062 * @param paArgs Pointer to (readonly) array of arguments.
4063 * @param cArgs Number of arguments in the array.
4064 */
4065static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4066{
4067 /*
4068 * Validate input.
4069 */
4070 if (!pVM)
4071 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4072 if (!pVM->pgm.s.pMappingsR3)
4073 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4074
4075 /*
4076 * Print message about the fixedness of the mappings.
4077 */
4078 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4079 if (VBOX_FAILURE(rc))
4080 return rc;
4081
4082 /*
4083 * Dump the ranges.
4084 */
4085 PPGMMAPPING pCur;
4086 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4087 {
4088 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4089 "%08x - %08x %s\n",
4090 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4091 if (VBOX_FAILURE(rc))
4092 return rc;
4093 }
4094
4095 return VINF_SUCCESS;
4096}
4097
4098
4099/**
4100 * The '.pgmsync' command.
4101 *
4102 * @returns VBox status.
4103 * @param pCmd Pointer to the command descriptor (as registered).
4104 * @param pCmdHlp Pointer to command helper functions.
4105 * @param pVM Pointer to the current VM (if any).
4106 * @param paArgs Pointer to (readonly) array of arguments.
4107 * @param cArgs Number of arguments in the array.
4108 */
4109static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4110{
4111 /*
4112 * Validate input.
4113 */
4114 if (!pVM)
4115 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4116
4117 /*
4118 * Force page directory sync.
4119 */
4120 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4121
4122 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4123 if (VBOX_FAILURE(rc))
4124 return rc;
4125
4126 return VINF_SUCCESS;
4127}
4128
4129
4130#ifdef VBOX_STRICT
4131/**
4132 * The '.pgmassertcr3' command.
4133 *
4134 * @returns VBox status.
4135 * @param pCmd Pointer to the command descriptor (as registered).
4136 * @param pCmdHlp Pointer to command helper functions.
4137 * @param pVM Pointer to the current VM (if any).
4138 * @param paArgs Pointer to (readonly) array of arguments.
4139 * @param cArgs Number of arguments in the array.
4140 */
4141static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4142{
4143 /*
4144 * Validate input.
4145 */
4146 if (!pVM)
4147 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4148
4149 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4150 if (VBOX_FAILURE(rc))
4151 return rc;
4152
4153 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4154
4155 return VINF_SUCCESS;
4156}
4157#endif
4158
4159/**
4160 * The '.pgmsyncalways' command.
4161 *
4162 * @returns VBox status.
4163 * @param pCmd Pointer to the command descriptor (as registered).
4164 * @param pCmdHlp Pointer to command helper functions.
4165 * @param pVM Pointer to the current VM (if any).
4166 * @param paArgs Pointer to (readonly) array of arguments.
4167 * @param cArgs Number of arguments in the array.
4168 */
4169static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4170{
4171 /*
4172 * Validate input.
4173 */
4174 if (!pVM)
4175 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4176
4177 /*
4178 * Force page directory sync.
4179 */
4180 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4181 {
4182 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4183 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4184 }
4185 else
4186 {
4187 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4188 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4189 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4190 }
4191}
4192
4193#endif
4194
4195/**
4196 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4197 */
4198typedef struct PGMCHECKINTARGS
4199{
4200 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4201 PPGMPHYSHANDLER pPrevPhys;
4202 PPGMVIRTHANDLER pPrevVirt;
4203 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4204 PVM pVM;
4205} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4206
4207/**
4208 * Validate a node in the physical handler tree.
4209 *
4210 * @returns 0 on if ok, other wise 1.
4211 * @param pNode The handler node.
4212 * @param pvUser pVM.
4213 */
4214static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4215{
4216 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4217 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4218 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4219 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4220 AssertReleaseMsg( !pArgs->pPrevPhys
4221 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4222 ("pPrevPhys=%p %VGp-%VGp %s\n"
4223 " pCur=%p %VGp-%VGp %s\n",
4224 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4225 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4226 pArgs->pPrevPhys = pCur;
4227 return 0;
4228}
4229
4230
4231/**
4232 * Validate a node in the virtual handler tree.
4233 *
4234 * @returns 0 on if ok, other wise 1.
4235 * @param pNode The handler node.
4236 * @param pvUser pVM.
4237 */
4238static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4239{
4240 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4241 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4242 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4243 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4244 AssertReleaseMsg( !pArgs->pPrevVirt
4245 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4246 ("pPrevVirt=%p %VGv-%VGv %s\n"
4247 " pCur=%p %VGv-%VGv %s\n",
4248 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4249 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4250 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4251 {
4252 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4253 ("pCur=%p %VGv-%VGv %s\n"
4254 "iPage=%d offVirtHandle=%#x expected %#x\n",
4255 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4256 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4257 }
4258 pArgs->pPrevVirt = pCur;
4259 return 0;
4260}
4261
4262
4263/**
4264 * Validate a node in the virtual handler tree.
4265 *
4266 * @returns 0 on if ok, other wise 1.
4267 * @param pNode The handler node.
4268 * @param pvUser pVM.
4269 */
4270static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4271{
4272 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4273 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4274 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4275 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4276 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4277 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4278 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4279 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4280 " pCur=%p %VGp-%VGp\n",
4281 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4282 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4283 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4284 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4285 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4286 " pCur=%p %VGp-%VGp\n",
4287 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4288 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4289 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4290 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4291 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4292 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4293 {
4294 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4295 for (;;)
4296 {
4297 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4298 AssertReleaseMsg(pCur2 != pCur,
4299 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4300 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4301 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4302 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4303 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4304 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4305 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4306 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4307 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4308 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4309 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4310 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4311 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4312 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4313 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4314 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4315 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4316 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4317 break;
4318 }
4319 }
4320
4321 pArgs->pPrevPhys2Virt = pCur;
4322 return 0;
4323}
4324
4325
4326/**
4327 * Perform an integrity check on the PGM component.
4328 *
4329 * @returns VINF_SUCCESS if everything is fine.
4330 * @returns VBox error status after asserting on integrity breach.
4331 * @param pVM The VM handle.
4332 */
4333VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4334{
4335 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4336
4337 /*
4338 * Check the trees.
4339 */
4340 int cErrors = 0;
4341 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4342 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4343 PGMCHECKINTARGS Args = s_LeftToRight;
4344 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4345 Args = s_RightToLeft;
4346 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4347 Args = s_LeftToRight;
4348 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4349 Args = s_RightToLeft;
4350 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4351 Args = s_LeftToRight;
4352 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4353 Args = s_RightToLeft;
4354 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4355 Args = s_LeftToRight;
4356 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4357 Args = s_RightToLeft;
4358 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4359
4360 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4361}
4362
4363
4364/**
4365 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4366 *
4367 * @returns VBox status code.
4368 * @param pVM VM handle.
4369 * @param fEnable Enable or disable shadow mappings
4370 */
4371VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4372{
4373 pVM->pgm.s.fDisableMappings = !fEnable;
4374
4375 uint32_t cb;
4376 int rc = PGMR3MappingsSize(pVM, &cb);
4377 AssertRCReturn(rc, rc);
4378
4379 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4380 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4381 AssertRCReturn(rc, rc);
4382
4383 return VINF_SUCCESS;
4384}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette