VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 13187

Last change on this file since 13187 was 13187, checked in by vboxsync, 16 years ago

PGMR3InitDynMap: check that the dynamic mapping area doesn't cross a 2MB (PAE PT) boundrary instead of 4MB (legacy PT). (ancient todo)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 208.6 KB
Line 
1/* $Id: PGM.cpp 13187 2008-10-10 23:18:46Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608
609/*******************************************************************************
610* Internal Functions *
611*******************************************************************************/
612static int pgmR3InitPaging(PVM pVM);
613static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
615static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
616static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
617static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
618static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
619#ifdef VBOX_STRICT
620static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
621#endif
622static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
623static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
624static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
625static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
626static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
627
628#ifdef VBOX_WITH_STATISTICS
629static void pgmR3InitStats(PVM pVM);
630#endif
631
632#ifdef VBOX_WITH_DEBUGGER
633/** @todo all but the two last commands must be converted to 'info'. */
634static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
636static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638# ifdef VBOX_STRICT
639static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# endif
641#endif
642
643
644/*******************************************************************************
645* Global Variables *
646*******************************************************************************/
647#ifdef VBOX_WITH_DEBUGGER
648/** Command descriptors. */
649static const DBGCCMD g_aCmds[] =
650{
651 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
652 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
653 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
654 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
655#ifdef VBOX_STRICT
656 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
657#endif
658 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
659};
660#endif
661
662
663
664
665/*
666 * Shadow - 32-bit mode
667 */
668#define PGM_SHW_TYPE PGM_TYPE_32BIT
669#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
670#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
671#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
672#include "PGMShw.h"
673
674/* Guest - real mode */
675#define PGM_GST_TYPE PGM_TYPE_REAL
676#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
677#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
678#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
679#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
680#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
681#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
682#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
683#include "PGMGst.h"
684#include "PGMBth.h"
685#undef BTH_PGMPOOLKIND_PT_FOR_PT
686#undef PGM_BTH_NAME
687#undef PGM_BTH_NAME_RC_STR
688#undef PGM_BTH_NAME_R0_STR
689#undef PGM_GST_TYPE
690#undef PGM_GST_NAME
691#undef PGM_GST_NAME_RC_STR
692#undef PGM_GST_NAME_R0_STR
693
694/* Guest - protected mode */
695#define PGM_GST_TYPE PGM_TYPE_PROT
696#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
697#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
698#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
699#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
700#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
701#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
702#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
703#include "PGMGst.h"
704#include "PGMBth.h"
705#undef BTH_PGMPOOLKIND_PT_FOR_PT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - 32-bit mode */
715#define PGM_GST_TYPE PGM_TYPE_32BIT
716#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
723#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
724#include "PGMGst.h"
725#include "PGMBth.h"
726#undef BTH_PGMPOOLKIND_PT_FOR_BIG
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef PGM_BTH_NAME
729#undef PGM_BTH_NAME_RC_STR
730#undef PGM_BTH_NAME_R0_STR
731#undef PGM_GST_TYPE
732#undef PGM_GST_NAME
733#undef PGM_GST_NAME_RC_STR
734#undef PGM_GST_NAME_R0_STR
735
736#undef PGM_SHW_TYPE
737#undef PGM_SHW_NAME
738#undef PGM_SHW_NAME_RC_STR
739#undef PGM_SHW_NAME_R0_STR
740
741
742/*
743 * Shadow - PAE mode
744 */
745#define PGM_SHW_TYPE PGM_TYPE_PAE
746#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
747#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
748#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
749#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
750#include "PGMShw.h"
751
752/* Guest - real mode */
753#define PGM_GST_TYPE PGM_TYPE_REAL
754#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
755#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
756#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
757#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
758#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
759#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
760#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
761#include "PGMBth.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_PT
763#undef PGM_BTH_NAME
764#undef PGM_BTH_NAME_RC_STR
765#undef PGM_BTH_NAME_R0_STR
766#undef PGM_GST_TYPE
767#undef PGM_GST_NAME
768#undef PGM_GST_NAME_RC_STR
769#undef PGM_GST_NAME_R0_STR
770
771/* Guest - protected mode */
772#define PGM_GST_TYPE PGM_TYPE_PROT
773#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
774#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
775#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
776#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
777#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
778#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
779#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
780#include "PGMBth.h"
781#undef BTH_PGMPOOLKIND_PT_FOR_PT
782#undef PGM_BTH_NAME
783#undef PGM_BTH_NAME_RC_STR
784#undef PGM_BTH_NAME_R0_STR
785#undef PGM_GST_TYPE
786#undef PGM_GST_NAME
787#undef PGM_GST_NAME_RC_STR
788#undef PGM_GST_NAME_R0_STR
789
790/* Guest - 32-bit mode */
791#define PGM_GST_TYPE PGM_TYPE_32BIT
792#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
793#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
794#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
795#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
796#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
797#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
798#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
799#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_BIG
802#undef BTH_PGMPOOLKIND_PT_FOR_PT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - PAE mode */
812#define PGM_GST_TYPE PGM_TYPE_PAE
813#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
820#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
821#include "PGMGst.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_BIG
824#undef BTH_PGMPOOLKIND_PT_FOR_PT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833#undef PGM_SHW_TYPE
834#undef PGM_SHW_NAME
835#undef PGM_SHW_NAME_RC_STR
836#undef PGM_SHW_NAME_R0_STR
837
838
839/*
840 * Shadow - AMD64 mode
841 */
842#define PGM_SHW_TYPE PGM_TYPE_AMD64
843#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
844#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
845#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
846#include "PGMShw.h"
847
848#ifdef VBOX_WITH_64_BITS_GUESTS
849/* Guest - AMD64 mode */
850# define PGM_GST_TYPE PGM_TYPE_AMD64
851# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
852# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
853# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
854# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
855# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
856# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
857# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
858# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
859# include "PGMGst.h"
860# include "PGMBth.h"
861# undef BTH_PGMPOOLKIND_PT_FOR_BIG
862# undef BTH_PGMPOOLKIND_PT_FOR_PT
863# undef PGM_BTH_NAME
864# undef PGM_BTH_NAME_RC_STR
865# undef PGM_BTH_NAME_R0_STR
866# undef PGM_GST_TYPE
867# undef PGM_GST_NAME
868# undef PGM_GST_NAME_RC_STR
869# undef PGM_GST_NAME_R0_STR
870#endif /* VBOX_WITH_64_BITS_GUESTS */
871
872#undef PGM_SHW_TYPE
873#undef PGM_SHW_NAME
874#undef PGM_SHW_NAME_RC_STR
875#undef PGM_SHW_NAME_R0_STR
876
877
878/*
879 * Shadow - Nested paging mode
880 */
881#define PGM_SHW_TYPE PGM_TYPE_NESTED
882#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
883#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
884#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
885#include "PGMShw.h"
886
887/* Guest - real mode */
888#define PGM_GST_TYPE PGM_TYPE_REAL
889#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
890#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
891#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
892#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
893#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
894#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
895#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
896#include "PGMBth.h"
897#undef BTH_PGMPOOLKIND_PT_FOR_PT
898#undef PGM_BTH_NAME
899#undef PGM_BTH_NAME_RC_STR
900#undef PGM_BTH_NAME_R0_STR
901#undef PGM_GST_TYPE
902#undef PGM_GST_NAME
903#undef PGM_GST_NAME_RC_STR
904#undef PGM_GST_NAME_R0_STR
905
906/* Guest - protected mode */
907#define PGM_GST_TYPE PGM_TYPE_PROT
908#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
909#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
910#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
911#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
912#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
913#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
914#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
915#include "PGMBth.h"
916#undef BTH_PGMPOOLKIND_PT_FOR_PT
917#undef PGM_BTH_NAME
918#undef PGM_BTH_NAME_RC_STR
919#undef PGM_BTH_NAME_R0_STR
920#undef PGM_GST_TYPE
921#undef PGM_GST_NAME
922#undef PGM_GST_NAME_RC_STR
923#undef PGM_GST_NAME_R0_STR
924
925/* Guest - 32-bit mode */
926#define PGM_GST_TYPE PGM_TYPE_32BIT
927#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
928#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
929#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
930#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
931#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
932#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
933#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
934#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
935#include "PGMBth.h"
936#undef BTH_PGMPOOLKIND_PT_FOR_BIG
937#undef BTH_PGMPOOLKIND_PT_FOR_PT
938#undef PGM_BTH_NAME
939#undef PGM_BTH_NAME_RC_STR
940#undef PGM_BTH_NAME_R0_STR
941#undef PGM_GST_TYPE
942#undef PGM_GST_NAME
943#undef PGM_GST_NAME_RC_STR
944#undef PGM_GST_NAME_R0_STR
945
946/* Guest - PAE mode */
947#define PGM_GST_TYPE PGM_TYPE_PAE
948#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
949#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
950#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
951#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
952#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
953#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
954#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
955#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
956#include "PGMBth.h"
957#undef BTH_PGMPOOLKIND_PT_FOR_BIG
958#undef BTH_PGMPOOLKIND_PT_FOR_PT
959#undef PGM_BTH_NAME
960#undef PGM_BTH_NAME_RC_STR
961#undef PGM_BTH_NAME_R0_STR
962#undef PGM_GST_TYPE
963#undef PGM_GST_NAME
964#undef PGM_GST_NAME_RC_STR
965#undef PGM_GST_NAME_R0_STR
966
967#ifdef VBOX_WITH_64_BITS_GUESTS
968/* Guest - AMD64 mode */
969# define PGM_GST_TYPE PGM_TYPE_AMD64
970# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
971# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
972# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
973# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
974# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
975# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
976# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
977# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
978# include "PGMBth.h"
979# undef BTH_PGMPOOLKIND_PT_FOR_BIG
980# undef BTH_PGMPOOLKIND_PT_FOR_PT
981# undef PGM_BTH_NAME
982# undef PGM_BTH_NAME_RC_STR
983# undef PGM_BTH_NAME_R0_STR
984# undef PGM_GST_TYPE
985# undef PGM_GST_NAME
986# undef PGM_GST_NAME_RC_STR
987# undef PGM_GST_NAME_R0_STR
988#endif /* VBOX_WITH_64_BITS_GUESTS */
989
990#undef PGM_SHW_TYPE
991#undef PGM_SHW_NAME
992#undef PGM_SHW_NAME_RC_STR
993#undef PGM_SHW_NAME_R0_STR
994
995
996/*
997 * Shadow - EPT
998 */
999#define PGM_SHW_TYPE PGM_TYPE_EPT
1000#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1001#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1002#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1003#include "PGMShw.h"
1004
1005/* Guest - real mode */
1006#define PGM_GST_TYPE PGM_TYPE_REAL
1007#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1008#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1009#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1010#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1011#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1012#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1013#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1014#include "PGMBth.h"
1015#undef BTH_PGMPOOLKIND_PT_FOR_PT
1016#undef PGM_BTH_NAME
1017#undef PGM_BTH_NAME_RC_STR
1018#undef PGM_BTH_NAME_R0_STR
1019#undef PGM_GST_TYPE
1020#undef PGM_GST_NAME
1021#undef PGM_GST_NAME_RC_STR
1022#undef PGM_GST_NAME_R0_STR
1023
1024/* Guest - protected mode */
1025#define PGM_GST_TYPE PGM_TYPE_PROT
1026#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1027#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1028#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1029#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1030#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1031#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1032#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1033#include "PGMBth.h"
1034#undef BTH_PGMPOOLKIND_PT_FOR_PT
1035#undef PGM_BTH_NAME
1036#undef PGM_BTH_NAME_RC_STR
1037#undef PGM_BTH_NAME_R0_STR
1038#undef PGM_GST_TYPE
1039#undef PGM_GST_NAME
1040#undef PGM_GST_NAME_RC_STR
1041#undef PGM_GST_NAME_R0_STR
1042
1043/* Guest - 32-bit mode */
1044#define PGM_GST_TYPE PGM_TYPE_32BIT
1045#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1046#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1047#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1048#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1049#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1050#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1051#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1052#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1053#include "PGMBth.h"
1054#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1055#undef BTH_PGMPOOLKIND_PT_FOR_PT
1056#undef PGM_BTH_NAME
1057#undef PGM_BTH_NAME_RC_STR
1058#undef PGM_BTH_NAME_R0_STR
1059#undef PGM_GST_TYPE
1060#undef PGM_GST_NAME
1061#undef PGM_GST_NAME_RC_STR
1062#undef PGM_GST_NAME_R0_STR
1063
1064/* Guest - PAE mode */
1065#define PGM_GST_TYPE PGM_TYPE_PAE
1066#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1067#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1068#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1069#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1070#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1071#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1072#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1073#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1074#include "PGMBth.h"
1075#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1076#undef BTH_PGMPOOLKIND_PT_FOR_PT
1077#undef PGM_BTH_NAME
1078#undef PGM_BTH_NAME_RC_STR
1079#undef PGM_BTH_NAME_R0_STR
1080#undef PGM_GST_TYPE
1081#undef PGM_GST_NAME
1082#undef PGM_GST_NAME_RC_STR
1083#undef PGM_GST_NAME_R0_STR
1084
1085#ifdef VBOX_WITH_64_BITS_GUESTS
1086/* Guest - AMD64 mode */
1087# define PGM_GST_TYPE PGM_TYPE_AMD64
1088# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1089# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1090# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1091# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1092# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1093# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1094# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1095# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1096# include "PGMBth.h"
1097# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1098# undef BTH_PGMPOOLKIND_PT_FOR_PT
1099# undef PGM_BTH_NAME
1100# undef PGM_BTH_NAME_RC_STR
1101# undef PGM_BTH_NAME_R0_STR
1102# undef PGM_GST_TYPE
1103# undef PGM_GST_NAME
1104# undef PGM_GST_NAME_RC_STR
1105# undef PGM_GST_NAME_R0_STR
1106#endif /* VBOX_WITH_64_BITS_GUESTS */
1107
1108#undef PGM_SHW_TYPE
1109#undef PGM_SHW_NAME
1110#undef PGM_SHW_NAME_RC_STR
1111#undef PGM_SHW_NAME_R0_STR
1112
1113
1114
1115/**
1116 * Initiates the paging of VM.
1117 *
1118 * @returns VBox status code.
1119 * @param pVM Pointer to VM structure.
1120 */
1121VMMR3DECL(int) PGMR3Init(PVM pVM)
1122{
1123 LogFlow(("PGMR3Init:\n"));
1124
1125 /*
1126 * Assert alignment and sizes.
1127 */
1128 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1129
1130 /*
1131 * Init the structure.
1132 */
1133 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1134 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1135 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1136 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1137 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1138 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1139 pVM->pgm.s.fA20Enabled = true;
1140 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1141 pVM->pgm.s.pGstPaePDPTHC = NULL;
1142 pVM->pgm.s.pGstPaePDPTGC = 0;
1143 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1144 {
1145 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1146 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1147 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1148 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1149 }
1150
1151#ifdef VBOX_STRICT
1152 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1153#endif
1154
1155 /*
1156 * Get the configured RAM size - to estimate saved state size.
1157 */
1158 uint64_t cbRam;
1159 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1160 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1161 cbRam = pVM->pgm.s.cbRamSize = 0;
1162 else if (VBOX_SUCCESS(rc))
1163 {
1164 if (cbRam < PAGE_SIZE)
1165 cbRam = 0;
1166 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1167 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1168 }
1169 else
1170 {
1171 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1172 return rc;
1173 }
1174
1175 /*
1176 * Register saved state data unit.
1177 */
1178 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1179 NULL, pgmR3Save, NULL,
1180 NULL, pgmR3Load, NULL);
1181 if (VBOX_FAILURE(rc))
1182 return rc;
1183
1184 /*
1185 * Initialize the PGM critical section and flush the phys TLBs
1186 */
1187 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1188 AssertRCReturn(rc, rc);
1189
1190 PGMR3PhysChunkInvalidateTLB(pVM);
1191 PGMPhysInvalidatePageR3MapTLB(pVM);
1192 PGMPhysInvalidatePageR0MapTLB(pVM);
1193 PGMPhysInvalidatePageGCMapTLB(pVM);
1194
1195 /*
1196 * Trees
1197 */
1198 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1199 if (VBOX_SUCCESS(rc))
1200 {
1201 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1202 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1203
1204 /*
1205 * Alocate the zero page.
1206 */
1207 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1208 }
1209 if (VBOX_SUCCESS(rc))
1210 {
1211 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1212 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1213 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1214 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1215 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1216
1217 /*
1218 * Init the paging.
1219 */
1220 rc = pgmR3InitPaging(pVM);
1221 }
1222 if (VBOX_SUCCESS(rc))
1223 {
1224 /*
1225 * Init the page pool.
1226 */
1227 rc = pgmR3PoolInit(pVM);
1228 }
1229 if (VBOX_SUCCESS(rc))
1230 {
1231 /*
1232 * Info & statistics
1233 */
1234 DBGFR3InfoRegisterInternal(pVM, "mode",
1235 "Shows the current paging mode. "
1236 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1237 pgmR3InfoMode);
1238 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1239 "Dumps all the entries in the top level paging table. No arguments.",
1240 pgmR3InfoCr3);
1241 DBGFR3InfoRegisterInternal(pVM, "phys",
1242 "Dumps all the physical address ranges. No arguments.",
1243 pgmR3PhysInfo);
1244 DBGFR3InfoRegisterInternal(pVM, "handlers",
1245 "Dumps physical, virtual and hyper virtual handlers. "
1246 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1247 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1248 pgmR3InfoHandlers);
1249 DBGFR3InfoRegisterInternal(pVM, "mappings",
1250 "Dumps guest mappings.",
1251 pgmR3MapInfo);
1252
1253 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1254#ifdef VBOX_WITH_STATISTICS
1255 pgmR3InitStats(pVM);
1256#endif
1257#ifdef VBOX_WITH_DEBUGGER
1258 /*
1259 * Debugger commands.
1260 */
1261 static bool fRegisteredCmds = false;
1262 if (!fRegisteredCmds)
1263 {
1264 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1265 if (VBOX_SUCCESS(rc))
1266 fRegisteredCmds = true;
1267 }
1268#endif
1269 return VINF_SUCCESS;
1270 }
1271
1272 /* Almost no cleanup necessary, MM frees all memory. */
1273 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1274
1275 return rc;
1276}
1277
1278
1279/**
1280 * Init paging.
1281 *
1282 * Since we need to check what mode the host is operating in before we can choose
1283 * the right paging functions for the host we have to delay this until R0 has
1284 * been initialized.
1285 *
1286 * @returns VBox status code.
1287 * @param pVM VM handle.
1288 */
1289static int pgmR3InitPaging(PVM pVM)
1290{
1291 /*
1292 * Force a recalculation of modes and switcher so everyone gets notified.
1293 */
1294 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1295 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1296 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1297
1298 /*
1299 * Allocate static mapping space for whatever the cr3 register
1300 * points to and in the case of PAE mode to the 4 PDs.
1301 */
1302 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1303 if (VBOX_FAILURE(rc))
1304 {
1305 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1306 return rc;
1307 }
1308 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1309
1310 /*
1311 * Allocate pages for the three possible intermediate contexts
1312 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1313 * for the sake of simplicity. The AMD64 uses the PAE for the
1314 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1315 *
1316 * We assume that two page tables will be enought for the core code
1317 * mappings (HC virtual and identity).
1318 */
1319 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1320 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1321 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1322 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1323 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1324 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1325 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1326 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1327 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1328 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1329 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1330 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1331 if ( !pVM->pgm.s.pInterPD
1332 || !pVM->pgm.s.apInterPTs[0]
1333 || !pVM->pgm.s.apInterPTs[1]
1334 || !pVM->pgm.s.apInterPaePTs[0]
1335 || !pVM->pgm.s.apInterPaePTs[1]
1336 || !pVM->pgm.s.apInterPaePDs[0]
1337 || !pVM->pgm.s.apInterPaePDs[1]
1338 || !pVM->pgm.s.apInterPaePDs[2]
1339 || !pVM->pgm.s.apInterPaePDs[3]
1340 || !pVM->pgm.s.pInterPaePDPT
1341 || !pVM->pgm.s.pInterPaePDPT64
1342 || !pVM->pgm.s.pInterPaePML4)
1343 {
1344 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1345 return VERR_NO_PAGE_MEMORY;
1346 }
1347
1348 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1349 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1350 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1351 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1352 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1353 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1354
1355 /*
1356 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1357 */
1358 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1359 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1360 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1361
1362 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1363 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1364
1365 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1366 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1367 {
1368 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1369 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1370 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1371 }
1372
1373 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1374 {
1375 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1376 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1377 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1378 }
1379
1380 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1381 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1382 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1383 | HCPhysInterPaePDPT64;
1384
1385 /*
1386 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1387 * We allocate pages for all three posibilities in order to simplify mappings and
1388 * avoid resource failure during mode switches. So, we need to cover all levels of the
1389 * of the first 4GB down to PD level.
1390 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1391 */
1392 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1393 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1394 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1395 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1396 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1397 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1398 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1399 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1400 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1401 pVM->pgm.s.pHCNestedRoot = MMR3PageAllocLow(pVM);
1402
1403 if ( !pVM->pgm.s.pHC32BitPD
1404 || !pVM->pgm.s.apHCPaePDs[0]
1405 || !pVM->pgm.s.apHCPaePDs[1]
1406 || !pVM->pgm.s.apHCPaePDs[2]
1407 || !pVM->pgm.s.apHCPaePDs[3]
1408 || !pVM->pgm.s.pHCPaePDPT
1409 || !pVM->pgm.s.pHCNestedRoot)
1410 {
1411 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1412 return VERR_NO_PAGE_MEMORY;
1413 }
1414
1415 /* get physical addresses. */
1416 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1417 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1418 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1419 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1420 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1421 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1422 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1423 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pHCNestedRoot);
1424
1425 /*
1426 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1427 */
1428 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1429 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1430 ASMMemZero32(pVM->pgm.s.pHCNestedRoot, PAGE_SIZE);
1431 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1432 {
1433 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1434 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1435 /* The flags will be corrected when entering and leaving long mode. */
1436 }
1437
1438 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1439
1440 /*
1441 * Initialize paging workers and mode from current host mode
1442 * and the guest running in real mode.
1443 */
1444 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1445 switch (pVM->pgm.s.enmHostMode)
1446 {
1447 case SUPPAGINGMODE_32_BIT:
1448 case SUPPAGINGMODE_32_BIT_GLOBAL:
1449 case SUPPAGINGMODE_PAE:
1450 case SUPPAGINGMODE_PAE_GLOBAL:
1451 case SUPPAGINGMODE_PAE_NX:
1452 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1453 break;
1454
1455 case SUPPAGINGMODE_AMD64:
1456 case SUPPAGINGMODE_AMD64_GLOBAL:
1457 case SUPPAGINGMODE_AMD64_NX:
1458 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1459#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1460 if (ARCH_BITS != 64)
1461 {
1462 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1463 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1464 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1465 }
1466#endif
1467 break;
1468 default:
1469 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1470 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1471 }
1472 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1473 if (VBOX_SUCCESS(rc))
1474 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1475 if (VBOX_SUCCESS(rc))
1476 {
1477 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1478#if HC_ARCH_BITS == 64
1479 LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysPaePDPT=%RHp HCPhysPaePML4=%RHp\n",
1480 pVM->pgm.s.HCPhys32BitPD,
1481 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1482 pVM->pgm.s.HCPhysPaePDPT,
1483 pVM->pgm.s.HCPhysPaePML4));
1484 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1485 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1486 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1487 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1488 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1489 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1490 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1491#endif
1492
1493 return VINF_SUCCESS;
1494 }
1495
1496 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1497 return rc;
1498}
1499
1500
1501#ifdef VBOX_WITH_STATISTICS
1502/**
1503 * Init statistics
1504 */
1505static void pgmR3InitStats(PVM pVM)
1506{
1507 PPGM pPGM = &pVM->pgm.s;
1508 unsigned i;
1509
1510 /*
1511 * Note! The layout of this function matches the member layout exactly!
1512 */
1513
1514 /* Common - misc variables */
1515 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1516 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1517 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1518 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1519 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1520 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1521
1522 /* Common - stats */
1523#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1524 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1525 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1526 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1527 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1528 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1529 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1530#endif
1531 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1532 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1533 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1534 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1535 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1536 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1537
1538 /* R3 only: */
1539 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1540 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1541 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1542 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1543 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1544 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1545
1546 /* GC only: */
1547 STAM_REG(pVM, &pPGM->StatRCInvalidatePage, STAMTYPE_PROFILE, "/PGM/RC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1548 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1549 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1550
1551 /* RZ only: */
1552 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1553 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1554 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1555 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1556 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1557 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1558 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1559 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1560 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1561 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1562 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1563 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1564 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1565 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1566 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1567 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1568 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1569 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1570 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1571 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1572 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1573 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1574 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1575 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1576 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1577 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1578 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1579 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1580 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1581 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1582 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1583 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1584 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1585 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1586 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1587 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1588 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1589 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1590 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1591 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1592 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1593 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1594 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1595 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1596 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1597 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1598 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1599 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1600 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1601 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1602 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1603
1604 /* HC only: */
1605
1606 /* RZ & R3: */
1607 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1608 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1609 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1610 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1611 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1612 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1613 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1614 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1615 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1616 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1617 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1618 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1619 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1620 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1621 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1622 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1623 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1624 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1625 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1626 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1627 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1628 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1629 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1630 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1631 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1632 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1633 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1634 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1635 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1636 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1637 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1638 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1639 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1640 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1641 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1642 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1643 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1644 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1645 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1646 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1647 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1648 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1649 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1650 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1651 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1652 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1653 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1654/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1655 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1656 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1657 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1658 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1659 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1660 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1661
1662 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1663 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1664 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1665 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1666 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1667 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1668 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1669 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1670 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1671 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1672 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1673 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1674 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1675 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1676 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1677 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1678 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1679 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1680 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1681 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1682 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1683 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1684 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1685 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1686 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1687 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1688 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1689 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1690 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1691 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1692 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1693 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1694 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1695 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1696 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1697 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1698 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1699 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1700 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1701 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1702 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1703 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1704 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1705 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1706 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1707 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1708 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1709/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1710 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1711 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1712 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1713 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1714 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1715 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1716
1717}
1718#endif /* VBOX_WITH_STATISTICS */
1719
1720
1721/**
1722 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1723 *
1724 * The dynamic mapping area will also be allocated and initialized at this
1725 * time. We could allocate it during PGMR3Init of course, but the mapping
1726 * wouldn't be allocated at that time preventing us from setting up the
1727 * page table entries with the dummy page.
1728 *
1729 * @returns VBox status code.
1730 * @param pVM VM handle.
1731 */
1732VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1733{
1734 RTGCPTR GCPtr;
1735 /*
1736 * Reserve space for mapping the paging pages into guest context.
1737 */
1738 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1739 AssertRCReturn(rc, rc);
1740 pVM->pgm.s.pGC32BitPD = GCPtr;
1741 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1742
1743 /*
1744 * Reserve space for the dynamic mappings.
1745 */
1746 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1747 if (VBOX_SUCCESS(rc))
1748 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1749
1750 if ( VBOX_SUCCESS(rc)
1751 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1752 {
1753 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1754 if (VBOX_SUCCESS(rc))
1755 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1756 }
1757 if (VBOX_SUCCESS(rc))
1758 {
1759 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1760 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1761 }
1762 return rc;
1763}
1764
1765
1766/**
1767 * Ring-3 init finalizing.
1768 *
1769 * @returns VBox status code.
1770 * @param pVM The VM handle.
1771 */
1772VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1773{
1774 /*
1775 * Map the paging pages into the guest context.
1776 */
1777 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1778 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1779
1780 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1781 AssertRCReturn(rc, rc);
1782 pVM->pgm.s.pGC32BitPD = GCPtr;
1783 GCPtr += PAGE_SIZE;
1784 GCPtr += PAGE_SIZE; /* reserved page */
1785
1786 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1787 {
1788 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1789 AssertRCReturn(rc, rc);
1790 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1791 GCPtr += PAGE_SIZE;
1792 }
1793 /* A bit of paranoia is justified. */
1794 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1795 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1796 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1797 GCPtr += PAGE_SIZE; /* reserved page */
1798
1799 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1800 AssertRCReturn(rc, rc);
1801 pVM->pgm.s.pGCPaePDPT = GCPtr;
1802 GCPtr += PAGE_SIZE;
1803 GCPtr += PAGE_SIZE; /* reserved page */
1804
1805
1806 /*
1807 * Reserve space for the dynamic mappings.
1808 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1809 */
1810 /* get the pointer to the page table entries. */
1811 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1812 AssertRelease(pMapping);
1813 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1814 const unsigned iPT = off >> X86_PD_SHIFT;
1815 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1816 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1817 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1818
1819 /* init cache */
1820 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1821 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1822 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1823
1824 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1825 {
1826 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1827 AssertRCReturn(rc, rc);
1828 }
1829
1830 /* Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total); Intel only goes up to 36 bits, so
1831 * we stick to 36 as well.
1832 *
1833 * @todo How to test for the 40 bits support? Long mode seems to be the test criterium.
1834 */
1835 uint32_t u32Dummy, u32Features;
1836 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1837
1838 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1839 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1840 else
1841 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1842
1843 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %VGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1844
1845 return rc;
1846}
1847
1848
1849/**
1850 * Applies relocations to data and code managed by this
1851 * component. This function will be called at init and
1852 * whenever the VMM need to relocate it self inside the GC.
1853 *
1854 * @param pVM The VM.
1855 * @param offDelta Relocation delta relative to old location.
1856 */
1857VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1858{
1859 LogFlow(("PGMR3Relocate\n"));
1860
1861 /*
1862 * Paging stuff.
1863 */
1864 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1865 /** @todo move this into shadow and guest specific relocation functions. */
1866 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1867 pVM->pgm.s.pGC32BitPD += offDelta;
1868 pVM->pgm.s.pGuestPDGC += offDelta;
1869 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1870 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1871 {
1872 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1873 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1874 }
1875 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1876 pVM->pgm.s.pGCPaePDPT += offDelta;
1877
1878 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1879 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1880
1881 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1882 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1883 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1884
1885 /*
1886 * Trees.
1887 */
1888 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1889
1890 /*
1891 * Ram ranges.
1892 */
1893 if (pVM->pgm.s.pRamRangesR3)
1894 {
1895 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1896 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1897 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1898 }
1899
1900 /*
1901 * Update the two page directories with all page table mappings.
1902 * (One or more of them have changed, that's why we're here.)
1903 */
1904 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1905 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1906 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1907
1908 /* Relocate GC addresses of Page Tables. */
1909 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1910 {
1911 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1912 {
1913 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1914 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1915 }
1916 }
1917
1918 /*
1919 * Dynamic page mapping area.
1920 */
1921 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1922 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1923 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1924
1925 /*
1926 * The Zero page.
1927 */
1928 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1929 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1930
1931 /*
1932 * Physical and virtual handlers.
1933 */
1934 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1935 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1936 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1937
1938 /*
1939 * The page pool.
1940 */
1941 pgmR3PoolRelocate(pVM);
1942}
1943
1944
1945/**
1946 * Callback function for relocating a physical access handler.
1947 *
1948 * @returns 0 (continue enum)
1949 * @param pNode Pointer to a PGMPHYSHANDLER node.
1950 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1951 * not certain the delta will fit in a void pointer for all possible configs.
1952 */
1953static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1954{
1955 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1956 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1957 if (pHandler->pfnHandlerRC)
1958 pHandler->pfnHandlerRC += offDelta;
1959 if (pHandler->pvUserRC >= 0x10000)
1960 pHandler->pvUserRC += offDelta;
1961 return 0;
1962}
1963
1964
1965/**
1966 * Callback function for relocating a virtual access handler.
1967 *
1968 * @returns 0 (continue enum)
1969 * @param pNode Pointer to a PGMVIRTHANDLER node.
1970 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1971 * not certain the delta will fit in a void pointer for all possible configs.
1972 */
1973static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1974{
1975 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1976 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1977 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1978 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1979 Assert(pHandler->pfnHandlerRC);
1980 pHandler->pfnHandlerRC += offDelta;
1981 return 0;
1982}
1983
1984
1985/**
1986 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1987 *
1988 * @returns 0 (continue enum)
1989 * @param pNode Pointer to a PGMVIRTHANDLER node.
1990 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1991 * not certain the delta will fit in a void pointer for all possible configs.
1992 */
1993static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1994{
1995 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1996 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1997 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1998 Assert(pHandler->pfnHandlerRC);
1999 pHandler->pfnHandlerRC += offDelta;
2000 return 0;
2001}
2002
2003
2004/**
2005 * The VM is being reset.
2006 *
2007 * For the PGM component this means that any PD write monitors
2008 * needs to be removed.
2009 *
2010 * @param pVM VM handle.
2011 */
2012VMMR3DECL(void) PGMR3Reset(PVM pVM)
2013{
2014 LogFlow(("PGMR3Reset:\n"));
2015 VM_ASSERT_EMT(pVM);
2016
2017 pgmLock(pVM);
2018
2019 /*
2020 * Unfix any fixed mappings and disable CR3 monitoring.
2021 */
2022 pVM->pgm.s.fMappingsFixed = false;
2023 pVM->pgm.s.GCPtrMappingFixed = 0;
2024 pVM->pgm.s.cbMappingFixed = 0;
2025
2026 /* Exit the guest paging mode before the pgm pool gets reset.
2027 * Important to clean up the amd64 case.
2028 */
2029 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2030 AssertRC(rc);
2031#ifdef DEBUG
2032 DBGFR3InfoLog(pVM, "mappings", NULL);
2033 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2034#endif
2035
2036 /*
2037 * Reset the shadow page pool.
2038 */
2039 pgmR3PoolReset(pVM);
2040
2041 /*
2042 * Re-init other members.
2043 */
2044 pVM->pgm.s.fA20Enabled = true;
2045
2046 /*
2047 * Clear the FFs PGM owns.
2048 */
2049 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2050 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2051
2052 /*
2053 * Reset (zero) RAM pages.
2054 */
2055 rc = pgmR3PhysRamReset(pVM);
2056 if (RT_SUCCESS(rc))
2057 {
2058#ifdef VBOX_WITH_NEW_PHYS_CODE
2059 /*
2060 * Reset (zero) shadow ROM pages.
2061 */
2062 rc = pgmR3PhysRomReset(pVM);
2063#endif
2064 if (RT_SUCCESS(rc))
2065 {
2066 /*
2067 * Switch mode back to real mode.
2068 */
2069 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2070 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2071 }
2072 }
2073
2074 pgmUnlock(pVM);
2075 //return rc;
2076 AssertReleaseRC(rc);
2077}
2078
2079
2080#ifdef VBOX_STRICT
2081/**
2082 * VM state change callback for clearing fNoMorePhysWrites after
2083 * a snapshot has been created.
2084 */
2085static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2086{
2087 if (enmState == VMSTATE_RUNNING)
2088 pVM->pgm.s.fNoMorePhysWrites = false;
2089}
2090#endif
2091
2092
2093/**
2094 * Terminates the PGM.
2095 *
2096 * @returns VBox status code.
2097 * @param pVM Pointer to VM structure.
2098 */
2099VMMR3DECL(int) PGMR3Term(PVM pVM)
2100{
2101 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2102}
2103
2104
2105/**
2106 * Execute state save operation.
2107 *
2108 * @returns VBox status code.
2109 * @param pVM VM Handle.
2110 * @param pSSM SSM operation handle.
2111 */
2112static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2113{
2114 PPGM pPGM = &pVM->pgm.s;
2115
2116 /* No more writes to physical memory after this point! */
2117 pVM->pgm.s.fNoMorePhysWrites = true;
2118
2119 /*
2120 * Save basic data (required / unaffected by relocation).
2121 */
2122#if 1
2123 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2124#else
2125 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2126#endif
2127 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2128 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2129 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2130 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2131 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2132 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2133 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2134 SSMR3PutU32(pSSM, ~0); /* Separator. */
2135
2136 /*
2137 * The guest mappings.
2138 */
2139 uint32_t i = 0;
2140 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2141 {
2142 SSMR3PutU32(pSSM, i);
2143 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2144 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2145 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2146 /* flags are done by the mapping owners! */
2147 }
2148 SSMR3PutU32(pSSM, ~0); /* terminator. */
2149
2150 /*
2151 * Ram range flags and bits.
2152 */
2153 i = 0;
2154 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2155 {
2156 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2157
2158 SSMR3PutU32(pSSM, i);
2159 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2160 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2161 SSMR3PutGCPhys(pSSM, pRam->cb);
2162 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2163
2164 /* Flags. */
2165 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2166 for (unsigned iPage = 0; iPage < cPages; iPage++)
2167 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2168
2169 /* any memory associated with the range. */
2170 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2171 {
2172 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2173 {
2174 if (pRam->paChunkR3Ptrs[iChunk])
2175 {
2176 SSMR3PutU8(pSSM, 1); /* chunk present */
2177 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2178 }
2179 else
2180 SSMR3PutU8(pSSM, 0); /* no chunk present */
2181 }
2182 }
2183 else if (pRam->pvR3)
2184 {
2185 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2186 if (VBOX_FAILURE(rc))
2187 {
2188 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2189 return rc;
2190 }
2191 }
2192 }
2193 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2194}
2195
2196
2197/**
2198 * Execute state load operation.
2199 *
2200 * @returns VBox status code.
2201 * @param pVM VM Handle.
2202 * @param pSSM SSM operation handle.
2203 * @param u32Version Data layout version.
2204 */
2205static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2206{
2207 /*
2208 * Validate version.
2209 */
2210 if (u32Version != PGM_SAVED_STATE_VERSION)
2211 {
2212 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2213 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2214 }
2215
2216 /*
2217 * Call the reset function to make sure all the memory is cleared.
2218 */
2219 PGMR3Reset(pVM);
2220
2221 /*
2222 * Load basic data (required / unaffected by relocation).
2223 */
2224 PPGM pPGM = &pVM->pgm.s;
2225#if 1
2226 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2227#else
2228 uint32_t u;
2229 SSMR3GetU32(pSSM, &u);
2230 pPGM->fMappingsFixed = u;
2231#endif
2232 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2233 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2234
2235 RTUINT cbRamSize;
2236 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2237 if (VBOX_FAILURE(rc))
2238 return rc;
2239 if (cbRamSize != pPGM->cbRamSize)
2240 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2241 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2242 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2243 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2244 RTUINT uGuestMode;
2245 SSMR3GetUInt(pSSM, &uGuestMode);
2246 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2247
2248 /* check separator. */
2249 uint32_t u32Sep;
2250 SSMR3GetU32(pSSM, &u32Sep);
2251 if (VBOX_FAILURE(rc))
2252 return rc;
2253 if (u32Sep != (uint32_t)~0)
2254 {
2255 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2256 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2257 }
2258
2259 /*
2260 * The guest mappings.
2261 */
2262 uint32_t i = 0;
2263 for (;; i++)
2264 {
2265 /* Check the seqence number / separator. */
2266 rc = SSMR3GetU32(pSSM, &u32Sep);
2267 if (VBOX_FAILURE(rc))
2268 return rc;
2269 if (u32Sep == ~0U)
2270 break;
2271 if (u32Sep != i)
2272 {
2273 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2274 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2275 }
2276
2277 /* get the mapping details. */
2278 char szDesc[256];
2279 szDesc[0] = '\0';
2280 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2281 if (VBOX_FAILURE(rc))
2282 return rc;
2283 RTGCPTR GCPtr;
2284 SSMR3GetGCPtr(pSSM, &GCPtr);
2285 RTGCUINTPTR cPTs;
2286 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2287 if (VBOX_FAILURE(rc))
2288 return rc;
2289
2290 /* find matching range. */
2291 PPGMMAPPING pMapping;
2292 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2293 if ( pMapping->cPTs == cPTs
2294 && !strcmp(pMapping->pszDesc, szDesc))
2295 break;
2296 if (!pMapping)
2297 {
2298 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2299 cPTs, szDesc, GCPtr));
2300 AssertFailed();
2301 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2302 }
2303
2304 /* relocate it. */
2305 if (pMapping->GCPtr != GCPtr)
2306 {
2307 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2308#if HC_ARCH_BITS == 64
2309LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2310#endif
2311 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2312 }
2313 else
2314 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2315 }
2316
2317 /*
2318 * Ram range flags and bits.
2319 */
2320 i = 0;
2321 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2322 {
2323 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2324 /* Check the seqence number / separator. */
2325 rc = SSMR3GetU32(pSSM, &u32Sep);
2326 if (VBOX_FAILURE(rc))
2327 return rc;
2328 if (u32Sep == ~0U)
2329 break;
2330 if (u32Sep != i)
2331 {
2332 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2333 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2334 }
2335
2336 /* Get the range details. */
2337 RTGCPHYS GCPhys;
2338 SSMR3GetGCPhys(pSSM, &GCPhys);
2339 RTGCPHYS GCPhysLast;
2340 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2341 RTGCPHYS cb;
2342 SSMR3GetGCPhys(pSSM, &cb);
2343 uint8_t fHaveBits;
2344 rc = SSMR3GetU8(pSSM, &fHaveBits);
2345 if (VBOX_FAILURE(rc))
2346 return rc;
2347 if (fHaveBits & ~1)
2348 {
2349 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2350 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2351 }
2352
2353 /* Match it up with the current range. */
2354 if ( GCPhys != pRam->GCPhys
2355 || GCPhysLast != pRam->GCPhysLast
2356 || cb != pRam->cb
2357 || fHaveBits != !!pRam->pvR3)
2358 {
2359 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2360 "State : %RGp-%RGp %RGp bytes %s\n",
2361 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2362 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2363 /*
2364 * If we're loading a state for debugging purpose, don't make a fuss if
2365 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2366 */
2367 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2368 || GCPhys < 8 * _1M)
2369 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2370
2371 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2372 while (cPages-- > 0)
2373 {
2374 uint16_t u16Ignore;
2375 SSMR3GetU16(pSSM, &u16Ignore);
2376 }
2377 continue;
2378 }
2379
2380 /* Flags. */
2381 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2382 for (unsigned iPage = 0; iPage < cPages; iPage++)
2383 {
2384 uint16_t u16 = 0;
2385 SSMR3GetU16(pSSM, &u16);
2386 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2387 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2388 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2389 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2390 }
2391
2392 /* any memory associated with the range. */
2393 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2394 {
2395 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2396 {
2397 uint8_t fValidChunk;
2398
2399 rc = SSMR3GetU8(pSSM, &fValidChunk);
2400 if (VBOX_FAILURE(rc))
2401 return rc;
2402 if (fValidChunk > 1)
2403 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2404
2405 if (fValidChunk)
2406 {
2407 if (!pRam->paChunkR3Ptrs[iChunk])
2408 {
2409 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2410 if (VBOX_FAILURE(rc))
2411 return rc;
2412 }
2413 Assert(pRam->paChunkR3Ptrs[iChunk]);
2414
2415 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2416 }
2417 /* else nothing to do */
2418 }
2419 }
2420 else if (pRam->pvR3)
2421 {
2422 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2423 if (VBOX_FAILURE(rc))
2424 {
2425 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvR3, pRam->cb, rc));
2426 return rc;
2427 }
2428 }
2429 }
2430
2431 /*
2432 * We require a full resync now.
2433 */
2434 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2435 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2436 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2437 pPGM->fPhysCacheFlushPending = true;
2438 pgmR3HandlerPhysicalUpdateAll(pVM);
2439
2440 /*
2441 * Change the paging mode.
2442 */
2443 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2444
2445 /* Restore pVM->pgm.s.GCPhysCR3. */
2446 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2447 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2448 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2449 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2450 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2451 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2452 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2453 else
2454 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2455 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2456
2457 return rc;
2458}
2459
2460
2461/**
2462 * Show paging mode.
2463 *
2464 * @param pVM VM Handle.
2465 * @param pHlp The info helpers.
2466 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2467 */
2468static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2469{
2470 /* digest argument. */
2471 bool fGuest, fShadow, fHost;
2472 if (pszArgs)
2473 pszArgs = RTStrStripL(pszArgs);
2474 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2475 fShadow = fHost = fGuest = true;
2476 else
2477 {
2478 fShadow = fHost = fGuest = false;
2479 if (strstr(pszArgs, "guest"))
2480 fGuest = true;
2481 if (strstr(pszArgs, "shadow"))
2482 fShadow = true;
2483 if (strstr(pszArgs, "host"))
2484 fHost = true;
2485 }
2486
2487 /* print info. */
2488 if (fGuest)
2489 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2490 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2491 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2492 if (fShadow)
2493 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2494 if (fHost)
2495 {
2496 const char *psz;
2497 switch (pVM->pgm.s.enmHostMode)
2498 {
2499 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2500 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2501 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2502 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2503 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2504 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2505 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2506 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2507 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2508 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2509 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2510 default: psz = "unknown"; break;
2511 }
2512 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2513 }
2514}
2515
2516
2517/**
2518 * Dump registered MMIO ranges to the log.
2519 *
2520 * @param pVM VM Handle.
2521 * @param pHlp The info helpers.
2522 * @param pszArgs Arguments, ignored.
2523 */
2524static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2525{
2526 NOREF(pszArgs);
2527 pHlp->pfnPrintf(pHlp,
2528 "RAM ranges (pVM=%p)\n"
2529 "%.*s %.*s\n",
2530 pVM,
2531 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2532 sizeof(RTHCPTR) * 2, "pvHC ");
2533
2534 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2535 pHlp->pfnPrintf(pHlp,
2536 "%RGp-%RGp %RHv %s\n",
2537 pCur->GCPhys,
2538 pCur->GCPhysLast,
2539 pCur->pvR3,
2540 pCur->pszDesc);
2541}
2542
2543/**
2544 * Dump the page directory to the log.
2545 *
2546 * @param pVM VM Handle.
2547 * @param pHlp The info helpers.
2548 * @param pszArgs Arguments, ignored.
2549 */
2550static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2551{
2552/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2553 /* Big pages supported? */
2554 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2555
2556 /* Global pages supported? */
2557 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2558
2559 NOREF(pszArgs);
2560
2561 /*
2562 * Get page directory addresses.
2563 */
2564 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2565 Assert(pPDSrc);
2566 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2567
2568 /*
2569 * Iterate the page directory.
2570 */
2571 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2572 {
2573 X86PDE PdeSrc = pPDSrc->a[iPD];
2574 if (PdeSrc.n.u1Present)
2575 {
2576 if (PdeSrc.b.u1Size && fPSE)
2577 {
2578 pHlp->pfnPrintf(pHlp,
2579 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2580 iPD,
2581 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2582 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2583 }
2584 else
2585 {
2586 pHlp->pfnPrintf(pHlp,
2587 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2588 iPD,
2589 PdeSrc.u & X86_PDE_PG_MASK,
2590 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2591 }
2592 }
2593 }
2594}
2595
2596
2597/**
2598 * Serivce a VMMCALLHOST_PGM_LOCK call.
2599 *
2600 * @returns VBox status code.
2601 * @param pVM The VM handle.
2602 */
2603VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2604{
2605 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2606 AssertRC(rc);
2607 return rc;
2608}
2609
2610
2611/**
2612 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2613 *
2614 * @returns PGM_TYPE_*.
2615 * @param pgmMode The mode value to convert.
2616 */
2617DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2618{
2619 switch (pgmMode)
2620 {
2621 case PGMMODE_REAL: return PGM_TYPE_REAL;
2622 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2623 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2624 case PGMMODE_PAE:
2625 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2626 case PGMMODE_AMD64:
2627 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2628 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2629 case PGMMODE_EPT: return PGM_TYPE_EPT;
2630 default:
2631 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2632 }
2633}
2634
2635
2636/**
2637 * Gets the index into the paging mode data array of a SHW+GST mode.
2638 *
2639 * @returns PGM::paPagingData index.
2640 * @param uShwType The shadow paging mode type.
2641 * @param uGstType The guest paging mode type.
2642 */
2643DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2644{
2645 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2646 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2647 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2648 + (uGstType - PGM_TYPE_REAL);
2649}
2650
2651
2652/**
2653 * Gets the index into the paging mode data array of a SHW+GST mode.
2654 *
2655 * @returns PGM::paPagingData index.
2656 * @param enmShw The shadow paging mode.
2657 * @param enmGst The guest paging mode.
2658 */
2659DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2660{
2661 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2662 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2663 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2664}
2665
2666
2667/**
2668 * Calculates the max data index.
2669 * @returns The number of entries in the paging data array.
2670 */
2671DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2672{
2673 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2674}
2675
2676
2677/**
2678 * Initializes the paging mode data kept in PGM::paModeData.
2679 *
2680 * @param pVM The VM handle.
2681 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2682 * This is used early in the init process to avoid trouble with PDM
2683 * not being initialized yet.
2684 */
2685static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2686{
2687 PPGMMODEDATA pModeData;
2688 int rc;
2689
2690 /*
2691 * Allocate the array on the first call.
2692 */
2693 if (!pVM->pgm.s.paModeData)
2694 {
2695 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2696 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2697 }
2698
2699 /*
2700 * Initialize the array entries.
2701 */
2702 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2703 pModeData->uShwType = PGM_TYPE_32BIT;
2704 pModeData->uGstType = PGM_TYPE_REAL;
2705 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2706 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2707 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2708
2709 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2710 pModeData->uShwType = PGM_TYPE_32BIT;
2711 pModeData->uGstType = PGM_TYPE_PROT;
2712 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2713 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2715
2716 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2717 pModeData->uShwType = PGM_TYPE_32BIT;
2718 pModeData->uGstType = PGM_TYPE_32BIT;
2719 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2722
2723 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2724 pModeData->uShwType = PGM_TYPE_PAE;
2725 pModeData->uGstType = PGM_TYPE_REAL;
2726 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2727 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2728 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2729
2730 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2731 pModeData->uShwType = PGM_TYPE_PAE;
2732 pModeData->uGstType = PGM_TYPE_PROT;
2733 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2736
2737 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2738 pModeData->uShwType = PGM_TYPE_PAE;
2739 pModeData->uGstType = PGM_TYPE_32BIT;
2740 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2741 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2742 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743
2744 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2745 pModeData->uShwType = PGM_TYPE_PAE;
2746 pModeData->uGstType = PGM_TYPE_PAE;
2747 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2748 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750
2751#ifdef VBOX_WITH_64_BITS_GUESTS
2752 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2753 pModeData->uShwType = PGM_TYPE_AMD64;
2754 pModeData->uGstType = PGM_TYPE_AMD64;
2755 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758#endif
2759
2760 /* The nested paging mode. */
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2762 pModeData->uShwType = PGM_TYPE_NESTED;
2763 pModeData->uGstType = PGM_TYPE_REAL;
2764 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766
2767 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2768 pModeData->uShwType = PGM_TYPE_NESTED;
2769 pModeData->uGstType = PGM_TYPE_PROT;
2770 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772
2773 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2774 pModeData->uShwType = PGM_TYPE_NESTED;
2775 pModeData->uGstType = PGM_TYPE_32BIT;
2776 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778
2779 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2780 pModeData->uShwType = PGM_TYPE_NESTED;
2781 pModeData->uGstType = PGM_TYPE_PAE;
2782 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2783 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784
2785#ifdef VBOX_WITH_64_BITS_GUESTS
2786 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2787 pModeData->uShwType = PGM_TYPE_NESTED;
2788 pModeData->uGstType = PGM_TYPE_AMD64;
2789 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2791#endif
2792
2793 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2794 switch(pVM->pgm.s.enmHostMode)
2795 {
2796 case SUPPAGINGMODE_32_BIT:
2797 case SUPPAGINGMODE_32_BIT_GLOBAL:
2798#ifdef VBOX_WITH_64_BITS_GUESTS
2799 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2800#else
2801 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2802#endif
2803 {
2804 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2805 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2806 }
2807 break;
2808
2809 case SUPPAGINGMODE_PAE:
2810 case SUPPAGINGMODE_PAE_NX:
2811 case SUPPAGINGMODE_PAE_GLOBAL:
2812 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2813#ifdef VBOX_WITH_64_BITS_GUESTS
2814 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2815#else
2816 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2817#endif
2818 {
2819 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2820 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821 }
2822 break;
2823
2824 case SUPPAGINGMODE_AMD64:
2825 case SUPPAGINGMODE_AMD64_GLOBAL:
2826 case SUPPAGINGMODE_AMD64_NX:
2827 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2828#ifdef VBOX_WITH_64_BITS_GUESTS
2829 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2830#else
2831 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2832#endif
2833 {
2834 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2835 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2836 }
2837 break;
2838 default:
2839 AssertFailed();
2840 break;
2841 }
2842
2843 /* Extended paging (EPT) / Intel VT-x */
2844 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2845 pModeData->uShwType = PGM_TYPE_EPT;
2846 pModeData->uGstType = PGM_TYPE_REAL;
2847 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2848 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2849 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850
2851 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2852 pModeData->uShwType = PGM_TYPE_EPT;
2853 pModeData->uGstType = PGM_TYPE_PROT;
2854 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2855 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2856 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857
2858 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2859 pModeData->uShwType = PGM_TYPE_EPT;
2860 pModeData->uGstType = PGM_TYPE_32BIT;
2861 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2862 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2863 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2864
2865 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2866 pModeData->uShwType = PGM_TYPE_EPT;
2867 pModeData->uGstType = PGM_TYPE_PAE;
2868 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2870 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2871
2872#ifdef VBOX_WITH_64_BITS_GUESTS
2873 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2874 pModeData->uShwType = PGM_TYPE_EPT;
2875 pModeData->uGstType = PGM_TYPE_AMD64;
2876 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2877 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2878 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2879#endif
2880 return VINF_SUCCESS;
2881}
2882
2883
2884/**
2885 * Switch to different (or relocated in the relocate case) mode data.
2886 *
2887 * @param pVM The VM handle.
2888 * @param enmShw The the shadow paging mode.
2889 * @param enmGst The the guest paging mode.
2890 */
2891static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2892{
2893 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2894
2895 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2896 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2897
2898 /* shadow */
2899 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2900 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2901 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2902 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2903 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2904
2905 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2906 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2907
2908 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2909 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2910
2911
2912 /* guest */
2913 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2914 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2915 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2916 Assert(pVM->pgm.s.pfnR3GstGetPage);
2917 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2918 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2919 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2920 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2921 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2922 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2923 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2924 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2925 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2926 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2927
2928 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2929 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2930 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2931 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2932 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2933 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2934 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2935 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2936 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2937
2938 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2939 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2940 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2941 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2942 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2943 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2944 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2945 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2946 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2947
2948
2949 /* both */
2950 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2951 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2952 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2953 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2954 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2955 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2956 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2957#ifdef VBOX_STRICT
2958 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2959#endif
2960
2961 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2962 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2963 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2964 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2965 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2966 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2967#ifdef VBOX_STRICT
2968 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2969#endif
2970
2971 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2972 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2973 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2974 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2975 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2976 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2977#ifdef VBOX_STRICT
2978 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2979#endif
2980}
2981
2982
2983#ifdef DEBUG_bird
2984#include <stdlib.h> /* getenv() remove me! */
2985#endif
2986
2987/**
2988 * Calculates the shadow paging mode.
2989 *
2990 * @returns The shadow paging mode.
2991 * @param pVM VM handle.
2992 * @param enmGuestMode The guest mode.
2993 * @param enmHostMode The host mode.
2994 * @param enmShadowMode The current shadow mode.
2995 * @param penmSwitcher Where to store the switcher to use.
2996 * VMMSWITCHER_INVALID means no change.
2997 */
2998static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2999{
3000 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3001 switch (enmGuestMode)
3002 {
3003 /*
3004 * When switching to real or protected mode we don't change
3005 * anything since it's likely that we'll switch back pretty soon.
3006 *
3007 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3008 * and is supposed to determine which shadow paging and switcher to
3009 * use during init.
3010 */
3011 case PGMMODE_REAL:
3012 case PGMMODE_PROTECTED:
3013 if ( enmShadowMode != PGMMODE_INVALID
3014 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3015 break; /* (no change) */
3016
3017 switch (enmHostMode)
3018 {
3019 case SUPPAGINGMODE_32_BIT:
3020 case SUPPAGINGMODE_32_BIT_GLOBAL:
3021 enmShadowMode = PGMMODE_32_BIT;
3022 enmSwitcher = VMMSWITCHER_32_TO_32;
3023 break;
3024
3025 case SUPPAGINGMODE_PAE:
3026 case SUPPAGINGMODE_PAE_NX:
3027 case SUPPAGINGMODE_PAE_GLOBAL:
3028 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3029 enmShadowMode = PGMMODE_PAE;
3030 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3031#ifdef DEBUG_bird
3032if (getenv("VBOX_32BIT"))
3033{
3034 enmShadowMode = PGMMODE_32_BIT;
3035 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3036}
3037#endif
3038 break;
3039
3040 case SUPPAGINGMODE_AMD64:
3041 case SUPPAGINGMODE_AMD64_GLOBAL:
3042 case SUPPAGINGMODE_AMD64_NX:
3043 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3044 enmShadowMode = PGMMODE_PAE;
3045 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3046 break;
3047
3048 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3049 }
3050 break;
3051
3052 case PGMMODE_32_BIT:
3053 switch (enmHostMode)
3054 {
3055 case SUPPAGINGMODE_32_BIT:
3056 case SUPPAGINGMODE_32_BIT_GLOBAL:
3057 enmShadowMode = PGMMODE_32_BIT;
3058 enmSwitcher = VMMSWITCHER_32_TO_32;
3059 break;
3060
3061 case SUPPAGINGMODE_PAE:
3062 case SUPPAGINGMODE_PAE_NX:
3063 case SUPPAGINGMODE_PAE_GLOBAL:
3064 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3065 enmShadowMode = PGMMODE_PAE;
3066 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3067#ifdef DEBUG_bird
3068if (getenv("VBOX_32BIT"))
3069{
3070 enmShadowMode = PGMMODE_32_BIT;
3071 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3072}
3073#endif
3074 break;
3075
3076 case SUPPAGINGMODE_AMD64:
3077 case SUPPAGINGMODE_AMD64_GLOBAL:
3078 case SUPPAGINGMODE_AMD64_NX:
3079 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3080 enmShadowMode = PGMMODE_PAE;
3081 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3082 break;
3083
3084 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3085 }
3086 break;
3087
3088 case PGMMODE_PAE:
3089 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3090 switch (enmHostMode)
3091 {
3092 case SUPPAGINGMODE_32_BIT:
3093 case SUPPAGINGMODE_32_BIT_GLOBAL:
3094 enmShadowMode = PGMMODE_PAE;
3095 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3096 break;
3097
3098 case SUPPAGINGMODE_PAE:
3099 case SUPPAGINGMODE_PAE_NX:
3100 case SUPPAGINGMODE_PAE_GLOBAL:
3101 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3102 enmShadowMode = PGMMODE_PAE;
3103 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3104 break;
3105
3106 case SUPPAGINGMODE_AMD64:
3107 case SUPPAGINGMODE_AMD64_GLOBAL:
3108 case SUPPAGINGMODE_AMD64_NX:
3109 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3110 enmShadowMode = PGMMODE_PAE;
3111 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3112 break;
3113
3114 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3115 }
3116 break;
3117
3118 case PGMMODE_AMD64:
3119 case PGMMODE_AMD64_NX:
3120 switch (enmHostMode)
3121 {
3122 case SUPPAGINGMODE_32_BIT:
3123 case SUPPAGINGMODE_32_BIT_GLOBAL:
3124 enmShadowMode = PGMMODE_PAE;
3125 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3126 break;
3127
3128 case SUPPAGINGMODE_PAE:
3129 case SUPPAGINGMODE_PAE_NX:
3130 case SUPPAGINGMODE_PAE_GLOBAL:
3131 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3132 enmShadowMode = PGMMODE_PAE;
3133 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3134 break;
3135
3136 case SUPPAGINGMODE_AMD64:
3137 case SUPPAGINGMODE_AMD64_GLOBAL:
3138 case SUPPAGINGMODE_AMD64_NX:
3139 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3140 enmShadowMode = PGMMODE_AMD64;
3141 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3142 break;
3143
3144 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3145 }
3146 break;
3147
3148
3149 default:
3150 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3151 return PGMMODE_INVALID;
3152 }
3153 /* Override the shadow mode is nested paging is active. */
3154 if (HWACCMIsNestedPagingActive(pVM))
3155 enmShadowMode = HWACCMGetPagingMode(pVM);
3156
3157 *penmSwitcher = enmSwitcher;
3158 return enmShadowMode;
3159}
3160
3161/**
3162 * Performs the actual mode change.
3163 * This is called by PGMChangeMode and pgmR3InitPaging().
3164 *
3165 * @returns VBox status code.
3166 * @param pVM VM handle.
3167 * @param enmGuestMode The new guest mode. This is assumed to be different from
3168 * the current mode.
3169 */
3170VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3171{
3172 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3173 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3174
3175 /*
3176 * Calc the shadow mode and switcher.
3177 */
3178 VMMSWITCHER enmSwitcher;
3179 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3180 if (enmSwitcher != VMMSWITCHER_INVALID)
3181 {
3182 /*
3183 * Select new switcher.
3184 */
3185 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3186 if (VBOX_FAILURE(rc))
3187 {
3188 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
3189 return rc;
3190 }
3191 }
3192
3193 /*
3194 * Exit old mode(s).
3195 */
3196 /* shadow */
3197 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3198 {
3199 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3200 if (PGM_SHW_PFN(Exit, pVM))
3201 {
3202 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3203 if (VBOX_FAILURE(rc))
3204 {
3205 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
3206 return rc;
3207 }
3208 }
3209
3210 }
3211 else
3212 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3213
3214 /* guest */
3215 if (PGM_GST_PFN(Exit, pVM))
3216 {
3217 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3218 if (VBOX_FAILURE(rc))
3219 {
3220 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
3221 return rc;
3222 }
3223 }
3224
3225 /*
3226 * Load new paging mode data.
3227 */
3228 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3229
3230 /*
3231 * Enter new shadow mode (if changed).
3232 */
3233 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3234 {
3235 int rc;
3236 pVM->pgm.s.enmShadowMode = enmShadowMode;
3237 switch (enmShadowMode)
3238 {
3239 case PGMMODE_32_BIT:
3240 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3241 break;
3242 case PGMMODE_PAE:
3243 case PGMMODE_PAE_NX:
3244 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3245 break;
3246 case PGMMODE_AMD64:
3247 case PGMMODE_AMD64_NX:
3248 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3249 break;
3250 case PGMMODE_NESTED:
3251 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3252 break;
3253 case PGMMODE_EPT:
3254 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3255 break;
3256 case PGMMODE_REAL:
3257 case PGMMODE_PROTECTED:
3258 default:
3259 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3260 return VERR_INTERNAL_ERROR;
3261 }
3262 if (VBOX_FAILURE(rc))
3263 {
3264 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3265 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3266 return rc;
3267 }
3268 }
3269
3270 /* We must flush the PGM pool cache if the guest mode changes; we don't always
3271 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3272 * the shadow page tables.
3273 *
3274 * That only applies when switching between paging and non-paging modes.
3275 *
3276 * @todo A20 setting
3277 */
3278 if ( pVM->pgm.s.CTX_SUFF(pPool)
3279 && !HWACCMIsNestedPagingActive(pVM)
3280 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3281 {
3282 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3283 pgmPoolFlushAll(pVM);
3284 }
3285
3286 /*
3287 * Enter the new guest and shadow+guest modes.
3288 */
3289 int rc = -1;
3290 int rc2 = -1;
3291 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3292 pVM->pgm.s.enmGuestMode = enmGuestMode;
3293 switch (enmGuestMode)
3294 {
3295 case PGMMODE_REAL:
3296 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3297 switch (pVM->pgm.s.enmShadowMode)
3298 {
3299 case PGMMODE_32_BIT:
3300 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3301 break;
3302 case PGMMODE_PAE:
3303 case PGMMODE_PAE_NX:
3304 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3305 break;
3306 case PGMMODE_NESTED:
3307 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3308 break;
3309 case PGMMODE_EPT:
3310 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3311 break;
3312 case PGMMODE_AMD64:
3313 case PGMMODE_AMD64_NX:
3314 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3315 default: AssertFailed(); break;
3316 }
3317 break;
3318
3319 case PGMMODE_PROTECTED:
3320 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3321 switch (pVM->pgm.s.enmShadowMode)
3322 {
3323 case PGMMODE_32_BIT:
3324 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3325 break;
3326 case PGMMODE_PAE:
3327 case PGMMODE_PAE_NX:
3328 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3329 break;
3330 case PGMMODE_NESTED:
3331 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3332 break;
3333 case PGMMODE_EPT:
3334 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3335 break;
3336 case PGMMODE_AMD64:
3337 case PGMMODE_AMD64_NX:
3338 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3339 default: AssertFailed(); break;
3340 }
3341 break;
3342
3343 case PGMMODE_32_BIT:
3344 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3345 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3346 switch (pVM->pgm.s.enmShadowMode)
3347 {
3348 case PGMMODE_32_BIT:
3349 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3350 break;
3351 case PGMMODE_PAE:
3352 case PGMMODE_PAE_NX:
3353 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3354 break;
3355 case PGMMODE_NESTED:
3356 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3357 break;
3358 case PGMMODE_EPT:
3359 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3360 break;
3361 case PGMMODE_AMD64:
3362 case PGMMODE_AMD64_NX:
3363 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3364 default: AssertFailed(); break;
3365 }
3366 break;
3367
3368 case PGMMODE_PAE_NX:
3369 case PGMMODE_PAE:
3370 {
3371 uint32_t u32Dummy, u32Features;
3372
3373 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3374 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3375 {
3376 /* Pause first, then inform Main. */
3377 rc = VMR3SuspendNoSave(pVM);
3378 AssertRC(rc);
3379
3380 VMSetRuntimeError(pVM, true, "PAEmode",
3381 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3382 /* we must return TRUE here otherwise the recompiler will assert */
3383 return VINF_SUCCESS;
3384 }
3385 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3386 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3387 switch (pVM->pgm.s.enmShadowMode)
3388 {
3389 case PGMMODE_PAE:
3390 case PGMMODE_PAE_NX:
3391 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3392 break;
3393 case PGMMODE_NESTED:
3394 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3395 break;
3396 case PGMMODE_EPT:
3397 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3398 break;
3399 case PGMMODE_32_BIT:
3400 case PGMMODE_AMD64:
3401 case PGMMODE_AMD64_NX:
3402 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3403 default: AssertFailed(); break;
3404 }
3405 break;
3406 }
3407
3408#ifdef VBOX_WITH_64_BITS_GUESTS
3409 case PGMMODE_AMD64_NX:
3410 case PGMMODE_AMD64:
3411 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3412 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3413 switch (pVM->pgm.s.enmShadowMode)
3414 {
3415 case PGMMODE_AMD64:
3416 case PGMMODE_AMD64_NX:
3417 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3418 break;
3419 case PGMMODE_NESTED:
3420 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3421 break;
3422 case PGMMODE_EPT:
3423 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3424 break;
3425 case PGMMODE_32_BIT:
3426 case PGMMODE_PAE:
3427 case PGMMODE_PAE_NX:
3428 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3429 default: AssertFailed(); break;
3430 }
3431 break;
3432#endif
3433
3434 default:
3435 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3436 rc = VERR_NOT_IMPLEMENTED;
3437 break;
3438 }
3439
3440 /* status codes. */
3441 AssertRC(rc);
3442 AssertRC(rc2);
3443 if (VBOX_SUCCESS(rc))
3444 {
3445 rc = rc2;
3446 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3447 rc = VINF_SUCCESS;
3448 }
3449
3450 /*
3451 * Notify SELM so it can update the TSSes with correct CR3s.
3452 */
3453 SELMR3PagingModeChanged(pVM);
3454
3455 /* Notify HWACCM as well. */
3456 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3457 return rc;
3458}
3459
3460
3461/**
3462 * Dumps a PAE shadow page table.
3463 *
3464 * @returns VBox status code (VINF_SUCCESS).
3465 * @param pVM The VM handle.
3466 * @param pPT Pointer to the page table.
3467 * @param u64Address The virtual address of the page table starts.
3468 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3469 * @param cMaxDepth The maxium depth.
3470 * @param pHlp Pointer to the output functions.
3471 */
3472static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3473{
3474 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3475 {
3476 X86PTEPAE Pte = pPT->a[i];
3477 if (Pte.n.u1Present)
3478 {
3479 pHlp->pfnPrintf(pHlp,
3480 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3481 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3482 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3483 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3484 Pte.n.u1Write ? 'W' : 'R',
3485 Pte.n.u1User ? 'U' : 'S',
3486 Pte.n.u1Accessed ? 'A' : '-',
3487 Pte.n.u1Dirty ? 'D' : '-',
3488 Pte.n.u1Global ? 'G' : '-',
3489 Pte.n.u1WriteThru ? "WT" : "--",
3490 Pte.n.u1CacheDisable? "CD" : "--",
3491 Pte.n.u1PAT ? "AT" : "--",
3492 Pte.n.u1NoExecute ? "NX" : "--",
3493 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3494 Pte.u & RT_BIT(10) ? '1' : '0',
3495 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3496 Pte.u & X86_PTE_PAE_PG_MASK);
3497 }
3498 }
3499 return VINF_SUCCESS;
3500}
3501
3502
3503/**
3504 * Dumps a PAE shadow page directory table.
3505 *
3506 * @returns VBox status code (VINF_SUCCESS).
3507 * @param pVM The VM handle.
3508 * @param HCPhys The physical address of the page directory table.
3509 * @param u64Address The virtual address of the page table starts.
3510 * @param cr4 The CR4, PSE is currently used.
3511 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3512 * @param cMaxDepth The maxium depth.
3513 * @param pHlp Pointer to the output functions.
3514 */
3515static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3516{
3517 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3518 if (!pPD)
3519 {
3520 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3521 fLongMode ? 16 : 8, u64Address, HCPhys);
3522 return VERR_INVALID_PARAMETER;
3523 }
3524 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3525
3526 int rc = VINF_SUCCESS;
3527 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3528 {
3529 X86PDEPAE Pde = pPD->a[i];
3530 if (Pde.n.u1Present)
3531 {
3532 if (fBigPagesSupported && Pde.b.u1Size)
3533 pHlp->pfnPrintf(pHlp,
3534 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3535 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3536 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3537 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3538 Pde.b.u1Write ? 'W' : 'R',
3539 Pde.b.u1User ? 'U' : 'S',
3540 Pde.b.u1Accessed ? 'A' : '-',
3541 Pde.b.u1Dirty ? 'D' : '-',
3542 Pde.b.u1Global ? 'G' : '-',
3543 Pde.b.u1WriteThru ? "WT" : "--",
3544 Pde.b.u1CacheDisable? "CD" : "--",
3545 Pde.b.u1PAT ? "AT" : "--",
3546 Pde.b.u1NoExecute ? "NX" : "--",
3547 Pde.u & RT_BIT_64(9) ? '1' : '0',
3548 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3549 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3550 Pde.u & X86_PDE_PAE_PG_MASK);
3551 else
3552 {
3553 pHlp->pfnPrintf(pHlp,
3554 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3555 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3556 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3557 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3558 Pde.n.u1Write ? 'W' : 'R',
3559 Pde.n.u1User ? 'U' : 'S',
3560 Pde.n.u1Accessed ? 'A' : '-',
3561 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3562 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3563 Pde.n.u1WriteThru ? "WT" : "--",
3564 Pde.n.u1CacheDisable? "CD" : "--",
3565 Pde.n.u1NoExecute ? "NX" : "--",
3566 Pde.u & RT_BIT_64(9) ? '1' : '0',
3567 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3568 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3569 Pde.u & X86_PDE_PAE_PG_MASK);
3570 if (cMaxDepth >= 1)
3571 {
3572 /** @todo what about using the page pool for mapping PTs? */
3573 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3574 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3575 PX86PTPAE pPT = NULL;
3576 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3577 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3578 else
3579 {
3580 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3581 {
3582 uint64_t off = u64AddressPT - pMap->GCPtr;
3583 if (off < pMap->cb)
3584 {
3585 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3586 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3587 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3588 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3589 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3590 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3591 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3592 }
3593 }
3594 }
3595 int rc2 = VERR_INVALID_PARAMETER;
3596 if (pPT)
3597 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3598 else
3599 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3600 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3601 if (rc2 < rc && VBOX_SUCCESS(rc))
3602 rc = rc2;
3603 }
3604 }
3605 }
3606 }
3607 return rc;
3608}
3609
3610
3611/**
3612 * Dumps a PAE shadow page directory pointer table.
3613 *
3614 * @returns VBox status code (VINF_SUCCESS).
3615 * @param pVM The VM handle.
3616 * @param HCPhys The physical address of the page directory pointer table.
3617 * @param u64Address The virtual address of the page table starts.
3618 * @param cr4 The CR4, PSE is currently used.
3619 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3620 * @param cMaxDepth The maxium depth.
3621 * @param pHlp Pointer to the output functions.
3622 */
3623static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3624{
3625 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3626 if (!pPDPT)
3627 {
3628 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3629 fLongMode ? 16 : 8, u64Address, HCPhys);
3630 return VERR_INVALID_PARAMETER;
3631 }
3632
3633 int rc = VINF_SUCCESS;
3634 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3635 for (unsigned i = 0; i < c; i++)
3636 {
3637 X86PDPE Pdpe = pPDPT->a[i];
3638 if (Pdpe.n.u1Present)
3639 {
3640 if (fLongMode)
3641 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3642 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3643 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3644 Pdpe.lm.u1Write ? 'W' : 'R',
3645 Pdpe.lm.u1User ? 'U' : 'S',
3646 Pdpe.lm.u1Accessed ? 'A' : '-',
3647 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3648 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3649 Pdpe.lm.u1WriteThru ? "WT" : "--",
3650 Pdpe.lm.u1CacheDisable? "CD" : "--",
3651 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3652 Pdpe.lm.u1NoExecute ? "NX" : "--",
3653 Pdpe.u & RT_BIT(9) ? '1' : '0',
3654 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3655 Pdpe.u & RT_BIT(11) ? '1' : '0',
3656 Pdpe.u & X86_PDPE_PG_MASK);
3657 else
3658 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3659 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3660 i << X86_PDPT_SHIFT,
3661 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3662 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3663 Pdpe.n.u1WriteThru ? "WT" : "--",
3664 Pdpe.n.u1CacheDisable? "CD" : "--",
3665 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3666 Pdpe.u & RT_BIT(9) ? '1' : '0',
3667 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3668 Pdpe.u & RT_BIT(11) ? '1' : '0',
3669 Pdpe.u & X86_PDPE_PG_MASK);
3670 if (cMaxDepth >= 1)
3671 {
3672 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3673 cr4, fLongMode, cMaxDepth - 1, pHlp);
3674 if (rc2 < rc && VBOX_SUCCESS(rc))
3675 rc = rc2;
3676 }
3677 }
3678 }
3679 return rc;
3680}
3681
3682
3683/**
3684 * Dumps a 32-bit shadow page table.
3685 *
3686 * @returns VBox status code (VINF_SUCCESS).
3687 * @param pVM The VM handle.
3688 * @param HCPhys The physical address of the table.
3689 * @param cr4 The CR4, PSE is currently used.
3690 * @param cMaxDepth The maxium depth.
3691 * @param pHlp Pointer to the output functions.
3692 */
3693static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3694{
3695 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3696 if (!pPML4)
3697 {
3698 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3699 return VERR_INVALID_PARAMETER;
3700 }
3701
3702 int rc = VINF_SUCCESS;
3703 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3704 {
3705 X86PML4E Pml4e = pPML4->a[i];
3706 if (Pml4e.n.u1Present)
3707 {
3708 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3709 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3710 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3711 u64Address,
3712 Pml4e.n.u1Write ? 'W' : 'R',
3713 Pml4e.n.u1User ? 'U' : 'S',
3714 Pml4e.n.u1Accessed ? 'A' : '-',
3715 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3716 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3717 Pml4e.n.u1WriteThru ? "WT" : "--",
3718 Pml4e.n.u1CacheDisable? "CD" : "--",
3719 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3720 Pml4e.n.u1NoExecute ? "NX" : "--",
3721 Pml4e.u & RT_BIT(9) ? '1' : '0',
3722 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3723 Pml4e.u & RT_BIT(11) ? '1' : '0',
3724 Pml4e.u & X86_PML4E_PG_MASK);
3725
3726 if (cMaxDepth >= 1)
3727 {
3728 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3729 if (rc2 < rc && VBOX_SUCCESS(rc))
3730 rc = rc2;
3731 }
3732 }
3733 }
3734 return rc;
3735}
3736
3737
3738/**
3739 * Dumps a 32-bit shadow page table.
3740 *
3741 * @returns VBox status code (VINF_SUCCESS).
3742 * @param pVM The VM handle.
3743 * @param pPT Pointer to the page table.
3744 * @param u32Address The virtual address this table starts at.
3745 * @param pHlp Pointer to the output functions.
3746 */
3747int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3748{
3749 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3750 {
3751 X86PTE Pte = pPT->a[i];
3752 if (Pte.n.u1Present)
3753 {
3754 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3755 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3756 u32Address + (i << X86_PT_SHIFT),
3757 Pte.n.u1Write ? 'W' : 'R',
3758 Pte.n.u1User ? 'U' : 'S',
3759 Pte.n.u1Accessed ? 'A' : '-',
3760 Pte.n.u1Dirty ? 'D' : '-',
3761 Pte.n.u1Global ? 'G' : '-',
3762 Pte.n.u1WriteThru ? "WT" : "--",
3763 Pte.n.u1CacheDisable? "CD" : "--",
3764 Pte.n.u1PAT ? "AT" : "--",
3765 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3766 Pte.u & RT_BIT(10) ? '1' : '0',
3767 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3768 Pte.u & X86_PDE_PG_MASK);
3769 }
3770 }
3771 return VINF_SUCCESS;
3772}
3773
3774
3775/**
3776 * Dumps a 32-bit shadow page directory and page tables.
3777 *
3778 * @returns VBox status code (VINF_SUCCESS).
3779 * @param pVM The VM handle.
3780 * @param cr3 The root of the hierarchy.
3781 * @param cr4 The CR4, PSE is currently used.
3782 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3783 * @param pHlp Pointer to the output functions.
3784 */
3785int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3786{
3787 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3788 if (!pPD)
3789 {
3790 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3791 return VERR_INVALID_PARAMETER;
3792 }
3793
3794 int rc = VINF_SUCCESS;
3795 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3796 {
3797 X86PDE Pde = pPD->a[i];
3798 if (Pde.n.u1Present)
3799 {
3800 const uint32_t u32Address = i << X86_PD_SHIFT;
3801 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3802 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3803 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3804 u32Address,
3805 Pde.b.u1Write ? 'W' : 'R',
3806 Pde.b.u1User ? 'U' : 'S',
3807 Pde.b.u1Accessed ? 'A' : '-',
3808 Pde.b.u1Dirty ? 'D' : '-',
3809 Pde.b.u1Global ? 'G' : '-',
3810 Pde.b.u1WriteThru ? "WT" : "--",
3811 Pde.b.u1CacheDisable? "CD" : "--",
3812 Pde.b.u1PAT ? "AT" : "--",
3813 Pde.u & RT_BIT_64(9) ? '1' : '0',
3814 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3815 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3816 Pde.u & X86_PDE4M_PG_MASK);
3817 else
3818 {
3819 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3820 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3821 u32Address,
3822 Pde.n.u1Write ? 'W' : 'R',
3823 Pde.n.u1User ? 'U' : 'S',
3824 Pde.n.u1Accessed ? 'A' : '-',
3825 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3826 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3827 Pde.n.u1WriteThru ? "WT" : "--",
3828 Pde.n.u1CacheDisable? "CD" : "--",
3829 Pde.u & RT_BIT_64(9) ? '1' : '0',
3830 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3831 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3832 Pde.u & X86_PDE_PG_MASK);
3833 if (cMaxDepth >= 1)
3834 {
3835 /** @todo what about using the page pool for mapping PTs? */
3836 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3837 PX86PT pPT = NULL;
3838 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3839 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3840 else
3841 {
3842 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3843 if (u32Address - pMap->GCPtr < pMap->cb)
3844 {
3845 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3846 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3847 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3848 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3849 pPT = pMap->aPTs[iPDE].pPTR3;
3850 }
3851 }
3852 int rc2 = VERR_INVALID_PARAMETER;
3853 if (pPT)
3854 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3855 else
3856 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3857 if (rc2 < rc && VBOX_SUCCESS(rc))
3858 rc = rc2;
3859 }
3860 }
3861 }
3862 }
3863
3864 return rc;
3865}
3866
3867
3868/**
3869 * Dumps a 32-bit shadow page table.
3870 *
3871 * @returns VBox status code (VINF_SUCCESS).
3872 * @param pVM The VM handle.
3873 * @param pPT Pointer to the page table.
3874 * @param u32Address The virtual address this table starts at.
3875 * @param PhysSearch Address to search for.
3876 */
3877int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3878{
3879 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3880 {
3881 X86PTE Pte = pPT->a[i];
3882 if (Pte.n.u1Present)
3883 {
3884 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3885 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3886 u32Address + (i << X86_PT_SHIFT),
3887 Pte.n.u1Write ? 'W' : 'R',
3888 Pte.n.u1User ? 'U' : 'S',
3889 Pte.n.u1Accessed ? 'A' : '-',
3890 Pte.n.u1Dirty ? 'D' : '-',
3891 Pte.n.u1Global ? 'G' : '-',
3892 Pte.n.u1WriteThru ? "WT" : "--",
3893 Pte.n.u1CacheDisable? "CD" : "--",
3894 Pte.n.u1PAT ? "AT" : "--",
3895 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3896 Pte.u & RT_BIT(10) ? '1' : '0',
3897 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3898 Pte.u & X86_PDE_PG_MASK));
3899
3900 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3901 {
3902 uint64_t fPageShw = 0;
3903 RTHCPHYS pPhysHC = 0;
3904
3905 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3906 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3907 }
3908 }
3909 }
3910 return VINF_SUCCESS;
3911}
3912
3913
3914/**
3915 * Dumps a 32-bit guest page directory and page tables.
3916 *
3917 * @returns VBox status code (VINF_SUCCESS).
3918 * @param pVM The VM handle.
3919 * @param cr3 The root of the hierarchy.
3920 * @param cr4 The CR4, PSE is currently used.
3921 * @param PhysSearch Address to search for.
3922 */
3923VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3924{
3925 bool fLongMode = false;
3926 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3927 PX86PD pPD = 0;
3928
3929 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3930 if (VBOX_FAILURE(rc) || !pPD)
3931 {
3932 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3933 return VERR_INVALID_PARAMETER;
3934 }
3935
3936 Log(("cr3=%08x cr4=%08x%s\n"
3937 "%-*s P - Present\n"
3938 "%-*s | R/W - Read (0) / Write (1)\n"
3939 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3940 "%-*s | | | A - Accessed\n"
3941 "%-*s | | | | D - Dirty\n"
3942 "%-*s | | | | | G - Global\n"
3943 "%-*s | | | | | | WT - Write thru\n"
3944 "%-*s | | | | | | | CD - Cache disable\n"
3945 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3946 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3947 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3948 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3949 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3950 "%-*s Level | | | | | | | | | | | | Page\n"
3951 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3952 - W U - - - -- -- -- -- -- 010 */
3953 , cr3, cr4, fLongMode ? " Long Mode" : "",
3954 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3955 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3956
3957 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3958 {
3959 X86PDE Pde = pPD->a[i];
3960 if (Pde.n.u1Present)
3961 {
3962 const uint32_t u32Address = i << X86_PD_SHIFT;
3963
3964 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3965 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3966 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3967 u32Address,
3968 Pde.b.u1Write ? 'W' : 'R',
3969 Pde.b.u1User ? 'U' : 'S',
3970 Pde.b.u1Accessed ? 'A' : '-',
3971 Pde.b.u1Dirty ? 'D' : '-',
3972 Pde.b.u1Global ? 'G' : '-',
3973 Pde.b.u1WriteThru ? "WT" : "--",
3974 Pde.b.u1CacheDisable? "CD" : "--",
3975 Pde.b.u1PAT ? "AT" : "--",
3976 Pde.u & RT_BIT(9) ? '1' : '0',
3977 Pde.u & RT_BIT(10) ? '1' : '0',
3978 Pde.u & RT_BIT(11) ? '1' : '0',
3979 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3980 /** @todo PhysSearch */
3981 else
3982 {
3983 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3984 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3985 u32Address,
3986 Pde.n.u1Write ? 'W' : 'R',
3987 Pde.n.u1User ? 'U' : 'S',
3988 Pde.n.u1Accessed ? 'A' : '-',
3989 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3990 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3991 Pde.n.u1WriteThru ? "WT" : "--",
3992 Pde.n.u1CacheDisable? "CD" : "--",
3993 Pde.u & RT_BIT(9) ? '1' : '0',
3994 Pde.u & RT_BIT(10) ? '1' : '0',
3995 Pde.u & RT_BIT(11) ? '1' : '0',
3996 Pde.u & X86_PDE_PG_MASK));
3997 ////if (cMaxDepth >= 1)
3998 {
3999 /** @todo what about using the page pool for mapping PTs? */
4000 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4001 PX86PT pPT = NULL;
4002
4003 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4004
4005 int rc2 = VERR_INVALID_PARAMETER;
4006 if (pPT)
4007 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4008 else
4009 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4010 if (rc2 < rc && VBOX_SUCCESS(rc))
4011 rc = rc2;
4012 }
4013 }
4014 }
4015 }
4016
4017 return rc;
4018}
4019
4020
4021/**
4022 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4023 *
4024 * @returns VBox status code (VINF_SUCCESS).
4025 * @param pVM The VM handle.
4026 * @param cr3 The root of the hierarchy.
4027 * @param cr4 The cr4, only PAE and PSE is currently used.
4028 * @param fLongMode Set if long mode, false if not long mode.
4029 * @param cMaxDepth Number of levels to dump.
4030 * @param pHlp Pointer to the output functions.
4031 */
4032VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4033{
4034 if (!pHlp)
4035 pHlp = DBGFR3InfoLogHlp();
4036 if (!cMaxDepth)
4037 return VINF_SUCCESS;
4038 const unsigned cch = fLongMode ? 16 : 8;
4039 pHlp->pfnPrintf(pHlp,
4040 "cr3=%08x cr4=%08x%s\n"
4041 "%-*s P - Present\n"
4042 "%-*s | R/W - Read (0) / Write (1)\n"
4043 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4044 "%-*s | | | A - Accessed\n"
4045 "%-*s | | | | D - Dirty\n"
4046 "%-*s | | | | | G - Global\n"
4047 "%-*s | | | | | | WT - Write thru\n"
4048 "%-*s | | | | | | | CD - Cache disable\n"
4049 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4050 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4051 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4052 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4053 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4054 "%-*s Level | | | | | | | | | | | | Page\n"
4055 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4056 - W U - - - -- -- -- -- -- 010 */
4057 , cr3, cr4, fLongMode ? " Long Mode" : "",
4058 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4059 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4060 if (cr4 & X86_CR4_PAE)
4061 {
4062 if (fLongMode)
4063 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4064 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4065 }
4066 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4067}
4068
4069
4070
4071#ifdef VBOX_WITH_DEBUGGER
4072/**
4073 * The '.pgmram' command.
4074 *
4075 * @returns VBox status.
4076 * @param pCmd Pointer to the command descriptor (as registered).
4077 * @param pCmdHlp Pointer to command helper functions.
4078 * @param pVM Pointer to the current VM (if any).
4079 * @param paArgs Pointer to (readonly) array of arguments.
4080 * @param cArgs Number of arguments in the array.
4081 */
4082static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4083{
4084 /*
4085 * Validate input.
4086 */
4087 if (!pVM)
4088 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4089 if (!pVM->pgm.s.pRamRangesRC)
4090 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4091
4092 /*
4093 * Dump the ranges.
4094 */
4095 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4096 PPGMRAMRANGE pRam;
4097 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4098 {
4099 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4100 "%RGp - %RGp %p\n",
4101 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4102 if (VBOX_FAILURE(rc))
4103 return rc;
4104 }
4105
4106 return VINF_SUCCESS;
4107}
4108
4109
4110/**
4111 * The '.pgmmap' command.
4112 *
4113 * @returns VBox status.
4114 * @param pCmd Pointer to the command descriptor (as registered).
4115 * @param pCmdHlp Pointer to command helper functions.
4116 * @param pVM Pointer to the current VM (if any).
4117 * @param paArgs Pointer to (readonly) array of arguments.
4118 * @param cArgs Number of arguments in the array.
4119 */
4120static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4121{
4122 /*
4123 * Validate input.
4124 */
4125 if (!pVM)
4126 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4127 if (!pVM->pgm.s.pMappingsR3)
4128 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4129
4130 /*
4131 * Print message about the fixedness of the mappings.
4132 */
4133 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4134 if (VBOX_FAILURE(rc))
4135 return rc;
4136
4137 /*
4138 * Dump the ranges.
4139 */
4140 PPGMMAPPING pCur;
4141 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4142 {
4143 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4144 "%08x - %08x %s\n",
4145 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4146 if (VBOX_FAILURE(rc))
4147 return rc;
4148 }
4149
4150 return VINF_SUCCESS;
4151}
4152
4153
4154/**
4155 * The '.pgmsync' command.
4156 *
4157 * @returns VBox status.
4158 * @param pCmd Pointer to the command descriptor (as registered).
4159 * @param pCmdHlp Pointer to command helper functions.
4160 * @param pVM Pointer to the current VM (if any).
4161 * @param paArgs Pointer to (readonly) array of arguments.
4162 * @param cArgs Number of arguments in the array.
4163 */
4164static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4165{
4166 /*
4167 * Validate input.
4168 */
4169 if (!pVM)
4170 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4171
4172 /*
4173 * Force page directory sync.
4174 */
4175 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4176
4177 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4178 if (VBOX_FAILURE(rc))
4179 return rc;
4180
4181 return VINF_SUCCESS;
4182}
4183
4184
4185#ifdef VBOX_STRICT
4186/**
4187 * The '.pgmassertcr3' command.
4188 *
4189 * @returns VBox status.
4190 * @param pCmd Pointer to the command descriptor (as registered).
4191 * @param pCmdHlp Pointer to command helper functions.
4192 * @param pVM Pointer to the current VM (if any).
4193 * @param paArgs Pointer to (readonly) array of arguments.
4194 * @param cArgs Number of arguments in the array.
4195 */
4196static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4197{
4198 /*
4199 * Validate input.
4200 */
4201 if (!pVM)
4202 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4203
4204 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4205 if (VBOX_FAILURE(rc))
4206 return rc;
4207
4208 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4209
4210 return VINF_SUCCESS;
4211}
4212#endif
4213
4214/**
4215 * The '.pgmsyncalways' command.
4216 *
4217 * @returns VBox status.
4218 * @param pCmd Pointer to the command descriptor (as registered).
4219 * @param pCmdHlp Pointer to command helper functions.
4220 * @param pVM Pointer to the current VM (if any).
4221 * @param paArgs Pointer to (readonly) array of arguments.
4222 * @param cArgs Number of arguments in the array.
4223 */
4224static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4225{
4226 /*
4227 * Validate input.
4228 */
4229 if (!pVM)
4230 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4231
4232 /*
4233 * Force page directory sync.
4234 */
4235 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4236 {
4237 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4238 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4239 }
4240 else
4241 {
4242 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4243 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4244 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4245 }
4246}
4247
4248#endif
4249
4250/**
4251 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4252 */
4253typedef struct PGMCHECKINTARGS
4254{
4255 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4256 PPGMPHYSHANDLER pPrevPhys;
4257 PPGMVIRTHANDLER pPrevVirt;
4258 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4259 PVM pVM;
4260} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4261
4262/**
4263 * Validate a node in the physical handler tree.
4264 *
4265 * @returns 0 on if ok, other wise 1.
4266 * @param pNode The handler node.
4267 * @param pvUser pVM.
4268 */
4269static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4270{
4271 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4272 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4273 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4274 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4275 AssertReleaseMsg( !pArgs->pPrevPhys
4276 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4277 ("pPrevPhys=%p %VGp-%VGp %s\n"
4278 " pCur=%p %VGp-%VGp %s\n",
4279 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4280 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4281 pArgs->pPrevPhys = pCur;
4282 return 0;
4283}
4284
4285
4286/**
4287 * Validate a node in the virtual handler tree.
4288 *
4289 * @returns 0 on if ok, other wise 1.
4290 * @param pNode The handler node.
4291 * @param pvUser pVM.
4292 */
4293static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4294{
4295 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4296 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4297 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4298 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4299 AssertReleaseMsg( !pArgs->pPrevVirt
4300 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4301 ("pPrevVirt=%p %VGv-%VGv %s\n"
4302 " pCur=%p %VGv-%VGv %s\n",
4303 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4304 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4305 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4306 {
4307 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4308 ("pCur=%p %VGv-%VGv %s\n"
4309 "iPage=%d offVirtHandle=%#x expected %#x\n",
4310 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4311 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4312 }
4313 pArgs->pPrevVirt = pCur;
4314 return 0;
4315}
4316
4317
4318/**
4319 * Validate a node in the virtual handler tree.
4320 *
4321 * @returns 0 on if ok, other wise 1.
4322 * @param pNode The handler node.
4323 * @param pvUser pVM.
4324 */
4325static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4326{
4327 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4328 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4329 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4330 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4331 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4332 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4333 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4334 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4335 " pCur=%p %VGp-%VGp\n",
4336 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4337 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4338 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4339 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4340 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4341 " pCur=%p %VGp-%VGp\n",
4342 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4343 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4344 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4345 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4346 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4347 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4348 {
4349 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4350 for (;;)
4351 {
4352 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4353 AssertReleaseMsg(pCur2 != pCur,
4354 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4355 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4356 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4357 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4358 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4359 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4360 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4361 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4362 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4363 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4364 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4365 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4366 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4367 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4368 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4369 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4370 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4371 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4372 break;
4373 }
4374 }
4375
4376 pArgs->pPrevPhys2Virt = pCur;
4377 return 0;
4378}
4379
4380
4381/**
4382 * Perform an integrity check on the PGM component.
4383 *
4384 * @returns VINF_SUCCESS if everything is fine.
4385 * @returns VBox error status after asserting on integrity breach.
4386 * @param pVM The VM handle.
4387 */
4388VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4389{
4390 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4391
4392 /*
4393 * Check the trees.
4394 */
4395 int cErrors = 0;
4396 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4397 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4398 PGMCHECKINTARGS Args = s_LeftToRight;
4399 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4400 Args = s_RightToLeft;
4401 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4402 Args = s_LeftToRight;
4403 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4404 Args = s_RightToLeft;
4405 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4406 Args = s_LeftToRight;
4407 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4408 Args = s_RightToLeft;
4409 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4410 Args = s_LeftToRight;
4411 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4412 Args = s_RightToLeft;
4413 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4414
4415 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4416}
4417
4418
4419/**
4420 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4421 *
4422 * @returns VBox status code.
4423 * @param pVM VM handle.
4424 * @param fEnable Enable or disable shadow mappings
4425 */
4426VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4427{
4428 pVM->pgm.s.fDisableMappings = !fEnable;
4429
4430 uint32_t cb;
4431 int rc = PGMR3MappingsSize(pVM, &cb);
4432 AssertRCReturn(rc, rc);
4433
4434 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4435 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4436 AssertRCReturn(rc, rc);
4437
4438 return VINF_SUCCESS;
4439}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette