VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 14299

Last change on this file since 14299 was 14260, checked in by vboxsync, 16 years ago

PGM: doc update.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 210.8 KB
Line 
1/* $Id: PGM.cpp 14260 2008-11-17 17:11:22Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#include "PGMGst.h"
688#include "PGMBth.h"
689#undef BTH_PGMPOOLKIND_PT_FOR_PT
690#undef PGM_BTH_NAME
691#undef PGM_BTH_NAME_RC_STR
692#undef PGM_BTH_NAME_R0_STR
693#undef PGM_GST_TYPE
694#undef PGM_GST_NAME
695#undef PGM_GST_NAME_RC_STR
696#undef PGM_GST_NAME_R0_STR
697
698/* Guest - protected mode */
699#define PGM_GST_TYPE PGM_TYPE_PROT
700#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
701#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
702#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
703#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
704#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
705#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
706#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
707#include "PGMGst.h"
708#include "PGMBth.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef PGM_BTH_NAME
711#undef PGM_BTH_NAME_RC_STR
712#undef PGM_BTH_NAME_R0_STR
713#undef PGM_GST_TYPE
714#undef PGM_GST_NAME
715#undef PGM_GST_NAME_RC_STR
716#undef PGM_GST_NAME_R0_STR
717
718/* Guest - 32-bit mode */
719#define PGM_GST_TYPE PGM_TYPE_32BIT
720#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
721#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
722#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
723#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
724#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
725#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
726#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
727#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
728#include "PGMGst.h"
729#include "PGMBth.h"
730#undef BTH_PGMPOOLKIND_PT_FOR_BIG
731#undef BTH_PGMPOOLKIND_PT_FOR_PT
732#undef PGM_BTH_NAME
733#undef PGM_BTH_NAME_RC_STR
734#undef PGM_BTH_NAME_R0_STR
735#undef PGM_GST_TYPE
736#undef PGM_GST_NAME
737#undef PGM_GST_NAME_RC_STR
738#undef PGM_GST_NAME_R0_STR
739
740#undef PGM_SHW_TYPE
741#undef PGM_SHW_NAME
742#undef PGM_SHW_NAME_RC_STR
743#undef PGM_SHW_NAME_R0_STR
744
745
746/*
747 * Shadow - PAE mode
748 */
749#define PGM_SHW_TYPE PGM_TYPE_PAE
750#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
751#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
752#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
754#include "PGMShw.h"
755
756/* Guest - real mode */
757#define PGM_GST_TYPE PGM_TYPE_REAL
758#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
759#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
760#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
761#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
762#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
763#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
764#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
765#include "PGMBth.h"
766#undef BTH_PGMPOOLKIND_PT_FOR_PT
767#undef PGM_BTH_NAME
768#undef PGM_BTH_NAME_RC_STR
769#undef PGM_BTH_NAME_R0_STR
770#undef PGM_GST_TYPE
771#undef PGM_GST_NAME
772#undef PGM_GST_NAME_RC_STR
773#undef PGM_GST_NAME_R0_STR
774
775/* Guest - protected mode */
776#define PGM_GST_TYPE PGM_TYPE_PROT
777#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
778#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
779#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
781#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
782#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
783#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
784#include "PGMBth.h"
785#undef BTH_PGMPOOLKIND_PT_FOR_PT
786#undef PGM_BTH_NAME
787#undef PGM_BTH_NAME_RC_STR
788#undef PGM_BTH_NAME_R0_STR
789#undef PGM_GST_TYPE
790#undef PGM_GST_NAME
791#undef PGM_GST_NAME_RC_STR
792#undef PGM_GST_NAME_R0_STR
793
794/* Guest - 32-bit mode */
795#define PGM_GST_TYPE PGM_TYPE_32BIT
796#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
797#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
798#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
799#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
800#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
801#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
802#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
803#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
804#include "PGMBth.h"
805#undef BTH_PGMPOOLKIND_PT_FOR_BIG
806#undef BTH_PGMPOOLKIND_PT_FOR_PT
807#undef PGM_BTH_NAME
808#undef PGM_BTH_NAME_RC_STR
809#undef PGM_BTH_NAME_R0_STR
810#undef PGM_GST_TYPE
811#undef PGM_GST_NAME
812#undef PGM_GST_NAME_RC_STR
813#undef PGM_GST_NAME_R0_STR
814
815/* Guest - PAE mode */
816#define PGM_GST_TYPE PGM_TYPE_PAE
817#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
818#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
819#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
820#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
821#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
822#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
823#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
824#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
825#include "PGMGst.h"
826#include "PGMBth.h"
827#undef BTH_PGMPOOLKIND_PT_FOR_BIG
828#undef BTH_PGMPOOLKIND_PT_FOR_PT
829#undef PGM_BTH_NAME
830#undef PGM_BTH_NAME_RC_STR
831#undef PGM_BTH_NAME_R0_STR
832#undef PGM_GST_TYPE
833#undef PGM_GST_NAME
834#undef PGM_GST_NAME_RC_STR
835#undef PGM_GST_NAME_R0_STR
836
837#undef PGM_SHW_TYPE
838#undef PGM_SHW_NAME
839#undef PGM_SHW_NAME_RC_STR
840#undef PGM_SHW_NAME_R0_STR
841
842
843/*
844 * Shadow - AMD64 mode
845 */
846#define PGM_SHW_TYPE PGM_TYPE_AMD64
847#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
848#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
849#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
850#include "PGMShw.h"
851
852#ifdef VBOX_WITH_64_BITS_GUESTS
853/* Guest - AMD64 mode */
854# define PGM_GST_TYPE PGM_TYPE_AMD64
855# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
856# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
857# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
858# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
859# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
860# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
861# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
862# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
863# include "PGMGst.h"
864# include "PGMBth.h"
865# undef BTH_PGMPOOLKIND_PT_FOR_BIG
866# undef BTH_PGMPOOLKIND_PT_FOR_PT
867# undef PGM_BTH_NAME
868# undef PGM_BTH_NAME_RC_STR
869# undef PGM_BTH_NAME_R0_STR
870# undef PGM_GST_TYPE
871# undef PGM_GST_NAME
872# undef PGM_GST_NAME_RC_STR
873# undef PGM_GST_NAME_R0_STR
874#endif /* VBOX_WITH_64_BITS_GUESTS */
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - Nested paging mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_NESTED
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
889#include "PGMShw.h"
890
891/* Guest - real mode */
892#define PGM_GST_TYPE PGM_TYPE_REAL
893#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
894#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
895#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
896#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
897#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
898#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
899#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
900#include "PGMBth.h"
901#undef BTH_PGMPOOLKIND_PT_FOR_PT
902#undef PGM_BTH_NAME
903#undef PGM_BTH_NAME_RC_STR
904#undef PGM_BTH_NAME_R0_STR
905#undef PGM_GST_TYPE
906#undef PGM_GST_NAME
907#undef PGM_GST_NAME_RC_STR
908#undef PGM_GST_NAME_R0_STR
909
910/* Guest - protected mode */
911#define PGM_GST_TYPE PGM_TYPE_PROT
912#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
913#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
914#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
915#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
916#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
917#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
918#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
919#include "PGMBth.h"
920#undef BTH_PGMPOOLKIND_PT_FOR_PT
921#undef PGM_BTH_NAME
922#undef PGM_BTH_NAME_RC_STR
923#undef PGM_BTH_NAME_R0_STR
924#undef PGM_GST_TYPE
925#undef PGM_GST_NAME
926#undef PGM_GST_NAME_RC_STR
927#undef PGM_GST_NAME_R0_STR
928
929/* Guest - 32-bit mode */
930#define PGM_GST_TYPE PGM_TYPE_32BIT
931#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
932#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
933#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
934#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
935#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
936#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
937#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
938#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
939#include "PGMBth.h"
940#undef BTH_PGMPOOLKIND_PT_FOR_BIG
941#undef BTH_PGMPOOLKIND_PT_FOR_PT
942#undef PGM_BTH_NAME
943#undef PGM_BTH_NAME_RC_STR
944#undef PGM_BTH_NAME_R0_STR
945#undef PGM_GST_TYPE
946#undef PGM_GST_NAME
947#undef PGM_GST_NAME_RC_STR
948#undef PGM_GST_NAME_R0_STR
949
950/* Guest - PAE mode */
951#define PGM_GST_TYPE PGM_TYPE_PAE
952#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
953#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
954#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
955#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
956#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
957#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
958#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
959#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
960#include "PGMBth.h"
961#undef BTH_PGMPOOLKIND_PT_FOR_BIG
962#undef BTH_PGMPOOLKIND_PT_FOR_PT
963#undef PGM_BTH_NAME
964#undef PGM_BTH_NAME_RC_STR
965#undef PGM_BTH_NAME_R0_STR
966#undef PGM_GST_TYPE
967#undef PGM_GST_NAME
968#undef PGM_GST_NAME_RC_STR
969#undef PGM_GST_NAME_R0_STR
970
971#ifdef VBOX_WITH_64_BITS_GUESTS
972/* Guest - AMD64 mode */
973# define PGM_GST_TYPE PGM_TYPE_AMD64
974# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
975# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
976# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
977# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
978# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
979# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
980# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
981# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
982# include "PGMBth.h"
983# undef BTH_PGMPOOLKIND_PT_FOR_BIG
984# undef BTH_PGMPOOLKIND_PT_FOR_PT
985# undef PGM_BTH_NAME
986# undef PGM_BTH_NAME_RC_STR
987# undef PGM_BTH_NAME_R0_STR
988# undef PGM_GST_TYPE
989# undef PGM_GST_NAME
990# undef PGM_GST_NAME_RC_STR
991# undef PGM_GST_NAME_R0_STR
992#endif /* VBOX_WITH_64_BITS_GUESTS */
993
994#undef PGM_SHW_TYPE
995#undef PGM_SHW_NAME
996#undef PGM_SHW_NAME_RC_STR
997#undef PGM_SHW_NAME_R0_STR
998
999
1000/*
1001 * Shadow - EPT
1002 */
1003#define PGM_SHW_TYPE PGM_TYPE_EPT
1004#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1005#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1006#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1007#include "PGMShw.h"
1008
1009/* Guest - real mode */
1010#define PGM_GST_TYPE PGM_TYPE_REAL
1011#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1012#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1013#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1014#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1015#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1016#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1017#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1018#include "PGMBth.h"
1019#undef BTH_PGMPOOLKIND_PT_FOR_PT
1020#undef PGM_BTH_NAME
1021#undef PGM_BTH_NAME_RC_STR
1022#undef PGM_BTH_NAME_R0_STR
1023#undef PGM_GST_TYPE
1024#undef PGM_GST_NAME
1025#undef PGM_GST_NAME_RC_STR
1026#undef PGM_GST_NAME_R0_STR
1027
1028/* Guest - protected mode */
1029#define PGM_GST_TYPE PGM_TYPE_PROT
1030#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1031#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1032#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1033#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1034#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1035#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1036#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1037#include "PGMBth.h"
1038#undef BTH_PGMPOOLKIND_PT_FOR_PT
1039#undef PGM_BTH_NAME
1040#undef PGM_BTH_NAME_RC_STR
1041#undef PGM_BTH_NAME_R0_STR
1042#undef PGM_GST_TYPE
1043#undef PGM_GST_NAME
1044#undef PGM_GST_NAME_RC_STR
1045#undef PGM_GST_NAME_R0_STR
1046
1047/* Guest - 32-bit mode */
1048#define PGM_GST_TYPE PGM_TYPE_32BIT
1049#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1050#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1051#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1052#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1053#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1054#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1055#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1056#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1057#include "PGMBth.h"
1058#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1059#undef BTH_PGMPOOLKIND_PT_FOR_PT
1060#undef PGM_BTH_NAME
1061#undef PGM_BTH_NAME_RC_STR
1062#undef PGM_BTH_NAME_R0_STR
1063#undef PGM_GST_TYPE
1064#undef PGM_GST_NAME
1065#undef PGM_GST_NAME_RC_STR
1066#undef PGM_GST_NAME_R0_STR
1067
1068/* Guest - PAE mode */
1069#define PGM_GST_TYPE PGM_TYPE_PAE
1070#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1071#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1072#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1073#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1074#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1075#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1076#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1077#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1078#include "PGMBth.h"
1079#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1080#undef BTH_PGMPOOLKIND_PT_FOR_PT
1081#undef PGM_BTH_NAME
1082#undef PGM_BTH_NAME_RC_STR
1083#undef PGM_BTH_NAME_R0_STR
1084#undef PGM_GST_TYPE
1085#undef PGM_GST_NAME
1086#undef PGM_GST_NAME_RC_STR
1087#undef PGM_GST_NAME_R0_STR
1088
1089#ifdef VBOX_WITH_64_BITS_GUESTS
1090/* Guest - AMD64 mode */
1091# define PGM_GST_TYPE PGM_TYPE_AMD64
1092# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1093# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1094# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1095# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1096# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1097# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1098# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1099# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1100# include "PGMBth.h"
1101# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1102# undef BTH_PGMPOOLKIND_PT_FOR_PT
1103# undef PGM_BTH_NAME
1104# undef PGM_BTH_NAME_RC_STR
1105# undef PGM_BTH_NAME_R0_STR
1106# undef PGM_GST_TYPE
1107# undef PGM_GST_NAME
1108# undef PGM_GST_NAME_RC_STR
1109# undef PGM_GST_NAME_R0_STR
1110#endif /* VBOX_WITH_64_BITS_GUESTS */
1111
1112#undef PGM_SHW_TYPE
1113#undef PGM_SHW_NAME
1114#undef PGM_SHW_NAME_RC_STR
1115#undef PGM_SHW_NAME_R0_STR
1116
1117
1118
1119/**
1120 * Initiates the paging of VM.
1121 *
1122 * @returns VBox status code.
1123 * @param pVM Pointer to VM structure.
1124 */
1125VMMR3DECL(int) PGMR3Init(PVM pVM)
1126{
1127 LogFlow(("PGMR3Init:\n"));
1128
1129 /*
1130 * Assert alignment and sizes.
1131 */
1132 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1133
1134 /*
1135 * Init the structure.
1136 */
1137 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1138 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1139 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1140 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1141 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1142 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1143 pVM->pgm.s.fA20Enabled = true;
1144 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1145 pVM->pgm.s.pGstPaePdptR3 = NULL;
1146#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1147 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1148#endif
1149 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1150 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1151 {
1152 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1153#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1154 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1155#endif
1156 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1157 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1158 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1159 }
1160
1161#ifdef VBOX_STRICT
1162 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1163#endif
1164
1165 /*
1166 * Get the configured RAM size - to estimate saved state size.
1167 */
1168 uint64_t cbRam;
1169 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1170 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1171 cbRam = pVM->pgm.s.cbRamSize = 0;
1172 else if (RT_SUCCESS(rc))
1173 {
1174 if (cbRam < PAGE_SIZE)
1175 cbRam = 0;
1176 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1177 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1178 }
1179 else
1180 {
1181 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1182 return rc;
1183 }
1184
1185 /*
1186 * Register saved state data unit.
1187 */
1188 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1189 NULL, pgmR3Save, NULL,
1190 NULL, pgmR3Load, NULL);
1191 if (RT_FAILURE(rc))
1192 return rc;
1193
1194 /*
1195 * Initialize the PGM critical section and flush the phys TLBs
1196 */
1197 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1198 AssertRCReturn(rc, rc);
1199
1200 PGMR3PhysChunkInvalidateTLB(pVM);
1201 PGMPhysInvalidatePageR3MapTLB(pVM);
1202 PGMPhysInvalidatePageR0MapTLB(pVM);
1203 PGMPhysInvalidatePageGCMapTLB(pVM);
1204
1205 /*
1206 * Trees
1207 */
1208 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1209 if (RT_SUCCESS(rc))
1210 {
1211 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1212 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1213
1214 /*
1215 * Alocate the zero page.
1216 */
1217 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1218 }
1219 if (RT_SUCCESS(rc))
1220 {
1221 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1222 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1223 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1224 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1225 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1226
1227 /*
1228 * Init the paging.
1229 */
1230 rc = pgmR3InitPaging(pVM);
1231 }
1232 if (RT_SUCCESS(rc))
1233 {
1234 /*
1235 * Init the page pool.
1236 */
1237 rc = pgmR3PoolInit(pVM);
1238 }
1239 if (RT_SUCCESS(rc))
1240 {
1241 /*
1242 * Info & statistics
1243 */
1244 DBGFR3InfoRegisterInternal(pVM, "mode",
1245 "Shows the current paging mode. "
1246 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1247 pgmR3InfoMode);
1248 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1249 "Dumps all the entries in the top level paging table. No arguments.",
1250 pgmR3InfoCr3);
1251 DBGFR3InfoRegisterInternal(pVM, "phys",
1252 "Dumps all the physical address ranges. No arguments.",
1253 pgmR3PhysInfo);
1254 DBGFR3InfoRegisterInternal(pVM, "handlers",
1255 "Dumps physical, virtual and hyper virtual handlers. "
1256 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1257 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1258 pgmR3InfoHandlers);
1259 DBGFR3InfoRegisterInternal(pVM, "mappings",
1260 "Dumps guest mappings.",
1261 pgmR3MapInfo);
1262
1263 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1264#ifdef VBOX_WITH_STATISTICS
1265 pgmR3InitStats(pVM);
1266#endif
1267#ifdef VBOX_WITH_DEBUGGER
1268 /*
1269 * Debugger commands.
1270 */
1271 static bool fRegisteredCmds = false;
1272 if (!fRegisteredCmds)
1273 {
1274 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1275 if (RT_SUCCESS(rc))
1276 fRegisteredCmds = true;
1277 }
1278#endif
1279 return VINF_SUCCESS;
1280 }
1281
1282 /* Almost no cleanup necessary, MM frees all memory. */
1283 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1284
1285 return rc;
1286}
1287
1288
1289/**
1290 * Initializes the per-VCPU PGM.
1291 *
1292 * @returns VBox status code.
1293 * @param pVM The VM to operate on.
1294 */
1295VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1296{
1297 LogFlow(("PGMR3InitCPU\n"));
1298 return VINF_SUCCESS;
1299}
1300
1301
1302/**
1303 * Init paging.
1304 *
1305 * Since we need to check what mode the host is operating in before we can choose
1306 * the right paging functions for the host we have to delay this until R0 has
1307 * been initialized.
1308 *
1309 * @returns VBox status code.
1310 * @param pVM VM handle.
1311 */
1312static int pgmR3InitPaging(PVM pVM)
1313{
1314 /*
1315 * Force a recalculation of modes and switcher so everyone gets notified.
1316 */
1317 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1318 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1319 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1320
1321 /*
1322 * Allocate static mapping space for whatever the cr3 register
1323 * points to and in the case of PAE mode to the 4 PDs.
1324 */
1325 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1326 if (RT_FAILURE(rc))
1327 {
1328 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1329 return rc;
1330 }
1331 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1332
1333 /*
1334 * Allocate pages for the three possible intermediate contexts
1335 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1336 * for the sake of simplicity. The AMD64 uses the PAE for the
1337 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1338 *
1339 * We assume that two page tables will be enought for the core code
1340 * mappings (HC virtual and identity).
1341 */
1342 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1343 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1344 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1345 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1346 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1347 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1348 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1349 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1350 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1351 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1352 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1353 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1354 if ( !pVM->pgm.s.pInterPD
1355 || !pVM->pgm.s.apInterPTs[0]
1356 || !pVM->pgm.s.apInterPTs[1]
1357 || !pVM->pgm.s.apInterPaePTs[0]
1358 || !pVM->pgm.s.apInterPaePTs[1]
1359 || !pVM->pgm.s.apInterPaePDs[0]
1360 || !pVM->pgm.s.apInterPaePDs[1]
1361 || !pVM->pgm.s.apInterPaePDs[2]
1362 || !pVM->pgm.s.apInterPaePDs[3]
1363 || !pVM->pgm.s.pInterPaePDPT
1364 || !pVM->pgm.s.pInterPaePDPT64
1365 || !pVM->pgm.s.pInterPaePML4)
1366 {
1367 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1368 return VERR_NO_PAGE_MEMORY;
1369 }
1370
1371 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1372 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1373 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1374 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1375 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1376 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1377
1378 /*
1379 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1380 */
1381 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1382 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1383 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1384
1385 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1386 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1387
1388 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1389 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1390 {
1391 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1392 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1393 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1394 }
1395
1396 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1397 {
1398 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1399 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1400 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1401 }
1402
1403 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1404 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1405 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1406 | HCPhysInterPaePDPT64;
1407
1408 /*
1409 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1410 * We allocate pages for all three posibilities in order to simplify mappings and
1411 * avoid resource failure during mode switches. So, we need to cover all levels of the
1412 * of the first 4GB down to PD level.
1413 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1414 */
1415 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1416#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1417 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1418#endif
1419 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1420 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1421 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1422 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1423 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1424 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1425 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1426#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1427 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1428 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1429 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1430 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1431#endif
1432 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1433#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1434 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1435#endif
1436 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1437#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1438 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1439#endif
1440
1441 if ( !pVM->pgm.s.pShw32BitPdR3
1442 || !pVM->pgm.s.apShwPaePDsR3[0]
1443 || !pVM->pgm.s.apShwPaePDsR3[1]
1444 || !pVM->pgm.s.apShwPaePDsR3[2]
1445 || !pVM->pgm.s.apShwPaePDsR3[3]
1446 || !pVM->pgm.s.pShwPaePdptR3
1447 || !pVM->pgm.s.pShwNestedRootR3)
1448 {
1449 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1450 return VERR_NO_PAGE_MEMORY;
1451 }
1452
1453 /* get physical addresses. */
1454 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1455 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1456 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1457 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1458 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1459 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1460 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1461 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1462
1463 /*
1464 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1465 */
1466 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1467 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1468 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1469 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1470 {
1471 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1472 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1473 /* The flags will be corrected when entering and leaving long mode. */
1474 }
1475
1476 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhysShw32BitPD);
1477
1478 /*
1479 * Initialize paging workers and mode from current host mode
1480 * and the guest running in real mode.
1481 */
1482 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1483 switch (pVM->pgm.s.enmHostMode)
1484 {
1485 case SUPPAGINGMODE_32_BIT:
1486 case SUPPAGINGMODE_32_BIT_GLOBAL:
1487 case SUPPAGINGMODE_PAE:
1488 case SUPPAGINGMODE_PAE_GLOBAL:
1489 case SUPPAGINGMODE_PAE_NX:
1490 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1491 break;
1492
1493 case SUPPAGINGMODE_AMD64:
1494 case SUPPAGINGMODE_AMD64_GLOBAL:
1495 case SUPPAGINGMODE_AMD64_NX:
1496 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1497#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1498 if (ARCH_BITS != 64)
1499 {
1500 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1501 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1502 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1503 }
1504#endif
1505 break;
1506 default:
1507 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1508 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1509 }
1510 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1511 if (RT_SUCCESS(rc))
1512 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1513 if (RT_SUCCESS(rc))
1514 {
1515 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1516#if HC_ARCH_BITS == 64
1517 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp HCPhysShwPaePml4=%RHp\n",
1518 pVM->pgm.s.HCPhysShw32BitPD,
1519 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1520 pVM->pgm.s.HCPhysShwPaePdpt,
1521 pVM->pgm.s.HCPhysShwPaePml4));
1522 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1523 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1524 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1525 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1526 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1527 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1528 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1529#endif
1530
1531 return VINF_SUCCESS;
1532 }
1533
1534 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1535 return rc;
1536}
1537
1538
1539#ifdef VBOX_WITH_STATISTICS
1540/**
1541 * Init statistics
1542 */
1543static void pgmR3InitStats(PVM pVM)
1544{
1545 PPGM pPGM = &pVM->pgm.s;
1546 unsigned i;
1547
1548 /*
1549 * Note! The layout of this function matches the member layout exactly!
1550 */
1551
1552 /* Common - misc variables */
1553 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1554 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1555 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1556 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1557 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1558 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1559
1560 /* Common - stats */
1561#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1562 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1563 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1564 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1565 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1566 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1567 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1568#endif
1569 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1570 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1571 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1572 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1573 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1574 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1575
1576 /* R3 only: */
1577 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1578 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1579 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1580 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1581 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1582 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1583
1584 /* GC only: */
1585 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1586 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1587 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1588 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1589
1590 /* RZ only: */
1591 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1592 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1593 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1594 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1595 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1596 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1597 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1598 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1599 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1600 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1601 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1602 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1603 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1604 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1605 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1606 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1607 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1608 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1609 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1610 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1611 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1612 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1613 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1614 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1615 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1616 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1617 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1618 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1619 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1620 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1621 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1622 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1624 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1625 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1634 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1635 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1636 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1637 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1638 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1639 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1640 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1641 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1642
1643 /* HC only: */
1644
1645 /* RZ & R3: */
1646 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1647 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1648 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1649 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1650 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1651 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1652 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1653 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1654 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1655 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1656 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1657 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1658 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1659 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1660 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1661 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1662 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1663 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1664 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1665 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1666 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1667 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1668 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1669 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1670 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1671 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1672 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1673 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1674 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1675 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1676 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1677 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1678 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1679 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1680 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1681 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1682 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1683 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1684 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1685 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1686 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1687 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1688 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1689 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1690 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1691 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1692 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1693/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1694 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1695 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1696 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1697 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1698 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1699 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1700
1701 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1702 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1703 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1704 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1705 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1706 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1707 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1708 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1709 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1710 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1711 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1712 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1713 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1714 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1715 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1716 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1717 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1718 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1719 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1720 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1721 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1722 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1723 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1724 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1725 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1726 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1727 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1728 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1729 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1730 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1731 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1732 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1733 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1734 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1735 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1736 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1737 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1738 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1739 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1740 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1741 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1742 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1743 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1744 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1745 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1746 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1747 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1748/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1749 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1750 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1751 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1752 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1753 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1754 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1755
1756}
1757#endif /* VBOX_WITH_STATISTICS */
1758
1759
1760/**
1761 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1762 *
1763 * The dynamic mapping area will also be allocated and initialized at this
1764 * time. We could allocate it during PGMR3Init of course, but the mapping
1765 * wouldn't be allocated at that time preventing us from setting up the
1766 * page table entries with the dummy page.
1767 *
1768 * @returns VBox status code.
1769 * @param pVM VM handle.
1770 */
1771VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1772{
1773 RTGCPTR GCPtr;
1774 /*
1775 * Reserve space for mapping the paging pages into guest context.
1776 */
1777 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1778 AssertRCReturn(rc, rc);
1779 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1780 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1781
1782 /*
1783 * Reserve space for the dynamic mappings.
1784 */
1785 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1786 if (RT_SUCCESS(rc))
1787 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1788
1789 if ( RT_SUCCESS(rc)
1790 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1791 {
1792 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1793 if (RT_SUCCESS(rc))
1794 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1795 }
1796 if (RT_SUCCESS(rc))
1797 {
1798 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1799 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1800 }
1801 return rc;
1802}
1803
1804
1805/**
1806 * Ring-3 init finalizing.
1807 *
1808 * @returns VBox status code.
1809 * @param pVM The VM handle.
1810 */
1811VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1812{
1813 /*
1814 * Map the paging pages into the guest context.
1815 */
1816 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1817 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1818
1819 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1820 AssertRCReturn(rc, rc);
1821 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1822 GCPtr += PAGE_SIZE;
1823 GCPtr += PAGE_SIZE; /* reserved page */
1824
1825 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1826 {
1827 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1828 AssertRCReturn(rc, rc);
1829 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1830 GCPtr += PAGE_SIZE;
1831 }
1832 /* A bit of paranoia is justified. */
1833 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1834 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1835 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1836 GCPtr += PAGE_SIZE; /* reserved page */
1837
1838 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1839 AssertRCReturn(rc, rc);
1840 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1841 GCPtr += PAGE_SIZE;
1842 GCPtr += PAGE_SIZE; /* reserved page */
1843
1844
1845 /*
1846 * Reserve space for the dynamic mappings.
1847 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1848 */
1849 /* get the pointer to the page table entries. */
1850 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1851 AssertRelease(pMapping);
1852 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1853 const unsigned iPT = off >> X86_PD_SHIFT;
1854 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1855 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1856 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1857
1858 /* init cache */
1859 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1860 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1861 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1862
1863 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1864 {
1865 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1866 AssertRCReturn(rc, rc);
1867 }
1868
1869 /*
1870 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1871 * Intel only goes up to 36 bits, so we stick to 36 as well.
1872 */
1873 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1874 uint32_t u32Dummy, u32Features;
1875 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1876
1877 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1878 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1879 else
1880 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1881
1882 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1883
1884 return rc;
1885}
1886
1887
1888/**
1889 * Applies relocations to data and code managed by this component.
1890 *
1891 * This function will be called at init and whenever the VMM need to relocate it
1892 * self inside the GC.
1893 *
1894 * @param pVM The VM.
1895 * @param offDelta Relocation delta relative to old location.
1896 */
1897VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1898{
1899 LogFlow(("PGMR3Relocate\n"));
1900
1901 /*
1902 * Paging stuff.
1903 */
1904 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1905 /** @todo move this into shadow and guest specific relocation functions. */
1906 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
1907 pVM->pgm.s.pShw32BitPdRC += offDelta;
1908 pVM->pgm.s.pGst32BitPdRC += offDelta;
1909 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1910 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC); i++)
1911 {
1912 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1913 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1914 }
1915 pVM->pgm.s.pGstPaePdptRC += offDelta;
1916 pVM->pgm.s.pShwPaePdptRC += offDelta;
1917
1918 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1919 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1920
1921 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1922 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1923 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1924
1925 /*
1926 * Trees.
1927 */
1928 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1929
1930 /*
1931 * Ram ranges.
1932 */
1933 if (pVM->pgm.s.pRamRangesR3)
1934 {
1935 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1936 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1937 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1938 }
1939
1940 /*
1941 * Update the two page directories with all page table mappings.
1942 * (One or more of them have changed, that's why we're here.)
1943 */
1944 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1945 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1946 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1947
1948 /* Relocate GC addresses of Page Tables. */
1949 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1950 {
1951 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1952 {
1953 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1954 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1955 }
1956 }
1957
1958 /*
1959 * Dynamic page mapping area.
1960 */
1961 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1962 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1963 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1964
1965 /*
1966 * The Zero page.
1967 */
1968 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1969 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1970
1971 /*
1972 * Physical and virtual handlers.
1973 */
1974 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1975 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1976 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1977
1978 /*
1979 * The page pool.
1980 */
1981 pgmR3PoolRelocate(pVM);
1982}
1983
1984
1985/**
1986 * Callback function for relocating a physical access handler.
1987 *
1988 * @returns 0 (continue enum)
1989 * @param pNode Pointer to a PGMPHYSHANDLER node.
1990 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1991 * not certain the delta will fit in a void pointer for all possible configs.
1992 */
1993static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1994{
1995 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1996 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1997 if (pHandler->pfnHandlerRC)
1998 pHandler->pfnHandlerRC += offDelta;
1999 if (pHandler->pvUserRC >= 0x10000)
2000 pHandler->pvUserRC += offDelta;
2001 return 0;
2002}
2003
2004
2005/**
2006 * Callback function for relocating a virtual access handler.
2007 *
2008 * @returns 0 (continue enum)
2009 * @param pNode Pointer to a PGMVIRTHANDLER node.
2010 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2011 * not certain the delta will fit in a void pointer for all possible configs.
2012 */
2013static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2014{
2015 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2016 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2017 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2018 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2019 Assert(pHandler->pfnHandlerRC);
2020 pHandler->pfnHandlerRC += offDelta;
2021 return 0;
2022}
2023
2024
2025/**
2026 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2027 *
2028 * @returns 0 (continue enum)
2029 * @param pNode Pointer to a PGMVIRTHANDLER node.
2030 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2031 * not certain the delta will fit in a void pointer for all possible configs.
2032 */
2033static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2034{
2035 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2036 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2037 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2038 Assert(pHandler->pfnHandlerRC);
2039 pHandler->pfnHandlerRC += offDelta;
2040 return 0;
2041}
2042
2043
2044/**
2045 * The VM is being reset.
2046 *
2047 * For the PGM component this means that any PD write monitors
2048 * needs to be removed.
2049 *
2050 * @param pVM VM handle.
2051 */
2052VMMR3DECL(void) PGMR3Reset(PVM pVM)
2053{
2054 LogFlow(("PGMR3Reset:\n"));
2055 VM_ASSERT_EMT(pVM);
2056
2057 pgmLock(pVM);
2058
2059 /*
2060 * Unfix any fixed mappings and disable CR3 monitoring.
2061 */
2062 pVM->pgm.s.fMappingsFixed = false;
2063 pVM->pgm.s.GCPtrMappingFixed = 0;
2064 pVM->pgm.s.cbMappingFixed = 0;
2065
2066 /* Exit the guest paging mode before the pgm pool gets reset.
2067 * Important to clean up the amd64 case.
2068 */
2069 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2070 AssertRC(rc);
2071#ifdef DEBUG
2072 DBGFR3InfoLog(pVM, "mappings", NULL);
2073 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2074#endif
2075
2076 /*
2077 * Reset the shadow page pool.
2078 */
2079 pgmR3PoolReset(pVM);
2080
2081 /*
2082 * Re-init other members.
2083 */
2084 pVM->pgm.s.fA20Enabled = true;
2085
2086 /*
2087 * Clear the FFs PGM owns.
2088 */
2089 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2090 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2091
2092 /*
2093 * Reset (zero) RAM pages.
2094 */
2095 rc = pgmR3PhysRamReset(pVM);
2096 if (RT_SUCCESS(rc))
2097 {
2098#ifdef VBOX_WITH_NEW_PHYS_CODE
2099 /*
2100 * Reset (zero) shadow ROM pages.
2101 */
2102 rc = pgmR3PhysRomReset(pVM);
2103#endif
2104 if (RT_SUCCESS(rc))
2105 {
2106 /*
2107 * Switch mode back to real mode.
2108 */
2109 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2110 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2111 }
2112 }
2113
2114 pgmUnlock(pVM);
2115 //return rc;
2116 AssertReleaseRC(rc);
2117}
2118
2119
2120#ifdef VBOX_STRICT
2121/**
2122 * VM state change callback for clearing fNoMorePhysWrites after
2123 * a snapshot has been created.
2124 */
2125static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2126{
2127 if (enmState == VMSTATE_RUNNING)
2128 pVM->pgm.s.fNoMorePhysWrites = false;
2129}
2130#endif
2131
2132
2133/**
2134 * Terminates the PGM.
2135 *
2136 * @returns VBox status code.
2137 * @param pVM Pointer to VM structure.
2138 */
2139VMMR3DECL(int) PGMR3Term(PVM pVM)
2140{
2141 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2142}
2143
2144
2145/**
2146 * Terminates the per-VCPU PGM.
2147 *
2148 * Termination means cleaning up and freeing all resources,
2149 * the VM it self is at this point powered off or suspended.
2150 *
2151 * @returns VBox status code.
2152 * @param pVM The VM to operate on.
2153 */
2154VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2155{
2156 return 0;
2157}
2158
2159
2160/**
2161 * Execute state save operation.
2162 *
2163 * @returns VBox status code.
2164 * @param pVM VM Handle.
2165 * @param pSSM SSM operation handle.
2166 */
2167static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2168{
2169 PPGM pPGM = &pVM->pgm.s;
2170
2171 /* No more writes to physical memory after this point! */
2172 pVM->pgm.s.fNoMorePhysWrites = true;
2173
2174 /*
2175 * Save basic data (required / unaffected by relocation).
2176 */
2177#if 1
2178 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2179#else
2180 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2181#endif
2182 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2183 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2184 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2185 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2186 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2187 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2188 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2189 SSMR3PutU32(pSSM, ~0); /* Separator. */
2190
2191 /*
2192 * The guest mappings.
2193 */
2194 uint32_t i = 0;
2195 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2196 {
2197 SSMR3PutU32(pSSM, i);
2198 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2199 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2200 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2201 /* flags are done by the mapping owners! */
2202 }
2203 SSMR3PutU32(pSSM, ~0); /* terminator. */
2204
2205 /*
2206 * Ram range flags and bits.
2207 */
2208 i = 0;
2209 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2210 {
2211 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2212
2213 SSMR3PutU32(pSSM, i);
2214 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2215 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2216 SSMR3PutGCPhys(pSSM, pRam->cb);
2217 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2218
2219 /* Flags. */
2220 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2221 for (unsigned iPage = 0; iPage < cPages; iPage++)
2222 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2223
2224 /* any memory associated with the range. */
2225 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2226 {
2227 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2228 {
2229 if (pRam->paChunkR3Ptrs[iChunk])
2230 {
2231 SSMR3PutU8(pSSM, 1); /* chunk present */
2232 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2233 }
2234 else
2235 SSMR3PutU8(pSSM, 0); /* no chunk present */
2236 }
2237 }
2238 else if (pRam->pvR3)
2239 {
2240 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2241 if (RT_FAILURE(rc))
2242 {
2243 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2244 return rc;
2245 }
2246 }
2247 }
2248 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2249}
2250
2251
2252/**
2253 * Execute state load operation.
2254 *
2255 * @returns VBox status code.
2256 * @param pVM VM Handle.
2257 * @param pSSM SSM operation handle.
2258 * @param u32Version Data layout version.
2259 */
2260static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2261{
2262 /*
2263 * Validate version.
2264 */
2265 if (u32Version != PGM_SAVED_STATE_VERSION)
2266 {
2267 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2268 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2269 }
2270
2271 /*
2272 * Call the reset function to make sure all the memory is cleared.
2273 */
2274 PGMR3Reset(pVM);
2275
2276 /*
2277 * Load basic data (required / unaffected by relocation).
2278 */
2279 PPGM pPGM = &pVM->pgm.s;
2280#if 1
2281 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2282#else
2283 uint32_t u;
2284 SSMR3GetU32(pSSM, &u);
2285 pPGM->fMappingsFixed = u;
2286#endif
2287 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2288 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2289
2290 RTUINT cbRamSize;
2291 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2292 if (RT_FAILURE(rc))
2293 return rc;
2294 if (cbRamSize != pPGM->cbRamSize)
2295 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2296 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2297 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2298 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2299 RTUINT uGuestMode;
2300 SSMR3GetUInt(pSSM, &uGuestMode);
2301 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2302
2303 /* check separator. */
2304 uint32_t u32Sep;
2305 SSMR3GetU32(pSSM, &u32Sep);
2306 if (RT_FAILURE(rc))
2307 return rc;
2308 if (u32Sep != (uint32_t)~0)
2309 {
2310 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2311 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2312 }
2313
2314 /*
2315 * The guest mappings.
2316 */
2317 uint32_t i = 0;
2318 for (;; i++)
2319 {
2320 /* Check the seqence number / separator. */
2321 rc = SSMR3GetU32(pSSM, &u32Sep);
2322 if (RT_FAILURE(rc))
2323 return rc;
2324 if (u32Sep == ~0U)
2325 break;
2326 if (u32Sep != i)
2327 {
2328 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2329 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2330 }
2331
2332 /* get the mapping details. */
2333 char szDesc[256];
2334 szDesc[0] = '\0';
2335 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2336 if (RT_FAILURE(rc))
2337 return rc;
2338 RTGCPTR GCPtr;
2339 SSMR3GetGCPtr(pSSM, &GCPtr);
2340 RTGCPTR cPTs;
2341 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2342 if (RT_FAILURE(rc))
2343 return rc;
2344
2345 /* find matching range. */
2346 PPGMMAPPING pMapping;
2347 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2348 if ( pMapping->cPTs == cPTs
2349 && !strcmp(pMapping->pszDesc, szDesc))
2350 break;
2351 if (!pMapping)
2352 {
2353 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2354 cPTs, szDesc, GCPtr));
2355 AssertFailed();
2356 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2357 }
2358
2359 /* relocate it. */
2360 if (pMapping->GCPtr != GCPtr)
2361 {
2362 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2363 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2364 }
2365 else
2366 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2367 }
2368
2369 /*
2370 * Ram range flags and bits.
2371 */
2372 i = 0;
2373 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2374 {
2375 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2376 /* Check the seqence number / separator. */
2377 rc = SSMR3GetU32(pSSM, &u32Sep);
2378 if (RT_FAILURE(rc))
2379 return rc;
2380 if (u32Sep == ~0U)
2381 break;
2382 if (u32Sep != i)
2383 {
2384 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2385 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2386 }
2387
2388 /* Get the range details. */
2389 RTGCPHYS GCPhys;
2390 SSMR3GetGCPhys(pSSM, &GCPhys);
2391 RTGCPHYS GCPhysLast;
2392 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2393 RTGCPHYS cb;
2394 SSMR3GetGCPhys(pSSM, &cb);
2395 uint8_t fHaveBits;
2396 rc = SSMR3GetU8(pSSM, &fHaveBits);
2397 if (RT_FAILURE(rc))
2398 return rc;
2399 if (fHaveBits & ~1)
2400 {
2401 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2402 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2403 }
2404
2405 /* Match it up with the current range. */
2406 if ( GCPhys != pRam->GCPhys
2407 || GCPhysLast != pRam->GCPhysLast
2408 || cb != pRam->cb
2409 || fHaveBits != !!pRam->pvR3)
2410 {
2411 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2412 "State : %RGp-%RGp %RGp bytes %s\n",
2413 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2414 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2415 /*
2416 * If we're loading a state for debugging purpose, don't make a fuss if
2417 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2418 */
2419 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2420 || GCPhys < 8 * _1M)
2421 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2422
2423 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2424 while (cPages-- > 0)
2425 {
2426 uint16_t u16Ignore;
2427 SSMR3GetU16(pSSM, &u16Ignore);
2428 }
2429 continue;
2430 }
2431
2432 /* Flags. */
2433 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2434 for (unsigned iPage = 0; iPage < cPages; iPage++)
2435 {
2436 uint16_t u16 = 0;
2437 SSMR3GetU16(pSSM, &u16);
2438 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2439 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2440 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2441 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2442 }
2443
2444 /* any memory associated with the range. */
2445 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2446 {
2447 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2448 {
2449 uint8_t fValidChunk;
2450
2451 rc = SSMR3GetU8(pSSM, &fValidChunk);
2452 if (RT_FAILURE(rc))
2453 return rc;
2454 if (fValidChunk > 1)
2455 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2456
2457 if (fValidChunk)
2458 {
2459 if (!pRam->paChunkR3Ptrs[iChunk])
2460 {
2461 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2462 if (RT_FAILURE(rc))
2463 return rc;
2464 }
2465 Assert(pRam->paChunkR3Ptrs[iChunk]);
2466
2467 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2468 }
2469 /* else nothing to do */
2470 }
2471 }
2472 else if (pRam->pvR3)
2473 {
2474 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2475 if (RT_FAILURE(rc))
2476 {
2477 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2478 return rc;
2479 }
2480 }
2481 }
2482
2483 /*
2484 * We require a full resync now.
2485 */
2486 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2487 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2488 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2489 pPGM->fPhysCacheFlushPending = true;
2490 pgmR3HandlerPhysicalUpdateAll(pVM);
2491
2492 /*
2493 * Change the paging mode.
2494 */
2495 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2496
2497 /* Restore pVM->pgm.s.GCPhysCR3. */
2498 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2499 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2500 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2501 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2502 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2503 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2504 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2505 else
2506 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2507 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2508
2509 return rc;
2510}
2511
2512
2513/**
2514 * Show paging mode.
2515 *
2516 * @param pVM VM Handle.
2517 * @param pHlp The info helpers.
2518 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2519 */
2520static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2521{
2522 /* digest argument. */
2523 bool fGuest, fShadow, fHost;
2524 if (pszArgs)
2525 pszArgs = RTStrStripL(pszArgs);
2526 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2527 fShadow = fHost = fGuest = true;
2528 else
2529 {
2530 fShadow = fHost = fGuest = false;
2531 if (strstr(pszArgs, "guest"))
2532 fGuest = true;
2533 if (strstr(pszArgs, "shadow"))
2534 fShadow = true;
2535 if (strstr(pszArgs, "host"))
2536 fHost = true;
2537 }
2538
2539 /* print info. */
2540 if (fGuest)
2541 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2542 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2543 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2544 if (fShadow)
2545 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2546 if (fHost)
2547 {
2548 const char *psz;
2549 switch (pVM->pgm.s.enmHostMode)
2550 {
2551 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2552 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2553 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2554 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2555 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2556 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2557 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2558 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2559 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2560 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2561 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2562 default: psz = "unknown"; break;
2563 }
2564 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2565 }
2566}
2567
2568
2569/**
2570 * Dump registered MMIO ranges to the log.
2571 *
2572 * @param pVM VM Handle.
2573 * @param pHlp The info helpers.
2574 * @param pszArgs Arguments, ignored.
2575 */
2576static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2577{
2578 NOREF(pszArgs);
2579 pHlp->pfnPrintf(pHlp,
2580 "RAM ranges (pVM=%p)\n"
2581 "%.*s %.*s\n",
2582 pVM,
2583 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2584 sizeof(RTHCPTR) * 2, "pvHC ");
2585
2586 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2587 pHlp->pfnPrintf(pHlp,
2588 "%RGp-%RGp %RHv %s\n",
2589 pCur->GCPhys,
2590 pCur->GCPhysLast,
2591 pCur->pvR3,
2592 pCur->pszDesc);
2593}
2594
2595/**
2596 * Dump the page directory to the log.
2597 *
2598 * @param pVM VM Handle.
2599 * @param pHlp The info helpers.
2600 * @param pszArgs Arguments, ignored.
2601 */
2602static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2603{
2604/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2605 /* Big pages supported? */
2606 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2607
2608 /* Global pages supported? */
2609 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2610
2611 NOREF(pszArgs);
2612
2613 /*
2614 * Get page directory addresses.
2615 */
2616 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2617 Assert(pPDSrc);
2618 Assert(PGMPhysGCPhys2HCPtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2619
2620 /*
2621 * Iterate the page directory.
2622 */
2623 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2624 {
2625 X86PDE PdeSrc = pPDSrc->a[iPD];
2626 if (PdeSrc.n.u1Present)
2627 {
2628 if (PdeSrc.b.u1Size && fPSE)
2629 pHlp->pfnPrintf(pHlp,
2630 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2631 iPD,
2632 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2633 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2634 else
2635 pHlp->pfnPrintf(pHlp,
2636 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2637 iPD,
2638 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2639 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2640 }
2641 }
2642}
2643
2644
2645/**
2646 * Serivce a VMMCALLHOST_PGM_LOCK call.
2647 *
2648 * @returns VBox status code.
2649 * @param pVM The VM handle.
2650 */
2651VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2652{
2653 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2654 AssertRC(rc);
2655 return rc;
2656}
2657
2658
2659/**
2660 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2661 *
2662 * @returns PGM_TYPE_*.
2663 * @param pgmMode The mode value to convert.
2664 */
2665DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2666{
2667 switch (pgmMode)
2668 {
2669 case PGMMODE_REAL: return PGM_TYPE_REAL;
2670 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2671 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2672 case PGMMODE_PAE:
2673 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2674 case PGMMODE_AMD64:
2675 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2676 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2677 case PGMMODE_EPT: return PGM_TYPE_EPT;
2678 default:
2679 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2680 }
2681}
2682
2683
2684/**
2685 * Gets the index into the paging mode data array of a SHW+GST mode.
2686 *
2687 * @returns PGM::paPagingData index.
2688 * @param uShwType The shadow paging mode type.
2689 * @param uGstType The guest paging mode type.
2690 */
2691DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2692{
2693 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2694 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2695 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2696 + (uGstType - PGM_TYPE_REAL);
2697}
2698
2699
2700/**
2701 * Gets the index into the paging mode data array of a SHW+GST mode.
2702 *
2703 * @returns PGM::paPagingData index.
2704 * @param enmShw The shadow paging mode.
2705 * @param enmGst The guest paging mode.
2706 */
2707DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2708{
2709 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2710 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2711 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2712}
2713
2714
2715/**
2716 * Calculates the max data index.
2717 * @returns The number of entries in the paging data array.
2718 */
2719DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2720{
2721 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2722}
2723
2724
2725/**
2726 * Initializes the paging mode data kept in PGM::paModeData.
2727 *
2728 * @param pVM The VM handle.
2729 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2730 * This is used early in the init process to avoid trouble with PDM
2731 * not being initialized yet.
2732 */
2733static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2734{
2735 PPGMMODEDATA pModeData;
2736 int rc;
2737
2738 /*
2739 * Allocate the array on the first call.
2740 */
2741 if (!pVM->pgm.s.paModeData)
2742 {
2743 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2744 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2745 }
2746
2747 /*
2748 * Initialize the array entries.
2749 */
2750 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2751 pModeData->uShwType = PGM_TYPE_32BIT;
2752 pModeData->uGstType = PGM_TYPE_REAL;
2753 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756
2757 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2758 pModeData->uShwType = PGM_TYPE_32BIT;
2759 pModeData->uGstType = PGM_TYPE_PROT;
2760 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2761 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2762 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763
2764 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2765 pModeData->uShwType = PGM_TYPE_32BIT;
2766 pModeData->uGstType = PGM_TYPE_32BIT;
2767 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2768 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2769 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2770
2771 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2772 pModeData->uShwType = PGM_TYPE_PAE;
2773 pModeData->uGstType = PGM_TYPE_REAL;
2774 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2775 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2776 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777
2778 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2779 pModeData->uShwType = PGM_TYPE_PAE;
2780 pModeData->uGstType = PGM_TYPE_PROT;
2781 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2782 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2783 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784
2785 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2786 pModeData->uShwType = PGM_TYPE_PAE;
2787 pModeData->uGstType = PGM_TYPE_32BIT;
2788 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2789 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2791
2792 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2793 pModeData->uShwType = PGM_TYPE_PAE;
2794 pModeData->uGstType = PGM_TYPE_PAE;
2795 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2797 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798
2799#ifdef VBOX_WITH_64_BITS_GUESTS
2800 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2801 pModeData->uShwType = PGM_TYPE_AMD64;
2802 pModeData->uGstType = PGM_TYPE_AMD64;
2803 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2806#endif
2807
2808 /* The nested paging mode. */
2809 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2810 pModeData->uShwType = PGM_TYPE_NESTED;
2811 pModeData->uGstType = PGM_TYPE_REAL;
2812 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2813 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2814
2815 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2816 pModeData->uShwType = PGM_TYPE_NESTED;
2817 pModeData->uGstType = PGM_TYPE_PROT;
2818 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2820
2821 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2822 pModeData->uShwType = PGM_TYPE_NESTED;
2823 pModeData->uGstType = PGM_TYPE_32BIT;
2824 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2826
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2828 pModeData->uShwType = PGM_TYPE_NESTED;
2829 pModeData->uGstType = PGM_TYPE_PAE;
2830 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2832
2833#ifdef VBOX_WITH_64_BITS_GUESTS
2834 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2835 pModeData->uShwType = PGM_TYPE_NESTED;
2836 pModeData->uGstType = PGM_TYPE_AMD64;
2837 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2839#endif
2840
2841 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2842 switch(pVM->pgm.s.enmHostMode)
2843 {
2844 case SUPPAGINGMODE_32_BIT:
2845 case SUPPAGINGMODE_32_BIT_GLOBAL:
2846#ifdef VBOX_WITH_64_BITS_GUESTS
2847 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2848#else
2849 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2850#endif
2851 {
2852 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2853 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2854 }
2855 break;
2856
2857 case SUPPAGINGMODE_PAE:
2858 case SUPPAGINGMODE_PAE_NX:
2859 case SUPPAGINGMODE_PAE_GLOBAL:
2860 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2861#ifdef VBOX_WITH_64_BITS_GUESTS
2862 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2863#else
2864 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2865#endif
2866 {
2867 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2868 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869 }
2870 break;
2871
2872 case SUPPAGINGMODE_AMD64:
2873 case SUPPAGINGMODE_AMD64_GLOBAL:
2874 case SUPPAGINGMODE_AMD64_NX:
2875 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2876#ifdef VBOX_WITH_64_BITS_GUESTS
2877 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2878#else
2879 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_PAE;i++)
2880#endif
2881 {
2882 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2883 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884 }
2885 break;
2886 default:
2887 AssertFailed();
2888 break;
2889 }
2890
2891 /* Extended paging (EPT) / Intel VT-x */
2892 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2893 pModeData->uShwType = PGM_TYPE_EPT;
2894 pModeData->uGstType = PGM_TYPE_REAL;
2895 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2897 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2898
2899 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2900 pModeData->uShwType = PGM_TYPE_EPT;
2901 pModeData->uGstType = PGM_TYPE_PROT;
2902 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905
2906 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2907 pModeData->uShwType = PGM_TYPE_EPT;
2908 pModeData->uGstType = PGM_TYPE_32BIT;
2909 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2912
2913 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2914 pModeData->uShwType = PGM_TYPE_EPT;
2915 pModeData->uGstType = PGM_TYPE_PAE;
2916 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2919
2920#ifdef VBOX_WITH_64_BITS_GUESTS
2921 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2922 pModeData->uShwType = PGM_TYPE_EPT;
2923 pModeData->uGstType = PGM_TYPE_AMD64;
2924 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2927#endif
2928 return VINF_SUCCESS;
2929}
2930
2931
2932/**
2933 * Switch to different (or relocated in the relocate case) mode data.
2934 *
2935 * @param pVM The VM handle.
2936 * @param enmShw The the shadow paging mode.
2937 * @param enmGst The the guest paging mode.
2938 */
2939static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2940{
2941 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2942
2943 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2944 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2945
2946 /* shadow */
2947 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2948 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2949 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2950 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2951 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2952
2953 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2954 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2955
2956 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2957 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2958
2959
2960 /* guest */
2961 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2962 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2963 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2964 Assert(pVM->pgm.s.pfnR3GstGetPage);
2965 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2966 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2967 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2968 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2969 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2970 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2971 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2972 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2973 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2974 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2975
2976 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2977 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2978 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2979 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
2980 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
2981 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
2982 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
2983 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
2984 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
2985
2986 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2987 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2988 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2989 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2990 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2991 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2992 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2993 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2994 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2995
2996
2997 /* both */
2998 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2999 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3000 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3001 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3002 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3003 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3004 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3005#ifdef VBOX_STRICT
3006 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3007#endif
3008
3009 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3010 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3011 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3012 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3013 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3014 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3015#ifdef VBOX_STRICT
3016 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3017#endif
3018
3019 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3020 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3021 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3022 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3023 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3024 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3025#ifdef VBOX_STRICT
3026 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3027#endif
3028}
3029
3030
3031/**
3032 * Calculates the shadow paging mode.
3033 *
3034 * @returns The shadow paging mode.
3035 * @param pVM VM handle.
3036 * @param enmGuestMode The guest mode.
3037 * @param enmHostMode The host mode.
3038 * @param enmShadowMode The current shadow mode.
3039 * @param penmSwitcher Where to store the switcher to use.
3040 * VMMSWITCHER_INVALID means no change.
3041 */
3042static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3043{
3044 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3045 switch (enmGuestMode)
3046 {
3047 /*
3048 * When switching to real or protected mode we don't change
3049 * anything since it's likely that we'll switch back pretty soon.
3050 *
3051 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3052 * and is supposed to determine which shadow paging and switcher to
3053 * use during init.
3054 */
3055 case PGMMODE_REAL:
3056 case PGMMODE_PROTECTED:
3057 if ( enmShadowMode != PGMMODE_INVALID
3058 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3059 break; /* (no change) */
3060
3061 switch (enmHostMode)
3062 {
3063 case SUPPAGINGMODE_32_BIT:
3064 case SUPPAGINGMODE_32_BIT_GLOBAL:
3065 enmShadowMode = PGMMODE_32_BIT;
3066 enmSwitcher = VMMSWITCHER_32_TO_32;
3067 break;
3068
3069 case SUPPAGINGMODE_PAE:
3070 case SUPPAGINGMODE_PAE_NX:
3071 case SUPPAGINGMODE_PAE_GLOBAL:
3072 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3073 enmShadowMode = PGMMODE_PAE;
3074 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3075#ifdef DEBUG_bird
3076 if (RTEnvExist("VBOX_32BIT"))
3077 {
3078 enmShadowMode = PGMMODE_32_BIT;
3079 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3080 }
3081#endif
3082 break;
3083
3084 case SUPPAGINGMODE_AMD64:
3085 case SUPPAGINGMODE_AMD64_GLOBAL:
3086 case SUPPAGINGMODE_AMD64_NX:
3087 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3088 enmShadowMode = PGMMODE_PAE;
3089 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3090#ifdef DEBUG_bird
3091 if (RTEnvExist("VBOX_32BIT"))
3092 {
3093 enmShadowMode = PGMMODE_32_BIT;
3094 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3095 }
3096#endif
3097 break;
3098
3099 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3100 }
3101 break;
3102
3103 case PGMMODE_32_BIT:
3104 switch (enmHostMode)
3105 {
3106 case SUPPAGINGMODE_32_BIT:
3107 case SUPPAGINGMODE_32_BIT_GLOBAL:
3108 enmShadowMode = PGMMODE_32_BIT;
3109 enmSwitcher = VMMSWITCHER_32_TO_32;
3110 break;
3111
3112 case SUPPAGINGMODE_PAE:
3113 case SUPPAGINGMODE_PAE_NX:
3114 case SUPPAGINGMODE_PAE_GLOBAL:
3115 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3116 enmShadowMode = PGMMODE_PAE;
3117 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3118#ifdef DEBUG_bird
3119 if (RTEnvExist("VBOX_32BIT"))
3120 {
3121 enmShadowMode = PGMMODE_32_BIT;
3122 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3123 }
3124#endif
3125 break;
3126
3127 case SUPPAGINGMODE_AMD64:
3128 case SUPPAGINGMODE_AMD64_GLOBAL:
3129 case SUPPAGINGMODE_AMD64_NX:
3130 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3131 enmShadowMode = PGMMODE_PAE;
3132 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3133#ifdef DEBUG_bird
3134 if (RTEnvExist("VBOX_32BIT"))
3135 {
3136 enmShadowMode = PGMMODE_32_BIT;
3137 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3138 }
3139#endif
3140 break;
3141
3142 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3143 }
3144 break;
3145
3146 case PGMMODE_PAE:
3147 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3148 switch (enmHostMode)
3149 {
3150 case SUPPAGINGMODE_32_BIT:
3151 case SUPPAGINGMODE_32_BIT_GLOBAL:
3152 enmShadowMode = PGMMODE_PAE;
3153 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3154 break;
3155
3156 case SUPPAGINGMODE_PAE:
3157 case SUPPAGINGMODE_PAE_NX:
3158 case SUPPAGINGMODE_PAE_GLOBAL:
3159 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3160 enmShadowMode = PGMMODE_PAE;
3161 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3162 break;
3163
3164 case SUPPAGINGMODE_AMD64:
3165 case SUPPAGINGMODE_AMD64_GLOBAL:
3166 case SUPPAGINGMODE_AMD64_NX:
3167 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3168 enmShadowMode = PGMMODE_PAE;
3169 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3170 break;
3171
3172 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3173 }
3174 break;
3175
3176 case PGMMODE_AMD64:
3177 case PGMMODE_AMD64_NX:
3178 switch (enmHostMode)
3179 {
3180 case SUPPAGINGMODE_32_BIT:
3181 case SUPPAGINGMODE_32_BIT_GLOBAL:
3182 enmShadowMode = PGMMODE_PAE;
3183 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3184 break;
3185
3186 case SUPPAGINGMODE_PAE:
3187 case SUPPAGINGMODE_PAE_NX:
3188 case SUPPAGINGMODE_PAE_GLOBAL:
3189 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3190 enmShadowMode = PGMMODE_PAE;
3191 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3192 break;
3193
3194 case SUPPAGINGMODE_AMD64:
3195 case SUPPAGINGMODE_AMD64_GLOBAL:
3196 case SUPPAGINGMODE_AMD64_NX:
3197 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3198 enmShadowMode = PGMMODE_AMD64;
3199 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3200 break;
3201
3202 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3203 }
3204 break;
3205
3206
3207 default:
3208 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3209 return PGMMODE_INVALID;
3210 }
3211 /* Override the shadow mode is nested paging is active. */
3212 if (HWACCMIsNestedPagingActive(pVM))
3213 enmShadowMode = HWACCMGetPagingMode(pVM);
3214
3215 *penmSwitcher = enmSwitcher;
3216 return enmShadowMode;
3217}
3218
3219
3220/**
3221 * Performs the actual mode change.
3222 * This is called by PGMChangeMode and pgmR3InitPaging().
3223 *
3224 * @returns VBox status code.
3225 * @param pVM VM handle.
3226 * @param enmGuestMode The new guest mode. This is assumed to be different from
3227 * the current mode.
3228 */
3229VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3230{
3231 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3232 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3233
3234 /*
3235 * Calc the shadow mode and switcher.
3236 */
3237 VMMSWITCHER enmSwitcher;
3238 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3239 if (enmSwitcher != VMMSWITCHER_INVALID)
3240 {
3241 /*
3242 * Select new switcher.
3243 */
3244 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3245 if (RT_FAILURE(rc))
3246 {
3247 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3248 return rc;
3249 }
3250 }
3251
3252 /*
3253 * Exit old mode(s).
3254 */
3255 /* shadow */
3256 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3257 {
3258 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3259 if (PGM_SHW_PFN(Exit, pVM))
3260 {
3261 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3262 if (RT_FAILURE(rc))
3263 {
3264 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3265 return rc;
3266 }
3267 }
3268
3269 }
3270 else
3271 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3272
3273 /* guest */
3274 if (PGM_GST_PFN(Exit, pVM))
3275 {
3276 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3277 if (RT_FAILURE(rc))
3278 {
3279 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3280 return rc;
3281 }
3282 }
3283
3284 /*
3285 * Load new paging mode data.
3286 */
3287 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3288
3289 /*
3290 * Enter new shadow mode (if changed).
3291 */
3292 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3293 {
3294 int rc;
3295 pVM->pgm.s.enmShadowMode = enmShadowMode;
3296 switch (enmShadowMode)
3297 {
3298 case PGMMODE_32_BIT:
3299 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3300 break;
3301 case PGMMODE_PAE:
3302 case PGMMODE_PAE_NX:
3303 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3304 break;
3305 case PGMMODE_AMD64:
3306 case PGMMODE_AMD64_NX:
3307 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3308 break;
3309 case PGMMODE_NESTED:
3310 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3311 break;
3312 case PGMMODE_EPT:
3313 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3314 break;
3315 case PGMMODE_REAL:
3316 case PGMMODE_PROTECTED:
3317 default:
3318 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3319 return VERR_INTERNAL_ERROR;
3320 }
3321 if (RT_FAILURE(rc))
3322 {
3323 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3324 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3325 return rc;
3326 }
3327 }
3328
3329 /** @todo This is a bug!
3330 *
3331 * We must flush the PGM pool cache if the guest mode changes; we don't always
3332 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3333 * the shadow page tables.
3334 *
3335 * That only applies when switching between paging and non-paging modes.
3336 */
3337 /** @todo A20 setting */
3338 if ( pVM->pgm.s.CTX_SUFF(pPool)
3339 && !HWACCMIsNestedPagingActive(pVM)
3340 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3341 {
3342 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3343 pgmPoolFlushAll(pVM);
3344 }
3345
3346 /*
3347 * Enter the new guest and shadow+guest modes.
3348 */
3349 int rc = -1;
3350 int rc2 = -1;
3351 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3352 pVM->pgm.s.enmGuestMode = enmGuestMode;
3353 switch (enmGuestMode)
3354 {
3355 case PGMMODE_REAL:
3356 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3357 switch (pVM->pgm.s.enmShadowMode)
3358 {
3359 case PGMMODE_32_BIT:
3360 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3361 break;
3362 case PGMMODE_PAE:
3363 case PGMMODE_PAE_NX:
3364 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3365 break;
3366 case PGMMODE_NESTED:
3367 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3368 break;
3369 case PGMMODE_EPT:
3370 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3371 break;
3372 case PGMMODE_AMD64:
3373 case PGMMODE_AMD64_NX:
3374 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3375 default: AssertFailed(); break;
3376 }
3377 break;
3378
3379 case PGMMODE_PROTECTED:
3380 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3381 switch (pVM->pgm.s.enmShadowMode)
3382 {
3383 case PGMMODE_32_BIT:
3384 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3385 break;
3386 case PGMMODE_PAE:
3387 case PGMMODE_PAE_NX:
3388 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3389 break;
3390 case PGMMODE_NESTED:
3391 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3392 break;
3393 case PGMMODE_EPT:
3394 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3395 break;
3396 case PGMMODE_AMD64:
3397 case PGMMODE_AMD64_NX:
3398 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3399 default: AssertFailed(); break;
3400 }
3401 break;
3402
3403 case PGMMODE_32_BIT:
3404 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3405 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3406 switch (pVM->pgm.s.enmShadowMode)
3407 {
3408 case PGMMODE_32_BIT:
3409 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3410 break;
3411 case PGMMODE_PAE:
3412 case PGMMODE_PAE_NX:
3413 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3414 break;
3415 case PGMMODE_NESTED:
3416 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3417 break;
3418 case PGMMODE_EPT:
3419 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3420 break;
3421 case PGMMODE_AMD64:
3422 case PGMMODE_AMD64_NX:
3423 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3424 default: AssertFailed(); break;
3425 }
3426 break;
3427
3428 case PGMMODE_PAE_NX:
3429 case PGMMODE_PAE:
3430 {
3431 uint32_t u32Dummy, u32Features;
3432
3433 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3434 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3435 {
3436 /* Pause first, then inform Main. */
3437 rc = VMR3SuspendNoSave(pVM);
3438 AssertRC(rc);
3439
3440 VMSetRuntimeError(pVM, true, "PAEmode",
3441 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3442 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3443 return VINF_SUCCESS;
3444 }
3445 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3446 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3447 switch (pVM->pgm.s.enmShadowMode)
3448 {
3449 case PGMMODE_PAE:
3450 case PGMMODE_PAE_NX:
3451 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3452 break;
3453 case PGMMODE_NESTED:
3454 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3455 break;
3456 case PGMMODE_EPT:
3457 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3458 break;
3459 case PGMMODE_32_BIT:
3460 case PGMMODE_AMD64:
3461 case PGMMODE_AMD64_NX:
3462 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3463 default: AssertFailed(); break;
3464 }
3465 break;
3466 }
3467
3468#ifdef VBOX_WITH_64_BITS_GUESTS
3469 case PGMMODE_AMD64_NX:
3470 case PGMMODE_AMD64:
3471 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3472 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3473 switch (pVM->pgm.s.enmShadowMode)
3474 {
3475 case PGMMODE_AMD64:
3476 case PGMMODE_AMD64_NX:
3477 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3478 break;
3479 case PGMMODE_NESTED:
3480 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3481 break;
3482 case PGMMODE_EPT:
3483 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3484 break;
3485 case PGMMODE_32_BIT:
3486 case PGMMODE_PAE:
3487 case PGMMODE_PAE_NX:
3488 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3489 default: AssertFailed(); break;
3490 }
3491 break;
3492#endif
3493
3494 default:
3495 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3496 rc = VERR_NOT_IMPLEMENTED;
3497 break;
3498 }
3499
3500 /* status codes. */
3501 AssertRC(rc);
3502 AssertRC(rc2);
3503 if (RT_SUCCESS(rc))
3504 {
3505 rc = rc2;
3506 if (RT_SUCCESS(rc)) /* no informational status codes. */
3507 rc = VINF_SUCCESS;
3508 }
3509
3510 /*
3511 * Notify SELM so it can update the TSSes with correct CR3s.
3512 */
3513 SELMR3PagingModeChanged(pVM);
3514
3515 /* Notify HWACCM as well. */
3516 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3517 return rc;
3518}
3519
3520
3521/**
3522 * Dumps a PAE shadow page table.
3523 *
3524 * @returns VBox status code (VINF_SUCCESS).
3525 * @param pVM The VM handle.
3526 * @param pPT Pointer to the page table.
3527 * @param u64Address The virtual address of the page table starts.
3528 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3529 * @param cMaxDepth The maxium depth.
3530 * @param pHlp Pointer to the output functions.
3531 */
3532static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3533{
3534 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3535 {
3536 X86PTEPAE Pte = pPT->a[i];
3537 if (Pte.n.u1Present)
3538 {
3539 pHlp->pfnPrintf(pHlp,
3540 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3541 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3542 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3543 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3544 Pte.n.u1Write ? 'W' : 'R',
3545 Pte.n.u1User ? 'U' : 'S',
3546 Pte.n.u1Accessed ? 'A' : '-',
3547 Pte.n.u1Dirty ? 'D' : '-',
3548 Pte.n.u1Global ? 'G' : '-',
3549 Pte.n.u1WriteThru ? "WT" : "--",
3550 Pte.n.u1CacheDisable? "CD" : "--",
3551 Pte.n.u1PAT ? "AT" : "--",
3552 Pte.n.u1NoExecute ? "NX" : "--",
3553 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3554 Pte.u & RT_BIT(10) ? '1' : '0',
3555 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3556 Pte.u & X86_PTE_PAE_PG_MASK);
3557 }
3558 }
3559 return VINF_SUCCESS;
3560}
3561
3562
3563/**
3564 * Dumps a PAE shadow page directory table.
3565 *
3566 * @returns VBox status code (VINF_SUCCESS).
3567 * @param pVM The VM handle.
3568 * @param HCPhys The physical address of the page directory table.
3569 * @param u64Address The virtual address of the page table starts.
3570 * @param cr4 The CR4, PSE is currently used.
3571 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3572 * @param cMaxDepth The maxium depth.
3573 * @param pHlp Pointer to the output functions.
3574 */
3575static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3576{
3577 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3578 if (!pPD)
3579 {
3580 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3581 fLongMode ? 16 : 8, u64Address, HCPhys);
3582 return VERR_INVALID_PARAMETER;
3583 }
3584 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3585
3586 int rc = VINF_SUCCESS;
3587 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3588 {
3589 X86PDEPAE Pde = pPD->a[i];
3590 if (Pde.n.u1Present)
3591 {
3592 if (fBigPagesSupported && Pde.b.u1Size)
3593 pHlp->pfnPrintf(pHlp,
3594 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3595 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3596 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3597 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3598 Pde.b.u1Write ? 'W' : 'R',
3599 Pde.b.u1User ? 'U' : 'S',
3600 Pde.b.u1Accessed ? 'A' : '-',
3601 Pde.b.u1Dirty ? 'D' : '-',
3602 Pde.b.u1Global ? 'G' : '-',
3603 Pde.b.u1WriteThru ? "WT" : "--",
3604 Pde.b.u1CacheDisable? "CD" : "--",
3605 Pde.b.u1PAT ? "AT" : "--",
3606 Pde.b.u1NoExecute ? "NX" : "--",
3607 Pde.u & RT_BIT_64(9) ? '1' : '0',
3608 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3609 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3610 Pde.u & X86_PDE_PAE_PG_MASK);
3611 else
3612 {
3613 pHlp->pfnPrintf(pHlp,
3614 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3615 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3616 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3617 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3618 Pde.n.u1Write ? 'W' : 'R',
3619 Pde.n.u1User ? 'U' : 'S',
3620 Pde.n.u1Accessed ? 'A' : '-',
3621 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3622 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3623 Pde.n.u1WriteThru ? "WT" : "--",
3624 Pde.n.u1CacheDisable? "CD" : "--",
3625 Pde.n.u1NoExecute ? "NX" : "--",
3626 Pde.u & RT_BIT_64(9) ? '1' : '0',
3627 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3628 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3629 Pde.u & X86_PDE_PAE_PG_MASK);
3630 if (cMaxDepth >= 1)
3631 {
3632 /** @todo what about using the page pool for mapping PTs? */
3633 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3634 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3635 PX86PTPAE pPT = NULL;
3636 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3637 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3638 else
3639 {
3640 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3641 {
3642 uint64_t off = u64AddressPT - pMap->GCPtr;
3643 if (off < pMap->cb)
3644 {
3645 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3646 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3647 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3648 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3649 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3650 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3651 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3652 }
3653 }
3654 }
3655 int rc2 = VERR_INVALID_PARAMETER;
3656 if (pPT)
3657 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3658 else
3659 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3660 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3661 if (rc2 < rc && RT_SUCCESS(rc))
3662 rc = rc2;
3663 }
3664 }
3665 }
3666 }
3667 return rc;
3668}
3669
3670
3671/**
3672 * Dumps a PAE shadow page directory pointer table.
3673 *
3674 * @returns VBox status code (VINF_SUCCESS).
3675 * @param pVM The VM handle.
3676 * @param HCPhys The physical address of the page directory pointer table.
3677 * @param u64Address The virtual address of the page table starts.
3678 * @param cr4 The CR4, PSE is currently used.
3679 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3680 * @param cMaxDepth The maxium depth.
3681 * @param pHlp Pointer to the output functions.
3682 */
3683static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3684{
3685 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3686 if (!pPDPT)
3687 {
3688 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3689 fLongMode ? 16 : 8, u64Address, HCPhys);
3690 return VERR_INVALID_PARAMETER;
3691 }
3692
3693 int rc = VINF_SUCCESS;
3694 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3695 for (unsigned i = 0; i < c; i++)
3696 {
3697 X86PDPE Pdpe = pPDPT->a[i];
3698 if (Pdpe.n.u1Present)
3699 {
3700 if (fLongMode)
3701 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3702 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3703 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3704 Pdpe.lm.u1Write ? 'W' : 'R',
3705 Pdpe.lm.u1User ? 'U' : 'S',
3706 Pdpe.lm.u1Accessed ? 'A' : '-',
3707 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3708 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3709 Pdpe.lm.u1WriteThru ? "WT" : "--",
3710 Pdpe.lm.u1CacheDisable? "CD" : "--",
3711 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3712 Pdpe.lm.u1NoExecute ? "NX" : "--",
3713 Pdpe.u & RT_BIT(9) ? '1' : '0',
3714 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3715 Pdpe.u & RT_BIT(11) ? '1' : '0',
3716 Pdpe.u & X86_PDPE_PG_MASK);
3717 else
3718 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3719 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3720 i << X86_PDPT_SHIFT,
3721 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3722 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3723 Pdpe.n.u1WriteThru ? "WT" : "--",
3724 Pdpe.n.u1CacheDisable? "CD" : "--",
3725 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3726 Pdpe.u & RT_BIT(9) ? '1' : '0',
3727 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3728 Pdpe.u & RT_BIT(11) ? '1' : '0',
3729 Pdpe.u & X86_PDPE_PG_MASK);
3730 if (cMaxDepth >= 1)
3731 {
3732 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3733 cr4, fLongMode, cMaxDepth - 1, pHlp);
3734 if (rc2 < rc && RT_SUCCESS(rc))
3735 rc = rc2;
3736 }
3737 }
3738 }
3739 return rc;
3740}
3741
3742
3743/**
3744 * Dumps a 32-bit shadow page table.
3745 *
3746 * @returns VBox status code (VINF_SUCCESS).
3747 * @param pVM The VM handle.
3748 * @param HCPhys The physical address of the table.
3749 * @param cr4 The CR4, PSE is currently used.
3750 * @param cMaxDepth The maxium depth.
3751 * @param pHlp Pointer to the output functions.
3752 */
3753static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3754{
3755 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3756 if (!pPML4)
3757 {
3758 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3759 return VERR_INVALID_PARAMETER;
3760 }
3761
3762 int rc = VINF_SUCCESS;
3763 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3764 {
3765 X86PML4E Pml4e = pPML4->a[i];
3766 if (Pml4e.n.u1Present)
3767 {
3768 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3769 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3770 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3771 u64Address,
3772 Pml4e.n.u1Write ? 'W' : 'R',
3773 Pml4e.n.u1User ? 'U' : 'S',
3774 Pml4e.n.u1Accessed ? 'A' : '-',
3775 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3776 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3777 Pml4e.n.u1WriteThru ? "WT" : "--",
3778 Pml4e.n.u1CacheDisable? "CD" : "--",
3779 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3780 Pml4e.n.u1NoExecute ? "NX" : "--",
3781 Pml4e.u & RT_BIT(9) ? '1' : '0',
3782 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3783 Pml4e.u & RT_BIT(11) ? '1' : '0',
3784 Pml4e.u & X86_PML4E_PG_MASK);
3785
3786 if (cMaxDepth >= 1)
3787 {
3788 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3789 if (rc2 < rc && RT_SUCCESS(rc))
3790 rc = rc2;
3791 }
3792 }
3793 }
3794 return rc;
3795}
3796
3797
3798/**
3799 * Dumps a 32-bit shadow page table.
3800 *
3801 * @returns VBox status code (VINF_SUCCESS).
3802 * @param pVM The VM handle.
3803 * @param pPT Pointer to the page table.
3804 * @param u32Address The virtual address this table starts at.
3805 * @param pHlp Pointer to the output functions.
3806 */
3807int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3808{
3809 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3810 {
3811 X86PTE Pte = pPT->a[i];
3812 if (Pte.n.u1Present)
3813 {
3814 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3815 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3816 u32Address + (i << X86_PT_SHIFT),
3817 Pte.n.u1Write ? 'W' : 'R',
3818 Pte.n.u1User ? 'U' : 'S',
3819 Pte.n.u1Accessed ? 'A' : '-',
3820 Pte.n.u1Dirty ? 'D' : '-',
3821 Pte.n.u1Global ? 'G' : '-',
3822 Pte.n.u1WriteThru ? "WT" : "--",
3823 Pte.n.u1CacheDisable? "CD" : "--",
3824 Pte.n.u1PAT ? "AT" : "--",
3825 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3826 Pte.u & RT_BIT(10) ? '1' : '0',
3827 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3828 Pte.u & X86_PDE_PG_MASK);
3829 }
3830 }
3831 return VINF_SUCCESS;
3832}
3833
3834
3835/**
3836 * Dumps a 32-bit shadow page directory and page tables.
3837 *
3838 * @returns VBox status code (VINF_SUCCESS).
3839 * @param pVM The VM handle.
3840 * @param cr3 The root of the hierarchy.
3841 * @param cr4 The CR4, PSE is currently used.
3842 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3843 * @param pHlp Pointer to the output functions.
3844 */
3845int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3846{
3847 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3848 if (!pPD)
3849 {
3850 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3851 return VERR_INVALID_PARAMETER;
3852 }
3853
3854 int rc = VINF_SUCCESS;
3855 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3856 {
3857 X86PDE Pde = pPD->a[i];
3858 if (Pde.n.u1Present)
3859 {
3860 const uint32_t u32Address = i << X86_PD_SHIFT;
3861 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3862 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3863 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3864 u32Address,
3865 Pde.b.u1Write ? 'W' : 'R',
3866 Pde.b.u1User ? 'U' : 'S',
3867 Pde.b.u1Accessed ? 'A' : '-',
3868 Pde.b.u1Dirty ? 'D' : '-',
3869 Pde.b.u1Global ? 'G' : '-',
3870 Pde.b.u1WriteThru ? "WT" : "--",
3871 Pde.b.u1CacheDisable? "CD" : "--",
3872 Pde.b.u1PAT ? "AT" : "--",
3873 Pde.u & RT_BIT_64(9) ? '1' : '0',
3874 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3875 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3876 Pde.u & X86_PDE4M_PG_MASK);
3877 else
3878 {
3879 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3880 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3881 u32Address,
3882 Pde.n.u1Write ? 'W' : 'R',
3883 Pde.n.u1User ? 'U' : 'S',
3884 Pde.n.u1Accessed ? 'A' : '-',
3885 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3886 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3887 Pde.n.u1WriteThru ? "WT" : "--",
3888 Pde.n.u1CacheDisable? "CD" : "--",
3889 Pde.u & RT_BIT_64(9) ? '1' : '0',
3890 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3891 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3892 Pde.u & X86_PDE_PG_MASK);
3893 if (cMaxDepth >= 1)
3894 {
3895 /** @todo what about using the page pool for mapping PTs? */
3896 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3897 PX86PT pPT = NULL;
3898 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3899 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3900 else
3901 {
3902 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3903 if (u32Address - pMap->GCPtr < pMap->cb)
3904 {
3905 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3906 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3907 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3908 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3909 pPT = pMap->aPTs[iPDE].pPTR3;
3910 }
3911 }
3912 int rc2 = VERR_INVALID_PARAMETER;
3913 if (pPT)
3914 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3915 else
3916 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3917 if (rc2 < rc && RT_SUCCESS(rc))
3918 rc = rc2;
3919 }
3920 }
3921 }
3922 }
3923
3924 return rc;
3925}
3926
3927
3928/**
3929 * Dumps a 32-bit shadow page table.
3930 *
3931 * @returns VBox status code (VINF_SUCCESS).
3932 * @param pVM The VM handle.
3933 * @param pPT Pointer to the page table.
3934 * @param u32Address The virtual address this table starts at.
3935 * @param PhysSearch Address to search for.
3936 */
3937int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3938{
3939 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3940 {
3941 X86PTE Pte = pPT->a[i];
3942 if (Pte.n.u1Present)
3943 {
3944 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3945 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3946 u32Address + (i << X86_PT_SHIFT),
3947 Pte.n.u1Write ? 'W' : 'R',
3948 Pte.n.u1User ? 'U' : 'S',
3949 Pte.n.u1Accessed ? 'A' : '-',
3950 Pte.n.u1Dirty ? 'D' : '-',
3951 Pte.n.u1Global ? 'G' : '-',
3952 Pte.n.u1WriteThru ? "WT" : "--",
3953 Pte.n.u1CacheDisable? "CD" : "--",
3954 Pte.n.u1PAT ? "AT" : "--",
3955 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3956 Pte.u & RT_BIT(10) ? '1' : '0',
3957 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3958 Pte.u & X86_PDE_PG_MASK));
3959
3960 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3961 {
3962 uint64_t fPageShw = 0;
3963 RTHCPHYS pPhysHC = 0;
3964
3965 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3966 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3967 }
3968 }
3969 }
3970 return VINF_SUCCESS;
3971}
3972
3973
3974/**
3975 * Dumps a 32-bit guest page directory and page tables.
3976 *
3977 * @returns VBox status code (VINF_SUCCESS).
3978 * @param pVM The VM handle.
3979 * @param cr3 The root of the hierarchy.
3980 * @param cr4 The CR4, PSE is currently used.
3981 * @param PhysSearch Address to search for.
3982 */
3983VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3984{
3985 bool fLongMode = false;
3986 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3987 PX86PD pPD = 0;
3988
3989 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3990 if (RT_FAILURE(rc) || !pPD)
3991 {
3992 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3993 return VERR_INVALID_PARAMETER;
3994 }
3995
3996 Log(("cr3=%08x cr4=%08x%s\n"
3997 "%-*s P - Present\n"
3998 "%-*s | R/W - Read (0) / Write (1)\n"
3999 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4000 "%-*s | | | A - Accessed\n"
4001 "%-*s | | | | D - Dirty\n"
4002 "%-*s | | | | | G - Global\n"
4003 "%-*s | | | | | | WT - Write thru\n"
4004 "%-*s | | | | | | | CD - Cache disable\n"
4005 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4006 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4007 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4008 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4009 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4010 "%-*s Level | | | | | | | | | | | | Page\n"
4011 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4012 - W U - - - -- -- -- -- -- 010 */
4013 , cr3, cr4, fLongMode ? " Long Mode" : "",
4014 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4015 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4016
4017 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4018 {
4019 X86PDE Pde = pPD->a[i];
4020 if (Pde.n.u1Present)
4021 {
4022 const uint32_t u32Address = i << X86_PD_SHIFT;
4023
4024 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4025 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4026 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4027 u32Address,
4028 Pde.b.u1Write ? 'W' : 'R',
4029 Pde.b.u1User ? 'U' : 'S',
4030 Pde.b.u1Accessed ? 'A' : '-',
4031 Pde.b.u1Dirty ? 'D' : '-',
4032 Pde.b.u1Global ? 'G' : '-',
4033 Pde.b.u1WriteThru ? "WT" : "--",
4034 Pde.b.u1CacheDisable? "CD" : "--",
4035 Pde.b.u1PAT ? "AT" : "--",
4036 Pde.u & RT_BIT(9) ? '1' : '0',
4037 Pde.u & RT_BIT(10) ? '1' : '0',
4038 Pde.u & RT_BIT(11) ? '1' : '0',
4039 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4040 /** @todo PhysSearch */
4041 else
4042 {
4043 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4044 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4045 u32Address,
4046 Pde.n.u1Write ? 'W' : 'R',
4047 Pde.n.u1User ? 'U' : 'S',
4048 Pde.n.u1Accessed ? 'A' : '-',
4049 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4050 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4051 Pde.n.u1WriteThru ? "WT" : "--",
4052 Pde.n.u1CacheDisable? "CD" : "--",
4053 Pde.u & RT_BIT(9) ? '1' : '0',
4054 Pde.u & RT_BIT(10) ? '1' : '0',
4055 Pde.u & RT_BIT(11) ? '1' : '0',
4056 Pde.u & X86_PDE_PG_MASK));
4057 ////if (cMaxDepth >= 1)
4058 {
4059 /** @todo what about using the page pool for mapping PTs? */
4060 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4061 PX86PT pPT = NULL;
4062
4063 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4064
4065 int rc2 = VERR_INVALID_PARAMETER;
4066 if (pPT)
4067 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4068 else
4069 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4070 if (rc2 < rc && RT_SUCCESS(rc))
4071 rc = rc2;
4072 }
4073 }
4074 }
4075 }
4076
4077 return rc;
4078}
4079
4080
4081/**
4082 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4083 *
4084 * @returns VBox status code (VINF_SUCCESS).
4085 * @param pVM The VM handle.
4086 * @param cr3 The root of the hierarchy.
4087 * @param cr4 The cr4, only PAE and PSE is currently used.
4088 * @param fLongMode Set if long mode, false if not long mode.
4089 * @param cMaxDepth Number of levels to dump.
4090 * @param pHlp Pointer to the output functions.
4091 */
4092VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4093{
4094 if (!pHlp)
4095 pHlp = DBGFR3InfoLogHlp();
4096 if (!cMaxDepth)
4097 return VINF_SUCCESS;
4098 const unsigned cch = fLongMode ? 16 : 8;
4099 pHlp->pfnPrintf(pHlp,
4100 "cr3=%08x cr4=%08x%s\n"
4101 "%-*s P - Present\n"
4102 "%-*s | R/W - Read (0) / Write (1)\n"
4103 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4104 "%-*s | | | A - Accessed\n"
4105 "%-*s | | | | D - Dirty\n"
4106 "%-*s | | | | | G - Global\n"
4107 "%-*s | | | | | | WT - Write thru\n"
4108 "%-*s | | | | | | | CD - Cache disable\n"
4109 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4110 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4111 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4112 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4113 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4114 "%-*s Level | | | | | | | | | | | | Page\n"
4115 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4116 - W U - - - -- -- -- -- -- 010 */
4117 , cr3, cr4, fLongMode ? " Long Mode" : "",
4118 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4119 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4120 if (cr4 & X86_CR4_PAE)
4121 {
4122 if (fLongMode)
4123 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4124 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4125 }
4126 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4127}
4128
4129#ifdef VBOX_WITH_DEBUGGER
4130
4131/**
4132 * The '.pgmram' command.
4133 *
4134 * @returns VBox status.
4135 * @param pCmd Pointer to the command descriptor (as registered).
4136 * @param pCmdHlp Pointer to command helper functions.
4137 * @param pVM Pointer to the current VM (if any).
4138 * @param paArgs Pointer to (readonly) array of arguments.
4139 * @param cArgs Number of arguments in the array.
4140 */
4141static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4142{
4143 /*
4144 * Validate input.
4145 */
4146 if (!pVM)
4147 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4148 if (!pVM->pgm.s.pRamRangesRC)
4149 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4150
4151 /*
4152 * Dump the ranges.
4153 */
4154 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4155 PPGMRAMRANGE pRam;
4156 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4157 {
4158 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4159 "%RGp - %RGp %p\n",
4160 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4161 if (RT_FAILURE(rc))
4162 return rc;
4163 }
4164
4165 return VINF_SUCCESS;
4166}
4167
4168
4169/**
4170 * The '.pgmmap' command.
4171 *
4172 * @returns VBox status.
4173 * @param pCmd Pointer to the command descriptor (as registered).
4174 * @param pCmdHlp Pointer to command helper functions.
4175 * @param pVM Pointer to the current VM (if any).
4176 * @param paArgs Pointer to (readonly) array of arguments.
4177 * @param cArgs Number of arguments in the array.
4178 */
4179static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4180{
4181 /*
4182 * Validate input.
4183 */
4184 if (!pVM)
4185 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4186 if (!pVM->pgm.s.pMappingsR3)
4187 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4188
4189 /*
4190 * Print message about the fixedness of the mappings.
4191 */
4192 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4193 if (RT_FAILURE(rc))
4194 return rc;
4195
4196 /*
4197 * Dump the ranges.
4198 */
4199 PPGMMAPPING pCur;
4200 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4201 {
4202 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4203 "%08x - %08x %s\n",
4204 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4205 if (RT_FAILURE(rc))
4206 return rc;
4207 }
4208
4209 return VINF_SUCCESS;
4210}
4211
4212
4213/**
4214 * The '.pgmsync' command.
4215 *
4216 * @returns VBox status.
4217 * @param pCmd Pointer to the command descriptor (as registered).
4218 * @param pCmdHlp Pointer to command helper functions.
4219 * @param pVM Pointer to the current VM (if any).
4220 * @param paArgs Pointer to (readonly) array of arguments.
4221 * @param cArgs Number of arguments in the array.
4222 */
4223static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4224{
4225 /*
4226 * Validate input.
4227 */
4228 if (!pVM)
4229 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4230
4231 /*
4232 * Force page directory sync.
4233 */
4234 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4235
4236 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4237 if (RT_FAILURE(rc))
4238 return rc;
4239
4240 return VINF_SUCCESS;
4241}
4242
4243
4244#ifdef VBOX_STRICT
4245/**
4246 * The '.pgmassertcr3' command.
4247 *
4248 * @returns VBox status.
4249 * @param pCmd Pointer to the command descriptor (as registered).
4250 * @param pCmdHlp Pointer to command helper functions.
4251 * @param pVM Pointer to the current VM (if any).
4252 * @param paArgs Pointer to (readonly) array of arguments.
4253 * @param cArgs Number of arguments in the array.
4254 */
4255static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4256{
4257 /*
4258 * Validate input.
4259 */
4260 if (!pVM)
4261 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4262
4263 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4264 if (RT_FAILURE(rc))
4265 return rc;
4266
4267 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4268
4269 return VINF_SUCCESS;
4270}
4271#endif /* VBOX_STRICT */
4272
4273
4274/**
4275 * The '.pgmsyncalways' command.
4276 *
4277 * @returns VBox status.
4278 * @param pCmd Pointer to the command descriptor (as registered).
4279 * @param pCmdHlp Pointer to command helper functions.
4280 * @param pVM Pointer to the current VM (if any).
4281 * @param paArgs Pointer to (readonly) array of arguments.
4282 * @param cArgs Number of arguments in the array.
4283 */
4284static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4285{
4286 /*
4287 * Validate input.
4288 */
4289 if (!pVM)
4290 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4291
4292 /*
4293 * Force page directory sync.
4294 */
4295 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4296 {
4297 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4298 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4299 }
4300 else
4301 {
4302 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4303 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4304 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4305 }
4306}
4307
4308#endif /* VBOX_WITH_DEBUGGER */
4309
4310/**
4311 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4312 */
4313typedef struct PGMCHECKINTARGS
4314{
4315 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4316 PPGMPHYSHANDLER pPrevPhys;
4317 PPGMVIRTHANDLER pPrevVirt;
4318 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4319 PVM pVM;
4320} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4321
4322/**
4323 * Validate a node in the physical handler tree.
4324 *
4325 * @returns 0 on if ok, other wise 1.
4326 * @param pNode The handler node.
4327 * @param pvUser pVM.
4328 */
4329static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4330{
4331 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4332 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4333 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4334 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4335 AssertReleaseMsg( !pArgs->pPrevPhys
4336 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4337 ("pPrevPhys=%p %RGp-%RGp %s\n"
4338 " pCur=%p %RGp-%RGp %s\n",
4339 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4340 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4341 pArgs->pPrevPhys = pCur;
4342 return 0;
4343}
4344
4345
4346/**
4347 * Validate a node in the virtual handler tree.
4348 *
4349 * @returns 0 on if ok, other wise 1.
4350 * @param pNode The handler node.
4351 * @param pvUser pVM.
4352 */
4353static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4354{
4355 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4356 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4357 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4358 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4359 AssertReleaseMsg( !pArgs->pPrevVirt
4360 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4361 ("pPrevVirt=%p %RGv-%RGv %s\n"
4362 " pCur=%p %RGv-%RGv %s\n",
4363 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4364 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4365 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4366 {
4367 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4368 ("pCur=%p %RGv-%RGv %s\n"
4369 "iPage=%d offVirtHandle=%#x expected %#x\n",
4370 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4371 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4372 }
4373 pArgs->pPrevVirt = pCur;
4374 return 0;
4375}
4376
4377
4378/**
4379 * Validate a node in the virtual handler tree.
4380 *
4381 * @returns 0 on if ok, other wise 1.
4382 * @param pNode The handler node.
4383 * @param pvUser pVM.
4384 */
4385static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4386{
4387 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4388 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4389 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4390 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4391 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4392 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4393 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4394 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4395 " pCur=%p %RGp-%RGp\n",
4396 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4397 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4398 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4399 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4400 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4401 " pCur=%p %RGp-%RGp\n",
4402 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4403 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4404 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4405 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4406 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4407 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4408 {
4409 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4410 for (;;)
4411 {
4412 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4413 AssertReleaseMsg(pCur2 != pCur,
4414 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4415 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4416 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4417 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4418 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4419 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4420 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4421 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4422 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4423 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4424 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4425 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4426 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4427 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4428 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4429 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4430 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4431 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4432 break;
4433 }
4434 }
4435
4436 pArgs->pPrevPhys2Virt = pCur;
4437 return 0;
4438}
4439
4440
4441/**
4442 * Perform an integrity check on the PGM component.
4443 *
4444 * @returns VINF_SUCCESS if everything is fine.
4445 * @returns VBox error status after asserting on integrity breach.
4446 * @param pVM The VM handle.
4447 */
4448VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4449{
4450 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4451
4452 /*
4453 * Check the trees.
4454 */
4455 int cErrors = 0;
4456 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4457 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4458 PGMCHECKINTARGS Args = s_LeftToRight;
4459 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4460 Args = s_RightToLeft;
4461 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4462 Args = s_LeftToRight;
4463 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4464 Args = s_RightToLeft;
4465 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4466 Args = s_LeftToRight;
4467 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4468 Args = s_RightToLeft;
4469 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4470 Args = s_LeftToRight;
4471 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4472 Args = s_RightToLeft;
4473 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4474
4475 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4476}
4477
4478
4479/**
4480 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4481 *
4482 * @returns VBox status code.
4483 * @param pVM VM handle.
4484 * @param fEnable Enable or disable shadow mappings
4485 */
4486VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4487{
4488 pVM->pgm.s.fDisableMappings = !fEnable;
4489
4490 uint32_t cb;
4491 int rc = PGMR3MappingsSize(pVM, &cb);
4492 AssertRCReturn(rc, rc);
4493
4494 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4495 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4496 AssertRCReturn(rc, rc);
4497
4498 return VINF_SUCCESS;
4499}
4500
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette