VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 17493

Last change on this file since 17493 was 17492, checked in by vboxsync, 16 years ago

Bugfix

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 220.2 KB
Line 
1/* $Id: PGM.cpp 17492 2009-03-06 16:41:25Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
688#include "PGMBth.h"
689#include "PGMGstDefs.h"
690#include "PGMGst.h"
691#undef BTH_PGMPOOLKIND_PT_FOR_PT
692#undef BTH_PGMPOOLKIND_ROOT
693#undef PGM_BTH_NAME
694#undef PGM_BTH_NAME_RC_STR
695#undef PGM_BTH_NAME_R0_STR
696#undef PGM_GST_TYPE
697#undef PGM_GST_NAME
698#undef PGM_GST_NAME_RC_STR
699#undef PGM_GST_NAME_R0_STR
700
701/* Guest - protected mode */
702#define PGM_GST_TYPE PGM_TYPE_PROT
703#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
704#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
705#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
706#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
707#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
708#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
709#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
710#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
711#include "PGMBth.h"
712#include "PGMGstDefs.h"
713#include "PGMGst.h"
714#undef BTH_PGMPOOLKIND_PT_FOR_PT
715#undef BTH_PGMPOOLKIND_ROOT
716#undef PGM_BTH_NAME
717#undef PGM_BTH_NAME_RC_STR
718#undef PGM_BTH_NAME_R0_STR
719#undef PGM_GST_TYPE
720#undef PGM_GST_NAME
721#undef PGM_GST_NAME_RC_STR
722#undef PGM_GST_NAME_R0_STR
723
724/* Guest - 32-bit mode */
725#define PGM_GST_TYPE PGM_TYPE_32BIT
726#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
727#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
728#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
729#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
730#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
731#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
732#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
733#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
734#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
735#include "PGMBth.h"
736#include "PGMGstDefs.h"
737#include "PGMGst.h"
738#undef BTH_PGMPOOLKIND_PT_FOR_BIG
739#undef BTH_PGMPOOLKIND_PT_FOR_PT
740#undef BTH_PGMPOOLKIND_ROOT
741#undef PGM_BTH_NAME
742#undef PGM_BTH_NAME_RC_STR
743#undef PGM_BTH_NAME_R0_STR
744#undef PGM_GST_TYPE
745#undef PGM_GST_NAME
746#undef PGM_GST_NAME_RC_STR
747#undef PGM_GST_NAME_R0_STR
748
749#undef PGM_SHW_TYPE
750#undef PGM_SHW_NAME
751#undef PGM_SHW_NAME_RC_STR
752#undef PGM_SHW_NAME_R0_STR
753
754
755/*
756 * Shadow - PAE mode
757 */
758#define PGM_SHW_TYPE PGM_TYPE_PAE
759#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
760#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
761#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
762#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
763#include "PGMShw.h"
764
765/* Guest - real mode */
766#define PGM_GST_TYPE PGM_TYPE_REAL
767#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
768#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
769#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
770#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
771#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
772#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
773#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
774#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
775#include "PGMGstDefs.h"
776#include "PGMBth.h"
777#undef BTH_PGMPOOLKIND_PT_FOR_PT
778#undef BTH_PGMPOOLKIND_ROOT
779#undef PGM_BTH_NAME
780#undef PGM_BTH_NAME_RC_STR
781#undef PGM_BTH_NAME_R0_STR
782#undef PGM_GST_TYPE
783#undef PGM_GST_NAME
784#undef PGM_GST_NAME_RC_STR
785#undef PGM_GST_NAME_R0_STR
786
787/* Guest - protected mode */
788#define PGM_GST_TYPE PGM_TYPE_PROT
789#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
790#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
791#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
792#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
793#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
794#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
795#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
796#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
797#include "PGMGstDefs.h"
798#include "PGMBth.h"
799#undef BTH_PGMPOOLKIND_PT_FOR_PT
800#undef BTH_PGMPOOLKIND_ROOT
801#undef PGM_BTH_NAME
802#undef PGM_BTH_NAME_RC_STR
803#undef PGM_BTH_NAME_R0_STR
804#undef PGM_GST_TYPE
805#undef PGM_GST_NAME
806#undef PGM_GST_NAME_RC_STR
807#undef PGM_GST_NAME_R0_STR
808
809/* Guest - 32-bit mode */
810#define PGM_GST_TYPE PGM_TYPE_32BIT
811#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
812#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
813#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
814#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
815#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
816#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
817#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
818#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
819#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
820#include "PGMGstDefs.h"
821#include "PGMBth.h"
822#undef BTH_PGMPOOLKIND_PT_FOR_BIG
823#undef BTH_PGMPOOLKIND_PT_FOR_PT
824#undef BTH_PGMPOOLKIND_ROOT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833/* Guest - PAE mode */
834#define PGM_GST_TYPE PGM_TYPE_PAE
835#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
836#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
837#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
838#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
839#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
840#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
841#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
842#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
843#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
844#include "PGMBth.h"
845#include "PGMGstDefs.h"
846#include "PGMGst.h"
847#undef BTH_PGMPOOLKIND_PT_FOR_BIG
848#undef BTH_PGMPOOLKIND_PT_FOR_PT
849#undef BTH_PGMPOOLKIND_ROOT
850#undef PGM_BTH_NAME
851#undef PGM_BTH_NAME_RC_STR
852#undef PGM_BTH_NAME_R0_STR
853#undef PGM_GST_TYPE
854#undef PGM_GST_NAME
855#undef PGM_GST_NAME_RC_STR
856#undef PGM_GST_NAME_R0_STR
857
858#undef PGM_SHW_TYPE
859#undef PGM_SHW_NAME
860#undef PGM_SHW_NAME_RC_STR
861#undef PGM_SHW_NAME_R0_STR
862
863
864/*
865 * Shadow - AMD64 mode
866 */
867#define PGM_SHW_TYPE PGM_TYPE_AMD64
868#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
869#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
870#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
871#include "PGMShw.h"
872
873#ifdef VBOX_WITH_64_BITS_GUESTS
874/* Guest - AMD64 mode */
875# define PGM_GST_TYPE PGM_TYPE_AMD64
876# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
877# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
878# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
879# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
880# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
881# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
882# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
883# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
884# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
885# include "PGMBth.h"
886# include "PGMGstDefs.h"
887# include "PGMGst.h"
888# undef BTH_PGMPOOLKIND_PT_FOR_BIG
889# undef BTH_PGMPOOLKIND_PT_FOR_PT
890# undef BTH_PGMPOOLKIND_ROOT
891# undef PGM_BTH_NAME
892# undef PGM_BTH_NAME_RC_STR
893# undef PGM_BTH_NAME_R0_STR
894# undef PGM_GST_TYPE
895# undef PGM_GST_NAME
896# undef PGM_GST_NAME_RC_STR
897# undef PGM_GST_NAME_R0_STR
898#endif /* VBOX_WITH_64_BITS_GUESTS */
899
900#undef PGM_SHW_TYPE
901#undef PGM_SHW_NAME
902#undef PGM_SHW_NAME_RC_STR
903#undef PGM_SHW_NAME_R0_STR
904
905
906/*
907 * Shadow - Nested paging mode
908 */
909#define PGM_SHW_TYPE PGM_TYPE_NESTED
910#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
911#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
912#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
913#include "PGMShw.h"
914
915/* Guest - real mode */
916#define PGM_GST_TYPE PGM_TYPE_REAL
917#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
918#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
919#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
920#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
921#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
922#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
923#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
924#include "PGMGstDefs.h"
925#include "PGMBth.h"
926#undef BTH_PGMPOOLKIND_PT_FOR_PT
927#undef PGM_BTH_NAME
928#undef PGM_BTH_NAME_RC_STR
929#undef PGM_BTH_NAME_R0_STR
930#undef PGM_GST_TYPE
931#undef PGM_GST_NAME
932#undef PGM_GST_NAME_RC_STR
933#undef PGM_GST_NAME_R0_STR
934
935/* Guest - protected mode */
936#define PGM_GST_TYPE PGM_TYPE_PROT
937#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
938#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
939#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
940#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
941#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
942#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
943#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
944#include "PGMGstDefs.h"
945#include "PGMBth.h"
946#undef BTH_PGMPOOLKIND_PT_FOR_PT
947#undef PGM_BTH_NAME
948#undef PGM_BTH_NAME_RC_STR
949#undef PGM_BTH_NAME_R0_STR
950#undef PGM_GST_TYPE
951#undef PGM_GST_NAME
952#undef PGM_GST_NAME_RC_STR
953#undef PGM_GST_NAME_R0_STR
954
955/* Guest - 32-bit mode */
956#define PGM_GST_TYPE PGM_TYPE_32BIT
957#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
958#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
959#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
960#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
961#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
962#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
963#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
964#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
965#include "PGMGstDefs.h"
966#include "PGMBth.h"
967#undef BTH_PGMPOOLKIND_PT_FOR_BIG
968#undef BTH_PGMPOOLKIND_PT_FOR_PT
969#undef PGM_BTH_NAME
970#undef PGM_BTH_NAME_RC_STR
971#undef PGM_BTH_NAME_R0_STR
972#undef PGM_GST_TYPE
973#undef PGM_GST_NAME
974#undef PGM_GST_NAME_RC_STR
975#undef PGM_GST_NAME_R0_STR
976
977/* Guest - PAE mode */
978#define PGM_GST_TYPE PGM_TYPE_PAE
979#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
980#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
981#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
982#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
983#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
984#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
985#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
986#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
987#include "PGMGstDefs.h"
988#include "PGMBth.h"
989#undef BTH_PGMPOOLKIND_PT_FOR_BIG
990#undef BTH_PGMPOOLKIND_PT_FOR_PT
991#undef PGM_BTH_NAME
992#undef PGM_BTH_NAME_RC_STR
993#undef PGM_BTH_NAME_R0_STR
994#undef PGM_GST_TYPE
995#undef PGM_GST_NAME
996#undef PGM_GST_NAME_RC_STR
997#undef PGM_GST_NAME_R0_STR
998
999#ifdef VBOX_WITH_64_BITS_GUESTS
1000/* Guest - AMD64 mode */
1001# define PGM_GST_TYPE PGM_TYPE_AMD64
1002# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1003# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1004# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1005# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1006# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1007# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1008# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1009# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1010# include "PGMGstDefs.h"
1011# include "PGMBth.h"
1012# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1013# undef BTH_PGMPOOLKIND_PT_FOR_PT
1014# undef PGM_BTH_NAME
1015# undef PGM_BTH_NAME_RC_STR
1016# undef PGM_BTH_NAME_R0_STR
1017# undef PGM_GST_TYPE
1018# undef PGM_GST_NAME
1019# undef PGM_GST_NAME_RC_STR
1020# undef PGM_GST_NAME_R0_STR
1021#endif /* VBOX_WITH_64_BITS_GUESTS */
1022
1023#undef PGM_SHW_TYPE
1024#undef PGM_SHW_NAME
1025#undef PGM_SHW_NAME_RC_STR
1026#undef PGM_SHW_NAME_R0_STR
1027
1028
1029/*
1030 * Shadow - EPT
1031 */
1032#define PGM_SHW_TYPE PGM_TYPE_EPT
1033#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1034#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1035#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1036#include "PGMShw.h"
1037
1038/* Guest - real mode */
1039#define PGM_GST_TYPE PGM_TYPE_REAL
1040#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1041#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1042#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1043#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1044#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1045#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1046#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1047#include "PGMGstDefs.h"
1048#include "PGMBth.h"
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058/* Guest - protected mode */
1059#define PGM_GST_TYPE PGM_TYPE_PROT
1060#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1061#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1064#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1067#include "PGMGstDefs.h"
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_PT
1070#undef PGM_BTH_NAME
1071#undef PGM_BTH_NAME_RC_STR
1072#undef PGM_BTH_NAME_R0_STR
1073#undef PGM_GST_TYPE
1074#undef PGM_GST_NAME
1075#undef PGM_GST_NAME_RC_STR
1076#undef PGM_GST_NAME_R0_STR
1077
1078/* Guest - 32-bit mode */
1079#define PGM_GST_TYPE PGM_TYPE_32BIT
1080#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1081#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1082#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1083#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1084#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1085#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1086#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1087#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1088#include "PGMGstDefs.h"
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_RC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_RC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100/* Guest - PAE mode */
1101#define PGM_GST_TYPE PGM_TYPE_PAE
1102#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1103#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1104#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1105#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1106#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1107#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1108#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1109#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1110#include "PGMGstDefs.h"
1111#include "PGMBth.h"
1112#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1113#undef BTH_PGMPOOLKIND_PT_FOR_PT
1114#undef PGM_BTH_NAME
1115#undef PGM_BTH_NAME_RC_STR
1116#undef PGM_BTH_NAME_R0_STR
1117#undef PGM_GST_TYPE
1118#undef PGM_GST_NAME
1119#undef PGM_GST_NAME_RC_STR
1120#undef PGM_GST_NAME_R0_STR
1121
1122#ifdef VBOX_WITH_64_BITS_GUESTS
1123/* Guest - AMD64 mode */
1124# define PGM_GST_TYPE PGM_TYPE_AMD64
1125# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1126# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1127# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1128# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1129# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1130# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1131# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1132# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1133# include "PGMGstDefs.h"
1134# include "PGMBth.h"
1135# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1136# undef BTH_PGMPOOLKIND_PT_FOR_PT
1137# undef PGM_BTH_NAME
1138# undef PGM_BTH_NAME_RC_STR
1139# undef PGM_BTH_NAME_R0_STR
1140# undef PGM_GST_TYPE
1141# undef PGM_GST_NAME
1142# undef PGM_GST_NAME_RC_STR
1143# undef PGM_GST_NAME_R0_STR
1144#endif /* VBOX_WITH_64_BITS_GUESTS */
1145
1146#undef PGM_SHW_TYPE
1147#undef PGM_SHW_NAME
1148#undef PGM_SHW_NAME_RC_STR
1149#undef PGM_SHW_NAME_R0_STR
1150
1151
1152
1153/**
1154 * Initiates the paging of VM.
1155 *
1156 * @returns VBox status code.
1157 * @param pVM Pointer to VM structure.
1158 */
1159VMMR3DECL(int) PGMR3Init(PVM pVM)
1160{
1161 LogFlow(("PGMR3Init:\n"));
1162 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1163 int rc;
1164
1165 /*
1166 * Assert alignment and sizes.
1167 */
1168 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1169
1170 /*
1171 * Init the structure.
1172 */
1173 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1174 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1175 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1176 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1177 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1178 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1179#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1180 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1181#endif
1182 pVM->pgm.s.fA20Enabled = true;
1183 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1184 pVM->pgm.s.pGstPaePdptR3 = NULL;
1185#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1186 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1187#endif
1188 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1189 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1190 {
1191 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1192#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1193 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1194#endif
1195 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1196 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1197 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1198 }
1199
1200 rc = CFGMR3QueryBoolDef(pCfgPGM, "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, false);
1201 AssertLogRelRCReturn(rc, rc);
1202
1203#if HC_ARCH_BITS == 64
1204 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1205#else
1206 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1207#endif
1208 AssertLogRelRCReturn(rc, rc);
1209 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1210 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1211
1212 /*
1213 * Get the configured RAM size - to estimate saved state size.
1214 */
1215 uint64_t cbRam;
1216 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1217 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1218 cbRam = pVM->pgm.s.cbRamSize = 0;
1219 else if (RT_SUCCESS(rc))
1220 {
1221 if (cbRam < PAGE_SIZE)
1222 cbRam = 0;
1223 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1224 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1225 }
1226 else
1227 {
1228 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1229 return rc;
1230 }
1231
1232 /*
1233 * Register callbacks, string formatters and the saved state data unit.
1234 */
1235#ifdef VBOX_STRICT
1236 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1237#endif
1238 PGMRegisterStringFormatTypes();
1239
1240 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1241 NULL, pgmR3Save, NULL,
1242 NULL, pgmR3Load, NULL);
1243 if (RT_FAILURE(rc))
1244 return rc;
1245
1246 /*
1247 * Initialize the PGM critical section and flush the phys TLBs
1248 */
1249 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1250 AssertRCReturn(rc, rc);
1251
1252 PGMR3PhysChunkInvalidateTLB(pVM);
1253 PGMPhysInvalidatePageR3MapTLB(pVM);
1254 PGMPhysInvalidatePageR0MapTLB(pVM);
1255 PGMPhysInvalidatePageGCMapTLB(pVM);
1256
1257 /*
1258 * Trees
1259 */
1260 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1261 if (RT_SUCCESS(rc))
1262 {
1263 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1264 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1265
1266 /*
1267 * Alocate the zero page.
1268 */
1269 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1270 }
1271 if (RT_SUCCESS(rc))
1272 {
1273 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1274 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1275 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1276 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1277 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1278
1279 /*
1280 * Init the paging.
1281 */
1282 rc = pgmR3InitPaging(pVM);
1283 }
1284 if (RT_SUCCESS(rc))
1285 {
1286 /*
1287 * Init the page pool.
1288 */
1289 rc = pgmR3PoolInit(pVM);
1290 }
1291#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1292 if (RT_SUCCESS(rc))
1293 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1294#endif
1295 if (RT_SUCCESS(rc))
1296 {
1297 /*
1298 * Info & statistics
1299 */
1300 DBGFR3InfoRegisterInternal(pVM, "mode",
1301 "Shows the current paging mode. "
1302 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1303 pgmR3InfoMode);
1304 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1305 "Dumps all the entries in the top level paging table. No arguments.",
1306 pgmR3InfoCr3);
1307 DBGFR3InfoRegisterInternal(pVM, "phys",
1308 "Dumps all the physical address ranges. No arguments.",
1309 pgmR3PhysInfo);
1310 DBGFR3InfoRegisterInternal(pVM, "handlers",
1311 "Dumps physical, virtual and hyper virtual handlers. "
1312 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1313 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1314 pgmR3InfoHandlers);
1315 DBGFR3InfoRegisterInternal(pVM, "mappings",
1316 "Dumps guest mappings.",
1317 pgmR3MapInfo);
1318
1319 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1320 STAM_REL_REG(pVM, &pVM->pgm.s.cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1321#ifdef VBOX_WITH_STATISTICS
1322 pgmR3InitStats(pVM);
1323#endif
1324#ifdef VBOX_WITH_DEBUGGER
1325 /*
1326 * Debugger commands.
1327 */
1328 static bool fRegisteredCmds = false;
1329 if (!fRegisteredCmds)
1330 {
1331 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1332 if (RT_SUCCESS(rc))
1333 fRegisteredCmds = true;
1334 }
1335#endif
1336 return VINF_SUCCESS;
1337 }
1338
1339 /* Almost no cleanup necessary, MM frees all memory. */
1340 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1341
1342 return rc;
1343}
1344
1345
1346/**
1347 * Initializes the per-VCPU PGM.
1348 *
1349 * @returns VBox status code.
1350 * @param pVM The VM to operate on.
1351 */
1352VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1353{
1354 LogFlow(("PGMR3InitCPU\n"));
1355 return VINF_SUCCESS;
1356}
1357
1358
1359/**
1360 * Init paging.
1361 *
1362 * Since we need to check what mode the host is operating in before we can choose
1363 * the right paging functions for the host we have to delay this until R0 has
1364 * been initialized.
1365 *
1366 * @returns VBox status code.
1367 * @param pVM VM handle.
1368 */
1369static int pgmR3InitPaging(PVM pVM)
1370{
1371 /*
1372 * Force a recalculation of modes and switcher so everyone gets notified.
1373 */
1374 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1375 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1376 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1377
1378 /*
1379 * Allocate static mapping space for whatever the cr3 register
1380 * points to and in the case of PAE mode to the 4 PDs.
1381 */
1382 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1383 if (RT_FAILURE(rc))
1384 {
1385 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1386 return rc;
1387 }
1388 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1389
1390 /*
1391 * Allocate pages for the three possible intermediate contexts
1392 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1393 * for the sake of simplicity. The AMD64 uses the PAE for the
1394 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1395 *
1396 * We assume that two page tables will be enought for the core code
1397 * mappings (HC virtual and identity).
1398 */
1399 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1400 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1401 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1402 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1403 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1404 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1405 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1406 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1407 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1408 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1409 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1410 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1411 if ( !pVM->pgm.s.pInterPD
1412 || !pVM->pgm.s.apInterPTs[0]
1413 || !pVM->pgm.s.apInterPTs[1]
1414 || !pVM->pgm.s.apInterPaePTs[0]
1415 || !pVM->pgm.s.apInterPaePTs[1]
1416 || !pVM->pgm.s.apInterPaePDs[0]
1417 || !pVM->pgm.s.apInterPaePDs[1]
1418 || !pVM->pgm.s.apInterPaePDs[2]
1419 || !pVM->pgm.s.apInterPaePDs[3]
1420 || !pVM->pgm.s.pInterPaePDPT
1421 || !pVM->pgm.s.pInterPaePDPT64
1422 || !pVM->pgm.s.pInterPaePML4)
1423 {
1424 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1425 return VERR_NO_PAGE_MEMORY;
1426 }
1427
1428 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1429 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1430 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1431 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1432 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1433 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1434
1435 /*
1436 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1437 */
1438 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1439 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1440 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1441
1442 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1443 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1444
1445 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1446 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1447 {
1448 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1449 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1450 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1451 }
1452
1453 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1454 {
1455 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1456 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1457 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1458 }
1459
1460 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1461 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1462 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1463 | HCPhysInterPaePDPT64;
1464
1465 /*
1466 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1467 * We allocate pages for all three posibilities in order to simplify mappings and
1468 * avoid resource failure during mode switches. So, we need to cover all levels of the
1469 * of the first 4GB down to PD level.
1470 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1471 */
1472#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1473 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1474# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1475 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1476# endif
1477 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1478 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1479 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1480 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1481 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1482 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1483 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1484# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1485 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1486 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1487 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1488 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1489# endif
1490 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1491# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1492 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1493# endif
1494 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1495# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1496 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1497# endif
1498#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1499
1500#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1501 if ( !pVM->pgm.s.pShw32BitPdR3
1502 || !pVM->pgm.s.apShwPaePDsR3[0]
1503 || !pVM->pgm.s.apShwPaePDsR3[1]
1504 || !pVM->pgm.s.apShwPaePDsR3[2]
1505 || !pVM->pgm.s.apShwPaePDsR3[3]
1506 || !pVM->pgm.s.pShwPaePdptR3
1507 || !pVM->pgm.s.pShwNestedRootR3)
1508 {
1509 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1510 return VERR_NO_PAGE_MEMORY;
1511 }
1512#endif
1513
1514 /* get physical addresses. */
1515#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1516 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1517 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1518 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1519 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1520 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1521 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1522 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1523 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1524#endif
1525
1526 /*
1527 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1528 */
1529#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1530 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1531 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1532 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1533
1534 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1535 {
1536 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1537 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1538 /* The flags will be corrected when entering and leaving long mode. */
1539 }
1540#endif
1541
1542 /*
1543 * Initialize paging workers and mode from current host mode
1544 * and the guest running in real mode.
1545 */
1546 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1547 switch (pVM->pgm.s.enmHostMode)
1548 {
1549 case SUPPAGINGMODE_32_BIT:
1550 case SUPPAGINGMODE_32_BIT_GLOBAL:
1551 case SUPPAGINGMODE_PAE:
1552 case SUPPAGINGMODE_PAE_GLOBAL:
1553 case SUPPAGINGMODE_PAE_NX:
1554 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1555 break;
1556
1557 case SUPPAGINGMODE_AMD64:
1558 case SUPPAGINGMODE_AMD64_GLOBAL:
1559 case SUPPAGINGMODE_AMD64_NX:
1560 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1561#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1562 if (ARCH_BITS != 64)
1563 {
1564 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1565 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1566 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1567 }
1568#endif
1569 break;
1570 default:
1571 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1572 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1573 }
1574 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1575#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1576 if (RT_SUCCESS(rc))
1577 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1578#endif
1579 if (RT_SUCCESS(rc))
1580 {
1581 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1582#if HC_ARCH_BITS == 64
1583# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1584 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp\n",
1585 pVM->pgm.s.HCPhysShw32BitPD,
1586 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1587 pVM->pgm.s.HCPhysShwPaePdpt));
1588# endif
1589 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1590 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1591 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1592 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1593 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1594 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1595 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1596#endif
1597
1598 return VINF_SUCCESS;
1599 }
1600
1601 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1602 return rc;
1603}
1604
1605
1606#ifdef VBOX_WITH_STATISTICS
1607/**
1608 * Init statistics
1609 */
1610static void pgmR3InitStats(PVM pVM)
1611{
1612 PPGM pPGM = &pVM->pgm.s;
1613 unsigned i;
1614
1615 /*
1616 * Note! The layout of this function matches the member layout exactly!
1617 */
1618
1619 /* Common - misc variables */
1620 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1621 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1622 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1623 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1624 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1625 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1626
1627 /* Common - stats */
1628#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1629 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1630 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1631 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1632 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1633 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1634 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1635#endif
1636 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1637 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1638 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1639 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1640 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1641 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1642
1643 /* R3 only: */
1644 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1645 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1646 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1647 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1648 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1649 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1650
1651 /* R0 only: */
1652 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1653 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1654 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1655 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1656 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1657 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1658 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1659 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1660 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1661 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1662 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1663 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1664 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1665 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1666 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1667 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1668 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1669 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1670 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1671 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1672 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1673 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1674 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1675 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1676 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1677 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1678 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1679 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1680 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1681 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1682 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1683 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1684 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1685 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1686 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1687 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1688
1689 /* GC only: */
1690 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1691 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1692 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1693 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1694
1695 /* RZ only: */
1696 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1697 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1698 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1699 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1700 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1701 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1702 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1703 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1704 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1705 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1706 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1707 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1708 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1709 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1710 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1711 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1712 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1713 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1714 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1715 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1716 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1717 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1718 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1719 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1720 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1721 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1722 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1723 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1724 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1725 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1726 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1727 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1728 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1729 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1730 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1731 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1732 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1733 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1734 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1735 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1736 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1737 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1738 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1739 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1740 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1741 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1742 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1743 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1744 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1745 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1746 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1747
1748 /* HC only: */
1749
1750 /* RZ & R3: */
1751 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1752 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1753 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1754 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1755 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1756 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1757 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1758 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1759 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1760 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1761 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1762 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1763 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1764 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1765 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1766 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1767 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1768 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1769 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1770 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1771 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1772 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1773 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1774 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1775 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1776 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1777 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1778 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1779 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1780 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1781 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1782 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1783 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1784 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1785 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1786 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1787 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1788 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1789 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1790 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1791 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1792 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1793 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1794 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1795 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1796 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1797 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1798/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1799 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1800 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1801 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1802 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1803 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1804 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1805
1806 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1807 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1808 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1809 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1810 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1811 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1812 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1813 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1814 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1815 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1816 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1817 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1818 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1819 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1820 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1821 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1822 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1823 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1824 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1825 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1826 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1827 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1828 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1829 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1830 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1831 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1832 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1833 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1834 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1835 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1836 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1837 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1838 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1839 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1840 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1841 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1842 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1843 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1844 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1845 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1846 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1847 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1848 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1849 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1850 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1851 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1852 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1853/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1854 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1855 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1856 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1857 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1858 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1859 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1860
1861}
1862#endif /* VBOX_WITH_STATISTICS */
1863
1864
1865/**
1866 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1867 *
1868 * The dynamic mapping area will also be allocated and initialized at this
1869 * time. We could allocate it during PGMR3Init of course, but the mapping
1870 * wouldn't be allocated at that time preventing us from setting up the
1871 * page table entries with the dummy page.
1872 *
1873 * @returns VBox status code.
1874 * @param pVM VM handle.
1875 */
1876VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1877{
1878 RTGCPTR GCPtr;
1879 int rc;
1880
1881#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1882 /*
1883 * Reserve space for mapping the paging pages into guest context.
1884 */
1885 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1886 AssertRCReturn(rc, rc);
1887 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1888 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1889#endif
1890
1891 /*
1892 * Reserve space for the dynamic mappings.
1893 */
1894 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1895 if (RT_SUCCESS(rc))
1896 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1897
1898 if ( RT_SUCCESS(rc)
1899 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1900 {
1901 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1902 if (RT_SUCCESS(rc))
1903 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1904 }
1905 if (RT_SUCCESS(rc))
1906 {
1907 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1908 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1909 }
1910 return rc;
1911}
1912
1913
1914/**
1915 * Ring-3 init finalizing.
1916 *
1917 * @returns VBox status code.
1918 * @param pVM The VM handle.
1919 */
1920VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1921{
1922 int rc;
1923
1924#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1925 /*
1926 * Map the paging pages into the guest context.
1927 */
1928 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1929 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1930
1931 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1932 AssertRCReturn(rc, rc);
1933 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1934 GCPtr += PAGE_SIZE;
1935 GCPtr += PAGE_SIZE; /* reserved page */
1936
1937 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1938 {
1939 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1940 AssertRCReturn(rc, rc);
1941 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1942 GCPtr += PAGE_SIZE;
1943 }
1944 /* A bit of paranoia is justified. */
1945 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1946 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1947 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1948 GCPtr += PAGE_SIZE; /* reserved page */
1949
1950 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1951 AssertRCReturn(rc, rc);
1952 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1953 GCPtr += PAGE_SIZE;
1954 GCPtr += PAGE_SIZE; /* reserved page */
1955#endif
1956
1957 /*
1958 * Reserve space for the dynamic mappings.
1959 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1960 */
1961 /* get the pointer to the page table entries. */
1962 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1963 AssertRelease(pMapping);
1964 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1965 const unsigned iPT = off >> X86_PD_SHIFT;
1966 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1967 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1968 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1969
1970 /* init cache */
1971 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1972 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1973 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1974
1975 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1976 {
1977 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1978 AssertRCReturn(rc, rc);
1979 }
1980
1981 /*
1982 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1983 * Intel only goes up to 36 bits, so we stick to 36 as well.
1984 */
1985 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1986 uint32_t u32Dummy, u32Features;
1987 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1988
1989 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1990 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1991 else
1992 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1993
1994 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1995 return rc;
1996}
1997
1998
1999/**
2000 * Applies relocations to data and code managed by this component.
2001 *
2002 * This function will be called at init and whenever the VMM need to relocate it
2003 * self inside the GC.
2004 *
2005 * @param pVM The VM.
2006 * @param offDelta Relocation delta relative to old location.
2007 */
2008VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2009{
2010 LogFlow(("PGMR3Relocate\n"));
2011
2012 /*
2013 * Paging stuff.
2014 */
2015 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2016 /** @todo move this into shadow and guest specific relocation functions. */
2017#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2018 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
2019 pVM->pgm.s.pShw32BitPdRC += offDelta;
2020#endif
2021 pVM->pgm.s.pGst32BitPdRC += offDelta;
2022 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
2023 {
2024#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2025 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
2026 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
2027#endif
2028 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
2029 }
2030 pVM->pgm.s.pGstPaePdptRC += offDelta;
2031#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2032 pVM->pgm.s.pShwPaePdptRC += offDelta;
2033#endif
2034
2035#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2036 pVM->pgm.s.pShwPageCR3RC += offDelta;
2037#endif
2038
2039 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2040 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
2041
2042 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
2043 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
2044 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
2045
2046 /*
2047 * Trees.
2048 */
2049 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2050
2051 /*
2052 * Ram ranges.
2053 */
2054 if (pVM->pgm.s.pRamRangesR3)
2055 {
2056 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
2057 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
2058 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2059 }
2060
2061 /*
2062 * Update the two page directories with all page table mappings.
2063 * (One or more of them have changed, that's why we're here.)
2064 */
2065 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2066 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2067 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2068
2069 /* Relocate GC addresses of Page Tables. */
2070 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2071 {
2072 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2073 {
2074 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2075 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2076 }
2077 }
2078
2079 /*
2080 * Dynamic page mapping area.
2081 */
2082 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2083 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2084 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2085
2086 /*
2087 * The Zero page.
2088 */
2089 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2090#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2091 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2092#else
2093 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2094#endif
2095
2096 /*
2097 * Physical and virtual handlers.
2098 */
2099 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2100 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2101 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2102
2103 /*
2104 * The page pool.
2105 */
2106 pgmR3PoolRelocate(pVM);
2107}
2108
2109
2110/**
2111 * Callback function for relocating a physical access handler.
2112 *
2113 * @returns 0 (continue enum)
2114 * @param pNode Pointer to a PGMPHYSHANDLER node.
2115 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2116 * not certain the delta will fit in a void pointer for all possible configs.
2117 */
2118static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2119{
2120 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2121 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2122 if (pHandler->pfnHandlerRC)
2123 pHandler->pfnHandlerRC += offDelta;
2124 if (pHandler->pvUserRC >= 0x10000)
2125 pHandler->pvUserRC += offDelta;
2126 return 0;
2127}
2128
2129
2130/**
2131 * Callback function for relocating a virtual access handler.
2132 *
2133 * @returns 0 (continue enum)
2134 * @param pNode Pointer to a PGMVIRTHANDLER node.
2135 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2136 * not certain the delta will fit in a void pointer for all possible configs.
2137 */
2138static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2139{
2140 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2141 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2142 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2143 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2144 Assert(pHandler->pfnHandlerRC);
2145 pHandler->pfnHandlerRC += offDelta;
2146 return 0;
2147}
2148
2149
2150/**
2151 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2152 *
2153 * @returns 0 (continue enum)
2154 * @param pNode Pointer to a PGMVIRTHANDLER node.
2155 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2156 * not certain the delta will fit in a void pointer for all possible configs.
2157 */
2158static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2159{
2160 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2161 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2162 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2163 Assert(pHandler->pfnHandlerRC);
2164 pHandler->pfnHandlerRC += offDelta;
2165 return 0;
2166}
2167
2168
2169/**
2170 * The VM is being reset.
2171 *
2172 * For the PGM component this means that any PD write monitors
2173 * needs to be removed.
2174 *
2175 * @param pVM VM handle.
2176 */
2177VMMR3DECL(void) PGMR3Reset(PVM pVM)
2178{
2179 LogFlow(("PGMR3Reset:\n"));
2180 VM_ASSERT_EMT(pVM);
2181
2182 pgmLock(pVM);
2183
2184 /*
2185 * Unfix any fixed mappings and disable CR3 monitoring.
2186 */
2187 pVM->pgm.s.fMappingsFixed = false;
2188 pVM->pgm.s.GCPtrMappingFixed = 0;
2189 pVM->pgm.s.cbMappingFixed = 0;
2190
2191 /* Exit the guest paging mode before the pgm pool gets reset.
2192 * Important to clean up the amd64 case.
2193 */
2194 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2195 AssertRC(rc);
2196#ifdef DEBUG
2197 DBGFR3InfoLog(pVM, "mappings", NULL);
2198 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2199#endif
2200
2201 /*
2202 * Reset the shadow page pool.
2203 */
2204 pgmR3PoolReset(pVM);
2205
2206 /*
2207 * Re-init other members.
2208 */
2209 pVM->pgm.s.fA20Enabled = true;
2210
2211 /*
2212 * Clear the FFs PGM owns.
2213 */
2214 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2215 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2216
2217 /*
2218 * Reset (zero) RAM pages.
2219 */
2220 rc = pgmR3PhysRamReset(pVM);
2221 if (RT_SUCCESS(rc))
2222 {
2223#ifdef VBOX_WITH_NEW_PHYS_CODE
2224 /*
2225 * Reset (zero) shadow ROM pages.
2226 */
2227 rc = pgmR3PhysRomReset(pVM);
2228#endif
2229 if (RT_SUCCESS(rc))
2230 {
2231 /*
2232 * Switch mode back to real mode.
2233 */
2234 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2235 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2236 }
2237 }
2238
2239 pgmUnlock(pVM);
2240 //return rc;
2241 AssertReleaseRC(rc);
2242}
2243
2244
2245#ifdef VBOX_STRICT
2246/**
2247 * VM state change callback for clearing fNoMorePhysWrites after
2248 * a snapshot has been created.
2249 */
2250static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2251{
2252 if (enmState == VMSTATE_RUNNING)
2253 pVM->pgm.s.fNoMorePhysWrites = false;
2254}
2255#endif
2256
2257
2258/**
2259 * Terminates the PGM.
2260 *
2261 * @returns VBox status code.
2262 * @param pVM Pointer to VM structure.
2263 */
2264VMMR3DECL(int) PGMR3Term(PVM pVM)
2265{
2266 PGMDeregisterStringFormatTypes();
2267 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2268}
2269
2270
2271/**
2272 * Terminates the per-VCPU PGM.
2273 *
2274 * Termination means cleaning up and freeing all resources,
2275 * the VM it self is at this point powered off or suspended.
2276 *
2277 * @returns VBox status code.
2278 * @param pVM The VM to operate on.
2279 */
2280VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2281{
2282 return 0;
2283}
2284
2285
2286/**
2287 * Execute state save operation.
2288 *
2289 * @returns VBox status code.
2290 * @param pVM VM Handle.
2291 * @param pSSM SSM operation handle.
2292 */
2293static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2294{
2295#ifdef VBOX_WITH_NEW_PHYS_CODE
2296 AssertReleaseFailed(); /** @todo */
2297#else
2298 PPGM pPGM = &pVM->pgm.s;
2299
2300 /* No more writes to physical memory after this point! */
2301 pVM->pgm.s.fNoMorePhysWrites = true;
2302
2303 /*
2304 * Save basic data (required / unaffected by relocation).
2305 */
2306#if 1
2307 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2308#else
2309 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2310#endif
2311 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2312 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2313 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2314 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2315 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2316 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2317 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2318 SSMR3PutU32(pSSM, ~0); /* Separator. */
2319
2320 /*
2321 * The guest mappings.
2322 */
2323 uint32_t i = 0;
2324 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2325 {
2326 SSMR3PutU32(pSSM, i);
2327 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2328 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2329 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2330 /* flags are done by the mapping owners! */
2331 }
2332 SSMR3PutU32(pSSM, ~0); /* terminator. */
2333
2334 /*
2335 * Ram range flags and bits.
2336 */
2337 i = 0;
2338 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2339 {
2340 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2341
2342 SSMR3PutU32(pSSM, i);
2343 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2344 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2345 SSMR3PutGCPhys(pSSM, pRam->cb);
2346 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2347
2348 /* Flags. */
2349 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2350 for (unsigned iPage = 0; iPage < cPages; iPage++)
2351 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2352
2353 /* any memory associated with the range. */
2354 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2355 {
2356 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2357 {
2358 if (pRam->paChunkR3Ptrs[iChunk])
2359 {
2360 SSMR3PutU8(pSSM, 1); /* chunk present */
2361 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2362 }
2363 else
2364 SSMR3PutU8(pSSM, 0); /* no chunk present */
2365 }
2366 }
2367 else if (pRam->pvR3)
2368 {
2369 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2370 if (RT_FAILURE(rc))
2371 {
2372 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2373 return rc;
2374 }
2375 }
2376 }
2377#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2378 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2379}
2380
2381
2382/**
2383 * Execute state load operation.
2384 *
2385 * @returns VBox status code.
2386 * @param pVM VM Handle.
2387 * @param pSSM SSM operation handle.
2388 * @param u32Version Data layout version.
2389 */
2390static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2391{
2392#ifdef VBOX_WITH_NEW_PHYS_CODE
2393 AssertReleaseFailed(); /** @todo */
2394#else
2395 /*
2396 * Validate version.
2397 */
2398 if (u32Version != PGM_SAVED_STATE_VERSION)
2399 {
2400 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2401 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2402 }
2403
2404 /*
2405 * Call the reset function to make sure all the memory is cleared.
2406 */
2407 PGMR3Reset(pVM);
2408
2409 /*
2410 * Load basic data (required / unaffected by relocation).
2411 */
2412 PPGM pPGM = &pVM->pgm.s;
2413#if 1
2414 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2415#else
2416 uint32_t u;
2417 SSMR3GetU32(pSSM, &u);
2418 pPGM->fMappingsFixed = u;
2419#endif
2420 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2421 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2422
2423 RTUINT cbRamSize;
2424 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2425 if (RT_FAILURE(rc))
2426 return rc;
2427 if (cbRamSize != pPGM->cbRamSize)
2428 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2429 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2430 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2431 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2432 RTUINT uGuestMode;
2433 SSMR3GetUInt(pSSM, &uGuestMode);
2434 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2435
2436 /* check separator. */
2437 uint32_t u32Sep;
2438 SSMR3GetU32(pSSM, &u32Sep);
2439 if (RT_FAILURE(rc))
2440 return rc;
2441 if (u32Sep != (uint32_t)~0)
2442 {
2443 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2444 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2445 }
2446
2447 /*
2448 * The guest mappings.
2449 */
2450 uint32_t i = 0;
2451 for (;; i++)
2452 {
2453 /* Check the seqence number / separator. */
2454 rc = SSMR3GetU32(pSSM, &u32Sep);
2455 if (RT_FAILURE(rc))
2456 return rc;
2457 if (u32Sep == ~0U)
2458 break;
2459 if (u32Sep != i)
2460 {
2461 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2462 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2463 }
2464
2465 /* get the mapping details. */
2466 char szDesc[256];
2467 szDesc[0] = '\0';
2468 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2469 if (RT_FAILURE(rc))
2470 return rc;
2471 RTGCPTR GCPtr;
2472 SSMR3GetGCPtr(pSSM, &GCPtr);
2473 RTGCPTR cPTs;
2474 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2475 if (RT_FAILURE(rc))
2476 return rc;
2477
2478 /* find matching range. */
2479 PPGMMAPPING pMapping;
2480 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2481 if ( pMapping->cPTs == cPTs
2482 && !strcmp(pMapping->pszDesc, szDesc))
2483 break;
2484 if (!pMapping)
2485 {
2486 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2487 cPTs, szDesc, GCPtr));
2488 AssertFailed();
2489 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2490 }
2491
2492 /* relocate it. */
2493 if (pMapping->GCPtr != GCPtr)
2494 {
2495 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2496 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2497 }
2498 else
2499 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2500 }
2501
2502 /*
2503 * Ram range flags and bits.
2504 */
2505 i = 0;
2506 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2507 {
2508 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2509 /* Check the seqence number / separator. */
2510 rc = SSMR3GetU32(pSSM, &u32Sep);
2511 if (RT_FAILURE(rc))
2512 return rc;
2513 if (u32Sep == ~0U)
2514 break;
2515 if (u32Sep != i)
2516 {
2517 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2518 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2519 }
2520
2521 /* Get the range details. */
2522 RTGCPHYS GCPhys;
2523 SSMR3GetGCPhys(pSSM, &GCPhys);
2524 RTGCPHYS GCPhysLast;
2525 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2526 RTGCPHYS cb;
2527 SSMR3GetGCPhys(pSSM, &cb);
2528 uint8_t fHaveBits;
2529 rc = SSMR3GetU8(pSSM, &fHaveBits);
2530 if (RT_FAILURE(rc))
2531 return rc;
2532 if (fHaveBits & ~1)
2533 {
2534 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2535 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2536 }
2537
2538 /* Match it up with the current range. */
2539 if ( GCPhys != pRam->GCPhys
2540 || GCPhysLast != pRam->GCPhysLast
2541 || cb != pRam->cb
2542 || fHaveBits != !!pRam->pvR3)
2543 {
2544 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2545 "State : %RGp-%RGp %RGp bytes %s\n",
2546 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2547 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2548 /*
2549 * If we're loading a state for debugging purpose, don't make a fuss if
2550 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2551 */
2552 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2553 || GCPhys < 8 * _1M)
2554 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2555
2556 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2557 while (cPages-- > 0)
2558 {
2559 uint16_t u16Ignore;
2560 SSMR3GetU16(pSSM, &u16Ignore);
2561 }
2562 continue;
2563 }
2564
2565 /* Flags. */
2566 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2567 for (unsigned iPage = 0; iPage < cPages; iPage++)
2568 {
2569 uint16_t u16 = 0;
2570 SSMR3GetU16(pSSM, &u16);
2571 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2572 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2573 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2574 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2575 }
2576
2577 /* any memory associated with the range. */
2578 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2579 {
2580 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2581 {
2582 uint8_t fValidChunk;
2583
2584 rc = SSMR3GetU8(pSSM, &fValidChunk);
2585 if (RT_FAILURE(rc))
2586 return rc;
2587 if (fValidChunk > 1)
2588 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2589
2590 if (fValidChunk)
2591 {
2592 if (!pRam->paChunkR3Ptrs[iChunk])
2593 {
2594 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2595 if (RT_FAILURE(rc))
2596 return rc;
2597 }
2598 Assert(pRam->paChunkR3Ptrs[iChunk]);
2599
2600 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2601 }
2602 /* else nothing to do */
2603 }
2604 }
2605 else if (pRam->pvR3)
2606 {
2607 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2608 if (RT_FAILURE(rc))
2609 {
2610 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2611 return rc;
2612 }
2613 }
2614 }
2615
2616 /*
2617 * We require a full resync now.
2618 */
2619 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2620 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2621 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2622 pPGM->fPhysCacheFlushPending = true;
2623 pgmR3HandlerPhysicalUpdateAll(pVM);
2624
2625 /*
2626 * Change the paging mode.
2627 */
2628 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2629
2630 /* Restore pVM->pgm.s.GCPhysCR3. */
2631 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2632 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2633 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2634 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2635 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2636 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2637 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2638 else
2639 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2640 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2641
2642 return rc;
2643#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2644}
2645
2646
2647/**
2648 * Show paging mode.
2649 *
2650 * @param pVM VM Handle.
2651 * @param pHlp The info helpers.
2652 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2653 */
2654static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2655{
2656 /* digest argument. */
2657 bool fGuest, fShadow, fHost;
2658 if (pszArgs)
2659 pszArgs = RTStrStripL(pszArgs);
2660 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2661 fShadow = fHost = fGuest = true;
2662 else
2663 {
2664 fShadow = fHost = fGuest = false;
2665 if (strstr(pszArgs, "guest"))
2666 fGuest = true;
2667 if (strstr(pszArgs, "shadow"))
2668 fShadow = true;
2669 if (strstr(pszArgs, "host"))
2670 fHost = true;
2671 }
2672
2673 /* print info. */
2674 if (fGuest)
2675 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2676 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2677 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2678 if (fShadow)
2679 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2680 if (fHost)
2681 {
2682 const char *psz;
2683 switch (pVM->pgm.s.enmHostMode)
2684 {
2685 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2686 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2687 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2688 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2689 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2690 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2691 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2692 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2693 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2694 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2695 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2696 default: psz = "unknown"; break;
2697 }
2698 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2699 }
2700}
2701
2702
2703/**
2704 * Dump registered MMIO ranges to the log.
2705 *
2706 * @param pVM VM Handle.
2707 * @param pHlp The info helpers.
2708 * @param pszArgs Arguments, ignored.
2709 */
2710static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2711{
2712 NOREF(pszArgs);
2713 pHlp->pfnPrintf(pHlp,
2714 "RAM ranges (pVM=%p)\n"
2715 "%.*s %.*s\n",
2716 pVM,
2717 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2718 sizeof(RTHCPTR) * 2, "pvHC ");
2719
2720 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2721 pHlp->pfnPrintf(pHlp,
2722 "%RGp-%RGp %RHv %s\n",
2723 pCur->GCPhys,
2724 pCur->GCPhysLast,
2725 pCur->pvR3,
2726 pCur->pszDesc);
2727}
2728
2729/**
2730 * Dump the page directory to the log.
2731 *
2732 * @param pVM VM Handle.
2733 * @param pHlp The info helpers.
2734 * @param pszArgs Arguments, ignored.
2735 */
2736static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2737{
2738/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2739 /* Big pages supported? */
2740 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2741
2742 /* Global pages supported? */
2743 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2744
2745 NOREF(pszArgs);
2746
2747 /*
2748 * Get page directory addresses.
2749 */
2750 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2751 Assert(pPDSrc);
2752 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2753
2754 /*
2755 * Iterate the page directory.
2756 */
2757 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2758 {
2759 X86PDE PdeSrc = pPDSrc->a[iPD];
2760 if (PdeSrc.n.u1Present)
2761 {
2762 if (PdeSrc.b.u1Size && fPSE)
2763 pHlp->pfnPrintf(pHlp,
2764 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2765 iPD,
2766 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2767 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2768 else
2769 pHlp->pfnPrintf(pHlp,
2770 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2771 iPD,
2772 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2773 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2774 }
2775 }
2776}
2777
2778
2779/**
2780 * Serivce a VMMCALLHOST_PGM_LOCK call.
2781 *
2782 * @returns VBox status code.
2783 * @param pVM The VM handle.
2784 */
2785VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2786{
2787 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2788 AssertRC(rc);
2789 return rc;
2790}
2791
2792
2793/**
2794 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2795 *
2796 * @returns PGM_TYPE_*.
2797 * @param pgmMode The mode value to convert.
2798 */
2799DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2800{
2801 switch (pgmMode)
2802 {
2803 case PGMMODE_REAL: return PGM_TYPE_REAL;
2804 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2805 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2806 case PGMMODE_PAE:
2807 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2808 case PGMMODE_AMD64:
2809 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2810 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2811 case PGMMODE_EPT: return PGM_TYPE_EPT;
2812 default:
2813 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2814 }
2815}
2816
2817
2818/**
2819 * Gets the index into the paging mode data array of a SHW+GST mode.
2820 *
2821 * @returns PGM::paPagingData index.
2822 * @param uShwType The shadow paging mode type.
2823 * @param uGstType The guest paging mode type.
2824 */
2825DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2826{
2827 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2828 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2829 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2830 + (uGstType - PGM_TYPE_REAL);
2831}
2832
2833
2834/**
2835 * Gets the index into the paging mode data array of a SHW+GST mode.
2836 *
2837 * @returns PGM::paPagingData index.
2838 * @param enmShw The shadow paging mode.
2839 * @param enmGst The guest paging mode.
2840 */
2841DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2842{
2843 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2844 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2845 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2846}
2847
2848
2849/**
2850 * Calculates the max data index.
2851 * @returns The number of entries in the paging data array.
2852 */
2853DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2854{
2855 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2856}
2857
2858
2859/**
2860 * Initializes the paging mode data kept in PGM::paModeData.
2861 *
2862 * @param pVM The VM handle.
2863 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2864 * This is used early in the init process to avoid trouble with PDM
2865 * not being initialized yet.
2866 */
2867static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2868{
2869 PPGMMODEDATA pModeData;
2870 int rc;
2871
2872 /*
2873 * Allocate the array on the first call.
2874 */
2875 if (!pVM->pgm.s.paModeData)
2876 {
2877 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2878 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2879 }
2880
2881 /*
2882 * Initialize the array entries.
2883 */
2884 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2885 pModeData->uShwType = PGM_TYPE_32BIT;
2886 pModeData->uGstType = PGM_TYPE_REAL;
2887 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2888 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2890
2891 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2892 pModeData->uShwType = PGM_TYPE_32BIT;
2893 pModeData->uGstType = PGM_TYPE_PROT;
2894 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2895 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2897
2898 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2899 pModeData->uShwType = PGM_TYPE_32BIT;
2900 pModeData->uGstType = PGM_TYPE_32BIT;
2901 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904
2905 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2906 pModeData->uShwType = PGM_TYPE_PAE;
2907 pModeData->uGstType = PGM_TYPE_REAL;
2908 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911
2912 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2913 pModeData->uShwType = PGM_TYPE_PAE;
2914 pModeData->uGstType = PGM_TYPE_PROT;
2915 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918
2919 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2920 pModeData->uShwType = PGM_TYPE_PAE;
2921 pModeData->uGstType = PGM_TYPE_32BIT;
2922 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925
2926 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2927 pModeData->uShwType = PGM_TYPE_PAE;
2928 pModeData->uGstType = PGM_TYPE_PAE;
2929 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2931 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932
2933#ifdef VBOX_WITH_64_BITS_GUESTS
2934 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2935 pModeData->uShwType = PGM_TYPE_AMD64;
2936 pModeData->uGstType = PGM_TYPE_AMD64;
2937 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2938 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2940#endif
2941
2942 /* The nested paging mode. */
2943 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2944 pModeData->uShwType = PGM_TYPE_NESTED;
2945 pModeData->uGstType = PGM_TYPE_REAL;
2946 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2947 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2948
2949 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2950 pModeData->uShwType = PGM_TYPE_NESTED;
2951 pModeData->uGstType = PGM_TYPE_PROT;
2952 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2953 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2954
2955 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2956 pModeData->uShwType = PGM_TYPE_NESTED;
2957 pModeData->uGstType = PGM_TYPE_32BIT;
2958 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2959 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2960
2961 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2962 pModeData->uShwType = PGM_TYPE_NESTED;
2963 pModeData->uGstType = PGM_TYPE_PAE;
2964 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2965 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966
2967#ifdef VBOX_WITH_64_BITS_GUESTS
2968 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2969 pModeData->uShwType = PGM_TYPE_NESTED;
2970 pModeData->uGstType = PGM_TYPE_AMD64;
2971 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2972 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2973#endif
2974
2975 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2976 switch (pVM->pgm.s.enmHostMode)
2977 {
2978#if HC_ARCH_BITS == 32
2979 case SUPPAGINGMODE_32_BIT:
2980 case SUPPAGINGMODE_32_BIT_GLOBAL:
2981 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2982 {
2983 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2984 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2985 }
2986# ifdef VBOX_WITH_64_BITS_GUESTS
2987 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2988 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2989# endif
2990 break;
2991
2992 case SUPPAGINGMODE_PAE:
2993 case SUPPAGINGMODE_PAE_NX:
2994 case SUPPAGINGMODE_PAE_GLOBAL:
2995 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2996 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2997 {
2998 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2999 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3000 }
3001# ifdef VBOX_WITH_64_BITS_GUESTS
3002 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3003 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3004# endif
3005 break;
3006#endif /* HC_ARCH_BITS == 32 */
3007
3008#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3009 case SUPPAGINGMODE_AMD64:
3010 case SUPPAGINGMODE_AMD64_GLOBAL:
3011 case SUPPAGINGMODE_AMD64_NX:
3012 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3013# ifdef VBOX_WITH_64_BITS_GUESTS
3014 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3015# else
3016 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3017# endif
3018 {
3019 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3020 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3021 }
3022 break;
3023#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3024
3025 default:
3026 AssertFailed();
3027 break;
3028 }
3029
3030 /* Extended paging (EPT) / Intel VT-x */
3031 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3032 pModeData->uShwType = PGM_TYPE_EPT;
3033 pModeData->uGstType = PGM_TYPE_REAL;
3034 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3035 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3036 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3037
3038 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3039 pModeData->uShwType = PGM_TYPE_EPT;
3040 pModeData->uGstType = PGM_TYPE_PROT;
3041 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3042 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3043 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3044
3045 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3046 pModeData->uShwType = PGM_TYPE_EPT;
3047 pModeData->uGstType = PGM_TYPE_32BIT;
3048 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3050 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3051
3052 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3053 pModeData->uShwType = PGM_TYPE_EPT;
3054 pModeData->uGstType = PGM_TYPE_PAE;
3055 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3056 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3057 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3058
3059#ifdef VBOX_WITH_64_BITS_GUESTS
3060 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3061 pModeData->uShwType = PGM_TYPE_EPT;
3062 pModeData->uGstType = PGM_TYPE_AMD64;
3063 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3064 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3065 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3066#endif
3067 return VINF_SUCCESS;
3068}
3069
3070
3071/**
3072 * Switch to different (or relocated in the relocate case) mode data.
3073 *
3074 * @param pVM The VM handle.
3075 * @param enmShw The the shadow paging mode.
3076 * @param enmGst The the guest paging mode.
3077 */
3078static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3079{
3080 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3081
3082 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3083 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3084
3085 /* shadow */
3086 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3087 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3088 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3089 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3090 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3091
3092 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3093 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3094
3095 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3096 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3097
3098
3099 /* guest */
3100 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3101 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3102 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3103 Assert(pVM->pgm.s.pfnR3GstGetPage);
3104 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3105 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3106#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3107 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
3108 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
3109#endif
3110#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3111 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3112 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3113 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3114 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3115#endif
3116 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3117 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3118 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3119#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3120 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3121 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3122#endif
3123#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3124 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3125 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3126#endif
3127 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3128 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3129 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3130#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3131 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3132 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3133#endif
3134#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3135 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3136 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3137#endif
3138
3139 /* both */
3140 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3141 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3142 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3143 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3144 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3145 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3146 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3147#ifdef VBOX_STRICT
3148 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3149#endif
3150 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3151 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3152
3153 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3154 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3155 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3156 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3157 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3158 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3159#ifdef VBOX_STRICT
3160 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3161#endif
3162 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3163 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3164
3165 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3166 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3167 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3168 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3169 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3170 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3171#ifdef VBOX_STRICT
3172 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3173#endif
3174 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3175 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3176}
3177
3178
3179/**
3180 * Calculates the shadow paging mode.
3181 *
3182 * @returns The shadow paging mode.
3183 * @param pVM VM handle.
3184 * @param enmGuestMode The guest mode.
3185 * @param enmHostMode The host mode.
3186 * @param enmShadowMode The current shadow mode.
3187 * @param penmSwitcher Where to store the switcher to use.
3188 * VMMSWITCHER_INVALID means no change.
3189 */
3190static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3191{
3192 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3193 switch (enmGuestMode)
3194 {
3195 /*
3196 * When switching to real or protected mode we don't change
3197 * anything since it's likely that we'll switch back pretty soon.
3198 *
3199 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3200 * and is supposed to determine which shadow paging and switcher to
3201 * use during init.
3202 */
3203 case PGMMODE_REAL:
3204 case PGMMODE_PROTECTED:
3205 if ( enmShadowMode != PGMMODE_INVALID
3206 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3207 break; /* (no change) */
3208
3209 switch (enmHostMode)
3210 {
3211 case SUPPAGINGMODE_32_BIT:
3212 case SUPPAGINGMODE_32_BIT_GLOBAL:
3213 enmShadowMode = PGMMODE_32_BIT;
3214 enmSwitcher = VMMSWITCHER_32_TO_32;
3215 break;
3216
3217 case SUPPAGINGMODE_PAE:
3218 case SUPPAGINGMODE_PAE_NX:
3219 case SUPPAGINGMODE_PAE_GLOBAL:
3220 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3221 enmShadowMode = PGMMODE_PAE;
3222 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3223#ifdef DEBUG_bird
3224 if (RTEnvExist("VBOX_32BIT"))
3225 {
3226 enmShadowMode = PGMMODE_32_BIT;
3227 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3228 }
3229#endif
3230 break;
3231
3232 case SUPPAGINGMODE_AMD64:
3233 case SUPPAGINGMODE_AMD64_GLOBAL:
3234 case SUPPAGINGMODE_AMD64_NX:
3235 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3236 enmShadowMode = PGMMODE_PAE;
3237 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3238#ifdef DEBUG_bird
3239 if (RTEnvExist("VBOX_32BIT"))
3240 {
3241 enmShadowMode = PGMMODE_32_BIT;
3242 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3243 }
3244#endif
3245 break;
3246
3247 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3248 }
3249 break;
3250
3251 case PGMMODE_32_BIT:
3252 switch (enmHostMode)
3253 {
3254 case SUPPAGINGMODE_32_BIT:
3255 case SUPPAGINGMODE_32_BIT_GLOBAL:
3256 enmShadowMode = PGMMODE_32_BIT;
3257 enmSwitcher = VMMSWITCHER_32_TO_32;
3258 break;
3259
3260 case SUPPAGINGMODE_PAE:
3261 case SUPPAGINGMODE_PAE_NX:
3262 case SUPPAGINGMODE_PAE_GLOBAL:
3263 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3264 enmShadowMode = PGMMODE_PAE;
3265 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3266#ifdef DEBUG_bird
3267 if (RTEnvExist("VBOX_32BIT"))
3268 {
3269 enmShadowMode = PGMMODE_32_BIT;
3270 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3271 }
3272#endif
3273 break;
3274
3275 case SUPPAGINGMODE_AMD64:
3276 case SUPPAGINGMODE_AMD64_GLOBAL:
3277 case SUPPAGINGMODE_AMD64_NX:
3278 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3279 enmShadowMode = PGMMODE_PAE;
3280 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3281#ifdef DEBUG_bird
3282 if (RTEnvExist("VBOX_32BIT"))
3283 {
3284 enmShadowMode = PGMMODE_32_BIT;
3285 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3286 }
3287#endif
3288 break;
3289
3290 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3291 }
3292 break;
3293
3294 case PGMMODE_PAE:
3295 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3296 switch (enmHostMode)
3297 {
3298 case SUPPAGINGMODE_32_BIT:
3299 case SUPPAGINGMODE_32_BIT_GLOBAL:
3300 enmShadowMode = PGMMODE_PAE;
3301 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3302 break;
3303
3304 case SUPPAGINGMODE_PAE:
3305 case SUPPAGINGMODE_PAE_NX:
3306 case SUPPAGINGMODE_PAE_GLOBAL:
3307 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3308 enmShadowMode = PGMMODE_PAE;
3309 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3310 break;
3311
3312 case SUPPAGINGMODE_AMD64:
3313 case SUPPAGINGMODE_AMD64_GLOBAL:
3314 case SUPPAGINGMODE_AMD64_NX:
3315 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3316 enmShadowMode = PGMMODE_PAE;
3317 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3318 break;
3319
3320 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3321 }
3322 break;
3323
3324 case PGMMODE_AMD64:
3325 case PGMMODE_AMD64_NX:
3326 switch (enmHostMode)
3327 {
3328 case SUPPAGINGMODE_32_BIT:
3329 case SUPPAGINGMODE_32_BIT_GLOBAL:
3330 enmShadowMode = PGMMODE_AMD64;
3331 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3332 break;
3333
3334 case SUPPAGINGMODE_PAE:
3335 case SUPPAGINGMODE_PAE_NX:
3336 case SUPPAGINGMODE_PAE_GLOBAL:
3337 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3338 enmShadowMode = PGMMODE_AMD64;
3339 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3340 break;
3341
3342 case SUPPAGINGMODE_AMD64:
3343 case SUPPAGINGMODE_AMD64_GLOBAL:
3344 case SUPPAGINGMODE_AMD64_NX:
3345 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3346 enmShadowMode = PGMMODE_AMD64;
3347 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3348 break;
3349
3350 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3351 }
3352 break;
3353
3354
3355 default:
3356 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3357 return PGMMODE_INVALID;
3358 }
3359 /* Override the shadow mode is nested paging is active. */
3360 if (HWACCMIsNestedPagingActive(pVM))
3361 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3362
3363 *penmSwitcher = enmSwitcher;
3364 return enmShadowMode;
3365}
3366
3367
3368/**
3369 * Performs the actual mode change.
3370 * This is called by PGMChangeMode and pgmR3InitPaging().
3371 *
3372 * @returns VBox status code.
3373 * @param pVM VM handle.
3374 * @param enmGuestMode The new guest mode. This is assumed to be different from
3375 * the current mode.
3376 */
3377VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3378{
3379 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3380 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3381
3382 /*
3383 * Calc the shadow mode and switcher.
3384 */
3385 VMMSWITCHER enmSwitcher;
3386 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3387 if (enmSwitcher != VMMSWITCHER_INVALID)
3388 {
3389 /*
3390 * Select new switcher.
3391 */
3392 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3393 if (RT_FAILURE(rc))
3394 {
3395 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3396 return rc;
3397 }
3398 }
3399
3400 /*
3401 * Exit old mode(s).
3402 */
3403 /* shadow */
3404 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3405 {
3406 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3407 if (PGM_SHW_PFN(Exit, pVM))
3408 {
3409 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3410 if (RT_FAILURE(rc))
3411 {
3412 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3413 return rc;
3414 }
3415 }
3416
3417 }
3418 else
3419 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3420
3421 /* guest */
3422 if (PGM_GST_PFN(Exit, pVM))
3423 {
3424 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3425 if (RT_FAILURE(rc))
3426 {
3427 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3428 return rc;
3429 }
3430 }
3431
3432 /*
3433 * Load new paging mode data.
3434 */
3435 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3436
3437 /*
3438 * Enter new shadow mode (if changed).
3439 */
3440 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3441 {
3442 int rc;
3443 pVM->pgm.s.enmShadowMode = enmShadowMode;
3444 switch (enmShadowMode)
3445 {
3446 case PGMMODE_32_BIT:
3447 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3448 break;
3449 case PGMMODE_PAE:
3450 case PGMMODE_PAE_NX:
3451 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3452 break;
3453 case PGMMODE_AMD64:
3454 case PGMMODE_AMD64_NX:
3455 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3456 break;
3457 case PGMMODE_NESTED:
3458 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3459 break;
3460 case PGMMODE_EPT:
3461 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3462 break;
3463 case PGMMODE_REAL:
3464 case PGMMODE_PROTECTED:
3465 default:
3466 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3467 return VERR_INTERNAL_ERROR;
3468 }
3469 if (RT_FAILURE(rc))
3470 {
3471 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3472 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3473 return rc;
3474 }
3475 }
3476
3477#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3478 /** @todo This is a bug!
3479 *
3480 * We must flush the PGM pool cache if the guest mode changes; we don't always
3481 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3482 * the shadow page tables.
3483 *
3484 * That only applies when switching between paging and non-paging modes.
3485 */
3486 /** @todo A20 setting */
3487 if ( pVM->pgm.s.CTX_SUFF(pPool)
3488 && !HWACCMIsNestedPagingActive(pVM)
3489 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3490 {
3491 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3492 pgmPoolFlushAll(pVM);
3493 }
3494#endif
3495
3496 /*
3497 * Enter the new guest and shadow+guest modes.
3498 */
3499 int rc = -1;
3500 int rc2 = -1;
3501 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3502 pVM->pgm.s.enmGuestMode = enmGuestMode;
3503 switch (enmGuestMode)
3504 {
3505 case PGMMODE_REAL:
3506 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3507 switch (pVM->pgm.s.enmShadowMode)
3508 {
3509 case PGMMODE_32_BIT:
3510 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3511 break;
3512 case PGMMODE_PAE:
3513 case PGMMODE_PAE_NX:
3514 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3515 break;
3516 case PGMMODE_NESTED:
3517 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3518 break;
3519 case PGMMODE_EPT:
3520 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3521 break;
3522 case PGMMODE_AMD64:
3523 case PGMMODE_AMD64_NX:
3524 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3525 default: AssertFailed(); break;
3526 }
3527 break;
3528
3529 case PGMMODE_PROTECTED:
3530 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3531 switch (pVM->pgm.s.enmShadowMode)
3532 {
3533 case PGMMODE_32_BIT:
3534 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3535 break;
3536 case PGMMODE_PAE:
3537 case PGMMODE_PAE_NX:
3538 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3539 break;
3540 case PGMMODE_NESTED:
3541 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3542 break;
3543 case PGMMODE_EPT:
3544 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3545 break;
3546 case PGMMODE_AMD64:
3547 case PGMMODE_AMD64_NX:
3548 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3549 default: AssertFailed(); break;
3550 }
3551 break;
3552
3553 case PGMMODE_32_BIT:
3554 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3555 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3556 switch (pVM->pgm.s.enmShadowMode)
3557 {
3558 case PGMMODE_32_BIT:
3559 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3560 break;
3561 case PGMMODE_PAE:
3562 case PGMMODE_PAE_NX:
3563 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3564 break;
3565 case PGMMODE_NESTED:
3566 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3567 break;
3568 case PGMMODE_EPT:
3569 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3570 break;
3571 case PGMMODE_AMD64:
3572 case PGMMODE_AMD64_NX:
3573 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3574 default: AssertFailed(); break;
3575 }
3576 break;
3577
3578 case PGMMODE_PAE_NX:
3579 case PGMMODE_PAE:
3580 {
3581 uint32_t u32Dummy, u32Features;
3582
3583 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3584 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3585 {
3586 /* Pause first, then inform Main. */
3587 rc = VMR3SuspendNoSave(pVM);
3588 AssertRC(rc);
3589
3590 VMSetRuntimeError(pVM, true, "PAEmode",
3591 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3592 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3593 return VINF_SUCCESS;
3594 }
3595 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3596 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3597 switch (pVM->pgm.s.enmShadowMode)
3598 {
3599 case PGMMODE_PAE:
3600 case PGMMODE_PAE_NX:
3601 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3602 break;
3603 case PGMMODE_NESTED:
3604 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3605 break;
3606 case PGMMODE_EPT:
3607 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3608 break;
3609 case PGMMODE_32_BIT:
3610 case PGMMODE_AMD64:
3611 case PGMMODE_AMD64_NX:
3612 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3613 default: AssertFailed(); break;
3614 }
3615 break;
3616 }
3617
3618#ifdef VBOX_WITH_64_BITS_GUESTS
3619 case PGMMODE_AMD64_NX:
3620 case PGMMODE_AMD64:
3621 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3622 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3623 switch (pVM->pgm.s.enmShadowMode)
3624 {
3625 case PGMMODE_AMD64:
3626 case PGMMODE_AMD64_NX:
3627 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3628 break;
3629 case PGMMODE_NESTED:
3630 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3631 break;
3632 case PGMMODE_EPT:
3633 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3634 break;
3635 case PGMMODE_32_BIT:
3636 case PGMMODE_PAE:
3637 case PGMMODE_PAE_NX:
3638 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3639 default: AssertFailed(); break;
3640 }
3641 break;
3642#endif
3643
3644 default:
3645 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3646 rc = VERR_NOT_IMPLEMENTED;
3647 break;
3648 }
3649
3650 /* status codes. */
3651 AssertRC(rc);
3652 AssertRC(rc2);
3653 if (RT_SUCCESS(rc))
3654 {
3655 rc = rc2;
3656 if (RT_SUCCESS(rc)) /* no informational status codes. */
3657 rc = VINF_SUCCESS;
3658 }
3659
3660 /*
3661 * Notify SELM so it can update the TSSes with correct CR3s.
3662 */
3663 SELMR3PagingModeChanged(pVM);
3664
3665 /* Notify HWACCM as well. */
3666 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3667 return rc;
3668}
3669
3670
3671/**
3672 * Dumps a PAE shadow page table.
3673 *
3674 * @returns VBox status code (VINF_SUCCESS).
3675 * @param pVM The VM handle.
3676 * @param pPT Pointer to the page table.
3677 * @param u64Address The virtual address of the page table starts.
3678 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3679 * @param cMaxDepth The maxium depth.
3680 * @param pHlp Pointer to the output functions.
3681 */
3682static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3683{
3684 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3685 {
3686 X86PTEPAE Pte = pPT->a[i];
3687 if (Pte.n.u1Present)
3688 {
3689 pHlp->pfnPrintf(pHlp,
3690 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3691 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3692 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3693 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3694 Pte.n.u1Write ? 'W' : 'R',
3695 Pte.n.u1User ? 'U' : 'S',
3696 Pte.n.u1Accessed ? 'A' : '-',
3697 Pte.n.u1Dirty ? 'D' : '-',
3698 Pte.n.u1Global ? 'G' : '-',
3699 Pte.n.u1WriteThru ? "WT" : "--",
3700 Pte.n.u1CacheDisable? "CD" : "--",
3701 Pte.n.u1PAT ? "AT" : "--",
3702 Pte.n.u1NoExecute ? "NX" : "--",
3703 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3704 Pte.u & RT_BIT(10) ? '1' : '0',
3705 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3706 Pte.u & X86_PTE_PAE_PG_MASK);
3707 }
3708 }
3709 return VINF_SUCCESS;
3710}
3711
3712
3713/**
3714 * Dumps a PAE shadow page directory table.
3715 *
3716 * @returns VBox status code (VINF_SUCCESS).
3717 * @param pVM The VM handle.
3718 * @param HCPhys The physical address of the page directory table.
3719 * @param u64Address The virtual address of the page table starts.
3720 * @param cr4 The CR4, PSE is currently used.
3721 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3722 * @param cMaxDepth The maxium depth.
3723 * @param pHlp Pointer to the output functions.
3724 */
3725static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3726{
3727 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3728 if (!pPD)
3729 {
3730 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3731 fLongMode ? 16 : 8, u64Address, HCPhys);
3732 return VERR_INVALID_PARAMETER;
3733 }
3734 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3735
3736 int rc = VINF_SUCCESS;
3737 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3738 {
3739 X86PDEPAE Pde = pPD->a[i];
3740 if (Pde.n.u1Present)
3741 {
3742 if (fBigPagesSupported && Pde.b.u1Size)
3743 pHlp->pfnPrintf(pHlp,
3744 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3745 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3746 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3747 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3748 Pde.b.u1Write ? 'W' : 'R',
3749 Pde.b.u1User ? 'U' : 'S',
3750 Pde.b.u1Accessed ? 'A' : '-',
3751 Pde.b.u1Dirty ? 'D' : '-',
3752 Pde.b.u1Global ? 'G' : '-',
3753 Pde.b.u1WriteThru ? "WT" : "--",
3754 Pde.b.u1CacheDisable? "CD" : "--",
3755 Pde.b.u1PAT ? "AT" : "--",
3756 Pde.b.u1NoExecute ? "NX" : "--",
3757 Pde.u & RT_BIT_64(9) ? '1' : '0',
3758 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3759 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3760 Pde.u & X86_PDE_PAE_PG_MASK);
3761 else
3762 {
3763 pHlp->pfnPrintf(pHlp,
3764 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3765 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3766 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3767 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3768 Pde.n.u1Write ? 'W' : 'R',
3769 Pde.n.u1User ? 'U' : 'S',
3770 Pde.n.u1Accessed ? 'A' : '-',
3771 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3772 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3773 Pde.n.u1WriteThru ? "WT" : "--",
3774 Pde.n.u1CacheDisable? "CD" : "--",
3775 Pde.n.u1NoExecute ? "NX" : "--",
3776 Pde.u & RT_BIT_64(9) ? '1' : '0',
3777 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3778 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3779 Pde.u & X86_PDE_PAE_PG_MASK);
3780 if (cMaxDepth >= 1)
3781 {
3782 /** @todo what about using the page pool for mapping PTs? */
3783 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3784 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3785 PX86PTPAE pPT = NULL;
3786 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3787 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3788 else
3789 {
3790 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3791 {
3792 uint64_t off = u64AddressPT - pMap->GCPtr;
3793 if (off < pMap->cb)
3794 {
3795 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3796 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3797 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3798 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3799 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3800 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3801 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3802 }
3803 }
3804 }
3805 int rc2 = VERR_INVALID_PARAMETER;
3806 if (pPT)
3807 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3808 else
3809 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3810 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3811 if (rc2 < rc && RT_SUCCESS(rc))
3812 rc = rc2;
3813 }
3814 }
3815 }
3816 }
3817 return rc;
3818}
3819
3820
3821/**
3822 * Dumps a PAE shadow page directory pointer table.
3823 *
3824 * @returns VBox status code (VINF_SUCCESS).
3825 * @param pVM The VM handle.
3826 * @param HCPhys The physical address of the page directory pointer table.
3827 * @param u64Address The virtual address of the page table starts.
3828 * @param cr4 The CR4, PSE is currently used.
3829 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3830 * @param cMaxDepth The maxium depth.
3831 * @param pHlp Pointer to the output functions.
3832 */
3833static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3834{
3835 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3836 if (!pPDPT)
3837 {
3838 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3839 fLongMode ? 16 : 8, u64Address, HCPhys);
3840 return VERR_INVALID_PARAMETER;
3841 }
3842
3843 int rc = VINF_SUCCESS;
3844 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3845 for (unsigned i = 0; i < c; i++)
3846 {
3847 X86PDPE Pdpe = pPDPT->a[i];
3848 if (Pdpe.n.u1Present)
3849 {
3850 if (fLongMode)
3851 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3852 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3853 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3854 Pdpe.lm.u1Write ? 'W' : 'R',
3855 Pdpe.lm.u1User ? 'U' : 'S',
3856 Pdpe.lm.u1Accessed ? 'A' : '-',
3857 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3858 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3859 Pdpe.lm.u1WriteThru ? "WT" : "--",
3860 Pdpe.lm.u1CacheDisable? "CD" : "--",
3861 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3862 Pdpe.lm.u1NoExecute ? "NX" : "--",
3863 Pdpe.u & RT_BIT(9) ? '1' : '0',
3864 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3865 Pdpe.u & RT_BIT(11) ? '1' : '0',
3866 Pdpe.u & X86_PDPE_PG_MASK);
3867 else
3868 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3869 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3870 i << X86_PDPT_SHIFT,
3871 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3872 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3873 Pdpe.n.u1WriteThru ? "WT" : "--",
3874 Pdpe.n.u1CacheDisable? "CD" : "--",
3875 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3876 Pdpe.u & RT_BIT(9) ? '1' : '0',
3877 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3878 Pdpe.u & RT_BIT(11) ? '1' : '0',
3879 Pdpe.u & X86_PDPE_PG_MASK);
3880 if (cMaxDepth >= 1)
3881 {
3882 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3883 cr4, fLongMode, cMaxDepth - 1, pHlp);
3884 if (rc2 < rc && RT_SUCCESS(rc))
3885 rc = rc2;
3886 }
3887 }
3888 }
3889 return rc;
3890}
3891
3892
3893/**
3894 * Dumps a 32-bit shadow page table.
3895 *
3896 * @returns VBox status code (VINF_SUCCESS).
3897 * @param pVM The VM handle.
3898 * @param HCPhys The physical address of the table.
3899 * @param cr4 The CR4, PSE is currently used.
3900 * @param cMaxDepth The maxium depth.
3901 * @param pHlp Pointer to the output functions.
3902 */
3903static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3904{
3905 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3906 if (!pPML4)
3907 {
3908 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3909 return VERR_INVALID_PARAMETER;
3910 }
3911
3912 int rc = VINF_SUCCESS;
3913 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3914 {
3915 X86PML4E Pml4e = pPML4->a[i];
3916 if (Pml4e.n.u1Present)
3917 {
3918 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3919 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3920 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3921 u64Address,
3922 Pml4e.n.u1Write ? 'W' : 'R',
3923 Pml4e.n.u1User ? 'U' : 'S',
3924 Pml4e.n.u1Accessed ? 'A' : '-',
3925 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3926 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3927 Pml4e.n.u1WriteThru ? "WT" : "--",
3928 Pml4e.n.u1CacheDisable? "CD" : "--",
3929 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3930 Pml4e.n.u1NoExecute ? "NX" : "--",
3931 Pml4e.u & RT_BIT(9) ? '1' : '0',
3932 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3933 Pml4e.u & RT_BIT(11) ? '1' : '0',
3934 Pml4e.u & X86_PML4E_PG_MASK);
3935
3936 if (cMaxDepth >= 1)
3937 {
3938 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3939 if (rc2 < rc && RT_SUCCESS(rc))
3940 rc = rc2;
3941 }
3942 }
3943 }
3944 return rc;
3945}
3946
3947
3948/**
3949 * Dumps a 32-bit shadow page table.
3950 *
3951 * @returns VBox status code (VINF_SUCCESS).
3952 * @param pVM The VM handle.
3953 * @param pPT Pointer to the page table.
3954 * @param u32Address The virtual address this table starts at.
3955 * @param pHlp Pointer to the output functions.
3956 */
3957int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3958{
3959 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3960 {
3961 X86PTE Pte = pPT->a[i];
3962 if (Pte.n.u1Present)
3963 {
3964 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3965 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3966 u32Address + (i << X86_PT_SHIFT),
3967 Pte.n.u1Write ? 'W' : 'R',
3968 Pte.n.u1User ? 'U' : 'S',
3969 Pte.n.u1Accessed ? 'A' : '-',
3970 Pte.n.u1Dirty ? 'D' : '-',
3971 Pte.n.u1Global ? 'G' : '-',
3972 Pte.n.u1WriteThru ? "WT" : "--",
3973 Pte.n.u1CacheDisable? "CD" : "--",
3974 Pte.n.u1PAT ? "AT" : "--",
3975 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3976 Pte.u & RT_BIT(10) ? '1' : '0',
3977 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3978 Pte.u & X86_PDE_PG_MASK);
3979 }
3980 }
3981 return VINF_SUCCESS;
3982}
3983
3984
3985/**
3986 * Dumps a 32-bit shadow page directory and page tables.
3987 *
3988 * @returns VBox status code (VINF_SUCCESS).
3989 * @param pVM The VM handle.
3990 * @param cr3 The root of the hierarchy.
3991 * @param cr4 The CR4, PSE is currently used.
3992 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3993 * @param pHlp Pointer to the output functions.
3994 */
3995int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3996{
3997 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3998 if (!pPD)
3999 {
4000 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4001 return VERR_INVALID_PARAMETER;
4002 }
4003
4004 int rc = VINF_SUCCESS;
4005 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4006 {
4007 X86PDE Pde = pPD->a[i];
4008 if (Pde.n.u1Present)
4009 {
4010 const uint32_t u32Address = i << X86_PD_SHIFT;
4011 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4012 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4013 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4014 u32Address,
4015 Pde.b.u1Write ? 'W' : 'R',
4016 Pde.b.u1User ? 'U' : 'S',
4017 Pde.b.u1Accessed ? 'A' : '-',
4018 Pde.b.u1Dirty ? 'D' : '-',
4019 Pde.b.u1Global ? 'G' : '-',
4020 Pde.b.u1WriteThru ? "WT" : "--",
4021 Pde.b.u1CacheDisable? "CD" : "--",
4022 Pde.b.u1PAT ? "AT" : "--",
4023 Pde.u & RT_BIT_64(9) ? '1' : '0',
4024 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4025 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4026 Pde.u & X86_PDE4M_PG_MASK);
4027 else
4028 {
4029 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4030 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4031 u32Address,
4032 Pde.n.u1Write ? 'W' : 'R',
4033 Pde.n.u1User ? 'U' : 'S',
4034 Pde.n.u1Accessed ? 'A' : '-',
4035 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4036 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4037 Pde.n.u1WriteThru ? "WT" : "--",
4038 Pde.n.u1CacheDisable? "CD" : "--",
4039 Pde.u & RT_BIT_64(9) ? '1' : '0',
4040 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4041 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4042 Pde.u & X86_PDE_PG_MASK);
4043 if (cMaxDepth >= 1)
4044 {
4045 /** @todo what about using the page pool for mapping PTs? */
4046 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4047 PX86PT pPT = NULL;
4048 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4049 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4050 else
4051 {
4052 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4053 if (u32Address - pMap->GCPtr < pMap->cb)
4054 {
4055 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4056 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4057 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4058 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4059 pPT = pMap->aPTs[iPDE].pPTR3;
4060 }
4061 }
4062 int rc2 = VERR_INVALID_PARAMETER;
4063 if (pPT)
4064 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4065 else
4066 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4067 if (rc2 < rc && RT_SUCCESS(rc))
4068 rc = rc2;
4069 }
4070 }
4071 }
4072 }
4073
4074 return rc;
4075}
4076
4077
4078/**
4079 * Dumps a 32-bit shadow page table.
4080 *
4081 * @returns VBox status code (VINF_SUCCESS).
4082 * @param pVM The VM handle.
4083 * @param pPT Pointer to the page table.
4084 * @param u32Address The virtual address this table starts at.
4085 * @param PhysSearch Address to search for.
4086 */
4087int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4088{
4089 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4090 {
4091 X86PTE Pte = pPT->a[i];
4092 if (Pte.n.u1Present)
4093 {
4094 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4095 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4096 u32Address + (i << X86_PT_SHIFT),
4097 Pte.n.u1Write ? 'W' : 'R',
4098 Pte.n.u1User ? 'U' : 'S',
4099 Pte.n.u1Accessed ? 'A' : '-',
4100 Pte.n.u1Dirty ? 'D' : '-',
4101 Pte.n.u1Global ? 'G' : '-',
4102 Pte.n.u1WriteThru ? "WT" : "--",
4103 Pte.n.u1CacheDisable? "CD" : "--",
4104 Pte.n.u1PAT ? "AT" : "--",
4105 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4106 Pte.u & RT_BIT(10) ? '1' : '0',
4107 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4108 Pte.u & X86_PDE_PG_MASK));
4109
4110 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4111 {
4112 uint64_t fPageShw = 0;
4113 RTHCPHYS pPhysHC = 0;
4114
4115 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4116 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4117 }
4118 }
4119 }
4120 return VINF_SUCCESS;
4121}
4122
4123
4124/**
4125 * Dumps a 32-bit guest page directory and page tables.
4126 *
4127 * @returns VBox status code (VINF_SUCCESS).
4128 * @param pVM The VM handle.
4129 * @param cr3 The root of the hierarchy.
4130 * @param cr4 The CR4, PSE is currently used.
4131 * @param PhysSearch Address to search for.
4132 */
4133VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4134{
4135 bool fLongMode = false;
4136 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4137 PX86PD pPD = 0;
4138
4139 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4140 if (RT_FAILURE(rc) || !pPD)
4141 {
4142 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4143 return VERR_INVALID_PARAMETER;
4144 }
4145
4146 Log(("cr3=%08x cr4=%08x%s\n"
4147 "%-*s P - Present\n"
4148 "%-*s | R/W - Read (0) / Write (1)\n"
4149 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4150 "%-*s | | | A - Accessed\n"
4151 "%-*s | | | | D - Dirty\n"
4152 "%-*s | | | | | G - Global\n"
4153 "%-*s | | | | | | WT - Write thru\n"
4154 "%-*s | | | | | | | CD - Cache disable\n"
4155 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4156 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4157 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4158 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4159 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4160 "%-*s Level | | | | | | | | | | | | Page\n"
4161 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4162 - W U - - - -- -- -- -- -- 010 */
4163 , cr3, cr4, fLongMode ? " Long Mode" : "",
4164 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4165 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4166
4167 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4168 {
4169 X86PDE Pde = pPD->a[i];
4170 if (Pde.n.u1Present)
4171 {
4172 const uint32_t u32Address = i << X86_PD_SHIFT;
4173
4174 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4175 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4176 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4177 u32Address,
4178 Pde.b.u1Write ? 'W' : 'R',
4179 Pde.b.u1User ? 'U' : 'S',
4180 Pde.b.u1Accessed ? 'A' : '-',
4181 Pde.b.u1Dirty ? 'D' : '-',
4182 Pde.b.u1Global ? 'G' : '-',
4183 Pde.b.u1WriteThru ? "WT" : "--",
4184 Pde.b.u1CacheDisable? "CD" : "--",
4185 Pde.b.u1PAT ? "AT" : "--",
4186 Pde.u & RT_BIT(9) ? '1' : '0',
4187 Pde.u & RT_BIT(10) ? '1' : '0',
4188 Pde.u & RT_BIT(11) ? '1' : '0',
4189 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4190 /** @todo PhysSearch */
4191 else
4192 {
4193 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4194 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4195 u32Address,
4196 Pde.n.u1Write ? 'W' : 'R',
4197 Pde.n.u1User ? 'U' : 'S',
4198 Pde.n.u1Accessed ? 'A' : '-',
4199 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4200 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4201 Pde.n.u1WriteThru ? "WT" : "--",
4202 Pde.n.u1CacheDisable? "CD" : "--",
4203 Pde.u & RT_BIT(9) ? '1' : '0',
4204 Pde.u & RT_BIT(10) ? '1' : '0',
4205 Pde.u & RT_BIT(11) ? '1' : '0',
4206 Pde.u & X86_PDE_PG_MASK));
4207 ////if (cMaxDepth >= 1)
4208 {
4209 /** @todo what about using the page pool for mapping PTs? */
4210 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4211 PX86PT pPT = NULL;
4212
4213 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4214
4215 int rc2 = VERR_INVALID_PARAMETER;
4216 if (pPT)
4217 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4218 else
4219 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4220 if (rc2 < rc && RT_SUCCESS(rc))
4221 rc = rc2;
4222 }
4223 }
4224 }
4225 }
4226
4227 return rc;
4228}
4229
4230
4231/**
4232 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4233 *
4234 * @returns VBox status code (VINF_SUCCESS).
4235 * @param pVM The VM handle.
4236 * @param cr3 The root of the hierarchy.
4237 * @param cr4 The cr4, only PAE and PSE is currently used.
4238 * @param fLongMode Set if long mode, false if not long mode.
4239 * @param cMaxDepth Number of levels to dump.
4240 * @param pHlp Pointer to the output functions.
4241 */
4242VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4243{
4244 if (!pHlp)
4245 pHlp = DBGFR3InfoLogHlp();
4246 if (!cMaxDepth)
4247 return VINF_SUCCESS;
4248 const unsigned cch = fLongMode ? 16 : 8;
4249 pHlp->pfnPrintf(pHlp,
4250 "cr3=%08x cr4=%08x%s\n"
4251 "%-*s P - Present\n"
4252 "%-*s | R/W - Read (0) / Write (1)\n"
4253 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4254 "%-*s | | | A - Accessed\n"
4255 "%-*s | | | | D - Dirty\n"
4256 "%-*s | | | | | G - Global\n"
4257 "%-*s | | | | | | WT - Write thru\n"
4258 "%-*s | | | | | | | CD - Cache disable\n"
4259 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4260 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4261 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4262 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4263 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4264 "%-*s Level | | | | | | | | | | | | Page\n"
4265 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4266 - W U - - - -- -- -- -- -- 010 */
4267 , cr3, cr4, fLongMode ? " Long Mode" : "",
4268 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4269 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4270 if (cr4 & X86_CR4_PAE)
4271 {
4272 if (fLongMode)
4273 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4274 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4275 }
4276 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4277}
4278
4279#ifdef VBOX_WITH_DEBUGGER
4280
4281/**
4282 * The '.pgmram' command.
4283 *
4284 * @returns VBox status.
4285 * @param pCmd Pointer to the command descriptor (as registered).
4286 * @param pCmdHlp Pointer to command helper functions.
4287 * @param pVM Pointer to the current VM (if any).
4288 * @param paArgs Pointer to (readonly) array of arguments.
4289 * @param cArgs Number of arguments in the array.
4290 */
4291static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4292{
4293 /*
4294 * Validate input.
4295 */
4296 if (!pVM)
4297 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4298 if (!pVM->pgm.s.pRamRangesRC)
4299 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4300
4301 /*
4302 * Dump the ranges.
4303 */
4304 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4305 PPGMRAMRANGE pRam;
4306 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4307 {
4308 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4309 "%RGp - %RGp %p\n",
4310 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4311 if (RT_FAILURE(rc))
4312 return rc;
4313 }
4314
4315 return VINF_SUCCESS;
4316}
4317
4318
4319/**
4320 * The '.pgmmap' command.
4321 *
4322 * @returns VBox status.
4323 * @param pCmd Pointer to the command descriptor (as registered).
4324 * @param pCmdHlp Pointer to command helper functions.
4325 * @param pVM Pointer to the current VM (if any).
4326 * @param paArgs Pointer to (readonly) array of arguments.
4327 * @param cArgs Number of arguments in the array.
4328 */
4329static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4330{
4331 /*
4332 * Validate input.
4333 */
4334 if (!pVM)
4335 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4336 if (!pVM->pgm.s.pMappingsR3)
4337 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4338
4339 /*
4340 * Print message about the fixedness of the mappings.
4341 */
4342 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4343 if (RT_FAILURE(rc))
4344 return rc;
4345
4346 /*
4347 * Dump the ranges.
4348 */
4349 PPGMMAPPING pCur;
4350 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4351 {
4352 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4353 "%08x - %08x %s\n",
4354 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4355 if (RT_FAILURE(rc))
4356 return rc;
4357 }
4358
4359 return VINF_SUCCESS;
4360}
4361
4362
4363/**
4364 * The '.pgmsync' command.
4365 *
4366 * @returns VBox status.
4367 * @param pCmd Pointer to the command descriptor (as registered).
4368 * @param pCmdHlp Pointer to command helper functions.
4369 * @param pVM Pointer to the current VM (if any).
4370 * @param paArgs Pointer to (readonly) array of arguments.
4371 * @param cArgs Number of arguments in the array.
4372 */
4373static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4374{
4375 /*
4376 * Validate input.
4377 */
4378 if (!pVM)
4379 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4380
4381 /*
4382 * Force page directory sync.
4383 */
4384 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4385
4386 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4387 if (RT_FAILURE(rc))
4388 return rc;
4389
4390 return VINF_SUCCESS;
4391}
4392
4393
4394#ifdef VBOX_STRICT
4395/**
4396 * The '.pgmassertcr3' command.
4397 *
4398 * @returns VBox status.
4399 * @param pCmd Pointer to the command descriptor (as registered).
4400 * @param pCmdHlp Pointer to command helper functions.
4401 * @param pVM Pointer to the current VM (if any).
4402 * @param paArgs Pointer to (readonly) array of arguments.
4403 * @param cArgs Number of arguments in the array.
4404 */
4405static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4406{
4407 /*
4408 * Validate input.
4409 */
4410 if (!pVM)
4411 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4412
4413 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4414 if (RT_FAILURE(rc))
4415 return rc;
4416
4417 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4418
4419 return VINF_SUCCESS;
4420}
4421#endif /* VBOX_STRICT */
4422
4423
4424/**
4425 * The '.pgmsyncalways' command.
4426 *
4427 * @returns VBox status.
4428 * @param pCmd Pointer to the command descriptor (as registered).
4429 * @param pCmdHlp Pointer to command helper functions.
4430 * @param pVM Pointer to the current VM (if any).
4431 * @param paArgs Pointer to (readonly) array of arguments.
4432 * @param cArgs Number of arguments in the array.
4433 */
4434static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4435{
4436 /*
4437 * Validate input.
4438 */
4439 if (!pVM)
4440 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4441
4442 /*
4443 * Force page directory sync.
4444 */
4445 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4446 {
4447 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4448 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4449 }
4450 else
4451 {
4452 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4453 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4454 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4455 }
4456}
4457
4458#endif /* VBOX_WITH_DEBUGGER */
4459
4460/**
4461 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4462 */
4463typedef struct PGMCHECKINTARGS
4464{
4465 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4466 PPGMPHYSHANDLER pPrevPhys;
4467 PPGMVIRTHANDLER pPrevVirt;
4468 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4469 PVM pVM;
4470} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4471
4472/**
4473 * Validate a node in the physical handler tree.
4474 *
4475 * @returns 0 on if ok, other wise 1.
4476 * @param pNode The handler node.
4477 * @param pvUser pVM.
4478 */
4479static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4480{
4481 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4482 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4483 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4484 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4485 AssertReleaseMsg( !pArgs->pPrevPhys
4486 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4487 ("pPrevPhys=%p %RGp-%RGp %s\n"
4488 " pCur=%p %RGp-%RGp %s\n",
4489 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4490 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4491 pArgs->pPrevPhys = pCur;
4492 return 0;
4493}
4494
4495
4496/**
4497 * Validate a node in the virtual handler tree.
4498 *
4499 * @returns 0 on if ok, other wise 1.
4500 * @param pNode The handler node.
4501 * @param pvUser pVM.
4502 */
4503static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4504{
4505 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4506 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4507 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4508 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4509 AssertReleaseMsg( !pArgs->pPrevVirt
4510 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4511 ("pPrevVirt=%p %RGv-%RGv %s\n"
4512 " pCur=%p %RGv-%RGv %s\n",
4513 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4514 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4515 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4516 {
4517 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4518 ("pCur=%p %RGv-%RGv %s\n"
4519 "iPage=%d offVirtHandle=%#x expected %#x\n",
4520 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4521 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4522 }
4523 pArgs->pPrevVirt = pCur;
4524 return 0;
4525}
4526
4527
4528/**
4529 * Validate a node in the virtual handler tree.
4530 *
4531 * @returns 0 on if ok, other wise 1.
4532 * @param pNode The handler node.
4533 * @param pvUser pVM.
4534 */
4535static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4536{
4537 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4538 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4539 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4540 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4541 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4542 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4543 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4544 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4545 " pCur=%p %RGp-%RGp\n",
4546 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4547 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4548 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4549 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4550 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4551 " pCur=%p %RGp-%RGp\n",
4552 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4553 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4554 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4555 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4556 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4557 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4558 {
4559 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4560 for (;;)
4561 {
4562 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4563 AssertReleaseMsg(pCur2 != pCur,
4564 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4565 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4566 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4567 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4568 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4569 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4570 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4571 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4572 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4573 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4574 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4575 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4576 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4577 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4578 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4579 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4580 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4581 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4582 break;
4583 }
4584 }
4585
4586 pArgs->pPrevPhys2Virt = pCur;
4587 return 0;
4588}
4589
4590
4591/**
4592 * Perform an integrity check on the PGM component.
4593 *
4594 * @returns VINF_SUCCESS if everything is fine.
4595 * @returns VBox error status after asserting on integrity breach.
4596 * @param pVM The VM handle.
4597 */
4598VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4599{
4600 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4601
4602 /*
4603 * Check the trees.
4604 */
4605 int cErrors = 0;
4606 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4607 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4608 PGMCHECKINTARGS Args = s_LeftToRight;
4609 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4610 Args = s_RightToLeft;
4611 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4612 Args = s_LeftToRight;
4613 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4614 Args = s_RightToLeft;
4615 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4616 Args = s_LeftToRight;
4617 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4618 Args = s_RightToLeft;
4619 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4620 Args = s_LeftToRight;
4621 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4622 Args = s_RightToLeft;
4623 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4624
4625 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4626}
4627
4628
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette