VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 14038

Last change on this file since 14038 was 14038, checked in by vboxsync, 16 years ago

#1865: PGM - and another one.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 209.7 KB
Line 
1/* $Id: PGM.cpp 14038 2008-11-10 18:23:15Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location.
81 *
82 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
83 * simplifies switching guest CPU mode and consistency at the cost of more
84 * code to do the work. All memory use for those page tables is located below
85 * 4GB (this includes page tables for guest context mappings).
86 *
87 *
88 * @subsection subsec_pgm_int_gc Guest Context Mappings
89 *
90 * During assignment and relocation of a guest context mapping the intermediate
91 * memory context is used to verify the new location.
92 *
93 * Guest context mappings are currently restricted to below 4GB, for reasons
94 * of simplicity. This may change when we implement AMD64 support.
95 *
96 *
97 *
98 *
99 * @section sec_pgm_misc Misc
100 *
101 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
102 *
103 * The differences between legacy PAE and long mode PAE are:
104 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
105 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
106 * usual meanings while 6 is ignored (AMD). This means that upon switching to
107 * legacy PAE mode we'll have to clear these bits and when going to long mode
108 * they must be set. This applies to both intermediate and shadow contexts,
109 * however we don't need to do it for the intermediate one since we're
110 * executing with CR0.WP at that time.
111 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
112 * a page aligned one is required.
113 *
114 *
115 * @section sec_pgm_handlers Access Handlers
116 *
117 * Placeholder.
118 *
119 *
120 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
121 *
122 * Placeholder.
123 *
124 *
125 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
126 *
127 * We currently implement three types of virtual access handlers: ALL, WRITE
128 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
129 *
130 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
131 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
132 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
133 * rest of this section is going to be about these handlers.
134 *
135 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
136 * how successfull this is gonna be...
137 *
138 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
139 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
140 * and create a new node that is inserted into the AVL tree (range key). Then
141 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
142 *
143 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
144 *
145 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
146 * via the current guest CR3 and update the physical page -> virtual handler
147 * translation. Needless to say, this doesn't exactly scale very well. If any changes
148 * are detected, it will flag a virtual bit update just like we did on registration.
149 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
150 *
151 * 2b. The virtual bit update process will iterate all the pages covered by all the
152 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
153 * virtual handlers on that page.
154 *
155 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
156 * we don't miss any alias mappings of the monitored pages.
157 *
158 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
159 *
160 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
161 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
162 * will call the handlers like in the next step. If the physical mapping has
163 * changed we will - some time in the future - perform a handler callback
164 * (optional) and update the physical -> virtual handler cache.
165 *
166 * 4. \#PF(,write) on a page in the range. This will cause the handler to
167 * be invoked.
168 *
169 * 5. The guest invalidates the page and changes the physical backing or
170 * unmaps it. This should cause the invalidation callback to be invoked
171 * (it might not yet be 100% perfect). Exactly what happens next... is
172 * this where we mess up and end up out of sync for a while?
173 *
174 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
175 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
176 * this handler to NONE and trigger a full PGM resync (basically the same
177 * as int step 1). Which means 2 is executed again.
178 *
179 *
180 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
181 *
182 * There is a bunch of things that needs to be done to make the virtual handlers
183 * work 100% correctly and work more efficiently.
184 *
185 * The first bit hasn't been implemented yet because it's going to slow the
186 * whole mess down even more, and besides it seems to be working reliably for
187 * our current uses. OTOH, some of the optimizations might end up more or less
188 * implementing the missing bits, so we'll see.
189 *
190 * On the optimization side, the first thing to do is to try avoid unnecessary
191 * cache flushing. Then try team up with the shadowing code to track changes
192 * in mappings by means of access to them (shadow in), updates to shadows pages,
193 * invlpg, and shadow PT discarding (perhaps).
194 *
195 * Some idea that have popped up for optimization for current and new features:
196 * - bitmap indicating where there are virtual handlers installed.
197 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
198 * - Further optimize this by min/max (needs min/max avl getters).
199 * - Shadow page table entry bit (if any left)?
200 *
201 */
202
203
204/** @page pg_pgm_phys PGM Physical Guest Memory Management
205 *
206 *
207 * Objectives:
208 * - Guest RAM over-commitment using memory ballooning,
209 * zero pages and general page sharing.
210 * - Moving or mirroring a VM onto a different physical machine.
211 *
212 *
213 * @subsection subsec_pgmPhys_Definitions Definitions
214 *
215 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
216 * machinery assoicated with it.
217 *
218 *
219 *
220 *
221 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
222 *
223 * Initially we map *all* guest memory to the (per VM) zero page, which
224 * means that none of the read functions will cause pages to be allocated.
225 *
226 * Exception, access bit in page tables that have been shared. This must
227 * be handled, but we must also make sure PGMGst*Modify doesn't make
228 * unnecessary modifications.
229 *
230 * Allocation points:
231 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
232 * - Replacing a zero page mapping at \#PF.
233 * - Replacing a shared page mapping at \#PF.
234 * - ROM registration (currently MMR3RomRegister).
235 * - VM restore (pgmR3Load).
236 *
237 * For the first three it would make sense to keep a few pages handy
238 * until we've reached the max memory commitment for the VM.
239 *
240 * For the ROM registration, we know exactly how many pages we need
241 * and will request these from ring-0. For restore, we will save
242 * the number of non-zero pages in the saved state and allocate
243 * them up front. This would allow the ring-0 component to refuse
244 * the request if the isn't sufficient memory available for VM use.
245 *
246 * Btw. for both ROM and restore allocations we won't be requiring
247 * zeroed pages as they are going to be filled instantly.
248 *
249 *
250 * @subsection subsec_pgmPhys_FreePage Freeing a page
251 *
252 * There are a few points where a page can be freed:
253 * - After being replaced by the zero page.
254 * - After being replaced by a shared page.
255 * - After being ballooned by the guest additions.
256 * - At reset.
257 * - At restore.
258 *
259 * When freeing one or more pages they will be returned to the ring-0
260 * component and replaced by the zero page.
261 *
262 * The reasoning for clearing out all the pages on reset is that it will
263 * return us to the exact same state as on power on, and may thereby help
264 * us reduce the memory load on the system. Further it might have a
265 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
266 *
267 * On restore, as mention under the allocation topic, pages should be
268 * freed / allocated depending on how many is actually required by the
269 * new VM state. The simplest approach is to do like on reset, and free
270 * all non-ROM pages and then allocate what we need.
271 *
272 * A measure to prevent some fragmentation, would be to let each allocation
273 * chunk have some affinity towards the VM having allocated the most pages
274 * from it. Also, try make sure to allocate from allocation chunks that
275 * are almost full. Admittedly, both these measures might work counter to
276 * our intentions and its probably not worth putting a lot of effort,
277 * cpu time or memory into this.
278 *
279 *
280 * @subsection subsec_pgmPhys_SharePage Sharing a page
281 *
282 * The basic idea is that there there will be a idle priority kernel
283 * thread walking the non-shared VM pages hashing them and looking for
284 * pages with the same checksum. If such pages are found, it will compare
285 * them byte-by-byte to see if they actually are identical. If found to be
286 * identical it will allocate a shared page, copy the content, check that
287 * the page didn't change while doing this, and finally request both the
288 * VMs to use the shared page instead. If the page is all zeros (special
289 * checksum and byte-by-byte check) it will request the VM that owns it
290 * to replace it with the zero page.
291 *
292 * To make this efficient, we will have to make sure not to try share a page
293 * that will change its contents soon. This part requires the most work.
294 * A simple idea would be to request the VM to write monitor the page for
295 * a while to make sure it isn't modified any time soon. Also, it may
296 * make sense to skip pages that are being write monitored since this
297 * information is readily available to the thread if it works on the
298 * per-VM guest memory structures (presently called PGMRAMRANGE).
299 *
300 *
301 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
302 *
303 * The pages are organized in allocation chunks in ring-0, this is a necessity
304 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
305 * could easily work on a page-by-page basis if we liked. Whether this is possible
306 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
307 * become a problem as part of the idea here is that we wish to return memory to
308 * the host system.
309 *
310 * For instance, starting two VMs at the same time, they will both allocate the
311 * guest memory on-demand and if permitted their page allocations will be
312 * intermixed. Shut down one of the two VMs and it will be difficult to return
313 * any memory to the host system because the page allocation for the two VMs are
314 * mixed up in the same allocation chunks.
315 *
316 * To further complicate matters, when pages are freed because they have been
317 * ballooned or become shared/zero the whole idea is that the page is supposed
318 * to be reused by another VM or returned to the host system. This will cause
319 * allocation chunks to contain pages belonging to different VMs and prevent
320 * returning memory to the host when one of those VM shuts down.
321 *
322 * The only way to really deal with this problem is to move pages. This can
323 * either be done at VM shutdown and or by the idle priority worker thread
324 * that will be responsible for finding sharable/zero pages. The mechanisms
325 * involved for coercing a VM to move a page (or to do it for it) will be
326 * the same as when telling it to share/zero a page.
327 *
328 *
329 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
330 *
331 * There's a difficult balance between keeping the per-page tracking structures
332 * (global and guest page) easy to use and keeping them from eating too much
333 * memory. We have limited virtual memory resources available when operating in
334 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
335 * tracking structures will be attemted designed such that we can deal with up
336 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
337 *
338 *
339 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
340 *
341 * @see pg_GMM
342 *
343 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
344 *
345 * Fixed info is the physical address of the page (HCPhys) and the page id
346 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
347 * Today we've restricting ourselves to 40(-12) bits because this is the current
348 * restrictions of all AMD64 implementations (I think Barcelona will up this
349 * to 48(-12) bits, not that it really matters) and I needed the bits for
350 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
351 * decent range for the page id: 2^(28+12) = 1024TB.
352 *
353 * In additions to these, we'll have to keep maintaining the page flags as we
354 * currently do. Although it wouldn't harm to optimize these quite a bit, like
355 * for instance the ROM shouldn't depend on having a write handler installed
356 * in order for it to become read-only. A RO/RW bit should be considered so
357 * that the page syncing code doesn't have to mess about checking multiple
358 * flag combinations (ROM || RW handler || write monitored) in order to
359 * figure out how to setup a shadow PTE. But this of course, is second
360 * priority at present. Current this requires 12 bits, but could probably
361 * be optimized to ~8.
362 *
363 * Then there's the 24 bits used to track which shadow page tables are
364 * currently mapping a page for the purpose of speeding up physical
365 * access handlers, and thereby the page pool cache. More bit for this
366 * purpose wouldn't hurt IIRC.
367 *
368 * Then there is a new bit in which we need to record what kind of page
369 * this is, shared, zero, normal or write-monitored-normal. This'll
370 * require 2 bits. One bit might be needed for indicating whether a
371 * write monitored page has been written to. And yet another one or
372 * two for tracking migration status. 3-4 bits total then.
373 *
374 * Whatever is left will can be used to record the sharabilitiy of a
375 * page. The page checksum will not be stored in the per-VM table as
376 * the idle thread will not be permitted to do modifications to it.
377 * It will instead have to keep its own working set of potentially
378 * shareable pages and their check sums and stuff.
379 *
380 * For the present we'll keep the current packing of the
381 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
382 * we'll have to change it to a struct with a total of 128-bits at
383 * our disposal.
384 *
385 * The initial layout will be like this:
386 * @verbatim
387 RTHCPHYS HCPhys; The current stuff.
388 63:40 Current shadow PT tracking stuff.
389 39:12 The physical page frame number.
390 11:0 The current flags.
391 uint32_t u28PageId : 28; The page id.
392 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
393 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
394 uint32_t u1Reserved : 1; Reserved for later.
395 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
396 @endverbatim
397 *
398 * The final layout will be something like this:
399 * @verbatim
400 RTHCPHYS HCPhys; The current stuff.
401 63:48 High page id (12+).
402 47:12 The physical page frame number.
403 11:0 Low page id.
404 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
405 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
406 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
407 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
408 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
409 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
410 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
411 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
412 @endverbatim
413 *
414 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
415 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
416 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
417 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
418 *
419 * A couple of cost examples for the total cost per-VM + kernel.
420 * 32-bit Windows and 32-bit linux:
421 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
422 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
423 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
424 * 64-bit Windows and 64-bit linux:
425 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
426 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
427 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
428 *
429 * UPDATE - 2007-09-27:
430 * Will need a ballooned flag/state too because we cannot
431 * trust the guest 100% and reporting the same page as ballooned more
432 * than once will put the GMM off balance.
433 *
434 *
435 * @subsection subsec_pgmPhys_Serializing Serializing Access
436 *
437 * Initially, we'll try a simple scheme:
438 *
439 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
440 * by the EMT thread of that VM while in the pgm critsect.
441 * - Other threads in the VM process that needs to make reliable use of
442 * the per-VM RAM tracking structures will enter the critsect.
443 * - No process external thread or kernel thread will ever try enter
444 * the pgm critical section, as that just won't work.
445 * - The idle thread (and similar threads) doesn't not need 100% reliable
446 * data when performing it tasks as the EMT thread will be the one to
447 * do the actual changes later anyway. So, as long as it only accesses
448 * the main ram range, it can do so by somehow preventing the VM from
449 * being destroyed while it works on it...
450 *
451 * - The over-commitment management, including the allocating/freeing
452 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
453 * more mundane mutex implementation is broken on Linux).
454 * - A separeate mutex is protecting the set of allocation chunks so
455 * that pages can be shared or/and freed up while some other VM is
456 * allocating more chunks. This mutex can be take from under the other
457 * one, but not the otherway around.
458 *
459 *
460 * @subsection subsec_pgmPhys_Request VM Request interface
461 *
462 * When in ring-0 it will become necessary to send requests to a VM so it can
463 * for instance move a page while defragmenting during VM destroy. The idle
464 * thread will make use of this interface to request VMs to setup shared
465 * pages and to perform write monitoring of pages.
466 *
467 * I would propose an interface similar to the current VMReq interface, similar
468 * in that it doesn't require locking and that the one sending the request may
469 * wait for completion if it wishes to. This shouldn't be very difficult to
470 * realize.
471 *
472 * The requests themselves are also pretty simple. They are basically:
473 * -# Check that some precondition is still true.
474 * -# Do the update.
475 * -# Update all shadow page tables involved with the page.
476 *
477 * The 3rd step is identical to what we're already doing when updating a
478 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
479 *
480 *
481 *
482 * @section sec_pgmPhys_MappingCaches Mapping Caches
483 *
484 * In order to be able to map in and out memory and to be able to support
485 * guest with more RAM than we've got virtual address space, we'll employing
486 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
487 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
488 * memory context for the HWACCM execution.
489 *
490 *
491 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
492 *
493 * We've considered implementing the ring-3 mapping cache page based but found
494 * that this was bother some when one had to take into account TLBs+SMP and
495 * portability (missing the necessary APIs on several platforms). There were
496 * also some performance concerns with this approach which hadn't quite been
497 * worked out.
498 *
499 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
500 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
501 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
502 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
503 * costly than a single page, although how much more costly is uncertain. We'll
504 * try address this by using a very big cache, preferably bigger than the actual
505 * VM RAM size if possible. The current VM RAM sizes should give some idea for
506 * 32-bit boxes, while on 64-bit we can probably get away with employing an
507 * unlimited cache.
508 *
509 * The cache have to parts, as already indicated, the ring-3 side and the
510 * ring-0 side.
511 *
512 * The ring-0 will be tied to the page allocator since it will operate on the
513 * memory objects it contains. It will therefore require the first ring-0 mutex
514 * discussed in @ref subsec_pgmPhys_Serializing. We
515 * some double house keeping wrt to who has mapped what I think, since both
516 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
517 *
518 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
519 * require anyone that desires to do changes to the mapping cache to do that
520 * from within this critsect. Alternatively, we could employ a separate critsect
521 * for serializing changes to the mapping cache as this would reduce potential
522 * contention with other threads accessing mappings unrelated to the changes
523 * that are in process. We can see about this later, contention will show
524 * up in the statistics anyway, so it'll be simple to tell.
525 *
526 * The organization of the ring-3 part will be very much like how the allocation
527 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
528 * having to walk the tree all the time, we'll have a couple of lookaside entries
529 * like in we do for I/O ports and MMIO in IOM.
530 *
531 * The simplified flow of a PGMPhysRead/Write function:
532 * -# Enter the PGM critsect.
533 * -# Lookup GCPhys in the ram ranges and get the Page ID.
534 * -# Calc the Allocation Chunk ID from the Page ID.
535 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
536 * If not found in cache:
537 * -# Call ring-0 and request it to be mapped and supply
538 * a chunk to be unmapped if the cache is maxed out already.
539 * -# Insert the new mapping into the AVL tree (id + R3 address).
540 * -# Update the relevant lookaside entry and return the mapping address.
541 * -# Do the read/write according to monitoring flags and everything.
542 * -# Leave the critsect.
543 *
544 *
545 * @section sec_pgmPhys_Fallback Fallback
546 *
547 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
548 * API and thus require a fallback.
549 *
550 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
551 * will return to the ring-3 caller (and later ring-0) and asking it to seed
552 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
553 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
554 * "SeededAllocPages" call to ring-0.
555 *
556 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
557 * all page sharing (zero page detection will continue). It will also force
558 * all allocations to come from the VM which seeded the page. Both these
559 * measures are taken to make sure that there will never be any need for
560 * mapping anything into ring-3 - everything will be mapped already.
561 *
562 * Whether we'll continue to use the current MM locked memory management
563 * for this I don't quite know (I'd prefer not to and just ditch that all
564 * togther), we'll see what's simplest to do.
565 *
566 *
567 *
568 * @section sec_pgmPhys_Changes Changes
569 *
570 * Breakdown of the changes involved?
571 */
572
573
574/** Saved state data unit version. */
575#define PGM_SAVED_STATE_VERSION 6
576
577/*******************************************************************************
578* Header Files *
579*******************************************************************************/
580#define LOG_GROUP LOG_GROUP_PGM
581#include <VBox/dbgf.h>
582#include <VBox/pgm.h>
583#include <VBox/cpum.h>
584#include <VBox/iom.h>
585#include <VBox/sup.h>
586#include <VBox/mm.h>
587#include <VBox/em.h>
588#include <VBox/stam.h>
589#include <VBox/rem.h>
590#include <VBox/dbgf.h>
591#include <VBox/rem.h>
592#include <VBox/selm.h>
593#include <VBox/ssm.h>
594#include "PGMInternal.h"
595#include <VBox/vm.h>
596#include <VBox/dbg.h>
597#include <VBox/hwaccm.h>
598
599#include <iprt/assert.h>
600#include <iprt/alloc.h>
601#include <iprt/asm.h>
602#include <iprt/thread.h>
603#include <iprt/string.h>
604#ifdef DEBUG_bird
605# include <iprt/env.h>
606#endif
607#include <VBox/param.h>
608#include <VBox/err.h>
609
610
611
612/*******************************************************************************
613* Internal Functions *
614*******************************************************************************/
615static int pgmR3InitPaging(PVM pVM);
616static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
617static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
620static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622#ifdef VBOX_STRICT
623static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
624#endif
625static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
626static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
627static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
628static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
629static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
630
631#ifdef VBOX_WITH_STATISTICS
632static void pgmR3InitStats(PVM pVM);
633#endif
634
635#ifdef VBOX_WITH_DEBUGGER
636/** @todo all but the two last commands must be converted to 'info'. */
637static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641# ifdef VBOX_STRICT
642static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643# endif
644#endif
645
646
647/*******************************************************************************
648* Global Variables *
649*******************************************************************************/
650#ifdef VBOX_WITH_DEBUGGER
651/** Command descriptors. */
652static const DBGCCMD g_aCmds[] =
653{
654 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
655 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
656 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
657 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
658#ifdef VBOX_STRICT
659 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
660#endif
661 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
662};
663#endif
664
665
666
667
668/*
669 * Shadow - 32-bit mode
670 */
671#define PGM_SHW_TYPE PGM_TYPE_32BIT
672#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
673#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
674#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
675#include "PGMShw.h"
676
677/* Guest - real mode */
678#define PGM_GST_TYPE PGM_TYPE_REAL
679#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
680#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
681#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
682#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
683#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
684#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
685#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
686#include "PGMGst.h"
687#include "PGMBth.h"
688#undef BTH_PGMPOOLKIND_PT_FOR_PT
689#undef PGM_BTH_NAME
690#undef PGM_BTH_NAME_RC_STR
691#undef PGM_BTH_NAME_R0_STR
692#undef PGM_GST_TYPE
693#undef PGM_GST_NAME
694#undef PGM_GST_NAME_RC_STR
695#undef PGM_GST_NAME_R0_STR
696
697/* Guest - protected mode */
698#define PGM_GST_TYPE PGM_TYPE_PROT
699#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
700#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
701#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
702#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
703#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
704#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
705#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
706#include "PGMGst.h"
707#include "PGMBth.h"
708#undef BTH_PGMPOOLKIND_PT_FOR_PT
709#undef PGM_BTH_NAME
710#undef PGM_BTH_NAME_RC_STR
711#undef PGM_BTH_NAME_R0_STR
712#undef PGM_GST_TYPE
713#undef PGM_GST_NAME
714#undef PGM_GST_NAME_RC_STR
715#undef PGM_GST_NAME_R0_STR
716
717/* Guest - 32-bit mode */
718#define PGM_GST_TYPE PGM_TYPE_32BIT
719#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
720#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
721#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
722#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
723#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
724#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
725#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
726#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
727#include "PGMGst.h"
728#include "PGMBth.h"
729#undef BTH_PGMPOOLKIND_PT_FOR_BIG
730#undef BTH_PGMPOOLKIND_PT_FOR_PT
731#undef PGM_BTH_NAME
732#undef PGM_BTH_NAME_RC_STR
733#undef PGM_BTH_NAME_R0_STR
734#undef PGM_GST_TYPE
735#undef PGM_GST_NAME
736#undef PGM_GST_NAME_RC_STR
737#undef PGM_GST_NAME_R0_STR
738
739#undef PGM_SHW_TYPE
740#undef PGM_SHW_NAME
741#undef PGM_SHW_NAME_RC_STR
742#undef PGM_SHW_NAME_R0_STR
743
744
745/*
746 * Shadow - PAE mode
747 */
748#define PGM_SHW_TYPE PGM_TYPE_PAE
749#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
750#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
751#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
752#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
753#include "PGMShw.h"
754
755/* Guest - real mode */
756#define PGM_GST_TYPE PGM_TYPE_REAL
757#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
758#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
759#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
760#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
761#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
762#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
763#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
764#include "PGMBth.h"
765#undef BTH_PGMPOOLKIND_PT_FOR_PT
766#undef PGM_BTH_NAME
767#undef PGM_BTH_NAME_RC_STR
768#undef PGM_BTH_NAME_R0_STR
769#undef PGM_GST_TYPE
770#undef PGM_GST_NAME
771#undef PGM_GST_NAME_RC_STR
772#undef PGM_GST_NAME_R0_STR
773
774/* Guest - protected mode */
775#define PGM_GST_TYPE PGM_TYPE_PROT
776#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
777#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
778#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
779#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
780#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
781#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
782#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
783#include "PGMBth.h"
784#undef BTH_PGMPOOLKIND_PT_FOR_PT
785#undef PGM_BTH_NAME
786#undef PGM_BTH_NAME_RC_STR
787#undef PGM_BTH_NAME_R0_STR
788#undef PGM_GST_TYPE
789#undef PGM_GST_NAME
790#undef PGM_GST_NAME_RC_STR
791#undef PGM_GST_NAME_R0_STR
792
793/* Guest - 32-bit mode */
794#define PGM_GST_TYPE PGM_TYPE_32BIT
795#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
796#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
797#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
798#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
799#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
800#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
801#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
802#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
803#include "PGMBth.h"
804#undef BTH_PGMPOOLKIND_PT_FOR_BIG
805#undef BTH_PGMPOOLKIND_PT_FOR_PT
806#undef PGM_BTH_NAME
807#undef PGM_BTH_NAME_RC_STR
808#undef PGM_BTH_NAME_R0_STR
809#undef PGM_GST_TYPE
810#undef PGM_GST_NAME
811#undef PGM_GST_NAME_RC_STR
812#undef PGM_GST_NAME_R0_STR
813
814/* Guest - PAE mode */
815#define PGM_GST_TYPE PGM_TYPE_PAE
816#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
817#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
818#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
819#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
820#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
821#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
822#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
823#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
824#include "PGMGst.h"
825#include "PGMBth.h"
826#undef BTH_PGMPOOLKIND_PT_FOR_BIG
827#undef BTH_PGMPOOLKIND_PT_FOR_PT
828#undef PGM_BTH_NAME
829#undef PGM_BTH_NAME_RC_STR
830#undef PGM_BTH_NAME_R0_STR
831#undef PGM_GST_TYPE
832#undef PGM_GST_NAME
833#undef PGM_GST_NAME_RC_STR
834#undef PGM_GST_NAME_R0_STR
835
836#undef PGM_SHW_TYPE
837#undef PGM_SHW_NAME
838#undef PGM_SHW_NAME_RC_STR
839#undef PGM_SHW_NAME_R0_STR
840
841
842/*
843 * Shadow - AMD64 mode
844 */
845#define PGM_SHW_TYPE PGM_TYPE_AMD64
846#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
847#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
848#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
849#include "PGMShw.h"
850
851#ifdef VBOX_WITH_64_BITS_GUESTS
852/* Guest - AMD64 mode */
853# define PGM_GST_TYPE PGM_TYPE_AMD64
854# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
855# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
856# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
857# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
858# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
859# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
860# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
861# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
862# include "PGMGst.h"
863# include "PGMBth.h"
864# undef BTH_PGMPOOLKIND_PT_FOR_BIG
865# undef BTH_PGMPOOLKIND_PT_FOR_PT
866# undef PGM_BTH_NAME
867# undef PGM_BTH_NAME_RC_STR
868# undef PGM_BTH_NAME_R0_STR
869# undef PGM_GST_TYPE
870# undef PGM_GST_NAME
871# undef PGM_GST_NAME_RC_STR
872# undef PGM_GST_NAME_R0_STR
873#endif /* VBOX_WITH_64_BITS_GUESTS */
874
875#undef PGM_SHW_TYPE
876#undef PGM_SHW_NAME
877#undef PGM_SHW_NAME_RC_STR
878#undef PGM_SHW_NAME_R0_STR
879
880
881/*
882 * Shadow - Nested paging mode
883 */
884#define PGM_SHW_TYPE PGM_TYPE_NESTED
885#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
886#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
887#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
888#include "PGMShw.h"
889
890/* Guest - real mode */
891#define PGM_GST_TYPE PGM_TYPE_REAL
892#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
893#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
894#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
895#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
896#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
897#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
898#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
899#include "PGMBth.h"
900#undef BTH_PGMPOOLKIND_PT_FOR_PT
901#undef PGM_BTH_NAME
902#undef PGM_BTH_NAME_RC_STR
903#undef PGM_BTH_NAME_R0_STR
904#undef PGM_GST_TYPE
905#undef PGM_GST_NAME
906#undef PGM_GST_NAME_RC_STR
907#undef PGM_GST_NAME_R0_STR
908
909/* Guest - protected mode */
910#define PGM_GST_TYPE PGM_TYPE_PROT
911#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
912#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
913#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
914#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
915#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
916#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
917#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
918#include "PGMBth.h"
919#undef BTH_PGMPOOLKIND_PT_FOR_PT
920#undef PGM_BTH_NAME
921#undef PGM_BTH_NAME_RC_STR
922#undef PGM_BTH_NAME_R0_STR
923#undef PGM_GST_TYPE
924#undef PGM_GST_NAME
925#undef PGM_GST_NAME_RC_STR
926#undef PGM_GST_NAME_R0_STR
927
928/* Guest - 32-bit mode */
929#define PGM_GST_TYPE PGM_TYPE_32BIT
930#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
931#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
932#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
933#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
934#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
935#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
936#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
937#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
938#include "PGMBth.h"
939#undef BTH_PGMPOOLKIND_PT_FOR_BIG
940#undef BTH_PGMPOOLKIND_PT_FOR_PT
941#undef PGM_BTH_NAME
942#undef PGM_BTH_NAME_RC_STR
943#undef PGM_BTH_NAME_R0_STR
944#undef PGM_GST_TYPE
945#undef PGM_GST_NAME
946#undef PGM_GST_NAME_RC_STR
947#undef PGM_GST_NAME_R0_STR
948
949/* Guest - PAE mode */
950#define PGM_GST_TYPE PGM_TYPE_PAE
951#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
952#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
953#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
954#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
955#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
956#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
957#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
958#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
959#include "PGMBth.h"
960#undef BTH_PGMPOOLKIND_PT_FOR_BIG
961#undef BTH_PGMPOOLKIND_PT_FOR_PT
962#undef PGM_BTH_NAME
963#undef PGM_BTH_NAME_RC_STR
964#undef PGM_BTH_NAME_R0_STR
965#undef PGM_GST_TYPE
966#undef PGM_GST_NAME
967#undef PGM_GST_NAME_RC_STR
968#undef PGM_GST_NAME_R0_STR
969
970#ifdef VBOX_WITH_64_BITS_GUESTS
971/* Guest - AMD64 mode */
972# define PGM_GST_TYPE PGM_TYPE_AMD64
973# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
974# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
975# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
976# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
977# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
978# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
979# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
980# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
981# include "PGMBth.h"
982# undef BTH_PGMPOOLKIND_PT_FOR_BIG
983# undef BTH_PGMPOOLKIND_PT_FOR_PT
984# undef PGM_BTH_NAME
985# undef PGM_BTH_NAME_RC_STR
986# undef PGM_BTH_NAME_R0_STR
987# undef PGM_GST_TYPE
988# undef PGM_GST_NAME
989# undef PGM_GST_NAME_RC_STR
990# undef PGM_GST_NAME_R0_STR
991#endif /* VBOX_WITH_64_BITS_GUESTS */
992
993#undef PGM_SHW_TYPE
994#undef PGM_SHW_NAME
995#undef PGM_SHW_NAME_RC_STR
996#undef PGM_SHW_NAME_R0_STR
997
998
999/*
1000 * Shadow - EPT
1001 */
1002#define PGM_SHW_TYPE PGM_TYPE_EPT
1003#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1004#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1005#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1006#include "PGMShw.h"
1007
1008/* Guest - real mode */
1009#define PGM_GST_TYPE PGM_TYPE_REAL
1010#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1011#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1012#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1013#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1014#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1015#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1016#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1017#include "PGMBth.h"
1018#undef BTH_PGMPOOLKIND_PT_FOR_PT
1019#undef PGM_BTH_NAME
1020#undef PGM_BTH_NAME_RC_STR
1021#undef PGM_BTH_NAME_R0_STR
1022#undef PGM_GST_TYPE
1023#undef PGM_GST_NAME
1024#undef PGM_GST_NAME_RC_STR
1025#undef PGM_GST_NAME_R0_STR
1026
1027/* Guest - protected mode */
1028#define PGM_GST_TYPE PGM_TYPE_PROT
1029#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1030#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1031#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1032#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1033#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1034#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1035#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1036#include "PGMBth.h"
1037#undef BTH_PGMPOOLKIND_PT_FOR_PT
1038#undef PGM_BTH_NAME
1039#undef PGM_BTH_NAME_RC_STR
1040#undef PGM_BTH_NAME_R0_STR
1041#undef PGM_GST_TYPE
1042#undef PGM_GST_NAME
1043#undef PGM_GST_NAME_RC_STR
1044#undef PGM_GST_NAME_R0_STR
1045
1046/* Guest - 32-bit mode */
1047#define PGM_GST_TYPE PGM_TYPE_32BIT
1048#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1049#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1050#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1051#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1052#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1053#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1054#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1055#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1056#include "PGMBth.h"
1057#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1058#undef BTH_PGMPOOLKIND_PT_FOR_PT
1059#undef PGM_BTH_NAME
1060#undef PGM_BTH_NAME_RC_STR
1061#undef PGM_BTH_NAME_R0_STR
1062#undef PGM_GST_TYPE
1063#undef PGM_GST_NAME
1064#undef PGM_GST_NAME_RC_STR
1065#undef PGM_GST_NAME_R0_STR
1066
1067/* Guest - PAE mode */
1068#define PGM_GST_TYPE PGM_TYPE_PAE
1069#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1070#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1071#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1072#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1073#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1074#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1075#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1076#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1077#include "PGMBth.h"
1078#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1079#undef BTH_PGMPOOLKIND_PT_FOR_PT
1080#undef PGM_BTH_NAME
1081#undef PGM_BTH_NAME_RC_STR
1082#undef PGM_BTH_NAME_R0_STR
1083#undef PGM_GST_TYPE
1084#undef PGM_GST_NAME
1085#undef PGM_GST_NAME_RC_STR
1086#undef PGM_GST_NAME_R0_STR
1087
1088#ifdef VBOX_WITH_64_BITS_GUESTS
1089/* Guest - AMD64 mode */
1090# define PGM_GST_TYPE PGM_TYPE_AMD64
1091# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1092# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1093# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1094# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1095# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1096# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1097# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1098# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1099# include "PGMBth.h"
1100# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1101# undef BTH_PGMPOOLKIND_PT_FOR_PT
1102# undef PGM_BTH_NAME
1103# undef PGM_BTH_NAME_RC_STR
1104# undef PGM_BTH_NAME_R0_STR
1105# undef PGM_GST_TYPE
1106# undef PGM_GST_NAME
1107# undef PGM_GST_NAME_RC_STR
1108# undef PGM_GST_NAME_R0_STR
1109#endif /* VBOX_WITH_64_BITS_GUESTS */
1110
1111#undef PGM_SHW_TYPE
1112#undef PGM_SHW_NAME
1113#undef PGM_SHW_NAME_RC_STR
1114#undef PGM_SHW_NAME_R0_STR
1115
1116
1117
1118/**
1119 * Initiates the paging of VM.
1120 *
1121 * @returns VBox status code.
1122 * @param pVM Pointer to VM structure.
1123 */
1124VMMR3DECL(int) PGMR3Init(PVM pVM)
1125{
1126 LogFlow(("PGMR3Init:\n"));
1127
1128 /*
1129 * Assert alignment and sizes.
1130 */
1131 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1132
1133 /*
1134 * Init the structure.
1135 */
1136 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1137 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1138 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1139 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1140 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1141 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1142 pVM->pgm.s.fA20Enabled = true;
1143 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1144 pVM->pgm.s.pGstPaePDPTR3 = NULL;
1145#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1146 pVM->pgm.s.pGstPaePDPTR0 = NIL_RTR0PTR;
1147#endif
1148 pVM->pgm.s.pGstPaePDPTRC = NIL_RTRCPTR;
1149 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1150 {
1151 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1152#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1153 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1154#endif
1155 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1156 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1157 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1158 }
1159
1160#ifdef VBOX_STRICT
1161 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1162#endif
1163
1164 /*
1165 * Get the configured RAM size - to estimate saved state size.
1166 */
1167 uint64_t cbRam;
1168 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1169 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1170 cbRam = pVM->pgm.s.cbRamSize = 0;
1171 else if (RT_SUCCESS(rc))
1172 {
1173 if (cbRam < PAGE_SIZE)
1174 cbRam = 0;
1175 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1176 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1177 }
1178 else
1179 {
1180 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1181 return rc;
1182 }
1183
1184 /*
1185 * Register saved state data unit.
1186 */
1187 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1188 NULL, pgmR3Save, NULL,
1189 NULL, pgmR3Load, NULL);
1190 if (RT_FAILURE(rc))
1191 return rc;
1192
1193 /*
1194 * Initialize the PGM critical section and flush the phys TLBs
1195 */
1196 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1197 AssertRCReturn(rc, rc);
1198
1199 PGMR3PhysChunkInvalidateTLB(pVM);
1200 PGMPhysInvalidatePageR3MapTLB(pVM);
1201 PGMPhysInvalidatePageR0MapTLB(pVM);
1202 PGMPhysInvalidatePageGCMapTLB(pVM);
1203
1204 /*
1205 * Trees
1206 */
1207 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1208 if (RT_SUCCESS(rc))
1209 {
1210 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1211 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1212
1213 /*
1214 * Alocate the zero page.
1215 */
1216 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1217 }
1218 if (RT_SUCCESS(rc))
1219 {
1220 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1221 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1222 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1223 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1224 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1225
1226 /*
1227 * Init the paging.
1228 */
1229 rc = pgmR3InitPaging(pVM);
1230 }
1231 if (RT_SUCCESS(rc))
1232 {
1233 /*
1234 * Init the page pool.
1235 */
1236 rc = pgmR3PoolInit(pVM);
1237 }
1238 if (RT_SUCCESS(rc))
1239 {
1240 /*
1241 * Info & statistics
1242 */
1243 DBGFR3InfoRegisterInternal(pVM, "mode",
1244 "Shows the current paging mode. "
1245 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1246 pgmR3InfoMode);
1247 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1248 "Dumps all the entries in the top level paging table. No arguments.",
1249 pgmR3InfoCr3);
1250 DBGFR3InfoRegisterInternal(pVM, "phys",
1251 "Dumps all the physical address ranges. No arguments.",
1252 pgmR3PhysInfo);
1253 DBGFR3InfoRegisterInternal(pVM, "handlers",
1254 "Dumps physical, virtual and hyper virtual handlers. "
1255 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1256 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1257 pgmR3InfoHandlers);
1258 DBGFR3InfoRegisterInternal(pVM, "mappings",
1259 "Dumps guest mappings.",
1260 pgmR3MapInfo);
1261
1262 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1263#ifdef VBOX_WITH_STATISTICS
1264 pgmR3InitStats(pVM);
1265#endif
1266#ifdef VBOX_WITH_DEBUGGER
1267 /*
1268 * Debugger commands.
1269 */
1270 static bool fRegisteredCmds = false;
1271 if (!fRegisteredCmds)
1272 {
1273 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1274 if (RT_SUCCESS(rc))
1275 fRegisteredCmds = true;
1276 }
1277#endif
1278 return VINF_SUCCESS;
1279 }
1280
1281 /* Almost no cleanup necessary, MM frees all memory. */
1282 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1283
1284 return rc;
1285}
1286
1287
1288/**
1289 * Initializes the per-VCPU PGM.
1290 *
1291 * @returns VBox status code.
1292 * @param pVM The VM to operate on.
1293 */
1294VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1295{
1296 LogFlow(("PGMR3InitCPU\n"));
1297 return VINF_SUCCESS;
1298}
1299
1300
1301/**
1302 * Init paging.
1303 *
1304 * Since we need to check what mode the host is operating in before we can choose
1305 * the right paging functions for the host we have to delay this until R0 has
1306 * been initialized.
1307 *
1308 * @returns VBox status code.
1309 * @param pVM VM handle.
1310 */
1311static int pgmR3InitPaging(PVM pVM)
1312{
1313 /*
1314 * Force a recalculation of modes and switcher so everyone gets notified.
1315 */
1316 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1317 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1318 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1319
1320 /*
1321 * Allocate static mapping space for whatever the cr3 register
1322 * points to and in the case of PAE mode to the 4 PDs.
1323 */
1324 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1325 if (RT_FAILURE(rc))
1326 {
1327 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1328 return rc;
1329 }
1330 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1331
1332 /*
1333 * Allocate pages for the three possible intermediate contexts
1334 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1335 * for the sake of simplicity. The AMD64 uses the PAE for the
1336 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1337 *
1338 * We assume that two page tables will be enought for the core code
1339 * mappings (HC virtual and identity).
1340 */
1341 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1342 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1343 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1344 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1345 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1346 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1347 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1348 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1349 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1350 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1351 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1352 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1353 if ( !pVM->pgm.s.pInterPD
1354 || !pVM->pgm.s.apInterPTs[0]
1355 || !pVM->pgm.s.apInterPTs[1]
1356 || !pVM->pgm.s.apInterPaePTs[0]
1357 || !pVM->pgm.s.apInterPaePTs[1]
1358 || !pVM->pgm.s.apInterPaePDs[0]
1359 || !pVM->pgm.s.apInterPaePDs[1]
1360 || !pVM->pgm.s.apInterPaePDs[2]
1361 || !pVM->pgm.s.apInterPaePDs[3]
1362 || !pVM->pgm.s.pInterPaePDPT
1363 || !pVM->pgm.s.pInterPaePDPT64
1364 || !pVM->pgm.s.pInterPaePML4)
1365 {
1366 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1367 return VERR_NO_PAGE_MEMORY;
1368 }
1369
1370 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1371 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1372 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1373 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1374 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1375 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1376
1377 /*
1378 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1379 */
1380 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1381 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1382 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1383
1384 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1385 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1386
1387 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1388 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1389 {
1390 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1391 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1392 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1393 }
1394
1395 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1396 {
1397 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1398 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1399 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1400 }
1401
1402 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1403 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1404 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1405 | HCPhysInterPaePDPT64;
1406
1407 /*
1408 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1409 * We allocate pages for all three posibilities in order to simplify mappings and
1410 * avoid resource failure during mode switches. So, we need to cover all levels of the
1411 * of the first 4GB down to PD level.
1412 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1413 */
1414 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1415 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1416 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1417 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1418 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1419 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1420 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1421 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1422 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1423#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1424 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1425#endif
1426 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1427#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1428 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1429#endif
1430
1431 if ( !pVM->pgm.s.pHC32BitPD
1432 || !pVM->pgm.s.apHCPaePDs[0]
1433 || !pVM->pgm.s.apHCPaePDs[1]
1434 || !pVM->pgm.s.apHCPaePDs[2]
1435 || !pVM->pgm.s.apHCPaePDs[3]
1436 || !pVM->pgm.s.pShwPaePdptR3
1437 || !pVM->pgm.s.pShwNestedRootR3)
1438 {
1439 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1440 return VERR_NO_PAGE_MEMORY;
1441 }
1442
1443 /* get physical addresses. */
1444 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1445 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1446 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1447 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1448 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1449 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1450 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1451 pVM->pgm.s.HCPhysNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1452
1453 /*
1454 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1455 */
1456 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1457 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1458 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1459 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1460 {
1461 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1462 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1463 /* The flags will be corrected when entering and leaving long mode. */
1464 }
1465
1466 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1467
1468 /*
1469 * Initialize paging workers and mode from current host mode
1470 * and the guest running in real mode.
1471 */
1472 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1473 switch (pVM->pgm.s.enmHostMode)
1474 {
1475 case SUPPAGINGMODE_32_BIT:
1476 case SUPPAGINGMODE_32_BIT_GLOBAL:
1477 case SUPPAGINGMODE_PAE:
1478 case SUPPAGINGMODE_PAE_GLOBAL:
1479 case SUPPAGINGMODE_PAE_NX:
1480 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1481 break;
1482
1483 case SUPPAGINGMODE_AMD64:
1484 case SUPPAGINGMODE_AMD64_GLOBAL:
1485 case SUPPAGINGMODE_AMD64_NX:
1486 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1487#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1488 if (ARCH_BITS != 64)
1489 {
1490 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1491 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1492 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1493 }
1494#endif
1495 break;
1496 default:
1497 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1498 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1499 }
1500 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1501 if (RT_SUCCESS(rc))
1502 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1503 if (RT_SUCCESS(rc))
1504 {
1505 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1506#if HC_ARCH_BITS == 64
1507 LogRel(("Debug: HCPhys32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysPaePDPT=%RHp HCPhysPaePML4=%RHp\n",
1508 pVM->pgm.s.HCPhys32BitPD,
1509 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1510 pVM->pgm.s.HCPhysPaePDPT,
1511 pVM->pgm.s.HCPhysPaePML4));
1512 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1513 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1514 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1515 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1516 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1517 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1518 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1519#endif
1520
1521 return VINF_SUCCESS;
1522 }
1523
1524 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1525 return rc;
1526}
1527
1528
1529#ifdef VBOX_WITH_STATISTICS
1530/**
1531 * Init statistics
1532 */
1533static void pgmR3InitStats(PVM pVM)
1534{
1535 PPGM pPGM = &pVM->pgm.s;
1536 unsigned i;
1537
1538 /*
1539 * Note! The layout of this function matches the member layout exactly!
1540 */
1541
1542 /* Common - misc variables */
1543 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1544 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1545 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1546 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1547 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1548 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1549
1550 /* Common - stats */
1551#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1552 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1553 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1554 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1555 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1556 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1557 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1558#endif
1559 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1560 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1561 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1562 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1563 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1564 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1565
1566 /* R3 only: */
1567 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1568 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1569 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1570 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1571 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1572 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1573
1574 /* GC only: */
1575 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1576 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1577 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1578 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1579
1580 /* RZ only: */
1581 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1582 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1583 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1584 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1585 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1586 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1587 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1588 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1589 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1590 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1591 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1592 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1593 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1594 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1595 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1596 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1597 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1598 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1599 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1600 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1601 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1602 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1603 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1604 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1605 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1606 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1607 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1608 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1609 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1610 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1611 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1612 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1613 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1614 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1615 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1616 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1617 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1618 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1619 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1620 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1621 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1622 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1624 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1625 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1626 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1627 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1628 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1629 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1630 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1631 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1632
1633 /* HC only: */
1634
1635 /* RZ & R3: */
1636 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1637 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1638 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1639 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1640 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1641 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1642 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1643 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1644 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1645 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1646 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1647 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1648 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1649 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1650 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1651 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1652 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1653 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1654 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1655 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1656 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1657 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1658 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1659 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1660 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1661 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1662 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1663 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1664 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1665 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1666 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1667 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1668 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1669 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1670 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1671 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1672 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1673 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1674 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1675 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1676 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1677 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1678 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1679 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1680 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1681 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1682 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1683/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1684 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1685 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1686 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1687 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1688 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1689 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1690
1691 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1692 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1693 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1694 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1695 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1696 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1697 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1698 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1699 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1700 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1701 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1702 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1703 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1704 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1705 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1706 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1707 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1708 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1709 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1710 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1711 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1712 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1713 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1714 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1715 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1716 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1717 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1718 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1719 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1720 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1721 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1722 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1723 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1724 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1725 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1726 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1727 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1728 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1729 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1730 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1731 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1732 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1733 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1734 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1735 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1736 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1737 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1738/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1739 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1740 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1741 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1742 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1743 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1744 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1745
1746}
1747#endif /* VBOX_WITH_STATISTICS */
1748
1749
1750/**
1751 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1752 *
1753 * The dynamic mapping area will also be allocated and initialized at this
1754 * time. We could allocate it during PGMR3Init of course, but the mapping
1755 * wouldn't be allocated at that time preventing us from setting up the
1756 * page table entries with the dummy page.
1757 *
1758 * @returns VBox status code.
1759 * @param pVM VM handle.
1760 */
1761VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1762{
1763 RTGCPTR GCPtr;
1764 /*
1765 * Reserve space for mapping the paging pages into guest context.
1766 */
1767 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1768 AssertRCReturn(rc, rc);
1769 pVM->pgm.s.pGC32BitPD = GCPtr;
1770 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1771
1772 /*
1773 * Reserve space for the dynamic mappings.
1774 */
1775 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1776 if (RT_SUCCESS(rc))
1777 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1778
1779 if ( RT_SUCCESS(rc)
1780 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1781 {
1782 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1783 if (RT_SUCCESS(rc))
1784 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1785 }
1786 if (RT_SUCCESS(rc))
1787 {
1788 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1789 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1790 }
1791 return rc;
1792}
1793
1794
1795/**
1796 * Ring-3 init finalizing.
1797 *
1798 * @returns VBox status code.
1799 * @param pVM The VM handle.
1800 */
1801VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1802{
1803 /*
1804 * Map the paging pages into the guest context.
1805 */
1806 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1807 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1808
1809 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1810 AssertRCReturn(rc, rc);
1811 pVM->pgm.s.pGC32BitPD = GCPtr;
1812 GCPtr += PAGE_SIZE;
1813 GCPtr += PAGE_SIZE; /* reserved page */
1814
1815 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1816 {
1817 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1818 AssertRCReturn(rc, rc);
1819 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1820 GCPtr += PAGE_SIZE;
1821 }
1822 /* A bit of paranoia is justified. */
1823 AssertRelease(pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == pVM->pgm.s.apGCPaePDs[1]);
1824 AssertRelease(pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == pVM->pgm.s.apGCPaePDs[2]);
1825 AssertRelease(pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == pVM->pgm.s.apGCPaePDs[3]);
1826 GCPtr += PAGE_SIZE; /* reserved page */
1827
1828 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1829 AssertRCReturn(rc, rc);
1830 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1831 GCPtr += PAGE_SIZE;
1832 GCPtr += PAGE_SIZE; /* reserved page */
1833
1834
1835 /*
1836 * Reserve space for the dynamic mappings.
1837 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1838 */
1839 /* get the pointer to the page table entries. */
1840 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1841 AssertRelease(pMapping);
1842 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1843 const unsigned iPT = off >> X86_PD_SHIFT;
1844 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1845 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1846 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1847
1848 /* init cache */
1849 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1850 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1851 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1852
1853 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1854 {
1855 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1856 AssertRCReturn(rc, rc);
1857 }
1858
1859 /*
1860 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1861 * Intel only goes up to 36 bits, so we stick to 36 as well.
1862 */
1863 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1864 uint32_t u32Dummy, u32Features;
1865 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1866
1867 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1868 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1869 else
1870 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1871
1872 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1873
1874 return rc;
1875}
1876
1877
1878/**
1879 * Applies relocations to data and code managed by this component.
1880 *
1881 * This function will be called at init and whenever the VMM need to relocate it
1882 * self inside the GC.
1883 *
1884 * @param pVM The VM.
1885 * @param offDelta Relocation delta relative to old location.
1886 */
1887VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1888{
1889 LogFlow(("PGMR3Relocate\n"));
1890
1891 /*
1892 * Paging stuff.
1893 */
1894 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1895 /** @todo move this into shadow and guest specific relocation functions. */
1896 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1897 pVM->pgm.s.pGC32BitPD += offDelta;
1898 pVM->pgm.s.pGuestPDRC += offDelta;
1899 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apGCPaePDs) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1900 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1901 {
1902 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1903 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1904 }
1905 pVM->pgm.s.pGstPaePDPTRC += offDelta;
1906 pVM->pgm.s.pShwPaePdptRC += offDelta;
1907
1908 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1909 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1910
1911 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1912 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1913 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1914
1915 /*
1916 * Trees.
1917 */
1918 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1919
1920 /*
1921 * Ram ranges.
1922 */
1923 if (pVM->pgm.s.pRamRangesR3)
1924 {
1925 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1926 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1927 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1928 }
1929
1930 /*
1931 * Update the two page directories with all page table mappings.
1932 * (One or more of them have changed, that's why we're here.)
1933 */
1934 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1935 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1936 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1937
1938 /* Relocate GC addresses of Page Tables. */
1939 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1940 {
1941 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1942 {
1943 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1944 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1945 }
1946 }
1947
1948 /*
1949 * Dynamic page mapping area.
1950 */
1951 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1952 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1953 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1954
1955 /*
1956 * The Zero page.
1957 */
1958 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1959 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1960
1961 /*
1962 * Physical and virtual handlers.
1963 */
1964 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1965 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1966 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1967
1968 /*
1969 * The page pool.
1970 */
1971 pgmR3PoolRelocate(pVM);
1972}
1973
1974
1975/**
1976 * Callback function for relocating a physical access handler.
1977 *
1978 * @returns 0 (continue enum)
1979 * @param pNode Pointer to a PGMPHYSHANDLER node.
1980 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1981 * not certain the delta will fit in a void pointer for all possible configs.
1982 */
1983static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1984{
1985 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1986 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1987 if (pHandler->pfnHandlerRC)
1988 pHandler->pfnHandlerRC += offDelta;
1989 if (pHandler->pvUserRC >= 0x10000)
1990 pHandler->pvUserRC += offDelta;
1991 return 0;
1992}
1993
1994
1995/**
1996 * Callback function for relocating a virtual access handler.
1997 *
1998 * @returns 0 (continue enum)
1999 * @param pNode Pointer to a PGMVIRTHANDLER node.
2000 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2001 * not certain the delta will fit in a void pointer for all possible configs.
2002 */
2003static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2004{
2005 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2006 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2007 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2008 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2009 Assert(pHandler->pfnHandlerRC);
2010 pHandler->pfnHandlerRC += offDelta;
2011 return 0;
2012}
2013
2014
2015/**
2016 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2017 *
2018 * @returns 0 (continue enum)
2019 * @param pNode Pointer to a PGMVIRTHANDLER node.
2020 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2021 * not certain the delta will fit in a void pointer for all possible configs.
2022 */
2023static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2024{
2025 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2026 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2027 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2028 Assert(pHandler->pfnHandlerRC);
2029 pHandler->pfnHandlerRC += offDelta;
2030 return 0;
2031}
2032
2033
2034/**
2035 * The VM is being reset.
2036 *
2037 * For the PGM component this means that any PD write monitors
2038 * needs to be removed.
2039 *
2040 * @param pVM VM handle.
2041 */
2042VMMR3DECL(void) PGMR3Reset(PVM pVM)
2043{
2044 LogFlow(("PGMR3Reset:\n"));
2045 VM_ASSERT_EMT(pVM);
2046
2047 pgmLock(pVM);
2048
2049 /*
2050 * Unfix any fixed mappings and disable CR3 monitoring.
2051 */
2052 pVM->pgm.s.fMappingsFixed = false;
2053 pVM->pgm.s.GCPtrMappingFixed = 0;
2054 pVM->pgm.s.cbMappingFixed = 0;
2055
2056 /* Exit the guest paging mode before the pgm pool gets reset.
2057 * Important to clean up the amd64 case.
2058 */
2059 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2060 AssertRC(rc);
2061#ifdef DEBUG
2062 DBGFR3InfoLog(pVM, "mappings", NULL);
2063 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2064#endif
2065
2066 /*
2067 * Reset the shadow page pool.
2068 */
2069 pgmR3PoolReset(pVM);
2070
2071 /*
2072 * Re-init other members.
2073 */
2074 pVM->pgm.s.fA20Enabled = true;
2075
2076 /*
2077 * Clear the FFs PGM owns.
2078 */
2079 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2080 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2081
2082 /*
2083 * Reset (zero) RAM pages.
2084 */
2085 rc = pgmR3PhysRamReset(pVM);
2086 if (RT_SUCCESS(rc))
2087 {
2088#ifdef VBOX_WITH_NEW_PHYS_CODE
2089 /*
2090 * Reset (zero) shadow ROM pages.
2091 */
2092 rc = pgmR3PhysRomReset(pVM);
2093#endif
2094 if (RT_SUCCESS(rc))
2095 {
2096 /*
2097 * Switch mode back to real mode.
2098 */
2099 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2100 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2101 }
2102 }
2103
2104 pgmUnlock(pVM);
2105 //return rc;
2106 AssertReleaseRC(rc);
2107}
2108
2109
2110#ifdef VBOX_STRICT
2111/**
2112 * VM state change callback for clearing fNoMorePhysWrites after
2113 * a snapshot has been created.
2114 */
2115static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2116{
2117 if (enmState == VMSTATE_RUNNING)
2118 pVM->pgm.s.fNoMorePhysWrites = false;
2119}
2120#endif
2121
2122
2123/**
2124 * Terminates the PGM.
2125 *
2126 * @returns VBox status code.
2127 * @param pVM Pointer to VM structure.
2128 */
2129VMMR3DECL(int) PGMR3Term(PVM pVM)
2130{
2131 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2132}
2133
2134
2135/**
2136 * Terminates the per-VCPU PGM.
2137 *
2138 * Termination means cleaning up and freeing all resources,
2139 * the VM it self is at this point powered off or suspended.
2140 *
2141 * @returns VBox status code.
2142 * @param pVM The VM to operate on.
2143 */
2144VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2145{
2146 return 0;
2147}
2148
2149
2150/**
2151 * Execute state save operation.
2152 *
2153 * @returns VBox status code.
2154 * @param pVM VM Handle.
2155 * @param pSSM SSM operation handle.
2156 */
2157static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2158{
2159 PPGM pPGM = &pVM->pgm.s;
2160
2161 /* No more writes to physical memory after this point! */
2162 pVM->pgm.s.fNoMorePhysWrites = true;
2163
2164 /*
2165 * Save basic data (required / unaffected by relocation).
2166 */
2167#if 1
2168 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2169#else
2170 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2171#endif
2172 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2173 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2174 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2175 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2176 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2177 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2178 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2179 SSMR3PutU32(pSSM, ~0); /* Separator. */
2180
2181 /*
2182 * The guest mappings.
2183 */
2184 uint32_t i = 0;
2185 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2186 {
2187 SSMR3PutU32(pSSM, i);
2188 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2189 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2190 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2191 /* flags are done by the mapping owners! */
2192 }
2193 SSMR3PutU32(pSSM, ~0); /* terminator. */
2194
2195 /*
2196 * Ram range flags and bits.
2197 */
2198 i = 0;
2199 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2200 {
2201 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2202
2203 SSMR3PutU32(pSSM, i);
2204 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2205 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2206 SSMR3PutGCPhys(pSSM, pRam->cb);
2207 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2208
2209 /* Flags. */
2210 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2211 for (unsigned iPage = 0; iPage < cPages; iPage++)
2212 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2213
2214 /* any memory associated with the range. */
2215 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2216 {
2217 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2218 {
2219 if (pRam->paChunkR3Ptrs[iChunk])
2220 {
2221 SSMR3PutU8(pSSM, 1); /* chunk present */
2222 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2223 }
2224 else
2225 SSMR3PutU8(pSSM, 0); /* no chunk present */
2226 }
2227 }
2228 else if (pRam->pvR3)
2229 {
2230 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2231 if (RT_FAILURE(rc))
2232 {
2233 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2234 return rc;
2235 }
2236 }
2237 }
2238 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2239}
2240
2241
2242/**
2243 * Execute state load operation.
2244 *
2245 * @returns VBox status code.
2246 * @param pVM VM Handle.
2247 * @param pSSM SSM operation handle.
2248 * @param u32Version Data layout version.
2249 */
2250static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2251{
2252 /*
2253 * Validate version.
2254 */
2255 if (u32Version != PGM_SAVED_STATE_VERSION)
2256 {
2257 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2258 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2259 }
2260
2261 /*
2262 * Call the reset function to make sure all the memory is cleared.
2263 */
2264 PGMR3Reset(pVM);
2265
2266 /*
2267 * Load basic data (required / unaffected by relocation).
2268 */
2269 PPGM pPGM = &pVM->pgm.s;
2270#if 1
2271 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2272#else
2273 uint32_t u;
2274 SSMR3GetU32(pSSM, &u);
2275 pPGM->fMappingsFixed = u;
2276#endif
2277 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2278 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2279
2280 RTUINT cbRamSize;
2281 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2282 if (RT_FAILURE(rc))
2283 return rc;
2284 if (cbRamSize != pPGM->cbRamSize)
2285 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2286 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2287 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2288 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2289 RTUINT uGuestMode;
2290 SSMR3GetUInt(pSSM, &uGuestMode);
2291 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2292
2293 /* check separator. */
2294 uint32_t u32Sep;
2295 SSMR3GetU32(pSSM, &u32Sep);
2296 if (RT_FAILURE(rc))
2297 return rc;
2298 if (u32Sep != (uint32_t)~0)
2299 {
2300 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2301 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2302 }
2303
2304 /*
2305 * The guest mappings.
2306 */
2307 uint32_t i = 0;
2308 for (;; i++)
2309 {
2310 /* Check the seqence number / separator. */
2311 rc = SSMR3GetU32(pSSM, &u32Sep);
2312 if (RT_FAILURE(rc))
2313 return rc;
2314 if (u32Sep == ~0U)
2315 break;
2316 if (u32Sep != i)
2317 {
2318 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2319 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2320 }
2321
2322 /* get the mapping details. */
2323 char szDesc[256];
2324 szDesc[0] = '\0';
2325 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2326 if (RT_FAILURE(rc))
2327 return rc;
2328 RTGCPTR GCPtr;
2329 SSMR3GetGCPtr(pSSM, &GCPtr);
2330 RTGCPTR cPTs;
2331 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2332 if (RT_FAILURE(rc))
2333 return rc;
2334
2335 /* find matching range. */
2336 PPGMMAPPING pMapping;
2337 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2338 if ( pMapping->cPTs == cPTs
2339 && !strcmp(pMapping->pszDesc, szDesc))
2340 break;
2341 if (!pMapping)
2342 {
2343 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2344 cPTs, szDesc, GCPtr));
2345 AssertFailed();
2346 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2347 }
2348
2349 /* relocate it. */
2350 if (pMapping->GCPtr != GCPtr)
2351 {
2352 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2353 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2354 }
2355 else
2356 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2357 }
2358
2359 /*
2360 * Ram range flags and bits.
2361 */
2362 i = 0;
2363 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2364 {
2365 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2366 /* Check the seqence number / separator. */
2367 rc = SSMR3GetU32(pSSM, &u32Sep);
2368 if (RT_FAILURE(rc))
2369 return rc;
2370 if (u32Sep == ~0U)
2371 break;
2372 if (u32Sep != i)
2373 {
2374 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2375 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2376 }
2377
2378 /* Get the range details. */
2379 RTGCPHYS GCPhys;
2380 SSMR3GetGCPhys(pSSM, &GCPhys);
2381 RTGCPHYS GCPhysLast;
2382 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2383 RTGCPHYS cb;
2384 SSMR3GetGCPhys(pSSM, &cb);
2385 uint8_t fHaveBits;
2386 rc = SSMR3GetU8(pSSM, &fHaveBits);
2387 if (RT_FAILURE(rc))
2388 return rc;
2389 if (fHaveBits & ~1)
2390 {
2391 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2392 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2393 }
2394
2395 /* Match it up with the current range. */
2396 if ( GCPhys != pRam->GCPhys
2397 || GCPhysLast != pRam->GCPhysLast
2398 || cb != pRam->cb
2399 || fHaveBits != !!pRam->pvR3)
2400 {
2401 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2402 "State : %RGp-%RGp %RGp bytes %s\n",
2403 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2404 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2405 /*
2406 * If we're loading a state for debugging purpose, don't make a fuss if
2407 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2408 */
2409 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2410 || GCPhys < 8 * _1M)
2411 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2412
2413 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2414 while (cPages-- > 0)
2415 {
2416 uint16_t u16Ignore;
2417 SSMR3GetU16(pSSM, &u16Ignore);
2418 }
2419 continue;
2420 }
2421
2422 /* Flags. */
2423 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2424 for (unsigned iPage = 0; iPage < cPages; iPage++)
2425 {
2426 uint16_t u16 = 0;
2427 SSMR3GetU16(pSSM, &u16);
2428 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2429 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2430 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2431 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2432 }
2433
2434 /* any memory associated with the range. */
2435 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2436 {
2437 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2438 {
2439 uint8_t fValidChunk;
2440
2441 rc = SSMR3GetU8(pSSM, &fValidChunk);
2442 if (RT_FAILURE(rc))
2443 return rc;
2444 if (fValidChunk > 1)
2445 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2446
2447 if (fValidChunk)
2448 {
2449 if (!pRam->paChunkR3Ptrs[iChunk])
2450 {
2451 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2452 if (RT_FAILURE(rc))
2453 return rc;
2454 }
2455 Assert(pRam->paChunkR3Ptrs[iChunk]);
2456
2457 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2458 }
2459 /* else nothing to do */
2460 }
2461 }
2462 else if (pRam->pvR3)
2463 {
2464 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2465 if (RT_FAILURE(rc))
2466 {
2467 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2468 return rc;
2469 }
2470 }
2471 }
2472
2473 /*
2474 * We require a full resync now.
2475 */
2476 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2477 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2478 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2479 pPGM->fPhysCacheFlushPending = true;
2480 pgmR3HandlerPhysicalUpdateAll(pVM);
2481
2482 /*
2483 * Change the paging mode.
2484 */
2485 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2486
2487 /* Restore pVM->pgm.s.GCPhysCR3. */
2488 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2489 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2490 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2491 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2492 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2493 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2494 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2495 else
2496 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2497 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2498
2499 return rc;
2500}
2501
2502
2503/**
2504 * Show paging mode.
2505 *
2506 * @param pVM VM Handle.
2507 * @param pHlp The info helpers.
2508 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2509 */
2510static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2511{
2512 /* digest argument. */
2513 bool fGuest, fShadow, fHost;
2514 if (pszArgs)
2515 pszArgs = RTStrStripL(pszArgs);
2516 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2517 fShadow = fHost = fGuest = true;
2518 else
2519 {
2520 fShadow = fHost = fGuest = false;
2521 if (strstr(pszArgs, "guest"))
2522 fGuest = true;
2523 if (strstr(pszArgs, "shadow"))
2524 fShadow = true;
2525 if (strstr(pszArgs, "host"))
2526 fHost = true;
2527 }
2528
2529 /* print info. */
2530 if (fGuest)
2531 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2532 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2533 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2534 if (fShadow)
2535 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2536 if (fHost)
2537 {
2538 const char *psz;
2539 switch (pVM->pgm.s.enmHostMode)
2540 {
2541 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2542 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2543 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2544 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2545 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2546 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2547 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2548 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2549 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2550 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2551 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2552 default: psz = "unknown"; break;
2553 }
2554 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2555 }
2556}
2557
2558
2559/**
2560 * Dump registered MMIO ranges to the log.
2561 *
2562 * @param pVM VM Handle.
2563 * @param pHlp The info helpers.
2564 * @param pszArgs Arguments, ignored.
2565 */
2566static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2567{
2568 NOREF(pszArgs);
2569 pHlp->pfnPrintf(pHlp,
2570 "RAM ranges (pVM=%p)\n"
2571 "%.*s %.*s\n",
2572 pVM,
2573 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2574 sizeof(RTHCPTR) * 2, "pvHC ");
2575
2576 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2577 pHlp->pfnPrintf(pHlp,
2578 "%RGp-%RGp %RHv %s\n",
2579 pCur->GCPhys,
2580 pCur->GCPhysLast,
2581 pCur->pvR3,
2582 pCur->pszDesc);
2583}
2584
2585/**
2586 * Dump the page directory to the log.
2587 *
2588 * @param pVM VM Handle.
2589 * @param pHlp The info helpers.
2590 * @param pszArgs Arguments, ignored.
2591 */
2592static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2593{
2594/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2595 /* Big pages supported? */
2596 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2597
2598 /* Global pages supported? */
2599 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2600
2601 NOREF(pszArgs);
2602
2603 /*
2604 * Get page directory addresses.
2605 */
2606 PX86PD pPDSrc = pVM->pgm.s.pGuestPDR3;
2607 Assert(pPDSrc);
2608 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2609
2610 /*
2611 * Iterate the page directory.
2612 */
2613 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2614 {
2615 X86PDE PdeSrc = pPDSrc->a[iPD];
2616 if (PdeSrc.n.u1Present)
2617 {
2618 if (PdeSrc.b.u1Size && fPSE)
2619 pHlp->pfnPrintf(pHlp,
2620 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2621 iPD,
2622 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2623 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2624 else
2625 pHlp->pfnPrintf(pHlp,
2626 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2627 iPD,
2628 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2629 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2630 }
2631 }
2632}
2633
2634
2635/**
2636 * Serivce a VMMCALLHOST_PGM_LOCK call.
2637 *
2638 * @returns VBox status code.
2639 * @param pVM The VM handle.
2640 */
2641VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2642{
2643 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2644 AssertRC(rc);
2645 return rc;
2646}
2647
2648
2649/**
2650 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2651 *
2652 * @returns PGM_TYPE_*.
2653 * @param pgmMode The mode value to convert.
2654 */
2655DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2656{
2657 switch (pgmMode)
2658 {
2659 case PGMMODE_REAL: return PGM_TYPE_REAL;
2660 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2661 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2662 case PGMMODE_PAE:
2663 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2664 case PGMMODE_AMD64:
2665 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2666 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2667 case PGMMODE_EPT: return PGM_TYPE_EPT;
2668 default:
2669 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2670 }
2671}
2672
2673
2674/**
2675 * Gets the index into the paging mode data array of a SHW+GST mode.
2676 *
2677 * @returns PGM::paPagingData index.
2678 * @param uShwType The shadow paging mode type.
2679 * @param uGstType The guest paging mode type.
2680 */
2681DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2682{
2683 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2684 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2685 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2686 + (uGstType - PGM_TYPE_REAL);
2687}
2688
2689
2690/**
2691 * Gets the index into the paging mode data array of a SHW+GST mode.
2692 *
2693 * @returns PGM::paPagingData index.
2694 * @param enmShw The shadow paging mode.
2695 * @param enmGst The guest paging mode.
2696 */
2697DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2698{
2699 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2700 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2701 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2702}
2703
2704
2705/**
2706 * Calculates the max data index.
2707 * @returns The number of entries in the paging data array.
2708 */
2709DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2710{
2711 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2712}
2713
2714
2715/**
2716 * Initializes the paging mode data kept in PGM::paModeData.
2717 *
2718 * @param pVM The VM handle.
2719 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2720 * This is used early in the init process to avoid trouble with PDM
2721 * not being initialized yet.
2722 */
2723static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2724{
2725 PPGMMODEDATA pModeData;
2726 int rc;
2727
2728 /*
2729 * Allocate the array on the first call.
2730 */
2731 if (!pVM->pgm.s.paModeData)
2732 {
2733 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2734 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2735 }
2736
2737 /*
2738 * Initialize the array entries.
2739 */
2740 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2741 pModeData->uShwType = PGM_TYPE_32BIT;
2742 pModeData->uGstType = PGM_TYPE_REAL;
2743 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2745 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746
2747 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2748 pModeData->uShwType = PGM_TYPE_32BIT;
2749 pModeData->uGstType = PGM_TYPE_PROT;
2750 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2752 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753
2754 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2755 pModeData->uShwType = PGM_TYPE_32BIT;
2756 pModeData->uGstType = PGM_TYPE_32BIT;
2757 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2759 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2760
2761 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2762 pModeData->uShwType = PGM_TYPE_PAE;
2763 pModeData->uGstType = PGM_TYPE_REAL;
2764 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2766 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2767
2768 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2769 pModeData->uShwType = PGM_TYPE_PAE;
2770 pModeData->uGstType = PGM_TYPE_PROT;
2771 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2773 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2774
2775 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2776 pModeData->uShwType = PGM_TYPE_PAE;
2777 pModeData->uGstType = PGM_TYPE_32BIT;
2778 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2780 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2781
2782 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2783 pModeData->uShwType = PGM_TYPE_PAE;
2784 pModeData->uGstType = PGM_TYPE_PAE;
2785 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2786 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2787 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788
2789#ifdef VBOX_WITH_64_BITS_GUESTS
2790 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2791 pModeData->uShwType = PGM_TYPE_AMD64;
2792 pModeData->uGstType = PGM_TYPE_AMD64;
2793 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2794 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2795 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796#endif
2797
2798 /* The nested paging mode. */
2799 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2800 pModeData->uShwType = PGM_TYPE_NESTED;
2801 pModeData->uGstType = PGM_TYPE_REAL;
2802 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804
2805 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2806 pModeData->uShwType = PGM_TYPE_NESTED;
2807 pModeData->uGstType = PGM_TYPE_PROT;
2808 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2809 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810
2811 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2812 pModeData->uShwType = PGM_TYPE_NESTED;
2813 pModeData->uGstType = PGM_TYPE_32BIT;
2814 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2816
2817 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2818 pModeData->uShwType = PGM_TYPE_NESTED;
2819 pModeData->uGstType = PGM_TYPE_PAE;
2820 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2822
2823#ifdef VBOX_WITH_64_BITS_GUESTS
2824 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2825 pModeData->uShwType = PGM_TYPE_NESTED;
2826 pModeData->uGstType = PGM_TYPE_AMD64;
2827 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2828 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2829#endif
2830
2831 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2832 switch(pVM->pgm.s.enmHostMode)
2833 {
2834 case SUPPAGINGMODE_32_BIT:
2835 case SUPPAGINGMODE_32_BIT_GLOBAL:
2836#ifdef VBOX_WITH_64_BITS_GUESTS
2837 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2838#else
2839 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2840#endif
2841 {
2842 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2843 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2844 }
2845 break;
2846
2847 case SUPPAGINGMODE_PAE:
2848 case SUPPAGINGMODE_PAE_NX:
2849 case SUPPAGINGMODE_PAE_GLOBAL:
2850 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2851#ifdef VBOX_WITH_64_BITS_GUESTS
2852 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2853#else
2854 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2855#endif
2856 {
2857 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2858 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2859 }
2860 break;
2861
2862 case SUPPAGINGMODE_AMD64:
2863 case SUPPAGINGMODE_AMD64_GLOBAL:
2864 case SUPPAGINGMODE_AMD64_NX:
2865 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2866#ifdef VBOX_WITH_64_BITS_GUESTS
2867 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2868#else
2869 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2870#endif
2871 {
2872 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2873 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2874 }
2875 break;
2876 default:
2877 AssertFailed();
2878 break;
2879 }
2880
2881 /* Extended paging (EPT) / Intel VT-x */
2882 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2883 pModeData->uShwType = PGM_TYPE_EPT;
2884 pModeData->uGstType = PGM_TYPE_REAL;
2885 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2886 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2887 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2888
2889 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2890 pModeData->uShwType = PGM_TYPE_EPT;
2891 pModeData->uGstType = PGM_TYPE_PROT;
2892 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2893 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895
2896 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2897 pModeData->uShwType = PGM_TYPE_EPT;
2898 pModeData->uGstType = PGM_TYPE_32BIT;
2899 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2900 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902
2903 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2904 pModeData->uShwType = PGM_TYPE_EPT;
2905 pModeData->uGstType = PGM_TYPE_PAE;
2906 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909
2910#ifdef VBOX_WITH_64_BITS_GUESTS
2911 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2912 pModeData->uShwType = PGM_TYPE_EPT;
2913 pModeData->uGstType = PGM_TYPE_AMD64;
2914 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2915 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917#endif
2918 return VINF_SUCCESS;
2919}
2920
2921
2922/**
2923 * Switch to different (or relocated in the relocate case) mode data.
2924 *
2925 * @param pVM The VM handle.
2926 * @param enmShw The the shadow paging mode.
2927 * @param enmGst The the guest paging mode.
2928 */
2929static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2930{
2931 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2932
2933 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2934 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2935
2936 /* shadow */
2937 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2938 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2939 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2940 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2941 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2942
2943 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2944 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2945
2946 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2947 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2948
2949
2950 /* guest */
2951 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2952 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2953 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2954 Assert(pVM->pgm.s.pfnR3GstGetPage);
2955 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2956 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2957 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2958 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2959 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2960 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2961 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2962 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2963 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2964 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2965
2966 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2967 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2968 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2969 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2970 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2971 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2972 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2973 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2974 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2975
2976 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2977 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2978 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2979 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2980 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2981 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2982 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2983 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2984 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2985
2986
2987 /* both */
2988 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2989 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2990 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2991 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2992 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2993 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2994 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2995#ifdef VBOX_STRICT
2996 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2997#endif
2998
2999 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3000 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3001 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3002 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3003 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3004 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3005#ifdef VBOX_STRICT
3006 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3007#endif
3008
3009 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3010 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3011 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3012 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3013 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3014 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3015#ifdef VBOX_STRICT
3016 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3017#endif
3018}
3019
3020
3021/**
3022 * Calculates the shadow paging mode.
3023 *
3024 * @returns The shadow paging mode.
3025 * @param pVM VM handle.
3026 * @param enmGuestMode The guest mode.
3027 * @param enmHostMode The host mode.
3028 * @param enmShadowMode The current shadow mode.
3029 * @param penmSwitcher Where to store the switcher to use.
3030 * VMMSWITCHER_INVALID means no change.
3031 */
3032static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3033{
3034 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3035 switch (enmGuestMode)
3036 {
3037 /*
3038 * When switching to real or protected mode we don't change
3039 * anything since it's likely that we'll switch back pretty soon.
3040 *
3041 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3042 * and is supposed to determine which shadow paging and switcher to
3043 * use during init.
3044 */
3045 case PGMMODE_REAL:
3046 case PGMMODE_PROTECTED:
3047 if ( enmShadowMode != PGMMODE_INVALID
3048 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3049 break; /* (no change) */
3050
3051 switch (enmHostMode)
3052 {
3053 case SUPPAGINGMODE_32_BIT:
3054 case SUPPAGINGMODE_32_BIT_GLOBAL:
3055 enmShadowMode = PGMMODE_32_BIT;
3056 enmSwitcher = VMMSWITCHER_32_TO_32;
3057 break;
3058
3059 case SUPPAGINGMODE_PAE:
3060 case SUPPAGINGMODE_PAE_NX:
3061 case SUPPAGINGMODE_PAE_GLOBAL:
3062 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3063 enmShadowMode = PGMMODE_PAE;
3064 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3065#ifdef DEBUG_bird
3066 if (RTEnvExist("VBOX_32BIT"))
3067 {
3068 enmShadowMode = PGMMODE_32_BIT;
3069 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3070 }
3071#endif
3072 break;
3073
3074 case SUPPAGINGMODE_AMD64:
3075 case SUPPAGINGMODE_AMD64_GLOBAL:
3076 case SUPPAGINGMODE_AMD64_NX:
3077 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3078 enmShadowMode = PGMMODE_PAE;
3079 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3080 break;
3081
3082 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3083 }
3084 break;
3085
3086 case PGMMODE_32_BIT:
3087 switch (enmHostMode)
3088 {
3089 case SUPPAGINGMODE_32_BIT:
3090 case SUPPAGINGMODE_32_BIT_GLOBAL:
3091 enmShadowMode = PGMMODE_32_BIT;
3092 enmSwitcher = VMMSWITCHER_32_TO_32;
3093 break;
3094
3095 case SUPPAGINGMODE_PAE:
3096 case SUPPAGINGMODE_PAE_NX:
3097 case SUPPAGINGMODE_PAE_GLOBAL:
3098 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3099 enmShadowMode = PGMMODE_PAE;
3100 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3101#ifdef DEBUG_bird
3102 if (RTEnvExist("VBOX_32BIT"))
3103 {
3104 enmShadowMode = PGMMODE_32_BIT;
3105 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3106 }
3107#endif
3108 break;
3109
3110 case SUPPAGINGMODE_AMD64:
3111 case SUPPAGINGMODE_AMD64_GLOBAL:
3112 case SUPPAGINGMODE_AMD64_NX:
3113 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3114 enmShadowMode = PGMMODE_PAE;
3115 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3116 break;
3117
3118 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3119 }
3120 break;
3121
3122 case PGMMODE_PAE:
3123 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3124 switch (enmHostMode)
3125 {
3126 case SUPPAGINGMODE_32_BIT:
3127 case SUPPAGINGMODE_32_BIT_GLOBAL:
3128 enmShadowMode = PGMMODE_PAE;
3129 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3130 break;
3131
3132 case SUPPAGINGMODE_PAE:
3133 case SUPPAGINGMODE_PAE_NX:
3134 case SUPPAGINGMODE_PAE_GLOBAL:
3135 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3136 enmShadowMode = PGMMODE_PAE;
3137 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3138 break;
3139
3140 case SUPPAGINGMODE_AMD64:
3141 case SUPPAGINGMODE_AMD64_GLOBAL:
3142 case SUPPAGINGMODE_AMD64_NX:
3143 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3144 enmShadowMode = PGMMODE_PAE;
3145 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3146 break;
3147
3148 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3149 }
3150 break;
3151
3152 case PGMMODE_AMD64:
3153 case PGMMODE_AMD64_NX:
3154 switch (enmHostMode)
3155 {
3156 case SUPPAGINGMODE_32_BIT:
3157 case SUPPAGINGMODE_32_BIT_GLOBAL:
3158 enmShadowMode = PGMMODE_PAE;
3159 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3160 break;
3161
3162 case SUPPAGINGMODE_PAE:
3163 case SUPPAGINGMODE_PAE_NX:
3164 case SUPPAGINGMODE_PAE_GLOBAL:
3165 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3166 enmShadowMode = PGMMODE_PAE;
3167 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3168 break;
3169
3170 case SUPPAGINGMODE_AMD64:
3171 case SUPPAGINGMODE_AMD64_GLOBAL:
3172 case SUPPAGINGMODE_AMD64_NX:
3173 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3174 enmShadowMode = PGMMODE_AMD64;
3175 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3176 break;
3177
3178 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3179 }
3180 break;
3181
3182
3183 default:
3184 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3185 return PGMMODE_INVALID;
3186 }
3187 /* Override the shadow mode is nested paging is active. */
3188 if (HWACCMIsNestedPagingActive(pVM))
3189 enmShadowMode = HWACCMGetPagingMode(pVM);
3190
3191 *penmSwitcher = enmSwitcher;
3192 return enmShadowMode;
3193}
3194
3195
3196/**
3197 * Performs the actual mode change.
3198 * This is called by PGMChangeMode and pgmR3InitPaging().
3199 *
3200 * @returns VBox status code.
3201 * @param pVM VM handle.
3202 * @param enmGuestMode The new guest mode. This is assumed to be different from
3203 * the current mode.
3204 */
3205VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3206{
3207 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3208 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3209
3210 /*
3211 * Calc the shadow mode and switcher.
3212 */
3213 VMMSWITCHER enmSwitcher;
3214 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3215 if (enmSwitcher != VMMSWITCHER_INVALID)
3216 {
3217 /*
3218 * Select new switcher.
3219 */
3220 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3221 if (RT_FAILURE(rc))
3222 {
3223 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3224 return rc;
3225 }
3226 }
3227
3228 /*
3229 * Exit old mode(s).
3230 */
3231 /* shadow */
3232 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3233 {
3234 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3235 if (PGM_SHW_PFN(Exit, pVM))
3236 {
3237 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3238 if (RT_FAILURE(rc))
3239 {
3240 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3241 return rc;
3242 }
3243 }
3244
3245 }
3246 else
3247 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3248
3249 /* guest */
3250 if (PGM_GST_PFN(Exit, pVM))
3251 {
3252 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3253 if (RT_FAILURE(rc))
3254 {
3255 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3256 return rc;
3257 }
3258 }
3259
3260 /*
3261 * Load new paging mode data.
3262 */
3263 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3264
3265 /*
3266 * Enter new shadow mode (if changed).
3267 */
3268 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3269 {
3270 int rc;
3271 pVM->pgm.s.enmShadowMode = enmShadowMode;
3272 switch (enmShadowMode)
3273 {
3274 case PGMMODE_32_BIT:
3275 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3276 break;
3277 case PGMMODE_PAE:
3278 case PGMMODE_PAE_NX:
3279 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3280 break;
3281 case PGMMODE_AMD64:
3282 case PGMMODE_AMD64_NX:
3283 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3284 break;
3285 case PGMMODE_NESTED:
3286 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3287 break;
3288 case PGMMODE_EPT:
3289 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3290 break;
3291 case PGMMODE_REAL:
3292 case PGMMODE_PROTECTED:
3293 default:
3294 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3295 return VERR_INTERNAL_ERROR;
3296 }
3297 if (RT_FAILURE(rc))
3298 {
3299 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3300 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3301 return rc;
3302 }
3303 }
3304
3305 /** @todo This is a bug!
3306 *
3307 * We must flush the PGM pool cache if the guest mode changes; we don't always
3308 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3309 * the shadow page tables.
3310 *
3311 * That only applies when switching between paging and non-paging modes.
3312 */
3313 /** @todo A20 setting */
3314 if ( pVM->pgm.s.CTX_SUFF(pPool)
3315 && !HWACCMIsNestedPagingActive(pVM)
3316 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3317 {
3318 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3319 pgmPoolFlushAll(pVM);
3320 }
3321
3322 /*
3323 * Enter the new guest and shadow+guest modes.
3324 */
3325 int rc = -1;
3326 int rc2 = -1;
3327 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3328 pVM->pgm.s.enmGuestMode = enmGuestMode;
3329 switch (enmGuestMode)
3330 {
3331 case PGMMODE_REAL:
3332 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3333 switch (pVM->pgm.s.enmShadowMode)
3334 {
3335 case PGMMODE_32_BIT:
3336 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3337 break;
3338 case PGMMODE_PAE:
3339 case PGMMODE_PAE_NX:
3340 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3341 break;
3342 case PGMMODE_NESTED:
3343 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3344 break;
3345 case PGMMODE_EPT:
3346 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3347 break;
3348 case PGMMODE_AMD64:
3349 case PGMMODE_AMD64_NX:
3350 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3351 default: AssertFailed(); break;
3352 }
3353 break;
3354
3355 case PGMMODE_PROTECTED:
3356 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3357 switch (pVM->pgm.s.enmShadowMode)
3358 {
3359 case PGMMODE_32_BIT:
3360 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3361 break;
3362 case PGMMODE_PAE:
3363 case PGMMODE_PAE_NX:
3364 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3365 break;
3366 case PGMMODE_NESTED:
3367 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3368 break;
3369 case PGMMODE_EPT:
3370 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3371 break;
3372 case PGMMODE_AMD64:
3373 case PGMMODE_AMD64_NX:
3374 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3375 default: AssertFailed(); break;
3376 }
3377 break;
3378
3379 case PGMMODE_32_BIT:
3380 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3381 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3382 switch (pVM->pgm.s.enmShadowMode)
3383 {
3384 case PGMMODE_32_BIT:
3385 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3386 break;
3387 case PGMMODE_PAE:
3388 case PGMMODE_PAE_NX:
3389 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3390 break;
3391 case PGMMODE_NESTED:
3392 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3393 break;
3394 case PGMMODE_EPT:
3395 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3396 break;
3397 case PGMMODE_AMD64:
3398 case PGMMODE_AMD64_NX:
3399 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3400 default: AssertFailed(); break;
3401 }
3402 break;
3403
3404 case PGMMODE_PAE_NX:
3405 case PGMMODE_PAE:
3406 {
3407 uint32_t u32Dummy, u32Features;
3408
3409 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3410 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3411 {
3412 /* Pause first, then inform Main. */
3413 rc = VMR3SuspendNoSave(pVM);
3414 AssertRC(rc);
3415
3416 VMSetRuntimeError(pVM, true, "PAEmode",
3417 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage"));
3418 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3419 return VINF_SUCCESS;
3420 }
3421 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3422 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3423 switch (pVM->pgm.s.enmShadowMode)
3424 {
3425 case PGMMODE_PAE:
3426 case PGMMODE_PAE_NX:
3427 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3428 break;
3429 case PGMMODE_NESTED:
3430 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3431 break;
3432 case PGMMODE_EPT:
3433 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3434 break;
3435 case PGMMODE_32_BIT:
3436 case PGMMODE_AMD64:
3437 case PGMMODE_AMD64_NX:
3438 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3439 default: AssertFailed(); break;
3440 }
3441 break;
3442 }
3443
3444#ifdef VBOX_WITH_64_BITS_GUESTS
3445 case PGMMODE_AMD64_NX:
3446 case PGMMODE_AMD64:
3447 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3448 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3449 switch (pVM->pgm.s.enmShadowMode)
3450 {
3451 case PGMMODE_AMD64:
3452 case PGMMODE_AMD64_NX:
3453 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3454 break;
3455 case PGMMODE_NESTED:
3456 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3457 break;
3458 case PGMMODE_EPT:
3459 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3460 break;
3461 case PGMMODE_32_BIT:
3462 case PGMMODE_PAE:
3463 case PGMMODE_PAE_NX:
3464 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3465 default: AssertFailed(); break;
3466 }
3467 break;
3468#endif
3469
3470 default:
3471 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3472 rc = VERR_NOT_IMPLEMENTED;
3473 break;
3474 }
3475
3476 /* status codes. */
3477 AssertRC(rc);
3478 AssertRC(rc2);
3479 if (RT_SUCCESS(rc))
3480 {
3481 rc = rc2;
3482 if (RT_SUCCESS(rc)) /* no informational status codes. */
3483 rc = VINF_SUCCESS;
3484 }
3485
3486 /*
3487 * Notify SELM so it can update the TSSes with correct CR3s.
3488 */
3489 SELMR3PagingModeChanged(pVM);
3490
3491 /* Notify HWACCM as well. */
3492 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3493 return rc;
3494}
3495
3496
3497/**
3498 * Dumps a PAE shadow page table.
3499 *
3500 * @returns VBox status code (VINF_SUCCESS).
3501 * @param pVM The VM handle.
3502 * @param pPT Pointer to the page table.
3503 * @param u64Address The virtual address of the page table starts.
3504 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3505 * @param cMaxDepth The maxium depth.
3506 * @param pHlp Pointer to the output functions.
3507 */
3508static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3509{
3510 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3511 {
3512 X86PTEPAE Pte = pPT->a[i];
3513 if (Pte.n.u1Present)
3514 {
3515 pHlp->pfnPrintf(pHlp,
3516 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3517 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3518 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3519 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3520 Pte.n.u1Write ? 'W' : 'R',
3521 Pte.n.u1User ? 'U' : 'S',
3522 Pte.n.u1Accessed ? 'A' : '-',
3523 Pte.n.u1Dirty ? 'D' : '-',
3524 Pte.n.u1Global ? 'G' : '-',
3525 Pte.n.u1WriteThru ? "WT" : "--",
3526 Pte.n.u1CacheDisable? "CD" : "--",
3527 Pte.n.u1PAT ? "AT" : "--",
3528 Pte.n.u1NoExecute ? "NX" : "--",
3529 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3530 Pte.u & RT_BIT(10) ? '1' : '0',
3531 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3532 Pte.u & X86_PTE_PAE_PG_MASK);
3533 }
3534 }
3535 return VINF_SUCCESS;
3536}
3537
3538
3539/**
3540 * Dumps a PAE shadow page directory table.
3541 *
3542 * @returns VBox status code (VINF_SUCCESS).
3543 * @param pVM The VM handle.
3544 * @param HCPhys The physical address of the page directory table.
3545 * @param u64Address The virtual address of the page table starts.
3546 * @param cr4 The CR4, PSE is currently used.
3547 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3548 * @param cMaxDepth The maxium depth.
3549 * @param pHlp Pointer to the output functions.
3550 */
3551static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3552{
3553 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3554 if (!pPD)
3555 {
3556 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3557 fLongMode ? 16 : 8, u64Address, HCPhys);
3558 return VERR_INVALID_PARAMETER;
3559 }
3560 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3561
3562 int rc = VINF_SUCCESS;
3563 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3564 {
3565 X86PDEPAE Pde = pPD->a[i];
3566 if (Pde.n.u1Present)
3567 {
3568 if (fBigPagesSupported && Pde.b.u1Size)
3569 pHlp->pfnPrintf(pHlp,
3570 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3571 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3572 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3573 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3574 Pde.b.u1Write ? 'W' : 'R',
3575 Pde.b.u1User ? 'U' : 'S',
3576 Pde.b.u1Accessed ? 'A' : '-',
3577 Pde.b.u1Dirty ? 'D' : '-',
3578 Pde.b.u1Global ? 'G' : '-',
3579 Pde.b.u1WriteThru ? "WT" : "--",
3580 Pde.b.u1CacheDisable? "CD" : "--",
3581 Pde.b.u1PAT ? "AT" : "--",
3582 Pde.b.u1NoExecute ? "NX" : "--",
3583 Pde.u & RT_BIT_64(9) ? '1' : '0',
3584 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3585 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3586 Pde.u & X86_PDE_PAE_PG_MASK);
3587 else
3588 {
3589 pHlp->pfnPrintf(pHlp,
3590 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3591 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3592 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3593 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3594 Pde.n.u1Write ? 'W' : 'R',
3595 Pde.n.u1User ? 'U' : 'S',
3596 Pde.n.u1Accessed ? 'A' : '-',
3597 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3598 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3599 Pde.n.u1WriteThru ? "WT" : "--",
3600 Pde.n.u1CacheDisable? "CD" : "--",
3601 Pde.n.u1NoExecute ? "NX" : "--",
3602 Pde.u & RT_BIT_64(9) ? '1' : '0',
3603 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3604 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3605 Pde.u & X86_PDE_PAE_PG_MASK);
3606 if (cMaxDepth >= 1)
3607 {
3608 /** @todo what about using the page pool for mapping PTs? */
3609 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3610 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3611 PX86PTPAE pPT = NULL;
3612 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3613 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3614 else
3615 {
3616 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3617 {
3618 uint64_t off = u64AddressPT - pMap->GCPtr;
3619 if (off < pMap->cb)
3620 {
3621 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3622 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3623 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3624 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3625 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3626 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3627 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3628 }
3629 }
3630 }
3631 int rc2 = VERR_INVALID_PARAMETER;
3632 if (pPT)
3633 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3634 else
3635 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3636 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3637 if (rc2 < rc && RT_SUCCESS(rc))
3638 rc = rc2;
3639 }
3640 }
3641 }
3642 }
3643 return rc;
3644}
3645
3646
3647/**
3648 * Dumps a PAE shadow page directory pointer table.
3649 *
3650 * @returns VBox status code (VINF_SUCCESS).
3651 * @param pVM The VM handle.
3652 * @param HCPhys The physical address of the page directory pointer table.
3653 * @param u64Address The virtual address of the page table starts.
3654 * @param cr4 The CR4, PSE is currently used.
3655 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3656 * @param cMaxDepth The maxium depth.
3657 * @param pHlp Pointer to the output functions.
3658 */
3659static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3660{
3661 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3662 if (!pPDPT)
3663 {
3664 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3665 fLongMode ? 16 : 8, u64Address, HCPhys);
3666 return VERR_INVALID_PARAMETER;
3667 }
3668
3669 int rc = VINF_SUCCESS;
3670 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3671 for (unsigned i = 0; i < c; i++)
3672 {
3673 X86PDPE Pdpe = pPDPT->a[i];
3674 if (Pdpe.n.u1Present)
3675 {
3676 if (fLongMode)
3677 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3678 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3679 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3680 Pdpe.lm.u1Write ? 'W' : 'R',
3681 Pdpe.lm.u1User ? 'U' : 'S',
3682 Pdpe.lm.u1Accessed ? 'A' : '-',
3683 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3684 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3685 Pdpe.lm.u1WriteThru ? "WT" : "--",
3686 Pdpe.lm.u1CacheDisable? "CD" : "--",
3687 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3688 Pdpe.lm.u1NoExecute ? "NX" : "--",
3689 Pdpe.u & RT_BIT(9) ? '1' : '0',
3690 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3691 Pdpe.u & RT_BIT(11) ? '1' : '0',
3692 Pdpe.u & X86_PDPE_PG_MASK);
3693 else
3694 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3695 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3696 i << X86_PDPT_SHIFT,
3697 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3698 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3699 Pdpe.n.u1WriteThru ? "WT" : "--",
3700 Pdpe.n.u1CacheDisable? "CD" : "--",
3701 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3702 Pdpe.u & RT_BIT(9) ? '1' : '0',
3703 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3704 Pdpe.u & RT_BIT(11) ? '1' : '0',
3705 Pdpe.u & X86_PDPE_PG_MASK);
3706 if (cMaxDepth >= 1)
3707 {
3708 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3709 cr4, fLongMode, cMaxDepth - 1, pHlp);
3710 if (rc2 < rc && RT_SUCCESS(rc))
3711 rc = rc2;
3712 }
3713 }
3714 }
3715 return rc;
3716}
3717
3718
3719/**
3720 * Dumps a 32-bit shadow page table.
3721 *
3722 * @returns VBox status code (VINF_SUCCESS).
3723 * @param pVM The VM handle.
3724 * @param HCPhys The physical address of the table.
3725 * @param cr4 The CR4, PSE is currently used.
3726 * @param cMaxDepth The maxium depth.
3727 * @param pHlp Pointer to the output functions.
3728 */
3729static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3730{
3731 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3732 if (!pPML4)
3733 {
3734 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3735 return VERR_INVALID_PARAMETER;
3736 }
3737
3738 int rc = VINF_SUCCESS;
3739 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3740 {
3741 X86PML4E Pml4e = pPML4->a[i];
3742 if (Pml4e.n.u1Present)
3743 {
3744 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3745 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3746 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3747 u64Address,
3748 Pml4e.n.u1Write ? 'W' : 'R',
3749 Pml4e.n.u1User ? 'U' : 'S',
3750 Pml4e.n.u1Accessed ? 'A' : '-',
3751 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3752 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3753 Pml4e.n.u1WriteThru ? "WT" : "--",
3754 Pml4e.n.u1CacheDisable? "CD" : "--",
3755 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3756 Pml4e.n.u1NoExecute ? "NX" : "--",
3757 Pml4e.u & RT_BIT(9) ? '1' : '0',
3758 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3759 Pml4e.u & RT_BIT(11) ? '1' : '0',
3760 Pml4e.u & X86_PML4E_PG_MASK);
3761
3762 if (cMaxDepth >= 1)
3763 {
3764 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3765 if (rc2 < rc && RT_SUCCESS(rc))
3766 rc = rc2;
3767 }
3768 }
3769 }
3770 return rc;
3771}
3772
3773
3774/**
3775 * Dumps a 32-bit shadow page table.
3776 *
3777 * @returns VBox status code (VINF_SUCCESS).
3778 * @param pVM The VM handle.
3779 * @param pPT Pointer to the page table.
3780 * @param u32Address The virtual address this table starts at.
3781 * @param pHlp Pointer to the output functions.
3782 */
3783int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3784{
3785 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3786 {
3787 X86PTE Pte = pPT->a[i];
3788 if (Pte.n.u1Present)
3789 {
3790 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3791 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3792 u32Address + (i << X86_PT_SHIFT),
3793 Pte.n.u1Write ? 'W' : 'R',
3794 Pte.n.u1User ? 'U' : 'S',
3795 Pte.n.u1Accessed ? 'A' : '-',
3796 Pte.n.u1Dirty ? 'D' : '-',
3797 Pte.n.u1Global ? 'G' : '-',
3798 Pte.n.u1WriteThru ? "WT" : "--",
3799 Pte.n.u1CacheDisable? "CD" : "--",
3800 Pte.n.u1PAT ? "AT" : "--",
3801 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3802 Pte.u & RT_BIT(10) ? '1' : '0',
3803 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3804 Pte.u & X86_PDE_PG_MASK);
3805 }
3806 }
3807 return VINF_SUCCESS;
3808}
3809
3810
3811/**
3812 * Dumps a 32-bit shadow page directory and page tables.
3813 *
3814 * @returns VBox status code (VINF_SUCCESS).
3815 * @param pVM The VM handle.
3816 * @param cr3 The root of the hierarchy.
3817 * @param cr4 The CR4, PSE is currently used.
3818 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3819 * @param pHlp Pointer to the output functions.
3820 */
3821int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3822{
3823 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3824 if (!pPD)
3825 {
3826 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3827 return VERR_INVALID_PARAMETER;
3828 }
3829
3830 int rc = VINF_SUCCESS;
3831 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3832 {
3833 X86PDE Pde = pPD->a[i];
3834 if (Pde.n.u1Present)
3835 {
3836 const uint32_t u32Address = i << X86_PD_SHIFT;
3837 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3838 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3839 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3840 u32Address,
3841 Pde.b.u1Write ? 'W' : 'R',
3842 Pde.b.u1User ? 'U' : 'S',
3843 Pde.b.u1Accessed ? 'A' : '-',
3844 Pde.b.u1Dirty ? 'D' : '-',
3845 Pde.b.u1Global ? 'G' : '-',
3846 Pde.b.u1WriteThru ? "WT" : "--",
3847 Pde.b.u1CacheDisable? "CD" : "--",
3848 Pde.b.u1PAT ? "AT" : "--",
3849 Pde.u & RT_BIT_64(9) ? '1' : '0',
3850 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3851 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3852 Pde.u & X86_PDE4M_PG_MASK);
3853 else
3854 {
3855 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3856 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3857 u32Address,
3858 Pde.n.u1Write ? 'W' : 'R',
3859 Pde.n.u1User ? 'U' : 'S',
3860 Pde.n.u1Accessed ? 'A' : '-',
3861 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3862 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3863 Pde.n.u1WriteThru ? "WT" : "--",
3864 Pde.n.u1CacheDisable? "CD" : "--",
3865 Pde.u & RT_BIT_64(9) ? '1' : '0',
3866 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3867 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3868 Pde.u & X86_PDE_PG_MASK);
3869 if (cMaxDepth >= 1)
3870 {
3871 /** @todo what about using the page pool for mapping PTs? */
3872 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3873 PX86PT pPT = NULL;
3874 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3875 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3876 else
3877 {
3878 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3879 if (u32Address - pMap->GCPtr < pMap->cb)
3880 {
3881 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3882 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3883 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3884 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3885 pPT = pMap->aPTs[iPDE].pPTR3;
3886 }
3887 }
3888 int rc2 = VERR_INVALID_PARAMETER;
3889 if (pPT)
3890 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3891 else
3892 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3893 if (rc2 < rc && RT_SUCCESS(rc))
3894 rc = rc2;
3895 }
3896 }
3897 }
3898 }
3899
3900 return rc;
3901}
3902
3903
3904/**
3905 * Dumps a 32-bit shadow page table.
3906 *
3907 * @returns VBox status code (VINF_SUCCESS).
3908 * @param pVM The VM handle.
3909 * @param pPT Pointer to the page table.
3910 * @param u32Address The virtual address this table starts at.
3911 * @param PhysSearch Address to search for.
3912 */
3913int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3914{
3915 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3916 {
3917 X86PTE Pte = pPT->a[i];
3918 if (Pte.n.u1Present)
3919 {
3920 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3921 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3922 u32Address + (i << X86_PT_SHIFT),
3923 Pte.n.u1Write ? 'W' : 'R',
3924 Pte.n.u1User ? 'U' : 'S',
3925 Pte.n.u1Accessed ? 'A' : '-',
3926 Pte.n.u1Dirty ? 'D' : '-',
3927 Pte.n.u1Global ? 'G' : '-',
3928 Pte.n.u1WriteThru ? "WT" : "--",
3929 Pte.n.u1CacheDisable? "CD" : "--",
3930 Pte.n.u1PAT ? "AT" : "--",
3931 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3932 Pte.u & RT_BIT(10) ? '1' : '0',
3933 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3934 Pte.u & X86_PDE_PG_MASK));
3935
3936 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3937 {
3938 uint64_t fPageShw = 0;
3939 RTHCPHYS pPhysHC = 0;
3940
3941 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3942 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3943 }
3944 }
3945 }
3946 return VINF_SUCCESS;
3947}
3948
3949
3950/**
3951 * Dumps a 32-bit guest page directory and page tables.
3952 *
3953 * @returns VBox status code (VINF_SUCCESS).
3954 * @param pVM The VM handle.
3955 * @param cr3 The root of the hierarchy.
3956 * @param cr4 The CR4, PSE is currently used.
3957 * @param PhysSearch Address to search for.
3958 */
3959VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3960{
3961 bool fLongMode = false;
3962 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3963 PX86PD pPD = 0;
3964
3965 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3966 if (RT_FAILURE(rc) || !pPD)
3967 {
3968 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3969 return VERR_INVALID_PARAMETER;
3970 }
3971
3972 Log(("cr3=%08x cr4=%08x%s\n"
3973 "%-*s P - Present\n"
3974 "%-*s | R/W - Read (0) / Write (1)\n"
3975 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3976 "%-*s | | | A - Accessed\n"
3977 "%-*s | | | | D - Dirty\n"
3978 "%-*s | | | | | G - Global\n"
3979 "%-*s | | | | | | WT - Write thru\n"
3980 "%-*s | | | | | | | CD - Cache disable\n"
3981 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3982 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3983 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3984 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3985 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3986 "%-*s Level | | | | | | | | | | | | Page\n"
3987 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3988 - W U - - - -- -- -- -- -- 010 */
3989 , cr3, cr4, fLongMode ? " Long Mode" : "",
3990 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3991 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3992
3993 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3994 {
3995 X86PDE Pde = pPD->a[i];
3996 if (Pde.n.u1Present)
3997 {
3998 const uint32_t u32Address = i << X86_PD_SHIFT;
3999
4000 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4001 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4002 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4003 u32Address,
4004 Pde.b.u1Write ? 'W' : 'R',
4005 Pde.b.u1User ? 'U' : 'S',
4006 Pde.b.u1Accessed ? 'A' : '-',
4007 Pde.b.u1Dirty ? 'D' : '-',
4008 Pde.b.u1Global ? 'G' : '-',
4009 Pde.b.u1WriteThru ? "WT" : "--",
4010 Pde.b.u1CacheDisable? "CD" : "--",
4011 Pde.b.u1PAT ? "AT" : "--",
4012 Pde.u & RT_BIT(9) ? '1' : '0',
4013 Pde.u & RT_BIT(10) ? '1' : '0',
4014 Pde.u & RT_BIT(11) ? '1' : '0',
4015 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4016 /** @todo PhysSearch */
4017 else
4018 {
4019 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4020 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4021 u32Address,
4022 Pde.n.u1Write ? 'W' : 'R',
4023 Pde.n.u1User ? 'U' : 'S',
4024 Pde.n.u1Accessed ? 'A' : '-',
4025 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4026 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4027 Pde.n.u1WriteThru ? "WT" : "--",
4028 Pde.n.u1CacheDisable? "CD" : "--",
4029 Pde.u & RT_BIT(9) ? '1' : '0',
4030 Pde.u & RT_BIT(10) ? '1' : '0',
4031 Pde.u & RT_BIT(11) ? '1' : '0',
4032 Pde.u & X86_PDE_PG_MASK));
4033 ////if (cMaxDepth >= 1)
4034 {
4035 /** @todo what about using the page pool for mapping PTs? */
4036 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4037 PX86PT pPT = NULL;
4038
4039 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4040
4041 int rc2 = VERR_INVALID_PARAMETER;
4042 if (pPT)
4043 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4044 else
4045 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4046 if (rc2 < rc && RT_SUCCESS(rc))
4047 rc = rc2;
4048 }
4049 }
4050 }
4051 }
4052
4053 return rc;
4054}
4055
4056
4057/**
4058 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4059 *
4060 * @returns VBox status code (VINF_SUCCESS).
4061 * @param pVM The VM handle.
4062 * @param cr3 The root of the hierarchy.
4063 * @param cr4 The cr4, only PAE and PSE is currently used.
4064 * @param fLongMode Set if long mode, false if not long mode.
4065 * @param cMaxDepth Number of levels to dump.
4066 * @param pHlp Pointer to the output functions.
4067 */
4068VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4069{
4070 if (!pHlp)
4071 pHlp = DBGFR3InfoLogHlp();
4072 if (!cMaxDepth)
4073 return VINF_SUCCESS;
4074 const unsigned cch = fLongMode ? 16 : 8;
4075 pHlp->pfnPrintf(pHlp,
4076 "cr3=%08x cr4=%08x%s\n"
4077 "%-*s P - Present\n"
4078 "%-*s | R/W - Read (0) / Write (1)\n"
4079 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4080 "%-*s | | | A - Accessed\n"
4081 "%-*s | | | | D - Dirty\n"
4082 "%-*s | | | | | G - Global\n"
4083 "%-*s | | | | | | WT - Write thru\n"
4084 "%-*s | | | | | | | CD - Cache disable\n"
4085 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4086 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4087 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4088 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4089 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4090 "%-*s Level | | | | | | | | | | | | Page\n"
4091 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4092 - W U - - - -- -- -- -- -- 010 */
4093 , cr3, cr4, fLongMode ? " Long Mode" : "",
4094 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4095 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4096 if (cr4 & X86_CR4_PAE)
4097 {
4098 if (fLongMode)
4099 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4100 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4101 }
4102 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4103}
4104
4105#ifdef VBOX_WITH_DEBUGGER
4106
4107/**
4108 * The '.pgmram' command.
4109 *
4110 * @returns VBox status.
4111 * @param pCmd Pointer to the command descriptor (as registered).
4112 * @param pCmdHlp Pointer to command helper functions.
4113 * @param pVM Pointer to the current VM (if any).
4114 * @param paArgs Pointer to (readonly) array of arguments.
4115 * @param cArgs Number of arguments in the array.
4116 */
4117static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4118{
4119 /*
4120 * Validate input.
4121 */
4122 if (!pVM)
4123 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4124 if (!pVM->pgm.s.pRamRangesRC)
4125 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4126
4127 /*
4128 * Dump the ranges.
4129 */
4130 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4131 PPGMRAMRANGE pRam;
4132 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4133 {
4134 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4135 "%RGp - %RGp %p\n",
4136 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4137 if (RT_FAILURE(rc))
4138 return rc;
4139 }
4140
4141 return VINF_SUCCESS;
4142}
4143
4144
4145/**
4146 * The '.pgmmap' command.
4147 *
4148 * @returns VBox status.
4149 * @param pCmd Pointer to the command descriptor (as registered).
4150 * @param pCmdHlp Pointer to command helper functions.
4151 * @param pVM Pointer to the current VM (if any).
4152 * @param paArgs Pointer to (readonly) array of arguments.
4153 * @param cArgs Number of arguments in the array.
4154 */
4155static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4156{
4157 /*
4158 * Validate input.
4159 */
4160 if (!pVM)
4161 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4162 if (!pVM->pgm.s.pMappingsR3)
4163 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4164
4165 /*
4166 * Print message about the fixedness of the mappings.
4167 */
4168 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4169 if (RT_FAILURE(rc))
4170 return rc;
4171
4172 /*
4173 * Dump the ranges.
4174 */
4175 PPGMMAPPING pCur;
4176 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4177 {
4178 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4179 "%08x - %08x %s\n",
4180 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4181 if (RT_FAILURE(rc))
4182 return rc;
4183 }
4184
4185 return VINF_SUCCESS;
4186}
4187
4188
4189/**
4190 * The '.pgmsync' command.
4191 *
4192 * @returns VBox status.
4193 * @param pCmd Pointer to the command descriptor (as registered).
4194 * @param pCmdHlp Pointer to command helper functions.
4195 * @param pVM Pointer to the current VM (if any).
4196 * @param paArgs Pointer to (readonly) array of arguments.
4197 * @param cArgs Number of arguments in the array.
4198 */
4199static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4200{
4201 /*
4202 * Validate input.
4203 */
4204 if (!pVM)
4205 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4206
4207 /*
4208 * Force page directory sync.
4209 */
4210 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4211
4212 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4213 if (RT_FAILURE(rc))
4214 return rc;
4215
4216 return VINF_SUCCESS;
4217}
4218
4219
4220#ifdef VBOX_STRICT
4221/**
4222 * The '.pgmassertcr3' command.
4223 *
4224 * @returns VBox status.
4225 * @param pCmd Pointer to the command descriptor (as registered).
4226 * @param pCmdHlp Pointer to command helper functions.
4227 * @param pVM Pointer to the current VM (if any).
4228 * @param paArgs Pointer to (readonly) array of arguments.
4229 * @param cArgs Number of arguments in the array.
4230 */
4231static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4232{
4233 /*
4234 * Validate input.
4235 */
4236 if (!pVM)
4237 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4238
4239 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4240 if (RT_FAILURE(rc))
4241 return rc;
4242
4243 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4244
4245 return VINF_SUCCESS;
4246}
4247#endif /* VBOX_STRICT */
4248
4249
4250/**
4251 * The '.pgmsyncalways' command.
4252 *
4253 * @returns VBox status.
4254 * @param pCmd Pointer to the command descriptor (as registered).
4255 * @param pCmdHlp Pointer to command helper functions.
4256 * @param pVM Pointer to the current VM (if any).
4257 * @param paArgs Pointer to (readonly) array of arguments.
4258 * @param cArgs Number of arguments in the array.
4259 */
4260static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4261{
4262 /*
4263 * Validate input.
4264 */
4265 if (!pVM)
4266 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4267
4268 /*
4269 * Force page directory sync.
4270 */
4271 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4272 {
4273 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4274 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4275 }
4276 else
4277 {
4278 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4279 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4280 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4281 }
4282}
4283
4284#endif /* VBOX_WITH_DEBUGGER */
4285
4286/**
4287 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4288 */
4289typedef struct PGMCHECKINTARGS
4290{
4291 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4292 PPGMPHYSHANDLER pPrevPhys;
4293 PPGMVIRTHANDLER pPrevVirt;
4294 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4295 PVM pVM;
4296} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4297
4298/**
4299 * Validate a node in the physical handler tree.
4300 *
4301 * @returns 0 on if ok, other wise 1.
4302 * @param pNode The handler node.
4303 * @param pvUser pVM.
4304 */
4305static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4306{
4307 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4308 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4309 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4310 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4311 AssertReleaseMsg( !pArgs->pPrevPhys
4312 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4313 ("pPrevPhys=%p %RGp-%RGp %s\n"
4314 " pCur=%p %RGp-%RGp %s\n",
4315 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4316 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4317 pArgs->pPrevPhys = pCur;
4318 return 0;
4319}
4320
4321
4322/**
4323 * Validate a node in the virtual handler tree.
4324 *
4325 * @returns 0 on if ok, other wise 1.
4326 * @param pNode The handler node.
4327 * @param pvUser pVM.
4328 */
4329static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4330{
4331 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4332 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4333 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4334 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4335 AssertReleaseMsg( !pArgs->pPrevVirt
4336 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4337 ("pPrevVirt=%p %RGv-%RGv %s\n"
4338 " pCur=%p %RGv-%RGv %s\n",
4339 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4340 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4341 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4342 {
4343 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4344 ("pCur=%p %RGv-%RGv %s\n"
4345 "iPage=%d offVirtHandle=%#x expected %#x\n",
4346 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4347 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4348 }
4349 pArgs->pPrevVirt = pCur;
4350 return 0;
4351}
4352
4353
4354/**
4355 * Validate a node in the virtual handler tree.
4356 *
4357 * @returns 0 on if ok, other wise 1.
4358 * @param pNode The handler node.
4359 * @param pvUser pVM.
4360 */
4361static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4362{
4363 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4364 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4365 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4366 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4367 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4368 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4369 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4370 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4371 " pCur=%p %RGp-%RGp\n",
4372 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4373 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4374 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4375 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4376 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4377 " pCur=%p %RGp-%RGp\n",
4378 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4379 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4380 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4381 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4382 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4383 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4384 {
4385 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4386 for (;;)
4387 {
4388 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4389 AssertReleaseMsg(pCur2 != pCur,
4390 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4391 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4392 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4393 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4394 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4395 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4396 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4397 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4398 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4399 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4400 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4401 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4402 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4403 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4404 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4405 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4406 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4407 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4408 break;
4409 }
4410 }
4411
4412 pArgs->pPrevPhys2Virt = pCur;
4413 return 0;
4414}
4415
4416
4417/**
4418 * Perform an integrity check on the PGM component.
4419 *
4420 * @returns VINF_SUCCESS if everything is fine.
4421 * @returns VBox error status after asserting on integrity breach.
4422 * @param pVM The VM handle.
4423 */
4424VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4425{
4426 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4427
4428 /*
4429 * Check the trees.
4430 */
4431 int cErrors = 0;
4432 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4433 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4434 PGMCHECKINTARGS Args = s_LeftToRight;
4435 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4436 Args = s_RightToLeft;
4437 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4438 Args = s_LeftToRight;
4439 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4440 Args = s_RightToLeft;
4441 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4442 Args = s_LeftToRight;
4443 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4444 Args = s_RightToLeft;
4445 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4446 Args = s_LeftToRight;
4447 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4448 Args = s_RightToLeft;
4449 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4450
4451 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4452}
4453
4454
4455/**
4456 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4457 *
4458 * @returns VBox status code.
4459 * @param pVM VM handle.
4460 * @param fEnable Enable or disable shadow mappings
4461 */
4462VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4463{
4464 pVM->pgm.s.fDisableMappings = !fEnable;
4465
4466 uint32_t cb;
4467 int rc = PGMR3MappingsSize(pVM, &cb);
4468 AssertRCReturn(rc, rc);
4469
4470 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4471 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4472 AssertRCReturn(rc, rc);
4473
4474 return VINF_SUCCESS;
4475}
4476
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette