VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 16416

Last change on this file since 16416 was 16412, checked in by vboxsync, 16 years ago

Added release statistics for counting the number of hypervisor relocations.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 218.8 KB
Line 
1/* $Id: PGM.cpp 16412 2009-01-30 13:23:20Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS_REAL
688#include "PGMBth.h"
689#include "PGMGst.h"
690#undef BTH_PGMPOOLKIND_PT_FOR_PT
691#undef BTH_PGMPOOLKIND_ROOT
692#undef PGM_BTH_NAME
693#undef PGM_BTH_NAME_RC_STR
694#undef PGM_BTH_NAME_R0_STR
695#undef PGM_GST_TYPE
696#undef PGM_GST_NAME
697#undef PGM_GST_NAME_RC_STR
698#undef PGM_GST_NAME_R0_STR
699
700/* Guest - protected mode */
701#define PGM_GST_TYPE PGM_TYPE_PROT
702#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
703#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
704#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
705#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
706#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
707#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
708#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
709#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS_PROT
710#include "PGMBth.h"
711#include "PGMGst.h"
712#undef BTH_PGMPOOLKIND_PT_FOR_PT
713#undef BTH_PGMPOOLKIND_ROOT
714#undef PGM_BTH_NAME
715#undef PGM_BTH_NAME_RC_STR
716#undef PGM_BTH_NAME_R0_STR
717#undef PGM_GST_TYPE
718#undef PGM_GST_NAME
719#undef PGM_GST_NAME_RC_STR
720#undef PGM_GST_NAME_R0_STR
721
722/* Guest - 32-bit mode */
723#define PGM_GST_TYPE PGM_TYPE_32BIT
724#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
725#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
726#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
727#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
728#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
729#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
730#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
731#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
732#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
733#include "PGMBth.h"
734#include "PGMGst.h"
735#undef BTH_PGMPOOLKIND_PT_FOR_BIG
736#undef BTH_PGMPOOLKIND_PT_FOR_PT
737#undef BTH_PGMPOOLKIND_ROOT
738#undef PGM_BTH_NAME
739#undef PGM_BTH_NAME_RC_STR
740#undef PGM_BTH_NAME_R0_STR
741#undef PGM_GST_TYPE
742#undef PGM_GST_NAME
743#undef PGM_GST_NAME_RC_STR
744#undef PGM_GST_NAME_R0_STR
745
746#undef PGM_SHW_TYPE
747#undef PGM_SHW_NAME
748#undef PGM_SHW_NAME_RC_STR
749#undef PGM_SHW_NAME_R0_STR
750
751
752/*
753 * Shadow - PAE mode
754 */
755#define PGM_SHW_TYPE PGM_TYPE_PAE
756#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
757#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
758#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
759#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
760#include "PGMShw.h"
761
762/* Guest - real mode */
763#define PGM_GST_TYPE PGM_TYPE_REAL
764#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
765#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
766#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
767#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
768#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
769#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
770#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
771#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS_REAL
772#include "PGMBth.h"
773#undef BTH_PGMPOOLKIND_PT_FOR_PT
774#undef BTH_PGMPOOLKIND_ROOT
775#undef PGM_BTH_NAME
776#undef PGM_BTH_NAME_RC_STR
777#undef PGM_BTH_NAME_R0_STR
778#undef PGM_GST_TYPE
779#undef PGM_GST_NAME
780#undef PGM_GST_NAME_RC_STR
781#undef PGM_GST_NAME_R0_STR
782
783/* Guest - protected mode */
784#define PGM_GST_TYPE PGM_TYPE_PROT
785#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
792#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS_PROT
793#include "PGMBth.h"
794#undef BTH_PGMPOOLKIND_PT_FOR_PT
795#undef BTH_PGMPOOLKIND_ROOT
796#undef PGM_BTH_NAME
797#undef PGM_BTH_NAME_RC_STR
798#undef PGM_BTH_NAME_R0_STR
799#undef PGM_GST_TYPE
800#undef PGM_GST_NAME
801#undef PGM_GST_NAME_RC_STR
802#undef PGM_GST_NAME_R0_STR
803
804/* Guest - 32-bit mode */
805#define PGM_GST_TYPE PGM_TYPE_32BIT
806#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
807#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
808#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
809#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
810#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
811#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
812#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
813#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
814#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
815#include "PGMBth.h"
816#undef BTH_PGMPOOLKIND_PT_FOR_BIG
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827/* Guest - PAE mode */
828#define PGM_GST_TYPE PGM_TYPE_PAE
829#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
830#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
831#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
832#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
833#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
834#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
835#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
836#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
837#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
838#include "PGMBth.h"
839#include "PGMGst.h"
840#undef BTH_PGMPOOLKIND_PT_FOR_BIG
841#undef BTH_PGMPOOLKIND_PT_FOR_PT
842#undef BTH_PGMPOOLKIND_ROOT
843#undef PGM_BTH_NAME
844#undef PGM_BTH_NAME_RC_STR
845#undef PGM_BTH_NAME_R0_STR
846#undef PGM_GST_TYPE
847#undef PGM_GST_NAME
848#undef PGM_GST_NAME_RC_STR
849#undef PGM_GST_NAME_R0_STR
850
851#undef PGM_SHW_TYPE
852#undef PGM_SHW_NAME
853#undef PGM_SHW_NAME_RC_STR
854#undef PGM_SHW_NAME_R0_STR
855
856
857/*
858 * Shadow - AMD64 mode
859 */
860#define PGM_SHW_TYPE PGM_TYPE_AMD64
861#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
862#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
863#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
864#include "PGMShw.h"
865
866#ifdef VBOX_WITH_64_BITS_GUESTS
867/* Guest - AMD64 mode */
868# define PGM_GST_TYPE PGM_TYPE_AMD64
869# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
870# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
871# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
872# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
873# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
874# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
875# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
876# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
877# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
878# include "PGMBth.h"
879# include "PGMGst.h"
880# undef BTH_PGMPOOLKIND_PT_FOR_BIG
881# undef BTH_PGMPOOLKIND_PT_FOR_PT
882# undef BTH_PGMPOOLKIND_ROOT
883# undef PGM_BTH_NAME
884# undef PGM_BTH_NAME_RC_STR
885# undef PGM_BTH_NAME_R0_STR
886# undef PGM_GST_TYPE
887# undef PGM_GST_NAME
888# undef PGM_GST_NAME_RC_STR
889# undef PGM_GST_NAME_R0_STR
890#endif /* VBOX_WITH_64_BITS_GUESTS */
891
892#undef PGM_SHW_TYPE
893#undef PGM_SHW_NAME
894#undef PGM_SHW_NAME_RC_STR
895#undef PGM_SHW_NAME_R0_STR
896
897
898/*
899 * Shadow - Nested paging mode
900 */
901#define PGM_SHW_TYPE PGM_TYPE_NESTED
902#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
903#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
904#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
905#include "PGMShw.h"
906
907/* Guest - real mode */
908#define PGM_GST_TYPE PGM_TYPE_REAL
909#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
910#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
911#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
912#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
913#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
914#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
915#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
916#include "PGMBth.h"
917#undef BTH_PGMPOOLKIND_PT_FOR_PT
918#undef PGM_BTH_NAME
919#undef PGM_BTH_NAME_RC_STR
920#undef PGM_BTH_NAME_R0_STR
921#undef PGM_GST_TYPE
922#undef PGM_GST_NAME
923#undef PGM_GST_NAME_RC_STR
924#undef PGM_GST_NAME_R0_STR
925
926/* Guest - protected mode */
927#define PGM_GST_TYPE PGM_TYPE_PROT
928#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
929#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
930#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
931#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
932#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
933#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
934#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
935#include "PGMBth.h"
936#undef BTH_PGMPOOLKIND_PT_FOR_PT
937#undef PGM_BTH_NAME
938#undef PGM_BTH_NAME_RC_STR
939#undef PGM_BTH_NAME_R0_STR
940#undef PGM_GST_TYPE
941#undef PGM_GST_NAME
942#undef PGM_GST_NAME_RC_STR
943#undef PGM_GST_NAME_R0_STR
944
945/* Guest - 32-bit mode */
946#define PGM_GST_TYPE PGM_TYPE_32BIT
947#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
948#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
949#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
950#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
951#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
952#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
953#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
954#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
955#include "PGMBth.h"
956#undef BTH_PGMPOOLKIND_PT_FOR_BIG
957#undef BTH_PGMPOOLKIND_PT_FOR_PT
958#undef PGM_BTH_NAME
959#undef PGM_BTH_NAME_RC_STR
960#undef PGM_BTH_NAME_R0_STR
961#undef PGM_GST_TYPE
962#undef PGM_GST_NAME
963#undef PGM_GST_NAME_RC_STR
964#undef PGM_GST_NAME_R0_STR
965
966/* Guest - PAE mode */
967#define PGM_GST_TYPE PGM_TYPE_PAE
968#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
969#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
970#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
971#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
972#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
973#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
974#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
975#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
976#include "PGMBth.h"
977#undef BTH_PGMPOOLKIND_PT_FOR_BIG
978#undef BTH_PGMPOOLKIND_PT_FOR_PT
979#undef PGM_BTH_NAME
980#undef PGM_BTH_NAME_RC_STR
981#undef PGM_BTH_NAME_R0_STR
982#undef PGM_GST_TYPE
983#undef PGM_GST_NAME
984#undef PGM_GST_NAME_RC_STR
985#undef PGM_GST_NAME_R0_STR
986
987#ifdef VBOX_WITH_64_BITS_GUESTS
988/* Guest - AMD64 mode */
989# define PGM_GST_TYPE PGM_TYPE_AMD64
990# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
991# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
992# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
993# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
994# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
995# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
996# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
997# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
998# include "PGMBth.h"
999# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1000# undef BTH_PGMPOOLKIND_PT_FOR_PT
1001# undef PGM_BTH_NAME
1002# undef PGM_BTH_NAME_RC_STR
1003# undef PGM_BTH_NAME_R0_STR
1004# undef PGM_GST_TYPE
1005# undef PGM_GST_NAME
1006# undef PGM_GST_NAME_RC_STR
1007# undef PGM_GST_NAME_R0_STR
1008#endif /* VBOX_WITH_64_BITS_GUESTS */
1009
1010#undef PGM_SHW_TYPE
1011#undef PGM_SHW_NAME
1012#undef PGM_SHW_NAME_RC_STR
1013#undef PGM_SHW_NAME_R0_STR
1014
1015
1016/*
1017 * Shadow - EPT
1018 */
1019#define PGM_SHW_TYPE PGM_TYPE_EPT
1020#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1021#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1022#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1023#include "PGMShw.h"
1024
1025/* Guest - real mode */
1026#define PGM_GST_TYPE PGM_TYPE_REAL
1027#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1028#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1029#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1030#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1031#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1032#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1033#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1034#include "PGMBth.h"
1035#undef BTH_PGMPOOLKIND_PT_FOR_PT
1036#undef PGM_BTH_NAME
1037#undef PGM_BTH_NAME_RC_STR
1038#undef PGM_BTH_NAME_R0_STR
1039#undef PGM_GST_TYPE
1040#undef PGM_GST_NAME
1041#undef PGM_GST_NAME_RC_STR
1042#undef PGM_GST_NAME_R0_STR
1043
1044/* Guest - protected mode */
1045#define PGM_GST_TYPE PGM_TYPE_PROT
1046#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1047#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1048#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1049#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1050#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1051#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1052#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1053#include "PGMBth.h"
1054#undef BTH_PGMPOOLKIND_PT_FOR_PT
1055#undef PGM_BTH_NAME
1056#undef PGM_BTH_NAME_RC_STR
1057#undef PGM_BTH_NAME_R0_STR
1058#undef PGM_GST_TYPE
1059#undef PGM_GST_NAME
1060#undef PGM_GST_NAME_RC_STR
1061#undef PGM_GST_NAME_R0_STR
1062
1063/* Guest - 32-bit mode */
1064#define PGM_GST_TYPE PGM_TYPE_32BIT
1065#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1066#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1067#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1068#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1069#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1070#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1071#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1072#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1073#include "PGMBth.h"
1074#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1075#undef BTH_PGMPOOLKIND_PT_FOR_PT
1076#undef PGM_BTH_NAME
1077#undef PGM_BTH_NAME_RC_STR
1078#undef PGM_BTH_NAME_R0_STR
1079#undef PGM_GST_TYPE
1080#undef PGM_GST_NAME
1081#undef PGM_GST_NAME_RC_STR
1082#undef PGM_GST_NAME_R0_STR
1083
1084/* Guest - PAE mode */
1085#define PGM_GST_TYPE PGM_TYPE_PAE
1086#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1087#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1088#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1089#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1090#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1091#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1092#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1093#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1094#include "PGMBth.h"
1095#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1096#undef BTH_PGMPOOLKIND_PT_FOR_PT
1097#undef PGM_BTH_NAME
1098#undef PGM_BTH_NAME_RC_STR
1099#undef PGM_BTH_NAME_R0_STR
1100#undef PGM_GST_TYPE
1101#undef PGM_GST_NAME
1102#undef PGM_GST_NAME_RC_STR
1103#undef PGM_GST_NAME_R0_STR
1104
1105#ifdef VBOX_WITH_64_BITS_GUESTS
1106/* Guest - AMD64 mode */
1107# define PGM_GST_TYPE PGM_TYPE_AMD64
1108# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1109# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1110# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1111# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1112# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1113# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1114# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1115# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1116# include "PGMBth.h"
1117# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1118# undef BTH_PGMPOOLKIND_PT_FOR_PT
1119# undef PGM_BTH_NAME
1120# undef PGM_BTH_NAME_RC_STR
1121# undef PGM_BTH_NAME_R0_STR
1122# undef PGM_GST_TYPE
1123# undef PGM_GST_NAME
1124# undef PGM_GST_NAME_RC_STR
1125# undef PGM_GST_NAME_R0_STR
1126#endif /* VBOX_WITH_64_BITS_GUESTS */
1127
1128#undef PGM_SHW_TYPE
1129#undef PGM_SHW_NAME
1130#undef PGM_SHW_NAME_RC_STR
1131#undef PGM_SHW_NAME_R0_STR
1132
1133
1134
1135/**
1136 * Initiates the paging of VM.
1137 *
1138 * @returns VBox status code.
1139 * @param pVM Pointer to VM structure.
1140 */
1141VMMR3DECL(int) PGMR3Init(PVM pVM)
1142{
1143 LogFlow(("PGMR3Init:\n"));
1144
1145 /*
1146 * Assert alignment and sizes.
1147 */
1148 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1149
1150 /*
1151 * Init the structure.
1152 */
1153 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1154 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1155 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1156 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1157 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1158 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1159 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1160 pVM->pgm.s.fA20Enabled = true;
1161 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1162 pVM->pgm.s.pGstPaePdptR3 = NULL;
1163#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1164 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1165#endif
1166 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1167 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1168 {
1169 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1170#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1171 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1172#endif
1173 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1174 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1175 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1176 }
1177
1178#ifdef VBOX_STRICT
1179 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1180#endif
1181
1182 /*
1183 * Get the configured RAM size - to estimate saved state size.
1184 */
1185 uint64_t cbRam;
1186 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1187 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1188 cbRam = pVM->pgm.s.cbRamSize = 0;
1189 else if (RT_SUCCESS(rc))
1190 {
1191 if (cbRam < PAGE_SIZE)
1192 cbRam = 0;
1193 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1194 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1195 }
1196 else
1197 {
1198 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1199 return rc;
1200 }
1201
1202 /*
1203 * Register saved state data unit.
1204 */
1205 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1206 NULL, pgmR3Save, NULL,
1207 NULL, pgmR3Load, NULL);
1208 if (RT_FAILURE(rc))
1209 return rc;
1210
1211 /*
1212 * Initialize the PGM critical section and flush the phys TLBs
1213 */
1214 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1215 AssertRCReturn(rc, rc);
1216
1217 PGMR3PhysChunkInvalidateTLB(pVM);
1218 PGMPhysInvalidatePageR3MapTLB(pVM);
1219 PGMPhysInvalidatePageR0MapTLB(pVM);
1220 PGMPhysInvalidatePageGCMapTLB(pVM);
1221
1222 /*
1223 * Trees
1224 */
1225 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1226 if (RT_SUCCESS(rc))
1227 {
1228 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1229 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1230
1231 /*
1232 * Alocate the zero page.
1233 */
1234 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1235 }
1236 if (RT_SUCCESS(rc))
1237 {
1238 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1239 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1240 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1241 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1242 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1243
1244 /*
1245 * Init the paging.
1246 */
1247 rc = pgmR3InitPaging(pVM);
1248 }
1249 if (RT_SUCCESS(rc))
1250 {
1251 /*
1252 * Init the page pool.
1253 */
1254 rc = pgmR3PoolInit(pVM);
1255 }
1256 if (RT_SUCCESS(rc))
1257 {
1258 /*
1259 * Info & statistics
1260 */
1261 DBGFR3InfoRegisterInternal(pVM, "mode",
1262 "Shows the current paging mode. "
1263 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1264 pgmR3InfoMode);
1265 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1266 "Dumps all the entries in the top level paging table. No arguments.",
1267 pgmR3InfoCr3);
1268 DBGFR3InfoRegisterInternal(pVM, "phys",
1269 "Dumps all the physical address ranges. No arguments.",
1270 pgmR3PhysInfo);
1271 DBGFR3InfoRegisterInternal(pVM, "handlers",
1272 "Dumps physical, virtual and hyper virtual handlers. "
1273 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1274 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1275 pgmR3InfoHandlers);
1276 DBGFR3InfoRegisterInternal(pVM, "mappings",
1277 "Dumps guest mappings.",
1278 pgmR3MapInfo);
1279
1280 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1281 STAM_REL_REG(pVM, &pVM->pgm.s.cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1282#ifdef VBOX_WITH_STATISTICS
1283 pgmR3InitStats(pVM);
1284#endif
1285#ifdef VBOX_WITH_DEBUGGER
1286 /*
1287 * Debugger commands.
1288 */
1289 static bool fRegisteredCmds = false;
1290 if (!fRegisteredCmds)
1291 {
1292 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1293 if (RT_SUCCESS(rc))
1294 fRegisteredCmds = true;
1295 }
1296#endif
1297 return VINF_SUCCESS;
1298 }
1299
1300 /* Almost no cleanup necessary, MM frees all memory. */
1301 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1302
1303 return rc;
1304}
1305
1306
1307/**
1308 * Initializes the per-VCPU PGM.
1309 *
1310 * @returns VBox status code.
1311 * @param pVM The VM to operate on.
1312 */
1313VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1314{
1315 LogFlow(("PGMR3InitCPU\n"));
1316 return VINF_SUCCESS;
1317}
1318
1319
1320/**
1321 * Init paging.
1322 *
1323 * Since we need to check what mode the host is operating in before we can choose
1324 * the right paging functions for the host we have to delay this until R0 has
1325 * been initialized.
1326 *
1327 * @returns VBox status code.
1328 * @param pVM VM handle.
1329 */
1330static int pgmR3InitPaging(PVM pVM)
1331{
1332 /*
1333 * Force a recalculation of modes and switcher so everyone gets notified.
1334 */
1335 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1336 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1337 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1338
1339 /*
1340 * Allocate static mapping space for whatever the cr3 register
1341 * points to and in the case of PAE mode to the 4 PDs.
1342 */
1343 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1344 if (RT_FAILURE(rc))
1345 {
1346 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1347 return rc;
1348 }
1349 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1350
1351 /*
1352 * Allocate pages for the three possible intermediate contexts
1353 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1354 * for the sake of simplicity. The AMD64 uses the PAE for the
1355 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1356 *
1357 * We assume that two page tables will be enought for the core code
1358 * mappings (HC virtual and identity).
1359 */
1360 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1361 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1362 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1363 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1364 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1365 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1366 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1367 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1368 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1369 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1370 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1371 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1372 if ( !pVM->pgm.s.pInterPD
1373 || !pVM->pgm.s.apInterPTs[0]
1374 || !pVM->pgm.s.apInterPTs[1]
1375 || !pVM->pgm.s.apInterPaePTs[0]
1376 || !pVM->pgm.s.apInterPaePTs[1]
1377 || !pVM->pgm.s.apInterPaePDs[0]
1378 || !pVM->pgm.s.apInterPaePDs[1]
1379 || !pVM->pgm.s.apInterPaePDs[2]
1380 || !pVM->pgm.s.apInterPaePDs[3]
1381 || !pVM->pgm.s.pInterPaePDPT
1382 || !pVM->pgm.s.pInterPaePDPT64
1383 || !pVM->pgm.s.pInterPaePML4)
1384 {
1385 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1386 return VERR_NO_PAGE_MEMORY;
1387 }
1388
1389 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1390 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1391 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1392 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1393 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1394 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1395
1396 /*
1397 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1398 */
1399 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1400 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1401 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1402
1403 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1404 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1405
1406 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1407 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1408 {
1409 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1410 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1411 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1412 }
1413
1414 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1415 {
1416 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1417 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1418 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1419 }
1420
1421 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1422 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1423 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1424 | HCPhysInterPaePDPT64;
1425
1426 /*
1427 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1428 * We allocate pages for all three posibilities in order to simplify mappings and
1429 * avoid resource failure during mode switches. So, we need to cover all levels of the
1430 * of the first 4GB down to PD level.
1431 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1432 */
1433#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1434 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1435# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1436 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1437# endif
1438 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1439 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1440 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1441 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1442 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1443 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1444 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1445# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1446 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1447 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1448 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1449 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1450# endif
1451 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1452# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1453 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1454# endif
1455#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1456 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1457#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1458 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1459#endif
1460
1461#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1462 if (!pVM->pgm.s.pShwNestedRootR3)
1463#else
1464 if ( !pVM->pgm.s.pShw32BitPdR3
1465 || !pVM->pgm.s.apShwPaePDsR3[0]
1466 || !pVM->pgm.s.apShwPaePDsR3[1]
1467 || !pVM->pgm.s.apShwPaePDsR3[2]
1468 || !pVM->pgm.s.apShwPaePDsR3[3]
1469 || !pVM->pgm.s.pShwPaePdptR3
1470 || !pVM->pgm.s.pShwNestedRootR3)
1471#endif
1472 {
1473 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1474 return VERR_NO_PAGE_MEMORY;
1475 }
1476
1477 /* get physical addresses. */
1478#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1479 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1480 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1481 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1482 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1483 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1484 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1485 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1486#endif
1487 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1488
1489 /*
1490 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1491 */
1492#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1493 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1494 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1495#endif
1496 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1497#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1498 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1499 {
1500 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1501 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1502 /* The flags will be corrected when entering and leaving long mode. */
1503 }
1504
1505 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhysShw32BitPD);
1506#endif
1507
1508 /*
1509 * Initialize paging workers and mode from current host mode
1510 * and the guest running in real mode.
1511 */
1512 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1513 switch (pVM->pgm.s.enmHostMode)
1514 {
1515 case SUPPAGINGMODE_32_BIT:
1516 case SUPPAGINGMODE_32_BIT_GLOBAL:
1517 case SUPPAGINGMODE_PAE:
1518 case SUPPAGINGMODE_PAE_GLOBAL:
1519 case SUPPAGINGMODE_PAE_NX:
1520 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1521 break;
1522
1523 case SUPPAGINGMODE_AMD64:
1524 case SUPPAGINGMODE_AMD64_GLOBAL:
1525 case SUPPAGINGMODE_AMD64_NX:
1526 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1527#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1528 if (ARCH_BITS != 64)
1529 {
1530 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1531 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1532 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1533 }
1534#endif
1535 break;
1536 default:
1537 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1538 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1539 }
1540 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1541 if (RT_SUCCESS(rc))
1542 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1543 if (RT_SUCCESS(rc))
1544 {
1545 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1546#if HC_ARCH_BITS == 64
1547# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1548 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp\n",
1549 pVM->pgm.s.HCPhysShw32BitPD,
1550 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1551 pVM->pgm.s.HCPhysShwPaePdpt));
1552# endif
1553 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1554 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1555 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1556 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1557 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1558 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1559 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1560#endif
1561
1562 return VINF_SUCCESS;
1563 }
1564
1565 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1566 return rc;
1567}
1568
1569
1570#ifdef VBOX_WITH_STATISTICS
1571/**
1572 * Init statistics
1573 */
1574static void pgmR3InitStats(PVM pVM)
1575{
1576 PPGM pPGM = &pVM->pgm.s;
1577 unsigned i;
1578
1579 /*
1580 * Note! The layout of this function matches the member layout exactly!
1581 */
1582
1583 /* Common - misc variables */
1584 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1585 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1586 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1587 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1588 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1589 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1590
1591 /* Common - stats */
1592#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1593 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1594 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1595 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1596 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1597 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1598 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1599#endif
1600 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1601 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1602 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1603 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1604 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1605 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1606
1607 /* R3 only: */
1608 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1609 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1610 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1611 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1612 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1613 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1614
1615 /* R0 only: */
1616 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1617 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1618 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1619 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1620 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1621 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1622 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1623 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1624 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1625 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1626 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1627 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1628 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1629 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1630 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1631 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1632 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1633 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1634 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1635 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1636 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1637 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1638 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1639 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1640 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1641 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1642 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1643 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1644 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1645 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1646 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1647 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1648 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1649 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1650 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1651 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1652
1653 /* GC only: */
1654 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1655 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1656 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1657 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1658
1659 /* RZ only: */
1660 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1664 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1665 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1666 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1667 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1668 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1669 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1670 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1671 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1672 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1673 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1674 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1675 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1676 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1677 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1678 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1679 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1680 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1681 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1682 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1683 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1684 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1685 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1686 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1687 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1688 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1689 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1690 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1691 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1692 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1693 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1694 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1695 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1696 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1697 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1698 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1699 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1700 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1701 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1702 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1703 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1704 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1705 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1706 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1707 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1708 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1709 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1710 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1711
1712 /* HC only: */
1713
1714 /* RZ & R3: */
1715 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1716 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1717 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1718 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1719 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1720 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1721 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1722 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1723 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1724 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1725 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1726 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1727 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1728 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1729 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1730 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1731 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1732 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1733 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1734 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1735 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1736 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1737 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1738 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1739 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1740 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1741 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1742 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1743 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1744 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1745 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1746 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1747 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1748 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1749 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1750 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1751 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1752 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1753 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1754 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1755 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1756 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1757 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1758 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1759 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1760 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1761 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1762/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1763 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1764 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1765 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1766 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1767 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1768 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1769
1770 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1771 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1772 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1773 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1774 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1775 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1776 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1777 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1778 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1779 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1780 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1781 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1782 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1783 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1784 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1785 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1786 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1787 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1788 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1789 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1790 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1791 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1792 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1793 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1794 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1795 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1796 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1797 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1798 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1799 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1800 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1801 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1802 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1803 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1804 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1805 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1806 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1807 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1808 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1809 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1810 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1811 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1812 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1813 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1814 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1815 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1816 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1817/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1818 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1819 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1820 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1821 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1822 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1823 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1824
1825}
1826#endif /* VBOX_WITH_STATISTICS */
1827
1828
1829/**
1830 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1831 *
1832 * The dynamic mapping area will also be allocated and initialized at this
1833 * time. We could allocate it during PGMR3Init of course, but the mapping
1834 * wouldn't be allocated at that time preventing us from setting up the
1835 * page table entries with the dummy page.
1836 *
1837 * @returns VBox status code.
1838 * @param pVM VM handle.
1839 */
1840VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1841{
1842 RTGCPTR GCPtr;
1843 int rc;
1844
1845#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1846 /*
1847 * Reserve space for mapping the paging pages into guest context.
1848 */
1849 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1850 AssertRCReturn(rc, rc);
1851 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1852 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1853#endif
1854
1855 /*
1856 * Reserve space for the dynamic mappings.
1857 */
1858 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1859 if (RT_SUCCESS(rc))
1860 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1861
1862 if ( RT_SUCCESS(rc)
1863 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1864 {
1865 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1866 if (RT_SUCCESS(rc))
1867 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1868 }
1869 if (RT_SUCCESS(rc))
1870 {
1871 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1872 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1873 }
1874 return rc;
1875}
1876
1877
1878/**
1879 * Ring-3 init finalizing.
1880 *
1881 * @returns VBox status code.
1882 * @param pVM The VM handle.
1883 */
1884VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1885{
1886 int rc;
1887
1888#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1889 /*
1890 * Map the paging pages into the guest context.
1891 */
1892 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1893 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1894
1895 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1896 AssertRCReturn(rc, rc);
1897 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1898 GCPtr += PAGE_SIZE;
1899 GCPtr += PAGE_SIZE; /* reserved page */
1900
1901 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1902 {
1903 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1904 AssertRCReturn(rc, rc);
1905 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1906 GCPtr += PAGE_SIZE;
1907 }
1908 /* A bit of paranoia is justified. */
1909 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1910 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1911 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1912 GCPtr += PAGE_SIZE; /* reserved page */
1913
1914 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1915 AssertRCReturn(rc, rc);
1916 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1917 GCPtr += PAGE_SIZE;
1918 GCPtr += PAGE_SIZE; /* reserved page */
1919#endif
1920
1921 /*
1922 * Reserve space for the dynamic mappings.
1923 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1924 */
1925 /* get the pointer to the page table entries. */
1926 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1927 AssertRelease(pMapping);
1928 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1929 const unsigned iPT = off >> X86_PD_SHIFT;
1930 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1931 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1932 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1933
1934 /* init cache */
1935 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1936 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1937 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1938
1939 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1940 {
1941 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1942 AssertRCReturn(rc, rc);
1943 }
1944
1945 /*
1946 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1947 * Intel only goes up to 36 bits, so we stick to 36 as well.
1948 */
1949 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1950 uint32_t u32Dummy, u32Features;
1951 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1952
1953 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1954 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1955 else
1956 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1957
1958 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1959
1960 return rc;
1961}
1962
1963
1964/**
1965 * Applies relocations to data and code managed by this component.
1966 *
1967 * This function will be called at init and whenever the VMM need to relocate it
1968 * self inside the GC.
1969 *
1970 * @param pVM The VM.
1971 * @param offDelta Relocation delta relative to old location.
1972 */
1973VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1974{
1975 LogFlow(("PGMR3Relocate\n"));
1976
1977 /*
1978 * Paging stuff.
1979 */
1980 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1981 /** @todo move this into shadow and guest specific relocation functions. */
1982#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1983 AssertMsg(pVM->pgm.s.pShwNestedRootR3, ("Init order, no relocation before paging is initialized!\n"));
1984#else
1985 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
1986 pVM->pgm.s.pShw32BitPdRC += offDelta;
1987#endif
1988 pVM->pgm.s.pGst32BitPdRC += offDelta;
1989 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1990 {
1991#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1992 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
1993 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
1994#endif
1995 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1996 }
1997 pVM->pgm.s.pGstPaePdptRC += offDelta;
1998#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1999 pVM->pgm.s.pShwPaePdptRC += offDelta;
2000#endif
2001
2002 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2003 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
2004
2005 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
2006 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
2007 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
2008
2009 /*
2010 * Trees.
2011 */
2012 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2013
2014 /*
2015 * Ram ranges.
2016 */
2017 if (pVM->pgm.s.pRamRangesR3)
2018 {
2019 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
2020 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
2021 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2022 }
2023
2024 /*
2025 * Update the two page directories with all page table mappings.
2026 * (One or more of them have changed, that's why we're here.)
2027 */
2028 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2029 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2030 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2031
2032 /* Relocate GC addresses of Page Tables. */
2033 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2034 {
2035 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2036 {
2037 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2038 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2039 }
2040 }
2041
2042 /*
2043 * Dynamic page mapping area.
2044 */
2045 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2046 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2047 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2048
2049 /*
2050 * The Zero page.
2051 */
2052 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2053#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2054 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2055#else
2056 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2057#endif
2058
2059 /*
2060 * Physical and virtual handlers.
2061 */
2062 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2063 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2064 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2065
2066 /*
2067 * The page pool.
2068 */
2069 pgmR3PoolRelocate(pVM);
2070}
2071
2072
2073/**
2074 * Callback function for relocating a physical access handler.
2075 *
2076 * @returns 0 (continue enum)
2077 * @param pNode Pointer to a PGMPHYSHANDLER node.
2078 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2079 * not certain the delta will fit in a void pointer for all possible configs.
2080 */
2081static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2082{
2083 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2084 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2085 if (pHandler->pfnHandlerRC)
2086 pHandler->pfnHandlerRC += offDelta;
2087 if (pHandler->pvUserRC >= 0x10000)
2088 pHandler->pvUserRC += offDelta;
2089 return 0;
2090}
2091
2092
2093/**
2094 * Callback function for relocating a virtual access handler.
2095 *
2096 * @returns 0 (continue enum)
2097 * @param pNode Pointer to a PGMVIRTHANDLER node.
2098 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2099 * not certain the delta will fit in a void pointer for all possible configs.
2100 */
2101static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2102{
2103 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2104 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2105 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2106 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2107 Assert(pHandler->pfnHandlerRC);
2108 pHandler->pfnHandlerRC += offDelta;
2109 return 0;
2110}
2111
2112
2113/**
2114 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2115 *
2116 * @returns 0 (continue enum)
2117 * @param pNode Pointer to a PGMVIRTHANDLER node.
2118 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2119 * not certain the delta will fit in a void pointer for all possible configs.
2120 */
2121static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2122{
2123 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2124 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2125 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2126 Assert(pHandler->pfnHandlerRC);
2127 pHandler->pfnHandlerRC += offDelta;
2128 return 0;
2129}
2130
2131
2132/**
2133 * The VM is being reset.
2134 *
2135 * For the PGM component this means that any PD write monitors
2136 * needs to be removed.
2137 *
2138 * @param pVM VM handle.
2139 */
2140VMMR3DECL(void) PGMR3Reset(PVM pVM)
2141{
2142 LogFlow(("PGMR3Reset:\n"));
2143 VM_ASSERT_EMT(pVM);
2144
2145 pgmLock(pVM);
2146
2147 /*
2148 * Unfix any fixed mappings and disable CR3 monitoring.
2149 */
2150 pVM->pgm.s.fMappingsFixed = false;
2151 pVM->pgm.s.GCPtrMappingFixed = 0;
2152 pVM->pgm.s.cbMappingFixed = 0;
2153
2154 /* Exit the guest paging mode before the pgm pool gets reset.
2155 * Important to clean up the amd64 case.
2156 */
2157 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2158 AssertRC(rc);
2159#ifdef DEBUG
2160 DBGFR3InfoLog(pVM, "mappings", NULL);
2161 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2162#endif
2163
2164 /*
2165 * Reset the shadow page pool.
2166 */
2167 pgmR3PoolReset(pVM);
2168
2169 /*
2170 * Re-init other members.
2171 */
2172 pVM->pgm.s.fA20Enabled = true;
2173
2174 /*
2175 * Clear the FFs PGM owns.
2176 */
2177 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2178 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2179
2180 /*
2181 * Reset (zero) RAM pages.
2182 */
2183 rc = pgmR3PhysRamReset(pVM);
2184 if (RT_SUCCESS(rc))
2185 {
2186#ifdef VBOX_WITH_NEW_PHYS_CODE
2187 /*
2188 * Reset (zero) shadow ROM pages.
2189 */
2190 rc = pgmR3PhysRomReset(pVM);
2191#endif
2192 if (RT_SUCCESS(rc))
2193 {
2194 /*
2195 * Switch mode back to real mode.
2196 */
2197 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2198 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2199 }
2200 }
2201
2202 pgmUnlock(pVM);
2203 //return rc;
2204 AssertReleaseRC(rc);
2205}
2206
2207
2208#ifdef VBOX_STRICT
2209/**
2210 * VM state change callback for clearing fNoMorePhysWrites after
2211 * a snapshot has been created.
2212 */
2213static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2214{
2215 if (enmState == VMSTATE_RUNNING)
2216 pVM->pgm.s.fNoMorePhysWrites = false;
2217}
2218#endif
2219
2220
2221/**
2222 * Terminates the PGM.
2223 *
2224 * @returns VBox status code.
2225 * @param pVM Pointer to VM structure.
2226 */
2227VMMR3DECL(int) PGMR3Term(PVM pVM)
2228{
2229 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2230}
2231
2232
2233/**
2234 * Terminates the per-VCPU PGM.
2235 *
2236 * Termination means cleaning up and freeing all resources,
2237 * the VM it self is at this point powered off or suspended.
2238 *
2239 * @returns VBox status code.
2240 * @param pVM The VM to operate on.
2241 */
2242VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2243{
2244 return 0;
2245}
2246
2247
2248/**
2249 * Execute state save operation.
2250 *
2251 * @returns VBox status code.
2252 * @param pVM VM Handle.
2253 * @param pSSM SSM operation handle.
2254 */
2255static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2256{
2257 PPGM pPGM = &pVM->pgm.s;
2258
2259 /* No more writes to physical memory after this point! */
2260 pVM->pgm.s.fNoMorePhysWrites = true;
2261
2262 /*
2263 * Save basic data (required / unaffected by relocation).
2264 */
2265#if 1
2266 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2267#else
2268 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2269#endif
2270 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2271 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2272 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2273 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2274 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2275 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2276 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2277 SSMR3PutU32(pSSM, ~0); /* Separator. */
2278
2279 /*
2280 * The guest mappings.
2281 */
2282 uint32_t i = 0;
2283 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2284 {
2285 SSMR3PutU32(pSSM, i);
2286 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2287 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2288 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2289 /* flags are done by the mapping owners! */
2290 }
2291 SSMR3PutU32(pSSM, ~0); /* terminator. */
2292
2293 /*
2294 * Ram range flags and bits.
2295 */
2296 i = 0;
2297 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2298 {
2299 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2300
2301 SSMR3PutU32(pSSM, i);
2302 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2303 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2304 SSMR3PutGCPhys(pSSM, pRam->cb);
2305 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2306
2307 /* Flags. */
2308 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2309 for (unsigned iPage = 0; iPage < cPages; iPage++)
2310 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2311
2312 /* any memory associated with the range. */
2313 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2314 {
2315 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2316 {
2317 if (pRam->paChunkR3Ptrs[iChunk])
2318 {
2319 SSMR3PutU8(pSSM, 1); /* chunk present */
2320 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2321 }
2322 else
2323 SSMR3PutU8(pSSM, 0); /* no chunk present */
2324 }
2325 }
2326 else if (pRam->pvR3)
2327 {
2328 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2329 if (RT_FAILURE(rc))
2330 {
2331 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2332 return rc;
2333 }
2334 }
2335 }
2336 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2337}
2338
2339
2340/**
2341 * Execute state load operation.
2342 *
2343 * @returns VBox status code.
2344 * @param pVM VM Handle.
2345 * @param pSSM SSM operation handle.
2346 * @param u32Version Data layout version.
2347 */
2348static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2349{
2350 /*
2351 * Validate version.
2352 */
2353 if (u32Version != PGM_SAVED_STATE_VERSION)
2354 {
2355 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2356 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2357 }
2358
2359 /*
2360 * Call the reset function to make sure all the memory is cleared.
2361 */
2362 PGMR3Reset(pVM);
2363
2364 /*
2365 * Load basic data (required / unaffected by relocation).
2366 */
2367 PPGM pPGM = &pVM->pgm.s;
2368#if 1
2369 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2370#else
2371 uint32_t u;
2372 SSMR3GetU32(pSSM, &u);
2373 pPGM->fMappingsFixed = u;
2374#endif
2375 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2376 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2377
2378 RTUINT cbRamSize;
2379 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2380 if (RT_FAILURE(rc))
2381 return rc;
2382 if (cbRamSize != pPGM->cbRamSize)
2383 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2384 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2385 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2386 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2387 RTUINT uGuestMode;
2388 SSMR3GetUInt(pSSM, &uGuestMode);
2389 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2390
2391 /* check separator. */
2392 uint32_t u32Sep;
2393 SSMR3GetU32(pSSM, &u32Sep);
2394 if (RT_FAILURE(rc))
2395 return rc;
2396 if (u32Sep != (uint32_t)~0)
2397 {
2398 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2399 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2400 }
2401
2402 /*
2403 * The guest mappings.
2404 */
2405 uint32_t i = 0;
2406 for (;; i++)
2407 {
2408 /* Check the seqence number / separator. */
2409 rc = SSMR3GetU32(pSSM, &u32Sep);
2410 if (RT_FAILURE(rc))
2411 return rc;
2412 if (u32Sep == ~0U)
2413 break;
2414 if (u32Sep != i)
2415 {
2416 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2417 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2418 }
2419
2420 /* get the mapping details. */
2421 char szDesc[256];
2422 szDesc[0] = '\0';
2423 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2424 if (RT_FAILURE(rc))
2425 return rc;
2426 RTGCPTR GCPtr;
2427 SSMR3GetGCPtr(pSSM, &GCPtr);
2428 RTGCPTR cPTs;
2429 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2430 if (RT_FAILURE(rc))
2431 return rc;
2432
2433 /* find matching range. */
2434 PPGMMAPPING pMapping;
2435 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2436 if ( pMapping->cPTs == cPTs
2437 && !strcmp(pMapping->pszDesc, szDesc))
2438 break;
2439 if (!pMapping)
2440 {
2441 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2442 cPTs, szDesc, GCPtr));
2443 AssertFailed();
2444 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2445 }
2446
2447 /* relocate it. */
2448 if (pMapping->GCPtr != GCPtr)
2449 {
2450 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2451 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2452 }
2453 else
2454 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2455 }
2456
2457 /*
2458 * Ram range flags and bits.
2459 */
2460 i = 0;
2461 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2462 {
2463 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2464 /* Check the seqence number / separator. */
2465 rc = SSMR3GetU32(pSSM, &u32Sep);
2466 if (RT_FAILURE(rc))
2467 return rc;
2468 if (u32Sep == ~0U)
2469 break;
2470 if (u32Sep != i)
2471 {
2472 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2473 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2474 }
2475
2476 /* Get the range details. */
2477 RTGCPHYS GCPhys;
2478 SSMR3GetGCPhys(pSSM, &GCPhys);
2479 RTGCPHYS GCPhysLast;
2480 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2481 RTGCPHYS cb;
2482 SSMR3GetGCPhys(pSSM, &cb);
2483 uint8_t fHaveBits;
2484 rc = SSMR3GetU8(pSSM, &fHaveBits);
2485 if (RT_FAILURE(rc))
2486 return rc;
2487 if (fHaveBits & ~1)
2488 {
2489 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2490 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2491 }
2492
2493 /* Match it up with the current range. */
2494 if ( GCPhys != pRam->GCPhys
2495 || GCPhysLast != pRam->GCPhysLast
2496 || cb != pRam->cb
2497 || fHaveBits != !!pRam->pvR3)
2498 {
2499 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2500 "State : %RGp-%RGp %RGp bytes %s\n",
2501 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2502 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2503 /*
2504 * If we're loading a state for debugging purpose, don't make a fuss if
2505 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2506 */
2507 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2508 || GCPhys < 8 * _1M)
2509 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2510
2511 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2512 while (cPages-- > 0)
2513 {
2514 uint16_t u16Ignore;
2515 SSMR3GetU16(pSSM, &u16Ignore);
2516 }
2517 continue;
2518 }
2519
2520 /* Flags. */
2521 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2522 for (unsigned iPage = 0; iPage < cPages; iPage++)
2523 {
2524 uint16_t u16 = 0;
2525 SSMR3GetU16(pSSM, &u16);
2526 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2527 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2528 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2529 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2530 }
2531
2532 /* any memory associated with the range. */
2533 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2534 {
2535 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2536 {
2537 uint8_t fValidChunk;
2538
2539 rc = SSMR3GetU8(pSSM, &fValidChunk);
2540 if (RT_FAILURE(rc))
2541 return rc;
2542 if (fValidChunk > 1)
2543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2544
2545 if (fValidChunk)
2546 {
2547 if (!pRam->paChunkR3Ptrs[iChunk])
2548 {
2549 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2550 if (RT_FAILURE(rc))
2551 return rc;
2552 }
2553 Assert(pRam->paChunkR3Ptrs[iChunk]);
2554
2555 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2556 }
2557 /* else nothing to do */
2558 }
2559 }
2560 else if (pRam->pvR3)
2561 {
2562 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2563 if (RT_FAILURE(rc))
2564 {
2565 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2566 return rc;
2567 }
2568 }
2569 }
2570
2571 /*
2572 * We require a full resync now.
2573 */
2574 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2575 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2576 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2577 pPGM->fPhysCacheFlushPending = true;
2578 pgmR3HandlerPhysicalUpdateAll(pVM);
2579
2580 /*
2581 * Change the paging mode.
2582 */
2583 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2584
2585 /* Restore pVM->pgm.s.GCPhysCR3. */
2586 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2587 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2588 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2589 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2590 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2591 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2592 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2593 else
2594 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2595 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2596
2597 return rc;
2598}
2599
2600
2601/**
2602 * Show paging mode.
2603 *
2604 * @param pVM VM Handle.
2605 * @param pHlp The info helpers.
2606 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2607 */
2608static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2609{
2610 /* digest argument. */
2611 bool fGuest, fShadow, fHost;
2612 if (pszArgs)
2613 pszArgs = RTStrStripL(pszArgs);
2614 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2615 fShadow = fHost = fGuest = true;
2616 else
2617 {
2618 fShadow = fHost = fGuest = false;
2619 if (strstr(pszArgs, "guest"))
2620 fGuest = true;
2621 if (strstr(pszArgs, "shadow"))
2622 fShadow = true;
2623 if (strstr(pszArgs, "host"))
2624 fHost = true;
2625 }
2626
2627 /* print info. */
2628 if (fGuest)
2629 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2630 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2631 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2632 if (fShadow)
2633 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2634 if (fHost)
2635 {
2636 const char *psz;
2637 switch (pVM->pgm.s.enmHostMode)
2638 {
2639 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2640 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2641 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2642 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2643 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2644 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2645 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2646 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2647 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2648 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2649 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2650 default: psz = "unknown"; break;
2651 }
2652 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2653 }
2654}
2655
2656
2657/**
2658 * Dump registered MMIO ranges to the log.
2659 *
2660 * @param pVM VM Handle.
2661 * @param pHlp The info helpers.
2662 * @param pszArgs Arguments, ignored.
2663 */
2664static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2665{
2666 NOREF(pszArgs);
2667 pHlp->pfnPrintf(pHlp,
2668 "RAM ranges (pVM=%p)\n"
2669 "%.*s %.*s\n",
2670 pVM,
2671 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2672 sizeof(RTHCPTR) * 2, "pvHC ");
2673
2674 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2675 pHlp->pfnPrintf(pHlp,
2676 "%RGp-%RGp %RHv %s\n",
2677 pCur->GCPhys,
2678 pCur->GCPhysLast,
2679 pCur->pvR3,
2680 pCur->pszDesc);
2681}
2682
2683/**
2684 * Dump the page directory to the log.
2685 *
2686 * @param pVM VM Handle.
2687 * @param pHlp The info helpers.
2688 * @param pszArgs Arguments, ignored.
2689 */
2690static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2691{
2692/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2693 /* Big pages supported? */
2694 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2695
2696 /* Global pages supported? */
2697 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2698
2699 NOREF(pszArgs);
2700
2701 /*
2702 * Get page directory addresses.
2703 */
2704 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2705 Assert(pPDSrc);
2706 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2707
2708 /*
2709 * Iterate the page directory.
2710 */
2711 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2712 {
2713 X86PDE PdeSrc = pPDSrc->a[iPD];
2714 if (PdeSrc.n.u1Present)
2715 {
2716 if (PdeSrc.b.u1Size && fPSE)
2717 pHlp->pfnPrintf(pHlp,
2718 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2719 iPD,
2720 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2721 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2722 else
2723 pHlp->pfnPrintf(pHlp,
2724 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2725 iPD,
2726 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2727 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2728 }
2729 }
2730}
2731
2732
2733/**
2734 * Serivce a VMMCALLHOST_PGM_LOCK call.
2735 *
2736 * @returns VBox status code.
2737 * @param pVM The VM handle.
2738 */
2739VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2740{
2741 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2742 AssertRC(rc);
2743 return rc;
2744}
2745
2746
2747/**
2748 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2749 *
2750 * @returns PGM_TYPE_*.
2751 * @param pgmMode The mode value to convert.
2752 */
2753DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2754{
2755 switch (pgmMode)
2756 {
2757 case PGMMODE_REAL: return PGM_TYPE_REAL;
2758 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2759 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2760 case PGMMODE_PAE:
2761 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2762 case PGMMODE_AMD64:
2763 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2764 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2765 case PGMMODE_EPT: return PGM_TYPE_EPT;
2766 default:
2767 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2768 }
2769}
2770
2771
2772/**
2773 * Gets the index into the paging mode data array of a SHW+GST mode.
2774 *
2775 * @returns PGM::paPagingData index.
2776 * @param uShwType The shadow paging mode type.
2777 * @param uGstType The guest paging mode type.
2778 */
2779DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2780{
2781 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2782 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2783 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2784 + (uGstType - PGM_TYPE_REAL);
2785}
2786
2787
2788/**
2789 * Gets the index into the paging mode data array of a SHW+GST mode.
2790 *
2791 * @returns PGM::paPagingData index.
2792 * @param enmShw The shadow paging mode.
2793 * @param enmGst The guest paging mode.
2794 */
2795DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2796{
2797 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2798 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2799 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2800}
2801
2802
2803/**
2804 * Calculates the max data index.
2805 * @returns The number of entries in the paging data array.
2806 */
2807DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2808{
2809 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2810}
2811
2812
2813/**
2814 * Initializes the paging mode data kept in PGM::paModeData.
2815 *
2816 * @param pVM The VM handle.
2817 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2818 * This is used early in the init process to avoid trouble with PDM
2819 * not being initialized yet.
2820 */
2821static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2822{
2823 PPGMMODEDATA pModeData;
2824 int rc;
2825
2826 /*
2827 * Allocate the array on the first call.
2828 */
2829 if (!pVM->pgm.s.paModeData)
2830 {
2831 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2832 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2833 }
2834
2835 /*
2836 * Initialize the array entries.
2837 */
2838 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2839 pModeData->uShwType = PGM_TYPE_32BIT;
2840 pModeData->uGstType = PGM_TYPE_REAL;
2841 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2842 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2843 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2844
2845 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2846 pModeData->uShwType = PGM_TYPE_32BIT;
2847 pModeData->uGstType = PGM_TYPE_PROT;
2848 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2849 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2851
2852 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2853 pModeData->uShwType = PGM_TYPE_32BIT;
2854 pModeData->uGstType = PGM_TYPE_32BIT;
2855 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2856 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2858
2859 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2860 pModeData->uShwType = PGM_TYPE_PAE;
2861 pModeData->uGstType = PGM_TYPE_REAL;
2862 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2863 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2864 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865
2866 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2867 pModeData->uShwType = PGM_TYPE_PAE;
2868 pModeData->uGstType = PGM_TYPE_PROT;
2869 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2870 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2871 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2872
2873 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2874 pModeData->uShwType = PGM_TYPE_PAE;
2875 pModeData->uGstType = PGM_TYPE_32BIT;
2876 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2877 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2878 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2879
2880 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2881 pModeData->uShwType = PGM_TYPE_PAE;
2882 pModeData->uGstType = PGM_TYPE_PAE;
2883 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2885 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2886
2887#ifdef VBOX_WITH_64_BITS_GUESTS
2888 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2889 pModeData->uShwType = PGM_TYPE_AMD64;
2890 pModeData->uGstType = PGM_TYPE_AMD64;
2891 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2892 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2893 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2894#endif
2895
2896 /* The nested paging mode. */
2897 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2898 pModeData->uShwType = PGM_TYPE_NESTED;
2899 pModeData->uGstType = PGM_TYPE_REAL;
2900 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902
2903 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2904 pModeData->uShwType = PGM_TYPE_NESTED;
2905 pModeData->uGstType = PGM_TYPE_PROT;
2906 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908
2909 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2910 pModeData->uShwType = PGM_TYPE_NESTED;
2911 pModeData->uGstType = PGM_TYPE_32BIT;
2912 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2913 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2914
2915 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2916 pModeData->uShwType = PGM_TYPE_NESTED;
2917 pModeData->uGstType = PGM_TYPE_PAE;
2918 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2919 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2920
2921#ifdef VBOX_WITH_64_BITS_GUESTS
2922 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2923 pModeData->uShwType = PGM_TYPE_NESTED;
2924 pModeData->uGstType = PGM_TYPE_AMD64;
2925 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2927#endif
2928
2929 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2930 switch (pVM->pgm.s.enmHostMode)
2931 {
2932#if HC_ARCH_BITS == 32
2933 case SUPPAGINGMODE_32_BIT:
2934 case SUPPAGINGMODE_32_BIT_GLOBAL:
2935 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2936 {
2937 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2938 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939 }
2940# ifdef VBOX_WITH_64_BITS_GUESTS
2941 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2942 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2943# endif
2944 break;
2945
2946 case SUPPAGINGMODE_PAE:
2947 case SUPPAGINGMODE_PAE_NX:
2948 case SUPPAGINGMODE_PAE_GLOBAL:
2949 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2950 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2951 {
2952 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2953 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2954 }
2955# ifdef VBOX_WITH_64_BITS_GUESTS
2956 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2957 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2958# endif
2959 break;
2960#endif /* HC_ARCH_BITS == 32 */
2961
2962#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2963 case SUPPAGINGMODE_AMD64:
2964 case SUPPAGINGMODE_AMD64_GLOBAL:
2965 case SUPPAGINGMODE_AMD64_NX:
2966 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2967# ifdef VBOX_WITH_64_BITS_GUESTS
2968 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2969# else
2970 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2971# endif
2972 {
2973 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2974 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2975 }
2976 break;
2977#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2978
2979 default:
2980 AssertFailed();
2981 break;
2982 }
2983
2984 /* Extended paging (EPT) / Intel VT-x */
2985 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2986 pModeData->uShwType = PGM_TYPE_EPT;
2987 pModeData->uGstType = PGM_TYPE_REAL;
2988 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2989 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2990 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2991
2992 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2993 pModeData->uShwType = PGM_TYPE_EPT;
2994 pModeData->uGstType = PGM_TYPE_PROT;
2995 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2996 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2997 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2998
2999 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3000 pModeData->uShwType = PGM_TYPE_EPT;
3001 pModeData->uGstType = PGM_TYPE_32BIT;
3002 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3003 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3004 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3005
3006 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3007 pModeData->uShwType = PGM_TYPE_EPT;
3008 pModeData->uGstType = PGM_TYPE_PAE;
3009 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3010 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3011 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3012
3013#ifdef VBOX_WITH_64_BITS_GUESTS
3014 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3015 pModeData->uShwType = PGM_TYPE_EPT;
3016 pModeData->uGstType = PGM_TYPE_AMD64;
3017 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3018 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3019 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3020#endif
3021 return VINF_SUCCESS;
3022}
3023
3024
3025/**
3026 * Switch to different (or relocated in the relocate case) mode data.
3027 *
3028 * @param pVM The VM handle.
3029 * @param enmShw The the shadow paging mode.
3030 * @param enmGst The the guest paging mode.
3031 */
3032static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3033{
3034 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3035
3036 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3037 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3038
3039 /* shadow */
3040 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3041 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3042 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3043 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3044 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3045
3046 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3047 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3048
3049 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3050 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3051
3052
3053 /* guest */
3054 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3055 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3056 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3057 Assert(pVM->pgm.s.pfnR3GstGetPage);
3058 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3059 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3060#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3061 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
3062 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
3063#endif
3064#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3065 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3066 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3067 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3068 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3069#endif
3070 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3071 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3072 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3073#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3074 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3075 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3076#endif
3077#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3078 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3079 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3080#endif
3081 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3082 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3083 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3084#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3085 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3086 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3087#endif
3088#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3089 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3090 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3091#endif
3092
3093 /* both */
3094 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3095 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3096 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3097 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3098 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3099 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3100 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3101#ifdef VBOX_STRICT
3102 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3103#endif
3104 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3105 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3106
3107 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3108 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3109 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3110 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3111 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3112 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3113#ifdef VBOX_STRICT
3114 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3115#endif
3116 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3117 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3118
3119 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3120 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3121 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3122 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3123 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3124 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3125#ifdef VBOX_STRICT
3126 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3127#endif
3128 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3129 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3130}
3131
3132
3133/**
3134 * Calculates the shadow paging mode.
3135 *
3136 * @returns The shadow paging mode.
3137 * @param pVM VM handle.
3138 * @param enmGuestMode The guest mode.
3139 * @param enmHostMode The host mode.
3140 * @param enmShadowMode The current shadow mode.
3141 * @param penmSwitcher Where to store the switcher to use.
3142 * VMMSWITCHER_INVALID means no change.
3143 */
3144static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3145{
3146 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3147 switch (enmGuestMode)
3148 {
3149 /*
3150 * When switching to real or protected mode we don't change
3151 * anything since it's likely that we'll switch back pretty soon.
3152 *
3153 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3154 * and is supposed to determine which shadow paging and switcher to
3155 * use during init.
3156 */
3157 case PGMMODE_REAL:
3158 case PGMMODE_PROTECTED:
3159 if ( enmShadowMode != PGMMODE_INVALID
3160 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3161 break; /* (no change) */
3162
3163 switch (enmHostMode)
3164 {
3165 case SUPPAGINGMODE_32_BIT:
3166 case SUPPAGINGMODE_32_BIT_GLOBAL:
3167 enmShadowMode = PGMMODE_32_BIT;
3168 enmSwitcher = VMMSWITCHER_32_TO_32;
3169 break;
3170
3171 case SUPPAGINGMODE_PAE:
3172 case SUPPAGINGMODE_PAE_NX:
3173 case SUPPAGINGMODE_PAE_GLOBAL:
3174 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3175 enmShadowMode = PGMMODE_PAE;
3176 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3177#ifdef DEBUG_bird
3178 if (RTEnvExist("VBOX_32BIT"))
3179 {
3180 enmShadowMode = PGMMODE_32_BIT;
3181 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3182 }
3183#endif
3184 break;
3185
3186 case SUPPAGINGMODE_AMD64:
3187 case SUPPAGINGMODE_AMD64_GLOBAL:
3188 case SUPPAGINGMODE_AMD64_NX:
3189 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3190 enmShadowMode = PGMMODE_PAE;
3191 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3192#ifdef DEBUG_bird
3193 if (RTEnvExist("VBOX_32BIT"))
3194 {
3195 enmShadowMode = PGMMODE_32_BIT;
3196 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3197 }
3198#endif
3199 break;
3200
3201 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3202 }
3203 break;
3204
3205 case PGMMODE_32_BIT:
3206 switch (enmHostMode)
3207 {
3208 case SUPPAGINGMODE_32_BIT:
3209 case SUPPAGINGMODE_32_BIT_GLOBAL:
3210 enmShadowMode = PGMMODE_32_BIT;
3211 enmSwitcher = VMMSWITCHER_32_TO_32;
3212 break;
3213
3214 case SUPPAGINGMODE_PAE:
3215 case SUPPAGINGMODE_PAE_NX:
3216 case SUPPAGINGMODE_PAE_GLOBAL:
3217 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3218 enmShadowMode = PGMMODE_PAE;
3219 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3220#ifdef DEBUG_bird
3221 if (RTEnvExist("VBOX_32BIT"))
3222 {
3223 enmShadowMode = PGMMODE_32_BIT;
3224 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3225 }
3226#endif
3227 break;
3228
3229 case SUPPAGINGMODE_AMD64:
3230 case SUPPAGINGMODE_AMD64_GLOBAL:
3231 case SUPPAGINGMODE_AMD64_NX:
3232 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3233 enmShadowMode = PGMMODE_PAE;
3234 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3235#ifdef DEBUG_bird
3236 if (RTEnvExist("VBOX_32BIT"))
3237 {
3238 enmShadowMode = PGMMODE_32_BIT;
3239 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3240 }
3241#endif
3242 break;
3243
3244 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3245 }
3246 break;
3247
3248 case PGMMODE_PAE:
3249 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3250 switch (enmHostMode)
3251 {
3252 case SUPPAGINGMODE_32_BIT:
3253 case SUPPAGINGMODE_32_BIT_GLOBAL:
3254 enmShadowMode = PGMMODE_PAE;
3255 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3256 break;
3257
3258 case SUPPAGINGMODE_PAE:
3259 case SUPPAGINGMODE_PAE_NX:
3260 case SUPPAGINGMODE_PAE_GLOBAL:
3261 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3262 enmShadowMode = PGMMODE_PAE;
3263 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3264 break;
3265
3266 case SUPPAGINGMODE_AMD64:
3267 case SUPPAGINGMODE_AMD64_GLOBAL:
3268 case SUPPAGINGMODE_AMD64_NX:
3269 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3270 enmShadowMode = PGMMODE_PAE;
3271 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3272 break;
3273
3274 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3275 }
3276 break;
3277
3278 case PGMMODE_AMD64:
3279 case PGMMODE_AMD64_NX:
3280 switch (enmHostMode)
3281 {
3282 case SUPPAGINGMODE_32_BIT:
3283 case SUPPAGINGMODE_32_BIT_GLOBAL:
3284 enmShadowMode = PGMMODE_AMD64;
3285 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3286 break;
3287
3288 case SUPPAGINGMODE_PAE:
3289 case SUPPAGINGMODE_PAE_NX:
3290 case SUPPAGINGMODE_PAE_GLOBAL:
3291 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3292 enmShadowMode = PGMMODE_AMD64;
3293 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3294 break;
3295
3296 case SUPPAGINGMODE_AMD64:
3297 case SUPPAGINGMODE_AMD64_GLOBAL:
3298 case SUPPAGINGMODE_AMD64_NX:
3299 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3300 enmShadowMode = PGMMODE_AMD64;
3301 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3302 break;
3303
3304 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3305 }
3306 break;
3307
3308
3309 default:
3310 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3311 return PGMMODE_INVALID;
3312 }
3313 /* Override the shadow mode is nested paging is active. */
3314 if (HWACCMIsNestedPagingActive(pVM))
3315 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3316
3317 *penmSwitcher = enmSwitcher;
3318 return enmShadowMode;
3319}
3320
3321
3322/**
3323 * Performs the actual mode change.
3324 * This is called by PGMChangeMode and pgmR3InitPaging().
3325 *
3326 * @returns VBox status code.
3327 * @param pVM VM handle.
3328 * @param enmGuestMode The new guest mode. This is assumed to be different from
3329 * the current mode.
3330 */
3331VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3332{
3333 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3334 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3335
3336 /*
3337 * Calc the shadow mode and switcher.
3338 */
3339 VMMSWITCHER enmSwitcher;
3340 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3341 if (enmSwitcher != VMMSWITCHER_INVALID)
3342 {
3343 /*
3344 * Select new switcher.
3345 */
3346 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3347 if (RT_FAILURE(rc))
3348 {
3349 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3350 return rc;
3351 }
3352 }
3353
3354 /*
3355 * Exit old mode(s).
3356 */
3357 /* shadow */
3358 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3359 {
3360 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3361 if (PGM_SHW_PFN(Exit, pVM))
3362 {
3363 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3364 if (RT_FAILURE(rc))
3365 {
3366 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3367 return rc;
3368 }
3369 }
3370
3371 }
3372 else
3373 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3374
3375 /* guest */
3376 if (PGM_GST_PFN(Exit, pVM))
3377 {
3378 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3379 if (RT_FAILURE(rc))
3380 {
3381 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3382 return rc;
3383 }
3384 }
3385
3386 /*
3387 * Load new paging mode data.
3388 */
3389 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3390
3391 /*
3392 * Enter new shadow mode (if changed).
3393 */
3394 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3395 {
3396 int rc;
3397 pVM->pgm.s.enmShadowMode = enmShadowMode;
3398 switch (enmShadowMode)
3399 {
3400 case PGMMODE_32_BIT:
3401 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3402 break;
3403 case PGMMODE_PAE:
3404 case PGMMODE_PAE_NX:
3405 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3406 break;
3407 case PGMMODE_AMD64:
3408 case PGMMODE_AMD64_NX:
3409 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3410 break;
3411 case PGMMODE_NESTED:
3412 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3413 break;
3414 case PGMMODE_EPT:
3415 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3416 break;
3417 case PGMMODE_REAL:
3418 case PGMMODE_PROTECTED:
3419 default:
3420 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3421 return VERR_INTERNAL_ERROR;
3422 }
3423 if (RT_FAILURE(rc))
3424 {
3425 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3426 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3427 return rc;
3428 }
3429 }
3430
3431#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3432 /** @todo This is a bug!
3433 *
3434 * We must flush the PGM pool cache if the guest mode changes; we don't always
3435 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3436 * the shadow page tables.
3437 *
3438 * That only applies when switching between paging and non-paging modes.
3439 */
3440 /** @todo A20 setting */
3441 if ( pVM->pgm.s.CTX_SUFF(pPool)
3442 && !HWACCMIsNestedPagingActive(pVM)
3443 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3444 {
3445 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3446 pgmPoolFlushAll(pVM);
3447 }
3448#endif
3449
3450 /*
3451 * Enter the new guest and shadow+guest modes.
3452 */
3453 int rc = -1;
3454 int rc2 = -1;
3455 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3456 pVM->pgm.s.enmGuestMode = enmGuestMode;
3457 switch (enmGuestMode)
3458 {
3459 case PGMMODE_REAL:
3460 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3461 switch (pVM->pgm.s.enmShadowMode)
3462 {
3463 case PGMMODE_32_BIT:
3464 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3465 break;
3466 case PGMMODE_PAE:
3467 case PGMMODE_PAE_NX:
3468 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3469 break;
3470 case PGMMODE_NESTED:
3471 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3472 break;
3473 case PGMMODE_EPT:
3474 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3475 break;
3476 case PGMMODE_AMD64:
3477 case PGMMODE_AMD64_NX:
3478 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3479 default: AssertFailed(); break;
3480 }
3481 break;
3482
3483 case PGMMODE_PROTECTED:
3484 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3485 switch (pVM->pgm.s.enmShadowMode)
3486 {
3487 case PGMMODE_32_BIT:
3488 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3489 break;
3490 case PGMMODE_PAE:
3491 case PGMMODE_PAE_NX:
3492 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3493 break;
3494 case PGMMODE_NESTED:
3495 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3496 break;
3497 case PGMMODE_EPT:
3498 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3499 break;
3500 case PGMMODE_AMD64:
3501 case PGMMODE_AMD64_NX:
3502 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3503 default: AssertFailed(); break;
3504 }
3505 break;
3506
3507 case PGMMODE_32_BIT:
3508 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3509 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3510 switch (pVM->pgm.s.enmShadowMode)
3511 {
3512 case PGMMODE_32_BIT:
3513 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3514 break;
3515 case PGMMODE_PAE:
3516 case PGMMODE_PAE_NX:
3517 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3518 break;
3519 case PGMMODE_NESTED:
3520 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3521 break;
3522 case PGMMODE_EPT:
3523 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3524 break;
3525 case PGMMODE_AMD64:
3526 case PGMMODE_AMD64_NX:
3527 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3528 default: AssertFailed(); break;
3529 }
3530 break;
3531
3532 case PGMMODE_PAE_NX:
3533 case PGMMODE_PAE:
3534 {
3535 uint32_t u32Dummy, u32Features;
3536
3537 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3538 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3539 {
3540 /* Pause first, then inform Main. */
3541 rc = VMR3SuspendNoSave(pVM);
3542 AssertRC(rc);
3543
3544 VMSetRuntimeError(pVM, true, "PAEmode",
3545 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3546 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3547 return VINF_SUCCESS;
3548 }
3549 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3550 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3551 switch (pVM->pgm.s.enmShadowMode)
3552 {
3553 case PGMMODE_PAE:
3554 case PGMMODE_PAE_NX:
3555 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3556 break;
3557 case PGMMODE_NESTED:
3558 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3559 break;
3560 case PGMMODE_EPT:
3561 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3562 break;
3563 case PGMMODE_32_BIT:
3564 case PGMMODE_AMD64:
3565 case PGMMODE_AMD64_NX:
3566 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3567 default: AssertFailed(); break;
3568 }
3569 break;
3570 }
3571
3572#ifdef VBOX_WITH_64_BITS_GUESTS
3573 case PGMMODE_AMD64_NX:
3574 case PGMMODE_AMD64:
3575 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3576 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3577 switch (pVM->pgm.s.enmShadowMode)
3578 {
3579 case PGMMODE_AMD64:
3580 case PGMMODE_AMD64_NX:
3581 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3582 break;
3583 case PGMMODE_NESTED:
3584 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3585 break;
3586 case PGMMODE_EPT:
3587 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3588 break;
3589 case PGMMODE_32_BIT:
3590 case PGMMODE_PAE:
3591 case PGMMODE_PAE_NX:
3592 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3593 default: AssertFailed(); break;
3594 }
3595 break;
3596#endif
3597
3598 default:
3599 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3600 rc = VERR_NOT_IMPLEMENTED;
3601 break;
3602 }
3603
3604 /* status codes. */
3605 AssertRC(rc);
3606 AssertRC(rc2);
3607 if (RT_SUCCESS(rc))
3608 {
3609 rc = rc2;
3610 if (RT_SUCCESS(rc)) /* no informational status codes. */
3611 rc = VINF_SUCCESS;
3612 }
3613
3614 /*
3615 * Notify SELM so it can update the TSSes with correct CR3s.
3616 */
3617 SELMR3PagingModeChanged(pVM);
3618
3619 /* Notify HWACCM as well. */
3620 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3621 return rc;
3622}
3623
3624
3625/**
3626 * Dumps a PAE shadow page table.
3627 *
3628 * @returns VBox status code (VINF_SUCCESS).
3629 * @param pVM The VM handle.
3630 * @param pPT Pointer to the page table.
3631 * @param u64Address The virtual address of the page table starts.
3632 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3633 * @param cMaxDepth The maxium depth.
3634 * @param pHlp Pointer to the output functions.
3635 */
3636static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3637{
3638 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3639 {
3640 X86PTEPAE Pte = pPT->a[i];
3641 if (Pte.n.u1Present)
3642 {
3643 pHlp->pfnPrintf(pHlp,
3644 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3645 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3646 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3647 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3648 Pte.n.u1Write ? 'W' : 'R',
3649 Pte.n.u1User ? 'U' : 'S',
3650 Pte.n.u1Accessed ? 'A' : '-',
3651 Pte.n.u1Dirty ? 'D' : '-',
3652 Pte.n.u1Global ? 'G' : '-',
3653 Pte.n.u1WriteThru ? "WT" : "--",
3654 Pte.n.u1CacheDisable? "CD" : "--",
3655 Pte.n.u1PAT ? "AT" : "--",
3656 Pte.n.u1NoExecute ? "NX" : "--",
3657 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3658 Pte.u & RT_BIT(10) ? '1' : '0',
3659 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3660 Pte.u & X86_PTE_PAE_PG_MASK);
3661 }
3662 }
3663 return VINF_SUCCESS;
3664}
3665
3666
3667/**
3668 * Dumps a PAE shadow page directory table.
3669 *
3670 * @returns VBox status code (VINF_SUCCESS).
3671 * @param pVM The VM handle.
3672 * @param HCPhys The physical address of the page directory table.
3673 * @param u64Address The virtual address of the page table starts.
3674 * @param cr4 The CR4, PSE is currently used.
3675 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3676 * @param cMaxDepth The maxium depth.
3677 * @param pHlp Pointer to the output functions.
3678 */
3679static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3680{
3681 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3682 if (!pPD)
3683 {
3684 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3685 fLongMode ? 16 : 8, u64Address, HCPhys);
3686 return VERR_INVALID_PARAMETER;
3687 }
3688 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3689
3690 int rc = VINF_SUCCESS;
3691 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3692 {
3693 X86PDEPAE Pde = pPD->a[i];
3694 if (Pde.n.u1Present)
3695 {
3696 if (fBigPagesSupported && Pde.b.u1Size)
3697 pHlp->pfnPrintf(pHlp,
3698 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3699 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3700 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3701 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3702 Pde.b.u1Write ? 'W' : 'R',
3703 Pde.b.u1User ? 'U' : 'S',
3704 Pde.b.u1Accessed ? 'A' : '-',
3705 Pde.b.u1Dirty ? 'D' : '-',
3706 Pde.b.u1Global ? 'G' : '-',
3707 Pde.b.u1WriteThru ? "WT" : "--",
3708 Pde.b.u1CacheDisable? "CD" : "--",
3709 Pde.b.u1PAT ? "AT" : "--",
3710 Pde.b.u1NoExecute ? "NX" : "--",
3711 Pde.u & RT_BIT_64(9) ? '1' : '0',
3712 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3713 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3714 Pde.u & X86_PDE_PAE_PG_MASK);
3715 else
3716 {
3717 pHlp->pfnPrintf(pHlp,
3718 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3719 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3720 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3721 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3722 Pde.n.u1Write ? 'W' : 'R',
3723 Pde.n.u1User ? 'U' : 'S',
3724 Pde.n.u1Accessed ? 'A' : '-',
3725 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3726 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3727 Pde.n.u1WriteThru ? "WT" : "--",
3728 Pde.n.u1CacheDisable? "CD" : "--",
3729 Pde.n.u1NoExecute ? "NX" : "--",
3730 Pde.u & RT_BIT_64(9) ? '1' : '0',
3731 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3732 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3733 Pde.u & X86_PDE_PAE_PG_MASK);
3734 if (cMaxDepth >= 1)
3735 {
3736 /** @todo what about using the page pool for mapping PTs? */
3737 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3738 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3739 PX86PTPAE pPT = NULL;
3740 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3741 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3742 else
3743 {
3744 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3745 {
3746 uint64_t off = u64AddressPT - pMap->GCPtr;
3747 if (off < pMap->cb)
3748 {
3749 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3750 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3751 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3752 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3753 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3754 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3755 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3756 }
3757 }
3758 }
3759 int rc2 = VERR_INVALID_PARAMETER;
3760 if (pPT)
3761 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3762 else
3763 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3764 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3765 if (rc2 < rc && RT_SUCCESS(rc))
3766 rc = rc2;
3767 }
3768 }
3769 }
3770 }
3771 return rc;
3772}
3773
3774
3775/**
3776 * Dumps a PAE shadow page directory pointer table.
3777 *
3778 * @returns VBox status code (VINF_SUCCESS).
3779 * @param pVM The VM handle.
3780 * @param HCPhys The physical address of the page directory pointer table.
3781 * @param u64Address The virtual address of the page table starts.
3782 * @param cr4 The CR4, PSE is currently used.
3783 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3784 * @param cMaxDepth The maxium depth.
3785 * @param pHlp Pointer to the output functions.
3786 */
3787static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3788{
3789 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3790 if (!pPDPT)
3791 {
3792 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3793 fLongMode ? 16 : 8, u64Address, HCPhys);
3794 return VERR_INVALID_PARAMETER;
3795 }
3796
3797 int rc = VINF_SUCCESS;
3798 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3799 for (unsigned i = 0; i < c; i++)
3800 {
3801 X86PDPE Pdpe = pPDPT->a[i];
3802 if (Pdpe.n.u1Present)
3803 {
3804 if (fLongMode)
3805 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3806 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3807 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3808 Pdpe.lm.u1Write ? 'W' : 'R',
3809 Pdpe.lm.u1User ? 'U' : 'S',
3810 Pdpe.lm.u1Accessed ? 'A' : '-',
3811 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3812 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3813 Pdpe.lm.u1WriteThru ? "WT" : "--",
3814 Pdpe.lm.u1CacheDisable? "CD" : "--",
3815 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3816 Pdpe.lm.u1NoExecute ? "NX" : "--",
3817 Pdpe.u & RT_BIT(9) ? '1' : '0',
3818 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3819 Pdpe.u & RT_BIT(11) ? '1' : '0',
3820 Pdpe.u & X86_PDPE_PG_MASK);
3821 else
3822 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3823 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3824 i << X86_PDPT_SHIFT,
3825 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3826 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3827 Pdpe.n.u1WriteThru ? "WT" : "--",
3828 Pdpe.n.u1CacheDisable? "CD" : "--",
3829 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3830 Pdpe.u & RT_BIT(9) ? '1' : '0',
3831 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3832 Pdpe.u & RT_BIT(11) ? '1' : '0',
3833 Pdpe.u & X86_PDPE_PG_MASK);
3834 if (cMaxDepth >= 1)
3835 {
3836 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3837 cr4, fLongMode, cMaxDepth - 1, pHlp);
3838 if (rc2 < rc && RT_SUCCESS(rc))
3839 rc = rc2;
3840 }
3841 }
3842 }
3843 return rc;
3844}
3845
3846
3847/**
3848 * Dumps a 32-bit shadow page table.
3849 *
3850 * @returns VBox status code (VINF_SUCCESS).
3851 * @param pVM The VM handle.
3852 * @param HCPhys The physical address of the table.
3853 * @param cr4 The CR4, PSE is currently used.
3854 * @param cMaxDepth The maxium depth.
3855 * @param pHlp Pointer to the output functions.
3856 */
3857static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3858{
3859 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3860 if (!pPML4)
3861 {
3862 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3863 return VERR_INVALID_PARAMETER;
3864 }
3865
3866 int rc = VINF_SUCCESS;
3867 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3868 {
3869 X86PML4E Pml4e = pPML4->a[i];
3870 if (Pml4e.n.u1Present)
3871 {
3872 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3873 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3874 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3875 u64Address,
3876 Pml4e.n.u1Write ? 'W' : 'R',
3877 Pml4e.n.u1User ? 'U' : 'S',
3878 Pml4e.n.u1Accessed ? 'A' : '-',
3879 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3880 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3881 Pml4e.n.u1WriteThru ? "WT" : "--",
3882 Pml4e.n.u1CacheDisable? "CD" : "--",
3883 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3884 Pml4e.n.u1NoExecute ? "NX" : "--",
3885 Pml4e.u & RT_BIT(9) ? '1' : '0',
3886 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3887 Pml4e.u & RT_BIT(11) ? '1' : '0',
3888 Pml4e.u & X86_PML4E_PG_MASK);
3889
3890 if (cMaxDepth >= 1)
3891 {
3892 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3893 if (rc2 < rc && RT_SUCCESS(rc))
3894 rc = rc2;
3895 }
3896 }
3897 }
3898 return rc;
3899}
3900
3901
3902/**
3903 * Dumps a 32-bit shadow page table.
3904 *
3905 * @returns VBox status code (VINF_SUCCESS).
3906 * @param pVM The VM handle.
3907 * @param pPT Pointer to the page table.
3908 * @param u32Address The virtual address this table starts at.
3909 * @param pHlp Pointer to the output functions.
3910 */
3911int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3912{
3913 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3914 {
3915 X86PTE Pte = pPT->a[i];
3916 if (Pte.n.u1Present)
3917 {
3918 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3919 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3920 u32Address + (i << X86_PT_SHIFT),
3921 Pte.n.u1Write ? 'W' : 'R',
3922 Pte.n.u1User ? 'U' : 'S',
3923 Pte.n.u1Accessed ? 'A' : '-',
3924 Pte.n.u1Dirty ? 'D' : '-',
3925 Pte.n.u1Global ? 'G' : '-',
3926 Pte.n.u1WriteThru ? "WT" : "--",
3927 Pte.n.u1CacheDisable? "CD" : "--",
3928 Pte.n.u1PAT ? "AT" : "--",
3929 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3930 Pte.u & RT_BIT(10) ? '1' : '0',
3931 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3932 Pte.u & X86_PDE_PG_MASK);
3933 }
3934 }
3935 return VINF_SUCCESS;
3936}
3937
3938
3939/**
3940 * Dumps a 32-bit shadow page directory and page tables.
3941 *
3942 * @returns VBox status code (VINF_SUCCESS).
3943 * @param pVM The VM handle.
3944 * @param cr3 The root of the hierarchy.
3945 * @param cr4 The CR4, PSE is currently used.
3946 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3947 * @param pHlp Pointer to the output functions.
3948 */
3949int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3950{
3951 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3952 if (!pPD)
3953 {
3954 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3955 return VERR_INVALID_PARAMETER;
3956 }
3957
3958 int rc = VINF_SUCCESS;
3959 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3960 {
3961 X86PDE Pde = pPD->a[i];
3962 if (Pde.n.u1Present)
3963 {
3964 const uint32_t u32Address = i << X86_PD_SHIFT;
3965 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3966 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3967 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3968 u32Address,
3969 Pde.b.u1Write ? 'W' : 'R',
3970 Pde.b.u1User ? 'U' : 'S',
3971 Pde.b.u1Accessed ? 'A' : '-',
3972 Pde.b.u1Dirty ? 'D' : '-',
3973 Pde.b.u1Global ? 'G' : '-',
3974 Pde.b.u1WriteThru ? "WT" : "--",
3975 Pde.b.u1CacheDisable? "CD" : "--",
3976 Pde.b.u1PAT ? "AT" : "--",
3977 Pde.u & RT_BIT_64(9) ? '1' : '0',
3978 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3979 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3980 Pde.u & X86_PDE4M_PG_MASK);
3981 else
3982 {
3983 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3984 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3985 u32Address,
3986 Pde.n.u1Write ? 'W' : 'R',
3987 Pde.n.u1User ? 'U' : 'S',
3988 Pde.n.u1Accessed ? 'A' : '-',
3989 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3990 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3991 Pde.n.u1WriteThru ? "WT" : "--",
3992 Pde.n.u1CacheDisable? "CD" : "--",
3993 Pde.u & RT_BIT_64(9) ? '1' : '0',
3994 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3995 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3996 Pde.u & X86_PDE_PG_MASK);
3997 if (cMaxDepth >= 1)
3998 {
3999 /** @todo what about using the page pool for mapping PTs? */
4000 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4001 PX86PT pPT = NULL;
4002 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4003 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4004 else
4005 {
4006 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4007 if (u32Address - pMap->GCPtr < pMap->cb)
4008 {
4009 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4010 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4011 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4012 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4013 pPT = pMap->aPTs[iPDE].pPTR3;
4014 }
4015 }
4016 int rc2 = VERR_INVALID_PARAMETER;
4017 if (pPT)
4018 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4019 else
4020 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4021 if (rc2 < rc && RT_SUCCESS(rc))
4022 rc = rc2;
4023 }
4024 }
4025 }
4026 }
4027
4028 return rc;
4029}
4030
4031
4032/**
4033 * Dumps a 32-bit shadow page table.
4034 *
4035 * @returns VBox status code (VINF_SUCCESS).
4036 * @param pVM The VM handle.
4037 * @param pPT Pointer to the page table.
4038 * @param u32Address The virtual address this table starts at.
4039 * @param PhysSearch Address to search for.
4040 */
4041int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4042{
4043 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4044 {
4045 X86PTE Pte = pPT->a[i];
4046 if (Pte.n.u1Present)
4047 {
4048 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4049 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4050 u32Address + (i << X86_PT_SHIFT),
4051 Pte.n.u1Write ? 'W' : 'R',
4052 Pte.n.u1User ? 'U' : 'S',
4053 Pte.n.u1Accessed ? 'A' : '-',
4054 Pte.n.u1Dirty ? 'D' : '-',
4055 Pte.n.u1Global ? 'G' : '-',
4056 Pte.n.u1WriteThru ? "WT" : "--",
4057 Pte.n.u1CacheDisable? "CD" : "--",
4058 Pte.n.u1PAT ? "AT" : "--",
4059 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4060 Pte.u & RT_BIT(10) ? '1' : '0',
4061 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4062 Pte.u & X86_PDE_PG_MASK));
4063
4064 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4065 {
4066 uint64_t fPageShw = 0;
4067 RTHCPHYS pPhysHC = 0;
4068
4069 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4070 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4071 }
4072 }
4073 }
4074 return VINF_SUCCESS;
4075}
4076
4077
4078/**
4079 * Dumps a 32-bit guest page directory and page tables.
4080 *
4081 * @returns VBox status code (VINF_SUCCESS).
4082 * @param pVM The VM handle.
4083 * @param cr3 The root of the hierarchy.
4084 * @param cr4 The CR4, PSE is currently used.
4085 * @param PhysSearch Address to search for.
4086 */
4087VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4088{
4089 bool fLongMode = false;
4090 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4091 PX86PD pPD = 0;
4092
4093 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4094 if (RT_FAILURE(rc) || !pPD)
4095 {
4096 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4097 return VERR_INVALID_PARAMETER;
4098 }
4099
4100 Log(("cr3=%08x cr4=%08x%s\n"
4101 "%-*s P - Present\n"
4102 "%-*s | R/W - Read (0) / Write (1)\n"
4103 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4104 "%-*s | | | A - Accessed\n"
4105 "%-*s | | | | D - Dirty\n"
4106 "%-*s | | | | | G - Global\n"
4107 "%-*s | | | | | | WT - Write thru\n"
4108 "%-*s | | | | | | | CD - Cache disable\n"
4109 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4110 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4111 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4112 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4113 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4114 "%-*s Level | | | | | | | | | | | | Page\n"
4115 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4116 - W U - - - -- -- -- -- -- 010 */
4117 , cr3, cr4, fLongMode ? " Long Mode" : "",
4118 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4119 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4120
4121 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4122 {
4123 X86PDE Pde = pPD->a[i];
4124 if (Pde.n.u1Present)
4125 {
4126 const uint32_t u32Address = i << X86_PD_SHIFT;
4127
4128 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4129 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4130 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4131 u32Address,
4132 Pde.b.u1Write ? 'W' : 'R',
4133 Pde.b.u1User ? 'U' : 'S',
4134 Pde.b.u1Accessed ? 'A' : '-',
4135 Pde.b.u1Dirty ? 'D' : '-',
4136 Pde.b.u1Global ? 'G' : '-',
4137 Pde.b.u1WriteThru ? "WT" : "--",
4138 Pde.b.u1CacheDisable? "CD" : "--",
4139 Pde.b.u1PAT ? "AT" : "--",
4140 Pde.u & RT_BIT(9) ? '1' : '0',
4141 Pde.u & RT_BIT(10) ? '1' : '0',
4142 Pde.u & RT_BIT(11) ? '1' : '0',
4143 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4144 /** @todo PhysSearch */
4145 else
4146 {
4147 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4148 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4149 u32Address,
4150 Pde.n.u1Write ? 'W' : 'R',
4151 Pde.n.u1User ? 'U' : 'S',
4152 Pde.n.u1Accessed ? 'A' : '-',
4153 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4154 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4155 Pde.n.u1WriteThru ? "WT" : "--",
4156 Pde.n.u1CacheDisable? "CD" : "--",
4157 Pde.u & RT_BIT(9) ? '1' : '0',
4158 Pde.u & RT_BIT(10) ? '1' : '0',
4159 Pde.u & RT_BIT(11) ? '1' : '0',
4160 Pde.u & X86_PDE_PG_MASK));
4161 ////if (cMaxDepth >= 1)
4162 {
4163 /** @todo what about using the page pool for mapping PTs? */
4164 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4165 PX86PT pPT = NULL;
4166
4167 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4168
4169 int rc2 = VERR_INVALID_PARAMETER;
4170 if (pPT)
4171 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4172 else
4173 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4174 if (rc2 < rc && RT_SUCCESS(rc))
4175 rc = rc2;
4176 }
4177 }
4178 }
4179 }
4180
4181 return rc;
4182}
4183
4184
4185/**
4186 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4187 *
4188 * @returns VBox status code (VINF_SUCCESS).
4189 * @param pVM The VM handle.
4190 * @param cr3 The root of the hierarchy.
4191 * @param cr4 The cr4, only PAE and PSE is currently used.
4192 * @param fLongMode Set if long mode, false if not long mode.
4193 * @param cMaxDepth Number of levels to dump.
4194 * @param pHlp Pointer to the output functions.
4195 */
4196VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4197{
4198 if (!pHlp)
4199 pHlp = DBGFR3InfoLogHlp();
4200 if (!cMaxDepth)
4201 return VINF_SUCCESS;
4202 const unsigned cch = fLongMode ? 16 : 8;
4203 pHlp->pfnPrintf(pHlp,
4204 "cr3=%08x cr4=%08x%s\n"
4205 "%-*s P - Present\n"
4206 "%-*s | R/W - Read (0) / Write (1)\n"
4207 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4208 "%-*s | | | A - Accessed\n"
4209 "%-*s | | | | D - Dirty\n"
4210 "%-*s | | | | | G - Global\n"
4211 "%-*s | | | | | | WT - Write thru\n"
4212 "%-*s | | | | | | | CD - Cache disable\n"
4213 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4214 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4215 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4216 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4217 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4218 "%-*s Level | | | | | | | | | | | | Page\n"
4219 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4220 - W U - - - -- -- -- -- -- 010 */
4221 , cr3, cr4, fLongMode ? " Long Mode" : "",
4222 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4223 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4224 if (cr4 & X86_CR4_PAE)
4225 {
4226 if (fLongMode)
4227 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4228 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4229 }
4230 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4231}
4232
4233#ifdef VBOX_WITH_DEBUGGER
4234
4235/**
4236 * The '.pgmram' command.
4237 *
4238 * @returns VBox status.
4239 * @param pCmd Pointer to the command descriptor (as registered).
4240 * @param pCmdHlp Pointer to command helper functions.
4241 * @param pVM Pointer to the current VM (if any).
4242 * @param paArgs Pointer to (readonly) array of arguments.
4243 * @param cArgs Number of arguments in the array.
4244 */
4245static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4246{
4247 /*
4248 * Validate input.
4249 */
4250 if (!pVM)
4251 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4252 if (!pVM->pgm.s.pRamRangesRC)
4253 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4254
4255 /*
4256 * Dump the ranges.
4257 */
4258 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4259 PPGMRAMRANGE pRam;
4260 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4261 {
4262 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4263 "%RGp - %RGp %p\n",
4264 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4265 if (RT_FAILURE(rc))
4266 return rc;
4267 }
4268
4269 return VINF_SUCCESS;
4270}
4271
4272
4273/**
4274 * The '.pgmmap' command.
4275 *
4276 * @returns VBox status.
4277 * @param pCmd Pointer to the command descriptor (as registered).
4278 * @param pCmdHlp Pointer to command helper functions.
4279 * @param pVM Pointer to the current VM (if any).
4280 * @param paArgs Pointer to (readonly) array of arguments.
4281 * @param cArgs Number of arguments in the array.
4282 */
4283static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4284{
4285 /*
4286 * Validate input.
4287 */
4288 if (!pVM)
4289 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4290 if (!pVM->pgm.s.pMappingsR3)
4291 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4292
4293 /*
4294 * Print message about the fixedness of the mappings.
4295 */
4296 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4297 if (RT_FAILURE(rc))
4298 return rc;
4299
4300 /*
4301 * Dump the ranges.
4302 */
4303 PPGMMAPPING pCur;
4304 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4305 {
4306 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4307 "%08x - %08x %s\n",
4308 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4309 if (RT_FAILURE(rc))
4310 return rc;
4311 }
4312
4313 return VINF_SUCCESS;
4314}
4315
4316
4317/**
4318 * The '.pgmsync' command.
4319 *
4320 * @returns VBox status.
4321 * @param pCmd Pointer to the command descriptor (as registered).
4322 * @param pCmdHlp Pointer to command helper functions.
4323 * @param pVM Pointer to the current VM (if any).
4324 * @param paArgs Pointer to (readonly) array of arguments.
4325 * @param cArgs Number of arguments in the array.
4326 */
4327static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4328{
4329 /*
4330 * Validate input.
4331 */
4332 if (!pVM)
4333 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4334
4335 /*
4336 * Force page directory sync.
4337 */
4338 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4339
4340 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4341 if (RT_FAILURE(rc))
4342 return rc;
4343
4344 return VINF_SUCCESS;
4345}
4346
4347
4348#ifdef VBOX_STRICT
4349/**
4350 * The '.pgmassertcr3' command.
4351 *
4352 * @returns VBox status.
4353 * @param pCmd Pointer to the command descriptor (as registered).
4354 * @param pCmdHlp Pointer to command helper functions.
4355 * @param pVM Pointer to the current VM (if any).
4356 * @param paArgs Pointer to (readonly) array of arguments.
4357 * @param cArgs Number of arguments in the array.
4358 */
4359static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4360{
4361 /*
4362 * Validate input.
4363 */
4364 if (!pVM)
4365 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4366
4367 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4368 if (RT_FAILURE(rc))
4369 return rc;
4370
4371 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4372
4373 return VINF_SUCCESS;
4374}
4375#endif /* VBOX_STRICT */
4376
4377
4378/**
4379 * The '.pgmsyncalways' command.
4380 *
4381 * @returns VBox status.
4382 * @param pCmd Pointer to the command descriptor (as registered).
4383 * @param pCmdHlp Pointer to command helper functions.
4384 * @param pVM Pointer to the current VM (if any).
4385 * @param paArgs Pointer to (readonly) array of arguments.
4386 * @param cArgs Number of arguments in the array.
4387 */
4388static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4389{
4390 /*
4391 * Validate input.
4392 */
4393 if (!pVM)
4394 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4395
4396 /*
4397 * Force page directory sync.
4398 */
4399 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4400 {
4401 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4402 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4403 }
4404 else
4405 {
4406 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4407 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4408 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4409 }
4410}
4411
4412#endif /* VBOX_WITH_DEBUGGER */
4413
4414/**
4415 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4416 */
4417typedef struct PGMCHECKINTARGS
4418{
4419 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4420 PPGMPHYSHANDLER pPrevPhys;
4421 PPGMVIRTHANDLER pPrevVirt;
4422 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4423 PVM pVM;
4424} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4425
4426/**
4427 * Validate a node in the physical handler tree.
4428 *
4429 * @returns 0 on if ok, other wise 1.
4430 * @param pNode The handler node.
4431 * @param pvUser pVM.
4432 */
4433static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4434{
4435 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4436 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4437 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4438 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4439 AssertReleaseMsg( !pArgs->pPrevPhys
4440 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4441 ("pPrevPhys=%p %RGp-%RGp %s\n"
4442 " pCur=%p %RGp-%RGp %s\n",
4443 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4444 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4445 pArgs->pPrevPhys = pCur;
4446 return 0;
4447}
4448
4449
4450/**
4451 * Validate a node in the virtual handler tree.
4452 *
4453 * @returns 0 on if ok, other wise 1.
4454 * @param pNode The handler node.
4455 * @param pvUser pVM.
4456 */
4457static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4458{
4459 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4460 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4461 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4462 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4463 AssertReleaseMsg( !pArgs->pPrevVirt
4464 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4465 ("pPrevVirt=%p %RGv-%RGv %s\n"
4466 " pCur=%p %RGv-%RGv %s\n",
4467 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4468 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4469 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4470 {
4471 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4472 ("pCur=%p %RGv-%RGv %s\n"
4473 "iPage=%d offVirtHandle=%#x expected %#x\n",
4474 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4475 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4476 }
4477 pArgs->pPrevVirt = pCur;
4478 return 0;
4479}
4480
4481
4482/**
4483 * Validate a node in the virtual handler tree.
4484 *
4485 * @returns 0 on if ok, other wise 1.
4486 * @param pNode The handler node.
4487 * @param pvUser pVM.
4488 */
4489static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4490{
4491 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4492 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4493 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4494 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4495 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4496 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4497 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4498 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4499 " pCur=%p %RGp-%RGp\n",
4500 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4501 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4502 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4503 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4504 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4505 " pCur=%p %RGp-%RGp\n",
4506 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4507 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4508 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4509 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4510 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4511 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4512 {
4513 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4514 for (;;)
4515 {
4516 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4517 AssertReleaseMsg(pCur2 != pCur,
4518 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4519 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4520 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4521 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4522 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4523 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4524 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4525 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4526 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4527 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4528 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4529 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4530 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4531 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4532 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4533 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4534 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4535 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4536 break;
4537 }
4538 }
4539
4540 pArgs->pPrevPhys2Virt = pCur;
4541 return 0;
4542}
4543
4544
4545/**
4546 * Perform an integrity check on the PGM component.
4547 *
4548 * @returns VINF_SUCCESS if everything is fine.
4549 * @returns VBox error status after asserting on integrity breach.
4550 * @param pVM The VM handle.
4551 */
4552VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4553{
4554 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4555
4556 /*
4557 * Check the trees.
4558 */
4559 int cErrors = 0;
4560 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4561 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4562 PGMCHECKINTARGS Args = s_LeftToRight;
4563 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4564 Args = s_RightToLeft;
4565 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4566 Args = s_LeftToRight;
4567 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4568 Args = s_RightToLeft;
4569 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4570 Args = s_LeftToRight;
4571 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4572 Args = s_RightToLeft;
4573 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4574 Args = s_LeftToRight;
4575 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4576 Args = s_RightToLeft;
4577 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4578
4579 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4580}
4581
4582
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette