VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 15404

Last change on this file since 15404 was 15404, checked in by vboxsync, 16 years ago

#3202: 64-bit guest support on the mac.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 216.2 KB
Line 
1/* $Id: PGM.cpp 15404 2008-12-12 22:43:42Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#include "PGMGst.h"
688#include "PGMBth.h"
689#undef BTH_PGMPOOLKIND_PT_FOR_PT
690#undef PGM_BTH_NAME
691#undef PGM_BTH_NAME_RC_STR
692#undef PGM_BTH_NAME_R0_STR
693#undef PGM_GST_TYPE
694#undef PGM_GST_NAME
695#undef PGM_GST_NAME_RC_STR
696#undef PGM_GST_NAME_R0_STR
697
698/* Guest - protected mode */
699#define PGM_GST_TYPE PGM_TYPE_PROT
700#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
701#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
702#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
703#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
704#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
705#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
706#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
707#include "PGMGst.h"
708#include "PGMBth.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef PGM_BTH_NAME
711#undef PGM_BTH_NAME_RC_STR
712#undef PGM_BTH_NAME_R0_STR
713#undef PGM_GST_TYPE
714#undef PGM_GST_NAME
715#undef PGM_GST_NAME_RC_STR
716#undef PGM_GST_NAME_R0_STR
717
718/* Guest - 32-bit mode */
719#define PGM_GST_TYPE PGM_TYPE_32BIT
720#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
721#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
722#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
723#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
724#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
725#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
726#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
727#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
728#include "PGMGst.h"
729#include "PGMBth.h"
730#undef BTH_PGMPOOLKIND_PT_FOR_BIG
731#undef BTH_PGMPOOLKIND_PT_FOR_PT
732#undef PGM_BTH_NAME
733#undef PGM_BTH_NAME_RC_STR
734#undef PGM_BTH_NAME_R0_STR
735#undef PGM_GST_TYPE
736#undef PGM_GST_NAME
737#undef PGM_GST_NAME_RC_STR
738#undef PGM_GST_NAME_R0_STR
739
740#undef PGM_SHW_TYPE
741#undef PGM_SHW_NAME
742#undef PGM_SHW_NAME_RC_STR
743#undef PGM_SHW_NAME_R0_STR
744
745
746/*
747 * Shadow - PAE mode
748 */
749#define PGM_SHW_TYPE PGM_TYPE_PAE
750#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
751#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
752#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
754#include "PGMShw.h"
755
756/* Guest - real mode */
757#define PGM_GST_TYPE PGM_TYPE_REAL
758#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
759#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
760#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
761#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
762#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
763#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
764#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
765#include "PGMBth.h"
766#undef BTH_PGMPOOLKIND_PT_FOR_PT
767#undef PGM_BTH_NAME
768#undef PGM_BTH_NAME_RC_STR
769#undef PGM_BTH_NAME_R0_STR
770#undef PGM_GST_TYPE
771#undef PGM_GST_NAME
772#undef PGM_GST_NAME_RC_STR
773#undef PGM_GST_NAME_R0_STR
774
775/* Guest - protected mode */
776#define PGM_GST_TYPE PGM_TYPE_PROT
777#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
778#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
779#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
781#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
782#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
783#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
784#include "PGMBth.h"
785#undef BTH_PGMPOOLKIND_PT_FOR_PT
786#undef PGM_BTH_NAME
787#undef PGM_BTH_NAME_RC_STR
788#undef PGM_BTH_NAME_R0_STR
789#undef PGM_GST_TYPE
790#undef PGM_GST_NAME
791#undef PGM_GST_NAME_RC_STR
792#undef PGM_GST_NAME_R0_STR
793
794/* Guest - 32-bit mode */
795#define PGM_GST_TYPE PGM_TYPE_32BIT
796#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
797#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
798#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
799#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
800#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
801#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
802#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
803#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
804#include "PGMBth.h"
805#undef BTH_PGMPOOLKIND_PT_FOR_BIG
806#undef BTH_PGMPOOLKIND_PT_FOR_PT
807#undef PGM_BTH_NAME
808#undef PGM_BTH_NAME_RC_STR
809#undef PGM_BTH_NAME_R0_STR
810#undef PGM_GST_TYPE
811#undef PGM_GST_NAME
812#undef PGM_GST_NAME_RC_STR
813#undef PGM_GST_NAME_R0_STR
814
815/* Guest - PAE mode */
816#define PGM_GST_TYPE PGM_TYPE_PAE
817#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
818#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
819#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
820#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
821#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
822#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
823#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
824#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
825#include "PGMGst.h"
826#include "PGMBth.h"
827#undef BTH_PGMPOOLKIND_PT_FOR_BIG
828#undef BTH_PGMPOOLKIND_PT_FOR_PT
829#undef PGM_BTH_NAME
830#undef PGM_BTH_NAME_RC_STR
831#undef PGM_BTH_NAME_R0_STR
832#undef PGM_GST_TYPE
833#undef PGM_GST_NAME
834#undef PGM_GST_NAME_RC_STR
835#undef PGM_GST_NAME_R0_STR
836
837#undef PGM_SHW_TYPE
838#undef PGM_SHW_NAME
839#undef PGM_SHW_NAME_RC_STR
840#undef PGM_SHW_NAME_R0_STR
841
842
843/*
844 * Shadow - AMD64 mode
845 */
846#define PGM_SHW_TYPE PGM_TYPE_AMD64
847#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
848#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
849#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
850#include "PGMShw.h"
851
852#ifdef VBOX_WITH_64_BITS_GUESTS
853/* Guest - AMD64 mode */
854# define PGM_GST_TYPE PGM_TYPE_AMD64
855# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
856# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
857# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
858# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
859# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
860# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
861# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
862# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
863# include "PGMGst.h"
864# include "PGMBth.h"
865# undef BTH_PGMPOOLKIND_PT_FOR_BIG
866# undef BTH_PGMPOOLKIND_PT_FOR_PT
867# undef PGM_BTH_NAME
868# undef PGM_BTH_NAME_RC_STR
869# undef PGM_BTH_NAME_R0_STR
870# undef PGM_GST_TYPE
871# undef PGM_GST_NAME
872# undef PGM_GST_NAME_RC_STR
873# undef PGM_GST_NAME_R0_STR
874#endif /* VBOX_WITH_64_BITS_GUESTS */
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - Nested paging mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_NESTED
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
889#include "PGMShw.h"
890
891/* Guest - real mode */
892#define PGM_GST_TYPE PGM_TYPE_REAL
893#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
894#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
895#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
896#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
897#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
898#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
899#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
900#include "PGMBth.h"
901#undef BTH_PGMPOOLKIND_PT_FOR_PT
902#undef PGM_BTH_NAME
903#undef PGM_BTH_NAME_RC_STR
904#undef PGM_BTH_NAME_R0_STR
905#undef PGM_GST_TYPE
906#undef PGM_GST_NAME
907#undef PGM_GST_NAME_RC_STR
908#undef PGM_GST_NAME_R0_STR
909
910/* Guest - protected mode */
911#define PGM_GST_TYPE PGM_TYPE_PROT
912#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
913#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
914#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
915#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
916#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
917#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
918#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
919#include "PGMBth.h"
920#undef BTH_PGMPOOLKIND_PT_FOR_PT
921#undef PGM_BTH_NAME
922#undef PGM_BTH_NAME_RC_STR
923#undef PGM_BTH_NAME_R0_STR
924#undef PGM_GST_TYPE
925#undef PGM_GST_NAME
926#undef PGM_GST_NAME_RC_STR
927#undef PGM_GST_NAME_R0_STR
928
929/* Guest - 32-bit mode */
930#define PGM_GST_TYPE PGM_TYPE_32BIT
931#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
932#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
933#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
934#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
935#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
936#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
937#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
938#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
939#include "PGMBth.h"
940#undef BTH_PGMPOOLKIND_PT_FOR_BIG
941#undef BTH_PGMPOOLKIND_PT_FOR_PT
942#undef PGM_BTH_NAME
943#undef PGM_BTH_NAME_RC_STR
944#undef PGM_BTH_NAME_R0_STR
945#undef PGM_GST_TYPE
946#undef PGM_GST_NAME
947#undef PGM_GST_NAME_RC_STR
948#undef PGM_GST_NAME_R0_STR
949
950/* Guest - PAE mode */
951#define PGM_GST_TYPE PGM_TYPE_PAE
952#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
953#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
954#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
955#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
956#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
957#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
958#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
959#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
960#include "PGMBth.h"
961#undef BTH_PGMPOOLKIND_PT_FOR_BIG
962#undef BTH_PGMPOOLKIND_PT_FOR_PT
963#undef PGM_BTH_NAME
964#undef PGM_BTH_NAME_RC_STR
965#undef PGM_BTH_NAME_R0_STR
966#undef PGM_GST_TYPE
967#undef PGM_GST_NAME
968#undef PGM_GST_NAME_RC_STR
969#undef PGM_GST_NAME_R0_STR
970
971#ifdef VBOX_WITH_64_BITS_GUESTS
972/* Guest - AMD64 mode */
973# define PGM_GST_TYPE PGM_TYPE_AMD64
974# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
975# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
976# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
977# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
978# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
979# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
980# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
981# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
982# include "PGMBth.h"
983# undef BTH_PGMPOOLKIND_PT_FOR_BIG
984# undef BTH_PGMPOOLKIND_PT_FOR_PT
985# undef PGM_BTH_NAME
986# undef PGM_BTH_NAME_RC_STR
987# undef PGM_BTH_NAME_R0_STR
988# undef PGM_GST_TYPE
989# undef PGM_GST_NAME
990# undef PGM_GST_NAME_RC_STR
991# undef PGM_GST_NAME_R0_STR
992#endif /* VBOX_WITH_64_BITS_GUESTS */
993
994#undef PGM_SHW_TYPE
995#undef PGM_SHW_NAME
996#undef PGM_SHW_NAME_RC_STR
997#undef PGM_SHW_NAME_R0_STR
998
999
1000/*
1001 * Shadow - EPT
1002 */
1003#define PGM_SHW_TYPE PGM_TYPE_EPT
1004#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1005#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1006#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1007#include "PGMShw.h"
1008
1009/* Guest - real mode */
1010#define PGM_GST_TYPE PGM_TYPE_REAL
1011#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1012#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1013#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1014#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1015#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1016#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1017#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1018#include "PGMBth.h"
1019#undef BTH_PGMPOOLKIND_PT_FOR_PT
1020#undef PGM_BTH_NAME
1021#undef PGM_BTH_NAME_RC_STR
1022#undef PGM_BTH_NAME_R0_STR
1023#undef PGM_GST_TYPE
1024#undef PGM_GST_NAME
1025#undef PGM_GST_NAME_RC_STR
1026#undef PGM_GST_NAME_R0_STR
1027
1028/* Guest - protected mode */
1029#define PGM_GST_TYPE PGM_TYPE_PROT
1030#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1031#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1032#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1033#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1034#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1035#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1036#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1037#include "PGMBth.h"
1038#undef BTH_PGMPOOLKIND_PT_FOR_PT
1039#undef PGM_BTH_NAME
1040#undef PGM_BTH_NAME_RC_STR
1041#undef PGM_BTH_NAME_R0_STR
1042#undef PGM_GST_TYPE
1043#undef PGM_GST_NAME
1044#undef PGM_GST_NAME_RC_STR
1045#undef PGM_GST_NAME_R0_STR
1046
1047/* Guest - 32-bit mode */
1048#define PGM_GST_TYPE PGM_TYPE_32BIT
1049#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1050#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1051#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1052#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1053#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1054#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1055#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1056#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1057#include "PGMBth.h"
1058#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1059#undef BTH_PGMPOOLKIND_PT_FOR_PT
1060#undef PGM_BTH_NAME
1061#undef PGM_BTH_NAME_RC_STR
1062#undef PGM_BTH_NAME_R0_STR
1063#undef PGM_GST_TYPE
1064#undef PGM_GST_NAME
1065#undef PGM_GST_NAME_RC_STR
1066#undef PGM_GST_NAME_R0_STR
1067
1068/* Guest - PAE mode */
1069#define PGM_GST_TYPE PGM_TYPE_PAE
1070#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1071#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1072#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1073#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1074#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1075#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1076#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1077#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1078#include "PGMBth.h"
1079#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1080#undef BTH_PGMPOOLKIND_PT_FOR_PT
1081#undef PGM_BTH_NAME
1082#undef PGM_BTH_NAME_RC_STR
1083#undef PGM_BTH_NAME_R0_STR
1084#undef PGM_GST_TYPE
1085#undef PGM_GST_NAME
1086#undef PGM_GST_NAME_RC_STR
1087#undef PGM_GST_NAME_R0_STR
1088
1089#ifdef VBOX_WITH_64_BITS_GUESTS
1090/* Guest - AMD64 mode */
1091# define PGM_GST_TYPE PGM_TYPE_AMD64
1092# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1093# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1094# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1095# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1096# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1097# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1098# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1099# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1100# include "PGMBth.h"
1101# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1102# undef BTH_PGMPOOLKIND_PT_FOR_PT
1103# undef PGM_BTH_NAME
1104# undef PGM_BTH_NAME_RC_STR
1105# undef PGM_BTH_NAME_R0_STR
1106# undef PGM_GST_TYPE
1107# undef PGM_GST_NAME
1108# undef PGM_GST_NAME_RC_STR
1109# undef PGM_GST_NAME_R0_STR
1110#endif /* VBOX_WITH_64_BITS_GUESTS */
1111
1112#undef PGM_SHW_TYPE
1113#undef PGM_SHW_NAME
1114#undef PGM_SHW_NAME_RC_STR
1115#undef PGM_SHW_NAME_R0_STR
1116
1117
1118
1119/**
1120 * Initiates the paging of VM.
1121 *
1122 * @returns VBox status code.
1123 * @param pVM Pointer to VM structure.
1124 */
1125VMMR3DECL(int) PGMR3Init(PVM pVM)
1126{
1127 LogFlow(("PGMR3Init:\n"));
1128
1129 /*
1130 * Assert alignment and sizes.
1131 */
1132 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1133
1134 /*
1135 * Init the structure.
1136 */
1137 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1138 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1139 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1140 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1141 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1142 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1143 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1144 pVM->pgm.s.fA20Enabled = true;
1145 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1146 pVM->pgm.s.pGstPaePdptR3 = NULL;
1147#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1148 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1149#endif
1150 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1151 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1152 {
1153 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1154#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1155 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1156#endif
1157 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1158 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1159 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1160 }
1161
1162#ifdef VBOX_STRICT
1163 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1164#endif
1165
1166 /*
1167 * Get the configured RAM size - to estimate saved state size.
1168 */
1169 uint64_t cbRam;
1170 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1171 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1172 cbRam = pVM->pgm.s.cbRamSize = 0;
1173 else if (RT_SUCCESS(rc))
1174 {
1175 if (cbRam < PAGE_SIZE)
1176 cbRam = 0;
1177 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1178 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1179 }
1180 else
1181 {
1182 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1183 return rc;
1184 }
1185
1186 /*
1187 * Register saved state data unit.
1188 */
1189 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1190 NULL, pgmR3Save, NULL,
1191 NULL, pgmR3Load, NULL);
1192 if (RT_FAILURE(rc))
1193 return rc;
1194
1195 /*
1196 * Initialize the PGM critical section and flush the phys TLBs
1197 */
1198 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1199 AssertRCReturn(rc, rc);
1200
1201 PGMR3PhysChunkInvalidateTLB(pVM);
1202 PGMPhysInvalidatePageR3MapTLB(pVM);
1203 PGMPhysInvalidatePageR0MapTLB(pVM);
1204 PGMPhysInvalidatePageGCMapTLB(pVM);
1205
1206 /*
1207 * Trees
1208 */
1209 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1210 if (RT_SUCCESS(rc))
1211 {
1212 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1213 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1214
1215 /*
1216 * Alocate the zero page.
1217 */
1218 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1219 }
1220 if (RT_SUCCESS(rc))
1221 {
1222 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1223 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1224 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1225 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1226 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1227
1228 /*
1229 * Init the paging.
1230 */
1231 rc = pgmR3InitPaging(pVM);
1232 }
1233 if (RT_SUCCESS(rc))
1234 {
1235 /*
1236 * Init the page pool.
1237 */
1238 rc = pgmR3PoolInit(pVM);
1239 }
1240 if (RT_SUCCESS(rc))
1241 {
1242 /*
1243 * Info & statistics
1244 */
1245 DBGFR3InfoRegisterInternal(pVM, "mode",
1246 "Shows the current paging mode. "
1247 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1248 pgmR3InfoMode);
1249 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1250 "Dumps all the entries in the top level paging table. No arguments.",
1251 pgmR3InfoCr3);
1252 DBGFR3InfoRegisterInternal(pVM, "phys",
1253 "Dumps all the physical address ranges. No arguments.",
1254 pgmR3PhysInfo);
1255 DBGFR3InfoRegisterInternal(pVM, "handlers",
1256 "Dumps physical, virtual and hyper virtual handlers. "
1257 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1258 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1259 pgmR3InfoHandlers);
1260 DBGFR3InfoRegisterInternal(pVM, "mappings",
1261 "Dumps guest mappings.",
1262 pgmR3MapInfo);
1263
1264 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1265#ifdef VBOX_WITH_STATISTICS
1266 pgmR3InitStats(pVM);
1267#endif
1268#ifdef VBOX_WITH_DEBUGGER
1269 /*
1270 * Debugger commands.
1271 */
1272 static bool fRegisteredCmds = false;
1273 if (!fRegisteredCmds)
1274 {
1275 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1276 if (RT_SUCCESS(rc))
1277 fRegisteredCmds = true;
1278 }
1279#endif
1280 return VINF_SUCCESS;
1281 }
1282
1283 /* Almost no cleanup necessary, MM frees all memory. */
1284 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1285
1286 return rc;
1287}
1288
1289
1290/**
1291 * Initializes the per-VCPU PGM.
1292 *
1293 * @returns VBox status code.
1294 * @param pVM The VM to operate on.
1295 */
1296VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1297{
1298 LogFlow(("PGMR3InitCPU\n"));
1299 return VINF_SUCCESS;
1300}
1301
1302
1303/**
1304 * Init paging.
1305 *
1306 * Since we need to check what mode the host is operating in before we can choose
1307 * the right paging functions for the host we have to delay this until R0 has
1308 * been initialized.
1309 *
1310 * @returns VBox status code.
1311 * @param pVM VM handle.
1312 */
1313static int pgmR3InitPaging(PVM pVM)
1314{
1315 /*
1316 * Force a recalculation of modes and switcher so everyone gets notified.
1317 */
1318 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1319 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1320 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1321
1322 /*
1323 * Allocate static mapping space for whatever the cr3 register
1324 * points to and in the case of PAE mode to the 4 PDs.
1325 */
1326 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1327 if (RT_FAILURE(rc))
1328 {
1329 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1330 return rc;
1331 }
1332 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1333
1334 /*
1335 * Allocate pages for the three possible intermediate contexts
1336 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1337 * for the sake of simplicity. The AMD64 uses the PAE for the
1338 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1339 *
1340 * We assume that two page tables will be enought for the core code
1341 * mappings (HC virtual and identity).
1342 */
1343 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1344 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1345 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1346 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1347 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1348 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1349 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1350 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1351 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1352 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1353 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1354 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1355 if ( !pVM->pgm.s.pInterPD
1356 || !pVM->pgm.s.apInterPTs[0]
1357 || !pVM->pgm.s.apInterPTs[1]
1358 || !pVM->pgm.s.apInterPaePTs[0]
1359 || !pVM->pgm.s.apInterPaePTs[1]
1360 || !pVM->pgm.s.apInterPaePDs[0]
1361 || !pVM->pgm.s.apInterPaePDs[1]
1362 || !pVM->pgm.s.apInterPaePDs[2]
1363 || !pVM->pgm.s.apInterPaePDs[3]
1364 || !pVM->pgm.s.pInterPaePDPT
1365 || !pVM->pgm.s.pInterPaePDPT64
1366 || !pVM->pgm.s.pInterPaePML4)
1367 {
1368 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1369 return VERR_NO_PAGE_MEMORY;
1370 }
1371
1372 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1373 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1374 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1375 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1376 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1377 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1378
1379 /*
1380 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1381 */
1382 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1383 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1384 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1385
1386 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1387 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1388
1389 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1390 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1391 {
1392 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1393 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1394 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1395 }
1396
1397 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1398 {
1399 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1400 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1401 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1402 }
1403
1404 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1405 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1406 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1407 | HCPhysInterPaePDPT64;
1408
1409 /*
1410 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1411 * We allocate pages for all three posibilities in order to simplify mappings and
1412 * avoid resource failure during mode switches. So, we need to cover all levels of the
1413 * of the first 4GB down to PD level.
1414 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1415 */
1416#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1417 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1418# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1419 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1420# endif
1421 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1422 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1423 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1424 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1425 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1426 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1427 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1428# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1429 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1430 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1431 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1432 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1433# endif
1434 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1435# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1436 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1437# endif
1438#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1439 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1440#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1441 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1442#endif
1443
1444#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1445 if (!pVM->pgm.s.pShwNestedRootR3)
1446#else
1447 if ( !pVM->pgm.s.pShw32BitPdR3
1448 || !pVM->pgm.s.apShwPaePDsR3[0]
1449 || !pVM->pgm.s.apShwPaePDsR3[1]
1450 || !pVM->pgm.s.apShwPaePDsR3[2]
1451 || !pVM->pgm.s.apShwPaePDsR3[3]
1452 || !pVM->pgm.s.pShwPaePdptR3
1453 || !pVM->pgm.s.pShwNestedRootR3)
1454#endif
1455 {
1456 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1457 return VERR_NO_PAGE_MEMORY;
1458 }
1459
1460 /* get physical addresses. */
1461#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1462 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1463 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1464 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1465 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1466 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1467 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1468 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1469#endif
1470 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1471
1472 /*
1473 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1474 */
1475#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1476 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1477 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1478#endif
1479 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1480#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1481 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1482 {
1483 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1484 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1485 /* The flags will be corrected when entering and leaving long mode. */
1486 }
1487
1488 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhysShw32BitPD);
1489#endif
1490
1491 /*
1492 * Initialize paging workers and mode from current host mode
1493 * and the guest running in real mode.
1494 */
1495 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1496 switch (pVM->pgm.s.enmHostMode)
1497 {
1498 case SUPPAGINGMODE_32_BIT:
1499 case SUPPAGINGMODE_32_BIT_GLOBAL:
1500 case SUPPAGINGMODE_PAE:
1501 case SUPPAGINGMODE_PAE_GLOBAL:
1502 case SUPPAGINGMODE_PAE_NX:
1503 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1504 break;
1505
1506 case SUPPAGINGMODE_AMD64:
1507 case SUPPAGINGMODE_AMD64_GLOBAL:
1508 case SUPPAGINGMODE_AMD64_NX:
1509 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1510#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1511 if (ARCH_BITS != 64)
1512 {
1513 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1514 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1515 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1516 }
1517#endif
1518 break;
1519 default:
1520 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1521 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1522 }
1523 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1524 if (RT_SUCCESS(rc))
1525 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1526 if (RT_SUCCESS(rc))
1527 {
1528 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1529#if HC_ARCH_BITS == 64
1530# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1531 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp HCPhysShwPaePml4=%RHp\n",
1532 pVM->pgm.s.HCPhysShw32BitPD,
1533 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1534 pVM->pgm.s.HCPhysShwPaePdpt,
1535 pVM->pgm.s.HCPhysShwPaePml4));
1536# endif
1537 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1538 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1539 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1540 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1541 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1542 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1543 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1544#endif
1545
1546 return VINF_SUCCESS;
1547 }
1548
1549 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1550 return rc;
1551}
1552
1553
1554#ifdef VBOX_WITH_STATISTICS
1555/**
1556 * Init statistics
1557 */
1558static void pgmR3InitStats(PVM pVM)
1559{
1560 PPGM pPGM = &pVM->pgm.s;
1561 unsigned i;
1562
1563 /*
1564 * Note! The layout of this function matches the member layout exactly!
1565 */
1566
1567 /* Common - misc variables */
1568 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1569 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1570 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1571 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1572 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1573 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1574
1575 /* Common - stats */
1576#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1577 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1578 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1579 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1580 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1581 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1582 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1583#endif
1584 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1585 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1586 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1587 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1588 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1589 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1590
1591 /* R3 only: */
1592 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1593 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1594 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1595 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1596 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1597 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1598
1599 /* R0 only: */
1600 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1601 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1602 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1603 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1604 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1605 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1606 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1607 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1608 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1609 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1610 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1611 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1612 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1613 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1614 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1615 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1616 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1617 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1618 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1619 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1620 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1621 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1622
1623 /* GC only: */
1624 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1625 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1626 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1627 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1628
1629 /* RZ only: */
1630 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1660 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1664 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1665 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1666 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1667 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1668 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1669 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1670 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1671 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1672 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1673 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1674 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1675 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1676 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1677 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1678 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1679 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1680 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1681
1682 /* HC only: */
1683
1684 /* RZ & R3: */
1685 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1686 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1687 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1688 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1690 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1691 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1692 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1693 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1694 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1695 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1696 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1697 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1698 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1699 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1700 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1701 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1702 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1703 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1704 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1705 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1706 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1707 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1708 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1709 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1710 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1711 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1712 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1713 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1714 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1715 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1716 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1717 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1718 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1719 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1720 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1721 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1722 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1723 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1724 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1725 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1726 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1727 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1728 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1729 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1730 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1731 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1732/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1733 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1734 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1735 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1736 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1737 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1738 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1739
1740 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1741 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1742 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1743 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1745 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1746 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1747 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1748 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1749 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1750 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1751 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1752 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1753 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1754 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1755 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1756 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1757 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1758 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1759 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1760 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1761 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1762 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1763 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1764 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1765 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1766 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1767 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1768 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1769 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1770 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1771 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1772 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1773 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1774 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1775 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1776 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1777 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1778 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1779 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1780 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1781 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1782 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1783 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1784 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1785 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1786 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1787/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1788 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1789 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1790 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1791 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1792 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1793 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1794
1795}
1796#endif /* VBOX_WITH_STATISTICS */
1797
1798
1799/**
1800 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1801 *
1802 * The dynamic mapping area will also be allocated and initialized at this
1803 * time. We could allocate it during PGMR3Init of course, but the mapping
1804 * wouldn't be allocated at that time preventing us from setting up the
1805 * page table entries with the dummy page.
1806 *
1807 * @returns VBox status code.
1808 * @param pVM VM handle.
1809 */
1810VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1811{
1812 RTGCPTR GCPtr;
1813 int rc;
1814
1815#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1816 /*
1817 * Reserve space for mapping the paging pages into guest context.
1818 */
1819 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1820 AssertRCReturn(rc, rc);
1821 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1822 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1823#endif
1824
1825 /*
1826 * Reserve space for the dynamic mappings.
1827 */
1828 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1829 if (RT_SUCCESS(rc))
1830 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1831
1832 if ( RT_SUCCESS(rc)
1833 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1834 {
1835 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1836 if (RT_SUCCESS(rc))
1837 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1838 }
1839 if (RT_SUCCESS(rc))
1840 {
1841 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1842 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1843 }
1844 return rc;
1845}
1846
1847
1848/**
1849 * Ring-3 init finalizing.
1850 *
1851 * @returns VBox status code.
1852 * @param pVM The VM handle.
1853 */
1854VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1855{
1856 int rc;
1857
1858#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1859 /*
1860 * Map the paging pages into the guest context.
1861 */
1862 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1863 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1864
1865 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1866 AssertRCReturn(rc, rc);
1867 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1868 GCPtr += PAGE_SIZE;
1869 GCPtr += PAGE_SIZE; /* reserved page */
1870
1871 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1872 {
1873 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1874 AssertRCReturn(rc, rc);
1875 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1876 GCPtr += PAGE_SIZE;
1877 }
1878 /* A bit of paranoia is justified. */
1879 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1880 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1881 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1882 GCPtr += PAGE_SIZE; /* reserved page */
1883
1884 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1885 AssertRCReturn(rc, rc);
1886 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1887 GCPtr += PAGE_SIZE;
1888 GCPtr += PAGE_SIZE; /* reserved page */
1889#endif
1890
1891 /*
1892 * Reserve space for the dynamic mappings.
1893 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1894 */
1895 /* get the pointer to the page table entries. */
1896 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1897 AssertRelease(pMapping);
1898 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1899 const unsigned iPT = off >> X86_PD_SHIFT;
1900 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1901 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1902 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1903
1904 /* init cache */
1905 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1906 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1907 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1908
1909 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1910 {
1911 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1912 AssertRCReturn(rc, rc);
1913 }
1914
1915 /*
1916 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1917 * Intel only goes up to 36 bits, so we stick to 36 as well.
1918 */
1919 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1920 uint32_t u32Dummy, u32Features;
1921 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1922
1923 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1924 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1925 else
1926 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1927
1928 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1929
1930 return rc;
1931}
1932
1933
1934/**
1935 * Applies relocations to data and code managed by this component.
1936 *
1937 * This function will be called at init and whenever the VMM need to relocate it
1938 * self inside the GC.
1939 *
1940 * @param pVM The VM.
1941 * @param offDelta Relocation delta relative to old location.
1942 */
1943VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1944{
1945 LogFlow(("PGMR3Relocate\n"));
1946
1947 /*
1948 * Paging stuff.
1949 */
1950 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1951 /** @todo move this into shadow and guest specific relocation functions. */
1952 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
1953#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1954 pVM->pgm.s.pShw32BitPdRC += offDelta;
1955#endif
1956 pVM->pgm.s.pGst32BitPdRC += offDelta;
1957 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1958 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC); i++)
1959 {
1960#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1961 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1962#endif
1963 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1964 }
1965 pVM->pgm.s.pGstPaePdptRC += offDelta;
1966#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1967 pVM->pgm.s.pShwPaePdptRC += offDelta;
1968#endif
1969
1970 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1971 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1972
1973 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1974 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1975 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1976
1977 /*
1978 * Trees.
1979 */
1980 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1981
1982 /*
1983 * Ram ranges.
1984 */
1985 if (pVM->pgm.s.pRamRangesR3)
1986 {
1987 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1988 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1989 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1990 }
1991
1992 /*
1993 * Update the two page directories with all page table mappings.
1994 * (One or more of them have changed, that's why we're here.)
1995 */
1996 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1997 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1998 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1999
2000 /* Relocate GC addresses of Page Tables. */
2001 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2002 {
2003 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2004 {
2005 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2006 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2007 }
2008 }
2009
2010 /*
2011 * Dynamic page mapping area.
2012 */
2013 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2014 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2015 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2016
2017 /*
2018 * The Zero page.
2019 */
2020 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2021#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2022 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2023#else
2024 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2025#endif
2026
2027 /*
2028 * Physical and virtual handlers.
2029 */
2030 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2031 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2032 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2033
2034 /*
2035 * The page pool.
2036 */
2037 pgmR3PoolRelocate(pVM);
2038}
2039
2040
2041/**
2042 * Callback function for relocating a physical access handler.
2043 *
2044 * @returns 0 (continue enum)
2045 * @param pNode Pointer to a PGMPHYSHANDLER node.
2046 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2047 * not certain the delta will fit in a void pointer for all possible configs.
2048 */
2049static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2050{
2051 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2052 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2053 if (pHandler->pfnHandlerRC)
2054 pHandler->pfnHandlerRC += offDelta;
2055 if (pHandler->pvUserRC >= 0x10000)
2056 pHandler->pvUserRC += offDelta;
2057 return 0;
2058}
2059
2060
2061/**
2062 * Callback function for relocating a virtual access handler.
2063 *
2064 * @returns 0 (continue enum)
2065 * @param pNode Pointer to a PGMVIRTHANDLER node.
2066 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2067 * not certain the delta will fit in a void pointer for all possible configs.
2068 */
2069static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2070{
2071 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2072 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2073 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2074 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2075 Assert(pHandler->pfnHandlerRC);
2076 pHandler->pfnHandlerRC += offDelta;
2077 return 0;
2078}
2079
2080
2081/**
2082 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2083 *
2084 * @returns 0 (continue enum)
2085 * @param pNode Pointer to a PGMVIRTHANDLER node.
2086 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2087 * not certain the delta will fit in a void pointer for all possible configs.
2088 */
2089static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2090{
2091 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2092 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2093 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2094 Assert(pHandler->pfnHandlerRC);
2095 pHandler->pfnHandlerRC += offDelta;
2096 return 0;
2097}
2098
2099
2100/**
2101 * The VM is being reset.
2102 *
2103 * For the PGM component this means that any PD write monitors
2104 * needs to be removed.
2105 *
2106 * @param pVM VM handle.
2107 */
2108VMMR3DECL(void) PGMR3Reset(PVM pVM)
2109{
2110 LogFlow(("PGMR3Reset:\n"));
2111 VM_ASSERT_EMT(pVM);
2112
2113 pgmLock(pVM);
2114
2115 /*
2116 * Unfix any fixed mappings and disable CR3 monitoring.
2117 */
2118 pVM->pgm.s.fMappingsFixed = false;
2119 pVM->pgm.s.GCPtrMappingFixed = 0;
2120 pVM->pgm.s.cbMappingFixed = 0;
2121
2122 /* Exit the guest paging mode before the pgm pool gets reset.
2123 * Important to clean up the amd64 case.
2124 */
2125 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2126 AssertRC(rc);
2127#ifdef DEBUG
2128 DBGFR3InfoLog(pVM, "mappings", NULL);
2129 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2130#endif
2131
2132 /*
2133 * Reset the shadow page pool.
2134 */
2135 pgmR3PoolReset(pVM);
2136
2137 /*
2138 * Re-init other members.
2139 */
2140 pVM->pgm.s.fA20Enabled = true;
2141
2142 /*
2143 * Clear the FFs PGM owns.
2144 */
2145 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2146 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2147
2148 /*
2149 * Reset (zero) RAM pages.
2150 */
2151 rc = pgmR3PhysRamReset(pVM);
2152 if (RT_SUCCESS(rc))
2153 {
2154#ifdef VBOX_WITH_NEW_PHYS_CODE
2155 /*
2156 * Reset (zero) shadow ROM pages.
2157 */
2158 rc = pgmR3PhysRomReset(pVM);
2159#endif
2160 if (RT_SUCCESS(rc))
2161 {
2162 /*
2163 * Switch mode back to real mode.
2164 */
2165 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2166 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2167 }
2168 }
2169
2170 pgmUnlock(pVM);
2171 //return rc;
2172 AssertReleaseRC(rc);
2173}
2174
2175
2176#ifdef VBOX_STRICT
2177/**
2178 * VM state change callback for clearing fNoMorePhysWrites after
2179 * a snapshot has been created.
2180 */
2181static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2182{
2183 if (enmState == VMSTATE_RUNNING)
2184 pVM->pgm.s.fNoMorePhysWrites = false;
2185}
2186#endif
2187
2188
2189/**
2190 * Terminates the PGM.
2191 *
2192 * @returns VBox status code.
2193 * @param pVM Pointer to VM structure.
2194 */
2195VMMR3DECL(int) PGMR3Term(PVM pVM)
2196{
2197 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2198}
2199
2200
2201/**
2202 * Terminates the per-VCPU PGM.
2203 *
2204 * Termination means cleaning up and freeing all resources,
2205 * the VM it self is at this point powered off or suspended.
2206 *
2207 * @returns VBox status code.
2208 * @param pVM The VM to operate on.
2209 */
2210VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2211{
2212 return 0;
2213}
2214
2215
2216/**
2217 * Execute state save operation.
2218 *
2219 * @returns VBox status code.
2220 * @param pVM VM Handle.
2221 * @param pSSM SSM operation handle.
2222 */
2223static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2224{
2225 PPGM pPGM = &pVM->pgm.s;
2226
2227 /* No more writes to physical memory after this point! */
2228 pVM->pgm.s.fNoMorePhysWrites = true;
2229
2230 /*
2231 * Save basic data (required / unaffected by relocation).
2232 */
2233#if 1
2234 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2235#else
2236 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2237#endif
2238 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2239 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2240 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2241 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2242 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2243 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2244 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2245 SSMR3PutU32(pSSM, ~0); /* Separator. */
2246
2247 /*
2248 * The guest mappings.
2249 */
2250 uint32_t i = 0;
2251 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2252 {
2253 SSMR3PutU32(pSSM, i);
2254 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2255 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2256 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2257 /* flags are done by the mapping owners! */
2258 }
2259 SSMR3PutU32(pSSM, ~0); /* terminator. */
2260
2261 /*
2262 * Ram range flags and bits.
2263 */
2264 i = 0;
2265 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2266 {
2267 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2268
2269 SSMR3PutU32(pSSM, i);
2270 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2271 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2272 SSMR3PutGCPhys(pSSM, pRam->cb);
2273 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2274
2275 /* Flags. */
2276 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2277 for (unsigned iPage = 0; iPage < cPages; iPage++)
2278 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2279
2280 /* any memory associated with the range. */
2281 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2282 {
2283 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2284 {
2285 if (pRam->paChunkR3Ptrs[iChunk])
2286 {
2287 SSMR3PutU8(pSSM, 1); /* chunk present */
2288 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2289 }
2290 else
2291 SSMR3PutU8(pSSM, 0); /* no chunk present */
2292 }
2293 }
2294 else if (pRam->pvR3)
2295 {
2296 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2297 if (RT_FAILURE(rc))
2298 {
2299 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2300 return rc;
2301 }
2302 }
2303 }
2304 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2305}
2306
2307
2308/**
2309 * Execute state load operation.
2310 *
2311 * @returns VBox status code.
2312 * @param pVM VM Handle.
2313 * @param pSSM SSM operation handle.
2314 * @param u32Version Data layout version.
2315 */
2316static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2317{
2318 /*
2319 * Validate version.
2320 */
2321 if (u32Version != PGM_SAVED_STATE_VERSION)
2322 {
2323 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2324 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2325 }
2326
2327 /*
2328 * Call the reset function to make sure all the memory is cleared.
2329 */
2330 PGMR3Reset(pVM);
2331
2332 /*
2333 * Load basic data (required / unaffected by relocation).
2334 */
2335 PPGM pPGM = &pVM->pgm.s;
2336#if 1
2337 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2338#else
2339 uint32_t u;
2340 SSMR3GetU32(pSSM, &u);
2341 pPGM->fMappingsFixed = u;
2342#endif
2343 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2344 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2345
2346 RTUINT cbRamSize;
2347 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2348 if (RT_FAILURE(rc))
2349 return rc;
2350 if (cbRamSize != pPGM->cbRamSize)
2351 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2352 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2353 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2354 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2355 RTUINT uGuestMode;
2356 SSMR3GetUInt(pSSM, &uGuestMode);
2357 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2358
2359 /* check separator. */
2360 uint32_t u32Sep;
2361 SSMR3GetU32(pSSM, &u32Sep);
2362 if (RT_FAILURE(rc))
2363 return rc;
2364 if (u32Sep != (uint32_t)~0)
2365 {
2366 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2367 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2368 }
2369
2370 /*
2371 * The guest mappings.
2372 */
2373 uint32_t i = 0;
2374 for (;; i++)
2375 {
2376 /* Check the seqence number / separator. */
2377 rc = SSMR3GetU32(pSSM, &u32Sep);
2378 if (RT_FAILURE(rc))
2379 return rc;
2380 if (u32Sep == ~0U)
2381 break;
2382 if (u32Sep != i)
2383 {
2384 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2385 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2386 }
2387
2388 /* get the mapping details. */
2389 char szDesc[256];
2390 szDesc[0] = '\0';
2391 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2392 if (RT_FAILURE(rc))
2393 return rc;
2394 RTGCPTR GCPtr;
2395 SSMR3GetGCPtr(pSSM, &GCPtr);
2396 RTGCPTR cPTs;
2397 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2398 if (RT_FAILURE(rc))
2399 return rc;
2400
2401 /* find matching range. */
2402 PPGMMAPPING pMapping;
2403 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2404 if ( pMapping->cPTs == cPTs
2405 && !strcmp(pMapping->pszDesc, szDesc))
2406 break;
2407 if (!pMapping)
2408 {
2409 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2410 cPTs, szDesc, GCPtr));
2411 AssertFailed();
2412 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2413 }
2414
2415 /* relocate it. */
2416 if (pMapping->GCPtr != GCPtr)
2417 {
2418 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2419 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2420 }
2421 else
2422 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2423 }
2424
2425 /*
2426 * Ram range flags and bits.
2427 */
2428 i = 0;
2429 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2430 {
2431 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2432 /* Check the seqence number / separator. */
2433 rc = SSMR3GetU32(pSSM, &u32Sep);
2434 if (RT_FAILURE(rc))
2435 return rc;
2436 if (u32Sep == ~0U)
2437 break;
2438 if (u32Sep != i)
2439 {
2440 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2441 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2442 }
2443
2444 /* Get the range details. */
2445 RTGCPHYS GCPhys;
2446 SSMR3GetGCPhys(pSSM, &GCPhys);
2447 RTGCPHYS GCPhysLast;
2448 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2449 RTGCPHYS cb;
2450 SSMR3GetGCPhys(pSSM, &cb);
2451 uint8_t fHaveBits;
2452 rc = SSMR3GetU8(pSSM, &fHaveBits);
2453 if (RT_FAILURE(rc))
2454 return rc;
2455 if (fHaveBits & ~1)
2456 {
2457 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2458 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2459 }
2460
2461 /* Match it up with the current range. */
2462 if ( GCPhys != pRam->GCPhys
2463 || GCPhysLast != pRam->GCPhysLast
2464 || cb != pRam->cb
2465 || fHaveBits != !!pRam->pvR3)
2466 {
2467 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2468 "State : %RGp-%RGp %RGp bytes %s\n",
2469 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2470 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2471 /*
2472 * If we're loading a state for debugging purpose, don't make a fuss if
2473 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2474 */
2475 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2476 || GCPhys < 8 * _1M)
2477 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2478
2479 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2480 while (cPages-- > 0)
2481 {
2482 uint16_t u16Ignore;
2483 SSMR3GetU16(pSSM, &u16Ignore);
2484 }
2485 continue;
2486 }
2487
2488 /* Flags. */
2489 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2490 for (unsigned iPage = 0; iPage < cPages; iPage++)
2491 {
2492 uint16_t u16 = 0;
2493 SSMR3GetU16(pSSM, &u16);
2494 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2495 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2496 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2497 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2498 }
2499
2500 /* any memory associated with the range. */
2501 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2502 {
2503 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2504 {
2505 uint8_t fValidChunk;
2506
2507 rc = SSMR3GetU8(pSSM, &fValidChunk);
2508 if (RT_FAILURE(rc))
2509 return rc;
2510 if (fValidChunk > 1)
2511 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2512
2513 if (fValidChunk)
2514 {
2515 if (!pRam->paChunkR3Ptrs[iChunk])
2516 {
2517 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2518 if (RT_FAILURE(rc))
2519 return rc;
2520 }
2521 Assert(pRam->paChunkR3Ptrs[iChunk]);
2522
2523 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2524 }
2525 /* else nothing to do */
2526 }
2527 }
2528 else if (pRam->pvR3)
2529 {
2530 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2531 if (RT_FAILURE(rc))
2532 {
2533 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2534 return rc;
2535 }
2536 }
2537 }
2538
2539 /*
2540 * We require a full resync now.
2541 */
2542 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2543 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2544 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2545 pPGM->fPhysCacheFlushPending = true;
2546 pgmR3HandlerPhysicalUpdateAll(pVM);
2547
2548 /*
2549 * Change the paging mode.
2550 */
2551 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2552
2553 /* Restore pVM->pgm.s.GCPhysCR3. */
2554 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2555 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2556 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2557 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2558 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2559 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2560 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2561 else
2562 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2563 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2564
2565 return rc;
2566}
2567
2568
2569/**
2570 * Show paging mode.
2571 *
2572 * @param pVM VM Handle.
2573 * @param pHlp The info helpers.
2574 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2575 */
2576static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2577{
2578 /* digest argument. */
2579 bool fGuest, fShadow, fHost;
2580 if (pszArgs)
2581 pszArgs = RTStrStripL(pszArgs);
2582 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2583 fShadow = fHost = fGuest = true;
2584 else
2585 {
2586 fShadow = fHost = fGuest = false;
2587 if (strstr(pszArgs, "guest"))
2588 fGuest = true;
2589 if (strstr(pszArgs, "shadow"))
2590 fShadow = true;
2591 if (strstr(pszArgs, "host"))
2592 fHost = true;
2593 }
2594
2595 /* print info. */
2596 if (fGuest)
2597 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2598 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2599 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2600 if (fShadow)
2601 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2602 if (fHost)
2603 {
2604 const char *psz;
2605 switch (pVM->pgm.s.enmHostMode)
2606 {
2607 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2608 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2609 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2610 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2611 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2612 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2613 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2614 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2615 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2616 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2617 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2618 default: psz = "unknown"; break;
2619 }
2620 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2621 }
2622}
2623
2624
2625/**
2626 * Dump registered MMIO ranges to the log.
2627 *
2628 * @param pVM VM Handle.
2629 * @param pHlp The info helpers.
2630 * @param pszArgs Arguments, ignored.
2631 */
2632static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2633{
2634 NOREF(pszArgs);
2635 pHlp->pfnPrintf(pHlp,
2636 "RAM ranges (pVM=%p)\n"
2637 "%.*s %.*s\n",
2638 pVM,
2639 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2640 sizeof(RTHCPTR) * 2, "pvHC ");
2641
2642 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2643 pHlp->pfnPrintf(pHlp,
2644 "%RGp-%RGp %RHv %s\n",
2645 pCur->GCPhys,
2646 pCur->GCPhysLast,
2647 pCur->pvR3,
2648 pCur->pszDesc);
2649}
2650
2651/**
2652 * Dump the page directory to the log.
2653 *
2654 * @param pVM VM Handle.
2655 * @param pHlp The info helpers.
2656 * @param pszArgs Arguments, ignored.
2657 */
2658static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2659{
2660/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2661 /* Big pages supported? */
2662 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2663
2664 /* Global pages supported? */
2665 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2666
2667 NOREF(pszArgs);
2668
2669 /*
2670 * Get page directory addresses.
2671 */
2672 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2673 Assert(pPDSrc);
2674 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2675
2676 /*
2677 * Iterate the page directory.
2678 */
2679 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2680 {
2681 X86PDE PdeSrc = pPDSrc->a[iPD];
2682 if (PdeSrc.n.u1Present)
2683 {
2684 if (PdeSrc.b.u1Size && fPSE)
2685 pHlp->pfnPrintf(pHlp,
2686 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2687 iPD,
2688 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2689 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2690 else
2691 pHlp->pfnPrintf(pHlp,
2692 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2693 iPD,
2694 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2695 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2696 }
2697 }
2698}
2699
2700
2701/**
2702 * Serivce a VMMCALLHOST_PGM_LOCK call.
2703 *
2704 * @returns VBox status code.
2705 * @param pVM The VM handle.
2706 */
2707VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2708{
2709 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2710 AssertRC(rc);
2711 return rc;
2712}
2713
2714
2715/**
2716 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2717 *
2718 * @returns PGM_TYPE_*.
2719 * @param pgmMode The mode value to convert.
2720 */
2721DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2722{
2723 switch (pgmMode)
2724 {
2725 case PGMMODE_REAL: return PGM_TYPE_REAL;
2726 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2727 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2728 case PGMMODE_PAE:
2729 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2730 case PGMMODE_AMD64:
2731 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2732 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2733 case PGMMODE_EPT: return PGM_TYPE_EPT;
2734 default:
2735 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2736 }
2737}
2738
2739
2740/**
2741 * Gets the index into the paging mode data array of a SHW+GST mode.
2742 *
2743 * @returns PGM::paPagingData index.
2744 * @param uShwType The shadow paging mode type.
2745 * @param uGstType The guest paging mode type.
2746 */
2747DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2748{
2749 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2750 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2751 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2752 + (uGstType - PGM_TYPE_REAL);
2753}
2754
2755
2756/**
2757 * Gets the index into the paging mode data array of a SHW+GST mode.
2758 *
2759 * @returns PGM::paPagingData index.
2760 * @param enmShw The shadow paging mode.
2761 * @param enmGst The guest paging mode.
2762 */
2763DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2764{
2765 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2766 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2767 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2768}
2769
2770
2771/**
2772 * Calculates the max data index.
2773 * @returns The number of entries in the paging data array.
2774 */
2775DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2776{
2777 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2778}
2779
2780
2781/**
2782 * Initializes the paging mode data kept in PGM::paModeData.
2783 *
2784 * @param pVM The VM handle.
2785 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2786 * This is used early in the init process to avoid trouble with PDM
2787 * not being initialized yet.
2788 */
2789static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2790{
2791 PPGMMODEDATA pModeData;
2792 int rc;
2793
2794 /*
2795 * Allocate the array on the first call.
2796 */
2797 if (!pVM->pgm.s.paModeData)
2798 {
2799 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2800 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2801 }
2802
2803 /*
2804 * Initialize the array entries.
2805 */
2806 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2807 pModeData->uShwType = PGM_TYPE_32BIT;
2808 pModeData->uGstType = PGM_TYPE_REAL;
2809 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2811 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812
2813 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2814 pModeData->uShwType = PGM_TYPE_32BIT;
2815 pModeData->uGstType = PGM_TYPE_PROT;
2816 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2817 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819
2820 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2821 pModeData->uShwType = PGM_TYPE_32BIT;
2822 pModeData->uGstType = PGM_TYPE_32BIT;
2823 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2826
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2828 pModeData->uShwType = PGM_TYPE_PAE;
2829 pModeData->uGstType = PGM_TYPE_REAL;
2830 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2832 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833
2834 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2835 pModeData->uShwType = PGM_TYPE_PAE;
2836 pModeData->uGstType = PGM_TYPE_PROT;
2837 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2839 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840
2841 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2842 pModeData->uShwType = PGM_TYPE_PAE;
2843 pModeData->uGstType = PGM_TYPE_32BIT;
2844 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2845 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2846 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2847
2848 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2849 pModeData->uShwType = PGM_TYPE_PAE;
2850 pModeData->uGstType = PGM_TYPE_PAE;
2851 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2852 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2854
2855#ifdef VBOX_WITH_64_BITS_GUESTS
2856 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2857 pModeData->uShwType = PGM_TYPE_AMD64;
2858 pModeData->uGstType = PGM_TYPE_AMD64;
2859 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2860 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2861 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2862#endif
2863
2864 /* The nested paging mode. */
2865 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2866 pModeData->uShwType = PGM_TYPE_NESTED;
2867 pModeData->uGstType = PGM_TYPE_REAL;
2868 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2870
2871 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2872 pModeData->uShwType = PGM_TYPE_NESTED;
2873 pModeData->uGstType = PGM_TYPE_PROT;
2874 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2876
2877 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2878 pModeData->uShwType = PGM_TYPE_NESTED;
2879 pModeData->uGstType = PGM_TYPE_32BIT;
2880 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2881 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2882
2883 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2884 pModeData->uShwType = PGM_TYPE_NESTED;
2885 pModeData->uGstType = PGM_TYPE_PAE;
2886 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2887 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2888
2889#ifdef VBOX_WITH_64_BITS_GUESTS
2890 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2891 pModeData->uShwType = PGM_TYPE_NESTED;
2892 pModeData->uGstType = PGM_TYPE_AMD64;
2893 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895#endif
2896
2897 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2898 switch (pVM->pgm.s.enmHostMode)
2899 {
2900#if HC_ARCH_BITS == 32
2901 case SUPPAGINGMODE_32_BIT:
2902 case SUPPAGINGMODE_32_BIT_GLOBAL:
2903 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2904 {
2905 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2906 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 }
2908# ifdef VBOX_WITH_64_BITS_GUESTS
2909 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2910 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911# endif
2912 break;
2913
2914 case SUPPAGINGMODE_PAE:
2915 case SUPPAGINGMODE_PAE_NX:
2916 case SUPPAGINGMODE_PAE_GLOBAL:
2917 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2918 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2919 {
2920 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2921 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2922 }
2923# ifdef VBOX_WITH_64_BITS_GUESTS
2924 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2925 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926# endif
2927 break;
2928#endif /* HC_ARCH_BITS == 32 */
2929
2930#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2931 case SUPPAGINGMODE_AMD64:
2932 case SUPPAGINGMODE_AMD64_GLOBAL:
2933 case SUPPAGINGMODE_AMD64_NX:
2934 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2935# ifdef VBOX_WITH_64_BITS_GUESTS
2936 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2937# else
2938 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2939# endif
2940 {
2941 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2942 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2943 }
2944 break;
2945#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2946
2947 default:
2948 AssertFailed();
2949 break;
2950 }
2951
2952 /* Extended paging (EPT) / Intel VT-x */
2953 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2954 pModeData->uShwType = PGM_TYPE_EPT;
2955 pModeData->uGstType = PGM_TYPE_REAL;
2956 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2957 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2958 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2959
2960 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2961 pModeData->uShwType = PGM_TYPE_EPT;
2962 pModeData->uGstType = PGM_TYPE_PROT;
2963 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2964 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2965 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966
2967 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2968 pModeData->uShwType = PGM_TYPE_EPT;
2969 pModeData->uGstType = PGM_TYPE_32BIT;
2970 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2971 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2972 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2973
2974 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2975 pModeData->uShwType = PGM_TYPE_EPT;
2976 pModeData->uGstType = PGM_TYPE_PAE;
2977 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2978 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2979 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2980
2981#ifdef VBOX_WITH_64_BITS_GUESTS
2982 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2983 pModeData->uShwType = PGM_TYPE_EPT;
2984 pModeData->uGstType = PGM_TYPE_AMD64;
2985 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2986 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2987 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2988#endif
2989 return VINF_SUCCESS;
2990}
2991
2992
2993/**
2994 * Switch to different (or relocated in the relocate case) mode data.
2995 *
2996 * @param pVM The VM handle.
2997 * @param enmShw The the shadow paging mode.
2998 * @param enmGst The the guest paging mode.
2999 */
3000static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3001{
3002 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3003
3004 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3005 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3006
3007 /* shadow */
3008 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3009 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3010 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3011 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3012 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3013
3014 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3015 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3016
3017 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3018 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3019
3020
3021 /* guest */
3022 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3023 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3024 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3025 Assert(pVM->pgm.s.pfnR3GstGetPage);
3026 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3027 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3028#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3029 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
3030 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
3031#endif
3032 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
3033 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
3034#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3035 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3036 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3037 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3038 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3039#endif
3040 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3041 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3042 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3043#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3044 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3045 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3046#endif
3047 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
3048 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
3049#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3050 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3051 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3052#endif
3053 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3054 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3055 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3056#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3057 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3058 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3059#endif
3060 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
3061 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
3062#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3063 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3064 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3065#endif
3066
3067 /* both */
3068 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3069 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3070 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3071 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3072 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3073 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3074 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3075#ifdef VBOX_STRICT
3076 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3077#endif
3078
3079 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3080 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3081 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3082 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3083 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3084 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3085#ifdef VBOX_STRICT
3086 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3087#endif
3088
3089 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3090 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3091 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3092 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3093 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3094 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3095#ifdef VBOX_STRICT
3096 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3097#endif
3098}
3099
3100
3101/**
3102 * Calculates the shadow paging mode.
3103 *
3104 * @returns The shadow paging mode.
3105 * @param pVM VM handle.
3106 * @param enmGuestMode The guest mode.
3107 * @param enmHostMode The host mode.
3108 * @param enmShadowMode The current shadow mode.
3109 * @param penmSwitcher Where to store the switcher to use.
3110 * VMMSWITCHER_INVALID means no change.
3111 */
3112static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3113{
3114 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3115 switch (enmGuestMode)
3116 {
3117 /*
3118 * When switching to real or protected mode we don't change
3119 * anything since it's likely that we'll switch back pretty soon.
3120 *
3121 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3122 * and is supposed to determine which shadow paging and switcher to
3123 * use during init.
3124 */
3125 case PGMMODE_REAL:
3126 case PGMMODE_PROTECTED:
3127 if ( enmShadowMode != PGMMODE_INVALID
3128 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3129 break; /* (no change) */
3130
3131 switch (enmHostMode)
3132 {
3133 case SUPPAGINGMODE_32_BIT:
3134 case SUPPAGINGMODE_32_BIT_GLOBAL:
3135 enmShadowMode = PGMMODE_32_BIT;
3136 enmSwitcher = VMMSWITCHER_32_TO_32;
3137 break;
3138
3139 case SUPPAGINGMODE_PAE:
3140 case SUPPAGINGMODE_PAE_NX:
3141 case SUPPAGINGMODE_PAE_GLOBAL:
3142 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3143 enmShadowMode = PGMMODE_PAE;
3144 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3145#ifdef DEBUG_bird
3146 if (RTEnvExist("VBOX_32BIT"))
3147 {
3148 enmShadowMode = PGMMODE_32_BIT;
3149 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3150 }
3151#endif
3152 break;
3153
3154 case SUPPAGINGMODE_AMD64:
3155 case SUPPAGINGMODE_AMD64_GLOBAL:
3156 case SUPPAGINGMODE_AMD64_NX:
3157 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3158 enmShadowMode = PGMMODE_PAE;
3159 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3160#ifdef DEBUG_bird
3161 if (RTEnvExist("VBOX_32BIT"))
3162 {
3163 enmShadowMode = PGMMODE_32_BIT;
3164 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3165 }
3166#endif
3167 break;
3168
3169 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3170 }
3171 break;
3172
3173 case PGMMODE_32_BIT:
3174 switch (enmHostMode)
3175 {
3176 case SUPPAGINGMODE_32_BIT:
3177 case SUPPAGINGMODE_32_BIT_GLOBAL:
3178 enmShadowMode = PGMMODE_32_BIT;
3179 enmSwitcher = VMMSWITCHER_32_TO_32;
3180 break;
3181
3182 case SUPPAGINGMODE_PAE:
3183 case SUPPAGINGMODE_PAE_NX:
3184 case SUPPAGINGMODE_PAE_GLOBAL:
3185 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3186 enmShadowMode = PGMMODE_PAE;
3187 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3188#ifdef DEBUG_bird
3189 if (RTEnvExist("VBOX_32BIT"))
3190 {
3191 enmShadowMode = PGMMODE_32_BIT;
3192 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3193 }
3194#endif
3195 break;
3196
3197 case SUPPAGINGMODE_AMD64:
3198 case SUPPAGINGMODE_AMD64_GLOBAL:
3199 case SUPPAGINGMODE_AMD64_NX:
3200 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3201 enmShadowMode = PGMMODE_PAE;
3202 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3203#ifdef DEBUG_bird
3204 if (RTEnvExist("VBOX_32BIT"))
3205 {
3206 enmShadowMode = PGMMODE_32_BIT;
3207 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3208 }
3209#endif
3210 break;
3211
3212 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3213 }
3214 break;
3215
3216 case PGMMODE_PAE:
3217 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3218 switch (enmHostMode)
3219 {
3220 case SUPPAGINGMODE_32_BIT:
3221 case SUPPAGINGMODE_32_BIT_GLOBAL:
3222 enmShadowMode = PGMMODE_PAE;
3223 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3224 break;
3225
3226 case SUPPAGINGMODE_PAE:
3227 case SUPPAGINGMODE_PAE_NX:
3228 case SUPPAGINGMODE_PAE_GLOBAL:
3229 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3230 enmShadowMode = PGMMODE_PAE;
3231 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3232 break;
3233
3234 case SUPPAGINGMODE_AMD64:
3235 case SUPPAGINGMODE_AMD64_GLOBAL:
3236 case SUPPAGINGMODE_AMD64_NX:
3237 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3238 enmShadowMode = PGMMODE_PAE;
3239 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3240 break;
3241
3242 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3243 }
3244 break;
3245
3246 case PGMMODE_AMD64:
3247 case PGMMODE_AMD64_NX:
3248 switch (enmHostMode)
3249 {
3250 case SUPPAGINGMODE_32_BIT:
3251 case SUPPAGINGMODE_32_BIT_GLOBAL:
3252 enmShadowMode = PGMMODE_AMD64;
3253 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3254 break;
3255
3256 case SUPPAGINGMODE_PAE:
3257 case SUPPAGINGMODE_PAE_NX:
3258 case SUPPAGINGMODE_PAE_GLOBAL:
3259 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3260 enmShadowMode = PGMMODE_AMD64;
3261 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3262 break;
3263
3264 case SUPPAGINGMODE_AMD64:
3265 case SUPPAGINGMODE_AMD64_GLOBAL:
3266 case SUPPAGINGMODE_AMD64_NX:
3267 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3268 enmShadowMode = PGMMODE_AMD64;
3269 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3270 break;
3271
3272 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3273 }
3274 break;
3275
3276
3277 default:
3278 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3279 return PGMMODE_INVALID;
3280 }
3281 /* Override the shadow mode is nested paging is active. */
3282 if (HWACCMIsNestedPagingActive(pVM))
3283 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3284
3285 *penmSwitcher = enmSwitcher;
3286 return enmShadowMode;
3287}
3288
3289
3290/**
3291 * Performs the actual mode change.
3292 * This is called by PGMChangeMode and pgmR3InitPaging().
3293 *
3294 * @returns VBox status code.
3295 * @param pVM VM handle.
3296 * @param enmGuestMode The new guest mode. This is assumed to be different from
3297 * the current mode.
3298 */
3299VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3300{
3301 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3302 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3303
3304 /*
3305 * Calc the shadow mode and switcher.
3306 */
3307 VMMSWITCHER enmSwitcher;
3308 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3309 if (enmSwitcher != VMMSWITCHER_INVALID)
3310 {
3311 /*
3312 * Select new switcher.
3313 */
3314 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3315 if (RT_FAILURE(rc))
3316 {
3317 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3318 return rc;
3319 }
3320 }
3321
3322 /*
3323 * Exit old mode(s).
3324 */
3325 /* shadow */
3326 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3327 {
3328 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3329 if (PGM_SHW_PFN(Exit, pVM))
3330 {
3331 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3332 if (RT_FAILURE(rc))
3333 {
3334 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3335 return rc;
3336 }
3337 }
3338
3339 }
3340 else
3341 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3342
3343 /* guest */
3344 if (PGM_GST_PFN(Exit, pVM))
3345 {
3346 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3347 if (RT_FAILURE(rc))
3348 {
3349 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3350 return rc;
3351 }
3352 }
3353
3354 /*
3355 * Load new paging mode data.
3356 */
3357 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3358
3359 /*
3360 * Enter new shadow mode (if changed).
3361 */
3362 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3363 {
3364 int rc;
3365 pVM->pgm.s.enmShadowMode = enmShadowMode;
3366 switch (enmShadowMode)
3367 {
3368 case PGMMODE_32_BIT:
3369 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3370 break;
3371 case PGMMODE_PAE:
3372 case PGMMODE_PAE_NX:
3373 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3374 break;
3375 case PGMMODE_AMD64:
3376 case PGMMODE_AMD64_NX:
3377 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3378 break;
3379 case PGMMODE_NESTED:
3380 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3381 break;
3382 case PGMMODE_EPT:
3383 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3384 break;
3385 case PGMMODE_REAL:
3386 case PGMMODE_PROTECTED:
3387 default:
3388 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3389 return VERR_INTERNAL_ERROR;
3390 }
3391 if (RT_FAILURE(rc))
3392 {
3393 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3394 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3395 return rc;
3396 }
3397 }
3398
3399 /** @todo This is a bug!
3400 *
3401 * We must flush the PGM pool cache if the guest mode changes; we don't always
3402 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3403 * the shadow page tables.
3404 *
3405 * That only applies when switching between paging and non-paging modes.
3406 */
3407 /** @todo A20 setting */
3408 if ( pVM->pgm.s.CTX_SUFF(pPool)
3409 && !HWACCMIsNestedPagingActive(pVM)
3410 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3411 {
3412 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3413 pgmPoolFlushAll(pVM);
3414 }
3415
3416 /*
3417 * Enter the new guest and shadow+guest modes.
3418 */
3419 int rc = -1;
3420 int rc2 = -1;
3421 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3422 pVM->pgm.s.enmGuestMode = enmGuestMode;
3423 switch (enmGuestMode)
3424 {
3425 case PGMMODE_REAL:
3426 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3427 switch (pVM->pgm.s.enmShadowMode)
3428 {
3429 case PGMMODE_32_BIT:
3430 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3431 break;
3432 case PGMMODE_PAE:
3433 case PGMMODE_PAE_NX:
3434 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3435 break;
3436 case PGMMODE_NESTED:
3437 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3438 break;
3439 case PGMMODE_EPT:
3440 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3441 break;
3442 case PGMMODE_AMD64:
3443 case PGMMODE_AMD64_NX:
3444 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3445 default: AssertFailed(); break;
3446 }
3447 break;
3448
3449 case PGMMODE_PROTECTED:
3450 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3451 switch (pVM->pgm.s.enmShadowMode)
3452 {
3453 case PGMMODE_32_BIT:
3454 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3455 break;
3456 case PGMMODE_PAE:
3457 case PGMMODE_PAE_NX:
3458 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3459 break;
3460 case PGMMODE_NESTED:
3461 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3462 break;
3463 case PGMMODE_EPT:
3464 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3465 break;
3466 case PGMMODE_AMD64:
3467 case PGMMODE_AMD64_NX:
3468 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3469 default: AssertFailed(); break;
3470 }
3471 break;
3472
3473 case PGMMODE_32_BIT:
3474 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3475 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3476 switch (pVM->pgm.s.enmShadowMode)
3477 {
3478 case PGMMODE_32_BIT:
3479 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3480 break;
3481 case PGMMODE_PAE:
3482 case PGMMODE_PAE_NX:
3483 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3484 break;
3485 case PGMMODE_NESTED:
3486 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3487 break;
3488 case PGMMODE_EPT:
3489 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3490 break;
3491 case PGMMODE_AMD64:
3492 case PGMMODE_AMD64_NX:
3493 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3494 default: AssertFailed(); break;
3495 }
3496 break;
3497
3498 case PGMMODE_PAE_NX:
3499 case PGMMODE_PAE:
3500 {
3501 uint32_t u32Dummy, u32Features;
3502
3503 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3504 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3505 {
3506 /* Pause first, then inform Main. */
3507 rc = VMR3SuspendNoSave(pVM);
3508 AssertRC(rc);
3509
3510 VMSetRuntimeError(pVM, true, "PAEmode",
3511 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3512 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3513 return VINF_SUCCESS;
3514 }
3515 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3516 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3517 switch (pVM->pgm.s.enmShadowMode)
3518 {
3519 case PGMMODE_PAE:
3520 case PGMMODE_PAE_NX:
3521 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3522 break;
3523 case PGMMODE_NESTED:
3524 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3525 break;
3526 case PGMMODE_EPT:
3527 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3528 break;
3529 case PGMMODE_32_BIT:
3530 case PGMMODE_AMD64:
3531 case PGMMODE_AMD64_NX:
3532 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3533 default: AssertFailed(); break;
3534 }
3535 break;
3536 }
3537
3538#ifdef VBOX_WITH_64_BITS_GUESTS
3539 case PGMMODE_AMD64_NX:
3540 case PGMMODE_AMD64:
3541 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3542 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3543 switch (pVM->pgm.s.enmShadowMode)
3544 {
3545 case PGMMODE_AMD64:
3546 case PGMMODE_AMD64_NX:
3547 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3548 break;
3549 case PGMMODE_NESTED:
3550 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3551 break;
3552 case PGMMODE_EPT:
3553 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3554 break;
3555 case PGMMODE_32_BIT:
3556 case PGMMODE_PAE:
3557 case PGMMODE_PAE_NX:
3558 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3559 default: AssertFailed(); break;
3560 }
3561 break;
3562#endif
3563
3564 default:
3565 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3566 rc = VERR_NOT_IMPLEMENTED;
3567 break;
3568 }
3569
3570 /* status codes. */
3571 AssertRC(rc);
3572 AssertRC(rc2);
3573 if (RT_SUCCESS(rc))
3574 {
3575 rc = rc2;
3576 if (RT_SUCCESS(rc)) /* no informational status codes. */
3577 rc = VINF_SUCCESS;
3578 }
3579
3580 /*
3581 * Notify SELM so it can update the TSSes with correct CR3s.
3582 */
3583 SELMR3PagingModeChanged(pVM);
3584
3585 /* Notify HWACCM as well. */
3586 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3587 return rc;
3588}
3589
3590
3591/**
3592 * Dumps a PAE shadow page table.
3593 *
3594 * @returns VBox status code (VINF_SUCCESS).
3595 * @param pVM The VM handle.
3596 * @param pPT Pointer to the page table.
3597 * @param u64Address The virtual address of the page table starts.
3598 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3599 * @param cMaxDepth The maxium depth.
3600 * @param pHlp Pointer to the output functions.
3601 */
3602static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3603{
3604 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3605 {
3606 X86PTEPAE Pte = pPT->a[i];
3607 if (Pte.n.u1Present)
3608 {
3609 pHlp->pfnPrintf(pHlp,
3610 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3611 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3612 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3613 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3614 Pte.n.u1Write ? 'W' : 'R',
3615 Pte.n.u1User ? 'U' : 'S',
3616 Pte.n.u1Accessed ? 'A' : '-',
3617 Pte.n.u1Dirty ? 'D' : '-',
3618 Pte.n.u1Global ? 'G' : '-',
3619 Pte.n.u1WriteThru ? "WT" : "--",
3620 Pte.n.u1CacheDisable? "CD" : "--",
3621 Pte.n.u1PAT ? "AT" : "--",
3622 Pte.n.u1NoExecute ? "NX" : "--",
3623 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3624 Pte.u & RT_BIT(10) ? '1' : '0',
3625 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3626 Pte.u & X86_PTE_PAE_PG_MASK);
3627 }
3628 }
3629 return VINF_SUCCESS;
3630}
3631
3632
3633/**
3634 * Dumps a PAE shadow page directory table.
3635 *
3636 * @returns VBox status code (VINF_SUCCESS).
3637 * @param pVM The VM handle.
3638 * @param HCPhys The physical address of the page directory table.
3639 * @param u64Address The virtual address of the page table starts.
3640 * @param cr4 The CR4, PSE is currently used.
3641 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3642 * @param cMaxDepth The maxium depth.
3643 * @param pHlp Pointer to the output functions.
3644 */
3645static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3646{
3647 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3648 if (!pPD)
3649 {
3650 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3651 fLongMode ? 16 : 8, u64Address, HCPhys);
3652 return VERR_INVALID_PARAMETER;
3653 }
3654 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3655
3656 int rc = VINF_SUCCESS;
3657 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3658 {
3659 X86PDEPAE Pde = pPD->a[i];
3660 if (Pde.n.u1Present)
3661 {
3662 if (fBigPagesSupported && Pde.b.u1Size)
3663 pHlp->pfnPrintf(pHlp,
3664 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3665 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3666 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3667 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3668 Pde.b.u1Write ? 'W' : 'R',
3669 Pde.b.u1User ? 'U' : 'S',
3670 Pde.b.u1Accessed ? 'A' : '-',
3671 Pde.b.u1Dirty ? 'D' : '-',
3672 Pde.b.u1Global ? 'G' : '-',
3673 Pde.b.u1WriteThru ? "WT" : "--",
3674 Pde.b.u1CacheDisable? "CD" : "--",
3675 Pde.b.u1PAT ? "AT" : "--",
3676 Pde.b.u1NoExecute ? "NX" : "--",
3677 Pde.u & RT_BIT_64(9) ? '1' : '0',
3678 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3679 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3680 Pde.u & X86_PDE_PAE_PG_MASK);
3681 else
3682 {
3683 pHlp->pfnPrintf(pHlp,
3684 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3685 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3686 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3687 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3688 Pde.n.u1Write ? 'W' : 'R',
3689 Pde.n.u1User ? 'U' : 'S',
3690 Pde.n.u1Accessed ? 'A' : '-',
3691 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3692 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3693 Pde.n.u1WriteThru ? "WT" : "--",
3694 Pde.n.u1CacheDisable? "CD" : "--",
3695 Pde.n.u1NoExecute ? "NX" : "--",
3696 Pde.u & RT_BIT_64(9) ? '1' : '0',
3697 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3698 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3699 Pde.u & X86_PDE_PAE_PG_MASK);
3700 if (cMaxDepth >= 1)
3701 {
3702 /** @todo what about using the page pool for mapping PTs? */
3703 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3704 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3705 PX86PTPAE pPT = NULL;
3706 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3707 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3708 else
3709 {
3710 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3711 {
3712 uint64_t off = u64AddressPT - pMap->GCPtr;
3713 if (off < pMap->cb)
3714 {
3715 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3716 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3717 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3718 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3719 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3720 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3721 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3722 }
3723 }
3724 }
3725 int rc2 = VERR_INVALID_PARAMETER;
3726 if (pPT)
3727 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3728 else
3729 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3730 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3731 if (rc2 < rc && RT_SUCCESS(rc))
3732 rc = rc2;
3733 }
3734 }
3735 }
3736 }
3737 return rc;
3738}
3739
3740
3741/**
3742 * Dumps a PAE shadow page directory pointer table.
3743 *
3744 * @returns VBox status code (VINF_SUCCESS).
3745 * @param pVM The VM handle.
3746 * @param HCPhys The physical address of the page directory pointer table.
3747 * @param u64Address The virtual address of the page table starts.
3748 * @param cr4 The CR4, PSE is currently used.
3749 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3750 * @param cMaxDepth The maxium depth.
3751 * @param pHlp Pointer to the output functions.
3752 */
3753static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3754{
3755 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3756 if (!pPDPT)
3757 {
3758 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3759 fLongMode ? 16 : 8, u64Address, HCPhys);
3760 return VERR_INVALID_PARAMETER;
3761 }
3762
3763 int rc = VINF_SUCCESS;
3764 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3765 for (unsigned i = 0; i < c; i++)
3766 {
3767 X86PDPE Pdpe = pPDPT->a[i];
3768 if (Pdpe.n.u1Present)
3769 {
3770 if (fLongMode)
3771 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3772 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3773 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3774 Pdpe.lm.u1Write ? 'W' : 'R',
3775 Pdpe.lm.u1User ? 'U' : 'S',
3776 Pdpe.lm.u1Accessed ? 'A' : '-',
3777 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3778 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3779 Pdpe.lm.u1WriteThru ? "WT" : "--",
3780 Pdpe.lm.u1CacheDisable? "CD" : "--",
3781 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3782 Pdpe.lm.u1NoExecute ? "NX" : "--",
3783 Pdpe.u & RT_BIT(9) ? '1' : '0',
3784 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3785 Pdpe.u & RT_BIT(11) ? '1' : '0',
3786 Pdpe.u & X86_PDPE_PG_MASK);
3787 else
3788 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3789 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3790 i << X86_PDPT_SHIFT,
3791 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3792 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3793 Pdpe.n.u1WriteThru ? "WT" : "--",
3794 Pdpe.n.u1CacheDisable? "CD" : "--",
3795 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3796 Pdpe.u & RT_BIT(9) ? '1' : '0',
3797 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3798 Pdpe.u & RT_BIT(11) ? '1' : '0',
3799 Pdpe.u & X86_PDPE_PG_MASK);
3800 if (cMaxDepth >= 1)
3801 {
3802 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3803 cr4, fLongMode, cMaxDepth - 1, pHlp);
3804 if (rc2 < rc && RT_SUCCESS(rc))
3805 rc = rc2;
3806 }
3807 }
3808 }
3809 return rc;
3810}
3811
3812
3813/**
3814 * Dumps a 32-bit shadow page table.
3815 *
3816 * @returns VBox status code (VINF_SUCCESS).
3817 * @param pVM The VM handle.
3818 * @param HCPhys The physical address of the table.
3819 * @param cr4 The CR4, PSE is currently used.
3820 * @param cMaxDepth The maxium depth.
3821 * @param pHlp Pointer to the output functions.
3822 */
3823static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3824{
3825 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3826 if (!pPML4)
3827 {
3828 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3829 return VERR_INVALID_PARAMETER;
3830 }
3831
3832 int rc = VINF_SUCCESS;
3833 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3834 {
3835 X86PML4E Pml4e = pPML4->a[i];
3836 if (Pml4e.n.u1Present)
3837 {
3838 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3839 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3840 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3841 u64Address,
3842 Pml4e.n.u1Write ? 'W' : 'R',
3843 Pml4e.n.u1User ? 'U' : 'S',
3844 Pml4e.n.u1Accessed ? 'A' : '-',
3845 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3846 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3847 Pml4e.n.u1WriteThru ? "WT" : "--",
3848 Pml4e.n.u1CacheDisable? "CD" : "--",
3849 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3850 Pml4e.n.u1NoExecute ? "NX" : "--",
3851 Pml4e.u & RT_BIT(9) ? '1' : '0',
3852 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3853 Pml4e.u & RT_BIT(11) ? '1' : '0',
3854 Pml4e.u & X86_PML4E_PG_MASK);
3855
3856 if (cMaxDepth >= 1)
3857 {
3858 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3859 if (rc2 < rc && RT_SUCCESS(rc))
3860 rc = rc2;
3861 }
3862 }
3863 }
3864 return rc;
3865}
3866
3867
3868/**
3869 * Dumps a 32-bit shadow page table.
3870 *
3871 * @returns VBox status code (VINF_SUCCESS).
3872 * @param pVM The VM handle.
3873 * @param pPT Pointer to the page table.
3874 * @param u32Address The virtual address this table starts at.
3875 * @param pHlp Pointer to the output functions.
3876 */
3877int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3878{
3879 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3880 {
3881 X86PTE Pte = pPT->a[i];
3882 if (Pte.n.u1Present)
3883 {
3884 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3885 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3886 u32Address + (i << X86_PT_SHIFT),
3887 Pte.n.u1Write ? 'W' : 'R',
3888 Pte.n.u1User ? 'U' : 'S',
3889 Pte.n.u1Accessed ? 'A' : '-',
3890 Pte.n.u1Dirty ? 'D' : '-',
3891 Pte.n.u1Global ? 'G' : '-',
3892 Pte.n.u1WriteThru ? "WT" : "--",
3893 Pte.n.u1CacheDisable? "CD" : "--",
3894 Pte.n.u1PAT ? "AT" : "--",
3895 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3896 Pte.u & RT_BIT(10) ? '1' : '0',
3897 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3898 Pte.u & X86_PDE_PG_MASK);
3899 }
3900 }
3901 return VINF_SUCCESS;
3902}
3903
3904
3905/**
3906 * Dumps a 32-bit shadow page directory and page tables.
3907 *
3908 * @returns VBox status code (VINF_SUCCESS).
3909 * @param pVM The VM handle.
3910 * @param cr3 The root of the hierarchy.
3911 * @param cr4 The CR4, PSE is currently used.
3912 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3913 * @param pHlp Pointer to the output functions.
3914 */
3915int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3916{
3917 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3918 if (!pPD)
3919 {
3920 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3921 return VERR_INVALID_PARAMETER;
3922 }
3923
3924 int rc = VINF_SUCCESS;
3925 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3926 {
3927 X86PDE Pde = pPD->a[i];
3928 if (Pde.n.u1Present)
3929 {
3930 const uint32_t u32Address = i << X86_PD_SHIFT;
3931 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3932 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3933 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3934 u32Address,
3935 Pde.b.u1Write ? 'W' : 'R',
3936 Pde.b.u1User ? 'U' : 'S',
3937 Pde.b.u1Accessed ? 'A' : '-',
3938 Pde.b.u1Dirty ? 'D' : '-',
3939 Pde.b.u1Global ? 'G' : '-',
3940 Pde.b.u1WriteThru ? "WT" : "--",
3941 Pde.b.u1CacheDisable? "CD" : "--",
3942 Pde.b.u1PAT ? "AT" : "--",
3943 Pde.u & RT_BIT_64(9) ? '1' : '0',
3944 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3945 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3946 Pde.u & X86_PDE4M_PG_MASK);
3947 else
3948 {
3949 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3950 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3951 u32Address,
3952 Pde.n.u1Write ? 'W' : 'R',
3953 Pde.n.u1User ? 'U' : 'S',
3954 Pde.n.u1Accessed ? 'A' : '-',
3955 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3956 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3957 Pde.n.u1WriteThru ? "WT" : "--",
3958 Pde.n.u1CacheDisable? "CD" : "--",
3959 Pde.u & RT_BIT_64(9) ? '1' : '0',
3960 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3961 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3962 Pde.u & X86_PDE_PG_MASK);
3963 if (cMaxDepth >= 1)
3964 {
3965 /** @todo what about using the page pool for mapping PTs? */
3966 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3967 PX86PT pPT = NULL;
3968 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3969 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3970 else
3971 {
3972 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3973 if (u32Address - pMap->GCPtr < pMap->cb)
3974 {
3975 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3976 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3977 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3978 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3979 pPT = pMap->aPTs[iPDE].pPTR3;
3980 }
3981 }
3982 int rc2 = VERR_INVALID_PARAMETER;
3983 if (pPT)
3984 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3985 else
3986 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3987 if (rc2 < rc && RT_SUCCESS(rc))
3988 rc = rc2;
3989 }
3990 }
3991 }
3992 }
3993
3994 return rc;
3995}
3996
3997
3998/**
3999 * Dumps a 32-bit shadow page table.
4000 *
4001 * @returns VBox status code (VINF_SUCCESS).
4002 * @param pVM The VM handle.
4003 * @param pPT Pointer to the page table.
4004 * @param u32Address The virtual address this table starts at.
4005 * @param PhysSearch Address to search for.
4006 */
4007int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4008{
4009 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4010 {
4011 X86PTE Pte = pPT->a[i];
4012 if (Pte.n.u1Present)
4013 {
4014 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4015 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4016 u32Address + (i << X86_PT_SHIFT),
4017 Pte.n.u1Write ? 'W' : 'R',
4018 Pte.n.u1User ? 'U' : 'S',
4019 Pte.n.u1Accessed ? 'A' : '-',
4020 Pte.n.u1Dirty ? 'D' : '-',
4021 Pte.n.u1Global ? 'G' : '-',
4022 Pte.n.u1WriteThru ? "WT" : "--",
4023 Pte.n.u1CacheDisable? "CD" : "--",
4024 Pte.n.u1PAT ? "AT" : "--",
4025 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4026 Pte.u & RT_BIT(10) ? '1' : '0',
4027 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4028 Pte.u & X86_PDE_PG_MASK));
4029
4030 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4031 {
4032 uint64_t fPageShw = 0;
4033 RTHCPHYS pPhysHC = 0;
4034
4035 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4036 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4037 }
4038 }
4039 }
4040 return VINF_SUCCESS;
4041}
4042
4043
4044/**
4045 * Dumps a 32-bit guest page directory and page tables.
4046 *
4047 * @returns VBox status code (VINF_SUCCESS).
4048 * @param pVM The VM handle.
4049 * @param cr3 The root of the hierarchy.
4050 * @param cr4 The CR4, PSE is currently used.
4051 * @param PhysSearch Address to search for.
4052 */
4053VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4054{
4055 bool fLongMode = false;
4056 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4057 PX86PD pPD = 0;
4058
4059 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4060 if (RT_FAILURE(rc) || !pPD)
4061 {
4062 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4063 return VERR_INVALID_PARAMETER;
4064 }
4065
4066 Log(("cr3=%08x cr4=%08x%s\n"
4067 "%-*s P - Present\n"
4068 "%-*s | R/W - Read (0) / Write (1)\n"
4069 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4070 "%-*s | | | A - Accessed\n"
4071 "%-*s | | | | D - Dirty\n"
4072 "%-*s | | | | | G - Global\n"
4073 "%-*s | | | | | | WT - Write thru\n"
4074 "%-*s | | | | | | | CD - Cache disable\n"
4075 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4076 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4077 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4078 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4079 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4080 "%-*s Level | | | | | | | | | | | | Page\n"
4081 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4082 - W U - - - -- -- -- -- -- 010 */
4083 , cr3, cr4, fLongMode ? " Long Mode" : "",
4084 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4085 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4086
4087 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4088 {
4089 X86PDE Pde = pPD->a[i];
4090 if (Pde.n.u1Present)
4091 {
4092 const uint32_t u32Address = i << X86_PD_SHIFT;
4093
4094 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4095 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4096 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4097 u32Address,
4098 Pde.b.u1Write ? 'W' : 'R',
4099 Pde.b.u1User ? 'U' : 'S',
4100 Pde.b.u1Accessed ? 'A' : '-',
4101 Pde.b.u1Dirty ? 'D' : '-',
4102 Pde.b.u1Global ? 'G' : '-',
4103 Pde.b.u1WriteThru ? "WT" : "--",
4104 Pde.b.u1CacheDisable? "CD" : "--",
4105 Pde.b.u1PAT ? "AT" : "--",
4106 Pde.u & RT_BIT(9) ? '1' : '0',
4107 Pde.u & RT_BIT(10) ? '1' : '0',
4108 Pde.u & RT_BIT(11) ? '1' : '0',
4109 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4110 /** @todo PhysSearch */
4111 else
4112 {
4113 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4114 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4115 u32Address,
4116 Pde.n.u1Write ? 'W' : 'R',
4117 Pde.n.u1User ? 'U' : 'S',
4118 Pde.n.u1Accessed ? 'A' : '-',
4119 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4120 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4121 Pde.n.u1WriteThru ? "WT" : "--",
4122 Pde.n.u1CacheDisable? "CD" : "--",
4123 Pde.u & RT_BIT(9) ? '1' : '0',
4124 Pde.u & RT_BIT(10) ? '1' : '0',
4125 Pde.u & RT_BIT(11) ? '1' : '0',
4126 Pde.u & X86_PDE_PG_MASK));
4127 ////if (cMaxDepth >= 1)
4128 {
4129 /** @todo what about using the page pool for mapping PTs? */
4130 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4131 PX86PT pPT = NULL;
4132
4133 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4134
4135 int rc2 = VERR_INVALID_PARAMETER;
4136 if (pPT)
4137 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4138 else
4139 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4140 if (rc2 < rc && RT_SUCCESS(rc))
4141 rc = rc2;
4142 }
4143 }
4144 }
4145 }
4146
4147 return rc;
4148}
4149
4150
4151/**
4152 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4153 *
4154 * @returns VBox status code (VINF_SUCCESS).
4155 * @param pVM The VM handle.
4156 * @param cr3 The root of the hierarchy.
4157 * @param cr4 The cr4, only PAE and PSE is currently used.
4158 * @param fLongMode Set if long mode, false if not long mode.
4159 * @param cMaxDepth Number of levels to dump.
4160 * @param pHlp Pointer to the output functions.
4161 */
4162VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4163{
4164 if (!pHlp)
4165 pHlp = DBGFR3InfoLogHlp();
4166 if (!cMaxDepth)
4167 return VINF_SUCCESS;
4168 const unsigned cch = fLongMode ? 16 : 8;
4169 pHlp->pfnPrintf(pHlp,
4170 "cr3=%08x cr4=%08x%s\n"
4171 "%-*s P - Present\n"
4172 "%-*s | R/W - Read (0) / Write (1)\n"
4173 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4174 "%-*s | | | A - Accessed\n"
4175 "%-*s | | | | D - Dirty\n"
4176 "%-*s | | | | | G - Global\n"
4177 "%-*s | | | | | | WT - Write thru\n"
4178 "%-*s | | | | | | | CD - Cache disable\n"
4179 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4180 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4181 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4182 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4183 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4184 "%-*s Level | | | | | | | | | | | | Page\n"
4185 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4186 - W U - - - -- -- -- -- -- 010 */
4187 , cr3, cr4, fLongMode ? " Long Mode" : "",
4188 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4189 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4190 if (cr4 & X86_CR4_PAE)
4191 {
4192 if (fLongMode)
4193 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4194 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4195 }
4196 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4197}
4198
4199#ifdef VBOX_WITH_DEBUGGER
4200
4201/**
4202 * The '.pgmram' command.
4203 *
4204 * @returns VBox status.
4205 * @param pCmd Pointer to the command descriptor (as registered).
4206 * @param pCmdHlp Pointer to command helper functions.
4207 * @param pVM Pointer to the current VM (if any).
4208 * @param paArgs Pointer to (readonly) array of arguments.
4209 * @param cArgs Number of arguments in the array.
4210 */
4211static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4212{
4213 /*
4214 * Validate input.
4215 */
4216 if (!pVM)
4217 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4218 if (!pVM->pgm.s.pRamRangesRC)
4219 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4220
4221 /*
4222 * Dump the ranges.
4223 */
4224 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4225 PPGMRAMRANGE pRam;
4226 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4227 {
4228 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4229 "%RGp - %RGp %p\n",
4230 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4231 if (RT_FAILURE(rc))
4232 return rc;
4233 }
4234
4235 return VINF_SUCCESS;
4236}
4237
4238
4239/**
4240 * The '.pgmmap' command.
4241 *
4242 * @returns VBox status.
4243 * @param pCmd Pointer to the command descriptor (as registered).
4244 * @param pCmdHlp Pointer to command helper functions.
4245 * @param pVM Pointer to the current VM (if any).
4246 * @param paArgs Pointer to (readonly) array of arguments.
4247 * @param cArgs Number of arguments in the array.
4248 */
4249static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4250{
4251 /*
4252 * Validate input.
4253 */
4254 if (!pVM)
4255 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4256 if (!pVM->pgm.s.pMappingsR3)
4257 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4258
4259 /*
4260 * Print message about the fixedness of the mappings.
4261 */
4262 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4263 if (RT_FAILURE(rc))
4264 return rc;
4265
4266 /*
4267 * Dump the ranges.
4268 */
4269 PPGMMAPPING pCur;
4270 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4271 {
4272 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4273 "%08x - %08x %s\n",
4274 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4275 if (RT_FAILURE(rc))
4276 return rc;
4277 }
4278
4279 return VINF_SUCCESS;
4280}
4281
4282
4283/**
4284 * The '.pgmsync' command.
4285 *
4286 * @returns VBox status.
4287 * @param pCmd Pointer to the command descriptor (as registered).
4288 * @param pCmdHlp Pointer to command helper functions.
4289 * @param pVM Pointer to the current VM (if any).
4290 * @param paArgs Pointer to (readonly) array of arguments.
4291 * @param cArgs Number of arguments in the array.
4292 */
4293static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4294{
4295 /*
4296 * Validate input.
4297 */
4298 if (!pVM)
4299 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4300
4301 /*
4302 * Force page directory sync.
4303 */
4304 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4305
4306 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4307 if (RT_FAILURE(rc))
4308 return rc;
4309
4310 return VINF_SUCCESS;
4311}
4312
4313
4314#ifdef VBOX_STRICT
4315/**
4316 * The '.pgmassertcr3' command.
4317 *
4318 * @returns VBox status.
4319 * @param pCmd Pointer to the command descriptor (as registered).
4320 * @param pCmdHlp Pointer to command helper functions.
4321 * @param pVM Pointer to the current VM (if any).
4322 * @param paArgs Pointer to (readonly) array of arguments.
4323 * @param cArgs Number of arguments in the array.
4324 */
4325static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4326{
4327 /*
4328 * Validate input.
4329 */
4330 if (!pVM)
4331 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4332
4333 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4334 if (RT_FAILURE(rc))
4335 return rc;
4336
4337 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4338
4339 return VINF_SUCCESS;
4340}
4341#endif /* VBOX_STRICT */
4342
4343
4344/**
4345 * The '.pgmsyncalways' command.
4346 *
4347 * @returns VBox status.
4348 * @param pCmd Pointer to the command descriptor (as registered).
4349 * @param pCmdHlp Pointer to command helper functions.
4350 * @param pVM Pointer to the current VM (if any).
4351 * @param paArgs Pointer to (readonly) array of arguments.
4352 * @param cArgs Number of arguments in the array.
4353 */
4354static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4355{
4356 /*
4357 * Validate input.
4358 */
4359 if (!pVM)
4360 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4361
4362 /*
4363 * Force page directory sync.
4364 */
4365 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4366 {
4367 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4368 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4369 }
4370 else
4371 {
4372 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4373 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4374 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4375 }
4376}
4377
4378#endif /* VBOX_WITH_DEBUGGER */
4379
4380/**
4381 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4382 */
4383typedef struct PGMCHECKINTARGS
4384{
4385 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4386 PPGMPHYSHANDLER pPrevPhys;
4387 PPGMVIRTHANDLER pPrevVirt;
4388 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4389 PVM pVM;
4390} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4391
4392/**
4393 * Validate a node in the physical handler tree.
4394 *
4395 * @returns 0 on if ok, other wise 1.
4396 * @param pNode The handler node.
4397 * @param pvUser pVM.
4398 */
4399static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4400{
4401 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4402 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4403 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4404 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4405 AssertReleaseMsg( !pArgs->pPrevPhys
4406 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4407 ("pPrevPhys=%p %RGp-%RGp %s\n"
4408 " pCur=%p %RGp-%RGp %s\n",
4409 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4410 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4411 pArgs->pPrevPhys = pCur;
4412 return 0;
4413}
4414
4415
4416/**
4417 * Validate a node in the virtual handler tree.
4418 *
4419 * @returns 0 on if ok, other wise 1.
4420 * @param pNode The handler node.
4421 * @param pvUser pVM.
4422 */
4423static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4424{
4425 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4426 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4427 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4428 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4429 AssertReleaseMsg( !pArgs->pPrevVirt
4430 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4431 ("pPrevVirt=%p %RGv-%RGv %s\n"
4432 " pCur=%p %RGv-%RGv %s\n",
4433 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4434 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4435 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4436 {
4437 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4438 ("pCur=%p %RGv-%RGv %s\n"
4439 "iPage=%d offVirtHandle=%#x expected %#x\n",
4440 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4441 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4442 }
4443 pArgs->pPrevVirt = pCur;
4444 return 0;
4445}
4446
4447
4448/**
4449 * Validate a node in the virtual handler tree.
4450 *
4451 * @returns 0 on if ok, other wise 1.
4452 * @param pNode The handler node.
4453 * @param pvUser pVM.
4454 */
4455static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4456{
4457 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4458 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4459 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4460 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4461 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4462 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4463 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4464 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4465 " pCur=%p %RGp-%RGp\n",
4466 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4467 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4468 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4469 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4470 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4471 " pCur=%p %RGp-%RGp\n",
4472 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4473 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4474 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4475 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4476 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4477 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4478 {
4479 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4480 for (;;)
4481 {
4482 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4483 AssertReleaseMsg(pCur2 != pCur,
4484 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4485 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4486 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4487 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4488 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4489 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4490 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4491 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4492 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4493 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4494 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4495 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4496 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4497 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4498 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4499 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4500 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4501 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4502 break;
4503 }
4504 }
4505
4506 pArgs->pPrevPhys2Virt = pCur;
4507 return 0;
4508}
4509
4510
4511/**
4512 * Perform an integrity check on the PGM component.
4513 *
4514 * @returns VINF_SUCCESS if everything is fine.
4515 * @returns VBox error status after asserting on integrity breach.
4516 * @param pVM The VM handle.
4517 */
4518VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4519{
4520 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4521
4522 /*
4523 * Check the trees.
4524 */
4525 int cErrors = 0;
4526 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4527 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4528 PGMCHECKINTARGS Args = s_LeftToRight;
4529 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4530 Args = s_RightToLeft;
4531 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4532 Args = s_LeftToRight;
4533 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4534 Args = s_RightToLeft;
4535 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4536 Args = s_LeftToRight;
4537 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4538 Args = s_RightToLeft;
4539 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4540 Args = s_LeftToRight;
4541 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4542 Args = s_RightToLeft;
4543 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4544
4545 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4546}
4547
4548
4549/**
4550 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4551 *
4552 * @returns VBox status code.
4553 * @param pVM VM handle.
4554 * @param fEnable Enable or disable shadow mappings
4555 */
4556VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4557{
4558 pVM->pgm.s.fDisableMappings = !fEnable;
4559
4560 uint32_t cb;
4561 int rc = PGMR3MappingsSize(pVM, &cb);
4562 AssertRCReturn(rc, rc);
4563
4564 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4565 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4566 AssertRCReturn(rc, rc);
4567
4568 return VINF_SUCCESS;
4569}
4570
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette