VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 15411

Last change on this file since 15411 was 15411, checked in by vboxsync, 16 years ago

VMM: Working around set overflows caused by the page pool.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 216.8 KB
Line 
1/* $Id: PGM.cpp 15411 2008-12-13 03:30:58Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#include "PGMGst.h"
688#include "PGMBth.h"
689#undef BTH_PGMPOOLKIND_PT_FOR_PT
690#undef PGM_BTH_NAME
691#undef PGM_BTH_NAME_RC_STR
692#undef PGM_BTH_NAME_R0_STR
693#undef PGM_GST_TYPE
694#undef PGM_GST_NAME
695#undef PGM_GST_NAME_RC_STR
696#undef PGM_GST_NAME_R0_STR
697
698/* Guest - protected mode */
699#define PGM_GST_TYPE PGM_TYPE_PROT
700#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
701#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
702#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
703#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
704#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
705#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
706#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
707#include "PGMGst.h"
708#include "PGMBth.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef PGM_BTH_NAME
711#undef PGM_BTH_NAME_RC_STR
712#undef PGM_BTH_NAME_R0_STR
713#undef PGM_GST_TYPE
714#undef PGM_GST_NAME
715#undef PGM_GST_NAME_RC_STR
716#undef PGM_GST_NAME_R0_STR
717
718/* Guest - 32-bit mode */
719#define PGM_GST_TYPE PGM_TYPE_32BIT
720#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
721#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
722#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
723#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
724#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
725#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
726#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
727#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
728#include "PGMGst.h"
729#include "PGMBth.h"
730#undef BTH_PGMPOOLKIND_PT_FOR_BIG
731#undef BTH_PGMPOOLKIND_PT_FOR_PT
732#undef PGM_BTH_NAME
733#undef PGM_BTH_NAME_RC_STR
734#undef PGM_BTH_NAME_R0_STR
735#undef PGM_GST_TYPE
736#undef PGM_GST_NAME
737#undef PGM_GST_NAME_RC_STR
738#undef PGM_GST_NAME_R0_STR
739
740#undef PGM_SHW_TYPE
741#undef PGM_SHW_NAME
742#undef PGM_SHW_NAME_RC_STR
743#undef PGM_SHW_NAME_R0_STR
744
745
746/*
747 * Shadow - PAE mode
748 */
749#define PGM_SHW_TYPE PGM_TYPE_PAE
750#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
751#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
752#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
754#include "PGMShw.h"
755
756/* Guest - real mode */
757#define PGM_GST_TYPE PGM_TYPE_REAL
758#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
759#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
760#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
761#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
762#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
763#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
764#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
765#include "PGMBth.h"
766#undef BTH_PGMPOOLKIND_PT_FOR_PT
767#undef PGM_BTH_NAME
768#undef PGM_BTH_NAME_RC_STR
769#undef PGM_BTH_NAME_R0_STR
770#undef PGM_GST_TYPE
771#undef PGM_GST_NAME
772#undef PGM_GST_NAME_RC_STR
773#undef PGM_GST_NAME_R0_STR
774
775/* Guest - protected mode */
776#define PGM_GST_TYPE PGM_TYPE_PROT
777#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
778#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
779#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
781#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
782#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
783#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
784#include "PGMBth.h"
785#undef BTH_PGMPOOLKIND_PT_FOR_PT
786#undef PGM_BTH_NAME
787#undef PGM_BTH_NAME_RC_STR
788#undef PGM_BTH_NAME_R0_STR
789#undef PGM_GST_TYPE
790#undef PGM_GST_NAME
791#undef PGM_GST_NAME_RC_STR
792#undef PGM_GST_NAME_R0_STR
793
794/* Guest - 32-bit mode */
795#define PGM_GST_TYPE PGM_TYPE_32BIT
796#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
797#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
798#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
799#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
800#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
801#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
802#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
803#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
804#include "PGMBth.h"
805#undef BTH_PGMPOOLKIND_PT_FOR_BIG
806#undef BTH_PGMPOOLKIND_PT_FOR_PT
807#undef PGM_BTH_NAME
808#undef PGM_BTH_NAME_RC_STR
809#undef PGM_BTH_NAME_R0_STR
810#undef PGM_GST_TYPE
811#undef PGM_GST_NAME
812#undef PGM_GST_NAME_RC_STR
813#undef PGM_GST_NAME_R0_STR
814
815/* Guest - PAE mode */
816#define PGM_GST_TYPE PGM_TYPE_PAE
817#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
818#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
819#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
820#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
821#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
822#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
823#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
824#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
825#include "PGMGst.h"
826#include "PGMBth.h"
827#undef BTH_PGMPOOLKIND_PT_FOR_BIG
828#undef BTH_PGMPOOLKIND_PT_FOR_PT
829#undef PGM_BTH_NAME
830#undef PGM_BTH_NAME_RC_STR
831#undef PGM_BTH_NAME_R0_STR
832#undef PGM_GST_TYPE
833#undef PGM_GST_NAME
834#undef PGM_GST_NAME_RC_STR
835#undef PGM_GST_NAME_R0_STR
836
837#undef PGM_SHW_TYPE
838#undef PGM_SHW_NAME
839#undef PGM_SHW_NAME_RC_STR
840#undef PGM_SHW_NAME_R0_STR
841
842
843/*
844 * Shadow - AMD64 mode
845 */
846#define PGM_SHW_TYPE PGM_TYPE_AMD64
847#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
848#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
849#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
850#include "PGMShw.h"
851
852#ifdef VBOX_WITH_64_BITS_GUESTS
853/* Guest - AMD64 mode */
854# define PGM_GST_TYPE PGM_TYPE_AMD64
855# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
856# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
857# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
858# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
859# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
860# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
861# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
862# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
863# include "PGMGst.h"
864# include "PGMBth.h"
865# undef BTH_PGMPOOLKIND_PT_FOR_BIG
866# undef BTH_PGMPOOLKIND_PT_FOR_PT
867# undef PGM_BTH_NAME
868# undef PGM_BTH_NAME_RC_STR
869# undef PGM_BTH_NAME_R0_STR
870# undef PGM_GST_TYPE
871# undef PGM_GST_NAME
872# undef PGM_GST_NAME_RC_STR
873# undef PGM_GST_NAME_R0_STR
874#endif /* VBOX_WITH_64_BITS_GUESTS */
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - Nested paging mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_NESTED
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
889#include "PGMShw.h"
890
891/* Guest - real mode */
892#define PGM_GST_TYPE PGM_TYPE_REAL
893#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
894#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
895#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
896#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
897#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
898#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
899#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
900#include "PGMBth.h"
901#undef BTH_PGMPOOLKIND_PT_FOR_PT
902#undef PGM_BTH_NAME
903#undef PGM_BTH_NAME_RC_STR
904#undef PGM_BTH_NAME_R0_STR
905#undef PGM_GST_TYPE
906#undef PGM_GST_NAME
907#undef PGM_GST_NAME_RC_STR
908#undef PGM_GST_NAME_R0_STR
909
910/* Guest - protected mode */
911#define PGM_GST_TYPE PGM_TYPE_PROT
912#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
913#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
914#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
915#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
916#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
917#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
918#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
919#include "PGMBth.h"
920#undef BTH_PGMPOOLKIND_PT_FOR_PT
921#undef PGM_BTH_NAME
922#undef PGM_BTH_NAME_RC_STR
923#undef PGM_BTH_NAME_R0_STR
924#undef PGM_GST_TYPE
925#undef PGM_GST_NAME
926#undef PGM_GST_NAME_RC_STR
927#undef PGM_GST_NAME_R0_STR
928
929/* Guest - 32-bit mode */
930#define PGM_GST_TYPE PGM_TYPE_32BIT
931#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
932#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
933#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
934#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
935#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
936#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
937#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
938#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
939#include "PGMBth.h"
940#undef BTH_PGMPOOLKIND_PT_FOR_BIG
941#undef BTH_PGMPOOLKIND_PT_FOR_PT
942#undef PGM_BTH_NAME
943#undef PGM_BTH_NAME_RC_STR
944#undef PGM_BTH_NAME_R0_STR
945#undef PGM_GST_TYPE
946#undef PGM_GST_NAME
947#undef PGM_GST_NAME_RC_STR
948#undef PGM_GST_NAME_R0_STR
949
950/* Guest - PAE mode */
951#define PGM_GST_TYPE PGM_TYPE_PAE
952#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
953#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
954#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
955#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
956#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
957#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
958#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
959#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
960#include "PGMBth.h"
961#undef BTH_PGMPOOLKIND_PT_FOR_BIG
962#undef BTH_PGMPOOLKIND_PT_FOR_PT
963#undef PGM_BTH_NAME
964#undef PGM_BTH_NAME_RC_STR
965#undef PGM_BTH_NAME_R0_STR
966#undef PGM_GST_TYPE
967#undef PGM_GST_NAME
968#undef PGM_GST_NAME_RC_STR
969#undef PGM_GST_NAME_R0_STR
970
971#ifdef VBOX_WITH_64_BITS_GUESTS
972/* Guest - AMD64 mode */
973# define PGM_GST_TYPE PGM_TYPE_AMD64
974# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
975# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
976# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
977# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
978# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
979# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
980# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
981# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
982# include "PGMBth.h"
983# undef BTH_PGMPOOLKIND_PT_FOR_BIG
984# undef BTH_PGMPOOLKIND_PT_FOR_PT
985# undef PGM_BTH_NAME
986# undef PGM_BTH_NAME_RC_STR
987# undef PGM_BTH_NAME_R0_STR
988# undef PGM_GST_TYPE
989# undef PGM_GST_NAME
990# undef PGM_GST_NAME_RC_STR
991# undef PGM_GST_NAME_R0_STR
992#endif /* VBOX_WITH_64_BITS_GUESTS */
993
994#undef PGM_SHW_TYPE
995#undef PGM_SHW_NAME
996#undef PGM_SHW_NAME_RC_STR
997#undef PGM_SHW_NAME_R0_STR
998
999
1000/*
1001 * Shadow - EPT
1002 */
1003#define PGM_SHW_TYPE PGM_TYPE_EPT
1004#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1005#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1006#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1007#include "PGMShw.h"
1008
1009/* Guest - real mode */
1010#define PGM_GST_TYPE PGM_TYPE_REAL
1011#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1012#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1013#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1014#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1015#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1016#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1017#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1018#include "PGMBth.h"
1019#undef BTH_PGMPOOLKIND_PT_FOR_PT
1020#undef PGM_BTH_NAME
1021#undef PGM_BTH_NAME_RC_STR
1022#undef PGM_BTH_NAME_R0_STR
1023#undef PGM_GST_TYPE
1024#undef PGM_GST_NAME
1025#undef PGM_GST_NAME_RC_STR
1026#undef PGM_GST_NAME_R0_STR
1027
1028/* Guest - protected mode */
1029#define PGM_GST_TYPE PGM_TYPE_PROT
1030#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1031#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1032#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1033#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1034#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1035#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1036#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1037#include "PGMBth.h"
1038#undef BTH_PGMPOOLKIND_PT_FOR_PT
1039#undef PGM_BTH_NAME
1040#undef PGM_BTH_NAME_RC_STR
1041#undef PGM_BTH_NAME_R0_STR
1042#undef PGM_GST_TYPE
1043#undef PGM_GST_NAME
1044#undef PGM_GST_NAME_RC_STR
1045#undef PGM_GST_NAME_R0_STR
1046
1047/* Guest - 32-bit mode */
1048#define PGM_GST_TYPE PGM_TYPE_32BIT
1049#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1050#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1051#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1052#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1053#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1054#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1055#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1056#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1057#include "PGMBth.h"
1058#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1059#undef BTH_PGMPOOLKIND_PT_FOR_PT
1060#undef PGM_BTH_NAME
1061#undef PGM_BTH_NAME_RC_STR
1062#undef PGM_BTH_NAME_R0_STR
1063#undef PGM_GST_TYPE
1064#undef PGM_GST_NAME
1065#undef PGM_GST_NAME_RC_STR
1066#undef PGM_GST_NAME_R0_STR
1067
1068/* Guest - PAE mode */
1069#define PGM_GST_TYPE PGM_TYPE_PAE
1070#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1071#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1072#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1073#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1074#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1075#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1076#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1077#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1078#include "PGMBth.h"
1079#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1080#undef BTH_PGMPOOLKIND_PT_FOR_PT
1081#undef PGM_BTH_NAME
1082#undef PGM_BTH_NAME_RC_STR
1083#undef PGM_BTH_NAME_R0_STR
1084#undef PGM_GST_TYPE
1085#undef PGM_GST_NAME
1086#undef PGM_GST_NAME_RC_STR
1087#undef PGM_GST_NAME_R0_STR
1088
1089#ifdef VBOX_WITH_64_BITS_GUESTS
1090/* Guest - AMD64 mode */
1091# define PGM_GST_TYPE PGM_TYPE_AMD64
1092# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1093# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1094# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1095# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1096# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1097# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1098# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1099# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1100# include "PGMBth.h"
1101# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1102# undef BTH_PGMPOOLKIND_PT_FOR_PT
1103# undef PGM_BTH_NAME
1104# undef PGM_BTH_NAME_RC_STR
1105# undef PGM_BTH_NAME_R0_STR
1106# undef PGM_GST_TYPE
1107# undef PGM_GST_NAME
1108# undef PGM_GST_NAME_RC_STR
1109# undef PGM_GST_NAME_R0_STR
1110#endif /* VBOX_WITH_64_BITS_GUESTS */
1111
1112#undef PGM_SHW_TYPE
1113#undef PGM_SHW_NAME
1114#undef PGM_SHW_NAME_RC_STR
1115#undef PGM_SHW_NAME_R0_STR
1116
1117
1118
1119/**
1120 * Initiates the paging of VM.
1121 *
1122 * @returns VBox status code.
1123 * @param pVM Pointer to VM structure.
1124 */
1125VMMR3DECL(int) PGMR3Init(PVM pVM)
1126{
1127 LogFlow(("PGMR3Init:\n"));
1128
1129 /*
1130 * Assert alignment and sizes.
1131 */
1132 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1133
1134 /*
1135 * Init the structure.
1136 */
1137 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1138 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1139 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1140 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1141 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1142 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1143 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1144 pVM->pgm.s.fA20Enabled = true;
1145 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1146 pVM->pgm.s.pGstPaePdptR3 = NULL;
1147#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1148 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1149#endif
1150 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1151 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1152 {
1153 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1154#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1155 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1156#endif
1157 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1158 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1159 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1160 }
1161
1162#ifdef VBOX_STRICT
1163 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1164#endif
1165
1166 /*
1167 * Get the configured RAM size - to estimate saved state size.
1168 */
1169 uint64_t cbRam;
1170 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1171 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1172 cbRam = pVM->pgm.s.cbRamSize = 0;
1173 else if (RT_SUCCESS(rc))
1174 {
1175 if (cbRam < PAGE_SIZE)
1176 cbRam = 0;
1177 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1178 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1179 }
1180 else
1181 {
1182 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1183 return rc;
1184 }
1185
1186 /*
1187 * Register saved state data unit.
1188 */
1189 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1190 NULL, pgmR3Save, NULL,
1191 NULL, pgmR3Load, NULL);
1192 if (RT_FAILURE(rc))
1193 return rc;
1194
1195 /*
1196 * Initialize the PGM critical section and flush the phys TLBs
1197 */
1198 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1199 AssertRCReturn(rc, rc);
1200
1201 PGMR3PhysChunkInvalidateTLB(pVM);
1202 PGMPhysInvalidatePageR3MapTLB(pVM);
1203 PGMPhysInvalidatePageR0MapTLB(pVM);
1204 PGMPhysInvalidatePageGCMapTLB(pVM);
1205
1206 /*
1207 * Trees
1208 */
1209 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1210 if (RT_SUCCESS(rc))
1211 {
1212 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1213 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1214
1215 /*
1216 * Alocate the zero page.
1217 */
1218 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1219 }
1220 if (RT_SUCCESS(rc))
1221 {
1222 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1223 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1224 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1225 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1226 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1227
1228 /*
1229 * Init the paging.
1230 */
1231 rc = pgmR3InitPaging(pVM);
1232 }
1233 if (RT_SUCCESS(rc))
1234 {
1235 /*
1236 * Init the page pool.
1237 */
1238 rc = pgmR3PoolInit(pVM);
1239 }
1240 if (RT_SUCCESS(rc))
1241 {
1242 /*
1243 * Info & statistics
1244 */
1245 DBGFR3InfoRegisterInternal(pVM, "mode",
1246 "Shows the current paging mode. "
1247 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1248 pgmR3InfoMode);
1249 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1250 "Dumps all the entries in the top level paging table. No arguments.",
1251 pgmR3InfoCr3);
1252 DBGFR3InfoRegisterInternal(pVM, "phys",
1253 "Dumps all the physical address ranges. No arguments.",
1254 pgmR3PhysInfo);
1255 DBGFR3InfoRegisterInternal(pVM, "handlers",
1256 "Dumps physical, virtual and hyper virtual handlers. "
1257 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1258 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1259 pgmR3InfoHandlers);
1260 DBGFR3InfoRegisterInternal(pVM, "mappings",
1261 "Dumps guest mappings.",
1262 pgmR3MapInfo);
1263
1264 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1265#ifdef VBOX_WITH_STATISTICS
1266 pgmR3InitStats(pVM);
1267#endif
1268#ifdef VBOX_WITH_DEBUGGER
1269 /*
1270 * Debugger commands.
1271 */
1272 static bool fRegisteredCmds = false;
1273 if (!fRegisteredCmds)
1274 {
1275 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1276 if (RT_SUCCESS(rc))
1277 fRegisteredCmds = true;
1278 }
1279#endif
1280 return VINF_SUCCESS;
1281 }
1282
1283 /* Almost no cleanup necessary, MM frees all memory. */
1284 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1285
1286 return rc;
1287}
1288
1289
1290/**
1291 * Initializes the per-VCPU PGM.
1292 *
1293 * @returns VBox status code.
1294 * @param pVM The VM to operate on.
1295 */
1296VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1297{
1298 LogFlow(("PGMR3InitCPU\n"));
1299 return VINF_SUCCESS;
1300}
1301
1302
1303/**
1304 * Init paging.
1305 *
1306 * Since we need to check what mode the host is operating in before we can choose
1307 * the right paging functions for the host we have to delay this until R0 has
1308 * been initialized.
1309 *
1310 * @returns VBox status code.
1311 * @param pVM VM handle.
1312 */
1313static int pgmR3InitPaging(PVM pVM)
1314{
1315 /*
1316 * Force a recalculation of modes and switcher so everyone gets notified.
1317 */
1318 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1319 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1320 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1321
1322 /*
1323 * Allocate static mapping space for whatever the cr3 register
1324 * points to and in the case of PAE mode to the 4 PDs.
1325 */
1326 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1327 if (RT_FAILURE(rc))
1328 {
1329 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1330 return rc;
1331 }
1332 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1333
1334 /*
1335 * Allocate pages for the three possible intermediate contexts
1336 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1337 * for the sake of simplicity. The AMD64 uses the PAE for the
1338 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1339 *
1340 * We assume that two page tables will be enought for the core code
1341 * mappings (HC virtual and identity).
1342 */
1343 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1344 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1345 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1346 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1347 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1348 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1349 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1350 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1351 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1352 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1353 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1354 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1355 if ( !pVM->pgm.s.pInterPD
1356 || !pVM->pgm.s.apInterPTs[0]
1357 || !pVM->pgm.s.apInterPTs[1]
1358 || !pVM->pgm.s.apInterPaePTs[0]
1359 || !pVM->pgm.s.apInterPaePTs[1]
1360 || !pVM->pgm.s.apInterPaePDs[0]
1361 || !pVM->pgm.s.apInterPaePDs[1]
1362 || !pVM->pgm.s.apInterPaePDs[2]
1363 || !pVM->pgm.s.apInterPaePDs[3]
1364 || !pVM->pgm.s.pInterPaePDPT
1365 || !pVM->pgm.s.pInterPaePDPT64
1366 || !pVM->pgm.s.pInterPaePML4)
1367 {
1368 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1369 return VERR_NO_PAGE_MEMORY;
1370 }
1371
1372 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1373 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1374 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1375 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1376 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1377 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1378
1379 /*
1380 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1381 */
1382 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1383 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1384 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1385
1386 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1387 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1388
1389 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1390 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1391 {
1392 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1393 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1394 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1395 }
1396
1397 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1398 {
1399 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1400 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1401 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1402 }
1403
1404 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1405 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1406 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1407 | HCPhysInterPaePDPT64;
1408
1409 /*
1410 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1411 * We allocate pages for all three posibilities in order to simplify mappings and
1412 * avoid resource failure during mode switches. So, we need to cover all levels of the
1413 * of the first 4GB down to PD level.
1414 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1415 */
1416#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1417 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1418# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1419 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1420# endif
1421 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1422 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1423 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1424 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1425 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1426 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1427 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1428# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1429 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1430 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1431 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1432 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1433# endif
1434 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1435# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1436 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1437# endif
1438#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1439 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1440#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1441 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1442#endif
1443
1444#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1445 if (!pVM->pgm.s.pShwNestedRootR3)
1446#else
1447 if ( !pVM->pgm.s.pShw32BitPdR3
1448 || !pVM->pgm.s.apShwPaePDsR3[0]
1449 || !pVM->pgm.s.apShwPaePDsR3[1]
1450 || !pVM->pgm.s.apShwPaePDsR3[2]
1451 || !pVM->pgm.s.apShwPaePDsR3[3]
1452 || !pVM->pgm.s.pShwPaePdptR3
1453 || !pVM->pgm.s.pShwNestedRootR3)
1454#endif
1455 {
1456 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1457 return VERR_NO_PAGE_MEMORY;
1458 }
1459
1460 /* get physical addresses. */
1461#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1462 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1463 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1464 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1465 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1466 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1467 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1468 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1469#endif
1470 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1471
1472 /*
1473 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1474 */
1475#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1476 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1477 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1478#endif
1479 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1480#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1481 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1482 {
1483 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1484 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1485 /* The flags will be corrected when entering and leaving long mode. */
1486 }
1487
1488 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhysShw32BitPD);
1489#endif
1490
1491 /*
1492 * Initialize paging workers and mode from current host mode
1493 * and the guest running in real mode.
1494 */
1495 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1496 switch (pVM->pgm.s.enmHostMode)
1497 {
1498 case SUPPAGINGMODE_32_BIT:
1499 case SUPPAGINGMODE_32_BIT_GLOBAL:
1500 case SUPPAGINGMODE_PAE:
1501 case SUPPAGINGMODE_PAE_GLOBAL:
1502 case SUPPAGINGMODE_PAE_NX:
1503 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1504 break;
1505
1506 case SUPPAGINGMODE_AMD64:
1507 case SUPPAGINGMODE_AMD64_GLOBAL:
1508 case SUPPAGINGMODE_AMD64_NX:
1509 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1510#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1511 if (ARCH_BITS != 64)
1512 {
1513 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1514 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1515 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1516 }
1517#endif
1518 break;
1519 default:
1520 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1521 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1522 }
1523 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1524 if (RT_SUCCESS(rc))
1525 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1526 if (RT_SUCCESS(rc))
1527 {
1528 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1529#if HC_ARCH_BITS == 64
1530# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1531 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp HCPhysShwPaePml4=%RHp\n",
1532 pVM->pgm.s.HCPhysShw32BitPD,
1533 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1534 pVM->pgm.s.HCPhysShwPaePdpt,
1535 pVM->pgm.s.HCPhysShwPaePml4));
1536# endif
1537 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1538 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1539 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1540 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1541 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1542 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1543 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1544#endif
1545
1546 return VINF_SUCCESS;
1547 }
1548
1549 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1550 return rc;
1551}
1552
1553
1554#ifdef VBOX_WITH_STATISTICS
1555/**
1556 * Init statistics
1557 */
1558static void pgmR3InitStats(PVM pVM)
1559{
1560 PPGM pPGM = &pVM->pgm.s;
1561 unsigned i;
1562
1563 /*
1564 * Note! The layout of this function matches the member layout exactly!
1565 */
1566
1567 /* Common - misc variables */
1568 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1569 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1570 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1571 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1572 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1573 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1574
1575 /* Common - stats */
1576#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1577 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1578 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1579 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1580 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1581 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1582 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1583#endif
1584 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1585 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1586 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1587 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1588 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1589 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1590
1591 /* R3 only: */
1592 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1593 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1594 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1595 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1596 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1597 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1598
1599 /* R0 only: */
1600 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1601 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1602 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1603 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1604 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1605 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1606 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1607 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1608 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1609 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1610 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1611 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1612 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1613 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1614 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1615 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1616 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1617 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1618 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1619 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1620 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1621 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1622 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1623 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1624 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1625
1626 /* GC only: */
1627 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1628 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1629 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1630 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1631
1632 /* RZ only: */
1633 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1660 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1664 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1665 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1666 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1667 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1668 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1669 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1670 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1671 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1672 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1673 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1674 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1675 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1676 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1677 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1678 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1679 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1680 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1681 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1682 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1683 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1684
1685 /* HC only: */
1686
1687 /* RZ & R3: */
1688 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1690 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1691 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1692 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1693 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1694 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1695 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1696 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1697 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1698 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1699 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1700 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1701 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1702 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1703 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1704 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1705 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1706 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1707 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1708 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1709 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1710 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1711 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1712 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1713 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1714 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1715 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1716 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1717 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1718 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1719 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1720 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1721 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1722 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1723 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1724 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1725 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1726 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1727 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1728 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1729 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1730 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1731 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1732 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1733 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1734 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1735/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1736 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1737 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1738 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1739 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1740 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1741 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1742
1743 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1745 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1746 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1747 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1748 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1749 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1750 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1751 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1752 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1753 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1754 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1755 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1756 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1757 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1758 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1759 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1760 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1761 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1762 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1763 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1764 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1765 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1766 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1767 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1768 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1769 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1770 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1771 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1772 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1773 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1774 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1775 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1776 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1777 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1778 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1779 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1780 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1781 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1782 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1783 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1784 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1785 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1786 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1787 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1788 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1789 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1790/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1791 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1792 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1793 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1794 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1795 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1796 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1797
1798}
1799#endif /* VBOX_WITH_STATISTICS */
1800
1801
1802/**
1803 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1804 *
1805 * The dynamic mapping area will also be allocated and initialized at this
1806 * time. We could allocate it during PGMR3Init of course, but the mapping
1807 * wouldn't be allocated at that time preventing us from setting up the
1808 * page table entries with the dummy page.
1809 *
1810 * @returns VBox status code.
1811 * @param pVM VM handle.
1812 */
1813VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1814{
1815 RTGCPTR GCPtr;
1816 int rc;
1817
1818#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1819 /*
1820 * Reserve space for mapping the paging pages into guest context.
1821 */
1822 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1823 AssertRCReturn(rc, rc);
1824 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1825 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1826#endif
1827
1828 /*
1829 * Reserve space for the dynamic mappings.
1830 */
1831 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1832 if (RT_SUCCESS(rc))
1833 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1834
1835 if ( RT_SUCCESS(rc)
1836 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1837 {
1838 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1839 if (RT_SUCCESS(rc))
1840 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1841 }
1842 if (RT_SUCCESS(rc))
1843 {
1844 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1845 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1846 }
1847 return rc;
1848}
1849
1850
1851/**
1852 * Ring-3 init finalizing.
1853 *
1854 * @returns VBox status code.
1855 * @param pVM The VM handle.
1856 */
1857VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1858{
1859 int rc;
1860
1861#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1862 /*
1863 * Map the paging pages into the guest context.
1864 */
1865 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1866 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1867
1868 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1869 AssertRCReturn(rc, rc);
1870 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1871 GCPtr += PAGE_SIZE;
1872 GCPtr += PAGE_SIZE; /* reserved page */
1873
1874 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1875 {
1876 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1877 AssertRCReturn(rc, rc);
1878 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1879 GCPtr += PAGE_SIZE;
1880 }
1881 /* A bit of paranoia is justified. */
1882 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1883 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1884 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1885 GCPtr += PAGE_SIZE; /* reserved page */
1886
1887 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1888 AssertRCReturn(rc, rc);
1889 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1890 GCPtr += PAGE_SIZE;
1891 GCPtr += PAGE_SIZE; /* reserved page */
1892#endif
1893
1894 /*
1895 * Reserve space for the dynamic mappings.
1896 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1897 */
1898 /* get the pointer to the page table entries. */
1899 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1900 AssertRelease(pMapping);
1901 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1902 const unsigned iPT = off >> X86_PD_SHIFT;
1903 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1904 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1905 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1906
1907 /* init cache */
1908 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1909 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1910 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1911
1912 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1913 {
1914 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1915 AssertRCReturn(rc, rc);
1916 }
1917
1918 /*
1919 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1920 * Intel only goes up to 36 bits, so we stick to 36 as well.
1921 */
1922 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1923 uint32_t u32Dummy, u32Features;
1924 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1925
1926 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1927 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1928 else
1929 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1930
1931 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1932
1933 return rc;
1934}
1935
1936
1937/**
1938 * Applies relocations to data and code managed by this component.
1939 *
1940 * This function will be called at init and whenever the VMM need to relocate it
1941 * self inside the GC.
1942 *
1943 * @param pVM The VM.
1944 * @param offDelta Relocation delta relative to old location.
1945 */
1946VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1947{
1948 LogFlow(("PGMR3Relocate\n"));
1949
1950 /*
1951 * Paging stuff.
1952 */
1953 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1954 /** @todo move this into shadow and guest specific relocation functions. */
1955 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
1956#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1957 pVM->pgm.s.pShw32BitPdRC += offDelta;
1958#endif
1959 pVM->pgm.s.pGst32BitPdRC += offDelta;
1960 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1961 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC); i++)
1962 {
1963#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1964 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1965#endif
1966 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1967 }
1968 pVM->pgm.s.pGstPaePdptRC += offDelta;
1969#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1970 pVM->pgm.s.pShwPaePdptRC += offDelta;
1971#endif
1972
1973 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1974 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1975
1976 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1977 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1978 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1979
1980 /*
1981 * Trees.
1982 */
1983 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1984
1985 /*
1986 * Ram ranges.
1987 */
1988 if (pVM->pgm.s.pRamRangesR3)
1989 {
1990 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1991 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1992 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1993 }
1994
1995 /*
1996 * Update the two page directories with all page table mappings.
1997 * (One or more of them have changed, that's why we're here.)
1998 */
1999 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2000 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2001 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2002
2003 /* Relocate GC addresses of Page Tables. */
2004 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2005 {
2006 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2007 {
2008 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2009 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2010 }
2011 }
2012
2013 /*
2014 * Dynamic page mapping area.
2015 */
2016 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2017 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2018 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2019
2020 /*
2021 * The Zero page.
2022 */
2023 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2024#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2025 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2026#else
2027 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2028#endif
2029
2030 /*
2031 * Physical and virtual handlers.
2032 */
2033 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2034 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2035 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2036
2037 /*
2038 * The page pool.
2039 */
2040 pgmR3PoolRelocate(pVM);
2041}
2042
2043
2044/**
2045 * Callback function for relocating a physical access handler.
2046 *
2047 * @returns 0 (continue enum)
2048 * @param pNode Pointer to a PGMPHYSHANDLER node.
2049 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2050 * not certain the delta will fit in a void pointer for all possible configs.
2051 */
2052static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2053{
2054 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2055 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2056 if (pHandler->pfnHandlerRC)
2057 pHandler->pfnHandlerRC += offDelta;
2058 if (pHandler->pvUserRC >= 0x10000)
2059 pHandler->pvUserRC += offDelta;
2060 return 0;
2061}
2062
2063
2064/**
2065 * Callback function for relocating a virtual access handler.
2066 *
2067 * @returns 0 (continue enum)
2068 * @param pNode Pointer to a PGMVIRTHANDLER node.
2069 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2070 * not certain the delta will fit in a void pointer for all possible configs.
2071 */
2072static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2073{
2074 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2075 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2076 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2077 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2078 Assert(pHandler->pfnHandlerRC);
2079 pHandler->pfnHandlerRC += offDelta;
2080 return 0;
2081}
2082
2083
2084/**
2085 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2086 *
2087 * @returns 0 (continue enum)
2088 * @param pNode Pointer to a PGMVIRTHANDLER node.
2089 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2090 * not certain the delta will fit in a void pointer for all possible configs.
2091 */
2092static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2093{
2094 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2095 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2096 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2097 Assert(pHandler->pfnHandlerRC);
2098 pHandler->pfnHandlerRC += offDelta;
2099 return 0;
2100}
2101
2102
2103/**
2104 * The VM is being reset.
2105 *
2106 * For the PGM component this means that any PD write monitors
2107 * needs to be removed.
2108 *
2109 * @param pVM VM handle.
2110 */
2111VMMR3DECL(void) PGMR3Reset(PVM pVM)
2112{
2113 LogFlow(("PGMR3Reset:\n"));
2114 VM_ASSERT_EMT(pVM);
2115
2116 pgmLock(pVM);
2117
2118 /*
2119 * Unfix any fixed mappings and disable CR3 monitoring.
2120 */
2121 pVM->pgm.s.fMappingsFixed = false;
2122 pVM->pgm.s.GCPtrMappingFixed = 0;
2123 pVM->pgm.s.cbMappingFixed = 0;
2124
2125 /* Exit the guest paging mode before the pgm pool gets reset.
2126 * Important to clean up the amd64 case.
2127 */
2128 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2129 AssertRC(rc);
2130#ifdef DEBUG
2131 DBGFR3InfoLog(pVM, "mappings", NULL);
2132 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2133#endif
2134
2135 /*
2136 * Reset the shadow page pool.
2137 */
2138 pgmR3PoolReset(pVM);
2139
2140 /*
2141 * Re-init other members.
2142 */
2143 pVM->pgm.s.fA20Enabled = true;
2144
2145 /*
2146 * Clear the FFs PGM owns.
2147 */
2148 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2149 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2150
2151 /*
2152 * Reset (zero) RAM pages.
2153 */
2154 rc = pgmR3PhysRamReset(pVM);
2155 if (RT_SUCCESS(rc))
2156 {
2157#ifdef VBOX_WITH_NEW_PHYS_CODE
2158 /*
2159 * Reset (zero) shadow ROM pages.
2160 */
2161 rc = pgmR3PhysRomReset(pVM);
2162#endif
2163 if (RT_SUCCESS(rc))
2164 {
2165 /*
2166 * Switch mode back to real mode.
2167 */
2168 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2169 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2170 }
2171 }
2172
2173 pgmUnlock(pVM);
2174 //return rc;
2175 AssertReleaseRC(rc);
2176}
2177
2178
2179#ifdef VBOX_STRICT
2180/**
2181 * VM state change callback for clearing fNoMorePhysWrites after
2182 * a snapshot has been created.
2183 */
2184static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2185{
2186 if (enmState == VMSTATE_RUNNING)
2187 pVM->pgm.s.fNoMorePhysWrites = false;
2188}
2189#endif
2190
2191
2192/**
2193 * Terminates the PGM.
2194 *
2195 * @returns VBox status code.
2196 * @param pVM Pointer to VM structure.
2197 */
2198VMMR3DECL(int) PGMR3Term(PVM pVM)
2199{
2200 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2201}
2202
2203
2204/**
2205 * Terminates the per-VCPU PGM.
2206 *
2207 * Termination means cleaning up and freeing all resources,
2208 * the VM it self is at this point powered off or suspended.
2209 *
2210 * @returns VBox status code.
2211 * @param pVM The VM to operate on.
2212 */
2213VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2214{
2215 return 0;
2216}
2217
2218
2219/**
2220 * Execute state save operation.
2221 *
2222 * @returns VBox status code.
2223 * @param pVM VM Handle.
2224 * @param pSSM SSM operation handle.
2225 */
2226static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2227{
2228 PPGM pPGM = &pVM->pgm.s;
2229
2230 /* No more writes to physical memory after this point! */
2231 pVM->pgm.s.fNoMorePhysWrites = true;
2232
2233 /*
2234 * Save basic data (required / unaffected by relocation).
2235 */
2236#if 1
2237 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2238#else
2239 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2240#endif
2241 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2242 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2243 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2244 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2245 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2246 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2247 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2248 SSMR3PutU32(pSSM, ~0); /* Separator. */
2249
2250 /*
2251 * The guest mappings.
2252 */
2253 uint32_t i = 0;
2254 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2255 {
2256 SSMR3PutU32(pSSM, i);
2257 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2258 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2259 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2260 /* flags are done by the mapping owners! */
2261 }
2262 SSMR3PutU32(pSSM, ~0); /* terminator. */
2263
2264 /*
2265 * Ram range flags and bits.
2266 */
2267 i = 0;
2268 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2269 {
2270 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2271
2272 SSMR3PutU32(pSSM, i);
2273 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2274 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2275 SSMR3PutGCPhys(pSSM, pRam->cb);
2276 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2277
2278 /* Flags. */
2279 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2280 for (unsigned iPage = 0; iPage < cPages; iPage++)
2281 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2282
2283 /* any memory associated with the range. */
2284 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2285 {
2286 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2287 {
2288 if (pRam->paChunkR3Ptrs[iChunk])
2289 {
2290 SSMR3PutU8(pSSM, 1); /* chunk present */
2291 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2292 }
2293 else
2294 SSMR3PutU8(pSSM, 0); /* no chunk present */
2295 }
2296 }
2297 else if (pRam->pvR3)
2298 {
2299 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2300 if (RT_FAILURE(rc))
2301 {
2302 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2303 return rc;
2304 }
2305 }
2306 }
2307 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2308}
2309
2310
2311/**
2312 * Execute state load operation.
2313 *
2314 * @returns VBox status code.
2315 * @param pVM VM Handle.
2316 * @param pSSM SSM operation handle.
2317 * @param u32Version Data layout version.
2318 */
2319static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2320{
2321 /*
2322 * Validate version.
2323 */
2324 if (u32Version != PGM_SAVED_STATE_VERSION)
2325 {
2326 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2327 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2328 }
2329
2330 /*
2331 * Call the reset function to make sure all the memory is cleared.
2332 */
2333 PGMR3Reset(pVM);
2334
2335 /*
2336 * Load basic data (required / unaffected by relocation).
2337 */
2338 PPGM pPGM = &pVM->pgm.s;
2339#if 1
2340 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2341#else
2342 uint32_t u;
2343 SSMR3GetU32(pSSM, &u);
2344 pPGM->fMappingsFixed = u;
2345#endif
2346 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2347 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2348
2349 RTUINT cbRamSize;
2350 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2351 if (RT_FAILURE(rc))
2352 return rc;
2353 if (cbRamSize != pPGM->cbRamSize)
2354 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2355 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2356 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2357 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2358 RTUINT uGuestMode;
2359 SSMR3GetUInt(pSSM, &uGuestMode);
2360 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2361
2362 /* check separator. */
2363 uint32_t u32Sep;
2364 SSMR3GetU32(pSSM, &u32Sep);
2365 if (RT_FAILURE(rc))
2366 return rc;
2367 if (u32Sep != (uint32_t)~0)
2368 {
2369 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2370 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2371 }
2372
2373 /*
2374 * The guest mappings.
2375 */
2376 uint32_t i = 0;
2377 for (;; i++)
2378 {
2379 /* Check the seqence number / separator. */
2380 rc = SSMR3GetU32(pSSM, &u32Sep);
2381 if (RT_FAILURE(rc))
2382 return rc;
2383 if (u32Sep == ~0U)
2384 break;
2385 if (u32Sep != i)
2386 {
2387 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2388 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2389 }
2390
2391 /* get the mapping details. */
2392 char szDesc[256];
2393 szDesc[0] = '\0';
2394 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2395 if (RT_FAILURE(rc))
2396 return rc;
2397 RTGCPTR GCPtr;
2398 SSMR3GetGCPtr(pSSM, &GCPtr);
2399 RTGCPTR cPTs;
2400 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2401 if (RT_FAILURE(rc))
2402 return rc;
2403
2404 /* find matching range. */
2405 PPGMMAPPING pMapping;
2406 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2407 if ( pMapping->cPTs == cPTs
2408 && !strcmp(pMapping->pszDesc, szDesc))
2409 break;
2410 if (!pMapping)
2411 {
2412 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2413 cPTs, szDesc, GCPtr));
2414 AssertFailed();
2415 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2416 }
2417
2418 /* relocate it. */
2419 if (pMapping->GCPtr != GCPtr)
2420 {
2421 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2422 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2423 }
2424 else
2425 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2426 }
2427
2428 /*
2429 * Ram range flags and bits.
2430 */
2431 i = 0;
2432 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2433 {
2434 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2435 /* Check the seqence number / separator. */
2436 rc = SSMR3GetU32(pSSM, &u32Sep);
2437 if (RT_FAILURE(rc))
2438 return rc;
2439 if (u32Sep == ~0U)
2440 break;
2441 if (u32Sep != i)
2442 {
2443 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2444 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2445 }
2446
2447 /* Get the range details. */
2448 RTGCPHYS GCPhys;
2449 SSMR3GetGCPhys(pSSM, &GCPhys);
2450 RTGCPHYS GCPhysLast;
2451 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2452 RTGCPHYS cb;
2453 SSMR3GetGCPhys(pSSM, &cb);
2454 uint8_t fHaveBits;
2455 rc = SSMR3GetU8(pSSM, &fHaveBits);
2456 if (RT_FAILURE(rc))
2457 return rc;
2458 if (fHaveBits & ~1)
2459 {
2460 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2461 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2462 }
2463
2464 /* Match it up with the current range. */
2465 if ( GCPhys != pRam->GCPhys
2466 || GCPhysLast != pRam->GCPhysLast
2467 || cb != pRam->cb
2468 || fHaveBits != !!pRam->pvR3)
2469 {
2470 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2471 "State : %RGp-%RGp %RGp bytes %s\n",
2472 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2473 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2474 /*
2475 * If we're loading a state for debugging purpose, don't make a fuss if
2476 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2477 */
2478 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2479 || GCPhys < 8 * _1M)
2480 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2481
2482 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2483 while (cPages-- > 0)
2484 {
2485 uint16_t u16Ignore;
2486 SSMR3GetU16(pSSM, &u16Ignore);
2487 }
2488 continue;
2489 }
2490
2491 /* Flags. */
2492 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2493 for (unsigned iPage = 0; iPage < cPages; iPage++)
2494 {
2495 uint16_t u16 = 0;
2496 SSMR3GetU16(pSSM, &u16);
2497 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2498 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2499 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2500 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2501 }
2502
2503 /* any memory associated with the range. */
2504 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2505 {
2506 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2507 {
2508 uint8_t fValidChunk;
2509
2510 rc = SSMR3GetU8(pSSM, &fValidChunk);
2511 if (RT_FAILURE(rc))
2512 return rc;
2513 if (fValidChunk > 1)
2514 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2515
2516 if (fValidChunk)
2517 {
2518 if (!pRam->paChunkR3Ptrs[iChunk])
2519 {
2520 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2521 if (RT_FAILURE(rc))
2522 return rc;
2523 }
2524 Assert(pRam->paChunkR3Ptrs[iChunk]);
2525
2526 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2527 }
2528 /* else nothing to do */
2529 }
2530 }
2531 else if (pRam->pvR3)
2532 {
2533 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2534 if (RT_FAILURE(rc))
2535 {
2536 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2537 return rc;
2538 }
2539 }
2540 }
2541
2542 /*
2543 * We require a full resync now.
2544 */
2545 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2546 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2547 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2548 pPGM->fPhysCacheFlushPending = true;
2549 pgmR3HandlerPhysicalUpdateAll(pVM);
2550
2551 /*
2552 * Change the paging mode.
2553 */
2554 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2555
2556 /* Restore pVM->pgm.s.GCPhysCR3. */
2557 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2558 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2559 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2560 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2561 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2562 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2563 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2564 else
2565 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2566 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2567
2568 return rc;
2569}
2570
2571
2572/**
2573 * Show paging mode.
2574 *
2575 * @param pVM VM Handle.
2576 * @param pHlp The info helpers.
2577 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2578 */
2579static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2580{
2581 /* digest argument. */
2582 bool fGuest, fShadow, fHost;
2583 if (pszArgs)
2584 pszArgs = RTStrStripL(pszArgs);
2585 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2586 fShadow = fHost = fGuest = true;
2587 else
2588 {
2589 fShadow = fHost = fGuest = false;
2590 if (strstr(pszArgs, "guest"))
2591 fGuest = true;
2592 if (strstr(pszArgs, "shadow"))
2593 fShadow = true;
2594 if (strstr(pszArgs, "host"))
2595 fHost = true;
2596 }
2597
2598 /* print info. */
2599 if (fGuest)
2600 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2601 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2602 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2603 if (fShadow)
2604 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2605 if (fHost)
2606 {
2607 const char *psz;
2608 switch (pVM->pgm.s.enmHostMode)
2609 {
2610 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2611 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2612 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2613 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2614 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2615 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2616 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2617 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2618 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2619 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2620 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2621 default: psz = "unknown"; break;
2622 }
2623 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2624 }
2625}
2626
2627
2628/**
2629 * Dump registered MMIO ranges to the log.
2630 *
2631 * @param pVM VM Handle.
2632 * @param pHlp The info helpers.
2633 * @param pszArgs Arguments, ignored.
2634 */
2635static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2636{
2637 NOREF(pszArgs);
2638 pHlp->pfnPrintf(pHlp,
2639 "RAM ranges (pVM=%p)\n"
2640 "%.*s %.*s\n",
2641 pVM,
2642 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2643 sizeof(RTHCPTR) * 2, "pvHC ");
2644
2645 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2646 pHlp->pfnPrintf(pHlp,
2647 "%RGp-%RGp %RHv %s\n",
2648 pCur->GCPhys,
2649 pCur->GCPhysLast,
2650 pCur->pvR3,
2651 pCur->pszDesc);
2652}
2653
2654/**
2655 * Dump the page directory to the log.
2656 *
2657 * @param pVM VM Handle.
2658 * @param pHlp The info helpers.
2659 * @param pszArgs Arguments, ignored.
2660 */
2661static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2662{
2663/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2664 /* Big pages supported? */
2665 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2666
2667 /* Global pages supported? */
2668 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2669
2670 NOREF(pszArgs);
2671
2672 /*
2673 * Get page directory addresses.
2674 */
2675 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2676 Assert(pPDSrc);
2677 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2678
2679 /*
2680 * Iterate the page directory.
2681 */
2682 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2683 {
2684 X86PDE PdeSrc = pPDSrc->a[iPD];
2685 if (PdeSrc.n.u1Present)
2686 {
2687 if (PdeSrc.b.u1Size && fPSE)
2688 pHlp->pfnPrintf(pHlp,
2689 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2690 iPD,
2691 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2692 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2693 else
2694 pHlp->pfnPrintf(pHlp,
2695 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2696 iPD,
2697 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2698 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2699 }
2700 }
2701}
2702
2703
2704/**
2705 * Serivce a VMMCALLHOST_PGM_LOCK call.
2706 *
2707 * @returns VBox status code.
2708 * @param pVM The VM handle.
2709 */
2710VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2711{
2712 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2713 AssertRC(rc);
2714 return rc;
2715}
2716
2717
2718/**
2719 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2720 *
2721 * @returns PGM_TYPE_*.
2722 * @param pgmMode The mode value to convert.
2723 */
2724DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2725{
2726 switch (pgmMode)
2727 {
2728 case PGMMODE_REAL: return PGM_TYPE_REAL;
2729 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2730 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2731 case PGMMODE_PAE:
2732 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2733 case PGMMODE_AMD64:
2734 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2735 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2736 case PGMMODE_EPT: return PGM_TYPE_EPT;
2737 default:
2738 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2739 }
2740}
2741
2742
2743/**
2744 * Gets the index into the paging mode data array of a SHW+GST mode.
2745 *
2746 * @returns PGM::paPagingData index.
2747 * @param uShwType The shadow paging mode type.
2748 * @param uGstType The guest paging mode type.
2749 */
2750DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2751{
2752 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2753 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2754 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2755 + (uGstType - PGM_TYPE_REAL);
2756}
2757
2758
2759/**
2760 * Gets the index into the paging mode data array of a SHW+GST mode.
2761 *
2762 * @returns PGM::paPagingData index.
2763 * @param enmShw The shadow paging mode.
2764 * @param enmGst The guest paging mode.
2765 */
2766DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2767{
2768 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2769 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2770 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2771}
2772
2773
2774/**
2775 * Calculates the max data index.
2776 * @returns The number of entries in the paging data array.
2777 */
2778DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2779{
2780 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2781}
2782
2783
2784/**
2785 * Initializes the paging mode data kept in PGM::paModeData.
2786 *
2787 * @param pVM The VM handle.
2788 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2789 * This is used early in the init process to avoid trouble with PDM
2790 * not being initialized yet.
2791 */
2792static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2793{
2794 PPGMMODEDATA pModeData;
2795 int rc;
2796
2797 /*
2798 * Allocate the array on the first call.
2799 */
2800 if (!pVM->pgm.s.paModeData)
2801 {
2802 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2803 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2804 }
2805
2806 /*
2807 * Initialize the array entries.
2808 */
2809 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2810 pModeData->uShwType = PGM_TYPE_32BIT;
2811 pModeData->uGstType = PGM_TYPE_REAL;
2812 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2813 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2814 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815
2816 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2817 pModeData->uShwType = PGM_TYPE_32BIT;
2818 pModeData->uGstType = PGM_TYPE_PROT;
2819 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2820 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2822
2823 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2824 pModeData->uShwType = PGM_TYPE_32BIT;
2825 pModeData->uGstType = PGM_TYPE_32BIT;
2826 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2828 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2829
2830 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2831 pModeData->uShwType = PGM_TYPE_PAE;
2832 pModeData->uGstType = PGM_TYPE_REAL;
2833 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2834 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2835 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2836
2837 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2838 pModeData->uShwType = PGM_TYPE_PAE;
2839 pModeData->uGstType = PGM_TYPE_PROT;
2840 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2841 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2842 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2843
2844 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2845 pModeData->uShwType = PGM_TYPE_PAE;
2846 pModeData->uGstType = PGM_TYPE_32BIT;
2847 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2848 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2849 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850
2851 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2852 pModeData->uShwType = PGM_TYPE_PAE;
2853 pModeData->uGstType = PGM_TYPE_PAE;
2854 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2855 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2856 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857
2858#ifdef VBOX_WITH_64_BITS_GUESTS
2859 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2860 pModeData->uShwType = PGM_TYPE_AMD64;
2861 pModeData->uGstType = PGM_TYPE_AMD64;
2862 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2863 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2864 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865#endif
2866
2867 /* The nested paging mode. */
2868 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2869 pModeData->uShwType = PGM_TYPE_NESTED;
2870 pModeData->uGstType = PGM_TYPE_REAL;
2871 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2872 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2873
2874 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2875 pModeData->uShwType = PGM_TYPE_NESTED;
2876 pModeData->uGstType = PGM_TYPE_PROT;
2877 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2878 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2879
2880 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2881 pModeData->uShwType = PGM_TYPE_NESTED;
2882 pModeData->uGstType = PGM_TYPE_32BIT;
2883 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2885
2886 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2887 pModeData->uShwType = PGM_TYPE_NESTED;
2888 pModeData->uGstType = PGM_TYPE_PAE;
2889 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2890 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2891
2892#ifdef VBOX_WITH_64_BITS_GUESTS
2893 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2894 pModeData->uShwType = PGM_TYPE_NESTED;
2895 pModeData->uGstType = PGM_TYPE_AMD64;
2896 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2897 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2898#endif
2899
2900 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2901 switch (pVM->pgm.s.enmHostMode)
2902 {
2903#if HC_ARCH_BITS == 32
2904 case SUPPAGINGMODE_32_BIT:
2905 case SUPPAGINGMODE_32_BIT_GLOBAL:
2906 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2907 {
2908 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2909 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 }
2911# ifdef VBOX_WITH_64_BITS_GUESTS
2912 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2913 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2914# endif
2915 break;
2916
2917 case SUPPAGINGMODE_PAE:
2918 case SUPPAGINGMODE_PAE_NX:
2919 case SUPPAGINGMODE_PAE_GLOBAL:
2920 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2921 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2922 {
2923 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2924 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925 }
2926# ifdef VBOX_WITH_64_BITS_GUESTS
2927 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2928 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2929# endif
2930 break;
2931#endif /* HC_ARCH_BITS == 32 */
2932
2933#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2934 case SUPPAGINGMODE_AMD64:
2935 case SUPPAGINGMODE_AMD64_GLOBAL:
2936 case SUPPAGINGMODE_AMD64_NX:
2937 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2938# ifdef VBOX_WITH_64_BITS_GUESTS
2939 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2940# else
2941 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2942# endif
2943 {
2944 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2945 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2946 }
2947 break;
2948#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2949
2950 default:
2951 AssertFailed();
2952 break;
2953 }
2954
2955 /* Extended paging (EPT) / Intel VT-x */
2956 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2957 pModeData->uShwType = PGM_TYPE_EPT;
2958 pModeData->uGstType = PGM_TYPE_REAL;
2959 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2960 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2961 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2962
2963 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2964 pModeData->uShwType = PGM_TYPE_EPT;
2965 pModeData->uGstType = PGM_TYPE_PROT;
2966 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2967 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2968 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2969
2970 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2971 pModeData->uShwType = PGM_TYPE_EPT;
2972 pModeData->uGstType = PGM_TYPE_32BIT;
2973 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2974 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2975 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2976
2977 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2978 pModeData->uShwType = PGM_TYPE_EPT;
2979 pModeData->uGstType = PGM_TYPE_PAE;
2980 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2981 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2982 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2983
2984#ifdef VBOX_WITH_64_BITS_GUESTS
2985 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2986 pModeData->uShwType = PGM_TYPE_EPT;
2987 pModeData->uGstType = PGM_TYPE_AMD64;
2988 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2989 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2990 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2991#endif
2992 return VINF_SUCCESS;
2993}
2994
2995
2996/**
2997 * Switch to different (or relocated in the relocate case) mode data.
2998 *
2999 * @param pVM The VM handle.
3000 * @param enmShw The the shadow paging mode.
3001 * @param enmGst The the guest paging mode.
3002 */
3003static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3004{
3005 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3006
3007 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3008 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3009
3010 /* shadow */
3011 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3012 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3013 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3014 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3015 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3016
3017 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3018 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3019
3020 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3021 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3022
3023
3024 /* guest */
3025 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3026 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3027 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3028 Assert(pVM->pgm.s.pfnR3GstGetPage);
3029 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3030 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3031#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3032 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
3033 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
3034#endif
3035 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
3036 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
3037#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3038 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3039 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3040 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3041 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3042#endif
3043 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3044 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3045 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3046#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3047 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3048 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3049#endif
3050 pVM->pgm.s.pfnRCGstMapCR3 = pModeData->pfnRCGstMapCR3;
3051 pVM->pgm.s.pfnRCGstUnmapCR3 = pModeData->pfnRCGstUnmapCR3;
3052#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3053 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3054 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3055#endif
3056 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3057 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3058 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3059#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3060 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3061 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3062#endif
3063 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
3064 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
3065#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3066 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3067 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3068#endif
3069
3070 /* both */
3071 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3072 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3073 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3074 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3075 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3076 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3077 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3078#ifdef VBOX_STRICT
3079 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3080#endif
3081
3082 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3083 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3084 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3085 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3086 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3087 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3088#ifdef VBOX_STRICT
3089 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3090#endif
3091
3092 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3093 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3094 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3095 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3096 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3097 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3098#ifdef VBOX_STRICT
3099 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3100#endif
3101}
3102
3103
3104/**
3105 * Calculates the shadow paging mode.
3106 *
3107 * @returns The shadow paging mode.
3108 * @param pVM VM handle.
3109 * @param enmGuestMode The guest mode.
3110 * @param enmHostMode The host mode.
3111 * @param enmShadowMode The current shadow mode.
3112 * @param penmSwitcher Where to store the switcher to use.
3113 * VMMSWITCHER_INVALID means no change.
3114 */
3115static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3116{
3117 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3118 switch (enmGuestMode)
3119 {
3120 /*
3121 * When switching to real or protected mode we don't change
3122 * anything since it's likely that we'll switch back pretty soon.
3123 *
3124 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3125 * and is supposed to determine which shadow paging and switcher to
3126 * use during init.
3127 */
3128 case PGMMODE_REAL:
3129 case PGMMODE_PROTECTED:
3130 if ( enmShadowMode != PGMMODE_INVALID
3131 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3132 break; /* (no change) */
3133
3134 switch (enmHostMode)
3135 {
3136 case SUPPAGINGMODE_32_BIT:
3137 case SUPPAGINGMODE_32_BIT_GLOBAL:
3138 enmShadowMode = PGMMODE_32_BIT;
3139 enmSwitcher = VMMSWITCHER_32_TO_32;
3140 break;
3141
3142 case SUPPAGINGMODE_PAE:
3143 case SUPPAGINGMODE_PAE_NX:
3144 case SUPPAGINGMODE_PAE_GLOBAL:
3145 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3146 enmShadowMode = PGMMODE_PAE;
3147 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3148#ifdef DEBUG_bird
3149 if (RTEnvExist("VBOX_32BIT"))
3150 {
3151 enmShadowMode = PGMMODE_32_BIT;
3152 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3153 }
3154#endif
3155 break;
3156
3157 case SUPPAGINGMODE_AMD64:
3158 case SUPPAGINGMODE_AMD64_GLOBAL:
3159 case SUPPAGINGMODE_AMD64_NX:
3160 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3161 enmShadowMode = PGMMODE_PAE;
3162 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3163#ifdef DEBUG_bird
3164 if (RTEnvExist("VBOX_32BIT"))
3165 {
3166 enmShadowMode = PGMMODE_32_BIT;
3167 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3168 }
3169#endif
3170 break;
3171
3172 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3173 }
3174 break;
3175
3176 case PGMMODE_32_BIT:
3177 switch (enmHostMode)
3178 {
3179 case SUPPAGINGMODE_32_BIT:
3180 case SUPPAGINGMODE_32_BIT_GLOBAL:
3181 enmShadowMode = PGMMODE_32_BIT;
3182 enmSwitcher = VMMSWITCHER_32_TO_32;
3183 break;
3184
3185 case SUPPAGINGMODE_PAE:
3186 case SUPPAGINGMODE_PAE_NX:
3187 case SUPPAGINGMODE_PAE_GLOBAL:
3188 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3189 enmShadowMode = PGMMODE_PAE;
3190 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3191#ifdef DEBUG_bird
3192 if (RTEnvExist("VBOX_32BIT"))
3193 {
3194 enmShadowMode = PGMMODE_32_BIT;
3195 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3196 }
3197#endif
3198 break;
3199
3200 case SUPPAGINGMODE_AMD64:
3201 case SUPPAGINGMODE_AMD64_GLOBAL:
3202 case SUPPAGINGMODE_AMD64_NX:
3203 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3204 enmShadowMode = PGMMODE_PAE;
3205 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3206#ifdef DEBUG_bird
3207 if (RTEnvExist("VBOX_32BIT"))
3208 {
3209 enmShadowMode = PGMMODE_32_BIT;
3210 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3211 }
3212#endif
3213 break;
3214
3215 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3216 }
3217 break;
3218
3219 case PGMMODE_PAE:
3220 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3221 switch (enmHostMode)
3222 {
3223 case SUPPAGINGMODE_32_BIT:
3224 case SUPPAGINGMODE_32_BIT_GLOBAL:
3225 enmShadowMode = PGMMODE_PAE;
3226 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3227 break;
3228
3229 case SUPPAGINGMODE_PAE:
3230 case SUPPAGINGMODE_PAE_NX:
3231 case SUPPAGINGMODE_PAE_GLOBAL:
3232 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3233 enmShadowMode = PGMMODE_PAE;
3234 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3235 break;
3236
3237 case SUPPAGINGMODE_AMD64:
3238 case SUPPAGINGMODE_AMD64_GLOBAL:
3239 case SUPPAGINGMODE_AMD64_NX:
3240 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3241 enmShadowMode = PGMMODE_PAE;
3242 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3243 break;
3244
3245 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3246 }
3247 break;
3248
3249 case PGMMODE_AMD64:
3250 case PGMMODE_AMD64_NX:
3251 switch (enmHostMode)
3252 {
3253 case SUPPAGINGMODE_32_BIT:
3254 case SUPPAGINGMODE_32_BIT_GLOBAL:
3255 enmShadowMode = PGMMODE_AMD64;
3256 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3257 break;
3258
3259 case SUPPAGINGMODE_PAE:
3260 case SUPPAGINGMODE_PAE_NX:
3261 case SUPPAGINGMODE_PAE_GLOBAL:
3262 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3263 enmShadowMode = PGMMODE_AMD64;
3264 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3265 break;
3266
3267 case SUPPAGINGMODE_AMD64:
3268 case SUPPAGINGMODE_AMD64_GLOBAL:
3269 case SUPPAGINGMODE_AMD64_NX:
3270 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3271 enmShadowMode = PGMMODE_AMD64;
3272 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3273 break;
3274
3275 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3276 }
3277 break;
3278
3279
3280 default:
3281 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3282 return PGMMODE_INVALID;
3283 }
3284 /* Override the shadow mode is nested paging is active. */
3285 if (HWACCMIsNestedPagingActive(pVM))
3286 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3287
3288 *penmSwitcher = enmSwitcher;
3289 return enmShadowMode;
3290}
3291
3292
3293/**
3294 * Performs the actual mode change.
3295 * This is called by PGMChangeMode and pgmR3InitPaging().
3296 *
3297 * @returns VBox status code.
3298 * @param pVM VM handle.
3299 * @param enmGuestMode The new guest mode. This is assumed to be different from
3300 * the current mode.
3301 */
3302VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3303{
3304 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3305 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3306
3307 /*
3308 * Calc the shadow mode and switcher.
3309 */
3310 VMMSWITCHER enmSwitcher;
3311 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3312 if (enmSwitcher != VMMSWITCHER_INVALID)
3313 {
3314 /*
3315 * Select new switcher.
3316 */
3317 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3318 if (RT_FAILURE(rc))
3319 {
3320 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3321 return rc;
3322 }
3323 }
3324
3325 /*
3326 * Exit old mode(s).
3327 */
3328 /* shadow */
3329 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3330 {
3331 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3332 if (PGM_SHW_PFN(Exit, pVM))
3333 {
3334 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3335 if (RT_FAILURE(rc))
3336 {
3337 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3338 return rc;
3339 }
3340 }
3341
3342 }
3343 else
3344 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3345
3346 /* guest */
3347 if (PGM_GST_PFN(Exit, pVM))
3348 {
3349 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3350 if (RT_FAILURE(rc))
3351 {
3352 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3353 return rc;
3354 }
3355 }
3356
3357 /*
3358 * Load new paging mode data.
3359 */
3360 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3361
3362 /*
3363 * Enter new shadow mode (if changed).
3364 */
3365 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3366 {
3367 int rc;
3368 pVM->pgm.s.enmShadowMode = enmShadowMode;
3369 switch (enmShadowMode)
3370 {
3371 case PGMMODE_32_BIT:
3372 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3373 break;
3374 case PGMMODE_PAE:
3375 case PGMMODE_PAE_NX:
3376 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3377 break;
3378 case PGMMODE_AMD64:
3379 case PGMMODE_AMD64_NX:
3380 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3381 break;
3382 case PGMMODE_NESTED:
3383 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3384 break;
3385 case PGMMODE_EPT:
3386 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3387 break;
3388 case PGMMODE_REAL:
3389 case PGMMODE_PROTECTED:
3390 default:
3391 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3392 return VERR_INTERNAL_ERROR;
3393 }
3394 if (RT_FAILURE(rc))
3395 {
3396 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3397 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3398 return rc;
3399 }
3400 }
3401
3402 /** @todo This is a bug!
3403 *
3404 * We must flush the PGM pool cache if the guest mode changes; we don't always
3405 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3406 * the shadow page tables.
3407 *
3408 * That only applies when switching between paging and non-paging modes.
3409 */
3410 /** @todo A20 setting */
3411 if ( pVM->pgm.s.CTX_SUFF(pPool)
3412 && !HWACCMIsNestedPagingActive(pVM)
3413 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3414 {
3415 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3416 pgmPoolFlushAll(pVM);
3417 }
3418
3419 /*
3420 * Enter the new guest and shadow+guest modes.
3421 */
3422 int rc = -1;
3423 int rc2 = -1;
3424 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3425 pVM->pgm.s.enmGuestMode = enmGuestMode;
3426 switch (enmGuestMode)
3427 {
3428 case PGMMODE_REAL:
3429 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3430 switch (pVM->pgm.s.enmShadowMode)
3431 {
3432 case PGMMODE_32_BIT:
3433 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3434 break;
3435 case PGMMODE_PAE:
3436 case PGMMODE_PAE_NX:
3437 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3438 break;
3439 case PGMMODE_NESTED:
3440 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3441 break;
3442 case PGMMODE_EPT:
3443 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3444 break;
3445 case PGMMODE_AMD64:
3446 case PGMMODE_AMD64_NX:
3447 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3448 default: AssertFailed(); break;
3449 }
3450 break;
3451
3452 case PGMMODE_PROTECTED:
3453 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3454 switch (pVM->pgm.s.enmShadowMode)
3455 {
3456 case PGMMODE_32_BIT:
3457 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3458 break;
3459 case PGMMODE_PAE:
3460 case PGMMODE_PAE_NX:
3461 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3462 break;
3463 case PGMMODE_NESTED:
3464 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3465 break;
3466 case PGMMODE_EPT:
3467 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3468 break;
3469 case PGMMODE_AMD64:
3470 case PGMMODE_AMD64_NX:
3471 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3472 default: AssertFailed(); break;
3473 }
3474 break;
3475
3476 case PGMMODE_32_BIT:
3477 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3478 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3479 switch (pVM->pgm.s.enmShadowMode)
3480 {
3481 case PGMMODE_32_BIT:
3482 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3483 break;
3484 case PGMMODE_PAE:
3485 case PGMMODE_PAE_NX:
3486 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3487 break;
3488 case PGMMODE_NESTED:
3489 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3490 break;
3491 case PGMMODE_EPT:
3492 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3493 break;
3494 case PGMMODE_AMD64:
3495 case PGMMODE_AMD64_NX:
3496 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3497 default: AssertFailed(); break;
3498 }
3499 break;
3500
3501 case PGMMODE_PAE_NX:
3502 case PGMMODE_PAE:
3503 {
3504 uint32_t u32Dummy, u32Features;
3505
3506 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3507 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3508 {
3509 /* Pause first, then inform Main. */
3510 rc = VMR3SuspendNoSave(pVM);
3511 AssertRC(rc);
3512
3513 VMSetRuntimeError(pVM, true, "PAEmode",
3514 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3515 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3516 return VINF_SUCCESS;
3517 }
3518 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3519 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3520 switch (pVM->pgm.s.enmShadowMode)
3521 {
3522 case PGMMODE_PAE:
3523 case PGMMODE_PAE_NX:
3524 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3525 break;
3526 case PGMMODE_NESTED:
3527 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3528 break;
3529 case PGMMODE_EPT:
3530 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3531 break;
3532 case PGMMODE_32_BIT:
3533 case PGMMODE_AMD64:
3534 case PGMMODE_AMD64_NX:
3535 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3536 default: AssertFailed(); break;
3537 }
3538 break;
3539 }
3540
3541#ifdef VBOX_WITH_64_BITS_GUESTS
3542 case PGMMODE_AMD64_NX:
3543 case PGMMODE_AMD64:
3544 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3545 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3546 switch (pVM->pgm.s.enmShadowMode)
3547 {
3548 case PGMMODE_AMD64:
3549 case PGMMODE_AMD64_NX:
3550 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3551 break;
3552 case PGMMODE_NESTED:
3553 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3554 break;
3555 case PGMMODE_EPT:
3556 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3557 break;
3558 case PGMMODE_32_BIT:
3559 case PGMMODE_PAE:
3560 case PGMMODE_PAE_NX:
3561 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3562 default: AssertFailed(); break;
3563 }
3564 break;
3565#endif
3566
3567 default:
3568 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3569 rc = VERR_NOT_IMPLEMENTED;
3570 break;
3571 }
3572
3573 /* status codes. */
3574 AssertRC(rc);
3575 AssertRC(rc2);
3576 if (RT_SUCCESS(rc))
3577 {
3578 rc = rc2;
3579 if (RT_SUCCESS(rc)) /* no informational status codes. */
3580 rc = VINF_SUCCESS;
3581 }
3582
3583 /*
3584 * Notify SELM so it can update the TSSes with correct CR3s.
3585 */
3586 SELMR3PagingModeChanged(pVM);
3587
3588 /* Notify HWACCM as well. */
3589 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3590 return rc;
3591}
3592
3593
3594/**
3595 * Dumps a PAE shadow page table.
3596 *
3597 * @returns VBox status code (VINF_SUCCESS).
3598 * @param pVM The VM handle.
3599 * @param pPT Pointer to the page table.
3600 * @param u64Address The virtual address of the page table starts.
3601 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3602 * @param cMaxDepth The maxium depth.
3603 * @param pHlp Pointer to the output functions.
3604 */
3605static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3606{
3607 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3608 {
3609 X86PTEPAE Pte = pPT->a[i];
3610 if (Pte.n.u1Present)
3611 {
3612 pHlp->pfnPrintf(pHlp,
3613 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3614 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3615 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3616 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3617 Pte.n.u1Write ? 'W' : 'R',
3618 Pte.n.u1User ? 'U' : 'S',
3619 Pte.n.u1Accessed ? 'A' : '-',
3620 Pte.n.u1Dirty ? 'D' : '-',
3621 Pte.n.u1Global ? 'G' : '-',
3622 Pte.n.u1WriteThru ? "WT" : "--",
3623 Pte.n.u1CacheDisable? "CD" : "--",
3624 Pte.n.u1PAT ? "AT" : "--",
3625 Pte.n.u1NoExecute ? "NX" : "--",
3626 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3627 Pte.u & RT_BIT(10) ? '1' : '0',
3628 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3629 Pte.u & X86_PTE_PAE_PG_MASK);
3630 }
3631 }
3632 return VINF_SUCCESS;
3633}
3634
3635
3636/**
3637 * Dumps a PAE shadow page directory table.
3638 *
3639 * @returns VBox status code (VINF_SUCCESS).
3640 * @param pVM The VM handle.
3641 * @param HCPhys The physical address of the page directory table.
3642 * @param u64Address The virtual address of the page table starts.
3643 * @param cr4 The CR4, PSE is currently used.
3644 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3645 * @param cMaxDepth The maxium depth.
3646 * @param pHlp Pointer to the output functions.
3647 */
3648static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3649{
3650 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3651 if (!pPD)
3652 {
3653 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3654 fLongMode ? 16 : 8, u64Address, HCPhys);
3655 return VERR_INVALID_PARAMETER;
3656 }
3657 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3658
3659 int rc = VINF_SUCCESS;
3660 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3661 {
3662 X86PDEPAE Pde = pPD->a[i];
3663 if (Pde.n.u1Present)
3664 {
3665 if (fBigPagesSupported && Pde.b.u1Size)
3666 pHlp->pfnPrintf(pHlp,
3667 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3668 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3669 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3670 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3671 Pde.b.u1Write ? 'W' : 'R',
3672 Pde.b.u1User ? 'U' : 'S',
3673 Pde.b.u1Accessed ? 'A' : '-',
3674 Pde.b.u1Dirty ? 'D' : '-',
3675 Pde.b.u1Global ? 'G' : '-',
3676 Pde.b.u1WriteThru ? "WT" : "--",
3677 Pde.b.u1CacheDisable? "CD" : "--",
3678 Pde.b.u1PAT ? "AT" : "--",
3679 Pde.b.u1NoExecute ? "NX" : "--",
3680 Pde.u & RT_BIT_64(9) ? '1' : '0',
3681 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3682 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3683 Pde.u & X86_PDE_PAE_PG_MASK);
3684 else
3685 {
3686 pHlp->pfnPrintf(pHlp,
3687 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3688 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3689 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3690 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3691 Pde.n.u1Write ? 'W' : 'R',
3692 Pde.n.u1User ? 'U' : 'S',
3693 Pde.n.u1Accessed ? 'A' : '-',
3694 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3695 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3696 Pde.n.u1WriteThru ? "WT" : "--",
3697 Pde.n.u1CacheDisable? "CD" : "--",
3698 Pde.n.u1NoExecute ? "NX" : "--",
3699 Pde.u & RT_BIT_64(9) ? '1' : '0',
3700 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3701 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3702 Pde.u & X86_PDE_PAE_PG_MASK);
3703 if (cMaxDepth >= 1)
3704 {
3705 /** @todo what about using the page pool for mapping PTs? */
3706 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3707 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3708 PX86PTPAE pPT = NULL;
3709 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3710 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3711 else
3712 {
3713 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3714 {
3715 uint64_t off = u64AddressPT - pMap->GCPtr;
3716 if (off < pMap->cb)
3717 {
3718 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3719 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3720 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3721 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3722 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3723 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3724 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3725 }
3726 }
3727 }
3728 int rc2 = VERR_INVALID_PARAMETER;
3729 if (pPT)
3730 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3731 else
3732 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3733 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3734 if (rc2 < rc && RT_SUCCESS(rc))
3735 rc = rc2;
3736 }
3737 }
3738 }
3739 }
3740 return rc;
3741}
3742
3743
3744/**
3745 * Dumps a PAE shadow page directory pointer table.
3746 *
3747 * @returns VBox status code (VINF_SUCCESS).
3748 * @param pVM The VM handle.
3749 * @param HCPhys The physical address of the page directory pointer table.
3750 * @param u64Address The virtual address of the page table starts.
3751 * @param cr4 The CR4, PSE is currently used.
3752 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3753 * @param cMaxDepth The maxium depth.
3754 * @param pHlp Pointer to the output functions.
3755 */
3756static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3757{
3758 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3759 if (!pPDPT)
3760 {
3761 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3762 fLongMode ? 16 : 8, u64Address, HCPhys);
3763 return VERR_INVALID_PARAMETER;
3764 }
3765
3766 int rc = VINF_SUCCESS;
3767 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3768 for (unsigned i = 0; i < c; i++)
3769 {
3770 X86PDPE Pdpe = pPDPT->a[i];
3771 if (Pdpe.n.u1Present)
3772 {
3773 if (fLongMode)
3774 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3775 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3776 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3777 Pdpe.lm.u1Write ? 'W' : 'R',
3778 Pdpe.lm.u1User ? 'U' : 'S',
3779 Pdpe.lm.u1Accessed ? 'A' : '-',
3780 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3781 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3782 Pdpe.lm.u1WriteThru ? "WT" : "--",
3783 Pdpe.lm.u1CacheDisable? "CD" : "--",
3784 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3785 Pdpe.lm.u1NoExecute ? "NX" : "--",
3786 Pdpe.u & RT_BIT(9) ? '1' : '0',
3787 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3788 Pdpe.u & RT_BIT(11) ? '1' : '0',
3789 Pdpe.u & X86_PDPE_PG_MASK);
3790 else
3791 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3792 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3793 i << X86_PDPT_SHIFT,
3794 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3795 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3796 Pdpe.n.u1WriteThru ? "WT" : "--",
3797 Pdpe.n.u1CacheDisable? "CD" : "--",
3798 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3799 Pdpe.u & RT_BIT(9) ? '1' : '0',
3800 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3801 Pdpe.u & RT_BIT(11) ? '1' : '0',
3802 Pdpe.u & X86_PDPE_PG_MASK);
3803 if (cMaxDepth >= 1)
3804 {
3805 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3806 cr4, fLongMode, cMaxDepth - 1, pHlp);
3807 if (rc2 < rc && RT_SUCCESS(rc))
3808 rc = rc2;
3809 }
3810 }
3811 }
3812 return rc;
3813}
3814
3815
3816/**
3817 * Dumps a 32-bit shadow page table.
3818 *
3819 * @returns VBox status code (VINF_SUCCESS).
3820 * @param pVM The VM handle.
3821 * @param HCPhys The physical address of the table.
3822 * @param cr4 The CR4, PSE is currently used.
3823 * @param cMaxDepth The maxium depth.
3824 * @param pHlp Pointer to the output functions.
3825 */
3826static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3827{
3828 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3829 if (!pPML4)
3830 {
3831 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3832 return VERR_INVALID_PARAMETER;
3833 }
3834
3835 int rc = VINF_SUCCESS;
3836 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3837 {
3838 X86PML4E Pml4e = pPML4->a[i];
3839 if (Pml4e.n.u1Present)
3840 {
3841 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3842 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3843 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3844 u64Address,
3845 Pml4e.n.u1Write ? 'W' : 'R',
3846 Pml4e.n.u1User ? 'U' : 'S',
3847 Pml4e.n.u1Accessed ? 'A' : '-',
3848 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3849 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3850 Pml4e.n.u1WriteThru ? "WT" : "--",
3851 Pml4e.n.u1CacheDisable? "CD" : "--",
3852 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3853 Pml4e.n.u1NoExecute ? "NX" : "--",
3854 Pml4e.u & RT_BIT(9) ? '1' : '0',
3855 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3856 Pml4e.u & RT_BIT(11) ? '1' : '0',
3857 Pml4e.u & X86_PML4E_PG_MASK);
3858
3859 if (cMaxDepth >= 1)
3860 {
3861 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3862 if (rc2 < rc && RT_SUCCESS(rc))
3863 rc = rc2;
3864 }
3865 }
3866 }
3867 return rc;
3868}
3869
3870
3871/**
3872 * Dumps a 32-bit shadow page table.
3873 *
3874 * @returns VBox status code (VINF_SUCCESS).
3875 * @param pVM The VM handle.
3876 * @param pPT Pointer to the page table.
3877 * @param u32Address The virtual address this table starts at.
3878 * @param pHlp Pointer to the output functions.
3879 */
3880int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3881{
3882 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3883 {
3884 X86PTE Pte = pPT->a[i];
3885 if (Pte.n.u1Present)
3886 {
3887 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3888 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3889 u32Address + (i << X86_PT_SHIFT),
3890 Pte.n.u1Write ? 'W' : 'R',
3891 Pte.n.u1User ? 'U' : 'S',
3892 Pte.n.u1Accessed ? 'A' : '-',
3893 Pte.n.u1Dirty ? 'D' : '-',
3894 Pte.n.u1Global ? 'G' : '-',
3895 Pte.n.u1WriteThru ? "WT" : "--",
3896 Pte.n.u1CacheDisable? "CD" : "--",
3897 Pte.n.u1PAT ? "AT" : "--",
3898 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3899 Pte.u & RT_BIT(10) ? '1' : '0',
3900 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3901 Pte.u & X86_PDE_PG_MASK);
3902 }
3903 }
3904 return VINF_SUCCESS;
3905}
3906
3907
3908/**
3909 * Dumps a 32-bit shadow page directory and page tables.
3910 *
3911 * @returns VBox status code (VINF_SUCCESS).
3912 * @param pVM The VM handle.
3913 * @param cr3 The root of the hierarchy.
3914 * @param cr4 The CR4, PSE is currently used.
3915 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3916 * @param pHlp Pointer to the output functions.
3917 */
3918int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3919{
3920 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3921 if (!pPD)
3922 {
3923 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3924 return VERR_INVALID_PARAMETER;
3925 }
3926
3927 int rc = VINF_SUCCESS;
3928 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3929 {
3930 X86PDE Pde = pPD->a[i];
3931 if (Pde.n.u1Present)
3932 {
3933 const uint32_t u32Address = i << X86_PD_SHIFT;
3934 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3935 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3936 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3937 u32Address,
3938 Pde.b.u1Write ? 'W' : 'R',
3939 Pde.b.u1User ? 'U' : 'S',
3940 Pde.b.u1Accessed ? 'A' : '-',
3941 Pde.b.u1Dirty ? 'D' : '-',
3942 Pde.b.u1Global ? 'G' : '-',
3943 Pde.b.u1WriteThru ? "WT" : "--",
3944 Pde.b.u1CacheDisable? "CD" : "--",
3945 Pde.b.u1PAT ? "AT" : "--",
3946 Pde.u & RT_BIT_64(9) ? '1' : '0',
3947 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3948 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3949 Pde.u & X86_PDE4M_PG_MASK);
3950 else
3951 {
3952 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3953 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3954 u32Address,
3955 Pde.n.u1Write ? 'W' : 'R',
3956 Pde.n.u1User ? 'U' : 'S',
3957 Pde.n.u1Accessed ? 'A' : '-',
3958 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3959 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3960 Pde.n.u1WriteThru ? "WT" : "--",
3961 Pde.n.u1CacheDisable? "CD" : "--",
3962 Pde.u & RT_BIT_64(9) ? '1' : '0',
3963 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3964 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3965 Pde.u & X86_PDE_PG_MASK);
3966 if (cMaxDepth >= 1)
3967 {
3968 /** @todo what about using the page pool for mapping PTs? */
3969 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3970 PX86PT pPT = NULL;
3971 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3972 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3973 else
3974 {
3975 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3976 if (u32Address - pMap->GCPtr < pMap->cb)
3977 {
3978 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3979 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3980 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3981 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3982 pPT = pMap->aPTs[iPDE].pPTR3;
3983 }
3984 }
3985 int rc2 = VERR_INVALID_PARAMETER;
3986 if (pPT)
3987 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3988 else
3989 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3990 if (rc2 < rc && RT_SUCCESS(rc))
3991 rc = rc2;
3992 }
3993 }
3994 }
3995 }
3996
3997 return rc;
3998}
3999
4000
4001/**
4002 * Dumps a 32-bit shadow page table.
4003 *
4004 * @returns VBox status code (VINF_SUCCESS).
4005 * @param pVM The VM handle.
4006 * @param pPT Pointer to the page table.
4007 * @param u32Address The virtual address this table starts at.
4008 * @param PhysSearch Address to search for.
4009 */
4010int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4011{
4012 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4013 {
4014 X86PTE Pte = pPT->a[i];
4015 if (Pte.n.u1Present)
4016 {
4017 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4018 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4019 u32Address + (i << X86_PT_SHIFT),
4020 Pte.n.u1Write ? 'W' : 'R',
4021 Pte.n.u1User ? 'U' : 'S',
4022 Pte.n.u1Accessed ? 'A' : '-',
4023 Pte.n.u1Dirty ? 'D' : '-',
4024 Pte.n.u1Global ? 'G' : '-',
4025 Pte.n.u1WriteThru ? "WT" : "--",
4026 Pte.n.u1CacheDisable? "CD" : "--",
4027 Pte.n.u1PAT ? "AT" : "--",
4028 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4029 Pte.u & RT_BIT(10) ? '1' : '0',
4030 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4031 Pte.u & X86_PDE_PG_MASK));
4032
4033 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4034 {
4035 uint64_t fPageShw = 0;
4036 RTHCPHYS pPhysHC = 0;
4037
4038 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4039 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4040 }
4041 }
4042 }
4043 return VINF_SUCCESS;
4044}
4045
4046
4047/**
4048 * Dumps a 32-bit guest page directory and page tables.
4049 *
4050 * @returns VBox status code (VINF_SUCCESS).
4051 * @param pVM The VM handle.
4052 * @param cr3 The root of the hierarchy.
4053 * @param cr4 The CR4, PSE is currently used.
4054 * @param PhysSearch Address to search for.
4055 */
4056VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4057{
4058 bool fLongMode = false;
4059 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4060 PX86PD pPD = 0;
4061
4062 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4063 if (RT_FAILURE(rc) || !pPD)
4064 {
4065 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4066 return VERR_INVALID_PARAMETER;
4067 }
4068
4069 Log(("cr3=%08x cr4=%08x%s\n"
4070 "%-*s P - Present\n"
4071 "%-*s | R/W - Read (0) / Write (1)\n"
4072 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4073 "%-*s | | | A - Accessed\n"
4074 "%-*s | | | | D - Dirty\n"
4075 "%-*s | | | | | G - Global\n"
4076 "%-*s | | | | | | WT - Write thru\n"
4077 "%-*s | | | | | | | CD - Cache disable\n"
4078 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4079 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4080 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4081 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4082 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4083 "%-*s Level | | | | | | | | | | | | Page\n"
4084 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4085 - W U - - - -- -- -- -- -- 010 */
4086 , cr3, cr4, fLongMode ? " Long Mode" : "",
4087 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4088 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4089
4090 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4091 {
4092 X86PDE Pde = pPD->a[i];
4093 if (Pde.n.u1Present)
4094 {
4095 const uint32_t u32Address = i << X86_PD_SHIFT;
4096
4097 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4098 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4099 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4100 u32Address,
4101 Pde.b.u1Write ? 'W' : 'R',
4102 Pde.b.u1User ? 'U' : 'S',
4103 Pde.b.u1Accessed ? 'A' : '-',
4104 Pde.b.u1Dirty ? 'D' : '-',
4105 Pde.b.u1Global ? 'G' : '-',
4106 Pde.b.u1WriteThru ? "WT" : "--",
4107 Pde.b.u1CacheDisable? "CD" : "--",
4108 Pde.b.u1PAT ? "AT" : "--",
4109 Pde.u & RT_BIT(9) ? '1' : '0',
4110 Pde.u & RT_BIT(10) ? '1' : '0',
4111 Pde.u & RT_BIT(11) ? '1' : '0',
4112 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4113 /** @todo PhysSearch */
4114 else
4115 {
4116 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4117 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4118 u32Address,
4119 Pde.n.u1Write ? 'W' : 'R',
4120 Pde.n.u1User ? 'U' : 'S',
4121 Pde.n.u1Accessed ? 'A' : '-',
4122 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4123 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4124 Pde.n.u1WriteThru ? "WT" : "--",
4125 Pde.n.u1CacheDisable? "CD" : "--",
4126 Pde.u & RT_BIT(9) ? '1' : '0',
4127 Pde.u & RT_BIT(10) ? '1' : '0',
4128 Pde.u & RT_BIT(11) ? '1' : '0',
4129 Pde.u & X86_PDE_PG_MASK));
4130 ////if (cMaxDepth >= 1)
4131 {
4132 /** @todo what about using the page pool for mapping PTs? */
4133 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4134 PX86PT pPT = NULL;
4135
4136 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4137
4138 int rc2 = VERR_INVALID_PARAMETER;
4139 if (pPT)
4140 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4141 else
4142 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4143 if (rc2 < rc && RT_SUCCESS(rc))
4144 rc = rc2;
4145 }
4146 }
4147 }
4148 }
4149
4150 return rc;
4151}
4152
4153
4154/**
4155 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4156 *
4157 * @returns VBox status code (VINF_SUCCESS).
4158 * @param pVM The VM handle.
4159 * @param cr3 The root of the hierarchy.
4160 * @param cr4 The cr4, only PAE and PSE is currently used.
4161 * @param fLongMode Set if long mode, false if not long mode.
4162 * @param cMaxDepth Number of levels to dump.
4163 * @param pHlp Pointer to the output functions.
4164 */
4165VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4166{
4167 if (!pHlp)
4168 pHlp = DBGFR3InfoLogHlp();
4169 if (!cMaxDepth)
4170 return VINF_SUCCESS;
4171 const unsigned cch = fLongMode ? 16 : 8;
4172 pHlp->pfnPrintf(pHlp,
4173 "cr3=%08x cr4=%08x%s\n"
4174 "%-*s P - Present\n"
4175 "%-*s | R/W - Read (0) / Write (1)\n"
4176 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4177 "%-*s | | | A - Accessed\n"
4178 "%-*s | | | | D - Dirty\n"
4179 "%-*s | | | | | G - Global\n"
4180 "%-*s | | | | | | WT - Write thru\n"
4181 "%-*s | | | | | | | CD - Cache disable\n"
4182 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4183 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4184 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4185 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4186 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4187 "%-*s Level | | | | | | | | | | | | Page\n"
4188 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4189 - W U - - - -- -- -- -- -- 010 */
4190 , cr3, cr4, fLongMode ? " Long Mode" : "",
4191 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4192 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4193 if (cr4 & X86_CR4_PAE)
4194 {
4195 if (fLongMode)
4196 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4197 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4198 }
4199 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4200}
4201
4202#ifdef VBOX_WITH_DEBUGGER
4203
4204/**
4205 * The '.pgmram' command.
4206 *
4207 * @returns VBox status.
4208 * @param pCmd Pointer to the command descriptor (as registered).
4209 * @param pCmdHlp Pointer to command helper functions.
4210 * @param pVM Pointer to the current VM (if any).
4211 * @param paArgs Pointer to (readonly) array of arguments.
4212 * @param cArgs Number of arguments in the array.
4213 */
4214static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4215{
4216 /*
4217 * Validate input.
4218 */
4219 if (!pVM)
4220 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4221 if (!pVM->pgm.s.pRamRangesRC)
4222 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4223
4224 /*
4225 * Dump the ranges.
4226 */
4227 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4228 PPGMRAMRANGE pRam;
4229 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4230 {
4231 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4232 "%RGp - %RGp %p\n",
4233 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4234 if (RT_FAILURE(rc))
4235 return rc;
4236 }
4237
4238 return VINF_SUCCESS;
4239}
4240
4241
4242/**
4243 * The '.pgmmap' command.
4244 *
4245 * @returns VBox status.
4246 * @param pCmd Pointer to the command descriptor (as registered).
4247 * @param pCmdHlp Pointer to command helper functions.
4248 * @param pVM Pointer to the current VM (if any).
4249 * @param paArgs Pointer to (readonly) array of arguments.
4250 * @param cArgs Number of arguments in the array.
4251 */
4252static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4253{
4254 /*
4255 * Validate input.
4256 */
4257 if (!pVM)
4258 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4259 if (!pVM->pgm.s.pMappingsR3)
4260 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4261
4262 /*
4263 * Print message about the fixedness of the mappings.
4264 */
4265 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4266 if (RT_FAILURE(rc))
4267 return rc;
4268
4269 /*
4270 * Dump the ranges.
4271 */
4272 PPGMMAPPING pCur;
4273 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4274 {
4275 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4276 "%08x - %08x %s\n",
4277 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4278 if (RT_FAILURE(rc))
4279 return rc;
4280 }
4281
4282 return VINF_SUCCESS;
4283}
4284
4285
4286/**
4287 * The '.pgmsync' command.
4288 *
4289 * @returns VBox status.
4290 * @param pCmd Pointer to the command descriptor (as registered).
4291 * @param pCmdHlp Pointer to command helper functions.
4292 * @param pVM Pointer to the current VM (if any).
4293 * @param paArgs Pointer to (readonly) array of arguments.
4294 * @param cArgs Number of arguments in the array.
4295 */
4296static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4297{
4298 /*
4299 * Validate input.
4300 */
4301 if (!pVM)
4302 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4303
4304 /*
4305 * Force page directory sync.
4306 */
4307 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4308
4309 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4310 if (RT_FAILURE(rc))
4311 return rc;
4312
4313 return VINF_SUCCESS;
4314}
4315
4316
4317#ifdef VBOX_STRICT
4318/**
4319 * The '.pgmassertcr3' command.
4320 *
4321 * @returns VBox status.
4322 * @param pCmd Pointer to the command descriptor (as registered).
4323 * @param pCmdHlp Pointer to command helper functions.
4324 * @param pVM Pointer to the current VM (if any).
4325 * @param paArgs Pointer to (readonly) array of arguments.
4326 * @param cArgs Number of arguments in the array.
4327 */
4328static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4329{
4330 /*
4331 * Validate input.
4332 */
4333 if (!pVM)
4334 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4335
4336 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4337 if (RT_FAILURE(rc))
4338 return rc;
4339
4340 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4341
4342 return VINF_SUCCESS;
4343}
4344#endif /* VBOX_STRICT */
4345
4346
4347/**
4348 * The '.pgmsyncalways' command.
4349 *
4350 * @returns VBox status.
4351 * @param pCmd Pointer to the command descriptor (as registered).
4352 * @param pCmdHlp Pointer to command helper functions.
4353 * @param pVM Pointer to the current VM (if any).
4354 * @param paArgs Pointer to (readonly) array of arguments.
4355 * @param cArgs Number of arguments in the array.
4356 */
4357static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4358{
4359 /*
4360 * Validate input.
4361 */
4362 if (!pVM)
4363 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4364
4365 /*
4366 * Force page directory sync.
4367 */
4368 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4369 {
4370 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4371 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4372 }
4373 else
4374 {
4375 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4376 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4377 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4378 }
4379}
4380
4381#endif /* VBOX_WITH_DEBUGGER */
4382
4383/**
4384 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4385 */
4386typedef struct PGMCHECKINTARGS
4387{
4388 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4389 PPGMPHYSHANDLER pPrevPhys;
4390 PPGMVIRTHANDLER pPrevVirt;
4391 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4392 PVM pVM;
4393} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4394
4395/**
4396 * Validate a node in the physical handler tree.
4397 *
4398 * @returns 0 on if ok, other wise 1.
4399 * @param pNode The handler node.
4400 * @param pvUser pVM.
4401 */
4402static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4403{
4404 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4405 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4406 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4407 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4408 AssertReleaseMsg( !pArgs->pPrevPhys
4409 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4410 ("pPrevPhys=%p %RGp-%RGp %s\n"
4411 " pCur=%p %RGp-%RGp %s\n",
4412 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4413 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4414 pArgs->pPrevPhys = pCur;
4415 return 0;
4416}
4417
4418
4419/**
4420 * Validate a node in the virtual handler tree.
4421 *
4422 * @returns 0 on if ok, other wise 1.
4423 * @param pNode The handler node.
4424 * @param pvUser pVM.
4425 */
4426static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4427{
4428 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4429 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4430 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4431 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4432 AssertReleaseMsg( !pArgs->pPrevVirt
4433 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4434 ("pPrevVirt=%p %RGv-%RGv %s\n"
4435 " pCur=%p %RGv-%RGv %s\n",
4436 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4437 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4438 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4439 {
4440 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4441 ("pCur=%p %RGv-%RGv %s\n"
4442 "iPage=%d offVirtHandle=%#x expected %#x\n",
4443 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4444 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4445 }
4446 pArgs->pPrevVirt = pCur;
4447 return 0;
4448}
4449
4450
4451/**
4452 * Validate a node in the virtual handler tree.
4453 *
4454 * @returns 0 on if ok, other wise 1.
4455 * @param pNode The handler node.
4456 * @param pvUser pVM.
4457 */
4458static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4459{
4460 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4461 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4462 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4463 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4464 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4465 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4466 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4467 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4468 " pCur=%p %RGp-%RGp\n",
4469 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4470 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4471 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4472 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4473 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4474 " pCur=%p %RGp-%RGp\n",
4475 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4476 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4477 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4478 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4479 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4480 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4481 {
4482 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4483 for (;;)
4484 {
4485 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4486 AssertReleaseMsg(pCur2 != pCur,
4487 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4488 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4489 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4490 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4491 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4492 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4493 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4494 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4495 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4496 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4497 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4498 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4499 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4500 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4501 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4502 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4503 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4504 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4505 break;
4506 }
4507 }
4508
4509 pArgs->pPrevPhys2Virt = pCur;
4510 return 0;
4511}
4512
4513
4514/**
4515 * Perform an integrity check on the PGM component.
4516 *
4517 * @returns VINF_SUCCESS if everything is fine.
4518 * @returns VBox error status after asserting on integrity breach.
4519 * @param pVM The VM handle.
4520 */
4521VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4522{
4523 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4524
4525 /*
4526 * Check the trees.
4527 */
4528 int cErrors = 0;
4529 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4530 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4531 PGMCHECKINTARGS Args = s_LeftToRight;
4532 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4533 Args = s_RightToLeft;
4534 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4535 Args = s_LeftToRight;
4536 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4537 Args = s_RightToLeft;
4538 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4539 Args = s_LeftToRight;
4540 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4541 Args = s_RightToLeft;
4542 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4543 Args = s_LeftToRight;
4544 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4545 Args = s_RightToLeft;
4546 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4547
4548 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4549}
4550
4551
4552/**
4553 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4554 *
4555 * @returns VBox status code.
4556 * @param pVM VM handle.
4557 * @param fEnable Enable or disable shadow mappings
4558 */
4559VMMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4560{
4561 pVM->pgm.s.fDisableMappings = !fEnable;
4562
4563 uint32_t cb;
4564 int rc = PGMR3MappingsSize(pVM, &cb);
4565 AssertRCReturn(rc, rc);
4566
4567 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4568 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4569 AssertRCReturn(rc, rc);
4570
4571 return VINF_SUCCESS;
4572}
4573
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette