VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 13085

Last change on this file since 13085 was 13085, checked in by vboxsync, 16 years ago

#1865: More PGM changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 197.6 KB
Line 
1/* $Id: PGM.cpp 13085 2008-10-08 15:12:13Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608
609/*******************************************************************************
610* Internal Functions *
611*******************************************************************************/
612static int pgmR3InitPaging(PVM pVM);
613static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
615static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
616static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
617static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
618static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
619#ifdef VBOX_STRICT
620static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
621#endif
622static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
623static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
624static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
625static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
626static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
627
628#ifdef VBOX_WITH_STATISTICS
629static void pgmR3InitStats(PVM pVM);
630#endif
631
632#ifdef VBOX_WITH_DEBUGGER
633/** @todo all but the two last commands must be converted to 'info'. */
634static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638# ifdef VBOX_STRICT
639static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# endif
641#endif
642
643
644/*******************************************************************************
645* Global Variables *
646*******************************************************************************/
647#ifdef VBOX_WITH_DEBUGGER
648/** Command descriptors. */
649static const DBGCCMD g_aCmds[] =
650{
651 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
652 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
653 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
654 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
655#ifdef VBOX_STRICT
656 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
657#endif
658 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
659};
660#endif
661
662
663
664
665/*
666 * Shadow - 32-bit mode
667 */
668#define PGM_SHW_TYPE PGM_TYPE_32BIT
669#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
670#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
671#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
672#include "PGMShw.h"
673
674/* Guest - real mode */
675#define PGM_GST_TYPE PGM_TYPE_REAL
676#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
677#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
678#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
679#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
680#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
681#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
682#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
683#include "PGMGst.h"
684#include "PGMBth.h"
685#undef BTH_PGMPOOLKIND_PT_FOR_PT
686#undef PGM_BTH_NAME
687#undef PGM_BTH_NAME_RC_STR
688#undef PGM_BTH_NAME_R0_STR
689#undef PGM_GST_TYPE
690#undef PGM_GST_NAME
691#undef PGM_GST_NAME_RC_STR
692#undef PGM_GST_NAME_R0_STR
693
694/* Guest - protected mode */
695#define PGM_GST_TYPE PGM_TYPE_PROT
696#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
697#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
698#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
699#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
700#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
701#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
702#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
703#include "PGMGst.h"
704#include "PGMBth.h"
705#undef BTH_PGMPOOLKIND_PT_FOR_PT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - 32-bit mode */
715#define PGM_GST_TYPE PGM_TYPE_32BIT
716#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
723#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
724#include "PGMGst.h"
725#include "PGMBth.h"
726#undef BTH_PGMPOOLKIND_PT_FOR_BIG
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef PGM_BTH_NAME
729#undef PGM_BTH_NAME_RC_STR
730#undef PGM_BTH_NAME_R0_STR
731#undef PGM_GST_TYPE
732#undef PGM_GST_NAME
733#undef PGM_GST_NAME_RC_STR
734#undef PGM_GST_NAME_R0_STR
735
736#undef PGM_SHW_TYPE
737#undef PGM_SHW_NAME
738#undef PGM_SHW_NAME_RC_STR
739#undef PGM_SHW_NAME_R0_STR
740
741
742/*
743 * Shadow - PAE mode
744 */
745#define PGM_SHW_TYPE PGM_TYPE_PAE
746#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
747#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
748#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
750#include "PGMShw.h"
751
752/* Guest - real mode */
753#define PGM_GST_TYPE PGM_TYPE_REAL
754#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
755#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
756#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
757#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
758#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
759#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
760#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
761#include "PGMBth.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_PT
763#undef PGM_BTH_NAME
764#undef PGM_BTH_NAME_RC_STR
765#undef PGM_BTH_NAME_R0_STR
766#undef PGM_GST_TYPE
767#undef PGM_GST_NAME
768#undef PGM_GST_NAME_RC_STR
769#undef PGM_GST_NAME_R0_STR
770
771/* Guest - protected mode */
772#define PGM_GST_TYPE PGM_TYPE_PROT
773#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
774#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
775#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
776#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
777#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
778#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
779#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
780#include "PGMBth.h"
781#undef BTH_PGMPOOLKIND_PT_FOR_PT
782#undef PGM_BTH_NAME
783#undef PGM_BTH_NAME_RC_STR
784#undef PGM_BTH_NAME_R0_STR
785#undef PGM_GST_TYPE
786#undef PGM_GST_NAME
787#undef PGM_GST_NAME_RC_STR
788#undef PGM_GST_NAME_R0_STR
789
790/* Guest - 32-bit mode */
791#define PGM_GST_TYPE PGM_TYPE_32BIT
792#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
793#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
794#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
795#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
796#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
797#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
798#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
799#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_BIG
802#undef BTH_PGMPOOLKIND_PT_FOR_PT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - PAE mode */
812#define PGM_GST_TYPE PGM_TYPE_PAE
813#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
820#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
821#include "PGMGst.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_BIG
824#undef BTH_PGMPOOLKIND_PT_FOR_PT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833#undef PGM_SHW_TYPE
834#undef PGM_SHW_NAME
835#undef PGM_SHW_NAME_RC_STR
836#undef PGM_SHW_NAME_R0_STR
837
838
839/*
840 * Shadow - AMD64 mode
841 */
842#define PGM_SHW_TYPE PGM_TYPE_AMD64
843#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
844#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
845#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
846#include "PGMShw.h"
847
848/* Guest - AMD64 mode */
849#define PGM_GST_TYPE PGM_TYPE_AMD64
850#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
851#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
852#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
853#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
854#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
855#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
856#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
857#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
858#include "PGMGst.h"
859#include "PGMBth.h"
860#undef BTH_PGMPOOLKIND_PT_FOR_BIG
861#undef BTH_PGMPOOLKIND_PT_FOR_PT
862#undef PGM_BTH_NAME
863#undef PGM_BTH_NAME_RC_STR
864#undef PGM_BTH_NAME_R0_STR
865#undef PGM_GST_TYPE
866#undef PGM_GST_NAME
867#undef PGM_GST_NAME_RC_STR
868#undef PGM_GST_NAME_R0_STR
869
870#undef PGM_SHW_TYPE
871#undef PGM_SHW_NAME
872#undef PGM_SHW_NAME_RC_STR
873#undef PGM_SHW_NAME_R0_STR
874
875/*
876 * Shadow - Nested paging mode
877 */
878#define PGM_SHW_TYPE PGM_TYPE_NESTED
879#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
880#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
881#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
882#include "PGMShw.h"
883
884/* Guest - real mode */
885#define PGM_GST_TYPE PGM_TYPE_REAL
886#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
887#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
888#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
889#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
890#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
891#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
892#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
893#include "PGMBth.h"
894#undef BTH_PGMPOOLKIND_PT_FOR_PT
895#undef PGM_BTH_NAME
896#undef PGM_BTH_NAME_RC_STR
897#undef PGM_BTH_NAME_R0_STR
898#undef PGM_GST_TYPE
899#undef PGM_GST_NAME
900#undef PGM_GST_NAME_RC_STR
901#undef PGM_GST_NAME_R0_STR
902
903/* Guest - protected mode */
904#define PGM_GST_TYPE PGM_TYPE_PROT
905#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
906#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
907#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
908#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
909#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
910#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
911#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
912#include "PGMBth.h"
913#undef BTH_PGMPOOLKIND_PT_FOR_PT
914#undef PGM_BTH_NAME
915#undef PGM_BTH_NAME_RC_STR
916#undef PGM_BTH_NAME_R0_STR
917#undef PGM_GST_TYPE
918#undef PGM_GST_NAME
919#undef PGM_GST_NAME_RC_STR
920#undef PGM_GST_NAME_R0_STR
921
922/* Guest - 32-bit mode */
923#define PGM_GST_TYPE PGM_TYPE_32BIT
924#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
925#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
926#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
927#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
928#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
929#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
930#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
931#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
932#include "PGMBth.h"
933#undef BTH_PGMPOOLKIND_PT_FOR_BIG
934#undef BTH_PGMPOOLKIND_PT_FOR_PT
935#undef PGM_BTH_NAME
936#undef PGM_BTH_NAME_RC_STR
937#undef PGM_BTH_NAME_R0_STR
938#undef PGM_GST_TYPE
939#undef PGM_GST_NAME
940#undef PGM_GST_NAME_RC_STR
941#undef PGM_GST_NAME_R0_STR
942
943/* Guest - PAE mode */
944#define PGM_GST_TYPE PGM_TYPE_PAE
945#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
946#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
947#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
948#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
949#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
950#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
951#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
952#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
953#include "PGMBth.h"
954#undef BTH_PGMPOOLKIND_PT_FOR_BIG
955#undef BTH_PGMPOOLKIND_PT_FOR_PT
956#undef PGM_BTH_NAME
957#undef PGM_BTH_NAME_RC_STR
958#undef PGM_BTH_NAME_R0_STR
959#undef PGM_GST_TYPE
960#undef PGM_GST_NAME
961#undef PGM_GST_NAME_RC_STR
962#undef PGM_GST_NAME_R0_STR
963
964/* Guest - AMD64 mode */
965#define PGM_GST_TYPE PGM_TYPE_AMD64
966#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
967#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
968#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
969#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
970#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
971#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
972#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
973#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
974#include "PGMBth.h"
975#undef BTH_PGMPOOLKIND_PT_FOR_BIG
976#undef BTH_PGMPOOLKIND_PT_FOR_PT
977#undef PGM_BTH_NAME
978#undef PGM_BTH_NAME_RC_STR
979#undef PGM_BTH_NAME_R0_STR
980#undef PGM_GST_TYPE
981#undef PGM_GST_NAME
982#undef PGM_GST_NAME_RC_STR
983#undef PGM_GST_NAME_R0_STR
984
985#undef PGM_SHW_TYPE
986#undef PGM_SHW_NAME
987#undef PGM_SHW_NAME_RC_STR
988#undef PGM_SHW_NAME_R0_STR
989
990/*
991 * Shadow - EPT
992 */
993#define PGM_SHW_TYPE PGM_TYPE_EPT
994#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
995#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
996#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
997#include "PGMShw.h"
998
999/* Guest - real mode */
1000#define PGM_GST_TYPE PGM_TYPE_REAL
1001#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1002#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1003#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1004#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1005#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1006#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1007#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1008#include "PGMBth.h"
1009#undef BTH_PGMPOOLKIND_PT_FOR_PT
1010#undef PGM_BTH_NAME
1011#undef PGM_BTH_NAME_RC_STR
1012#undef PGM_BTH_NAME_R0_STR
1013#undef PGM_GST_TYPE
1014#undef PGM_GST_NAME
1015#undef PGM_GST_NAME_RC_STR
1016#undef PGM_GST_NAME_R0_STR
1017
1018/* Guest - protected mode */
1019#define PGM_GST_TYPE PGM_TYPE_PROT
1020#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1021#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1022#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1023#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1024#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1025#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1026#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1027#include "PGMBth.h"
1028#undef BTH_PGMPOOLKIND_PT_FOR_PT
1029#undef PGM_BTH_NAME
1030#undef PGM_BTH_NAME_RC_STR
1031#undef PGM_BTH_NAME_R0_STR
1032#undef PGM_GST_TYPE
1033#undef PGM_GST_NAME
1034#undef PGM_GST_NAME_RC_STR
1035#undef PGM_GST_NAME_R0_STR
1036
1037/* Guest - 32-bit mode */
1038#define PGM_GST_TYPE PGM_TYPE_32BIT
1039#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1040#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1041#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1042#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1043#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1044#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1045#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1046#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1047#include "PGMBth.h"
1048#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058/* Guest - PAE mode */
1059#define PGM_GST_TYPE PGM_TYPE_PAE
1060#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1061#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1064#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1067#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1070#undef BTH_PGMPOOLKIND_PT_FOR_PT
1071#undef PGM_BTH_NAME
1072#undef PGM_BTH_NAME_RC_STR
1073#undef PGM_BTH_NAME_R0_STR
1074#undef PGM_GST_TYPE
1075#undef PGM_GST_NAME
1076#undef PGM_GST_NAME_RC_STR
1077#undef PGM_GST_NAME_R0_STR
1078
1079/* Guest - AMD64 mode */
1080#define PGM_GST_TYPE PGM_TYPE_AMD64
1081#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1082#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1083#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1084#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1085#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1086#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1087#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1088#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_RC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_RC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100#undef PGM_SHW_TYPE
1101#undef PGM_SHW_NAME
1102#undef PGM_SHW_NAME_RC_STR
1103#undef PGM_SHW_NAME_R0_STR
1104
1105/**
1106 * Initiates the paging of VM.
1107 *
1108 * @returns VBox status code.
1109 * @param pVM Pointer to VM structure.
1110 */
1111VMMR3DECL(int) PGMR3Init(PVM pVM)
1112{
1113 LogFlow(("PGMR3Init:\n"));
1114
1115 /*
1116 * Assert alignment and sizes.
1117 */
1118 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1119
1120 /*
1121 * Init the structure.
1122 */
1123 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1124 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1125 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1126 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1127 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1128 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1129 pVM->pgm.s.fA20Enabled = true;
1130 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1131 pVM->pgm.s.pGstPaePDPTHC = NULL;
1132 pVM->pgm.s.pGstPaePDPTGC = 0;
1133 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1134 {
1135 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1136 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1137 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1138 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1139 }
1140
1141#ifdef VBOX_STRICT
1142 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1143#endif
1144
1145 /*
1146 * Get the configured RAM size - to estimate saved state size.
1147 */
1148 uint64_t cbRam;
1149 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1150 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1151 cbRam = pVM->pgm.s.cbRamSize = 0;
1152 else if (VBOX_SUCCESS(rc))
1153 {
1154 if (cbRam < PAGE_SIZE)
1155 cbRam = 0;
1156 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1157 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1158 }
1159 else
1160 {
1161 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1162 return rc;
1163 }
1164
1165 /*
1166 * Register saved state data unit.
1167 */
1168 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1169 NULL, pgmR3Save, NULL,
1170 NULL, pgmR3Load, NULL);
1171 if (VBOX_FAILURE(rc))
1172 return rc;
1173
1174 /*
1175 * Initialize the PGM critical section and flush the phys TLBs
1176 */
1177 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1178 AssertRCReturn(rc, rc);
1179
1180 PGMR3PhysChunkInvalidateTLB(pVM);
1181 PGMPhysInvalidatePageR3MapTLB(pVM);
1182 PGMPhysInvalidatePageR0MapTLB(pVM);
1183 PGMPhysInvalidatePageGCMapTLB(pVM);
1184
1185 /*
1186 * Trees
1187 */
1188 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1189 if (VBOX_SUCCESS(rc))
1190 {
1191 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1192 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1193
1194 /*
1195 * Alocate the zero page.
1196 */
1197 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1198 }
1199 if (VBOX_SUCCESS(rc))
1200 {
1201 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1202 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1203 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1204 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1205 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1206
1207 /*
1208 * Init the paging.
1209 */
1210 rc = pgmR3InitPaging(pVM);
1211 }
1212 if (VBOX_SUCCESS(rc))
1213 {
1214 /*
1215 * Init the page pool.
1216 */
1217 rc = pgmR3PoolInit(pVM);
1218 }
1219 if (VBOX_SUCCESS(rc))
1220 {
1221 /*
1222 * Info & statistics
1223 */
1224 DBGFR3InfoRegisterInternal(pVM, "mode",
1225 "Shows the current paging mode. "
1226 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1227 pgmR3InfoMode);
1228 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1229 "Dumps all the entries in the top level paging table. No arguments.",
1230 pgmR3InfoCr3);
1231 DBGFR3InfoRegisterInternal(pVM, "phys",
1232 "Dumps all the physical address ranges. No arguments.",
1233 pgmR3PhysInfo);
1234 DBGFR3InfoRegisterInternal(pVM, "handlers",
1235 "Dumps physical, virtual and hyper virtual handlers. "
1236 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1237 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1238 pgmR3InfoHandlers);
1239 DBGFR3InfoRegisterInternal(pVM, "mappings",
1240 "Dumps guest mappings.",
1241 pgmR3MapInfo);
1242
1243 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1244#ifdef VBOX_WITH_STATISTICS
1245 pgmR3InitStats(pVM);
1246#endif
1247#ifdef VBOX_WITH_DEBUGGER
1248 /*
1249 * Debugger commands.
1250 */
1251 static bool fRegisteredCmds = false;
1252 if (!fRegisteredCmds)
1253 {
1254 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1255 if (VBOX_SUCCESS(rc))
1256 fRegisteredCmds = true;
1257 }
1258#endif
1259 return VINF_SUCCESS;
1260 }
1261
1262 /* Almost no cleanup necessary, MM frees all memory. */
1263 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1264
1265 return rc;
1266}
1267
1268
1269/**
1270 * Init paging.
1271 *
1272 * Since we need to check what mode the host is operating in before we can choose
1273 * the right paging functions for the host we have to delay this until R0 has
1274 * been initialized.
1275 *
1276 * @returns VBox status code.
1277 * @param pVM VM handle.
1278 */
1279static int pgmR3InitPaging(PVM pVM)
1280{
1281 /*
1282 * Force a recalculation of modes and switcher so everyone gets notified.
1283 */
1284 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1285 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1286 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1287
1288 /*
1289 * Allocate static mapping space for whatever the cr3 register
1290 * points to and in the case of PAE mode to the 4 PDs.
1291 */
1292 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1293 if (VBOX_FAILURE(rc))
1294 {
1295 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1296 return rc;
1297 }
1298 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1299
1300 /*
1301 * Allocate pages for the three possible intermediate contexts
1302 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1303 * for the sake of simplicity. The AMD64 uses the PAE for the
1304 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1305 *
1306 * We assume that two page tables will be enought for the core code
1307 * mappings (HC virtual and identity).
1308 */
1309 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1310 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1311 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1312 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1313 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1314 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1315 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1316 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1317 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1318 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1319 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1320 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1321 if ( !pVM->pgm.s.pInterPD
1322 || !pVM->pgm.s.apInterPTs[0]
1323 || !pVM->pgm.s.apInterPTs[1]
1324 || !pVM->pgm.s.apInterPaePTs[0]
1325 || !pVM->pgm.s.apInterPaePTs[1]
1326 || !pVM->pgm.s.apInterPaePDs[0]
1327 || !pVM->pgm.s.apInterPaePDs[1]
1328 || !pVM->pgm.s.apInterPaePDs[2]
1329 || !pVM->pgm.s.apInterPaePDs[3]
1330 || !pVM->pgm.s.pInterPaePDPT
1331 || !pVM->pgm.s.pInterPaePDPT64
1332 || !pVM->pgm.s.pInterPaePML4)
1333 {
1334 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1335 return VERR_NO_PAGE_MEMORY;
1336 }
1337
1338 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1339 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1340 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1341 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1342 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1343 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1344
1345 /*
1346 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1347 */
1348 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1349 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1350 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1351
1352 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1353 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1354
1355 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1356 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1357 {
1358 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1359 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1360 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1361 }
1362
1363 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1364 {
1365 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1366 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1367 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1368 }
1369
1370 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1371 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1372 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1373 | HCPhysInterPaePDPT64;
1374
1375 /*
1376 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1377 * We allocate pages for all three posibilities to in order to simplify mappings and
1378 * avoid resource failure during mode switches. So, we need to cover all levels of the
1379 * of the first 4GB down to PD level.
1380 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1381 */
1382 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1383 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1384 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1385 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1386 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1387 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1388 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1389 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1390 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1391 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1392
1393 if ( !pVM->pgm.s.pHC32BitPD
1394 || !pVM->pgm.s.apHCPaePDs[0]
1395 || !pVM->pgm.s.apHCPaePDs[1]
1396 || !pVM->pgm.s.apHCPaePDs[2]
1397 || !pVM->pgm.s.apHCPaePDs[3]
1398 || !pVM->pgm.s.pHCPaePDPT
1399 || !pVM->pgm.s.pHCNestedRoot)
1400 {
1401 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1402 return VERR_NO_PAGE_MEMORY;
1403 }
1404
1405 /* get physical addresses. */
1406 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1407 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1408 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1409 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1410 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1411 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1412 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1413 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1414
1415 /*
1416 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1417 */
1418 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1419 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1420 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1421 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1422 {
1423 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1424 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1425 /* The flags will be corrected when entering and leaving long mode. */
1426 }
1427
1428 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1429
1430 /*
1431 * Initialize paging workers and mode from current host mode
1432 * and the guest running in real mode.
1433 */
1434 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1435 switch (pVM->pgm.s.enmHostMode)
1436 {
1437 case SUPPAGINGMODE_32_BIT:
1438 case SUPPAGINGMODE_32_BIT_GLOBAL:
1439 case SUPPAGINGMODE_PAE:
1440 case SUPPAGINGMODE_PAE_GLOBAL:
1441 case SUPPAGINGMODE_PAE_NX:
1442 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1443 break;
1444
1445 case SUPPAGINGMODE_AMD64:
1446 case SUPPAGINGMODE_AMD64_GLOBAL:
1447 case SUPPAGINGMODE_AMD64_NX:
1448 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1449#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1450 if (ARCH_BITS != 64)
1451 {
1452 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1453 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1454 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1455 }
1456#endif
1457 break;
1458 default:
1459 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1460 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1461 }
1462 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1463 if (VBOX_SUCCESS(rc))
1464 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1465 if (VBOX_SUCCESS(rc))
1466 {
1467 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1468#if HC_ARCH_BITS == 64
1469 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1470 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1471 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1472 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1473 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1474 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1475 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1476 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1477 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1478 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1479#endif
1480
1481 return VINF_SUCCESS;
1482 }
1483
1484 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1485 return rc;
1486}
1487
1488
1489#ifdef VBOX_WITH_STATISTICS
1490/**
1491 * Init statistics
1492 */
1493static void pgmR3InitStats(PVM pVM)
1494{
1495 PPGM pPGM = &pVM->pgm.s;
1496
1497 /*
1498 * Note! The layout of this function matches the member layout exactly!
1499 */
1500
1501 /* R3 only: */
1502
1503 /* GC only: */
1504 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GCInvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1505
1506 /* RZ only: */
1507 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1508 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1509 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1510 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1511 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1512 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1513 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1514 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1515 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1516 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1517 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1518 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1519 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1520 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1521 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1522 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1523 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1524 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1525 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1526 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1527 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1528 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1529 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1530 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1531 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1532 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1533 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1534 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1535 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1536 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1537 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1538 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1539 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1540 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1541 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1542 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1543 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1544 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1545 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1546 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPFInMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1547 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1548 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1549
1550 /* R0 only: */
1551
1552 /* RZ & R3: */
1553 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1554 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1555 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1556 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1557 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1558 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1559 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1560 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1561 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1562 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1563 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1564 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1565 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1566 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1567 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1568 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1569 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1570 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1571 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1572 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1573 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1574 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1575 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1576 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1577 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1578 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1579 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1580 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1581 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1582 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1583 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1584 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1585 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1586 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1587 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1588 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1589
1590 /* TODO: */
1591
1592
1593 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1594 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1595 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1596
1597 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1598 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1599
1600 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1601 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1602
1603 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1604 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1605
1606 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1607 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1608 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1609
1610 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1611 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1612
1613
1614
1615 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1616 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1617 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1618 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1619 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1620
1621
1622 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1623 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1624
1625 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1626 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1627 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1628 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1629 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1630
1631 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1632 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1633
1634 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1635 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1636 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1637 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1638 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1639 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1640 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1641 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1642 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1643 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1644 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1645 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1646 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1647
1648#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1649 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1650 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1651 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1652 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1653 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1654 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1655#endif
1656
1657 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1658 {
1659 /** @todo r=bird: We need a STAMR3RegisterF()! */
1660 char szName[32];
1661
1662 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1663 int rc = STAMR3Register(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1664 AssertRC(rc);
1665
1666 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1667 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1668 AssertRC(rc);
1669
1670 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1671 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1672 AssertRC(rc);
1673 }
1674}
1675#endif /* VBOX_WITH_STATISTICS */
1676
1677/**
1678 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1679 *
1680 * The dynamic mapping area will also be allocated and initialized at this
1681 * time. We could allocate it during PGMR3Init of course, but the mapping
1682 * wouldn't be allocated at that time preventing us from setting up the
1683 * page table entries with the dummy page.
1684 *
1685 * @returns VBox status code.
1686 * @param pVM VM handle.
1687 */
1688VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1689{
1690 RTGCPTR GCPtr;
1691 /*
1692 * Reserve space for mapping the paging pages into guest context.
1693 */
1694 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1695 AssertRCReturn(rc, rc);
1696 pVM->pgm.s.pGC32BitPD = GCPtr;
1697 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1698
1699 /*
1700 * Reserve space for the dynamic mappings.
1701 */
1702 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1703 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1704 if (VBOX_SUCCESS(rc))
1705 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1706
1707 if ( VBOX_SUCCESS(rc)
1708 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1709 {
1710 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1711 if (VBOX_SUCCESS(rc))
1712 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1713 }
1714 if (VBOX_SUCCESS(rc))
1715 {
1716 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1717 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1718 }
1719 return rc;
1720}
1721
1722
1723/**
1724 * Ring-3 init finalizing.
1725 *
1726 * @returns VBox status code.
1727 * @param pVM The VM handle.
1728 */
1729VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1730{
1731 /*
1732 * Map the paging pages into the guest context.
1733 */
1734 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1735 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1736
1737 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1738 AssertRCReturn(rc, rc);
1739 pVM->pgm.s.pGC32BitPD = GCPtr;
1740 GCPtr += PAGE_SIZE;
1741 GCPtr += PAGE_SIZE; /* reserved page */
1742
1743 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1744 {
1745 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1746 AssertRCReturn(rc, rc);
1747 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1748 GCPtr += PAGE_SIZE;
1749 }
1750 /* A bit of paranoia is justified. */
1751 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1752 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1753 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1754 GCPtr += PAGE_SIZE; /* reserved page */
1755
1756 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1757 AssertRCReturn(rc, rc);
1758 pVM->pgm.s.pGCPaePDPT = GCPtr;
1759 GCPtr += PAGE_SIZE;
1760 GCPtr += PAGE_SIZE; /* reserved page */
1761
1762
1763 /*
1764 * Reserve space for the dynamic mappings.
1765 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1766 */
1767 /* get the pointer to the page table entries. */
1768 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1769 AssertRelease(pMapping);
1770 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1771 const unsigned iPT = off >> X86_PD_SHIFT;
1772 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1773 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1774 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1775
1776 /* init cache */
1777 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1778 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1779 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1780
1781 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1782 {
1783 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1784 AssertRCReturn(rc, rc);
1785 }
1786
1787 /* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); Intel only goes up to 36 bits, so
1788 * we stick to 36 as well.
1789 *
1790 * @todo How to test for the 40 bits support? Long mode seems to be the test criterium.
1791 */
1792 uint32_t u32Dummy, u32Features;
1793 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1794
1795 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1796 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1797 else
1798 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1799
1800 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %VGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1801
1802 return rc;
1803}
1804
1805
1806/**
1807 * Applies relocations to data and code managed by this
1808 * component. This function will be called at init and
1809 * whenever the VMM need to relocate it self inside the GC.
1810 *
1811 * @param pVM The VM.
1812 * @param offDelta Relocation delta relative to old location.
1813 */
1814VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1815{
1816 LogFlow(("PGMR3Relocate\n"));
1817
1818 /*
1819 * Paging stuff.
1820 */
1821 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1822 /** @todo move this into shadow and guest specific relocation functions. */
1823 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1824 pVM->pgm.s.pGC32BitPD += offDelta;
1825 pVM->pgm.s.pGuestPDGC += offDelta;
1826 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1827 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1828 {
1829 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1830 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1831 }
1832 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1833 pVM->pgm.s.pGCPaePDPT += offDelta;
1834
1835 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1836 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1837
1838 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1839 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1840 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1841
1842 /*
1843 * Trees.
1844 */
1845 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1846
1847 /*
1848 * Ram ranges.
1849 */
1850 if (pVM->pgm.s.pRamRangesR3)
1851 {
1852 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1853 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1854 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1855 }
1856
1857 /*
1858 * Update the two page directories with all page table mappings.
1859 * (One or more of them have changed, that's why we're here.)
1860 */
1861 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1862 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1863 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1864
1865 /* Relocate GC addresses of Page Tables. */
1866 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1867 {
1868 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1869 {
1870 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1871 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1872 }
1873 }
1874
1875 /*
1876 * Dynamic page mapping area.
1877 */
1878 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1879 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1880 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1881
1882 /*
1883 * The Zero page.
1884 */
1885 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1886 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1887
1888 /*
1889 * Physical and virtual handlers.
1890 */
1891 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1892 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1893 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1894
1895 /*
1896 * The page pool.
1897 */
1898 pgmR3PoolRelocate(pVM);
1899}
1900
1901
1902/**
1903 * Callback function for relocating a physical access handler.
1904 *
1905 * @returns 0 (continue enum)
1906 * @param pNode Pointer to a PGMPHYSHANDLER node.
1907 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1908 * not certain the delta will fit in a void pointer for all possible configs.
1909 */
1910static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1911{
1912 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1913 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1914 if (pHandler->pfnHandlerRC)
1915 pHandler->pfnHandlerRC += offDelta;
1916 if (pHandler->pvUserRC >= 0x10000)
1917 pHandler->pvUserRC += offDelta;
1918 return 0;
1919}
1920
1921
1922/**
1923 * Callback function for relocating a virtual access handler.
1924 *
1925 * @returns 0 (continue enum)
1926 * @param pNode Pointer to a PGMVIRTHANDLER node.
1927 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1928 * not certain the delta will fit in a void pointer for all possible configs.
1929 */
1930static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1931{
1932 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1933 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1934 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1935 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1936 Assert(pHandler->pfnHandlerRC);
1937 pHandler->pfnHandlerRC += offDelta;
1938 return 0;
1939}
1940
1941
1942/**
1943 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1944 *
1945 * @returns 0 (continue enum)
1946 * @param pNode Pointer to a PGMVIRTHANDLER node.
1947 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1948 * not certain the delta will fit in a void pointer for all possible configs.
1949 */
1950static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1951{
1952 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1953 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1954 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1955 Assert(pHandler->pfnHandlerRC);
1956 pHandler->pfnHandlerRC += offDelta;
1957 return 0;
1958}
1959
1960
1961/**
1962 * The VM is being reset.
1963 *
1964 * For the PGM component this means that any PD write monitors
1965 * needs to be removed.
1966 *
1967 * @param pVM VM handle.
1968 */
1969VMMR3DECL(void) PGMR3Reset(PVM pVM)
1970{
1971 LogFlow(("PGMR3Reset:\n"));
1972 VM_ASSERT_EMT(pVM);
1973
1974 pgmLock(pVM);
1975
1976 /*
1977 * Unfix any fixed mappings and disable CR3 monitoring.
1978 */
1979 pVM->pgm.s.fMappingsFixed = false;
1980 pVM->pgm.s.GCPtrMappingFixed = 0;
1981 pVM->pgm.s.cbMappingFixed = 0;
1982
1983 /* Exit the guest paging mode before the pgm pool gets reset.
1984 * Important to clean up the amd64 case.
1985 */
1986 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
1987 AssertRC(rc);
1988#ifdef DEBUG
1989 DBGFR3InfoLog(pVM, "mappings", NULL);
1990 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1991#endif
1992
1993 /*
1994 * Reset the shadow page pool.
1995 */
1996 pgmR3PoolReset(pVM);
1997
1998 /*
1999 * Re-init other members.
2000 */
2001 pVM->pgm.s.fA20Enabled = true;
2002
2003 /*
2004 * Clear the FFs PGM owns.
2005 */
2006 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2007 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2008
2009 /*
2010 * Reset (zero) RAM pages.
2011 */
2012 rc = pgmR3PhysRamReset(pVM);
2013 if (RT_SUCCESS(rc))
2014 {
2015#ifdef VBOX_WITH_NEW_PHYS_CODE
2016 /*
2017 * Reset (zero) shadow ROM pages.
2018 */
2019 rc = pgmR3PhysRomReset(pVM);
2020#endif
2021 if (RT_SUCCESS(rc))
2022 {
2023 /*
2024 * Switch mode back to real mode.
2025 */
2026 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2027 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2028 }
2029 }
2030
2031 pgmUnlock(pVM);
2032 //return rc;
2033 AssertReleaseRC(rc);
2034}
2035
2036
2037#ifdef VBOX_STRICT
2038/**
2039 * VM state change callback for clearing fNoMorePhysWrites after
2040 * a snapshot has been created.
2041 */
2042static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2043{
2044 if (enmState == VMSTATE_RUNNING)
2045 pVM->pgm.s.fNoMorePhysWrites = false;
2046}
2047#endif
2048
2049
2050/**
2051 * Terminates the PGM.
2052 *
2053 * @returns VBox status code.
2054 * @param pVM Pointer to VM structure.
2055 */
2056VMMR3DECL(int) PGMR3Term(PVM pVM)
2057{
2058 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2059}
2060
2061
2062/**
2063 * Execute state save operation.
2064 *
2065 * @returns VBox status code.
2066 * @param pVM VM Handle.
2067 * @param pSSM SSM operation handle.
2068 */
2069static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2070{
2071 PPGM pPGM = &pVM->pgm.s;
2072
2073 /* No more writes to physical memory after this point! */
2074 pVM->pgm.s.fNoMorePhysWrites = true;
2075
2076 /*
2077 * Save basic data (required / unaffected by relocation).
2078 */
2079#if 1
2080 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2081#else
2082 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2083#endif
2084 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2085 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2086 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2087 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2088 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2089 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2090 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2091 SSMR3PutU32(pSSM, ~0); /* Separator. */
2092
2093 /*
2094 * The guest mappings.
2095 */
2096 uint32_t i = 0;
2097 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2098 {
2099 SSMR3PutU32(pSSM, i);
2100 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2101 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2102 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2103 /* flags are done by the mapping owners! */
2104 }
2105 SSMR3PutU32(pSSM, ~0); /* terminator. */
2106
2107 /*
2108 * Ram range flags and bits.
2109 */
2110 i = 0;
2111 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2112 {
2113 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2114
2115 SSMR3PutU32(pSSM, i);
2116 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2117 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2118 SSMR3PutGCPhys(pSSM, pRam->cb);
2119 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2120
2121 /* Flags. */
2122 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2123 for (unsigned iPage = 0; iPage < cPages; iPage++)
2124 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2125
2126 /* any memory associated with the range. */
2127 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2128 {
2129 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2130 {
2131 if (pRam->paChunkR3Ptrs[iChunk])
2132 {
2133 SSMR3PutU8(pSSM, 1); /* chunk present */
2134 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2135 }
2136 else
2137 SSMR3PutU8(pSSM, 0); /* no chunk present */
2138 }
2139 }
2140 else if (pRam->pvR3)
2141 {
2142 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2143 if (VBOX_FAILURE(rc))
2144 {
2145 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2146 return rc;
2147 }
2148 }
2149 }
2150 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2151}
2152
2153
2154/**
2155 * Execute state load operation.
2156 *
2157 * @returns VBox status code.
2158 * @param pVM VM Handle.
2159 * @param pSSM SSM operation handle.
2160 * @param u32Version Data layout version.
2161 */
2162static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2163{
2164 /*
2165 * Validate version.
2166 */
2167 if (u32Version != PGM_SAVED_STATE_VERSION)
2168 {
2169 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2170 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2171 }
2172
2173 /*
2174 * Call the reset function to make sure all the memory is cleared.
2175 */
2176 PGMR3Reset(pVM);
2177
2178 /*
2179 * Load basic data (required / unaffected by relocation).
2180 */
2181 PPGM pPGM = &pVM->pgm.s;
2182#if 1
2183 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2184#else
2185 uint32_t u;
2186 SSMR3GetU32(pSSM, &u);
2187 pPGM->fMappingsFixed = u;
2188#endif
2189 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2190 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2191
2192 RTUINT cbRamSize;
2193 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2194 if (VBOX_FAILURE(rc))
2195 return rc;
2196 if (cbRamSize != pPGM->cbRamSize)
2197 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2198 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2199 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2200 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2201 RTUINT uGuestMode;
2202 SSMR3GetUInt(pSSM, &uGuestMode);
2203 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2204
2205 /* check separator. */
2206 uint32_t u32Sep;
2207 SSMR3GetU32(pSSM, &u32Sep);
2208 if (VBOX_FAILURE(rc))
2209 return rc;
2210 if (u32Sep != (uint32_t)~0)
2211 {
2212 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2213 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2214 }
2215
2216 /*
2217 * The guest mappings.
2218 */
2219 uint32_t i = 0;
2220 for (;; i++)
2221 {
2222 /* Check the seqence number / separator. */
2223 rc = SSMR3GetU32(pSSM, &u32Sep);
2224 if (VBOX_FAILURE(rc))
2225 return rc;
2226 if (u32Sep == ~0U)
2227 break;
2228 if (u32Sep != i)
2229 {
2230 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2231 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2232 }
2233
2234 /* get the mapping details. */
2235 char szDesc[256];
2236 szDesc[0] = '\0';
2237 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2238 if (VBOX_FAILURE(rc))
2239 return rc;
2240 RTGCPTR GCPtr;
2241 SSMR3GetGCPtr(pSSM, &GCPtr);
2242 RTGCUINTPTR cPTs;
2243 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2244 if (VBOX_FAILURE(rc))
2245 return rc;
2246
2247 /* find matching range. */
2248 PPGMMAPPING pMapping;
2249 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2250 if ( pMapping->cPTs == cPTs
2251 && !strcmp(pMapping->pszDesc, szDesc))
2252 break;
2253 if (!pMapping)
2254 {
2255 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2256 cPTs, szDesc, GCPtr));
2257 AssertFailed();
2258 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2259 }
2260
2261 /* relocate it. */
2262 if (pMapping->GCPtr != GCPtr)
2263 {
2264 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2265#if HC_ARCH_BITS == 64
2266LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2267#endif
2268 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2269 }
2270 else
2271 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2272 }
2273
2274 /*
2275 * Ram range flags and bits.
2276 */
2277 i = 0;
2278 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2279 {
2280 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2281 /* Check the seqence number / separator. */
2282 rc = SSMR3GetU32(pSSM, &u32Sep);
2283 if (VBOX_FAILURE(rc))
2284 return rc;
2285 if (u32Sep == ~0U)
2286 break;
2287 if (u32Sep != i)
2288 {
2289 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2290 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2291 }
2292
2293 /* Get the range details. */
2294 RTGCPHYS GCPhys;
2295 SSMR3GetGCPhys(pSSM, &GCPhys);
2296 RTGCPHYS GCPhysLast;
2297 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2298 RTGCPHYS cb;
2299 SSMR3GetGCPhys(pSSM, &cb);
2300 uint8_t fHaveBits;
2301 rc = SSMR3GetU8(pSSM, &fHaveBits);
2302 if (VBOX_FAILURE(rc))
2303 return rc;
2304 if (fHaveBits & ~1)
2305 {
2306 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2307 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2308 }
2309
2310 /* Match it up with the current range. */
2311 if ( GCPhys != pRam->GCPhys
2312 || GCPhysLast != pRam->GCPhysLast
2313 || cb != pRam->cb
2314 || fHaveBits != !!pRam->pvR3)
2315 {
2316 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2317 "State : %RGp-%RGp %RGp bytes %s\n",
2318 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2319 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2320 /*
2321 * If we're loading a state for debugging purpose, don't make a fuss if
2322 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2323 */
2324 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2325 || GCPhys < 8 * _1M)
2326 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2327
2328 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2329 while (cPages-- > 0)
2330 {
2331 uint16_t u16Ignore;
2332 SSMR3GetU16(pSSM, &u16Ignore);
2333 }
2334 continue;
2335 }
2336
2337 /* Flags. */
2338 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2339 for (unsigned iPage = 0; iPage < cPages; iPage++)
2340 {
2341 uint16_t u16 = 0;
2342 SSMR3GetU16(pSSM, &u16);
2343 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2344 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2345 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2346 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2347 }
2348
2349 /* any memory associated with the range. */
2350 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2351 {
2352 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2353 {
2354 uint8_t fValidChunk;
2355
2356 rc = SSMR3GetU8(pSSM, &fValidChunk);
2357 if (VBOX_FAILURE(rc))
2358 return rc;
2359 if (fValidChunk > 1)
2360 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2361
2362 if (fValidChunk)
2363 {
2364 if (!pRam->paChunkR3Ptrs[iChunk])
2365 {
2366 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2367 if (VBOX_FAILURE(rc))
2368 return rc;
2369 }
2370 Assert(pRam->paChunkR3Ptrs[iChunk]);
2371
2372 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2373 }
2374 /* else nothing to do */
2375 }
2376 }
2377 else if (pRam->pvR3)
2378 {
2379 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2380 if (VBOX_FAILURE(rc))
2381 {
2382 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2383 return rc;
2384 }
2385 }
2386 }
2387
2388 /*
2389 * We require a full resync now.
2390 */
2391 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2392 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2393 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2394 pPGM->fPhysCacheFlushPending = true;
2395 pgmR3HandlerPhysicalUpdateAll(pVM);
2396
2397 /*
2398 * Change the paging mode.
2399 */
2400 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2401
2402 /* Restore pVM->pgm.s.GCPhysCR3. */
2403 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2404 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2405 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2406 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2407 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2408 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2409 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2410 else
2411 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2412 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2413
2414 return rc;
2415}
2416
2417
2418/**
2419 * Show paging mode.
2420 *
2421 * @param pVM VM Handle.
2422 * @param pHlp The info helpers.
2423 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2424 */
2425static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2426{
2427 /* digest argument. */
2428 bool fGuest, fShadow, fHost;
2429 if (pszArgs)
2430 pszArgs = RTStrStripL(pszArgs);
2431 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2432 fShadow = fHost = fGuest = true;
2433 else
2434 {
2435 fShadow = fHost = fGuest = false;
2436 if (strstr(pszArgs, "guest"))
2437 fGuest = true;
2438 if (strstr(pszArgs, "shadow"))
2439 fShadow = true;
2440 if (strstr(pszArgs, "host"))
2441 fHost = true;
2442 }
2443
2444 /* print info. */
2445 if (fGuest)
2446 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2447 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2448 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2449 if (fShadow)
2450 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2451 if (fHost)
2452 {
2453 const char *psz;
2454 switch (pVM->pgm.s.enmHostMode)
2455 {
2456 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2457 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2458 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2459 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2460 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2461 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2462 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2463 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2464 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2465 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2466 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2467 default: psz = "unknown"; break;
2468 }
2469 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2470 }
2471}
2472
2473
2474/**
2475 * Dump registered MMIO ranges to the log.
2476 *
2477 * @param pVM VM Handle.
2478 * @param pHlp The info helpers.
2479 * @param pszArgs Arguments, ignored.
2480 */
2481static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2482{
2483 NOREF(pszArgs);
2484 pHlp->pfnPrintf(pHlp,
2485 "RAM ranges (pVM=%p)\n"
2486 "%.*s %.*s\n",
2487 pVM,
2488 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2489 sizeof(RTHCPTR) * 2, "pvHC ");
2490
2491 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2492 pHlp->pfnPrintf(pHlp,
2493 "%RGp-%RGp %RHv %s\n",
2494 pCur->GCPhys,
2495 pCur->GCPhysLast,
2496 pCur->pvR3,
2497 pCur->pszDesc);
2498}
2499
2500/**
2501 * Dump the page directory to the log.
2502 *
2503 * @param pVM VM Handle.
2504 * @param pHlp The info helpers.
2505 * @param pszArgs Arguments, ignored.
2506 */
2507static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2508{
2509/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2510 /* Big pages supported? */
2511 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2512
2513 /* Global pages supported? */
2514 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2515
2516 NOREF(pszArgs);
2517
2518 /*
2519 * Get page directory addresses.
2520 */
2521 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2522 Assert(pPDSrc);
2523 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2524
2525 /*
2526 * Iterate the page directory.
2527 */
2528 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2529 {
2530 X86PDE PdeSrc = pPDSrc->a[iPD];
2531 if (PdeSrc.n.u1Present)
2532 {
2533 if (PdeSrc.b.u1Size && fPSE)
2534 {
2535 pHlp->pfnPrintf(pHlp,
2536 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2537 iPD,
2538 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2539 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2540 }
2541 else
2542 {
2543 pHlp->pfnPrintf(pHlp,
2544 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2545 iPD,
2546 PdeSrc.u & X86_PDE_PG_MASK,
2547 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2548 }
2549 }
2550 }
2551}
2552
2553
2554/**
2555 * Serivce a VMMCALLHOST_PGM_LOCK call.
2556 *
2557 * @returns VBox status code.
2558 * @param pVM The VM handle.
2559 */
2560VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2561{
2562 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2563 AssertRC(rc);
2564 return rc;
2565}
2566
2567
2568/**
2569 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2570 *
2571 * @returns PGM_TYPE_*.
2572 * @param pgmMode The mode value to convert.
2573 */
2574DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2575{
2576 switch (pgmMode)
2577 {
2578 case PGMMODE_REAL: return PGM_TYPE_REAL;
2579 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2580 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2581 case PGMMODE_PAE:
2582 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2583 case PGMMODE_AMD64:
2584 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2585 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2586 case PGMMODE_EPT: return PGM_TYPE_EPT;
2587 default:
2588 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2589 }
2590}
2591
2592
2593/**
2594 * Gets the index into the paging mode data array of a SHW+GST mode.
2595 *
2596 * @returns PGM::paPagingData index.
2597 * @param uShwType The shadow paging mode type.
2598 * @param uGstType The guest paging mode type.
2599 */
2600DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2601{
2602 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2603 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2604 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2605 + (uGstType - PGM_TYPE_REAL);
2606}
2607
2608
2609/**
2610 * Gets the index into the paging mode data array of a SHW+GST mode.
2611 *
2612 * @returns PGM::paPagingData index.
2613 * @param enmShw The shadow paging mode.
2614 * @param enmGst The guest paging mode.
2615 */
2616DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2617{
2618 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2619 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2620 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2621}
2622
2623
2624/**
2625 * Calculates the max data index.
2626 * @returns The number of entries in the paging data array.
2627 */
2628DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2629{
2630 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2631}
2632
2633
2634/**
2635 * Initializes the paging mode data kept in PGM::paModeData.
2636 *
2637 * @param pVM The VM handle.
2638 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2639 * This is used early in the init process to avoid trouble with PDM
2640 * not being initialized yet.
2641 */
2642static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2643{
2644 PPGMMODEDATA pModeData;
2645 int rc;
2646
2647 /*
2648 * Allocate the array on the first call.
2649 */
2650 if (!pVM->pgm.s.paModeData)
2651 {
2652 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2653 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2654 }
2655
2656 /*
2657 * Initialize the array entries.
2658 */
2659 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2660 pModeData->uShwType = PGM_TYPE_32BIT;
2661 pModeData->uGstType = PGM_TYPE_REAL;
2662 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2663 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2664 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2665
2666 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2667 pModeData->uShwType = PGM_TYPE_32BIT;
2668 pModeData->uGstType = PGM_TYPE_PROT;
2669 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2670 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2671 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2672
2673 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2674 pModeData->uShwType = PGM_TYPE_32BIT;
2675 pModeData->uGstType = PGM_TYPE_32BIT;
2676 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2677 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2678 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2679
2680 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2681 pModeData->uShwType = PGM_TYPE_PAE;
2682 pModeData->uGstType = PGM_TYPE_REAL;
2683 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2684 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2686
2687 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2688 pModeData->uShwType = PGM_TYPE_PAE;
2689 pModeData->uGstType = PGM_TYPE_PROT;
2690 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2691 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2692 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2693
2694 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2695 pModeData->uShwType = PGM_TYPE_PAE;
2696 pModeData->uGstType = PGM_TYPE_32BIT;
2697 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2698 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2699 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2700
2701 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2702 pModeData->uShwType = PGM_TYPE_PAE;
2703 pModeData->uGstType = PGM_TYPE_PAE;
2704 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2705 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2706 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2707
2708 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2709 pModeData->uShwType = PGM_TYPE_AMD64;
2710 pModeData->uGstType = PGM_TYPE_AMD64;
2711 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2712 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2713 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714
2715 /* The nested paging mode. */
2716 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2717 pModeData->uShwType = PGM_TYPE_NESTED;
2718 pModeData->uGstType = PGM_TYPE_REAL;
2719 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721
2722 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2723 pModeData->uShwType = PGM_TYPE_NESTED;
2724 pModeData->uGstType = PGM_TYPE_PROT;
2725 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2726 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2727
2728 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2729 pModeData->uShwType = PGM_TYPE_NESTED;
2730 pModeData->uGstType = PGM_TYPE_32BIT;
2731 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733
2734 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2735 pModeData->uShwType = PGM_TYPE_NESTED;
2736 pModeData->uGstType = PGM_TYPE_PAE;
2737 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2738 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2739
2740 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2741 pModeData->uShwType = PGM_TYPE_NESTED;
2742 pModeData->uGstType = PGM_TYPE_AMD64;
2743 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2745
2746 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2747 switch(pVM->pgm.s.enmHostMode)
2748 {
2749 case SUPPAGINGMODE_32_BIT:
2750 case SUPPAGINGMODE_32_BIT_GLOBAL:
2751 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2752 {
2753 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2754 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755 }
2756 break;
2757
2758 case SUPPAGINGMODE_PAE:
2759 case SUPPAGINGMODE_PAE_NX:
2760 case SUPPAGINGMODE_PAE_GLOBAL:
2761 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2762 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2763 {
2764 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2765 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766 }
2767 break;
2768
2769 case SUPPAGINGMODE_AMD64:
2770 case SUPPAGINGMODE_AMD64_GLOBAL:
2771 case SUPPAGINGMODE_AMD64_NX:
2772 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2773 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2774 {
2775 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2776 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 }
2778 break;
2779 default:
2780 AssertFailed();
2781 break;
2782 }
2783
2784 /* Extended paging (EPT) / Intel VT-x */
2785 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2786 pModeData->uShwType = PGM_TYPE_EPT;
2787 pModeData->uGstType = PGM_TYPE_REAL;
2788 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2789 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2791
2792 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2793 pModeData->uShwType = PGM_TYPE_EPT;
2794 pModeData->uGstType = PGM_TYPE_PROT;
2795 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2797 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798
2799 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2800 pModeData->uShwType = PGM_TYPE_EPT;
2801 pModeData->uGstType = PGM_TYPE_32BIT;
2802 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805
2806 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2807 pModeData->uShwType = PGM_TYPE_EPT;
2808 pModeData->uGstType = PGM_TYPE_PAE;
2809 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2811 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812
2813 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2814 pModeData->uShwType = PGM_TYPE_EPT;
2815 pModeData->uGstType = PGM_TYPE_AMD64;
2816 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2817 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819 return VINF_SUCCESS;
2820}
2821
2822
2823/**
2824 * Switch to different (or relocated in the relocate case) mode data.
2825 *
2826 * @param pVM The VM handle.
2827 * @param enmShw The the shadow paging mode.
2828 * @param enmGst The the guest paging mode.
2829 */
2830static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2831{
2832 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2833
2834 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2835 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2836
2837 /* shadow */
2838 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2839 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2840 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2841 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2842 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2843
2844 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2845 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2846
2847 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2848 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2849
2850
2851 /* guest */
2852 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2853 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2854 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2855 Assert(pVM->pgm.s.pfnR3GstGetPage);
2856 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2857 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2858 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2859 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2860 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2861 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2862 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2863 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2864 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2865 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2866
2867 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2868 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2869 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2870 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2871 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2872 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2873 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2874 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2875 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2876
2877 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2878 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2879 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2880 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2881 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2882 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2883 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2884 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2885 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2886
2887
2888 /* both */
2889 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2890 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2891 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2892 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2893 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2894 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2895 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2896#ifdef VBOX_STRICT
2897 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2898#endif
2899
2900 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2901 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2902 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2903 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2904 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2905 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2906#ifdef VBOX_STRICT
2907 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2908#endif
2909
2910 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2911 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2912 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2913 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2914 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2915 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2916#ifdef VBOX_STRICT
2917 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2918#endif
2919}
2920
2921
2922#ifdef DEBUG_bird
2923#include <stdlib.h> /* getenv() remove me! */
2924#endif
2925
2926/**
2927 * Calculates the shadow paging mode.
2928 *
2929 * @returns The shadow paging mode.
2930 * @param pVM VM handle.
2931 * @param enmGuestMode The guest mode.
2932 * @param enmHostMode The host mode.
2933 * @param enmShadowMode The current shadow mode.
2934 * @param penmSwitcher Where to store the switcher to use.
2935 * VMMSWITCHER_INVALID means no change.
2936 */
2937static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2938{
2939 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2940 switch (enmGuestMode)
2941 {
2942 /*
2943 * When switching to real or protected mode we don't change
2944 * anything since it's likely that we'll switch back pretty soon.
2945 *
2946 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2947 * and is supposed to determine which shadow paging and switcher to
2948 * use during init.
2949 */
2950 case PGMMODE_REAL:
2951 case PGMMODE_PROTECTED:
2952 if ( enmShadowMode != PGMMODE_INVALID
2953 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2954 break; /* (no change) */
2955
2956 switch (enmHostMode)
2957 {
2958 case SUPPAGINGMODE_32_BIT:
2959 case SUPPAGINGMODE_32_BIT_GLOBAL:
2960 enmShadowMode = PGMMODE_32_BIT;
2961 enmSwitcher = VMMSWITCHER_32_TO_32;
2962 break;
2963
2964 case SUPPAGINGMODE_PAE:
2965 case SUPPAGINGMODE_PAE_NX:
2966 case SUPPAGINGMODE_PAE_GLOBAL:
2967 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2968 enmShadowMode = PGMMODE_PAE;
2969 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2970#ifdef DEBUG_bird
2971if (getenv("VBOX_32BIT"))
2972{
2973 enmShadowMode = PGMMODE_32_BIT;
2974 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2975}
2976#endif
2977 break;
2978
2979 case SUPPAGINGMODE_AMD64:
2980 case SUPPAGINGMODE_AMD64_GLOBAL:
2981 case SUPPAGINGMODE_AMD64_NX:
2982 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2983 enmShadowMode = PGMMODE_PAE;
2984 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2985 break;
2986
2987 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2988 }
2989 break;
2990
2991 case PGMMODE_32_BIT:
2992 switch (enmHostMode)
2993 {
2994 case SUPPAGINGMODE_32_BIT:
2995 case SUPPAGINGMODE_32_BIT_GLOBAL:
2996 enmShadowMode = PGMMODE_32_BIT;
2997 enmSwitcher = VMMSWITCHER_32_TO_32;
2998 break;
2999
3000 case SUPPAGINGMODE_PAE:
3001 case SUPPAGINGMODE_PAE_NX:
3002 case SUPPAGINGMODE_PAE_GLOBAL:
3003 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3004 enmShadowMode = PGMMODE_PAE;
3005 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3006#ifdef DEBUG_bird
3007if (getenv("VBOX_32BIT"))
3008{
3009 enmShadowMode = PGMMODE_32_BIT;
3010 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3011}
3012#endif
3013 break;
3014
3015 case SUPPAGINGMODE_AMD64:
3016 case SUPPAGINGMODE_AMD64_GLOBAL:
3017 case SUPPAGINGMODE_AMD64_NX:
3018 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3019 enmShadowMode = PGMMODE_PAE;
3020 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3021 break;
3022
3023 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3024 }
3025 break;
3026
3027 case PGMMODE_PAE:
3028 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3029 switch (enmHostMode)
3030 {
3031 case SUPPAGINGMODE_32_BIT:
3032 case SUPPAGINGMODE_32_BIT_GLOBAL:
3033 enmShadowMode = PGMMODE_PAE;
3034 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3035 break;
3036
3037 case SUPPAGINGMODE_PAE:
3038 case SUPPAGINGMODE_PAE_NX:
3039 case SUPPAGINGMODE_PAE_GLOBAL:
3040 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3041 enmShadowMode = PGMMODE_PAE;
3042 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3043 break;
3044
3045 case SUPPAGINGMODE_AMD64:
3046 case SUPPAGINGMODE_AMD64_GLOBAL:
3047 case SUPPAGINGMODE_AMD64_NX:
3048 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3049 enmShadowMode = PGMMODE_PAE;
3050 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3051 break;
3052
3053 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3054 }
3055 break;
3056
3057 case PGMMODE_AMD64:
3058 case PGMMODE_AMD64_NX:
3059 switch (enmHostMode)
3060 {
3061 case SUPPAGINGMODE_32_BIT:
3062 case SUPPAGINGMODE_32_BIT_GLOBAL:
3063 enmShadowMode = PGMMODE_PAE;
3064 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3065 break;
3066
3067 case SUPPAGINGMODE_PAE:
3068 case SUPPAGINGMODE_PAE_NX:
3069 case SUPPAGINGMODE_PAE_GLOBAL:
3070 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3071 enmShadowMode = PGMMODE_PAE;
3072 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3073 break;
3074
3075 case SUPPAGINGMODE_AMD64:
3076 case SUPPAGINGMODE_AMD64_GLOBAL:
3077 case SUPPAGINGMODE_AMD64_NX:
3078 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3079 enmShadowMode = PGMMODE_AMD64;
3080 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3081 break;
3082
3083 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3084 }
3085 break;
3086
3087
3088 default:
3089 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3090 return PGMMODE_INVALID;
3091 }
3092 /* Override the shadow mode is nested paging is active. */
3093 if (HWACCMIsNestedPagingActive(pVM))
3094 enmShadowMode = HWACCMGetPagingMode(pVM);
3095
3096 *penmSwitcher = enmSwitcher;
3097 return enmShadowMode;
3098}
3099
3100/**
3101 * Performs the actual mode change.
3102 * This is called by PGMChangeMode and pgmR3InitPaging().
3103 *
3104 * @returns VBox status code.
3105 * @param pVM VM handle.
3106 * @param enmGuestMode The new guest mode. This is assumed to be different from
3107 * the current mode.
3108 */
3109VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3110{
3111 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3112 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3113
3114 /*
3115 * Calc the shadow mode and switcher.
3116 */
3117 VMMSWITCHER enmSwitcher;
3118 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3119 if (enmSwitcher != VMMSWITCHER_INVALID)
3120 {
3121 /*
3122 * Select new switcher.
3123 */
3124 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3125 if (VBOX_FAILURE(rc))
3126 {
3127 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3128 return rc;
3129 }
3130 }
3131
3132 /*
3133 * Exit old mode(s).
3134 */
3135 /* shadow */
3136 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3137 {
3138 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3139 if (PGM_SHW_PFN(Exit, pVM))
3140 {
3141 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3142 if (VBOX_FAILURE(rc))
3143 {
3144 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3145 return rc;
3146 }
3147 }
3148
3149 }
3150 else
3151 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3152
3153 /* guest */
3154 if (PGM_GST_PFN(Exit, pVM))
3155 {
3156 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3157 if (VBOX_FAILURE(rc))
3158 {
3159 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3160 return rc;
3161 }
3162 }
3163
3164 /*
3165 * Load new paging mode data.
3166 */
3167 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3168
3169 /*
3170 * Enter new shadow mode (if changed).
3171 */
3172 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3173 {
3174 int rc;
3175 pVM->pgm.s.enmShadowMode = enmShadowMode;
3176 switch (enmShadowMode)
3177 {
3178 case PGMMODE_32_BIT:
3179 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3180 break;
3181 case PGMMODE_PAE:
3182 case PGMMODE_PAE_NX:
3183 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3184 break;
3185 case PGMMODE_AMD64:
3186 case PGMMODE_AMD64_NX:
3187 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3188 break;
3189 case PGMMODE_NESTED:
3190 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3191 break;
3192 case PGMMODE_EPT:
3193 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3194 break;
3195 case PGMMODE_REAL:
3196 case PGMMODE_PROTECTED:
3197 default:
3198 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3199 return VERR_INTERNAL_ERROR;
3200 }
3201 if (VBOX_FAILURE(rc))
3202 {
3203 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3204 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3205 return rc;
3206 }
3207 }
3208
3209 /* We must flush the PGM pool cache if the guest mode changes; we don't always
3210 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3211 * the shadow page tables.
3212 *
3213 * That only applies when switching between paging and non-paging modes.
3214 *
3215 * @todo A20 setting
3216 */
3217 if ( pVM->pgm.s.CTX_SUFF(pPool)
3218 && !HWACCMIsNestedPagingActive(pVM)
3219 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3220 {
3221 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3222 pgmPoolFlushAll(pVM);
3223 }
3224
3225 /*
3226 * Enter the new guest and shadow+guest modes.
3227 */
3228 int rc = -1;
3229 int rc2 = -1;
3230 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3231 pVM->pgm.s.enmGuestMode = enmGuestMode;
3232 switch (enmGuestMode)
3233 {
3234 case PGMMODE_REAL:
3235 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3236 switch (pVM->pgm.s.enmShadowMode)
3237 {
3238 case PGMMODE_32_BIT:
3239 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3240 break;
3241 case PGMMODE_PAE:
3242 case PGMMODE_PAE_NX:
3243 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3244 break;
3245 case PGMMODE_NESTED:
3246 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3247 break;
3248 case PGMMODE_EPT:
3249 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3250 break;
3251 case PGMMODE_AMD64:
3252 case PGMMODE_AMD64_NX:
3253 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3254 default: AssertFailed(); break;
3255 }
3256 break;
3257
3258 case PGMMODE_PROTECTED:
3259 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3260 switch (pVM->pgm.s.enmShadowMode)
3261 {
3262 case PGMMODE_32_BIT:
3263 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3264 break;
3265 case PGMMODE_PAE:
3266 case PGMMODE_PAE_NX:
3267 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3268 break;
3269 case PGMMODE_NESTED:
3270 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3271 break;
3272 case PGMMODE_EPT:
3273 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3274 break;
3275 case PGMMODE_AMD64:
3276 case PGMMODE_AMD64_NX:
3277 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3278 default: AssertFailed(); break;
3279 }
3280 break;
3281
3282 case PGMMODE_32_BIT:
3283 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3284 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3285 switch (pVM->pgm.s.enmShadowMode)
3286 {
3287 case PGMMODE_32_BIT:
3288 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3289 break;
3290 case PGMMODE_PAE:
3291 case PGMMODE_PAE_NX:
3292 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3293 break;
3294 case PGMMODE_NESTED:
3295 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3296 break;
3297 case PGMMODE_EPT:
3298 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3299 break;
3300 case PGMMODE_AMD64:
3301 case PGMMODE_AMD64_NX:
3302 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3303 default: AssertFailed(); break;
3304 }
3305 break;
3306
3307 case PGMMODE_PAE_NX:
3308 case PGMMODE_PAE:
3309 {
3310 uint32_t u32Dummy, u32Features;
3311
3312 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3313 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3314 {
3315 /* Pause first, then inform Main. */
3316 rc = VMR3SuspendNoSave(pVM);
3317 AssertRC(rc);
3318
3319 VMSetRuntimeError(pVM, true, "PAEmode",
3320 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3321 /* we must return TRUE here otherwise the recompiler will assert */
3322 return VINF_SUCCESS;
3323 }
3324 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3325 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3326 switch (pVM->pgm.s.enmShadowMode)
3327 {
3328 case PGMMODE_PAE:
3329 case PGMMODE_PAE_NX:
3330 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3331 break;
3332 case PGMMODE_NESTED:
3333 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3334 break;
3335 case PGMMODE_EPT:
3336 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3337 break;
3338 case PGMMODE_32_BIT:
3339 case PGMMODE_AMD64:
3340 case PGMMODE_AMD64_NX:
3341 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3342 default: AssertFailed(); break;
3343 }
3344 break;
3345 }
3346
3347 case PGMMODE_AMD64_NX:
3348 case PGMMODE_AMD64:
3349 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3350 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3351 switch (pVM->pgm.s.enmShadowMode)
3352 {
3353 case PGMMODE_AMD64:
3354 case PGMMODE_AMD64_NX:
3355 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3356 break;
3357 case PGMMODE_NESTED:
3358 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3359 break;
3360 case PGMMODE_EPT:
3361 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3362 break;
3363 case PGMMODE_32_BIT:
3364 case PGMMODE_PAE:
3365 case PGMMODE_PAE_NX:
3366 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3367 default: AssertFailed(); break;
3368 }
3369 break;
3370
3371 default:
3372 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3373 rc = VERR_NOT_IMPLEMENTED;
3374 break;
3375 }
3376
3377 /* status codes. */
3378 AssertRC(rc);
3379 AssertRC(rc2);
3380 if (VBOX_SUCCESS(rc))
3381 {
3382 rc = rc2;
3383 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3384 rc = VINF_SUCCESS;
3385 }
3386
3387 /*
3388 * Notify SELM so it can update the TSSes with correct CR3s.
3389 */
3390 SELMR3PagingModeChanged(pVM);
3391
3392 /* Notify HWACCM as well. */
3393 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3394 return rc;
3395}
3396
3397
3398/**
3399 * Dumps a PAE shadow page table.
3400 *
3401 * @returns VBox status code (VINF_SUCCESS).
3402 * @param pVM The VM handle.
3403 * @param pPT Pointer to the page table.
3404 * @param u64Address The virtual address of the page table starts.
3405 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3406 * @param cMaxDepth The maxium depth.
3407 * @param pHlp Pointer to the output functions.
3408 */
3409static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3410{
3411 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3412 {
3413 X86PTEPAE Pte = pPT->a[i];
3414 if (Pte.n.u1Present)
3415 {
3416 pHlp->pfnPrintf(pHlp,
3417 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3418 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3419 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3420 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3421 Pte.n.u1Write ? 'W' : 'R',
3422 Pte.n.u1User ? 'U' : 'S',
3423 Pte.n.u1Accessed ? 'A' : '-',
3424 Pte.n.u1Dirty ? 'D' : '-',
3425 Pte.n.u1Global ? 'G' : '-',
3426 Pte.n.u1WriteThru ? "WT" : "--",
3427 Pte.n.u1CacheDisable? "CD" : "--",
3428 Pte.n.u1PAT ? "AT" : "--",
3429 Pte.n.u1NoExecute ? "NX" : "--",
3430 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3431 Pte.u & RT_BIT(10) ? '1' : '0',
3432 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3433 Pte.u & X86_PTE_PAE_PG_MASK);
3434 }
3435 }
3436 return VINF_SUCCESS;
3437}
3438
3439
3440/**
3441 * Dumps a PAE shadow page directory table.
3442 *
3443 * @returns VBox status code (VINF_SUCCESS).
3444 * @param pVM The VM handle.
3445 * @param HCPhys The physical address of the page directory table.
3446 * @param u64Address The virtual address of the page table starts.
3447 * @param cr4 The CR4, PSE is currently used.
3448 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3449 * @param cMaxDepth The maxium depth.
3450 * @param pHlp Pointer to the output functions.
3451 */
3452static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3453{
3454 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3455 if (!pPD)
3456 {
3457 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3458 fLongMode ? 16 : 8, u64Address, HCPhys);
3459 return VERR_INVALID_PARAMETER;
3460 }
3461 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3462
3463 int rc = VINF_SUCCESS;
3464 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3465 {
3466 X86PDEPAE Pde = pPD->a[i];
3467 if (Pde.n.u1Present)
3468 {
3469 if (fBigPagesSupported && Pde.b.u1Size)
3470 pHlp->pfnPrintf(pHlp,
3471 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3472 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3473 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3474 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3475 Pde.b.u1Write ? 'W' : 'R',
3476 Pde.b.u1User ? 'U' : 'S',
3477 Pde.b.u1Accessed ? 'A' : '-',
3478 Pde.b.u1Dirty ? 'D' : '-',
3479 Pde.b.u1Global ? 'G' : '-',
3480 Pde.b.u1WriteThru ? "WT" : "--",
3481 Pde.b.u1CacheDisable? "CD" : "--",
3482 Pde.b.u1PAT ? "AT" : "--",
3483 Pde.b.u1NoExecute ? "NX" : "--",
3484 Pde.u & RT_BIT_64(9) ? '1' : '0',
3485 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3486 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3487 Pde.u & X86_PDE_PAE_PG_MASK);
3488 else
3489 {
3490 pHlp->pfnPrintf(pHlp,
3491 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3492 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3493 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3494 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3495 Pde.n.u1Write ? 'W' : 'R',
3496 Pde.n.u1User ? 'U' : 'S',
3497 Pde.n.u1Accessed ? 'A' : '-',
3498 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3499 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3500 Pde.n.u1WriteThru ? "WT" : "--",
3501 Pde.n.u1CacheDisable? "CD" : "--",
3502 Pde.n.u1NoExecute ? "NX" : "--",
3503 Pde.u & RT_BIT_64(9) ? '1' : '0',
3504 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3505 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3506 Pde.u & X86_PDE_PAE_PG_MASK);
3507 if (cMaxDepth >= 1)
3508 {
3509 /** @todo what about using the page pool for mapping PTs? */
3510 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3511 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3512 PX86PTPAE pPT = NULL;
3513 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3514 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3515 else
3516 {
3517 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3518 {
3519 uint64_t off = u64AddressPT - pMap->GCPtr;
3520 if (off < pMap->cb)
3521 {
3522 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3523 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3524 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3525 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3526 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3527 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3528 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3529 }
3530 }
3531 }
3532 int rc2 = VERR_INVALID_PARAMETER;
3533 if (pPT)
3534 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3535 else
3536 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3537 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3538 if (rc2 < rc && VBOX_SUCCESS(rc))
3539 rc = rc2;
3540 }
3541 }
3542 }
3543 }
3544 return rc;
3545}
3546
3547
3548/**
3549 * Dumps a PAE shadow page directory pointer table.
3550 *
3551 * @returns VBox status code (VINF_SUCCESS).
3552 * @param pVM The VM handle.
3553 * @param HCPhys The physical address of the page directory pointer table.
3554 * @param u64Address The virtual address of the page table starts.
3555 * @param cr4 The CR4, PSE is currently used.
3556 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3557 * @param cMaxDepth The maxium depth.
3558 * @param pHlp Pointer to the output functions.
3559 */
3560static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3561{
3562 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3563 if (!pPDPT)
3564 {
3565 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3566 fLongMode ? 16 : 8, u64Address, HCPhys);
3567 return VERR_INVALID_PARAMETER;
3568 }
3569
3570 int rc = VINF_SUCCESS;
3571 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3572 for (unsigned i = 0; i < c; i++)
3573 {
3574 X86PDPE Pdpe = pPDPT->a[i];
3575 if (Pdpe.n.u1Present)
3576 {
3577 if (fLongMode)
3578 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3579 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3580 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3581 Pdpe.lm.u1Write ? 'W' : 'R',
3582 Pdpe.lm.u1User ? 'U' : 'S',
3583 Pdpe.lm.u1Accessed ? 'A' : '-',
3584 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3585 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3586 Pdpe.lm.u1WriteThru ? "WT" : "--",
3587 Pdpe.lm.u1CacheDisable? "CD" : "--",
3588 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3589 Pdpe.lm.u1NoExecute ? "NX" : "--",
3590 Pdpe.u & RT_BIT(9) ? '1' : '0',
3591 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3592 Pdpe.u & RT_BIT(11) ? '1' : '0',
3593 Pdpe.u & X86_PDPE_PG_MASK);
3594 else
3595 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3596 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3597 i << X86_PDPT_SHIFT,
3598 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3599 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3600 Pdpe.n.u1WriteThru ? "WT" : "--",
3601 Pdpe.n.u1CacheDisable? "CD" : "--",
3602 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3603 Pdpe.u & RT_BIT(9) ? '1' : '0',
3604 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3605 Pdpe.u & RT_BIT(11) ? '1' : '0',
3606 Pdpe.u & X86_PDPE_PG_MASK);
3607 if (cMaxDepth >= 1)
3608 {
3609 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3610 cr4, fLongMode, cMaxDepth - 1, pHlp);
3611 if (rc2 < rc && VBOX_SUCCESS(rc))
3612 rc = rc2;
3613 }
3614 }
3615 }
3616 return rc;
3617}
3618
3619
3620/**
3621 * Dumps a 32-bit shadow page table.
3622 *
3623 * @returns VBox status code (VINF_SUCCESS).
3624 * @param pVM The VM handle.
3625 * @param HCPhys The physical address of the table.
3626 * @param cr4 The CR4, PSE is currently used.
3627 * @param cMaxDepth The maxium depth.
3628 * @param pHlp Pointer to the output functions.
3629 */
3630static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3631{
3632 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3633 if (!pPML4)
3634 {
3635 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3636 return VERR_INVALID_PARAMETER;
3637 }
3638
3639 int rc = VINF_SUCCESS;
3640 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3641 {
3642 X86PML4E Pml4e = pPML4->a[i];
3643 if (Pml4e.n.u1Present)
3644 {
3645 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3646 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3647 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3648 u64Address,
3649 Pml4e.n.u1Write ? 'W' : 'R',
3650 Pml4e.n.u1User ? 'U' : 'S',
3651 Pml4e.n.u1Accessed ? 'A' : '-',
3652 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3653 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3654 Pml4e.n.u1WriteThru ? "WT" : "--",
3655 Pml4e.n.u1CacheDisable? "CD" : "--",
3656 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3657 Pml4e.n.u1NoExecute ? "NX" : "--",
3658 Pml4e.u & RT_BIT(9) ? '1' : '0',
3659 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3660 Pml4e.u & RT_BIT(11) ? '1' : '0',
3661 Pml4e.u & X86_PML4E_PG_MASK);
3662
3663 if (cMaxDepth >= 1)
3664 {
3665 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3666 if (rc2 < rc && VBOX_SUCCESS(rc))
3667 rc = rc2;
3668 }
3669 }
3670 }
3671 return rc;
3672}
3673
3674
3675/**
3676 * Dumps a 32-bit shadow page table.
3677 *
3678 * @returns VBox status code (VINF_SUCCESS).
3679 * @param pVM The VM handle.
3680 * @param pPT Pointer to the page table.
3681 * @param u32Address The virtual address this table starts at.
3682 * @param pHlp Pointer to the output functions.
3683 */
3684int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3685{
3686 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3687 {
3688 X86PTE Pte = pPT->a[i];
3689 if (Pte.n.u1Present)
3690 {
3691 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3692 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3693 u32Address + (i << X86_PT_SHIFT),
3694 Pte.n.u1Write ? 'W' : 'R',
3695 Pte.n.u1User ? 'U' : 'S',
3696 Pte.n.u1Accessed ? 'A' : '-',
3697 Pte.n.u1Dirty ? 'D' : '-',
3698 Pte.n.u1Global ? 'G' : '-',
3699 Pte.n.u1WriteThru ? "WT" : "--",
3700 Pte.n.u1CacheDisable? "CD" : "--",
3701 Pte.n.u1PAT ? "AT" : "--",
3702 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3703 Pte.u & RT_BIT(10) ? '1' : '0',
3704 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3705 Pte.u & X86_PDE_PG_MASK);
3706 }
3707 }
3708 return VINF_SUCCESS;
3709}
3710
3711
3712/**
3713 * Dumps a 32-bit shadow page directory and page tables.
3714 *
3715 * @returns VBox status code (VINF_SUCCESS).
3716 * @param pVM The VM handle.
3717 * @param cr3 The root of the hierarchy.
3718 * @param cr4 The CR4, PSE is currently used.
3719 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3720 * @param pHlp Pointer to the output functions.
3721 */
3722int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3723{
3724 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3725 if (!pPD)
3726 {
3727 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3728 return VERR_INVALID_PARAMETER;
3729 }
3730
3731 int rc = VINF_SUCCESS;
3732 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3733 {
3734 X86PDE Pde = pPD->a[i];
3735 if (Pde.n.u1Present)
3736 {
3737 const uint32_t u32Address = i << X86_PD_SHIFT;
3738 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3739 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3740 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3741 u32Address,
3742 Pde.b.u1Write ? 'W' : 'R',
3743 Pde.b.u1User ? 'U' : 'S',
3744 Pde.b.u1Accessed ? 'A' : '-',
3745 Pde.b.u1Dirty ? 'D' : '-',
3746 Pde.b.u1Global ? 'G' : '-',
3747 Pde.b.u1WriteThru ? "WT" : "--",
3748 Pde.b.u1CacheDisable? "CD" : "--",
3749 Pde.b.u1PAT ? "AT" : "--",
3750 Pde.u & RT_BIT_64(9) ? '1' : '0',
3751 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3752 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3753 Pde.u & X86_PDE4M_PG_MASK);
3754 else
3755 {
3756 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3757 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3758 u32Address,
3759 Pde.n.u1Write ? 'W' : 'R',
3760 Pde.n.u1User ? 'U' : 'S',
3761 Pde.n.u1Accessed ? 'A' : '-',
3762 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3763 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3764 Pde.n.u1WriteThru ? "WT" : "--",
3765 Pde.n.u1CacheDisable? "CD" : "--",
3766 Pde.u & RT_BIT_64(9) ? '1' : '0',
3767 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3768 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3769 Pde.u & X86_PDE_PG_MASK);
3770 if (cMaxDepth >= 1)
3771 {
3772 /** @todo what about using the page pool for mapping PTs? */
3773 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3774 PX86PT pPT = NULL;
3775 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3776 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3777 else
3778 {
3779 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3780 if (u32Address - pMap->GCPtr < pMap->cb)
3781 {
3782 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3783 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3784 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3785 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3786 pPT = pMap->aPTs[iPDE].pPTR3;
3787 }
3788 }
3789 int rc2 = VERR_INVALID_PARAMETER;
3790 if (pPT)
3791 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3792 else
3793 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3794 if (rc2 < rc && VBOX_SUCCESS(rc))
3795 rc = rc2;
3796 }
3797 }
3798 }
3799 }
3800
3801 return rc;
3802}
3803
3804
3805/**
3806 * Dumps a 32-bit shadow page table.
3807 *
3808 * @returns VBox status code (VINF_SUCCESS).
3809 * @param pVM The VM handle.
3810 * @param pPT Pointer to the page table.
3811 * @param u32Address The virtual address this table starts at.
3812 * @param PhysSearch Address to search for.
3813 */
3814int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3815{
3816 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3817 {
3818 X86PTE Pte = pPT->a[i];
3819 if (Pte.n.u1Present)
3820 {
3821 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3822 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3823 u32Address + (i << X86_PT_SHIFT),
3824 Pte.n.u1Write ? 'W' : 'R',
3825 Pte.n.u1User ? 'U' : 'S',
3826 Pte.n.u1Accessed ? 'A' : '-',
3827 Pte.n.u1Dirty ? 'D' : '-',
3828 Pte.n.u1Global ? 'G' : '-',
3829 Pte.n.u1WriteThru ? "WT" : "--",
3830 Pte.n.u1CacheDisable? "CD" : "--",
3831 Pte.n.u1PAT ? "AT" : "--",
3832 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3833 Pte.u & RT_BIT(10) ? '1' : '0',
3834 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3835 Pte.u & X86_PDE_PG_MASK));
3836
3837 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3838 {
3839 uint64_t fPageShw = 0;
3840 RTHCPHYS pPhysHC = 0;
3841
3842 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3843 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3844 }
3845 }
3846 }
3847 return VINF_SUCCESS;
3848}
3849
3850
3851/**
3852 * Dumps a 32-bit guest page directory and page tables.
3853 *
3854 * @returns VBox status code (VINF_SUCCESS).
3855 * @param pVM The VM handle.
3856 * @param cr3 The root of the hierarchy.
3857 * @param cr4 The CR4, PSE is currently used.
3858 * @param PhysSearch Address to search for.
3859 */
3860VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3861{
3862 bool fLongMode = false;
3863 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3864 PX86PD pPD = 0;
3865
3866 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3867 if (VBOX_FAILURE(rc) || !pPD)
3868 {
3869 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3870 return VERR_INVALID_PARAMETER;
3871 }
3872
3873 Log(("cr3=%08x cr4=%08x%s\n"
3874 "%-*s P - Present\n"
3875 "%-*s | R/W - Read (0) / Write (1)\n"
3876 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3877 "%-*s | | | A - Accessed\n"
3878 "%-*s | | | | D - Dirty\n"
3879 "%-*s | | | | | G - Global\n"
3880 "%-*s | | | | | | WT - Write thru\n"
3881 "%-*s | | | | | | | CD - Cache disable\n"
3882 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3883 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3884 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3885 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3886 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3887 "%-*s Level | | | | | | | | | | | | Page\n"
3888 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3889 - W U - - - -- -- -- -- -- 010 */
3890 , cr3, cr4, fLongMode ? " Long Mode" : "",
3891 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3892 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3893
3894 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3895 {
3896 X86PDE Pde = pPD->a[i];
3897 if (Pde.n.u1Present)
3898 {
3899 const uint32_t u32Address = i << X86_PD_SHIFT;
3900
3901 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3902 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3903 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3904 u32Address,
3905 Pde.b.u1Write ? 'W' : 'R',
3906 Pde.b.u1User ? 'U' : 'S',
3907 Pde.b.u1Accessed ? 'A' : '-',
3908 Pde.b.u1Dirty ? 'D' : '-',
3909 Pde.b.u1Global ? 'G' : '-',
3910 Pde.b.u1WriteThru ? "WT" : "--",
3911 Pde.b.u1CacheDisable? "CD" : "--",
3912 Pde.b.u1PAT ? "AT" : "--",
3913 Pde.u & RT_BIT(9) ? '1' : '0',
3914 Pde.u & RT_BIT(10) ? '1' : '0',
3915 Pde.u & RT_BIT(11) ? '1' : '0',
3916 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3917 /** @todo PhysSearch */
3918 else
3919 {
3920 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3921 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3922 u32Address,
3923 Pde.n.u1Write ? 'W' : 'R',
3924 Pde.n.u1User ? 'U' : 'S',
3925 Pde.n.u1Accessed ? 'A' : '-',
3926 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3927 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3928 Pde.n.u1WriteThru ? "WT" : "--",
3929 Pde.n.u1CacheDisable? "CD" : "--",
3930 Pde.u & RT_BIT(9) ? '1' : '0',
3931 Pde.u & RT_BIT(10) ? '1' : '0',
3932 Pde.u & RT_BIT(11) ? '1' : '0',
3933 Pde.u & X86_PDE_PG_MASK));
3934 ////if (cMaxDepth >= 1)
3935 {
3936 /** @todo what about using the page pool for mapping PTs? */
3937 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3938 PX86PT pPT = NULL;
3939
3940 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3941
3942 int rc2 = VERR_INVALID_PARAMETER;
3943 if (pPT)
3944 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3945 else
3946 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3947 if (rc2 < rc && VBOX_SUCCESS(rc))
3948 rc = rc2;
3949 }
3950 }
3951 }
3952 }
3953
3954 return rc;
3955}
3956
3957
3958/**
3959 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3960 *
3961 * @returns VBox status code (VINF_SUCCESS).
3962 * @param pVM The VM handle.
3963 * @param cr3 The root of the hierarchy.
3964 * @param cr4 The cr4, only PAE and PSE is currently used.
3965 * @param fLongMode Set if long mode, false if not long mode.
3966 * @param cMaxDepth Number of levels to dump.
3967 * @param pHlp Pointer to the output functions.
3968 */
3969VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3970{
3971 if (!pHlp)
3972 pHlp = DBGFR3InfoLogHlp();
3973 if (!cMaxDepth)
3974 return VINF_SUCCESS;
3975 const unsigned cch = fLongMode ? 16 : 8;
3976 pHlp->pfnPrintf(pHlp,
3977 "cr3=%08x cr4=%08x%s\n"
3978 "%-*s P - Present\n"
3979 "%-*s | R/W - Read (0) / Write (1)\n"
3980 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3981 "%-*s | | | A - Accessed\n"
3982 "%-*s | | | | D - Dirty\n"
3983 "%-*s | | | | | G - Global\n"
3984 "%-*s | | | | | | WT - Write thru\n"
3985 "%-*s | | | | | | | CD - Cache disable\n"
3986 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3987 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3988 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3989 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3990 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3991 "%-*s Level | | | | | | | | | | | | Page\n"
3992 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3993 - W U - - - -- -- -- -- -- 010 */
3994 , cr3, cr4, fLongMode ? " Long Mode" : "",
3995 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3996 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3997 if (cr4 & X86_CR4_PAE)
3998 {
3999 if (fLongMode)
4000 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4001 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4002 }
4003 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4004}
4005
4006
4007
4008#ifdef VBOX_WITH_DEBUGGER
4009/**
4010 * The '.pgmram' command.
4011 *
4012 * @returns VBox status.
4013 * @param pCmd Pointer to the command descriptor (as registered).
4014 * @param pCmdHlp Pointer to command helper functions.
4015 * @param pVM Pointer to the current VM (if any).
4016 * @param paArgs Pointer to (readonly) array of arguments.
4017 * @param cArgs Number of arguments in the array.
4018 */
4019static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4020{
4021 /*
4022 * Validate input.
4023 */
4024 if (!pVM)
4025 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4026 if (!pVM->pgm.s.pRamRangesRC)
4027 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4028
4029 /*
4030 * Dump the ranges.
4031 */
4032 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4033 PPGMRAMRANGE pRam;
4034 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4035 {
4036 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4037 "%RGp - %RGp %p\n",
4038 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4039 if (VBOX_FAILURE(rc))
4040 return rc;
4041 }
4042
4043 return VINF_SUCCESS;
4044}
4045
4046
4047/**
4048 * The '.pgmmap' command.
4049 *
4050 * @returns VBox status.
4051 * @param pCmd Pointer to the command descriptor (as registered).
4052 * @param pCmdHlp Pointer to command helper functions.
4053 * @param pVM Pointer to the current VM (if any).
4054 * @param paArgs Pointer to (readonly) array of arguments.
4055 * @param cArgs Number of arguments in the array.
4056 */
4057static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4058{
4059 /*
4060 * Validate input.
4061 */
4062 if (!pVM)
4063 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4064 if (!pVM->pgm.s.pMappingsR3)
4065 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4066
4067 /*
4068 * Print message about the fixedness of the mappings.
4069 */
4070 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4071 if (VBOX_FAILURE(rc))
4072 return rc;
4073
4074 /*
4075 * Dump the ranges.
4076 */
4077 PPGMMAPPING pCur;
4078 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4079 {
4080 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4081 "%08x - %08x %s\n",
4082 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4083 if (VBOX_FAILURE(rc))
4084 return rc;
4085 }
4086
4087 return VINF_SUCCESS;
4088}
4089
4090
4091/**
4092 * The '.pgmsync' command.
4093 *
4094 * @returns VBox status.
4095 * @param pCmd Pointer to the command descriptor (as registered).
4096 * @param pCmdHlp Pointer to command helper functions.
4097 * @param pVM Pointer to the current VM (if any).
4098 * @param paArgs Pointer to (readonly) array of arguments.
4099 * @param cArgs Number of arguments in the array.
4100 */
4101static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4102{
4103 /*
4104 * Validate input.
4105 */
4106 if (!pVM)
4107 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4108
4109 /*
4110 * Force page directory sync.
4111 */
4112 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4113
4114 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4115 if (VBOX_FAILURE(rc))
4116 return rc;
4117
4118 return VINF_SUCCESS;
4119}
4120
4121
4122#ifdef VBOX_STRICT
4123/**
4124 * The '.pgmassertcr3' command.
4125 *
4126 * @returns VBox status.
4127 * @param pCmd Pointer to the command descriptor (as registered).
4128 * @param pCmdHlp Pointer to command helper functions.
4129 * @param pVM Pointer to the current VM (if any).
4130 * @param paArgs Pointer to (readonly) array of arguments.
4131 * @param cArgs Number of arguments in the array.
4132 */
4133static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4134{
4135 /*
4136 * Validate input.
4137 */
4138 if (!pVM)
4139 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4140
4141 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4142 if (VBOX_FAILURE(rc))
4143 return rc;
4144
4145 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4146
4147 return VINF_SUCCESS;
4148}
4149#endif
4150
4151/**
4152 * The '.pgmsyncalways' command.
4153 *
4154 * @returns VBox status.
4155 * @param pCmd Pointer to the command descriptor (as registered).
4156 * @param pCmdHlp Pointer to command helper functions.
4157 * @param pVM Pointer to the current VM (if any).
4158 * @param paArgs Pointer to (readonly) array of arguments.
4159 * @param cArgs Number of arguments in the array.
4160 */
4161static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4162{
4163 /*
4164 * Validate input.
4165 */
4166 if (!pVM)
4167 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4168
4169 /*
4170 * Force page directory sync.
4171 */
4172 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4173 {
4174 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4175 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4176 }
4177 else
4178 {
4179 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4180 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4181 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4182 }
4183}
4184
4185#endif
4186
4187/**
4188 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4189 */
4190typedef struct PGMCHECKINTARGS
4191{
4192 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4193 PPGMPHYSHANDLER pPrevPhys;
4194 PPGMVIRTHANDLER pPrevVirt;
4195 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4196 PVM pVM;
4197} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4198
4199/**
4200 * Validate a node in the physical handler tree.
4201 *
4202 * @returns 0 on if ok, other wise 1.
4203 * @param pNode The handler node.
4204 * @param pvUser pVM.
4205 */
4206static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4207{
4208 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4209 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4210 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4211 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4212 AssertReleaseMsg( !pArgs->pPrevPhys
4213 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4214 ("pPrevPhys=%p %VGp-%VGp %s\n"
4215 " pCur=%p %VGp-%VGp %s\n",
4216 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4217 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4218 pArgs->pPrevPhys = pCur;
4219 return 0;
4220}
4221
4222
4223/**
4224 * Validate a node in the virtual handler tree.
4225 *
4226 * @returns 0 on if ok, other wise 1.
4227 * @param pNode The handler node.
4228 * @param pvUser pVM.
4229 */
4230static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4231{
4232 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4233 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4234 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4235 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4236 AssertReleaseMsg( !pArgs->pPrevVirt
4237 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4238 ("pPrevVirt=%p %VGv-%VGv %s\n"
4239 " pCur=%p %VGv-%VGv %s\n",
4240 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4241 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4242 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4243 {
4244 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4245 ("pCur=%p %VGv-%VGv %s\n"
4246 "iPage=%d offVirtHandle=%#x expected %#x\n",
4247 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4248 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4249 }
4250 pArgs->pPrevVirt = pCur;
4251 return 0;
4252}
4253
4254
4255/**
4256 * Validate a node in the virtual handler tree.
4257 *
4258 * @returns 0 on if ok, other wise 1.
4259 * @param pNode The handler node.
4260 * @param pvUser pVM.
4261 */
4262static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4263{
4264 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4265 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4266 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4267 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4268 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4269 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4270 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4271 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4272 " pCur=%p %VGp-%VGp\n",
4273 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4274 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4275 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4276 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4277 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4278 " pCur=%p %VGp-%VGp\n",
4279 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4280 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4281 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4282 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4283 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4284 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4285 {
4286 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4287 for (;;)
4288 {
4289 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4290 AssertReleaseMsg(pCur2 != pCur,
4291 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4292 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4293 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4294 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4295 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4296 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4297 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4298 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4299 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4300 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4301 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4302 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4303 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4304 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4305 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4306 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4307 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4308 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4309 break;
4310 }
4311 }
4312
4313 pArgs->pPrevPhys2Virt = pCur;
4314 return 0;
4315}
4316
4317
4318/**
4319 * Perform an integrity check on the PGM component.
4320 *
4321 * @returns VINF_SUCCESS if everything is fine.
4322 * @returns VBox error status after asserting on integrity breach.
4323 * @param pVM The VM handle.
4324 */
4325VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4326{
4327 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4328
4329 /*
4330 * Check the trees.
4331 */
4332 int cErrors = 0;
4333 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4334 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4335 PGMCHECKINTARGS Args = s_LeftToRight;
4336 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4337 Args = s_RightToLeft;
4338 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4339 Args = s_LeftToRight;
4340 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4341 Args = s_RightToLeft;
4342 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4343 Args = s_LeftToRight;
4344 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4345 Args = s_RightToLeft;
4346 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4347 Args = s_LeftToRight;
4348 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4349 Args = s_RightToLeft;
4350 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4351
4352 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4353}
4354
4355
4356/**
4357 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4358 *
4359 * @returns VBox status code.
4360 * @param pVM VM handle.
4361 * @param fEnable Enable or disable shadow mappings
4362 */
4363VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4364{
4365 pVM->pgm.s.fDisableMappings = !fEnable;
4366
4367 uint32_t cb;
4368 int rc = PGMR3MappingsSize(pVM, &cb);
4369 AssertRCReturn(rc, rc);
4370
4371 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4372 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4373 AssertRCReturn(rc, rc);
4374
4375 return VINF_SUCCESS;
4376}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette