VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 13106

Last change on this file since 13106 was 13106, checked in by vboxsync, 16 years ago

leave some modes out if 64-bit guests are not enabled (so far on 32-bit hosts)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 208.3 KB
Line 
1/* $Id: PGM.cpp 13106 2008-10-09 08:46:19Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608
609/*******************************************************************************
610* Internal Functions *
611*******************************************************************************/
612static int pgmR3InitPaging(PVM pVM);
613static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
615static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
616static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
617static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
618static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
619#ifdef VBOX_STRICT
620static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
621#endif
622static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
623static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
624static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
625static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
626static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
627
628#ifdef VBOX_WITH_STATISTICS
629static void pgmR3InitStats(PVM pVM);
630#endif
631
632#ifdef VBOX_WITH_DEBUGGER
633/** @todo all but the two last commands must be converted to 'info'. */
634static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638# ifdef VBOX_STRICT
639static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# endif
641#endif
642
643
644/*******************************************************************************
645* Global Variables *
646*******************************************************************************/
647#ifdef VBOX_WITH_DEBUGGER
648/** Command descriptors. */
649static const DBGCCMD g_aCmds[] =
650{
651 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
652 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
653 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
654 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
655#ifdef VBOX_STRICT
656 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
657#endif
658 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
659};
660#endif
661
662
663
664
665/*
666 * Shadow - 32-bit mode
667 */
668#define PGM_SHW_TYPE PGM_TYPE_32BIT
669#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
670#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
671#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
672#include "PGMShw.h"
673
674/* Guest - real mode */
675#define PGM_GST_TYPE PGM_TYPE_REAL
676#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
677#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
678#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
679#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
680#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
681#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
682#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
683#include "PGMGst.h"
684#include "PGMBth.h"
685#undef BTH_PGMPOOLKIND_PT_FOR_PT
686#undef PGM_BTH_NAME
687#undef PGM_BTH_NAME_RC_STR
688#undef PGM_BTH_NAME_R0_STR
689#undef PGM_GST_TYPE
690#undef PGM_GST_NAME
691#undef PGM_GST_NAME_RC_STR
692#undef PGM_GST_NAME_R0_STR
693
694/* Guest - protected mode */
695#define PGM_GST_TYPE PGM_TYPE_PROT
696#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
697#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
698#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
699#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
700#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
701#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
702#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
703#include "PGMGst.h"
704#include "PGMBth.h"
705#undef BTH_PGMPOOLKIND_PT_FOR_PT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - 32-bit mode */
715#define PGM_GST_TYPE PGM_TYPE_32BIT
716#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
723#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
724#include "PGMGst.h"
725#include "PGMBth.h"
726#undef BTH_PGMPOOLKIND_PT_FOR_BIG
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef PGM_BTH_NAME
729#undef PGM_BTH_NAME_RC_STR
730#undef PGM_BTH_NAME_R0_STR
731#undef PGM_GST_TYPE
732#undef PGM_GST_NAME
733#undef PGM_GST_NAME_RC_STR
734#undef PGM_GST_NAME_R0_STR
735
736#undef PGM_SHW_TYPE
737#undef PGM_SHW_NAME
738#undef PGM_SHW_NAME_RC_STR
739#undef PGM_SHW_NAME_R0_STR
740
741
742/*
743 * Shadow - PAE mode
744 */
745#define PGM_SHW_TYPE PGM_TYPE_PAE
746#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
747#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
748#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
750#include "PGMShw.h"
751
752/* Guest - real mode */
753#define PGM_GST_TYPE PGM_TYPE_REAL
754#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
755#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
756#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
757#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
758#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
759#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
760#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
761#include "PGMBth.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_PT
763#undef PGM_BTH_NAME
764#undef PGM_BTH_NAME_RC_STR
765#undef PGM_BTH_NAME_R0_STR
766#undef PGM_GST_TYPE
767#undef PGM_GST_NAME
768#undef PGM_GST_NAME_RC_STR
769#undef PGM_GST_NAME_R0_STR
770
771/* Guest - protected mode */
772#define PGM_GST_TYPE PGM_TYPE_PROT
773#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
774#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
775#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
776#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
777#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
778#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
779#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
780#include "PGMBth.h"
781#undef BTH_PGMPOOLKIND_PT_FOR_PT
782#undef PGM_BTH_NAME
783#undef PGM_BTH_NAME_RC_STR
784#undef PGM_BTH_NAME_R0_STR
785#undef PGM_GST_TYPE
786#undef PGM_GST_NAME
787#undef PGM_GST_NAME_RC_STR
788#undef PGM_GST_NAME_R0_STR
789
790/* Guest - 32-bit mode */
791#define PGM_GST_TYPE PGM_TYPE_32BIT
792#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
793#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
794#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
795#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
796#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
797#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
798#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
799#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_BIG
802#undef BTH_PGMPOOLKIND_PT_FOR_PT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - PAE mode */
812#define PGM_GST_TYPE PGM_TYPE_PAE
813#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
820#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
821#include "PGMGst.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_BIG
824#undef BTH_PGMPOOLKIND_PT_FOR_PT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833#undef PGM_SHW_TYPE
834#undef PGM_SHW_NAME
835#undef PGM_SHW_NAME_RC_STR
836#undef PGM_SHW_NAME_R0_STR
837
838
839/*
840 * Shadow - AMD64 mode
841 */
842#define PGM_SHW_TYPE PGM_TYPE_AMD64
843#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
844#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
845#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
846#include "PGMShw.h"
847
848#ifdef VBOX_WITH_64_BITS_GUESTS
849/* Guest - AMD64 mode */
850#define PGM_GST_TYPE PGM_TYPE_AMD64
851#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
852#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
853#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
854#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
855#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
856#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
857#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
858#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
859#include "PGMGst.h"
860#include "PGMBth.h"
861#undef BTH_PGMPOOLKIND_PT_FOR_BIG
862#undef BTH_PGMPOOLKIND_PT_FOR_PT
863#undef PGM_BTH_NAME
864#undef PGM_BTH_NAME_RC_STR
865#undef PGM_BTH_NAME_R0_STR
866#undef PGM_GST_TYPE
867#undef PGM_GST_NAME
868#undef PGM_GST_NAME_RC_STR
869#undef PGM_GST_NAME_R0_STR
870#endif
871
872#undef PGM_SHW_TYPE
873#undef PGM_SHW_NAME
874#undef PGM_SHW_NAME_RC_STR
875#undef PGM_SHW_NAME_R0_STR
876
877/*
878 * Shadow - Nested paging mode
879 */
880#define PGM_SHW_TYPE PGM_TYPE_NESTED
881#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
882#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
883#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
884#include "PGMShw.h"
885
886/* Guest - real mode */
887#define PGM_GST_TYPE PGM_TYPE_REAL
888#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
889#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
890#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
891#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
892#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
893#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
894#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
895#include "PGMBth.h"
896#undef BTH_PGMPOOLKIND_PT_FOR_PT
897#undef PGM_BTH_NAME
898#undef PGM_BTH_NAME_RC_STR
899#undef PGM_BTH_NAME_R0_STR
900#undef PGM_GST_TYPE
901#undef PGM_GST_NAME
902#undef PGM_GST_NAME_RC_STR
903#undef PGM_GST_NAME_R0_STR
904
905/* Guest - protected mode */
906#define PGM_GST_TYPE PGM_TYPE_PROT
907#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
908#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
909#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
910#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
911#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
912#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
913#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
914#include "PGMBth.h"
915#undef BTH_PGMPOOLKIND_PT_FOR_PT
916#undef PGM_BTH_NAME
917#undef PGM_BTH_NAME_RC_STR
918#undef PGM_BTH_NAME_R0_STR
919#undef PGM_GST_TYPE
920#undef PGM_GST_NAME
921#undef PGM_GST_NAME_RC_STR
922#undef PGM_GST_NAME_R0_STR
923
924/* Guest - 32-bit mode */
925#define PGM_GST_TYPE PGM_TYPE_32BIT
926#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
927#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
928#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
929#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
930#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
931#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
932#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
933#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
934#include "PGMBth.h"
935#undef BTH_PGMPOOLKIND_PT_FOR_BIG
936#undef BTH_PGMPOOLKIND_PT_FOR_PT
937#undef PGM_BTH_NAME
938#undef PGM_BTH_NAME_RC_STR
939#undef PGM_BTH_NAME_R0_STR
940#undef PGM_GST_TYPE
941#undef PGM_GST_NAME
942#undef PGM_GST_NAME_RC_STR
943#undef PGM_GST_NAME_R0_STR
944
945/* Guest - PAE mode */
946#define PGM_GST_TYPE PGM_TYPE_PAE
947#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
948#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
949#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
950#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
951#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
952#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
953#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
954#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
955#include "PGMBth.h"
956#undef BTH_PGMPOOLKIND_PT_FOR_BIG
957#undef BTH_PGMPOOLKIND_PT_FOR_PT
958#undef PGM_BTH_NAME
959#undef PGM_BTH_NAME_RC_STR
960#undef PGM_BTH_NAME_R0_STR
961#undef PGM_GST_TYPE
962#undef PGM_GST_NAME
963#undef PGM_GST_NAME_RC_STR
964#undef PGM_GST_NAME_R0_STR
965
966#ifdef VBOX_WITH_64_BITS_GUESTS
967/* Guest - AMD64 mode */
968#define PGM_GST_TYPE PGM_TYPE_AMD64
969#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
970#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
971#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
972#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
973#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
974#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
975#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
976#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
977#include "PGMBth.h"
978#undef BTH_PGMPOOLKIND_PT_FOR_BIG
979#undef BTH_PGMPOOLKIND_PT_FOR_PT
980#undef PGM_BTH_NAME
981#undef PGM_BTH_NAME_RC_STR
982#undef PGM_BTH_NAME_R0_STR
983#undef PGM_GST_TYPE
984#undef PGM_GST_NAME
985#undef PGM_GST_NAME_RC_STR
986#undef PGM_GST_NAME_R0_STR
987#endif
988
989#undef PGM_SHW_TYPE
990#undef PGM_SHW_NAME
991#undef PGM_SHW_NAME_RC_STR
992#undef PGM_SHW_NAME_R0_STR
993
994/*
995 * Shadow - EPT
996 */
997#define PGM_SHW_TYPE PGM_TYPE_EPT
998#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
999#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1000#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1001#include "PGMShw.h"
1002
1003/* Guest - real mode */
1004#define PGM_GST_TYPE PGM_TYPE_REAL
1005#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1006#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1007#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1008#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1009#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1010#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1011#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1012#include "PGMBth.h"
1013#undef BTH_PGMPOOLKIND_PT_FOR_PT
1014#undef PGM_BTH_NAME
1015#undef PGM_BTH_NAME_RC_STR
1016#undef PGM_BTH_NAME_R0_STR
1017#undef PGM_GST_TYPE
1018#undef PGM_GST_NAME
1019#undef PGM_GST_NAME_RC_STR
1020#undef PGM_GST_NAME_R0_STR
1021
1022/* Guest - protected mode */
1023#define PGM_GST_TYPE PGM_TYPE_PROT
1024#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1025#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1026#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1027#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1028#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1029#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1030#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1031#include "PGMBth.h"
1032#undef BTH_PGMPOOLKIND_PT_FOR_PT
1033#undef PGM_BTH_NAME
1034#undef PGM_BTH_NAME_RC_STR
1035#undef PGM_BTH_NAME_R0_STR
1036#undef PGM_GST_TYPE
1037#undef PGM_GST_NAME
1038#undef PGM_GST_NAME_RC_STR
1039#undef PGM_GST_NAME_R0_STR
1040
1041/* Guest - 32-bit mode */
1042#define PGM_GST_TYPE PGM_TYPE_32BIT
1043#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1044#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1045#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1046#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1047#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1048#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1049#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1050#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1051#include "PGMBth.h"
1052#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1053#undef BTH_PGMPOOLKIND_PT_FOR_PT
1054#undef PGM_BTH_NAME
1055#undef PGM_BTH_NAME_RC_STR
1056#undef PGM_BTH_NAME_R0_STR
1057#undef PGM_GST_TYPE
1058#undef PGM_GST_NAME
1059#undef PGM_GST_NAME_RC_STR
1060#undef PGM_GST_NAME_R0_STR
1061
1062/* Guest - PAE mode */
1063#define PGM_GST_TYPE PGM_TYPE_PAE
1064#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1065#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1066#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1067#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1068#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1069#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1070#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1071#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1072#include "PGMBth.h"
1073#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1074#undef BTH_PGMPOOLKIND_PT_FOR_PT
1075#undef PGM_BTH_NAME
1076#undef PGM_BTH_NAME_RC_STR
1077#undef PGM_BTH_NAME_R0_STR
1078#undef PGM_GST_TYPE
1079#undef PGM_GST_NAME
1080#undef PGM_GST_NAME_RC_STR
1081#undef PGM_GST_NAME_R0_STR
1082
1083#ifdef VBOX_WITH_64_BITS_GUESTS
1084/* Guest - AMD64 mode */
1085#define PGM_GST_TYPE PGM_TYPE_AMD64
1086#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1087#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1088#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1089#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1090#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1091#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1092#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1093#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1094#include "PGMBth.h"
1095#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1096#undef BTH_PGMPOOLKIND_PT_FOR_PT
1097#undef PGM_BTH_NAME
1098#undef PGM_BTH_NAME_RC_STR
1099#undef PGM_BTH_NAME_R0_STR
1100#undef PGM_GST_TYPE
1101#undef PGM_GST_NAME
1102#undef PGM_GST_NAME_RC_STR
1103#undef PGM_GST_NAME_R0_STR
1104#endif
1105
1106#undef PGM_SHW_TYPE
1107#undef PGM_SHW_NAME
1108#undef PGM_SHW_NAME_RC_STR
1109#undef PGM_SHW_NAME_R0_STR
1110
1111/**
1112 * Initiates the paging of VM.
1113 *
1114 * @returns VBox status code.
1115 * @param pVM Pointer to VM structure.
1116 */
1117VMMR3DECL(int) PGMR3Init(PVM pVM)
1118{
1119 LogFlow(("PGMR3Init:\n"));
1120
1121 /*
1122 * Assert alignment and sizes.
1123 */
1124 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1125
1126 /*
1127 * Init the structure.
1128 */
1129 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1130 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1131 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1132 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1133 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1134 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1135 pVM->pgm.s.fA20Enabled = true;
1136 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1137 pVM->pgm.s.pGstPaePDPTHC = NULL;
1138 pVM->pgm.s.pGstPaePDPTGC = 0;
1139 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1140 {
1141 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1142 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1143 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1144 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1145 }
1146
1147#ifdef VBOX_STRICT
1148 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1149#endif
1150
1151 /*
1152 * Get the configured RAM size - to estimate saved state size.
1153 */
1154 uint64_t cbRam;
1155 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1156 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1157 cbRam = pVM->pgm.s.cbRamSize = 0;
1158 else if (VBOX_SUCCESS(rc))
1159 {
1160 if (cbRam < PAGE_SIZE)
1161 cbRam = 0;
1162 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1163 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1164 }
1165 else
1166 {
1167 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1168 return rc;
1169 }
1170
1171 /*
1172 * Register saved state data unit.
1173 */
1174 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1175 NULL, pgmR3Save, NULL,
1176 NULL, pgmR3Load, NULL);
1177 if (VBOX_FAILURE(rc))
1178 return rc;
1179
1180 /*
1181 * Initialize the PGM critical section and flush the phys TLBs
1182 */
1183 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1184 AssertRCReturn(rc, rc);
1185
1186 PGMR3PhysChunkInvalidateTLB(pVM);
1187 PGMPhysInvalidatePageR3MapTLB(pVM);
1188 PGMPhysInvalidatePageR0MapTLB(pVM);
1189 PGMPhysInvalidatePageGCMapTLB(pVM);
1190
1191 /*
1192 * Trees
1193 */
1194 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1195 if (VBOX_SUCCESS(rc))
1196 {
1197 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1198 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1199
1200 /*
1201 * Alocate the zero page.
1202 */
1203 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1204 }
1205 if (VBOX_SUCCESS(rc))
1206 {
1207 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1208 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1209 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1210 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1211 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1212
1213 /*
1214 * Init the paging.
1215 */
1216 rc = pgmR3InitPaging(pVM);
1217 }
1218 if (VBOX_SUCCESS(rc))
1219 {
1220 /*
1221 * Init the page pool.
1222 */
1223 rc = pgmR3PoolInit(pVM);
1224 }
1225 if (VBOX_SUCCESS(rc))
1226 {
1227 /*
1228 * Info & statistics
1229 */
1230 DBGFR3InfoRegisterInternal(pVM, "mode",
1231 "Shows the current paging mode. "
1232 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1233 pgmR3InfoMode);
1234 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1235 "Dumps all the entries in the top level paging table. No arguments.",
1236 pgmR3InfoCr3);
1237 DBGFR3InfoRegisterInternal(pVM, "phys",
1238 "Dumps all the physical address ranges. No arguments.",
1239 pgmR3PhysInfo);
1240 DBGFR3InfoRegisterInternal(pVM, "handlers",
1241 "Dumps physical, virtual and hyper virtual handlers. "
1242 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1243 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1244 pgmR3InfoHandlers);
1245 DBGFR3InfoRegisterInternal(pVM, "mappings",
1246 "Dumps guest mappings.",
1247 pgmR3MapInfo);
1248
1249 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1250#ifdef VBOX_WITH_STATISTICS
1251 pgmR3InitStats(pVM);
1252#endif
1253#ifdef VBOX_WITH_DEBUGGER
1254 /*
1255 * Debugger commands.
1256 */
1257 static bool fRegisteredCmds = false;
1258 if (!fRegisteredCmds)
1259 {
1260 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1261 if (VBOX_SUCCESS(rc))
1262 fRegisteredCmds = true;
1263 }
1264#endif
1265 return VINF_SUCCESS;
1266 }
1267
1268 /* Almost no cleanup necessary, MM frees all memory. */
1269 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1270
1271 return rc;
1272}
1273
1274
1275/**
1276 * Init paging.
1277 *
1278 * Since we need to check what mode the host is operating in before we can choose
1279 * the right paging functions for the host we have to delay this until R0 has
1280 * been initialized.
1281 *
1282 * @returns VBox status code.
1283 * @param pVM VM handle.
1284 */
1285static int pgmR3InitPaging(PVM pVM)
1286{
1287 /*
1288 * Force a recalculation of modes and switcher so everyone gets notified.
1289 */
1290 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1291 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1292 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1293
1294 /*
1295 * Allocate static mapping space for whatever the cr3 register
1296 * points to and in the case of PAE mode to the 4 PDs.
1297 */
1298 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1299 if (VBOX_FAILURE(rc))
1300 {
1301 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1302 return rc;
1303 }
1304 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1305
1306 /*
1307 * Allocate pages for the three possible intermediate contexts
1308 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1309 * for the sake of simplicity. The AMD64 uses the PAE for the
1310 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1311 *
1312 * We assume that two page tables will be enought for the core code
1313 * mappings (HC virtual and identity).
1314 */
1315 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1316 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1317 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1318 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1319 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1320 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1321 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1322 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1323 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1324 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1325 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1326 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1327 if ( !pVM->pgm.s.pInterPD
1328 || !pVM->pgm.s.apInterPTs[0]
1329 || !pVM->pgm.s.apInterPTs[1]
1330 || !pVM->pgm.s.apInterPaePTs[0]
1331 || !pVM->pgm.s.apInterPaePTs[1]
1332 || !pVM->pgm.s.apInterPaePDs[0]
1333 || !pVM->pgm.s.apInterPaePDs[1]
1334 || !pVM->pgm.s.apInterPaePDs[2]
1335 || !pVM->pgm.s.apInterPaePDs[3]
1336 || !pVM->pgm.s.pInterPaePDPT
1337 || !pVM->pgm.s.pInterPaePDPT64
1338 || !pVM->pgm.s.pInterPaePML4)
1339 {
1340 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1341 return VERR_NO_PAGE_MEMORY;
1342 }
1343
1344 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1345 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1346 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1347 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1348 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1349 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1350
1351 /*
1352 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1353 */
1354 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1355 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1356 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1357
1358 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1359 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1360
1361 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1362 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1363 {
1364 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1365 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1366 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1367 }
1368
1369 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1370 {
1371 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1372 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1373 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1374 }
1375
1376 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1377 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1378 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1379 | HCPhysInterPaePDPT64;
1380
1381 /*
1382 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1383 * We allocate pages for all three posibilities to in order to simplify mappings and
1384 * avoid resource failure during mode switches. So, we need to cover all levels of the
1385 * of the first 4GB down to PD level.
1386 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1387 */
1388 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1389 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1390 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1391 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1392 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1393 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1394 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1395 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1396 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1397 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1398
1399 if ( !pVM->pgm.s.pHC32BitPD
1400 || !pVM->pgm.s.apHCPaePDs[0]
1401 || !pVM->pgm.s.apHCPaePDs[1]
1402 || !pVM->pgm.s.apHCPaePDs[2]
1403 || !pVM->pgm.s.apHCPaePDs[3]
1404 || !pVM->pgm.s.pHCPaePDPT
1405 || !pVM->pgm.s.pHCNestedRoot)
1406 {
1407 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1408 return VERR_NO_PAGE_MEMORY;
1409 }
1410
1411 /* get physical addresses. */
1412 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1413 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1414 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1415 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1416 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1417 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1418 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1419 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1420
1421 /*
1422 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1423 */
1424 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1425 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1426 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1427 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1428 {
1429 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1430 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1431 /* The flags will be corrected when entering and leaving long mode. */
1432 }
1433
1434 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1435
1436 /*
1437 * Initialize paging workers and mode from current host mode
1438 * and the guest running in real mode.
1439 */
1440 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1441 switch (pVM->pgm.s.enmHostMode)
1442 {
1443 case SUPPAGINGMODE_32_BIT:
1444 case SUPPAGINGMODE_32_BIT_GLOBAL:
1445 case SUPPAGINGMODE_PAE:
1446 case SUPPAGINGMODE_PAE_GLOBAL:
1447 case SUPPAGINGMODE_PAE_NX:
1448 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1449 break;
1450
1451 case SUPPAGINGMODE_AMD64:
1452 case SUPPAGINGMODE_AMD64_GLOBAL:
1453 case SUPPAGINGMODE_AMD64_NX:
1454 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1455#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1456 if (ARCH_BITS != 64)
1457 {
1458 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1459 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1460 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1461 }
1462#endif
1463 break;
1464 default:
1465 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1466 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1467 }
1468 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1469 if (VBOX_SUCCESS(rc))
1470 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1471 if (VBOX_SUCCESS(rc))
1472 {
1473 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1474#if HC_ARCH_BITS == 64
1475 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1476 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1477 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1478 LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1479 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1480 LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1481 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1482 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1483 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1484 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1485#endif
1486
1487 return VINF_SUCCESS;
1488 }
1489
1490 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1491 return rc;
1492}
1493
1494
1495#ifdef VBOX_WITH_STATISTICS
1496/**
1497 * Init statistics
1498 */
1499static void pgmR3InitStats(PVM pVM)
1500{
1501 PPGM pPGM = &pVM->pgm.s;
1502 unsigned i;
1503
1504 /*
1505 * Note! The layout of this function matches the member layout exactly!
1506 */
1507
1508 /* Common - misc variables */
1509 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1510 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1511 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1512 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1513 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1514 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1515
1516 /* Common - stats */
1517#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1518 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1519 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1520 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1521 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1522 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1523 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1524#endif
1525 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1526 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1527 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1528 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1529 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1530 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1531
1532 /* R3 only: */
1533 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1534 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1535 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1536 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1537 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1538 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1539
1540 /* GC only: */
1541 STAM_REG(pVM, &pPGM->StatRCInvalidatePage, STAMTYPE_PROFILE, "/PGM/RC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1542 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1543 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1544
1545 /* RZ only: */
1546 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1547 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1548 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1549 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1550 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1551 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1552 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1553 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1554 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1555 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1556 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1557 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1558 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1559 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1560 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1561 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1562 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1563 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1564 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1565 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1566 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1567 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1568 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1569 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1570 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1571 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1572 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1573 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1574 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1575 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1576 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1577 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1578 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1579 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1580 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1581 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1582 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1583 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1584 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1585 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1586 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1587 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1588 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1589 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1590 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1591 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1592 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1593 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1594 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1595 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1596 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1597
1598 /* HC only: */
1599
1600 /* RZ & R3: */
1601 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1602 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1603 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1604 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1605 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1606 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1607 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1608 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1609 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1610 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1611 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1612 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1613 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1614 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1615 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1616 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1617 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1618 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1619 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1620 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1621 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1622 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1623 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1624 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1625 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1626 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1627 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1628 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1629 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1630 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1631 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1632 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1633 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1634 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1635 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1636 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1637 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1638 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1639 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1640 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1641 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1642 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1643 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1644 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1645 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1646 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1647 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1648/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1649 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1650 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1651 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1652 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1653 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1654 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1655
1656 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1657 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1658 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1659 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1660 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1661 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1662 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1663 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1664 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1665 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1666 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1667 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1668 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1669 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1670 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1671 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1672 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1673 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1674 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1675 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1676 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1677 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1678 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1679 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1680 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1681 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1682 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1683 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1684 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1685 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1686 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1687 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1688 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1689 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1690 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1691 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1692 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1693 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1694 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1695 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1696 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1697 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1698 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1699 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1700 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1701 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1702 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1703/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1704 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1705 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1706 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1707 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1708 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1709 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1710
1711}
1712#endif /* VBOX_WITH_STATISTICS */
1713
1714/**
1715 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1716 *
1717 * The dynamic mapping area will also be allocated and initialized at this
1718 * time. We could allocate it during PGMR3Init of course, but the mapping
1719 * wouldn't be allocated at that time preventing us from setting up the
1720 * page table entries with the dummy page.
1721 *
1722 * @returns VBox status code.
1723 * @param pVM VM handle.
1724 */
1725VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1726{
1727 RTGCPTR GCPtr;
1728 /*
1729 * Reserve space for mapping the paging pages into guest context.
1730 */
1731 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1732 AssertRCReturn(rc, rc);
1733 pVM->pgm.s.pGC32BitPD = GCPtr;
1734 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1735
1736 /*
1737 * Reserve space for the dynamic mappings.
1738 */
1739 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1740 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1741 if (VBOX_SUCCESS(rc))
1742 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1743
1744 if ( VBOX_SUCCESS(rc)
1745 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1746 {
1747 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1748 if (VBOX_SUCCESS(rc))
1749 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1750 }
1751 if (VBOX_SUCCESS(rc))
1752 {
1753 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1754 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1755 }
1756 return rc;
1757}
1758
1759
1760/**
1761 * Ring-3 init finalizing.
1762 *
1763 * @returns VBox status code.
1764 * @param pVM The VM handle.
1765 */
1766VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1767{
1768 /*
1769 * Map the paging pages into the guest context.
1770 */
1771 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1772 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1773
1774 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1775 AssertRCReturn(rc, rc);
1776 pVM->pgm.s.pGC32BitPD = GCPtr;
1777 GCPtr += PAGE_SIZE;
1778 GCPtr += PAGE_SIZE; /* reserved page */
1779
1780 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1781 {
1782 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1783 AssertRCReturn(rc, rc);
1784 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1785 GCPtr += PAGE_SIZE;
1786 }
1787 /* A bit of paranoia is justified. */
1788 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1789 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1790 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1791 GCPtr += PAGE_SIZE; /* reserved page */
1792
1793 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1794 AssertRCReturn(rc, rc);
1795 pVM->pgm.s.pGCPaePDPT = GCPtr;
1796 GCPtr += PAGE_SIZE;
1797 GCPtr += PAGE_SIZE; /* reserved page */
1798
1799
1800 /*
1801 * Reserve space for the dynamic mappings.
1802 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1803 */
1804 /* get the pointer to the page table entries. */
1805 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1806 AssertRelease(pMapping);
1807 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1808 const unsigned iPT = off >> X86_PD_SHIFT;
1809 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1810 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1811 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1812
1813 /* init cache */
1814 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1815 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1816 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1817
1818 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1819 {
1820 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1821 AssertRCReturn(rc, rc);
1822 }
1823
1824 /* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); Intel only goes up to 36 bits, so
1825 * we stick to 36 as well.
1826 *
1827 * @todo How to test for the 40 bits support? Long mode seems to be the test criterium.
1828 */
1829 uint32_t u32Dummy, u32Features;
1830 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1831
1832 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1833 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1834 else
1835 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1836
1837 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %VGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1838
1839 return rc;
1840}
1841
1842
1843/**
1844 * Applies relocations to data and code managed by this
1845 * component. This function will be called at init and
1846 * whenever the VMM need to relocate it self inside the GC.
1847 *
1848 * @param pVM The VM.
1849 * @param offDelta Relocation delta relative to old location.
1850 */
1851VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1852{
1853 LogFlow(("PGMR3Relocate\n"));
1854
1855 /*
1856 * Paging stuff.
1857 */
1858 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1859 /** @todo move this into shadow and guest specific relocation functions. */
1860 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1861 pVM->pgm.s.pGC32BitPD += offDelta;
1862 pVM->pgm.s.pGuestPDGC += offDelta;
1863 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1864 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1865 {
1866 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1867 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1868 }
1869 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1870 pVM->pgm.s.pGCPaePDPT += offDelta;
1871
1872 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1873 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1874
1875 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1876 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1877 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1878
1879 /*
1880 * Trees.
1881 */
1882 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1883
1884 /*
1885 * Ram ranges.
1886 */
1887 if (pVM->pgm.s.pRamRangesR3)
1888 {
1889 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1890 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1891 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1892 }
1893
1894 /*
1895 * Update the two page directories with all page table mappings.
1896 * (One or more of them have changed, that's why we're here.)
1897 */
1898 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1899 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1900 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1901
1902 /* Relocate GC addresses of Page Tables. */
1903 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1904 {
1905 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1906 {
1907 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1908 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1909 }
1910 }
1911
1912 /*
1913 * Dynamic page mapping area.
1914 */
1915 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1916 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1917 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1918
1919 /*
1920 * The Zero page.
1921 */
1922 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1923 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1924
1925 /*
1926 * Physical and virtual handlers.
1927 */
1928 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1929 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1930 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1931
1932 /*
1933 * The page pool.
1934 */
1935 pgmR3PoolRelocate(pVM);
1936}
1937
1938
1939/**
1940 * Callback function for relocating a physical access handler.
1941 *
1942 * @returns 0 (continue enum)
1943 * @param pNode Pointer to a PGMPHYSHANDLER node.
1944 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1945 * not certain the delta will fit in a void pointer for all possible configs.
1946 */
1947static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1948{
1949 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1950 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1951 if (pHandler->pfnHandlerRC)
1952 pHandler->pfnHandlerRC += offDelta;
1953 if (pHandler->pvUserRC >= 0x10000)
1954 pHandler->pvUserRC += offDelta;
1955 return 0;
1956}
1957
1958
1959/**
1960 * Callback function for relocating a virtual access handler.
1961 *
1962 * @returns 0 (continue enum)
1963 * @param pNode Pointer to a PGMVIRTHANDLER node.
1964 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1965 * not certain the delta will fit in a void pointer for all possible configs.
1966 */
1967static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1968{
1969 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1970 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1971 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1972 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1973 Assert(pHandler->pfnHandlerRC);
1974 pHandler->pfnHandlerRC += offDelta;
1975 return 0;
1976}
1977
1978
1979/**
1980 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1981 *
1982 * @returns 0 (continue enum)
1983 * @param pNode Pointer to a PGMVIRTHANDLER node.
1984 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1985 * not certain the delta will fit in a void pointer for all possible configs.
1986 */
1987static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1988{
1989 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1990 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1991 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1992 Assert(pHandler->pfnHandlerRC);
1993 pHandler->pfnHandlerRC += offDelta;
1994 return 0;
1995}
1996
1997
1998/**
1999 * The VM is being reset.
2000 *
2001 * For the PGM component this means that any PD write monitors
2002 * needs to be removed.
2003 *
2004 * @param pVM VM handle.
2005 */
2006VMMR3DECL(void) PGMR3Reset(PVM pVM)
2007{
2008 LogFlow(("PGMR3Reset:\n"));
2009 VM_ASSERT_EMT(pVM);
2010
2011 pgmLock(pVM);
2012
2013 /*
2014 * Unfix any fixed mappings and disable CR3 monitoring.
2015 */
2016 pVM->pgm.s.fMappingsFixed = false;
2017 pVM->pgm.s.GCPtrMappingFixed = 0;
2018 pVM->pgm.s.cbMappingFixed = 0;
2019
2020 /* Exit the guest paging mode before the pgm pool gets reset.
2021 * Important to clean up the amd64 case.
2022 */
2023 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2024 AssertRC(rc);
2025#ifdef DEBUG
2026 DBGFR3InfoLog(pVM, "mappings", NULL);
2027 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2028#endif
2029
2030 /*
2031 * Reset the shadow page pool.
2032 */
2033 pgmR3PoolReset(pVM);
2034
2035 /*
2036 * Re-init other members.
2037 */
2038 pVM->pgm.s.fA20Enabled = true;
2039
2040 /*
2041 * Clear the FFs PGM owns.
2042 */
2043 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2044 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2045
2046 /*
2047 * Reset (zero) RAM pages.
2048 */
2049 rc = pgmR3PhysRamReset(pVM);
2050 if (RT_SUCCESS(rc))
2051 {
2052#ifdef VBOX_WITH_NEW_PHYS_CODE
2053 /*
2054 * Reset (zero) shadow ROM pages.
2055 */
2056 rc = pgmR3PhysRomReset(pVM);
2057#endif
2058 if (RT_SUCCESS(rc))
2059 {
2060 /*
2061 * Switch mode back to real mode.
2062 */
2063 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2064 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2065 }
2066 }
2067
2068 pgmUnlock(pVM);
2069 //return rc;
2070 AssertReleaseRC(rc);
2071}
2072
2073
2074#ifdef VBOX_STRICT
2075/**
2076 * VM state change callback for clearing fNoMorePhysWrites after
2077 * a snapshot has been created.
2078 */
2079static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2080{
2081 if (enmState == VMSTATE_RUNNING)
2082 pVM->pgm.s.fNoMorePhysWrites = false;
2083}
2084#endif
2085
2086
2087/**
2088 * Terminates the PGM.
2089 *
2090 * @returns VBox status code.
2091 * @param pVM Pointer to VM structure.
2092 */
2093VMMR3DECL(int) PGMR3Term(PVM pVM)
2094{
2095 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2096}
2097
2098
2099/**
2100 * Execute state save operation.
2101 *
2102 * @returns VBox status code.
2103 * @param pVM VM Handle.
2104 * @param pSSM SSM operation handle.
2105 */
2106static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2107{
2108 PPGM pPGM = &pVM->pgm.s;
2109
2110 /* No more writes to physical memory after this point! */
2111 pVM->pgm.s.fNoMorePhysWrites = true;
2112
2113 /*
2114 * Save basic data (required / unaffected by relocation).
2115 */
2116#if 1
2117 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2118#else
2119 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2120#endif
2121 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2122 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2123 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2124 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2125 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2126 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2127 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2128 SSMR3PutU32(pSSM, ~0); /* Separator. */
2129
2130 /*
2131 * The guest mappings.
2132 */
2133 uint32_t i = 0;
2134 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2135 {
2136 SSMR3PutU32(pSSM, i);
2137 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2138 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2139 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2140 /* flags are done by the mapping owners! */
2141 }
2142 SSMR3PutU32(pSSM, ~0); /* terminator. */
2143
2144 /*
2145 * Ram range flags and bits.
2146 */
2147 i = 0;
2148 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2149 {
2150 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2151
2152 SSMR3PutU32(pSSM, i);
2153 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2154 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2155 SSMR3PutGCPhys(pSSM, pRam->cb);
2156 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2157
2158 /* Flags. */
2159 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2160 for (unsigned iPage = 0; iPage < cPages; iPage++)
2161 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2162
2163 /* any memory associated with the range. */
2164 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2165 {
2166 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2167 {
2168 if (pRam->paChunkR3Ptrs[iChunk])
2169 {
2170 SSMR3PutU8(pSSM, 1); /* chunk present */
2171 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2172 }
2173 else
2174 SSMR3PutU8(pSSM, 0); /* no chunk present */
2175 }
2176 }
2177 else if (pRam->pvR3)
2178 {
2179 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2180 if (VBOX_FAILURE(rc))
2181 {
2182 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2183 return rc;
2184 }
2185 }
2186 }
2187 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2188}
2189
2190
2191/**
2192 * Execute state load operation.
2193 *
2194 * @returns VBox status code.
2195 * @param pVM VM Handle.
2196 * @param pSSM SSM operation handle.
2197 * @param u32Version Data layout version.
2198 */
2199static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2200{
2201 /*
2202 * Validate version.
2203 */
2204 if (u32Version != PGM_SAVED_STATE_VERSION)
2205 {
2206 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2207 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2208 }
2209
2210 /*
2211 * Call the reset function to make sure all the memory is cleared.
2212 */
2213 PGMR3Reset(pVM);
2214
2215 /*
2216 * Load basic data (required / unaffected by relocation).
2217 */
2218 PPGM pPGM = &pVM->pgm.s;
2219#if 1
2220 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2221#else
2222 uint32_t u;
2223 SSMR3GetU32(pSSM, &u);
2224 pPGM->fMappingsFixed = u;
2225#endif
2226 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2227 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2228
2229 RTUINT cbRamSize;
2230 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2231 if (VBOX_FAILURE(rc))
2232 return rc;
2233 if (cbRamSize != pPGM->cbRamSize)
2234 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2235 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2236 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2237 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2238 RTUINT uGuestMode;
2239 SSMR3GetUInt(pSSM, &uGuestMode);
2240 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2241
2242 /* check separator. */
2243 uint32_t u32Sep;
2244 SSMR3GetU32(pSSM, &u32Sep);
2245 if (VBOX_FAILURE(rc))
2246 return rc;
2247 if (u32Sep != (uint32_t)~0)
2248 {
2249 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2250 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2251 }
2252
2253 /*
2254 * The guest mappings.
2255 */
2256 uint32_t i = 0;
2257 for (;; i++)
2258 {
2259 /* Check the seqence number / separator. */
2260 rc = SSMR3GetU32(pSSM, &u32Sep);
2261 if (VBOX_FAILURE(rc))
2262 return rc;
2263 if (u32Sep == ~0U)
2264 break;
2265 if (u32Sep != i)
2266 {
2267 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2268 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2269 }
2270
2271 /* get the mapping details. */
2272 char szDesc[256];
2273 szDesc[0] = '\0';
2274 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2275 if (VBOX_FAILURE(rc))
2276 return rc;
2277 RTGCPTR GCPtr;
2278 SSMR3GetGCPtr(pSSM, &GCPtr);
2279 RTGCUINTPTR cPTs;
2280 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2281 if (VBOX_FAILURE(rc))
2282 return rc;
2283
2284 /* find matching range. */
2285 PPGMMAPPING pMapping;
2286 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2287 if ( pMapping->cPTs == cPTs
2288 && !strcmp(pMapping->pszDesc, szDesc))
2289 break;
2290 if (!pMapping)
2291 {
2292 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2293 cPTs, szDesc, GCPtr));
2294 AssertFailed();
2295 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2296 }
2297
2298 /* relocate it. */
2299 if (pMapping->GCPtr != GCPtr)
2300 {
2301 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2302#if HC_ARCH_BITS == 64
2303LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2304#endif
2305 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2306 }
2307 else
2308 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2309 }
2310
2311 /*
2312 * Ram range flags and bits.
2313 */
2314 i = 0;
2315 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2316 {
2317 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2318 /* Check the seqence number / separator. */
2319 rc = SSMR3GetU32(pSSM, &u32Sep);
2320 if (VBOX_FAILURE(rc))
2321 return rc;
2322 if (u32Sep == ~0U)
2323 break;
2324 if (u32Sep != i)
2325 {
2326 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2327 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2328 }
2329
2330 /* Get the range details. */
2331 RTGCPHYS GCPhys;
2332 SSMR3GetGCPhys(pSSM, &GCPhys);
2333 RTGCPHYS GCPhysLast;
2334 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2335 RTGCPHYS cb;
2336 SSMR3GetGCPhys(pSSM, &cb);
2337 uint8_t fHaveBits;
2338 rc = SSMR3GetU8(pSSM, &fHaveBits);
2339 if (VBOX_FAILURE(rc))
2340 return rc;
2341 if (fHaveBits & ~1)
2342 {
2343 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2344 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2345 }
2346
2347 /* Match it up with the current range. */
2348 if ( GCPhys != pRam->GCPhys
2349 || GCPhysLast != pRam->GCPhysLast
2350 || cb != pRam->cb
2351 || fHaveBits != !!pRam->pvR3)
2352 {
2353 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2354 "State : %RGp-%RGp %RGp bytes %s\n",
2355 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2356 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2357 /*
2358 * If we're loading a state for debugging purpose, don't make a fuss if
2359 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2360 */
2361 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2362 || GCPhys < 8 * _1M)
2363 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2364
2365 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2366 while (cPages-- > 0)
2367 {
2368 uint16_t u16Ignore;
2369 SSMR3GetU16(pSSM, &u16Ignore);
2370 }
2371 continue;
2372 }
2373
2374 /* Flags. */
2375 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2376 for (unsigned iPage = 0; iPage < cPages; iPage++)
2377 {
2378 uint16_t u16 = 0;
2379 SSMR3GetU16(pSSM, &u16);
2380 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2381 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2382 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2383 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2384 }
2385
2386 /* any memory associated with the range. */
2387 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2388 {
2389 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2390 {
2391 uint8_t fValidChunk;
2392
2393 rc = SSMR3GetU8(pSSM, &fValidChunk);
2394 if (VBOX_FAILURE(rc))
2395 return rc;
2396 if (fValidChunk > 1)
2397 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2398
2399 if (fValidChunk)
2400 {
2401 if (!pRam->paChunkR3Ptrs[iChunk])
2402 {
2403 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2404 if (VBOX_FAILURE(rc))
2405 return rc;
2406 }
2407 Assert(pRam->paChunkR3Ptrs[iChunk]);
2408
2409 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2410 }
2411 /* else nothing to do */
2412 }
2413 }
2414 else if (pRam->pvR3)
2415 {
2416 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2417 if (VBOX_FAILURE(rc))
2418 {
2419 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2420 return rc;
2421 }
2422 }
2423 }
2424
2425 /*
2426 * We require a full resync now.
2427 */
2428 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2429 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2430 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2431 pPGM->fPhysCacheFlushPending = true;
2432 pgmR3HandlerPhysicalUpdateAll(pVM);
2433
2434 /*
2435 * Change the paging mode.
2436 */
2437 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2438
2439 /* Restore pVM->pgm.s.GCPhysCR3. */
2440 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2441 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2442 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2443 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2444 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2445 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2446 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2447 else
2448 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2449 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2450
2451 return rc;
2452}
2453
2454
2455/**
2456 * Show paging mode.
2457 *
2458 * @param pVM VM Handle.
2459 * @param pHlp The info helpers.
2460 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2461 */
2462static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2463{
2464 /* digest argument. */
2465 bool fGuest, fShadow, fHost;
2466 if (pszArgs)
2467 pszArgs = RTStrStripL(pszArgs);
2468 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2469 fShadow = fHost = fGuest = true;
2470 else
2471 {
2472 fShadow = fHost = fGuest = false;
2473 if (strstr(pszArgs, "guest"))
2474 fGuest = true;
2475 if (strstr(pszArgs, "shadow"))
2476 fShadow = true;
2477 if (strstr(pszArgs, "host"))
2478 fHost = true;
2479 }
2480
2481 /* print info. */
2482 if (fGuest)
2483 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2484 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2485 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2486 if (fShadow)
2487 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2488 if (fHost)
2489 {
2490 const char *psz;
2491 switch (pVM->pgm.s.enmHostMode)
2492 {
2493 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2494 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2495 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2496 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2497 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2498 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2499 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2500 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2501 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2502 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2503 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2504 default: psz = "unknown"; break;
2505 }
2506 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2507 }
2508}
2509
2510
2511/**
2512 * Dump registered MMIO ranges to the log.
2513 *
2514 * @param pVM VM Handle.
2515 * @param pHlp The info helpers.
2516 * @param pszArgs Arguments, ignored.
2517 */
2518static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2519{
2520 NOREF(pszArgs);
2521 pHlp->pfnPrintf(pHlp,
2522 "RAM ranges (pVM=%p)\n"
2523 "%.*s %.*s\n",
2524 pVM,
2525 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2526 sizeof(RTHCPTR) * 2, "pvHC ");
2527
2528 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2529 pHlp->pfnPrintf(pHlp,
2530 "%RGp-%RGp %RHv %s\n",
2531 pCur->GCPhys,
2532 pCur->GCPhysLast,
2533 pCur->pvR3,
2534 pCur->pszDesc);
2535}
2536
2537/**
2538 * Dump the page directory to the log.
2539 *
2540 * @param pVM VM Handle.
2541 * @param pHlp The info helpers.
2542 * @param pszArgs Arguments, ignored.
2543 */
2544static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2545{
2546/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2547 /* Big pages supported? */
2548 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2549
2550 /* Global pages supported? */
2551 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2552
2553 NOREF(pszArgs);
2554
2555 /*
2556 * Get page directory addresses.
2557 */
2558 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2559 Assert(pPDSrc);
2560 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2561
2562 /*
2563 * Iterate the page directory.
2564 */
2565 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2566 {
2567 X86PDE PdeSrc = pPDSrc->a[iPD];
2568 if (PdeSrc.n.u1Present)
2569 {
2570 if (PdeSrc.b.u1Size && fPSE)
2571 {
2572 pHlp->pfnPrintf(pHlp,
2573 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2574 iPD,
2575 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2576 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2577 }
2578 else
2579 {
2580 pHlp->pfnPrintf(pHlp,
2581 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2582 iPD,
2583 PdeSrc.u & X86_PDE_PG_MASK,
2584 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2585 }
2586 }
2587 }
2588}
2589
2590
2591/**
2592 * Serivce a VMMCALLHOST_PGM_LOCK call.
2593 *
2594 * @returns VBox status code.
2595 * @param pVM The VM handle.
2596 */
2597VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2598{
2599 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2600 AssertRC(rc);
2601 return rc;
2602}
2603
2604
2605/**
2606 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2607 *
2608 * @returns PGM_TYPE_*.
2609 * @param pgmMode The mode value to convert.
2610 */
2611DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2612{
2613 switch (pgmMode)
2614 {
2615 case PGMMODE_REAL: return PGM_TYPE_REAL;
2616 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2617 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2618 case PGMMODE_PAE:
2619 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2620 case PGMMODE_AMD64:
2621 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2622 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2623 case PGMMODE_EPT: return PGM_TYPE_EPT;
2624 default:
2625 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2626 }
2627}
2628
2629
2630/**
2631 * Gets the index into the paging mode data array of a SHW+GST mode.
2632 *
2633 * @returns PGM::paPagingData index.
2634 * @param uShwType The shadow paging mode type.
2635 * @param uGstType The guest paging mode type.
2636 */
2637DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2638{
2639 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2640 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2641 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2642 + (uGstType - PGM_TYPE_REAL);
2643}
2644
2645
2646/**
2647 * Gets the index into the paging mode data array of a SHW+GST mode.
2648 *
2649 * @returns PGM::paPagingData index.
2650 * @param enmShw The shadow paging mode.
2651 * @param enmGst The guest paging mode.
2652 */
2653DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2654{
2655 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2656 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2657 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2658}
2659
2660
2661/**
2662 * Calculates the max data index.
2663 * @returns The number of entries in the paging data array.
2664 */
2665DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2666{
2667 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2668}
2669
2670
2671/**
2672 * Initializes the paging mode data kept in PGM::paModeData.
2673 *
2674 * @param pVM The VM handle.
2675 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2676 * This is used early in the init process to avoid trouble with PDM
2677 * not being initialized yet.
2678 */
2679static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2680{
2681 PPGMMODEDATA pModeData;
2682 int rc;
2683
2684 /*
2685 * Allocate the array on the first call.
2686 */
2687 if (!pVM->pgm.s.paModeData)
2688 {
2689 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2690 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2691 }
2692
2693 /*
2694 * Initialize the array entries.
2695 */
2696 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2697 pModeData->uShwType = PGM_TYPE_32BIT;
2698 pModeData->uGstType = PGM_TYPE_REAL;
2699 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2700 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2701 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2702
2703 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2704 pModeData->uShwType = PGM_TYPE_32BIT;
2705 pModeData->uGstType = PGM_TYPE_PROT;
2706 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2707 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2708 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2709
2710 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2711 pModeData->uShwType = PGM_TYPE_32BIT;
2712 pModeData->uGstType = PGM_TYPE_32BIT;
2713 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2715 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2716
2717 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2718 pModeData->uShwType = PGM_TYPE_PAE;
2719 pModeData->uGstType = PGM_TYPE_REAL;
2720 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2722 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2723
2724 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2725 pModeData->uShwType = PGM_TYPE_PAE;
2726 pModeData->uGstType = PGM_TYPE_PROT;
2727 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2728 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2729 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2730
2731 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2732 pModeData->uShwType = PGM_TYPE_PAE;
2733 pModeData->uGstType = PGM_TYPE_32BIT;
2734 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2736 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2737
2738 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2739 pModeData->uShwType = PGM_TYPE_PAE;
2740 pModeData->uGstType = PGM_TYPE_PAE;
2741 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2742 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744
2745#ifdef VBOX_WITH_64_BITS_GUESTS
2746 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2747 pModeData->uShwType = PGM_TYPE_AMD64;
2748 pModeData->uGstType = PGM_TYPE_AMD64;
2749 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2752#endif
2753
2754 /* The nested paging mode. */
2755 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2756 pModeData->uShwType = PGM_TYPE_NESTED;
2757 pModeData->uGstType = PGM_TYPE_REAL;
2758 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2759 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2760
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2762 pModeData->uShwType = PGM_TYPE_NESTED;
2763 pModeData->uGstType = PGM_TYPE_PROT;
2764 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766
2767 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2768 pModeData->uShwType = PGM_TYPE_NESTED;
2769 pModeData->uGstType = PGM_TYPE_32BIT;
2770 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772
2773 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2774 pModeData->uShwType = PGM_TYPE_NESTED;
2775 pModeData->uGstType = PGM_TYPE_PAE;
2776 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778
2779#ifdef VBOX_WITH_64_BITS_GUESTS
2780 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2781 pModeData->uShwType = PGM_TYPE_NESTED;
2782 pModeData->uGstType = PGM_TYPE_AMD64;
2783 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785#endif
2786
2787#ifdef VBOX_WITH_64_BITS_GUESTS
2788# define PGM_TYPE_MAX_SHADOW PGM_TYPE_AMD64
2789#else
2790# define PGM_TYPE_MAX_SHADOW PGM_TYPE_PAE
2791#endif
2792
2793 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2794 switch(pVM->pgm.s.enmHostMode)
2795 {
2796 case SUPPAGINGMODE_32_BIT:
2797 case SUPPAGINGMODE_32_BIT_GLOBAL:
2798 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_MAX_SHADOW;i++)
2799 {
2800 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2801 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2802 }
2803 break;
2804
2805 case SUPPAGINGMODE_PAE:
2806 case SUPPAGINGMODE_PAE_NX:
2807 case SUPPAGINGMODE_PAE_GLOBAL:
2808 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2809 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_MAX_SHADOW;i++)
2810 {
2811 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2812 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2813 }
2814 break;
2815
2816 case SUPPAGINGMODE_AMD64:
2817 case SUPPAGINGMODE_AMD64_GLOBAL:
2818 case SUPPAGINGMODE_AMD64_NX:
2819 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2820 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_MAX_SHADOW;i++)
2821 {
2822 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2823 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 }
2825 break;
2826 default:
2827 AssertFailed();
2828 break;
2829 }
2830
2831 /* Extended paging (EPT) / Intel VT-x */
2832 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2833 pModeData->uShwType = PGM_TYPE_EPT;
2834 pModeData->uGstType = PGM_TYPE_REAL;
2835 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2836 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2837 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838
2839 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2840 pModeData->uShwType = PGM_TYPE_EPT;
2841 pModeData->uGstType = PGM_TYPE_PROT;
2842 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2843 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2844 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2845
2846 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2847 pModeData->uShwType = PGM_TYPE_EPT;
2848 pModeData->uGstType = PGM_TYPE_32BIT;
2849 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2851 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852
2853 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2854 pModeData->uShwType = PGM_TYPE_EPT;
2855 pModeData->uGstType = PGM_TYPE_PAE;
2856 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2858 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2859
2860#ifdef VBOX_WITH_64_BITS_GUESTS
2861 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2862 pModeData->uShwType = PGM_TYPE_EPT;
2863 pModeData->uGstType = PGM_TYPE_AMD64;
2864 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2866 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2867#endif
2868 return VINF_SUCCESS;
2869}
2870
2871
2872/**
2873 * Switch to different (or relocated in the relocate case) mode data.
2874 *
2875 * @param pVM The VM handle.
2876 * @param enmShw The the shadow paging mode.
2877 * @param enmGst The the guest paging mode.
2878 */
2879static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2880{
2881 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2882
2883 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2884 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2885
2886 /* shadow */
2887 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2888 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2889 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2890 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2891 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2892
2893 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2894 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2895
2896 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2897 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2898
2899
2900 /* guest */
2901 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2902 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2903 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2904 Assert(pVM->pgm.s.pfnR3GstGetPage);
2905 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2906 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2907 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2908 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2909 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2910 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2911 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2912 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2913 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2914 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2915
2916 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2917 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2918 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2919 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2920 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2921 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2922 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2923 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2924 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2925
2926 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2927 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2928 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2929 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2930 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2931 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2932 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2933 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2934 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2935
2936
2937 /* both */
2938 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2939 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2940 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2941 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2942 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2943 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2944 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2945#ifdef VBOX_STRICT
2946 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2947#endif
2948
2949 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2950 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2951 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2952 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2953 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2954 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2955#ifdef VBOX_STRICT
2956 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2957#endif
2958
2959 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2960 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2961 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2962 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2963 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2964 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2965#ifdef VBOX_STRICT
2966 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2967#endif
2968}
2969
2970
2971#ifdef DEBUG_bird
2972#include <stdlib.h> /* getenv() remove me! */
2973#endif
2974
2975/**
2976 * Calculates the shadow paging mode.
2977 *
2978 * @returns The shadow paging mode.
2979 * @param pVM VM handle.
2980 * @param enmGuestMode The guest mode.
2981 * @param enmHostMode The host mode.
2982 * @param enmShadowMode The current shadow mode.
2983 * @param penmSwitcher Where to store the switcher to use.
2984 * VMMSWITCHER_INVALID means no change.
2985 */
2986static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2987{
2988 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2989 switch (enmGuestMode)
2990 {
2991 /*
2992 * When switching to real or protected mode we don't change
2993 * anything since it's likely that we'll switch back pretty soon.
2994 *
2995 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2996 * and is supposed to determine which shadow paging and switcher to
2997 * use during init.
2998 */
2999 case PGMMODE_REAL:
3000 case PGMMODE_PROTECTED:
3001 if ( enmShadowMode != PGMMODE_INVALID
3002 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3003 break; /* (no change) */
3004
3005 switch (enmHostMode)
3006 {
3007 case SUPPAGINGMODE_32_BIT:
3008 case SUPPAGINGMODE_32_BIT_GLOBAL:
3009 enmShadowMode = PGMMODE_32_BIT;
3010 enmSwitcher = VMMSWITCHER_32_TO_32;
3011 break;
3012
3013 case SUPPAGINGMODE_PAE:
3014 case SUPPAGINGMODE_PAE_NX:
3015 case SUPPAGINGMODE_PAE_GLOBAL:
3016 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3017 enmShadowMode = PGMMODE_PAE;
3018 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3019#ifdef DEBUG_bird
3020if (getenv("VBOX_32BIT"))
3021{
3022 enmShadowMode = PGMMODE_32_BIT;
3023 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3024}
3025#endif
3026 break;
3027
3028 case SUPPAGINGMODE_AMD64:
3029 case SUPPAGINGMODE_AMD64_GLOBAL:
3030 case SUPPAGINGMODE_AMD64_NX:
3031 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3032 enmShadowMode = PGMMODE_PAE;
3033 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3034 break;
3035
3036 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3037 }
3038 break;
3039
3040 case PGMMODE_32_BIT:
3041 switch (enmHostMode)
3042 {
3043 case SUPPAGINGMODE_32_BIT:
3044 case SUPPAGINGMODE_32_BIT_GLOBAL:
3045 enmShadowMode = PGMMODE_32_BIT;
3046 enmSwitcher = VMMSWITCHER_32_TO_32;
3047 break;
3048
3049 case SUPPAGINGMODE_PAE:
3050 case SUPPAGINGMODE_PAE_NX:
3051 case SUPPAGINGMODE_PAE_GLOBAL:
3052 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3053 enmShadowMode = PGMMODE_PAE;
3054 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3055#ifdef DEBUG_bird
3056if (getenv("VBOX_32BIT"))
3057{
3058 enmShadowMode = PGMMODE_32_BIT;
3059 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3060}
3061#endif
3062 break;
3063
3064 case SUPPAGINGMODE_AMD64:
3065 case SUPPAGINGMODE_AMD64_GLOBAL:
3066 case SUPPAGINGMODE_AMD64_NX:
3067 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3068 enmShadowMode = PGMMODE_PAE;
3069 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3070 break;
3071
3072 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3073 }
3074 break;
3075
3076 case PGMMODE_PAE:
3077 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3078 switch (enmHostMode)
3079 {
3080 case SUPPAGINGMODE_32_BIT:
3081 case SUPPAGINGMODE_32_BIT_GLOBAL:
3082 enmShadowMode = PGMMODE_PAE;
3083 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3084 break;
3085
3086 case SUPPAGINGMODE_PAE:
3087 case SUPPAGINGMODE_PAE_NX:
3088 case SUPPAGINGMODE_PAE_GLOBAL:
3089 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3090 enmShadowMode = PGMMODE_PAE;
3091 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3092 break;
3093
3094 case SUPPAGINGMODE_AMD64:
3095 case SUPPAGINGMODE_AMD64_GLOBAL:
3096 case SUPPAGINGMODE_AMD64_NX:
3097 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3098 enmShadowMode = PGMMODE_PAE;
3099 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3100 break;
3101
3102 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3103 }
3104 break;
3105
3106 case PGMMODE_AMD64:
3107 case PGMMODE_AMD64_NX:
3108 switch (enmHostMode)
3109 {
3110 case SUPPAGINGMODE_32_BIT:
3111 case SUPPAGINGMODE_32_BIT_GLOBAL:
3112 enmShadowMode = PGMMODE_PAE;
3113 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3114 break;
3115
3116 case SUPPAGINGMODE_PAE:
3117 case SUPPAGINGMODE_PAE_NX:
3118 case SUPPAGINGMODE_PAE_GLOBAL:
3119 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3120 enmShadowMode = PGMMODE_PAE;
3121 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3122 break;
3123
3124 case SUPPAGINGMODE_AMD64:
3125 case SUPPAGINGMODE_AMD64_GLOBAL:
3126 case SUPPAGINGMODE_AMD64_NX:
3127 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3128 enmShadowMode = PGMMODE_AMD64;
3129 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3130 break;
3131
3132 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3133 }
3134 break;
3135
3136
3137 default:
3138 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3139 return PGMMODE_INVALID;
3140 }
3141 /* Override the shadow mode is nested paging is active. */
3142 if (HWACCMIsNestedPagingActive(pVM))
3143 enmShadowMode = HWACCMGetPagingMode(pVM);
3144
3145 *penmSwitcher = enmSwitcher;
3146 return enmShadowMode;
3147}
3148
3149/**
3150 * Performs the actual mode change.
3151 * This is called by PGMChangeMode and pgmR3InitPaging().
3152 *
3153 * @returns VBox status code.
3154 * @param pVM VM handle.
3155 * @param enmGuestMode The new guest mode. This is assumed to be different from
3156 * the current mode.
3157 */
3158VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3159{
3160 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3161 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3162
3163 /*
3164 * Calc the shadow mode and switcher.
3165 */
3166 VMMSWITCHER enmSwitcher;
3167 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3168 if (enmSwitcher != VMMSWITCHER_INVALID)
3169 {
3170 /*
3171 * Select new switcher.
3172 */
3173 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3174 if (VBOX_FAILURE(rc))
3175 {
3176 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3177 return rc;
3178 }
3179 }
3180
3181 /*
3182 * Exit old mode(s).
3183 */
3184 /* shadow */
3185 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3186 {
3187 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3188 if (PGM_SHW_PFN(Exit, pVM))
3189 {
3190 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3191 if (VBOX_FAILURE(rc))
3192 {
3193 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3194 return rc;
3195 }
3196 }
3197
3198 }
3199 else
3200 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3201
3202 /* guest */
3203 if (PGM_GST_PFN(Exit, pVM))
3204 {
3205 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3206 if (VBOX_FAILURE(rc))
3207 {
3208 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3209 return rc;
3210 }
3211 }
3212
3213 /*
3214 * Load new paging mode data.
3215 */
3216 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3217
3218 /*
3219 * Enter new shadow mode (if changed).
3220 */
3221 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3222 {
3223 int rc;
3224 pVM->pgm.s.enmShadowMode = enmShadowMode;
3225 switch (enmShadowMode)
3226 {
3227 case PGMMODE_32_BIT:
3228 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3229 break;
3230 case PGMMODE_PAE:
3231 case PGMMODE_PAE_NX:
3232 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3233 break;
3234 case PGMMODE_AMD64:
3235 case PGMMODE_AMD64_NX:
3236 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3237 break;
3238 case PGMMODE_NESTED:
3239 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3240 break;
3241 case PGMMODE_EPT:
3242 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3243 break;
3244 case PGMMODE_REAL:
3245 case PGMMODE_PROTECTED:
3246 default:
3247 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3248 return VERR_INTERNAL_ERROR;
3249 }
3250 if (VBOX_FAILURE(rc))
3251 {
3252 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3253 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3254 return rc;
3255 }
3256 }
3257
3258 /* We must flush the PGM pool cache if the guest mode changes; we don't always
3259 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3260 * the shadow page tables.
3261 *
3262 * That only applies when switching between paging and non-paging modes.
3263 *
3264 * @todo A20 setting
3265 */
3266 if ( pVM->pgm.s.CTX_SUFF(pPool)
3267 && !HWACCMIsNestedPagingActive(pVM)
3268 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3269 {
3270 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3271 pgmPoolFlushAll(pVM);
3272 }
3273
3274 /*
3275 * Enter the new guest and shadow+guest modes.
3276 */
3277 int rc = -1;
3278 int rc2 = -1;
3279 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3280 pVM->pgm.s.enmGuestMode = enmGuestMode;
3281 switch (enmGuestMode)
3282 {
3283 case PGMMODE_REAL:
3284 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3285 switch (pVM->pgm.s.enmShadowMode)
3286 {
3287 case PGMMODE_32_BIT:
3288 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3289 break;
3290 case PGMMODE_PAE:
3291 case PGMMODE_PAE_NX:
3292 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3293 break;
3294 case PGMMODE_NESTED:
3295 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3296 break;
3297 case PGMMODE_EPT:
3298 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3299 break;
3300 case PGMMODE_AMD64:
3301 case PGMMODE_AMD64_NX:
3302 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3303 default: AssertFailed(); break;
3304 }
3305 break;
3306
3307 case PGMMODE_PROTECTED:
3308 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3309 switch (pVM->pgm.s.enmShadowMode)
3310 {
3311 case PGMMODE_32_BIT:
3312 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3313 break;
3314 case PGMMODE_PAE:
3315 case PGMMODE_PAE_NX:
3316 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3317 break;
3318 case PGMMODE_NESTED:
3319 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3320 break;
3321 case PGMMODE_EPT:
3322 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3323 break;
3324 case PGMMODE_AMD64:
3325 case PGMMODE_AMD64_NX:
3326 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3327 default: AssertFailed(); break;
3328 }
3329 break;
3330
3331 case PGMMODE_32_BIT:
3332 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3333 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3334 switch (pVM->pgm.s.enmShadowMode)
3335 {
3336 case PGMMODE_32_BIT:
3337 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3338 break;
3339 case PGMMODE_PAE:
3340 case PGMMODE_PAE_NX:
3341 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3342 break;
3343 case PGMMODE_NESTED:
3344 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3345 break;
3346 case PGMMODE_EPT:
3347 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3348 break;
3349 case PGMMODE_AMD64:
3350 case PGMMODE_AMD64_NX:
3351 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3352 default: AssertFailed(); break;
3353 }
3354 break;
3355
3356 case PGMMODE_PAE_NX:
3357 case PGMMODE_PAE:
3358 {
3359 uint32_t u32Dummy, u32Features;
3360
3361 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3362 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3363 {
3364 /* Pause first, then inform Main. */
3365 rc = VMR3SuspendNoSave(pVM);
3366 AssertRC(rc);
3367
3368 VMSetRuntimeError(pVM, true, "PAEmode",
3369 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3370 /* we must return TRUE here otherwise the recompiler will assert */
3371 return VINF_SUCCESS;
3372 }
3373 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3374 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3375 switch (pVM->pgm.s.enmShadowMode)
3376 {
3377 case PGMMODE_PAE:
3378 case PGMMODE_PAE_NX:
3379 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3380 break;
3381 case PGMMODE_NESTED:
3382 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3383 break;
3384 case PGMMODE_EPT:
3385 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3386 break;
3387 case PGMMODE_32_BIT:
3388 case PGMMODE_AMD64:
3389 case PGMMODE_AMD64_NX:
3390 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3391 default: AssertFailed(); break;
3392 }
3393 break;
3394 }
3395
3396#ifdef VBOX_WITH_64_BITS_GUESTS
3397 case PGMMODE_AMD64_NX:
3398 case PGMMODE_AMD64:
3399 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3400 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3401 switch (pVM->pgm.s.enmShadowMode)
3402 {
3403 case PGMMODE_AMD64:
3404 case PGMMODE_AMD64_NX:
3405 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3406 break;
3407 case PGMMODE_NESTED:
3408 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3409 break;
3410 case PGMMODE_EPT:
3411 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3412 break;
3413 case PGMMODE_32_BIT:
3414 case PGMMODE_PAE:
3415 case PGMMODE_PAE_NX:
3416 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3417 default: AssertFailed(); break;
3418 }
3419 break;
3420#endif
3421
3422 default:
3423 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3424 rc = VERR_NOT_IMPLEMENTED;
3425 break;
3426 }
3427
3428 /* status codes. */
3429 AssertRC(rc);
3430 AssertRC(rc2);
3431 if (VBOX_SUCCESS(rc))
3432 {
3433 rc = rc2;
3434 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3435 rc = VINF_SUCCESS;
3436 }
3437
3438 /*
3439 * Notify SELM so it can update the TSSes with correct CR3s.
3440 */
3441 SELMR3PagingModeChanged(pVM);
3442
3443 /* Notify HWACCM as well. */
3444 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3445 return rc;
3446}
3447
3448
3449/**
3450 * Dumps a PAE shadow page table.
3451 *
3452 * @returns VBox status code (VINF_SUCCESS).
3453 * @param pVM The VM handle.
3454 * @param pPT Pointer to the page table.
3455 * @param u64Address The virtual address of the page table starts.
3456 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3457 * @param cMaxDepth The maxium depth.
3458 * @param pHlp Pointer to the output functions.
3459 */
3460static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3461{
3462 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3463 {
3464 X86PTEPAE Pte = pPT->a[i];
3465 if (Pte.n.u1Present)
3466 {
3467 pHlp->pfnPrintf(pHlp,
3468 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3469 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3470 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3471 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3472 Pte.n.u1Write ? 'W' : 'R',
3473 Pte.n.u1User ? 'U' : 'S',
3474 Pte.n.u1Accessed ? 'A' : '-',
3475 Pte.n.u1Dirty ? 'D' : '-',
3476 Pte.n.u1Global ? 'G' : '-',
3477 Pte.n.u1WriteThru ? "WT" : "--",
3478 Pte.n.u1CacheDisable? "CD" : "--",
3479 Pte.n.u1PAT ? "AT" : "--",
3480 Pte.n.u1NoExecute ? "NX" : "--",
3481 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3482 Pte.u & RT_BIT(10) ? '1' : '0',
3483 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3484 Pte.u & X86_PTE_PAE_PG_MASK);
3485 }
3486 }
3487 return VINF_SUCCESS;
3488}
3489
3490
3491/**
3492 * Dumps a PAE shadow page directory table.
3493 *
3494 * @returns VBox status code (VINF_SUCCESS).
3495 * @param pVM The VM handle.
3496 * @param HCPhys The physical address of the page directory table.
3497 * @param u64Address The virtual address of the page table starts.
3498 * @param cr4 The CR4, PSE is currently used.
3499 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3500 * @param cMaxDepth The maxium depth.
3501 * @param pHlp Pointer to the output functions.
3502 */
3503static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3504{
3505 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3506 if (!pPD)
3507 {
3508 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3509 fLongMode ? 16 : 8, u64Address, HCPhys);
3510 return VERR_INVALID_PARAMETER;
3511 }
3512 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3513
3514 int rc = VINF_SUCCESS;
3515 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3516 {
3517 X86PDEPAE Pde = pPD->a[i];
3518 if (Pde.n.u1Present)
3519 {
3520 if (fBigPagesSupported && Pde.b.u1Size)
3521 pHlp->pfnPrintf(pHlp,
3522 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3523 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3524 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3525 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3526 Pde.b.u1Write ? 'W' : 'R',
3527 Pde.b.u1User ? 'U' : 'S',
3528 Pde.b.u1Accessed ? 'A' : '-',
3529 Pde.b.u1Dirty ? 'D' : '-',
3530 Pde.b.u1Global ? 'G' : '-',
3531 Pde.b.u1WriteThru ? "WT" : "--",
3532 Pde.b.u1CacheDisable? "CD" : "--",
3533 Pde.b.u1PAT ? "AT" : "--",
3534 Pde.b.u1NoExecute ? "NX" : "--",
3535 Pde.u & RT_BIT_64(9) ? '1' : '0',
3536 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3537 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3538 Pde.u & X86_PDE_PAE_PG_MASK);
3539 else
3540 {
3541 pHlp->pfnPrintf(pHlp,
3542 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3543 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3544 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3545 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3546 Pde.n.u1Write ? 'W' : 'R',
3547 Pde.n.u1User ? 'U' : 'S',
3548 Pde.n.u1Accessed ? 'A' : '-',
3549 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3550 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3551 Pde.n.u1WriteThru ? "WT" : "--",
3552 Pde.n.u1CacheDisable? "CD" : "--",
3553 Pde.n.u1NoExecute ? "NX" : "--",
3554 Pde.u & RT_BIT_64(9) ? '1' : '0',
3555 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3556 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3557 Pde.u & X86_PDE_PAE_PG_MASK);
3558 if (cMaxDepth >= 1)
3559 {
3560 /** @todo what about using the page pool for mapping PTs? */
3561 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3562 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3563 PX86PTPAE pPT = NULL;
3564 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3565 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3566 else
3567 {
3568 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3569 {
3570 uint64_t off = u64AddressPT - pMap->GCPtr;
3571 if (off < pMap->cb)
3572 {
3573 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3574 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3575 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3576 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3577 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3578 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3579 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3580 }
3581 }
3582 }
3583 int rc2 = VERR_INVALID_PARAMETER;
3584 if (pPT)
3585 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3586 else
3587 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3588 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3589 if (rc2 < rc && VBOX_SUCCESS(rc))
3590 rc = rc2;
3591 }
3592 }
3593 }
3594 }
3595 return rc;
3596}
3597
3598
3599/**
3600 * Dumps a PAE shadow page directory pointer table.
3601 *
3602 * @returns VBox status code (VINF_SUCCESS).
3603 * @param pVM The VM handle.
3604 * @param HCPhys The physical address of the page directory pointer table.
3605 * @param u64Address The virtual address of the page table starts.
3606 * @param cr4 The CR4, PSE is currently used.
3607 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3608 * @param cMaxDepth The maxium depth.
3609 * @param pHlp Pointer to the output functions.
3610 */
3611static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3612{
3613 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3614 if (!pPDPT)
3615 {
3616 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3617 fLongMode ? 16 : 8, u64Address, HCPhys);
3618 return VERR_INVALID_PARAMETER;
3619 }
3620
3621 int rc = VINF_SUCCESS;
3622 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3623 for (unsigned i = 0; i < c; i++)
3624 {
3625 X86PDPE Pdpe = pPDPT->a[i];
3626 if (Pdpe.n.u1Present)
3627 {
3628 if (fLongMode)
3629 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3630 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3631 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3632 Pdpe.lm.u1Write ? 'W' : 'R',
3633 Pdpe.lm.u1User ? 'U' : 'S',
3634 Pdpe.lm.u1Accessed ? 'A' : '-',
3635 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3636 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3637 Pdpe.lm.u1WriteThru ? "WT" : "--",
3638 Pdpe.lm.u1CacheDisable? "CD" : "--",
3639 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3640 Pdpe.lm.u1NoExecute ? "NX" : "--",
3641 Pdpe.u & RT_BIT(9) ? '1' : '0',
3642 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3643 Pdpe.u & RT_BIT(11) ? '1' : '0',
3644 Pdpe.u & X86_PDPE_PG_MASK);
3645 else
3646 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3647 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3648 i << X86_PDPT_SHIFT,
3649 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3650 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3651 Pdpe.n.u1WriteThru ? "WT" : "--",
3652 Pdpe.n.u1CacheDisable? "CD" : "--",
3653 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3654 Pdpe.u & RT_BIT(9) ? '1' : '0',
3655 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3656 Pdpe.u & RT_BIT(11) ? '1' : '0',
3657 Pdpe.u & X86_PDPE_PG_MASK);
3658 if (cMaxDepth >= 1)
3659 {
3660 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3661 cr4, fLongMode, cMaxDepth - 1, pHlp);
3662 if (rc2 < rc && VBOX_SUCCESS(rc))
3663 rc = rc2;
3664 }
3665 }
3666 }
3667 return rc;
3668}
3669
3670
3671/**
3672 * Dumps a 32-bit shadow page table.
3673 *
3674 * @returns VBox status code (VINF_SUCCESS).
3675 * @param pVM The VM handle.
3676 * @param HCPhys The physical address of the table.
3677 * @param cr4 The CR4, PSE is currently used.
3678 * @param cMaxDepth The maxium depth.
3679 * @param pHlp Pointer to the output functions.
3680 */
3681static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3682{
3683 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3684 if (!pPML4)
3685 {
3686 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3687 return VERR_INVALID_PARAMETER;
3688 }
3689
3690 int rc = VINF_SUCCESS;
3691 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3692 {
3693 X86PML4E Pml4e = pPML4->a[i];
3694 if (Pml4e.n.u1Present)
3695 {
3696 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3697 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3698 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3699 u64Address,
3700 Pml4e.n.u1Write ? 'W' : 'R',
3701 Pml4e.n.u1User ? 'U' : 'S',
3702 Pml4e.n.u1Accessed ? 'A' : '-',
3703 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3704 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3705 Pml4e.n.u1WriteThru ? "WT" : "--",
3706 Pml4e.n.u1CacheDisable? "CD" : "--",
3707 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3708 Pml4e.n.u1NoExecute ? "NX" : "--",
3709 Pml4e.u & RT_BIT(9) ? '1' : '0',
3710 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3711 Pml4e.u & RT_BIT(11) ? '1' : '0',
3712 Pml4e.u & X86_PML4E_PG_MASK);
3713
3714 if (cMaxDepth >= 1)
3715 {
3716 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3717 if (rc2 < rc && VBOX_SUCCESS(rc))
3718 rc = rc2;
3719 }
3720 }
3721 }
3722 return rc;
3723}
3724
3725
3726/**
3727 * Dumps a 32-bit shadow page table.
3728 *
3729 * @returns VBox status code (VINF_SUCCESS).
3730 * @param pVM The VM handle.
3731 * @param pPT Pointer to the page table.
3732 * @param u32Address The virtual address this table starts at.
3733 * @param pHlp Pointer to the output functions.
3734 */
3735int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3736{
3737 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3738 {
3739 X86PTE Pte = pPT->a[i];
3740 if (Pte.n.u1Present)
3741 {
3742 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3743 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3744 u32Address + (i << X86_PT_SHIFT),
3745 Pte.n.u1Write ? 'W' : 'R',
3746 Pte.n.u1User ? 'U' : 'S',
3747 Pte.n.u1Accessed ? 'A' : '-',
3748 Pte.n.u1Dirty ? 'D' : '-',
3749 Pte.n.u1Global ? 'G' : '-',
3750 Pte.n.u1WriteThru ? "WT" : "--",
3751 Pte.n.u1CacheDisable? "CD" : "--",
3752 Pte.n.u1PAT ? "AT" : "--",
3753 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3754 Pte.u & RT_BIT(10) ? '1' : '0',
3755 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3756 Pte.u & X86_PDE_PG_MASK);
3757 }
3758 }
3759 return VINF_SUCCESS;
3760}
3761
3762
3763/**
3764 * Dumps a 32-bit shadow page directory and page tables.
3765 *
3766 * @returns VBox status code (VINF_SUCCESS).
3767 * @param pVM The VM handle.
3768 * @param cr3 The root of the hierarchy.
3769 * @param cr4 The CR4, PSE is currently used.
3770 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3771 * @param pHlp Pointer to the output functions.
3772 */
3773int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3774{
3775 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3776 if (!pPD)
3777 {
3778 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3779 return VERR_INVALID_PARAMETER;
3780 }
3781
3782 int rc = VINF_SUCCESS;
3783 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3784 {
3785 X86PDE Pde = pPD->a[i];
3786 if (Pde.n.u1Present)
3787 {
3788 const uint32_t u32Address = i << X86_PD_SHIFT;
3789 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3790 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3791 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3792 u32Address,
3793 Pde.b.u1Write ? 'W' : 'R',
3794 Pde.b.u1User ? 'U' : 'S',
3795 Pde.b.u1Accessed ? 'A' : '-',
3796 Pde.b.u1Dirty ? 'D' : '-',
3797 Pde.b.u1Global ? 'G' : '-',
3798 Pde.b.u1WriteThru ? "WT" : "--",
3799 Pde.b.u1CacheDisable? "CD" : "--",
3800 Pde.b.u1PAT ? "AT" : "--",
3801 Pde.u & RT_BIT_64(9) ? '1' : '0',
3802 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3803 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3804 Pde.u & X86_PDE4M_PG_MASK);
3805 else
3806 {
3807 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3808 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3809 u32Address,
3810 Pde.n.u1Write ? 'W' : 'R',
3811 Pde.n.u1User ? 'U' : 'S',
3812 Pde.n.u1Accessed ? 'A' : '-',
3813 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3814 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3815 Pde.n.u1WriteThru ? "WT" : "--",
3816 Pde.n.u1CacheDisable? "CD" : "--",
3817 Pde.u & RT_BIT_64(9) ? '1' : '0',
3818 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3819 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3820 Pde.u & X86_PDE_PG_MASK);
3821 if (cMaxDepth >= 1)
3822 {
3823 /** @todo what about using the page pool for mapping PTs? */
3824 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3825 PX86PT pPT = NULL;
3826 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3827 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3828 else
3829 {
3830 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3831 if (u32Address - pMap->GCPtr < pMap->cb)
3832 {
3833 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3834 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3835 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3836 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3837 pPT = pMap->aPTs[iPDE].pPTR3;
3838 }
3839 }
3840 int rc2 = VERR_INVALID_PARAMETER;
3841 if (pPT)
3842 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3843 else
3844 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3845 if (rc2 < rc && VBOX_SUCCESS(rc))
3846 rc = rc2;
3847 }
3848 }
3849 }
3850 }
3851
3852 return rc;
3853}
3854
3855
3856/**
3857 * Dumps a 32-bit shadow page table.
3858 *
3859 * @returns VBox status code (VINF_SUCCESS).
3860 * @param pVM The VM handle.
3861 * @param pPT Pointer to the page table.
3862 * @param u32Address The virtual address this table starts at.
3863 * @param PhysSearch Address to search for.
3864 */
3865int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3866{
3867 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3868 {
3869 X86PTE Pte = pPT->a[i];
3870 if (Pte.n.u1Present)
3871 {
3872 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3873 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3874 u32Address + (i << X86_PT_SHIFT),
3875 Pte.n.u1Write ? 'W' : 'R',
3876 Pte.n.u1User ? 'U' : 'S',
3877 Pte.n.u1Accessed ? 'A' : '-',
3878 Pte.n.u1Dirty ? 'D' : '-',
3879 Pte.n.u1Global ? 'G' : '-',
3880 Pte.n.u1WriteThru ? "WT" : "--",
3881 Pte.n.u1CacheDisable? "CD" : "--",
3882 Pte.n.u1PAT ? "AT" : "--",
3883 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3884 Pte.u & RT_BIT(10) ? '1' : '0',
3885 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3886 Pte.u & X86_PDE_PG_MASK));
3887
3888 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3889 {
3890 uint64_t fPageShw = 0;
3891 RTHCPHYS pPhysHC = 0;
3892
3893 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3894 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3895 }
3896 }
3897 }
3898 return VINF_SUCCESS;
3899}
3900
3901
3902/**
3903 * Dumps a 32-bit guest page directory and page tables.
3904 *
3905 * @returns VBox status code (VINF_SUCCESS).
3906 * @param pVM The VM handle.
3907 * @param cr3 The root of the hierarchy.
3908 * @param cr4 The CR4, PSE is currently used.
3909 * @param PhysSearch Address to search for.
3910 */
3911VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3912{
3913 bool fLongMode = false;
3914 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3915 PX86PD pPD = 0;
3916
3917 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3918 if (VBOX_FAILURE(rc) || !pPD)
3919 {
3920 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3921 return VERR_INVALID_PARAMETER;
3922 }
3923
3924 Log(("cr3=%08x cr4=%08x%s\n"
3925 "%-*s P - Present\n"
3926 "%-*s | R/W - Read (0) / Write (1)\n"
3927 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3928 "%-*s | | | A - Accessed\n"
3929 "%-*s | | | | D - Dirty\n"
3930 "%-*s | | | | | G - Global\n"
3931 "%-*s | | | | | | WT - Write thru\n"
3932 "%-*s | | | | | | | CD - Cache disable\n"
3933 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3934 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3935 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3936 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3937 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3938 "%-*s Level | | | | | | | | | | | | Page\n"
3939 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3940 - W U - - - -- -- -- -- -- 010 */
3941 , cr3, cr4, fLongMode ? " Long Mode" : "",
3942 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3943 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3944
3945 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3946 {
3947 X86PDE Pde = pPD->a[i];
3948 if (Pde.n.u1Present)
3949 {
3950 const uint32_t u32Address = i << X86_PD_SHIFT;
3951
3952 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3953 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3954 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3955 u32Address,
3956 Pde.b.u1Write ? 'W' : 'R',
3957 Pde.b.u1User ? 'U' : 'S',
3958 Pde.b.u1Accessed ? 'A' : '-',
3959 Pde.b.u1Dirty ? 'D' : '-',
3960 Pde.b.u1Global ? 'G' : '-',
3961 Pde.b.u1WriteThru ? "WT" : "--",
3962 Pde.b.u1CacheDisable? "CD" : "--",
3963 Pde.b.u1PAT ? "AT" : "--",
3964 Pde.u & RT_BIT(9) ? '1' : '0',
3965 Pde.u & RT_BIT(10) ? '1' : '0',
3966 Pde.u & RT_BIT(11) ? '1' : '0',
3967 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3968 /** @todo PhysSearch */
3969 else
3970 {
3971 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3972 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3973 u32Address,
3974 Pde.n.u1Write ? 'W' : 'R',
3975 Pde.n.u1User ? 'U' : 'S',
3976 Pde.n.u1Accessed ? 'A' : '-',
3977 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3978 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3979 Pde.n.u1WriteThru ? "WT" : "--",
3980 Pde.n.u1CacheDisable? "CD" : "--",
3981 Pde.u & RT_BIT(9) ? '1' : '0',
3982 Pde.u & RT_BIT(10) ? '1' : '0',
3983 Pde.u & RT_BIT(11) ? '1' : '0',
3984 Pde.u & X86_PDE_PG_MASK));
3985 ////if (cMaxDepth >= 1)
3986 {
3987 /** @todo what about using the page pool for mapping PTs? */
3988 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3989 PX86PT pPT = NULL;
3990
3991 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3992
3993 int rc2 = VERR_INVALID_PARAMETER;
3994 if (pPT)
3995 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3996 else
3997 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3998 if (rc2 < rc && VBOX_SUCCESS(rc))
3999 rc = rc2;
4000 }
4001 }
4002 }
4003 }
4004
4005 return rc;
4006}
4007
4008
4009/**
4010 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4011 *
4012 * @returns VBox status code (VINF_SUCCESS).
4013 * @param pVM The VM handle.
4014 * @param cr3 The root of the hierarchy.
4015 * @param cr4 The cr4, only PAE and PSE is currently used.
4016 * @param fLongMode Set if long mode, false if not long mode.
4017 * @param cMaxDepth Number of levels to dump.
4018 * @param pHlp Pointer to the output functions.
4019 */
4020VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4021{
4022 if (!pHlp)
4023 pHlp = DBGFR3InfoLogHlp();
4024 if (!cMaxDepth)
4025 return VINF_SUCCESS;
4026 const unsigned cch = fLongMode ? 16 : 8;
4027 pHlp->pfnPrintf(pHlp,
4028 "cr3=%08x cr4=%08x%s\n"
4029 "%-*s P - Present\n"
4030 "%-*s | R/W - Read (0) / Write (1)\n"
4031 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4032 "%-*s | | | A - Accessed\n"
4033 "%-*s | | | | D - Dirty\n"
4034 "%-*s | | | | | G - Global\n"
4035 "%-*s | | | | | | WT - Write thru\n"
4036 "%-*s | | | | | | | CD - Cache disable\n"
4037 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4038 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4039 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4040 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4041 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4042 "%-*s Level | | | | | | | | | | | | Page\n"
4043 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4044 - W U - - - -- -- -- -- -- 010 */
4045 , cr3, cr4, fLongMode ? " Long Mode" : "",
4046 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4047 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4048 if (cr4 & X86_CR4_PAE)
4049 {
4050 if (fLongMode)
4051 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4052 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4053 }
4054 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4055}
4056
4057
4058
4059#ifdef VBOX_WITH_DEBUGGER
4060/**
4061 * The '.pgmram' command.
4062 *
4063 * @returns VBox status.
4064 * @param pCmd Pointer to the command descriptor (as registered).
4065 * @param pCmdHlp Pointer to command helper functions.
4066 * @param pVM Pointer to the current VM (if any).
4067 * @param paArgs Pointer to (readonly) array of arguments.
4068 * @param cArgs Number of arguments in the array.
4069 */
4070static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4071{
4072 /*
4073 * Validate input.
4074 */
4075 if (!pVM)
4076 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4077 if (!pVM->pgm.s.pRamRangesRC)
4078 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4079
4080 /*
4081 * Dump the ranges.
4082 */
4083 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4084 PPGMRAMRANGE pRam;
4085 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4086 {
4087 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4088 "%RGp - %RGp %p\n",
4089 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4090 if (VBOX_FAILURE(rc))
4091 return rc;
4092 }
4093
4094 return VINF_SUCCESS;
4095}
4096
4097
4098/**
4099 * The '.pgmmap' command.
4100 *
4101 * @returns VBox status.
4102 * @param pCmd Pointer to the command descriptor (as registered).
4103 * @param pCmdHlp Pointer to command helper functions.
4104 * @param pVM Pointer to the current VM (if any).
4105 * @param paArgs Pointer to (readonly) array of arguments.
4106 * @param cArgs Number of arguments in the array.
4107 */
4108static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4109{
4110 /*
4111 * Validate input.
4112 */
4113 if (!pVM)
4114 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4115 if (!pVM->pgm.s.pMappingsR3)
4116 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4117
4118 /*
4119 * Print message about the fixedness of the mappings.
4120 */
4121 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4122 if (VBOX_FAILURE(rc))
4123 return rc;
4124
4125 /*
4126 * Dump the ranges.
4127 */
4128 PPGMMAPPING pCur;
4129 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4130 {
4131 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4132 "%08x - %08x %s\n",
4133 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4134 if (VBOX_FAILURE(rc))
4135 return rc;
4136 }
4137
4138 return VINF_SUCCESS;
4139}
4140
4141
4142/**
4143 * The '.pgmsync' command.
4144 *
4145 * @returns VBox status.
4146 * @param pCmd Pointer to the command descriptor (as registered).
4147 * @param pCmdHlp Pointer to command helper functions.
4148 * @param pVM Pointer to the current VM (if any).
4149 * @param paArgs Pointer to (readonly) array of arguments.
4150 * @param cArgs Number of arguments in the array.
4151 */
4152static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4153{
4154 /*
4155 * Validate input.
4156 */
4157 if (!pVM)
4158 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4159
4160 /*
4161 * Force page directory sync.
4162 */
4163 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4164
4165 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4166 if (VBOX_FAILURE(rc))
4167 return rc;
4168
4169 return VINF_SUCCESS;
4170}
4171
4172
4173#ifdef VBOX_STRICT
4174/**
4175 * The '.pgmassertcr3' command.
4176 *
4177 * @returns VBox status.
4178 * @param pCmd Pointer to the command descriptor (as registered).
4179 * @param pCmdHlp Pointer to command helper functions.
4180 * @param pVM Pointer to the current VM (if any).
4181 * @param paArgs Pointer to (readonly) array of arguments.
4182 * @param cArgs Number of arguments in the array.
4183 */
4184static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4185{
4186 /*
4187 * Validate input.
4188 */
4189 if (!pVM)
4190 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4191
4192 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4193 if (VBOX_FAILURE(rc))
4194 return rc;
4195
4196 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4197
4198 return VINF_SUCCESS;
4199}
4200#endif
4201
4202/**
4203 * The '.pgmsyncalways' command.
4204 *
4205 * @returns VBox status.
4206 * @param pCmd Pointer to the command descriptor (as registered).
4207 * @param pCmdHlp Pointer to command helper functions.
4208 * @param pVM Pointer to the current VM (if any).
4209 * @param paArgs Pointer to (readonly) array of arguments.
4210 * @param cArgs Number of arguments in the array.
4211 */
4212static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4213{
4214 /*
4215 * Validate input.
4216 */
4217 if (!pVM)
4218 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4219
4220 /*
4221 * Force page directory sync.
4222 */
4223 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4224 {
4225 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4226 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4227 }
4228 else
4229 {
4230 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4231 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4232 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4233 }
4234}
4235
4236#endif
4237
4238/**
4239 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4240 */
4241typedef struct PGMCHECKINTARGS
4242{
4243 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4244 PPGMPHYSHANDLER pPrevPhys;
4245 PPGMVIRTHANDLER pPrevVirt;
4246 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4247 PVM pVM;
4248} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4249
4250/**
4251 * Validate a node in the physical handler tree.
4252 *
4253 * @returns 0 on if ok, other wise 1.
4254 * @param pNode The handler node.
4255 * @param pvUser pVM.
4256 */
4257static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4258{
4259 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4260 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4261 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4262 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4263 AssertReleaseMsg( !pArgs->pPrevPhys
4264 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4265 ("pPrevPhys=%p %VGp-%VGp %s\n"
4266 " pCur=%p %VGp-%VGp %s\n",
4267 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4268 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4269 pArgs->pPrevPhys = pCur;
4270 return 0;
4271}
4272
4273
4274/**
4275 * Validate a node in the virtual handler tree.
4276 *
4277 * @returns 0 on if ok, other wise 1.
4278 * @param pNode The handler node.
4279 * @param pvUser pVM.
4280 */
4281static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4282{
4283 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4284 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4285 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4286 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4287 AssertReleaseMsg( !pArgs->pPrevVirt
4288 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4289 ("pPrevVirt=%p %VGv-%VGv %s\n"
4290 " pCur=%p %VGv-%VGv %s\n",
4291 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4292 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4293 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4294 {
4295 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4296 ("pCur=%p %VGv-%VGv %s\n"
4297 "iPage=%d offVirtHandle=%#x expected %#x\n",
4298 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4299 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4300 }
4301 pArgs->pPrevVirt = pCur;
4302 return 0;
4303}
4304
4305
4306/**
4307 * Validate a node in the virtual handler tree.
4308 *
4309 * @returns 0 on if ok, other wise 1.
4310 * @param pNode The handler node.
4311 * @param pvUser pVM.
4312 */
4313static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4314{
4315 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4316 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4317 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4318 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4319 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4320 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4321 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4322 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4323 " pCur=%p %VGp-%VGp\n",
4324 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4325 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4326 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4327 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4328 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4329 " pCur=%p %VGp-%VGp\n",
4330 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4331 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4332 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4333 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4334 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4335 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4336 {
4337 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4338 for (;;)
4339 {
4340 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4341 AssertReleaseMsg(pCur2 != pCur,
4342 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4343 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4344 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4345 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4346 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4347 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4348 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4349 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4350 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4351 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4352 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4353 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4354 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4355 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4356 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4357 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4358 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4359 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4360 break;
4361 }
4362 }
4363
4364 pArgs->pPrevPhys2Virt = pCur;
4365 return 0;
4366}
4367
4368
4369/**
4370 * Perform an integrity check on the PGM component.
4371 *
4372 * @returns VINF_SUCCESS if everything is fine.
4373 * @returns VBox error status after asserting on integrity breach.
4374 * @param pVM The VM handle.
4375 */
4376VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4377{
4378 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4379
4380 /*
4381 * Check the trees.
4382 */
4383 int cErrors = 0;
4384 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4385 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4386 PGMCHECKINTARGS Args = s_LeftToRight;
4387 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4388 Args = s_RightToLeft;
4389 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4390 Args = s_LeftToRight;
4391 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4392 Args = s_RightToLeft;
4393 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4394 Args = s_LeftToRight;
4395 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4396 Args = s_RightToLeft;
4397 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4398 Args = s_LeftToRight;
4399 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4400 Args = s_RightToLeft;
4401 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4402
4403 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4404}
4405
4406
4407/**
4408 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4409 *
4410 * @returns VBox status code.
4411 * @param pVM VM handle.
4412 * @param fEnable Enable or disable shadow mappings
4413 */
4414VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4415{
4416 pVM->pgm.s.fDisableMappings = !fEnable;
4417
4418 uint32_t cb;
4419 int rc = PGMR3MappingsSize(pVM, &cb);
4420 AssertRCReturn(rc, rc);
4421
4422 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4423 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4424 AssertRCReturn(rc, rc);
4425
4426 return VINF_SUCCESS;
4427}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette