VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 17520

Last change on this file since 17520 was 17513, checked in by vboxsync, 16 years ago

MM,PGM: Fixed page reservation, include a full set of handy pages for the time being. Fixed page counting statistics.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 220.9 KB
Line 
1/* $Id: PGM.cpp 17513 2009-03-07 05:44:48Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
688#include "PGMBth.h"
689#include "PGMGstDefs.h"
690#include "PGMGst.h"
691#undef BTH_PGMPOOLKIND_PT_FOR_PT
692#undef BTH_PGMPOOLKIND_ROOT
693#undef PGM_BTH_NAME
694#undef PGM_BTH_NAME_RC_STR
695#undef PGM_BTH_NAME_R0_STR
696#undef PGM_GST_TYPE
697#undef PGM_GST_NAME
698#undef PGM_GST_NAME_RC_STR
699#undef PGM_GST_NAME_R0_STR
700
701/* Guest - protected mode */
702#define PGM_GST_TYPE PGM_TYPE_PROT
703#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
704#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
705#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
706#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
707#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
708#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
709#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
710#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
711#include "PGMBth.h"
712#include "PGMGstDefs.h"
713#include "PGMGst.h"
714#undef BTH_PGMPOOLKIND_PT_FOR_PT
715#undef BTH_PGMPOOLKIND_ROOT
716#undef PGM_BTH_NAME
717#undef PGM_BTH_NAME_RC_STR
718#undef PGM_BTH_NAME_R0_STR
719#undef PGM_GST_TYPE
720#undef PGM_GST_NAME
721#undef PGM_GST_NAME_RC_STR
722#undef PGM_GST_NAME_R0_STR
723
724/* Guest - 32-bit mode */
725#define PGM_GST_TYPE PGM_TYPE_32BIT
726#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
727#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
728#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
729#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
730#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
731#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
732#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
733#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
734#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
735#include "PGMBth.h"
736#include "PGMGstDefs.h"
737#include "PGMGst.h"
738#undef BTH_PGMPOOLKIND_PT_FOR_BIG
739#undef BTH_PGMPOOLKIND_PT_FOR_PT
740#undef BTH_PGMPOOLKIND_ROOT
741#undef PGM_BTH_NAME
742#undef PGM_BTH_NAME_RC_STR
743#undef PGM_BTH_NAME_R0_STR
744#undef PGM_GST_TYPE
745#undef PGM_GST_NAME
746#undef PGM_GST_NAME_RC_STR
747#undef PGM_GST_NAME_R0_STR
748
749#undef PGM_SHW_TYPE
750#undef PGM_SHW_NAME
751#undef PGM_SHW_NAME_RC_STR
752#undef PGM_SHW_NAME_R0_STR
753
754
755/*
756 * Shadow - PAE mode
757 */
758#define PGM_SHW_TYPE PGM_TYPE_PAE
759#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
760#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
761#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
762#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
763#include "PGMShw.h"
764
765/* Guest - real mode */
766#define PGM_GST_TYPE PGM_TYPE_REAL
767#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
768#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
769#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
770#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
771#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
772#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
773#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
774#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
775#include "PGMGstDefs.h"
776#include "PGMBth.h"
777#undef BTH_PGMPOOLKIND_PT_FOR_PT
778#undef BTH_PGMPOOLKIND_ROOT
779#undef PGM_BTH_NAME
780#undef PGM_BTH_NAME_RC_STR
781#undef PGM_BTH_NAME_R0_STR
782#undef PGM_GST_TYPE
783#undef PGM_GST_NAME
784#undef PGM_GST_NAME_RC_STR
785#undef PGM_GST_NAME_R0_STR
786
787/* Guest - protected mode */
788#define PGM_GST_TYPE PGM_TYPE_PROT
789#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
790#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
791#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
792#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
793#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
794#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
795#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
796#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
797#include "PGMGstDefs.h"
798#include "PGMBth.h"
799#undef BTH_PGMPOOLKIND_PT_FOR_PT
800#undef BTH_PGMPOOLKIND_ROOT
801#undef PGM_BTH_NAME
802#undef PGM_BTH_NAME_RC_STR
803#undef PGM_BTH_NAME_R0_STR
804#undef PGM_GST_TYPE
805#undef PGM_GST_NAME
806#undef PGM_GST_NAME_RC_STR
807#undef PGM_GST_NAME_R0_STR
808
809/* Guest - 32-bit mode */
810#define PGM_GST_TYPE PGM_TYPE_32BIT
811#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
812#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
813#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
814#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
815#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
816#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
817#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
818#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
819#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
820#include "PGMGstDefs.h"
821#include "PGMBth.h"
822#undef BTH_PGMPOOLKIND_PT_FOR_BIG
823#undef BTH_PGMPOOLKIND_PT_FOR_PT
824#undef BTH_PGMPOOLKIND_ROOT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833/* Guest - PAE mode */
834#define PGM_GST_TYPE PGM_TYPE_PAE
835#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
836#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
837#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
838#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
839#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
840#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
841#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
842#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
843#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
844#include "PGMBth.h"
845#include "PGMGstDefs.h"
846#include "PGMGst.h"
847#undef BTH_PGMPOOLKIND_PT_FOR_BIG
848#undef BTH_PGMPOOLKIND_PT_FOR_PT
849#undef BTH_PGMPOOLKIND_ROOT
850#undef PGM_BTH_NAME
851#undef PGM_BTH_NAME_RC_STR
852#undef PGM_BTH_NAME_R0_STR
853#undef PGM_GST_TYPE
854#undef PGM_GST_NAME
855#undef PGM_GST_NAME_RC_STR
856#undef PGM_GST_NAME_R0_STR
857
858#undef PGM_SHW_TYPE
859#undef PGM_SHW_NAME
860#undef PGM_SHW_NAME_RC_STR
861#undef PGM_SHW_NAME_R0_STR
862
863
864/*
865 * Shadow - AMD64 mode
866 */
867#define PGM_SHW_TYPE PGM_TYPE_AMD64
868#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
869#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
870#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
871#include "PGMShw.h"
872
873#ifdef VBOX_WITH_64_BITS_GUESTS
874/* Guest - AMD64 mode */
875# define PGM_GST_TYPE PGM_TYPE_AMD64
876# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
877# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
878# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
879# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
880# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
881# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
882# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
883# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
884# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
885# include "PGMBth.h"
886# include "PGMGstDefs.h"
887# include "PGMGst.h"
888# undef BTH_PGMPOOLKIND_PT_FOR_BIG
889# undef BTH_PGMPOOLKIND_PT_FOR_PT
890# undef BTH_PGMPOOLKIND_ROOT
891# undef PGM_BTH_NAME
892# undef PGM_BTH_NAME_RC_STR
893# undef PGM_BTH_NAME_R0_STR
894# undef PGM_GST_TYPE
895# undef PGM_GST_NAME
896# undef PGM_GST_NAME_RC_STR
897# undef PGM_GST_NAME_R0_STR
898#endif /* VBOX_WITH_64_BITS_GUESTS */
899
900#undef PGM_SHW_TYPE
901#undef PGM_SHW_NAME
902#undef PGM_SHW_NAME_RC_STR
903#undef PGM_SHW_NAME_R0_STR
904
905
906/*
907 * Shadow - Nested paging mode
908 */
909#define PGM_SHW_TYPE PGM_TYPE_NESTED
910#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
911#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
912#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
913#include "PGMShw.h"
914
915/* Guest - real mode */
916#define PGM_GST_TYPE PGM_TYPE_REAL
917#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
918#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
919#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
920#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
921#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
922#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
923#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
924#include "PGMGstDefs.h"
925#include "PGMBth.h"
926#undef BTH_PGMPOOLKIND_PT_FOR_PT
927#undef PGM_BTH_NAME
928#undef PGM_BTH_NAME_RC_STR
929#undef PGM_BTH_NAME_R0_STR
930#undef PGM_GST_TYPE
931#undef PGM_GST_NAME
932#undef PGM_GST_NAME_RC_STR
933#undef PGM_GST_NAME_R0_STR
934
935/* Guest - protected mode */
936#define PGM_GST_TYPE PGM_TYPE_PROT
937#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
938#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
939#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
940#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
941#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
942#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
943#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
944#include "PGMGstDefs.h"
945#include "PGMBth.h"
946#undef BTH_PGMPOOLKIND_PT_FOR_PT
947#undef PGM_BTH_NAME
948#undef PGM_BTH_NAME_RC_STR
949#undef PGM_BTH_NAME_R0_STR
950#undef PGM_GST_TYPE
951#undef PGM_GST_NAME
952#undef PGM_GST_NAME_RC_STR
953#undef PGM_GST_NAME_R0_STR
954
955/* Guest - 32-bit mode */
956#define PGM_GST_TYPE PGM_TYPE_32BIT
957#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
958#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
959#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
960#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
961#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
962#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
963#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
964#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
965#include "PGMGstDefs.h"
966#include "PGMBth.h"
967#undef BTH_PGMPOOLKIND_PT_FOR_BIG
968#undef BTH_PGMPOOLKIND_PT_FOR_PT
969#undef PGM_BTH_NAME
970#undef PGM_BTH_NAME_RC_STR
971#undef PGM_BTH_NAME_R0_STR
972#undef PGM_GST_TYPE
973#undef PGM_GST_NAME
974#undef PGM_GST_NAME_RC_STR
975#undef PGM_GST_NAME_R0_STR
976
977/* Guest - PAE mode */
978#define PGM_GST_TYPE PGM_TYPE_PAE
979#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
980#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
981#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
982#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
983#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
984#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
985#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
986#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
987#include "PGMGstDefs.h"
988#include "PGMBth.h"
989#undef BTH_PGMPOOLKIND_PT_FOR_BIG
990#undef BTH_PGMPOOLKIND_PT_FOR_PT
991#undef PGM_BTH_NAME
992#undef PGM_BTH_NAME_RC_STR
993#undef PGM_BTH_NAME_R0_STR
994#undef PGM_GST_TYPE
995#undef PGM_GST_NAME
996#undef PGM_GST_NAME_RC_STR
997#undef PGM_GST_NAME_R0_STR
998
999#ifdef VBOX_WITH_64_BITS_GUESTS
1000/* Guest - AMD64 mode */
1001# define PGM_GST_TYPE PGM_TYPE_AMD64
1002# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1003# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1004# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1005# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1006# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1007# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1008# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1009# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1010# include "PGMGstDefs.h"
1011# include "PGMBth.h"
1012# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1013# undef BTH_PGMPOOLKIND_PT_FOR_PT
1014# undef PGM_BTH_NAME
1015# undef PGM_BTH_NAME_RC_STR
1016# undef PGM_BTH_NAME_R0_STR
1017# undef PGM_GST_TYPE
1018# undef PGM_GST_NAME
1019# undef PGM_GST_NAME_RC_STR
1020# undef PGM_GST_NAME_R0_STR
1021#endif /* VBOX_WITH_64_BITS_GUESTS */
1022
1023#undef PGM_SHW_TYPE
1024#undef PGM_SHW_NAME
1025#undef PGM_SHW_NAME_RC_STR
1026#undef PGM_SHW_NAME_R0_STR
1027
1028
1029/*
1030 * Shadow - EPT
1031 */
1032#define PGM_SHW_TYPE PGM_TYPE_EPT
1033#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1034#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1035#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1036#include "PGMShw.h"
1037
1038/* Guest - real mode */
1039#define PGM_GST_TYPE PGM_TYPE_REAL
1040#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1041#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1042#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1043#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1044#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1045#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1046#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1047#include "PGMGstDefs.h"
1048#include "PGMBth.h"
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058/* Guest - protected mode */
1059#define PGM_GST_TYPE PGM_TYPE_PROT
1060#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1061#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1064#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1067#include "PGMGstDefs.h"
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_PT
1070#undef PGM_BTH_NAME
1071#undef PGM_BTH_NAME_RC_STR
1072#undef PGM_BTH_NAME_R0_STR
1073#undef PGM_GST_TYPE
1074#undef PGM_GST_NAME
1075#undef PGM_GST_NAME_RC_STR
1076#undef PGM_GST_NAME_R0_STR
1077
1078/* Guest - 32-bit mode */
1079#define PGM_GST_TYPE PGM_TYPE_32BIT
1080#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1081#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1082#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1083#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1084#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1085#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1086#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1087#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1088#include "PGMGstDefs.h"
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_RC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_RC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100/* Guest - PAE mode */
1101#define PGM_GST_TYPE PGM_TYPE_PAE
1102#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1103#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1104#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1105#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1106#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1107#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1108#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1109#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1110#include "PGMGstDefs.h"
1111#include "PGMBth.h"
1112#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1113#undef BTH_PGMPOOLKIND_PT_FOR_PT
1114#undef PGM_BTH_NAME
1115#undef PGM_BTH_NAME_RC_STR
1116#undef PGM_BTH_NAME_R0_STR
1117#undef PGM_GST_TYPE
1118#undef PGM_GST_NAME
1119#undef PGM_GST_NAME_RC_STR
1120#undef PGM_GST_NAME_R0_STR
1121
1122#ifdef VBOX_WITH_64_BITS_GUESTS
1123/* Guest - AMD64 mode */
1124# define PGM_GST_TYPE PGM_TYPE_AMD64
1125# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1126# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1127# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1128# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1129# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1130# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1131# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1132# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1133# include "PGMGstDefs.h"
1134# include "PGMBth.h"
1135# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1136# undef BTH_PGMPOOLKIND_PT_FOR_PT
1137# undef PGM_BTH_NAME
1138# undef PGM_BTH_NAME_RC_STR
1139# undef PGM_BTH_NAME_R0_STR
1140# undef PGM_GST_TYPE
1141# undef PGM_GST_NAME
1142# undef PGM_GST_NAME_RC_STR
1143# undef PGM_GST_NAME_R0_STR
1144#endif /* VBOX_WITH_64_BITS_GUESTS */
1145
1146#undef PGM_SHW_TYPE
1147#undef PGM_SHW_NAME
1148#undef PGM_SHW_NAME_RC_STR
1149#undef PGM_SHW_NAME_R0_STR
1150
1151
1152
1153/**
1154 * Initiates the paging of VM.
1155 *
1156 * @returns VBox status code.
1157 * @param pVM Pointer to VM structure.
1158 */
1159VMMR3DECL(int) PGMR3Init(PVM pVM)
1160{
1161 LogFlow(("PGMR3Init:\n"));
1162 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1163 int rc;
1164
1165 /*
1166 * Assert alignment and sizes.
1167 */
1168 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1169
1170 /*
1171 * Init the structure.
1172 */
1173 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1174 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1175 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1176 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1177 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1178 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1179#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1180 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1181#endif
1182 pVM->pgm.s.fA20Enabled = true;
1183 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1184 pVM->pgm.s.pGstPaePdptR3 = NULL;
1185#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1186 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1187#endif
1188 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1189 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1190 {
1191 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1192#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1193 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1194#endif
1195 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1196 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1197 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1198 }
1199
1200 rc = CFGMR3QueryBoolDef(pCfgPGM, "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, false);
1201 AssertLogRelRCReturn(rc, rc);
1202
1203#if HC_ARCH_BITS == 64
1204 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1205#else
1206 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1207#endif
1208 AssertLogRelRCReturn(rc, rc);
1209 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1210 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1211
1212 /*
1213 * Get the configured RAM size - to estimate saved state size.
1214 */
1215 uint64_t cbRam;
1216 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1217 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1218 cbRam = pVM->pgm.s.cbRamSize = 0;
1219 else if (RT_SUCCESS(rc))
1220 {
1221 if (cbRam < PAGE_SIZE)
1222 cbRam = 0;
1223 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1224 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1225 }
1226 else
1227 {
1228 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1229 return rc;
1230 }
1231
1232 /*
1233 * Register callbacks, string formatters and the saved state data unit.
1234 */
1235#ifdef VBOX_STRICT
1236 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1237#endif
1238 PGMRegisterStringFormatTypes();
1239
1240 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1241 NULL, pgmR3Save, NULL,
1242 NULL, pgmR3Load, NULL);
1243 if (RT_FAILURE(rc))
1244 return rc;
1245
1246 /*
1247 * Initialize the PGM critical section and flush the phys TLBs
1248 */
1249 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1250 AssertRCReturn(rc, rc);
1251
1252 PGMR3PhysChunkInvalidateTLB(pVM);
1253 PGMPhysInvalidatePageR3MapTLB(pVM);
1254 PGMPhysInvalidatePageR0MapTLB(pVM);
1255 PGMPhysInvalidatePageGCMapTLB(pVM);
1256
1257#ifdef VBOX_WITH_NEW_PHYS_CODE
1258 /*
1259 * For the time being we sport a full set of handy pages in addition to the base
1260 * memory to simplify things.
1261 */
1262 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages));
1263 AssertRCReturn(rc, rc);
1264#endif
1265
1266 /*
1267 * Trees
1268 */
1269 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1270 if (RT_SUCCESS(rc))
1271 {
1272 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1273 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1274
1275 /*
1276 * Alocate the zero page.
1277 */
1278 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1279 }
1280 if (RT_SUCCESS(rc))
1281 {
1282 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1283 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1284 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1285 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1286 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1287
1288 /*
1289 * Init the paging.
1290 */
1291 rc = pgmR3InitPaging(pVM);
1292 }
1293 if (RT_SUCCESS(rc))
1294 {
1295 /*
1296 * Init the page pool.
1297 */
1298 rc = pgmR3PoolInit(pVM);
1299 }
1300#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1301 if (RT_SUCCESS(rc))
1302 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1303#endif
1304 if (RT_SUCCESS(rc))
1305 {
1306 /*
1307 * Info & statistics
1308 */
1309 DBGFR3InfoRegisterInternal(pVM, "mode",
1310 "Shows the current paging mode. "
1311 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1312 pgmR3InfoMode);
1313 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1314 "Dumps all the entries in the top level paging table. No arguments.",
1315 pgmR3InfoCr3);
1316 DBGFR3InfoRegisterInternal(pVM, "phys",
1317 "Dumps all the physical address ranges. No arguments.",
1318 pgmR3PhysInfo);
1319 DBGFR3InfoRegisterInternal(pVM, "handlers",
1320 "Dumps physical, virtual and hyper virtual handlers. "
1321 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1322 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1323 pgmR3InfoHandlers);
1324 DBGFR3InfoRegisterInternal(pVM, "mappings",
1325 "Dumps guest mappings.",
1326 pgmR3MapInfo);
1327
1328 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1329 STAM_REL_REG(pVM, &pVM->pgm.s.cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1330#ifdef VBOX_WITH_STATISTICS
1331 pgmR3InitStats(pVM);
1332#endif
1333#ifdef VBOX_WITH_DEBUGGER
1334 /*
1335 * Debugger commands.
1336 */
1337 static bool fRegisteredCmds = false;
1338 if (!fRegisteredCmds)
1339 {
1340 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1341 if (RT_SUCCESS(rc))
1342 fRegisteredCmds = true;
1343 }
1344#endif
1345 return VINF_SUCCESS;
1346 }
1347
1348 /* Almost no cleanup necessary, MM frees all memory. */
1349 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1350
1351 return rc;
1352}
1353
1354
1355/**
1356 * Initializes the per-VCPU PGM.
1357 *
1358 * @returns VBox status code.
1359 * @param pVM The VM to operate on.
1360 */
1361VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1362{
1363 LogFlow(("PGMR3InitCPU\n"));
1364 return VINF_SUCCESS;
1365}
1366
1367
1368/**
1369 * Init paging.
1370 *
1371 * Since we need to check what mode the host is operating in before we can choose
1372 * the right paging functions for the host we have to delay this until R0 has
1373 * been initialized.
1374 *
1375 * @returns VBox status code.
1376 * @param pVM VM handle.
1377 */
1378static int pgmR3InitPaging(PVM pVM)
1379{
1380 /*
1381 * Force a recalculation of modes and switcher so everyone gets notified.
1382 */
1383 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1384 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1385 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1386
1387 /*
1388 * Allocate static mapping space for whatever the cr3 register
1389 * points to and in the case of PAE mode to the 4 PDs.
1390 */
1391 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1392 if (RT_FAILURE(rc))
1393 {
1394 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1395 return rc;
1396 }
1397 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1398
1399 /*
1400 * Allocate pages for the three possible intermediate contexts
1401 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1402 * for the sake of simplicity. The AMD64 uses the PAE for the
1403 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1404 *
1405 * We assume that two page tables will be enought for the core code
1406 * mappings (HC virtual and identity).
1407 */
1408 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1409 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1410 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1411 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1412 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1413 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1414 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1415 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1416 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1417 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1418 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1419 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1420 if ( !pVM->pgm.s.pInterPD
1421 || !pVM->pgm.s.apInterPTs[0]
1422 || !pVM->pgm.s.apInterPTs[1]
1423 || !pVM->pgm.s.apInterPaePTs[0]
1424 || !pVM->pgm.s.apInterPaePTs[1]
1425 || !pVM->pgm.s.apInterPaePDs[0]
1426 || !pVM->pgm.s.apInterPaePDs[1]
1427 || !pVM->pgm.s.apInterPaePDs[2]
1428 || !pVM->pgm.s.apInterPaePDs[3]
1429 || !pVM->pgm.s.pInterPaePDPT
1430 || !pVM->pgm.s.pInterPaePDPT64
1431 || !pVM->pgm.s.pInterPaePML4)
1432 {
1433 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1434 return VERR_NO_PAGE_MEMORY;
1435 }
1436
1437 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1438 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1439 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1440 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1441 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1442 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1443
1444 /*
1445 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1446 */
1447 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1448 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1449 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1450
1451 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1452 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1453
1454 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1455 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1456 {
1457 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1458 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1459 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1460 }
1461
1462 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1463 {
1464 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1465 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1466 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1467 }
1468
1469 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1470 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1471 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1472 | HCPhysInterPaePDPT64;
1473
1474 /*
1475 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1476 * We allocate pages for all three posibilities in order to simplify mappings and
1477 * avoid resource failure during mode switches. So, we need to cover all levels of the
1478 * of the first 4GB down to PD level.
1479 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1480 */
1481#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1482 pVM->pgm.s.pShw32BitPdR3 = (PX86PD)MMR3PageAllocLow(pVM);
1483# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1484 pVM->pgm.s.pShw32BitPdR0 = (uintptr_t)pVM->pgm.s.pShw32BitPdR3;
1485# endif
1486 pVM->pgm.s.apShwPaePDsR3[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1487 pVM->pgm.s.apShwPaePDsR3[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1488 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1]);
1489 pVM->pgm.s.apShwPaePDsR3[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1490 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2]);
1491 pVM->pgm.s.apShwPaePDsR3[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1492 AssertRelease((uintptr_t)pVM->pgm.s.apShwPaePDsR3[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3]);
1493# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1494 pVM->pgm.s.apShwPaePDsR0[0] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[0];
1495 pVM->pgm.s.apShwPaePDsR0[1] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[1];
1496 pVM->pgm.s.apShwPaePDsR0[2] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[2];
1497 pVM->pgm.s.apShwPaePDsR0[3] = (uintptr_t)pVM->pgm.s.apShwPaePDsR3[3];
1498# endif
1499 pVM->pgm.s.pShwPaePdptR3 = (PX86PDPT)MMR3PageAllocLow(pVM);
1500# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1501 pVM->pgm.s.pShwPaePdptR0 = (uintptr_t)pVM->pgm.s.pShwPaePdptR3;
1502# endif
1503 pVM->pgm.s.pShwNestedRootR3 = MMR3PageAllocLow(pVM);
1504# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1505 pVM->pgm.s.pShwNestedRootR0 = (uintptr_t)pVM->pgm.s.pShwNestedRootR3;
1506# endif
1507#endif /* VBOX_WITH_PGMPOOL_PAGING_ONLY */
1508
1509#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1510 if ( !pVM->pgm.s.pShw32BitPdR3
1511 || !pVM->pgm.s.apShwPaePDsR3[0]
1512 || !pVM->pgm.s.apShwPaePDsR3[1]
1513 || !pVM->pgm.s.apShwPaePDsR3[2]
1514 || !pVM->pgm.s.apShwPaePDsR3[3]
1515 || !pVM->pgm.s.pShwPaePdptR3
1516 || !pVM->pgm.s.pShwNestedRootR3)
1517 {
1518 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1519 return VERR_NO_PAGE_MEMORY;
1520 }
1521#endif
1522
1523 /* get physical addresses. */
1524#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1525 pVM->pgm.s.HCPhysShw32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pShw32BitPdR3);
1526 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhysShw32BitPD) == pVM->pgm.s.pShw32BitPdR3);
1527 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[0]);
1528 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[1]);
1529 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[2]);
1530 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apShwPaePDsR3[3]);
1531 pVM->pgm.s.HCPhysShwPaePdpt = MMPage2Phys(pVM, pVM->pgm.s.pShwPaePdptR3);
1532 pVM->pgm.s.HCPhysShwNestedRoot = MMPage2Phys(pVM, pVM->pgm.s.pShwNestedRootR3);
1533#endif
1534
1535 /*
1536 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1537 */
1538#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1539 ASMMemZero32(pVM->pgm.s.pShw32BitPdR3, PAGE_SIZE);
1540 ASMMemZero32(pVM->pgm.s.pShwPaePdptR3, PAGE_SIZE);
1541 ASMMemZero32(pVM->pgm.s.pShwNestedRootR3, PAGE_SIZE);
1542
1543 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1544 {
1545 ASMMemZero32(pVM->pgm.s.apShwPaePDsR3[i], PAGE_SIZE);
1546 pVM->pgm.s.pShwPaePdptR3->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1547 /* The flags will be corrected when entering and leaving long mode. */
1548 }
1549#endif
1550
1551 /*
1552 * Initialize paging workers and mode from current host mode
1553 * and the guest running in real mode.
1554 */
1555 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1556 switch (pVM->pgm.s.enmHostMode)
1557 {
1558 case SUPPAGINGMODE_32_BIT:
1559 case SUPPAGINGMODE_32_BIT_GLOBAL:
1560 case SUPPAGINGMODE_PAE:
1561 case SUPPAGINGMODE_PAE_GLOBAL:
1562 case SUPPAGINGMODE_PAE_NX:
1563 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1564 break;
1565
1566 case SUPPAGINGMODE_AMD64:
1567 case SUPPAGINGMODE_AMD64_GLOBAL:
1568 case SUPPAGINGMODE_AMD64_NX:
1569 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1570#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1571 if (ARCH_BITS != 64)
1572 {
1573 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1574 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1575 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1576 }
1577#endif
1578 break;
1579 default:
1580 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1581 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1582 }
1583 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1584#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1585 if (RT_SUCCESS(rc))
1586 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1587#endif
1588 if (RT_SUCCESS(rc))
1589 {
1590 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1591#if HC_ARCH_BITS == 64
1592# ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1593 LogRel(("Debug: HCPhysShw32BitPD=%RHp aHCPhysPaePDs={%RHp,%RHp,%RHp,%RHp} HCPhysShwPaePdpt=%RHp\n",
1594 pVM->pgm.s.HCPhysShw32BitPD,
1595 pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1596 pVM->pgm.s.HCPhysShwPaePdpt));
1597# endif
1598 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1599 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1600 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1601 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1602 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1603 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1604 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1605#endif
1606
1607 return VINF_SUCCESS;
1608 }
1609
1610 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1611 return rc;
1612}
1613
1614
1615#ifdef VBOX_WITH_STATISTICS
1616/**
1617 * Init statistics
1618 */
1619static void pgmR3InitStats(PVM pVM)
1620{
1621 PPGM pPGM = &pVM->pgm.s;
1622 unsigned i;
1623
1624 /*
1625 * Note! The layout of this function matches the member layout exactly!
1626 */
1627
1628 /* Common - misc variables */
1629 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1630 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1631 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1632 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1633 STAM_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1634 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1635 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1636
1637 /* Common - stats */
1638#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1639 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1640 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1641 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1642 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1643 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1644 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1645#endif
1646 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1647 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1648 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1649 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1650 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1651 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1652
1653 /* R3 only: */
1654 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1655 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1656 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1657 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1658#ifndef VBOX_WITH_NEW_PHYS_CODE
1659 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1660 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1661#endif
1662
1663 /* R0 only: */
1664 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1665 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1666 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1667 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1668 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1669 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1670 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1671 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1672 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1673 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1674 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1675 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1676 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1677 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1678 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1679 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1680 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1681 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1682 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1683 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1684 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1685 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1686 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1687 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1688 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1689 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1690 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1691 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1692 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1693 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1694 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1695 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1696 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1697 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1698 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1699 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1700
1701 /* GC only: */
1702 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1703 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1704 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1705 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1706
1707 /* RZ only: */
1708 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1709 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1710 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1711 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1712 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1713 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1714 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1715 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1716 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1717 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1718 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1719 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1720 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1721 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1722 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1723 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1724 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1725 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1726 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1727 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1728 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1729 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1730 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1731 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1732 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1733 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1734 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1735 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1736 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1737 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1738 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1739 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1740 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1741 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1742 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1743 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1744 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1745 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1746 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1747 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1748 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1749 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1750 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1751 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1752 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1753 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1754 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1755 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1756 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1757 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1758 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1759
1760 /* HC only: */
1761
1762 /* RZ & R3: */
1763 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1764 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1765 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1766 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1767 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1768 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1769 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1770 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1771 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1772 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1773 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1774 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1775 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1776 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1777 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1778 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1779 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1780 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1781 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1782 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1783 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1784 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1785 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1786 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1787 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1788 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1789 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1790 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1791 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1792 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1793 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1794 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1795 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1796 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1797 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1798 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1799 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1800 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1801 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1802 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1803 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1804 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1805 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1806 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1807 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1808 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1809 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1810/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1811 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1812 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1813 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1814 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1815 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1816 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1817
1818 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1819 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1820 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1821 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1822 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1823 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1824 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1825 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1826 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1827 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1828 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1829 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1830 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1831 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1832 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1833 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1834 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1835 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1836 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1837 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1838 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1839 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1840 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1841 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1842 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1843 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1844 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1845 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1846 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1847 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1848 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1849 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1850 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1851 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1852 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1853 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1854 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1855 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1856 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1857 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1858 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1859 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1860 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1861 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1862 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1863 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1864 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1865/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1866 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1867 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1868 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1869 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1870 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1871 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1872
1873}
1874#endif /* VBOX_WITH_STATISTICS */
1875
1876
1877/**
1878 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1879 *
1880 * The dynamic mapping area will also be allocated and initialized at this
1881 * time. We could allocate it during PGMR3Init of course, but the mapping
1882 * wouldn't be allocated at that time preventing us from setting up the
1883 * page table entries with the dummy page.
1884 *
1885 * @returns VBox status code.
1886 * @param pVM VM handle.
1887 */
1888VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1889{
1890 RTGCPTR GCPtr;
1891 int rc;
1892
1893#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1894 /*
1895 * Reserve space for mapping the paging pages into guest context.
1896 */
1897 rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3) + 1 + 2 + 2), "Paging", &GCPtr);
1898 AssertRCReturn(rc, rc);
1899 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1900 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1901#endif
1902
1903 /*
1904 * Reserve space for the dynamic mappings.
1905 */
1906 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1907 if (RT_SUCCESS(rc))
1908 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1909
1910 if ( RT_SUCCESS(rc)
1911 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1912 {
1913 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1914 if (RT_SUCCESS(rc))
1915 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1916 }
1917 if (RT_SUCCESS(rc))
1918 {
1919 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1920 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1921 }
1922 return rc;
1923}
1924
1925
1926/**
1927 * Ring-3 init finalizing.
1928 *
1929 * @returns VBox status code.
1930 * @param pVM The VM handle.
1931 */
1932VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1933{
1934 int rc;
1935
1936#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1937 /*
1938 * Map the paging pages into the guest context.
1939 */
1940 RTGCPTR GCPtr = pVM->pgm.s.pShw32BitPdRC;
1941 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1942
1943 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShw32BitPD, PAGE_SIZE, 0);
1944 AssertRCReturn(rc, rc);
1945 pVM->pgm.s.pShw32BitPdRC = GCPtr;
1946 GCPtr += PAGE_SIZE;
1947 GCPtr += PAGE_SIZE; /* reserved page */
1948
1949 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apShwPaePDsR3); i++)
1950 {
1951 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1952 AssertRCReturn(rc, rc);
1953 pVM->pgm.s.apShwPaePDsRC[i] = GCPtr;
1954 GCPtr += PAGE_SIZE;
1955 }
1956 /* A bit of paranoia is justified. */
1957 AssertRelease(pVM->pgm.s.apShwPaePDsRC[0] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[1]);
1958 AssertRelease(pVM->pgm.s.apShwPaePDsRC[1] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[2]);
1959 AssertRelease(pVM->pgm.s.apShwPaePDsRC[2] + PAGE_SIZE == pVM->pgm.s.apShwPaePDsRC[3]);
1960 GCPtr += PAGE_SIZE; /* reserved page */
1961
1962 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysShwPaePdpt, PAGE_SIZE, 0);
1963 AssertRCReturn(rc, rc);
1964 pVM->pgm.s.pShwPaePdptRC = GCPtr;
1965 GCPtr += PAGE_SIZE;
1966 GCPtr += PAGE_SIZE; /* reserved page */
1967#endif
1968
1969 /*
1970 * Reserve space for the dynamic mappings.
1971 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1972 */
1973 /* get the pointer to the page table entries. */
1974 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1975 AssertRelease(pMapping);
1976 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1977 const unsigned iPT = off >> X86_PD_SHIFT;
1978 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1979 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1980 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1981
1982 /* init cache */
1983 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1984 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1985 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1986
1987 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1988 {
1989 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1990 AssertRCReturn(rc, rc);
1991 }
1992
1993 /*
1994 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1995 * Intel only goes up to 36 bits, so we stick to 36 as well.
1996 */
1997 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1998 uint32_t u32Dummy, u32Features;
1999 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2000
2001 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2002 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
2003 else
2004 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2005
2006 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2007 return rc;
2008}
2009
2010
2011/**
2012 * Applies relocations to data and code managed by this component.
2013 *
2014 * This function will be called at init and whenever the VMM need to relocate it
2015 * self inside the GC.
2016 *
2017 * @param pVM The VM.
2018 * @param offDelta Relocation delta relative to old location.
2019 */
2020VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2021{
2022 LogFlow(("PGMR3Relocate\n"));
2023
2024 /*
2025 * Paging stuff.
2026 */
2027 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2028 /** @todo move this into shadow and guest specific relocation functions. */
2029#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2030 AssertMsg(pVM->pgm.s.pShw32BitPdR3, ("Init order, no relocation before paging is initialized!\n"));
2031 pVM->pgm.s.pShw32BitPdRC += offDelta;
2032#endif
2033 pVM->pgm.s.pGst32BitPdRC += offDelta;
2034 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
2035 {
2036#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2037 AssertCompile(RT_ELEMENTS(pVM->pgm.s.apShwPaePDsRC) == RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC));
2038 pVM->pgm.s.apShwPaePDsRC[i] += offDelta;
2039#endif
2040 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
2041 }
2042 pVM->pgm.s.pGstPaePdptRC += offDelta;
2043#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2044 pVM->pgm.s.pShwPaePdptRC += offDelta;
2045#endif
2046
2047#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2048 pVM->pgm.s.pShwPageCR3RC += offDelta;
2049#endif
2050
2051 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2052 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
2053
2054 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
2055 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
2056 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
2057
2058 /*
2059 * Trees.
2060 */
2061 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2062
2063 /*
2064 * Ram ranges.
2065 */
2066 if (pVM->pgm.s.pRamRangesR3)
2067 {
2068 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
2069 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
2070 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2071 }
2072
2073 /*
2074 * Update the two page directories with all page table mappings.
2075 * (One or more of them have changed, that's why we're here.)
2076 */
2077 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2078 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2079 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2080
2081 /* Relocate GC addresses of Page Tables. */
2082 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2083 {
2084 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2085 {
2086 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2087 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2088 }
2089 }
2090
2091 /*
2092 * Dynamic page mapping area.
2093 */
2094 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2095 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2096 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2097
2098 /*
2099 * The Zero page.
2100 */
2101 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2102#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2103 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2104#else
2105 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2106#endif
2107
2108 /*
2109 * Physical and virtual handlers.
2110 */
2111 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2112 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2113 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2114
2115 /*
2116 * The page pool.
2117 */
2118 pgmR3PoolRelocate(pVM);
2119}
2120
2121
2122/**
2123 * Callback function for relocating a physical access handler.
2124 *
2125 * @returns 0 (continue enum)
2126 * @param pNode Pointer to a PGMPHYSHANDLER node.
2127 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2128 * not certain the delta will fit in a void pointer for all possible configs.
2129 */
2130static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2131{
2132 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2133 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2134 if (pHandler->pfnHandlerRC)
2135 pHandler->pfnHandlerRC += offDelta;
2136 if (pHandler->pvUserRC >= 0x10000)
2137 pHandler->pvUserRC += offDelta;
2138 return 0;
2139}
2140
2141
2142/**
2143 * Callback function for relocating a virtual access handler.
2144 *
2145 * @returns 0 (continue enum)
2146 * @param pNode Pointer to a PGMVIRTHANDLER node.
2147 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2148 * not certain the delta will fit in a void pointer for all possible configs.
2149 */
2150static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2151{
2152 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2153 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2154 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2155 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2156 Assert(pHandler->pfnHandlerRC);
2157 pHandler->pfnHandlerRC += offDelta;
2158 return 0;
2159}
2160
2161
2162/**
2163 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2164 *
2165 * @returns 0 (continue enum)
2166 * @param pNode Pointer to a PGMVIRTHANDLER node.
2167 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2168 * not certain the delta will fit in a void pointer for all possible configs.
2169 */
2170static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2171{
2172 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2173 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2174 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2175 Assert(pHandler->pfnHandlerRC);
2176 pHandler->pfnHandlerRC += offDelta;
2177 return 0;
2178}
2179
2180
2181/**
2182 * The VM is being reset.
2183 *
2184 * For the PGM component this means that any PD write monitors
2185 * needs to be removed.
2186 *
2187 * @param pVM VM handle.
2188 */
2189VMMR3DECL(void) PGMR3Reset(PVM pVM)
2190{
2191 LogFlow(("PGMR3Reset:\n"));
2192 VM_ASSERT_EMT(pVM);
2193
2194 pgmLock(pVM);
2195
2196 /*
2197 * Unfix any fixed mappings and disable CR3 monitoring.
2198 */
2199 pVM->pgm.s.fMappingsFixed = false;
2200 pVM->pgm.s.GCPtrMappingFixed = 0;
2201 pVM->pgm.s.cbMappingFixed = 0;
2202
2203 /* Exit the guest paging mode before the pgm pool gets reset.
2204 * Important to clean up the amd64 case.
2205 */
2206 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2207 AssertRC(rc);
2208#ifdef DEBUG
2209 DBGFR3InfoLog(pVM, "mappings", NULL);
2210 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2211#endif
2212
2213 /*
2214 * Reset the shadow page pool.
2215 */
2216 pgmR3PoolReset(pVM);
2217
2218 /*
2219 * Re-init other members.
2220 */
2221 pVM->pgm.s.fA20Enabled = true;
2222
2223 /*
2224 * Clear the FFs PGM owns.
2225 */
2226 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2227 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2228
2229 /*
2230 * Reset (zero) RAM pages.
2231 */
2232 rc = pgmR3PhysRamReset(pVM);
2233 if (RT_SUCCESS(rc))
2234 {
2235#ifdef VBOX_WITH_NEW_PHYS_CODE
2236 /*
2237 * Reset (zero) shadow ROM pages.
2238 */
2239 rc = pgmR3PhysRomReset(pVM);
2240#endif
2241 if (RT_SUCCESS(rc))
2242 {
2243#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2244 /* Force a shadow mode reinit (necessary for nested paging and ept). */
2245 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
2246#endif
2247 /*
2248 * Switch mode back to real mode.
2249 */
2250 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2251 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2252 }
2253 }
2254
2255 pgmUnlock(pVM);
2256 //return rc;
2257 AssertReleaseRC(rc);
2258}
2259
2260
2261#ifdef VBOX_STRICT
2262/**
2263 * VM state change callback for clearing fNoMorePhysWrites after
2264 * a snapshot has been created.
2265 */
2266static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2267{
2268 if (enmState == VMSTATE_RUNNING)
2269 pVM->pgm.s.fNoMorePhysWrites = false;
2270}
2271#endif
2272
2273
2274/**
2275 * Terminates the PGM.
2276 *
2277 * @returns VBox status code.
2278 * @param pVM Pointer to VM structure.
2279 */
2280VMMR3DECL(int) PGMR3Term(PVM pVM)
2281{
2282 PGMDeregisterStringFormatTypes();
2283 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2284}
2285
2286
2287/**
2288 * Terminates the per-VCPU PGM.
2289 *
2290 * Termination means cleaning up and freeing all resources,
2291 * the VM it self is at this point powered off or suspended.
2292 *
2293 * @returns VBox status code.
2294 * @param pVM The VM to operate on.
2295 */
2296VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2297{
2298 return 0;
2299}
2300
2301
2302/**
2303 * Execute state save operation.
2304 *
2305 * @returns VBox status code.
2306 * @param pVM VM Handle.
2307 * @param pSSM SSM operation handle.
2308 */
2309static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2310{
2311#ifdef VBOX_WITH_NEW_PHYS_CODE
2312 AssertReleaseFailed(); /** @todo */
2313#else
2314 PPGM pPGM = &pVM->pgm.s;
2315
2316 /* No more writes to physical memory after this point! */
2317 pVM->pgm.s.fNoMorePhysWrites = true;
2318
2319 /*
2320 * Save basic data (required / unaffected by relocation).
2321 */
2322#if 1
2323 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2324#else
2325 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2326#endif
2327 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2328 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2329 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2330 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2331 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2332 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2333 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2334 SSMR3PutU32(pSSM, ~0); /* Separator. */
2335
2336 /*
2337 * The guest mappings.
2338 */
2339 uint32_t i = 0;
2340 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2341 {
2342 SSMR3PutU32(pSSM, i);
2343 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2344 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2345 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2346 /* flags are done by the mapping owners! */
2347 }
2348 SSMR3PutU32(pSSM, ~0); /* terminator. */
2349
2350 /*
2351 * Ram range flags and bits.
2352 */
2353 i = 0;
2354 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2355 {
2356 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2357
2358 SSMR3PutU32(pSSM, i);
2359 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2360 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2361 SSMR3PutGCPhys(pSSM, pRam->cb);
2362 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2363
2364 /* Flags. */
2365 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2366 for (unsigned iPage = 0; iPage < cPages; iPage++)
2367 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2368
2369 /* any memory associated with the range. */
2370 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2371 {
2372 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2373 {
2374 if (pRam->paChunkR3Ptrs[iChunk])
2375 {
2376 SSMR3PutU8(pSSM, 1); /* chunk present */
2377 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2378 }
2379 else
2380 SSMR3PutU8(pSSM, 0); /* no chunk present */
2381 }
2382 }
2383 else if (pRam->pvR3)
2384 {
2385 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2386 if (RT_FAILURE(rc))
2387 {
2388 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2389 return rc;
2390 }
2391 }
2392 }
2393#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2394 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2395}
2396
2397
2398/**
2399 * Execute state load operation.
2400 *
2401 * @returns VBox status code.
2402 * @param pVM VM Handle.
2403 * @param pSSM SSM operation handle.
2404 * @param u32Version Data layout version.
2405 */
2406static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2407{
2408#ifdef VBOX_WITH_NEW_PHYS_CODE
2409 AssertReleaseFailed(); /** @todo */
2410#else
2411 /*
2412 * Validate version.
2413 */
2414 if (u32Version != PGM_SAVED_STATE_VERSION)
2415 {
2416 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2417 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2418 }
2419
2420 /*
2421 * Call the reset function to make sure all the memory is cleared.
2422 */
2423 PGMR3Reset(pVM);
2424
2425 /*
2426 * Load basic data (required / unaffected by relocation).
2427 */
2428 PPGM pPGM = &pVM->pgm.s;
2429#if 1
2430 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2431#else
2432 uint32_t u;
2433 SSMR3GetU32(pSSM, &u);
2434 pPGM->fMappingsFixed = u;
2435#endif
2436 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2437 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2438
2439 RTUINT cbRamSize;
2440 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2441 if (RT_FAILURE(rc))
2442 return rc;
2443 if (cbRamSize != pPGM->cbRamSize)
2444 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2445 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2446 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2447 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2448 RTUINT uGuestMode;
2449 SSMR3GetUInt(pSSM, &uGuestMode);
2450 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2451
2452 /* check separator. */
2453 uint32_t u32Sep;
2454 SSMR3GetU32(pSSM, &u32Sep);
2455 if (RT_FAILURE(rc))
2456 return rc;
2457 if (u32Sep != (uint32_t)~0)
2458 {
2459 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2460 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2461 }
2462
2463 /*
2464 * The guest mappings.
2465 */
2466 uint32_t i = 0;
2467 for (;; i++)
2468 {
2469 /* Check the seqence number / separator. */
2470 rc = SSMR3GetU32(pSSM, &u32Sep);
2471 if (RT_FAILURE(rc))
2472 return rc;
2473 if (u32Sep == ~0U)
2474 break;
2475 if (u32Sep != i)
2476 {
2477 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2478 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2479 }
2480
2481 /* get the mapping details. */
2482 char szDesc[256];
2483 szDesc[0] = '\0';
2484 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2485 if (RT_FAILURE(rc))
2486 return rc;
2487 RTGCPTR GCPtr;
2488 SSMR3GetGCPtr(pSSM, &GCPtr);
2489 RTGCPTR cPTs;
2490 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2491 if (RT_FAILURE(rc))
2492 return rc;
2493
2494 /* find matching range. */
2495 PPGMMAPPING pMapping;
2496 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2497 if ( pMapping->cPTs == cPTs
2498 && !strcmp(pMapping->pszDesc, szDesc))
2499 break;
2500 if (!pMapping)
2501 {
2502 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2503 cPTs, szDesc, GCPtr));
2504 AssertFailed();
2505 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2506 }
2507
2508 /* relocate it. */
2509 if (pMapping->GCPtr != GCPtr)
2510 {
2511 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2512 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2513 }
2514 else
2515 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2516 }
2517
2518 /*
2519 * Ram range flags and bits.
2520 */
2521 i = 0;
2522 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2523 {
2524 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2525 /* Check the seqence number / separator. */
2526 rc = SSMR3GetU32(pSSM, &u32Sep);
2527 if (RT_FAILURE(rc))
2528 return rc;
2529 if (u32Sep == ~0U)
2530 break;
2531 if (u32Sep != i)
2532 {
2533 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2534 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2535 }
2536
2537 /* Get the range details. */
2538 RTGCPHYS GCPhys;
2539 SSMR3GetGCPhys(pSSM, &GCPhys);
2540 RTGCPHYS GCPhysLast;
2541 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2542 RTGCPHYS cb;
2543 SSMR3GetGCPhys(pSSM, &cb);
2544 uint8_t fHaveBits;
2545 rc = SSMR3GetU8(pSSM, &fHaveBits);
2546 if (RT_FAILURE(rc))
2547 return rc;
2548 if (fHaveBits & ~1)
2549 {
2550 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2551 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2552 }
2553
2554 /* Match it up with the current range. */
2555 if ( GCPhys != pRam->GCPhys
2556 || GCPhysLast != pRam->GCPhysLast
2557 || cb != pRam->cb
2558 || fHaveBits != !!pRam->pvR3)
2559 {
2560 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2561 "State : %RGp-%RGp %RGp bytes %s\n",
2562 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2563 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2564 /*
2565 * If we're loading a state for debugging purpose, don't make a fuss if
2566 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2567 */
2568 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2569 || GCPhys < 8 * _1M)
2570 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2571
2572 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2573 while (cPages-- > 0)
2574 {
2575 uint16_t u16Ignore;
2576 SSMR3GetU16(pSSM, &u16Ignore);
2577 }
2578 continue;
2579 }
2580
2581 /* Flags. */
2582 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2583 for (unsigned iPage = 0; iPage < cPages; iPage++)
2584 {
2585 uint16_t u16 = 0;
2586 SSMR3GetU16(pSSM, &u16);
2587 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2588 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2589 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2590 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2591 }
2592
2593 /* any memory associated with the range. */
2594 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2595 {
2596 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2597 {
2598 uint8_t fValidChunk;
2599
2600 rc = SSMR3GetU8(pSSM, &fValidChunk);
2601 if (RT_FAILURE(rc))
2602 return rc;
2603 if (fValidChunk > 1)
2604 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2605
2606 if (fValidChunk)
2607 {
2608 if (!pRam->paChunkR3Ptrs[iChunk])
2609 {
2610 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2611 if (RT_FAILURE(rc))
2612 return rc;
2613 }
2614 Assert(pRam->paChunkR3Ptrs[iChunk]);
2615
2616 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2617 }
2618 /* else nothing to do */
2619 }
2620 }
2621 else if (pRam->pvR3)
2622 {
2623 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2624 if (RT_FAILURE(rc))
2625 {
2626 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2627 return rc;
2628 }
2629 }
2630 }
2631
2632 /*
2633 * We require a full resync now.
2634 */
2635 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2636 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2637 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2638 pPGM->fPhysCacheFlushPending = true;
2639 pgmR3HandlerPhysicalUpdateAll(pVM);
2640
2641 /*
2642 * Change the paging mode.
2643 */
2644 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2645
2646 /* Restore pVM->pgm.s.GCPhysCR3. */
2647 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2648 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2649 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2650 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2651 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2652 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2653 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2654 else
2655 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2656 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2657
2658 return rc;
2659#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2660}
2661
2662
2663/**
2664 * Show paging mode.
2665 *
2666 * @param pVM VM Handle.
2667 * @param pHlp The info helpers.
2668 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2669 */
2670static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2671{
2672 /* digest argument. */
2673 bool fGuest, fShadow, fHost;
2674 if (pszArgs)
2675 pszArgs = RTStrStripL(pszArgs);
2676 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2677 fShadow = fHost = fGuest = true;
2678 else
2679 {
2680 fShadow = fHost = fGuest = false;
2681 if (strstr(pszArgs, "guest"))
2682 fGuest = true;
2683 if (strstr(pszArgs, "shadow"))
2684 fShadow = true;
2685 if (strstr(pszArgs, "host"))
2686 fHost = true;
2687 }
2688
2689 /* print info. */
2690 if (fGuest)
2691 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2692 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2693 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2694 if (fShadow)
2695 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2696 if (fHost)
2697 {
2698 const char *psz;
2699 switch (pVM->pgm.s.enmHostMode)
2700 {
2701 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2702 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2703 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2704 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2705 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2706 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2707 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2708 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2709 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2710 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2711 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2712 default: psz = "unknown"; break;
2713 }
2714 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2715 }
2716}
2717
2718
2719/**
2720 * Dump registered MMIO ranges to the log.
2721 *
2722 * @param pVM VM Handle.
2723 * @param pHlp The info helpers.
2724 * @param pszArgs Arguments, ignored.
2725 */
2726static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2727{
2728 NOREF(pszArgs);
2729 pHlp->pfnPrintf(pHlp,
2730 "RAM ranges (pVM=%p)\n"
2731 "%.*s %.*s\n",
2732 pVM,
2733 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2734 sizeof(RTHCPTR) * 2, "pvHC ");
2735
2736 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2737 pHlp->pfnPrintf(pHlp,
2738 "%RGp-%RGp %RHv %s\n",
2739 pCur->GCPhys,
2740 pCur->GCPhysLast,
2741 pCur->pvR3,
2742 pCur->pszDesc);
2743}
2744
2745/**
2746 * Dump the page directory to the log.
2747 *
2748 * @param pVM VM Handle.
2749 * @param pHlp The info helpers.
2750 * @param pszArgs Arguments, ignored.
2751 */
2752static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2753{
2754/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2755 /* Big pages supported? */
2756 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2757
2758 /* Global pages supported? */
2759 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2760
2761 NOREF(pszArgs);
2762
2763 /*
2764 * Get page directory addresses.
2765 */
2766 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2767 Assert(pPDSrc);
2768 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2769
2770 /*
2771 * Iterate the page directory.
2772 */
2773 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2774 {
2775 X86PDE PdeSrc = pPDSrc->a[iPD];
2776 if (PdeSrc.n.u1Present)
2777 {
2778 if (PdeSrc.b.u1Size && fPSE)
2779 pHlp->pfnPrintf(pHlp,
2780 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2781 iPD,
2782 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2783 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2784 else
2785 pHlp->pfnPrintf(pHlp,
2786 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2787 iPD,
2788 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2789 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2790 }
2791 }
2792}
2793
2794
2795/**
2796 * Serivce a VMMCALLHOST_PGM_LOCK call.
2797 *
2798 * @returns VBox status code.
2799 * @param pVM The VM handle.
2800 */
2801VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2802{
2803 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2804 AssertRC(rc);
2805 return rc;
2806}
2807
2808
2809/**
2810 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2811 *
2812 * @returns PGM_TYPE_*.
2813 * @param pgmMode The mode value to convert.
2814 */
2815DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2816{
2817 switch (pgmMode)
2818 {
2819 case PGMMODE_REAL: return PGM_TYPE_REAL;
2820 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2821 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2822 case PGMMODE_PAE:
2823 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2824 case PGMMODE_AMD64:
2825 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2826 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2827 case PGMMODE_EPT: return PGM_TYPE_EPT;
2828 default:
2829 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2830 }
2831}
2832
2833
2834/**
2835 * Gets the index into the paging mode data array of a SHW+GST mode.
2836 *
2837 * @returns PGM::paPagingData index.
2838 * @param uShwType The shadow paging mode type.
2839 * @param uGstType The guest paging mode type.
2840 */
2841DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2842{
2843 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2844 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2845 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2846 + (uGstType - PGM_TYPE_REAL);
2847}
2848
2849
2850/**
2851 * Gets the index into the paging mode data array of a SHW+GST mode.
2852 *
2853 * @returns PGM::paPagingData index.
2854 * @param enmShw The shadow paging mode.
2855 * @param enmGst The guest paging mode.
2856 */
2857DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2858{
2859 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2860 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2861 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2862}
2863
2864
2865/**
2866 * Calculates the max data index.
2867 * @returns The number of entries in the paging data array.
2868 */
2869DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2870{
2871 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2872}
2873
2874
2875/**
2876 * Initializes the paging mode data kept in PGM::paModeData.
2877 *
2878 * @param pVM The VM handle.
2879 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2880 * This is used early in the init process to avoid trouble with PDM
2881 * not being initialized yet.
2882 */
2883static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2884{
2885 PPGMMODEDATA pModeData;
2886 int rc;
2887
2888 /*
2889 * Allocate the array on the first call.
2890 */
2891 if (!pVM->pgm.s.paModeData)
2892 {
2893 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2894 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2895 }
2896
2897 /*
2898 * Initialize the array entries.
2899 */
2900 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2901 pModeData->uShwType = PGM_TYPE_32BIT;
2902 pModeData->uGstType = PGM_TYPE_REAL;
2903 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2906
2907 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2908 pModeData->uShwType = PGM_TYPE_32BIT;
2909 pModeData->uGstType = PGM_TYPE_PROT;
2910 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2912 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2913
2914 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2915 pModeData->uShwType = PGM_TYPE_32BIT;
2916 pModeData->uGstType = PGM_TYPE_32BIT;
2917 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2919 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2920
2921 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2922 pModeData->uShwType = PGM_TYPE_PAE;
2923 pModeData->uGstType = PGM_TYPE_REAL;
2924 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2927
2928 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2929 pModeData->uShwType = PGM_TYPE_PAE;
2930 pModeData->uGstType = PGM_TYPE_PROT;
2931 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2933 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2934
2935 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2936 pModeData->uShwType = PGM_TYPE_PAE;
2937 pModeData->uGstType = PGM_TYPE_32BIT;
2938 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2939 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2940 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2941
2942 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2943 pModeData->uShwType = PGM_TYPE_PAE;
2944 pModeData->uGstType = PGM_TYPE_PAE;
2945 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2946 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2947 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2948
2949#ifdef VBOX_WITH_64_BITS_GUESTS
2950 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2951 pModeData->uShwType = PGM_TYPE_AMD64;
2952 pModeData->uGstType = PGM_TYPE_AMD64;
2953 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2954 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2955 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2956#endif
2957
2958 /* The nested paging mode. */
2959 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2960 pModeData->uShwType = PGM_TYPE_NESTED;
2961 pModeData->uGstType = PGM_TYPE_REAL;
2962 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2963 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2964
2965 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2966 pModeData->uShwType = PGM_TYPE_NESTED;
2967 pModeData->uGstType = PGM_TYPE_PROT;
2968 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2969 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2970
2971 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2972 pModeData->uShwType = PGM_TYPE_NESTED;
2973 pModeData->uGstType = PGM_TYPE_32BIT;
2974 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2975 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2976
2977 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2978 pModeData->uShwType = PGM_TYPE_NESTED;
2979 pModeData->uGstType = PGM_TYPE_PAE;
2980 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2981 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2982
2983#ifdef VBOX_WITH_64_BITS_GUESTS
2984 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2985 pModeData->uShwType = PGM_TYPE_NESTED;
2986 pModeData->uGstType = PGM_TYPE_AMD64;
2987 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2988 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2989#endif
2990
2991 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2992 switch (pVM->pgm.s.enmHostMode)
2993 {
2994#if HC_ARCH_BITS == 32
2995 case SUPPAGINGMODE_32_BIT:
2996 case SUPPAGINGMODE_32_BIT_GLOBAL:
2997 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2998 {
2999 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3000 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3001 }
3002# ifdef VBOX_WITH_64_BITS_GUESTS
3003 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3004 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3005# endif
3006 break;
3007
3008 case SUPPAGINGMODE_PAE:
3009 case SUPPAGINGMODE_PAE_NX:
3010 case SUPPAGINGMODE_PAE_GLOBAL:
3011 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3012 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3013 {
3014 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3015 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3016 }
3017# ifdef VBOX_WITH_64_BITS_GUESTS
3018 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3019 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3020# endif
3021 break;
3022#endif /* HC_ARCH_BITS == 32 */
3023
3024#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3025 case SUPPAGINGMODE_AMD64:
3026 case SUPPAGINGMODE_AMD64_GLOBAL:
3027 case SUPPAGINGMODE_AMD64_NX:
3028 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3029# ifdef VBOX_WITH_64_BITS_GUESTS
3030 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3031# else
3032 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3033# endif
3034 {
3035 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3036 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3037 }
3038 break;
3039#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3040
3041 default:
3042 AssertFailed();
3043 break;
3044 }
3045
3046 /* Extended paging (EPT) / Intel VT-x */
3047 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3048 pModeData->uShwType = PGM_TYPE_EPT;
3049 pModeData->uGstType = PGM_TYPE_REAL;
3050 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3051 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3052 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3053
3054 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3055 pModeData->uShwType = PGM_TYPE_EPT;
3056 pModeData->uGstType = PGM_TYPE_PROT;
3057 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3058 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3059 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3060
3061 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3062 pModeData->uShwType = PGM_TYPE_EPT;
3063 pModeData->uGstType = PGM_TYPE_32BIT;
3064 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3065 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3066 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3067
3068 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3069 pModeData->uShwType = PGM_TYPE_EPT;
3070 pModeData->uGstType = PGM_TYPE_PAE;
3071 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3072 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3073 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3074
3075#ifdef VBOX_WITH_64_BITS_GUESTS
3076 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3077 pModeData->uShwType = PGM_TYPE_EPT;
3078 pModeData->uGstType = PGM_TYPE_AMD64;
3079 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3080 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3081 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3082#endif
3083 return VINF_SUCCESS;
3084}
3085
3086
3087/**
3088 * Switch to different (or relocated in the relocate case) mode data.
3089 *
3090 * @param pVM The VM handle.
3091 * @param enmShw The the shadow paging mode.
3092 * @param enmGst The the guest paging mode.
3093 */
3094static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3095{
3096 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3097
3098 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3099 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3100
3101 /* shadow */
3102 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3103 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3104 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3105 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3106 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3107
3108 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3109 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3110
3111 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3112 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3113
3114
3115 /* guest */
3116 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3117 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3118 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3119 Assert(pVM->pgm.s.pfnR3GstGetPage);
3120 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3121 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3122#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3123 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
3124 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
3125#endif
3126#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3127 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
3128 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
3129 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
3130 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
3131#endif
3132 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3133 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3134 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3135#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3136 pVM->pgm.s.pfnRCGstMonitorCR3 = pModeData->pfnRCGstMonitorCR3;
3137 pVM->pgm.s.pfnRCGstUnmonitorCR3 = pModeData->pfnRCGstUnmonitorCR3;
3138#endif
3139#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3140 pVM->pgm.s.pfnRCGstWriteHandlerCR3 = pModeData->pfnRCGstWriteHandlerCR3;
3141 pVM->pgm.s.pfnRCGstPAEWriteHandlerCR3 = pModeData->pfnRCGstPAEWriteHandlerCR3;
3142#endif
3143 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3144 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3145 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3146#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3147 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
3148 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
3149#endif
3150#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3151 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
3152 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
3153#endif
3154
3155 /* both */
3156 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3157 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3158 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3159 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3160 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3161 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3162 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3163#ifdef VBOX_STRICT
3164 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3165#endif
3166 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3167 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3168
3169 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3170 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3171 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3172 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3173 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3174 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3175#ifdef VBOX_STRICT
3176 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3177#endif
3178 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3179 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3180
3181 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3182 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3183 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3184 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3185 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3186 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3187#ifdef VBOX_STRICT
3188 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3189#endif
3190 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3191 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3192}
3193
3194
3195/**
3196 * Calculates the shadow paging mode.
3197 *
3198 * @returns The shadow paging mode.
3199 * @param pVM VM handle.
3200 * @param enmGuestMode The guest mode.
3201 * @param enmHostMode The host mode.
3202 * @param enmShadowMode The current shadow mode.
3203 * @param penmSwitcher Where to store the switcher to use.
3204 * VMMSWITCHER_INVALID means no change.
3205 */
3206static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3207{
3208 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3209 switch (enmGuestMode)
3210 {
3211 /*
3212 * When switching to real or protected mode we don't change
3213 * anything since it's likely that we'll switch back pretty soon.
3214 *
3215 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3216 * and is supposed to determine which shadow paging and switcher to
3217 * use during init.
3218 */
3219 case PGMMODE_REAL:
3220 case PGMMODE_PROTECTED:
3221 if ( enmShadowMode != PGMMODE_INVALID
3222 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3223 break; /* (no change) */
3224
3225 switch (enmHostMode)
3226 {
3227 case SUPPAGINGMODE_32_BIT:
3228 case SUPPAGINGMODE_32_BIT_GLOBAL:
3229 enmShadowMode = PGMMODE_32_BIT;
3230 enmSwitcher = VMMSWITCHER_32_TO_32;
3231 break;
3232
3233 case SUPPAGINGMODE_PAE:
3234 case SUPPAGINGMODE_PAE_NX:
3235 case SUPPAGINGMODE_PAE_GLOBAL:
3236 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3237 enmShadowMode = PGMMODE_PAE;
3238 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3239#ifdef DEBUG_bird
3240 if (RTEnvExist("VBOX_32BIT"))
3241 {
3242 enmShadowMode = PGMMODE_32_BIT;
3243 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3244 }
3245#endif
3246 break;
3247
3248 case SUPPAGINGMODE_AMD64:
3249 case SUPPAGINGMODE_AMD64_GLOBAL:
3250 case SUPPAGINGMODE_AMD64_NX:
3251 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3252 enmShadowMode = PGMMODE_PAE;
3253 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3254#ifdef DEBUG_bird
3255 if (RTEnvExist("VBOX_32BIT"))
3256 {
3257 enmShadowMode = PGMMODE_32_BIT;
3258 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3259 }
3260#endif
3261 break;
3262
3263 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3264 }
3265 break;
3266
3267 case PGMMODE_32_BIT:
3268 switch (enmHostMode)
3269 {
3270 case SUPPAGINGMODE_32_BIT:
3271 case SUPPAGINGMODE_32_BIT_GLOBAL:
3272 enmShadowMode = PGMMODE_32_BIT;
3273 enmSwitcher = VMMSWITCHER_32_TO_32;
3274 break;
3275
3276 case SUPPAGINGMODE_PAE:
3277 case SUPPAGINGMODE_PAE_NX:
3278 case SUPPAGINGMODE_PAE_GLOBAL:
3279 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3280 enmShadowMode = PGMMODE_PAE;
3281 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3282#ifdef DEBUG_bird
3283 if (RTEnvExist("VBOX_32BIT"))
3284 {
3285 enmShadowMode = PGMMODE_32_BIT;
3286 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3287 }
3288#endif
3289 break;
3290
3291 case SUPPAGINGMODE_AMD64:
3292 case SUPPAGINGMODE_AMD64_GLOBAL:
3293 case SUPPAGINGMODE_AMD64_NX:
3294 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3295 enmShadowMode = PGMMODE_PAE;
3296 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3297#ifdef DEBUG_bird
3298 if (RTEnvExist("VBOX_32BIT"))
3299 {
3300 enmShadowMode = PGMMODE_32_BIT;
3301 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3302 }
3303#endif
3304 break;
3305
3306 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3307 }
3308 break;
3309
3310 case PGMMODE_PAE:
3311 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3312 switch (enmHostMode)
3313 {
3314 case SUPPAGINGMODE_32_BIT:
3315 case SUPPAGINGMODE_32_BIT_GLOBAL:
3316 enmShadowMode = PGMMODE_PAE;
3317 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3318 break;
3319
3320 case SUPPAGINGMODE_PAE:
3321 case SUPPAGINGMODE_PAE_NX:
3322 case SUPPAGINGMODE_PAE_GLOBAL:
3323 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3324 enmShadowMode = PGMMODE_PAE;
3325 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3326 break;
3327
3328 case SUPPAGINGMODE_AMD64:
3329 case SUPPAGINGMODE_AMD64_GLOBAL:
3330 case SUPPAGINGMODE_AMD64_NX:
3331 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3332 enmShadowMode = PGMMODE_PAE;
3333 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3334 break;
3335
3336 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3337 }
3338 break;
3339
3340 case PGMMODE_AMD64:
3341 case PGMMODE_AMD64_NX:
3342 switch (enmHostMode)
3343 {
3344 case SUPPAGINGMODE_32_BIT:
3345 case SUPPAGINGMODE_32_BIT_GLOBAL:
3346 enmShadowMode = PGMMODE_AMD64;
3347 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3348 break;
3349
3350 case SUPPAGINGMODE_PAE:
3351 case SUPPAGINGMODE_PAE_NX:
3352 case SUPPAGINGMODE_PAE_GLOBAL:
3353 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3354 enmShadowMode = PGMMODE_AMD64;
3355 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3356 break;
3357
3358 case SUPPAGINGMODE_AMD64:
3359 case SUPPAGINGMODE_AMD64_GLOBAL:
3360 case SUPPAGINGMODE_AMD64_NX:
3361 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3362 enmShadowMode = PGMMODE_AMD64;
3363 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3364 break;
3365
3366 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3367 }
3368 break;
3369
3370
3371 default:
3372 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3373 return PGMMODE_INVALID;
3374 }
3375 /* Override the shadow mode is nested paging is active. */
3376 if (HWACCMIsNestedPagingActive(pVM))
3377 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3378
3379 *penmSwitcher = enmSwitcher;
3380 return enmShadowMode;
3381}
3382
3383
3384/**
3385 * Performs the actual mode change.
3386 * This is called by PGMChangeMode and pgmR3InitPaging().
3387 *
3388 * @returns VBox status code.
3389 * @param pVM VM handle.
3390 * @param enmGuestMode The new guest mode. This is assumed to be different from
3391 * the current mode.
3392 */
3393VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3394{
3395 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3396 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3397
3398 /*
3399 * Calc the shadow mode and switcher.
3400 */
3401 VMMSWITCHER enmSwitcher;
3402 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3403 if (enmSwitcher != VMMSWITCHER_INVALID)
3404 {
3405 /*
3406 * Select new switcher.
3407 */
3408 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3409 if (RT_FAILURE(rc))
3410 {
3411 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3412 return rc;
3413 }
3414 }
3415
3416 /*
3417 * Exit old mode(s).
3418 */
3419 /* shadow */
3420 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3421 {
3422 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3423 if (PGM_SHW_PFN(Exit, pVM))
3424 {
3425 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3426 if (RT_FAILURE(rc))
3427 {
3428 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3429 return rc;
3430 }
3431 }
3432
3433 }
3434 else
3435 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3436
3437 /* guest */
3438 if (PGM_GST_PFN(Exit, pVM))
3439 {
3440 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3441 if (RT_FAILURE(rc))
3442 {
3443 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3444 return rc;
3445 }
3446 }
3447
3448 /*
3449 * Load new paging mode data.
3450 */
3451 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3452
3453 /*
3454 * Enter new shadow mode (if changed).
3455 */
3456 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3457 {
3458 int rc;
3459 pVM->pgm.s.enmShadowMode = enmShadowMode;
3460 switch (enmShadowMode)
3461 {
3462 case PGMMODE_32_BIT:
3463 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3464 break;
3465 case PGMMODE_PAE:
3466 case PGMMODE_PAE_NX:
3467 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3468 break;
3469 case PGMMODE_AMD64:
3470 case PGMMODE_AMD64_NX:
3471 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3472 break;
3473 case PGMMODE_NESTED:
3474 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3475 break;
3476 case PGMMODE_EPT:
3477 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3478 break;
3479 case PGMMODE_REAL:
3480 case PGMMODE_PROTECTED:
3481 default:
3482 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3483 return VERR_INTERNAL_ERROR;
3484 }
3485 if (RT_FAILURE(rc))
3486 {
3487 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3488 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3489 return rc;
3490 }
3491 }
3492
3493#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
3494 /** @todo This is a bug!
3495 *
3496 * We must flush the PGM pool cache if the guest mode changes; we don't always
3497 * switch shadow paging mode (e.g. protected->32-bit) and shouldn't reuse
3498 * the shadow page tables.
3499 *
3500 * That only applies when switching between paging and non-paging modes.
3501 */
3502 /** @todo A20 setting */
3503 if ( pVM->pgm.s.CTX_SUFF(pPool)
3504 && !HWACCMIsNestedPagingActive(pVM)
3505 && PGMMODE_WITH_PAGING(pVM->pgm.s.enmGuestMode) != PGMMODE_WITH_PAGING(enmGuestMode))
3506 {
3507 Log(("PGMR3ChangeMode: changing guest paging mode -> flush pgm pool cache!\n"));
3508 pgmPoolFlushAll(pVM);
3509 }
3510#endif
3511
3512 /*
3513 * Enter the new guest and shadow+guest modes.
3514 */
3515 int rc = -1;
3516 int rc2 = -1;
3517 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3518 pVM->pgm.s.enmGuestMode = enmGuestMode;
3519 switch (enmGuestMode)
3520 {
3521 case PGMMODE_REAL:
3522 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3523 switch (pVM->pgm.s.enmShadowMode)
3524 {
3525 case PGMMODE_32_BIT:
3526 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3527 break;
3528 case PGMMODE_PAE:
3529 case PGMMODE_PAE_NX:
3530 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3531 break;
3532 case PGMMODE_NESTED:
3533 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3534 break;
3535 case PGMMODE_EPT:
3536 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3537 break;
3538 case PGMMODE_AMD64:
3539 case PGMMODE_AMD64_NX:
3540 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3541 default: AssertFailed(); break;
3542 }
3543 break;
3544
3545 case PGMMODE_PROTECTED:
3546 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3547 switch (pVM->pgm.s.enmShadowMode)
3548 {
3549 case PGMMODE_32_BIT:
3550 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3551 break;
3552 case PGMMODE_PAE:
3553 case PGMMODE_PAE_NX:
3554 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3555 break;
3556 case PGMMODE_NESTED:
3557 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3558 break;
3559 case PGMMODE_EPT:
3560 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3561 break;
3562 case PGMMODE_AMD64:
3563 case PGMMODE_AMD64_NX:
3564 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3565 default: AssertFailed(); break;
3566 }
3567 break;
3568
3569 case PGMMODE_32_BIT:
3570 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3571 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3572 switch (pVM->pgm.s.enmShadowMode)
3573 {
3574 case PGMMODE_32_BIT:
3575 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3576 break;
3577 case PGMMODE_PAE:
3578 case PGMMODE_PAE_NX:
3579 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3580 break;
3581 case PGMMODE_NESTED:
3582 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3583 break;
3584 case PGMMODE_EPT:
3585 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3586 break;
3587 case PGMMODE_AMD64:
3588 case PGMMODE_AMD64_NX:
3589 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3590 default: AssertFailed(); break;
3591 }
3592 break;
3593
3594 case PGMMODE_PAE_NX:
3595 case PGMMODE_PAE:
3596 {
3597 uint32_t u32Dummy, u32Features;
3598
3599 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3600 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3601 {
3602 /* Pause first, then inform Main. */
3603 rc = VMR3SuspendNoSave(pVM);
3604 AssertRC(rc);
3605
3606 VMSetRuntimeError(pVM, true, "PAEmode",
3607 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3608 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3609 return VINF_SUCCESS;
3610 }
3611 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3612 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3613 switch (pVM->pgm.s.enmShadowMode)
3614 {
3615 case PGMMODE_PAE:
3616 case PGMMODE_PAE_NX:
3617 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3618 break;
3619 case PGMMODE_NESTED:
3620 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3621 break;
3622 case PGMMODE_EPT:
3623 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3624 break;
3625 case PGMMODE_32_BIT:
3626 case PGMMODE_AMD64:
3627 case PGMMODE_AMD64_NX:
3628 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3629 default: AssertFailed(); break;
3630 }
3631 break;
3632 }
3633
3634#ifdef VBOX_WITH_64_BITS_GUESTS
3635 case PGMMODE_AMD64_NX:
3636 case PGMMODE_AMD64:
3637 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3638 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3639 switch (pVM->pgm.s.enmShadowMode)
3640 {
3641 case PGMMODE_AMD64:
3642 case PGMMODE_AMD64_NX:
3643 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3644 break;
3645 case PGMMODE_NESTED:
3646 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3647 break;
3648 case PGMMODE_EPT:
3649 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3650 break;
3651 case PGMMODE_32_BIT:
3652 case PGMMODE_PAE:
3653 case PGMMODE_PAE_NX:
3654 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3655 default: AssertFailed(); break;
3656 }
3657 break;
3658#endif
3659
3660 default:
3661 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3662 rc = VERR_NOT_IMPLEMENTED;
3663 break;
3664 }
3665
3666 /* status codes. */
3667 AssertRC(rc);
3668 AssertRC(rc2);
3669 if (RT_SUCCESS(rc))
3670 {
3671 rc = rc2;
3672 if (RT_SUCCESS(rc)) /* no informational status codes. */
3673 rc = VINF_SUCCESS;
3674 }
3675
3676 /*
3677 * Notify SELM so it can update the TSSes with correct CR3s.
3678 */
3679 SELMR3PagingModeChanged(pVM);
3680
3681 /* Notify HWACCM as well. */
3682 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3683 return rc;
3684}
3685
3686
3687/**
3688 * Dumps a PAE shadow page table.
3689 *
3690 * @returns VBox status code (VINF_SUCCESS).
3691 * @param pVM The VM handle.
3692 * @param pPT Pointer to the page table.
3693 * @param u64Address The virtual address of the page table starts.
3694 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3695 * @param cMaxDepth The maxium depth.
3696 * @param pHlp Pointer to the output functions.
3697 */
3698static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3699{
3700 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3701 {
3702 X86PTEPAE Pte = pPT->a[i];
3703 if (Pte.n.u1Present)
3704 {
3705 pHlp->pfnPrintf(pHlp,
3706 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3707 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3708 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3709 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3710 Pte.n.u1Write ? 'W' : 'R',
3711 Pte.n.u1User ? 'U' : 'S',
3712 Pte.n.u1Accessed ? 'A' : '-',
3713 Pte.n.u1Dirty ? 'D' : '-',
3714 Pte.n.u1Global ? 'G' : '-',
3715 Pte.n.u1WriteThru ? "WT" : "--",
3716 Pte.n.u1CacheDisable? "CD" : "--",
3717 Pte.n.u1PAT ? "AT" : "--",
3718 Pte.n.u1NoExecute ? "NX" : "--",
3719 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3720 Pte.u & RT_BIT(10) ? '1' : '0',
3721 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3722 Pte.u & X86_PTE_PAE_PG_MASK);
3723 }
3724 }
3725 return VINF_SUCCESS;
3726}
3727
3728
3729/**
3730 * Dumps a PAE shadow page directory table.
3731 *
3732 * @returns VBox status code (VINF_SUCCESS).
3733 * @param pVM The VM handle.
3734 * @param HCPhys The physical address of the page directory table.
3735 * @param u64Address The virtual address of the page table starts.
3736 * @param cr4 The CR4, PSE is currently used.
3737 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3738 * @param cMaxDepth The maxium depth.
3739 * @param pHlp Pointer to the output functions.
3740 */
3741static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3742{
3743 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3744 if (!pPD)
3745 {
3746 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3747 fLongMode ? 16 : 8, u64Address, HCPhys);
3748 return VERR_INVALID_PARAMETER;
3749 }
3750 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3751
3752 int rc = VINF_SUCCESS;
3753 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3754 {
3755 X86PDEPAE Pde = pPD->a[i];
3756 if (Pde.n.u1Present)
3757 {
3758 if (fBigPagesSupported && Pde.b.u1Size)
3759 pHlp->pfnPrintf(pHlp,
3760 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3761 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3762 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3763 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3764 Pde.b.u1Write ? 'W' : 'R',
3765 Pde.b.u1User ? 'U' : 'S',
3766 Pde.b.u1Accessed ? 'A' : '-',
3767 Pde.b.u1Dirty ? 'D' : '-',
3768 Pde.b.u1Global ? 'G' : '-',
3769 Pde.b.u1WriteThru ? "WT" : "--",
3770 Pde.b.u1CacheDisable? "CD" : "--",
3771 Pde.b.u1PAT ? "AT" : "--",
3772 Pde.b.u1NoExecute ? "NX" : "--",
3773 Pde.u & RT_BIT_64(9) ? '1' : '0',
3774 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3775 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3776 Pde.u & X86_PDE_PAE_PG_MASK);
3777 else
3778 {
3779 pHlp->pfnPrintf(pHlp,
3780 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3781 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3782 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3783 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3784 Pde.n.u1Write ? 'W' : 'R',
3785 Pde.n.u1User ? 'U' : 'S',
3786 Pde.n.u1Accessed ? 'A' : '-',
3787 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3788 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3789 Pde.n.u1WriteThru ? "WT" : "--",
3790 Pde.n.u1CacheDisable? "CD" : "--",
3791 Pde.n.u1NoExecute ? "NX" : "--",
3792 Pde.u & RT_BIT_64(9) ? '1' : '0',
3793 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3794 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3795 Pde.u & X86_PDE_PAE_PG_MASK);
3796 if (cMaxDepth >= 1)
3797 {
3798 /** @todo what about using the page pool for mapping PTs? */
3799 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3800 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3801 PX86PTPAE pPT = NULL;
3802 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3803 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3804 else
3805 {
3806 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3807 {
3808 uint64_t off = u64AddressPT - pMap->GCPtr;
3809 if (off < pMap->cb)
3810 {
3811 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3812 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3813 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3814 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3815 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3816 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3817 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3818 }
3819 }
3820 }
3821 int rc2 = VERR_INVALID_PARAMETER;
3822 if (pPT)
3823 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3824 else
3825 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3826 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3827 if (rc2 < rc && RT_SUCCESS(rc))
3828 rc = rc2;
3829 }
3830 }
3831 }
3832 }
3833 return rc;
3834}
3835
3836
3837/**
3838 * Dumps a PAE shadow page directory pointer table.
3839 *
3840 * @returns VBox status code (VINF_SUCCESS).
3841 * @param pVM The VM handle.
3842 * @param HCPhys The physical address of the page directory pointer table.
3843 * @param u64Address The virtual address of the page table starts.
3844 * @param cr4 The CR4, PSE is currently used.
3845 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3846 * @param cMaxDepth The maxium depth.
3847 * @param pHlp Pointer to the output functions.
3848 */
3849static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3850{
3851 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3852 if (!pPDPT)
3853 {
3854 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3855 fLongMode ? 16 : 8, u64Address, HCPhys);
3856 return VERR_INVALID_PARAMETER;
3857 }
3858
3859 int rc = VINF_SUCCESS;
3860 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3861 for (unsigned i = 0; i < c; i++)
3862 {
3863 X86PDPE Pdpe = pPDPT->a[i];
3864 if (Pdpe.n.u1Present)
3865 {
3866 if (fLongMode)
3867 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3868 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3869 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3870 Pdpe.lm.u1Write ? 'W' : 'R',
3871 Pdpe.lm.u1User ? 'U' : 'S',
3872 Pdpe.lm.u1Accessed ? 'A' : '-',
3873 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3874 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3875 Pdpe.lm.u1WriteThru ? "WT" : "--",
3876 Pdpe.lm.u1CacheDisable? "CD" : "--",
3877 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3878 Pdpe.lm.u1NoExecute ? "NX" : "--",
3879 Pdpe.u & RT_BIT(9) ? '1' : '0',
3880 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3881 Pdpe.u & RT_BIT(11) ? '1' : '0',
3882 Pdpe.u & X86_PDPE_PG_MASK);
3883 else
3884 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3885 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3886 i << X86_PDPT_SHIFT,
3887 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3888 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3889 Pdpe.n.u1WriteThru ? "WT" : "--",
3890 Pdpe.n.u1CacheDisable? "CD" : "--",
3891 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3892 Pdpe.u & RT_BIT(9) ? '1' : '0',
3893 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3894 Pdpe.u & RT_BIT(11) ? '1' : '0',
3895 Pdpe.u & X86_PDPE_PG_MASK);
3896 if (cMaxDepth >= 1)
3897 {
3898 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3899 cr4, fLongMode, cMaxDepth - 1, pHlp);
3900 if (rc2 < rc && RT_SUCCESS(rc))
3901 rc = rc2;
3902 }
3903 }
3904 }
3905 return rc;
3906}
3907
3908
3909/**
3910 * Dumps a 32-bit shadow page table.
3911 *
3912 * @returns VBox status code (VINF_SUCCESS).
3913 * @param pVM The VM handle.
3914 * @param HCPhys The physical address of the table.
3915 * @param cr4 The CR4, PSE is currently used.
3916 * @param cMaxDepth The maxium depth.
3917 * @param pHlp Pointer to the output functions.
3918 */
3919static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3920{
3921 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3922 if (!pPML4)
3923 {
3924 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3925 return VERR_INVALID_PARAMETER;
3926 }
3927
3928 int rc = VINF_SUCCESS;
3929 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3930 {
3931 X86PML4E Pml4e = pPML4->a[i];
3932 if (Pml4e.n.u1Present)
3933 {
3934 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3935 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3936 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3937 u64Address,
3938 Pml4e.n.u1Write ? 'W' : 'R',
3939 Pml4e.n.u1User ? 'U' : 'S',
3940 Pml4e.n.u1Accessed ? 'A' : '-',
3941 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3942 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3943 Pml4e.n.u1WriteThru ? "WT" : "--",
3944 Pml4e.n.u1CacheDisable? "CD" : "--",
3945 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3946 Pml4e.n.u1NoExecute ? "NX" : "--",
3947 Pml4e.u & RT_BIT(9) ? '1' : '0',
3948 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3949 Pml4e.u & RT_BIT(11) ? '1' : '0',
3950 Pml4e.u & X86_PML4E_PG_MASK);
3951
3952 if (cMaxDepth >= 1)
3953 {
3954 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3955 if (rc2 < rc && RT_SUCCESS(rc))
3956 rc = rc2;
3957 }
3958 }
3959 }
3960 return rc;
3961}
3962
3963
3964/**
3965 * Dumps a 32-bit shadow page table.
3966 *
3967 * @returns VBox status code (VINF_SUCCESS).
3968 * @param pVM The VM handle.
3969 * @param pPT Pointer to the page table.
3970 * @param u32Address The virtual address this table starts at.
3971 * @param pHlp Pointer to the output functions.
3972 */
3973int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3974{
3975 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3976 {
3977 X86PTE Pte = pPT->a[i];
3978 if (Pte.n.u1Present)
3979 {
3980 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3981 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3982 u32Address + (i << X86_PT_SHIFT),
3983 Pte.n.u1Write ? 'W' : 'R',
3984 Pte.n.u1User ? 'U' : 'S',
3985 Pte.n.u1Accessed ? 'A' : '-',
3986 Pte.n.u1Dirty ? 'D' : '-',
3987 Pte.n.u1Global ? 'G' : '-',
3988 Pte.n.u1WriteThru ? "WT" : "--",
3989 Pte.n.u1CacheDisable? "CD" : "--",
3990 Pte.n.u1PAT ? "AT" : "--",
3991 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3992 Pte.u & RT_BIT(10) ? '1' : '0',
3993 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3994 Pte.u & X86_PDE_PG_MASK);
3995 }
3996 }
3997 return VINF_SUCCESS;
3998}
3999
4000
4001/**
4002 * Dumps a 32-bit shadow page directory and page tables.
4003 *
4004 * @returns VBox status code (VINF_SUCCESS).
4005 * @param pVM The VM handle.
4006 * @param cr3 The root of the hierarchy.
4007 * @param cr4 The CR4, PSE is currently used.
4008 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4009 * @param pHlp Pointer to the output functions.
4010 */
4011int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4012{
4013 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4014 if (!pPD)
4015 {
4016 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4017 return VERR_INVALID_PARAMETER;
4018 }
4019
4020 int rc = VINF_SUCCESS;
4021 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4022 {
4023 X86PDE Pde = pPD->a[i];
4024 if (Pde.n.u1Present)
4025 {
4026 const uint32_t u32Address = i << X86_PD_SHIFT;
4027 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4028 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4029 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4030 u32Address,
4031 Pde.b.u1Write ? 'W' : 'R',
4032 Pde.b.u1User ? 'U' : 'S',
4033 Pde.b.u1Accessed ? 'A' : '-',
4034 Pde.b.u1Dirty ? 'D' : '-',
4035 Pde.b.u1Global ? 'G' : '-',
4036 Pde.b.u1WriteThru ? "WT" : "--",
4037 Pde.b.u1CacheDisable? "CD" : "--",
4038 Pde.b.u1PAT ? "AT" : "--",
4039 Pde.u & RT_BIT_64(9) ? '1' : '0',
4040 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4041 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4042 Pde.u & X86_PDE4M_PG_MASK);
4043 else
4044 {
4045 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4046 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4047 u32Address,
4048 Pde.n.u1Write ? 'W' : 'R',
4049 Pde.n.u1User ? 'U' : 'S',
4050 Pde.n.u1Accessed ? 'A' : '-',
4051 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4052 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4053 Pde.n.u1WriteThru ? "WT" : "--",
4054 Pde.n.u1CacheDisable? "CD" : "--",
4055 Pde.u & RT_BIT_64(9) ? '1' : '0',
4056 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4057 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4058 Pde.u & X86_PDE_PG_MASK);
4059 if (cMaxDepth >= 1)
4060 {
4061 /** @todo what about using the page pool for mapping PTs? */
4062 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4063 PX86PT pPT = NULL;
4064 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4065 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4066 else
4067 {
4068 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4069 if (u32Address - pMap->GCPtr < pMap->cb)
4070 {
4071 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4072 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4073 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4074 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4075 pPT = pMap->aPTs[iPDE].pPTR3;
4076 }
4077 }
4078 int rc2 = VERR_INVALID_PARAMETER;
4079 if (pPT)
4080 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4081 else
4082 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4083 if (rc2 < rc && RT_SUCCESS(rc))
4084 rc = rc2;
4085 }
4086 }
4087 }
4088 }
4089
4090 return rc;
4091}
4092
4093
4094/**
4095 * Dumps a 32-bit shadow page table.
4096 *
4097 * @returns VBox status code (VINF_SUCCESS).
4098 * @param pVM The VM handle.
4099 * @param pPT Pointer to the page table.
4100 * @param u32Address The virtual address this table starts at.
4101 * @param PhysSearch Address to search for.
4102 */
4103int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4104{
4105 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4106 {
4107 X86PTE Pte = pPT->a[i];
4108 if (Pte.n.u1Present)
4109 {
4110 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4111 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4112 u32Address + (i << X86_PT_SHIFT),
4113 Pte.n.u1Write ? 'W' : 'R',
4114 Pte.n.u1User ? 'U' : 'S',
4115 Pte.n.u1Accessed ? 'A' : '-',
4116 Pte.n.u1Dirty ? 'D' : '-',
4117 Pte.n.u1Global ? 'G' : '-',
4118 Pte.n.u1WriteThru ? "WT" : "--",
4119 Pte.n.u1CacheDisable? "CD" : "--",
4120 Pte.n.u1PAT ? "AT" : "--",
4121 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4122 Pte.u & RT_BIT(10) ? '1' : '0',
4123 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4124 Pte.u & X86_PDE_PG_MASK));
4125
4126 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4127 {
4128 uint64_t fPageShw = 0;
4129 RTHCPHYS pPhysHC = 0;
4130
4131 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4132 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4133 }
4134 }
4135 }
4136 return VINF_SUCCESS;
4137}
4138
4139
4140/**
4141 * Dumps a 32-bit guest page directory and page tables.
4142 *
4143 * @returns VBox status code (VINF_SUCCESS).
4144 * @param pVM The VM handle.
4145 * @param cr3 The root of the hierarchy.
4146 * @param cr4 The CR4, PSE is currently used.
4147 * @param PhysSearch Address to search for.
4148 */
4149VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4150{
4151 bool fLongMode = false;
4152 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4153 PX86PD pPD = 0;
4154
4155 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4156 if (RT_FAILURE(rc) || !pPD)
4157 {
4158 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4159 return VERR_INVALID_PARAMETER;
4160 }
4161
4162 Log(("cr3=%08x cr4=%08x%s\n"
4163 "%-*s P - Present\n"
4164 "%-*s | R/W - Read (0) / Write (1)\n"
4165 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4166 "%-*s | | | A - Accessed\n"
4167 "%-*s | | | | D - Dirty\n"
4168 "%-*s | | | | | G - Global\n"
4169 "%-*s | | | | | | WT - Write thru\n"
4170 "%-*s | | | | | | | CD - Cache disable\n"
4171 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4172 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4173 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4174 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4175 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4176 "%-*s Level | | | | | | | | | | | | Page\n"
4177 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4178 - W U - - - -- -- -- -- -- 010 */
4179 , cr3, cr4, fLongMode ? " Long Mode" : "",
4180 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4181 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4182
4183 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4184 {
4185 X86PDE Pde = pPD->a[i];
4186 if (Pde.n.u1Present)
4187 {
4188 const uint32_t u32Address = i << X86_PD_SHIFT;
4189
4190 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4191 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4192 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4193 u32Address,
4194 Pde.b.u1Write ? 'W' : 'R',
4195 Pde.b.u1User ? 'U' : 'S',
4196 Pde.b.u1Accessed ? 'A' : '-',
4197 Pde.b.u1Dirty ? 'D' : '-',
4198 Pde.b.u1Global ? 'G' : '-',
4199 Pde.b.u1WriteThru ? "WT" : "--",
4200 Pde.b.u1CacheDisable? "CD" : "--",
4201 Pde.b.u1PAT ? "AT" : "--",
4202 Pde.u & RT_BIT(9) ? '1' : '0',
4203 Pde.u & RT_BIT(10) ? '1' : '0',
4204 Pde.u & RT_BIT(11) ? '1' : '0',
4205 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4206 /** @todo PhysSearch */
4207 else
4208 {
4209 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4210 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4211 u32Address,
4212 Pde.n.u1Write ? 'W' : 'R',
4213 Pde.n.u1User ? 'U' : 'S',
4214 Pde.n.u1Accessed ? 'A' : '-',
4215 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4216 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4217 Pde.n.u1WriteThru ? "WT" : "--",
4218 Pde.n.u1CacheDisable? "CD" : "--",
4219 Pde.u & RT_BIT(9) ? '1' : '0',
4220 Pde.u & RT_BIT(10) ? '1' : '0',
4221 Pde.u & RT_BIT(11) ? '1' : '0',
4222 Pde.u & X86_PDE_PG_MASK));
4223 ////if (cMaxDepth >= 1)
4224 {
4225 /** @todo what about using the page pool for mapping PTs? */
4226 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4227 PX86PT pPT = NULL;
4228
4229 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4230
4231 int rc2 = VERR_INVALID_PARAMETER;
4232 if (pPT)
4233 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4234 else
4235 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4236 if (rc2 < rc && RT_SUCCESS(rc))
4237 rc = rc2;
4238 }
4239 }
4240 }
4241 }
4242
4243 return rc;
4244}
4245
4246
4247/**
4248 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4249 *
4250 * @returns VBox status code (VINF_SUCCESS).
4251 * @param pVM The VM handle.
4252 * @param cr3 The root of the hierarchy.
4253 * @param cr4 The cr4, only PAE and PSE is currently used.
4254 * @param fLongMode Set if long mode, false if not long mode.
4255 * @param cMaxDepth Number of levels to dump.
4256 * @param pHlp Pointer to the output functions.
4257 */
4258VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4259{
4260 if (!pHlp)
4261 pHlp = DBGFR3InfoLogHlp();
4262 if (!cMaxDepth)
4263 return VINF_SUCCESS;
4264 const unsigned cch = fLongMode ? 16 : 8;
4265 pHlp->pfnPrintf(pHlp,
4266 "cr3=%08x cr4=%08x%s\n"
4267 "%-*s P - Present\n"
4268 "%-*s | R/W - Read (0) / Write (1)\n"
4269 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4270 "%-*s | | | A - Accessed\n"
4271 "%-*s | | | | D - Dirty\n"
4272 "%-*s | | | | | G - Global\n"
4273 "%-*s | | | | | | WT - Write thru\n"
4274 "%-*s | | | | | | | CD - Cache disable\n"
4275 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4276 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4277 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4278 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4279 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4280 "%-*s Level | | | | | | | | | | | | Page\n"
4281 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4282 - W U - - - -- -- -- -- -- 010 */
4283 , cr3, cr4, fLongMode ? " Long Mode" : "",
4284 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4285 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4286 if (cr4 & X86_CR4_PAE)
4287 {
4288 if (fLongMode)
4289 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4290 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4291 }
4292 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4293}
4294
4295#ifdef VBOX_WITH_DEBUGGER
4296
4297/**
4298 * The '.pgmram' command.
4299 *
4300 * @returns VBox status.
4301 * @param pCmd Pointer to the command descriptor (as registered).
4302 * @param pCmdHlp Pointer to command helper functions.
4303 * @param pVM Pointer to the current VM (if any).
4304 * @param paArgs Pointer to (readonly) array of arguments.
4305 * @param cArgs Number of arguments in the array.
4306 */
4307static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4308{
4309 /*
4310 * Validate input.
4311 */
4312 if (!pVM)
4313 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4314 if (!pVM->pgm.s.pRamRangesRC)
4315 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4316
4317 /*
4318 * Dump the ranges.
4319 */
4320 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4321 PPGMRAMRANGE pRam;
4322 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4323 {
4324 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4325 "%RGp - %RGp %p\n",
4326 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4327 if (RT_FAILURE(rc))
4328 return rc;
4329 }
4330
4331 return VINF_SUCCESS;
4332}
4333
4334
4335/**
4336 * The '.pgmmap' command.
4337 *
4338 * @returns VBox status.
4339 * @param pCmd Pointer to the command descriptor (as registered).
4340 * @param pCmdHlp Pointer to command helper functions.
4341 * @param pVM Pointer to the current VM (if any).
4342 * @param paArgs Pointer to (readonly) array of arguments.
4343 * @param cArgs Number of arguments in the array.
4344 */
4345static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4346{
4347 /*
4348 * Validate input.
4349 */
4350 if (!pVM)
4351 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4352 if (!pVM->pgm.s.pMappingsR3)
4353 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4354
4355 /*
4356 * Print message about the fixedness of the mappings.
4357 */
4358 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4359 if (RT_FAILURE(rc))
4360 return rc;
4361
4362 /*
4363 * Dump the ranges.
4364 */
4365 PPGMMAPPING pCur;
4366 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4367 {
4368 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4369 "%08x - %08x %s\n",
4370 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4371 if (RT_FAILURE(rc))
4372 return rc;
4373 }
4374
4375 return VINF_SUCCESS;
4376}
4377
4378
4379/**
4380 * The '.pgmsync' command.
4381 *
4382 * @returns VBox status.
4383 * @param pCmd Pointer to the command descriptor (as registered).
4384 * @param pCmdHlp Pointer to command helper functions.
4385 * @param pVM Pointer to the current VM (if any).
4386 * @param paArgs Pointer to (readonly) array of arguments.
4387 * @param cArgs Number of arguments in the array.
4388 */
4389static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4390{
4391 /*
4392 * Validate input.
4393 */
4394 if (!pVM)
4395 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4396
4397 /*
4398 * Force page directory sync.
4399 */
4400 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4401
4402 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4403 if (RT_FAILURE(rc))
4404 return rc;
4405
4406 return VINF_SUCCESS;
4407}
4408
4409
4410#ifdef VBOX_STRICT
4411/**
4412 * The '.pgmassertcr3' command.
4413 *
4414 * @returns VBox status.
4415 * @param pCmd Pointer to the command descriptor (as registered).
4416 * @param pCmdHlp Pointer to command helper functions.
4417 * @param pVM Pointer to the current VM (if any).
4418 * @param paArgs Pointer to (readonly) array of arguments.
4419 * @param cArgs Number of arguments in the array.
4420 */
4421static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4422{
4423 /*
4424 * Validate input.
4425 */
4426 if (!pVM)
4427 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4428
4429 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4430 if (RT_FAILURE(rc))
4431 return rc;
4432
4433 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4434
4435 return VINF_SUCCESS;
4436}
4437#endif /* VBOX_STRICT */
4438
4439
4440/**
4441 * The '.pgmsyncalways' command.
4442 *
4443 * @returns VBox status.
4444 * @param pCmd Pointer to the command descriptor (as registered).
4445 * @param pCmdHlp Pointer to command helper functions.
4446 * @param pVM Pointer to the current VM (if any).
4447 * @param paArgs Pointer to (readonly) array of arguments.
4448 * @param cArgs Number of arguments in the array.
4449 */
4450static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4451{
4452 /*
4453 * Validate input.
4454 */
4455 if (!pVM)
4456 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4457
4458 /*
4459 * Force page directory sync.
4460 */
4461 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4462 {
4463 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4464 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4465 }
4466 else
4467 {
4468 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4469 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4470 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4471 }
4472}
4473
4474#endif /* VBOX_WITH_DEBUGGER */
4475
4476/**
4477 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4478 */
4479typedef struct PGMCHECKINTARGS
4480{
4481 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4482 PPGMPHYSHANDLER pPrevPhys;
4483 PPGMVIRTHANDLER pPrevVirt;
4484 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4485 PVM pVM;
4486} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4487
4488/**
4489 * Validate a node in the physical handler tree.
4490 *
4491 * @returns 0 on if ok, other wise 1.
4492 * @param pNode The handler node.
4493 * @param pvUser pVM.
4494 */
4495static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4496{
4497 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4498 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4499 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4500 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4501 AssertReleaseMsg( !pArgs->pPrevPhys
4502 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4503 ("pPrevPhys=%p %RGp-%RGp %s\n"
4504 " pCur=%p %RGp-%RGp %s\n",
4505 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4506 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4507 pArgs->pPrevPhys = pCur;
4508 return 0;
4509}
4510
4511
4512/**
4513 * Validate a node in the virtual handler tree.
4514 *
4515 * @returns 0 on if ok, other wise 1.
4516 * @param pNode The handler node.
4517 * @param pvUser pVM.
4518 */
4519static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4520{
4521 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4522 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4523 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4524 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4525 AssertReleaseMsg( !pArgs->pPrevVirt
4526 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4527 ("pPrevVirt=%p %RGv-%RGv %s\n"
4528 " pCur=%p %RGv-%RGv %s\n",
4529 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4530 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4531 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4532 {
4533 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4534 ("pCur=%p %RGv-%RGv %s\n"
4535 "iPage=%d offVirtHandle=%#x expected %#x\n",
4536 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4537 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4538 }
4539 pArgs->pPrevVirt = pCur;
4540 return 0;
4541}
4542
4543
4544/**
4545 * Validate a node in the virtual handler tree.
4546 *
4547 * @returns 0 on if ok, other wise 1.
4548 * @param pNode The handler node.
4549 * @param pvUser pVM.
4550 */
4551static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4552{
4553 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4554 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4555 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4556 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4557 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4558 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4559 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4560 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4561 " pCur=%p %RGp-%RGp\n",
4562 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4563 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4564 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4565 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4566 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4567 " pCur=%p %RGp-%RGp\n",
4568 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4569 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4570 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4571 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4572 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4573 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4574 {
4575 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4576 for (;;)
4577 {
4578 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4579 AssertReleaseMsg(pCur2 != pCur,
4580 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4581 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4582 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4583 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4584 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4585 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4586 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4587 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4588 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4589 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4590 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4591 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4592 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4593 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4594 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4595 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4596 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4597 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4598 break;
4599 }
4600 }
4601
4602 pArgs->pPrevPhys2Virt = pCur;
4603 return 0;
4604}
4605
4606
4607/**
4608 * Perform an integrity check on the PGM component.
4609 *
4610 * @returns VINF_SUCCESS if everything is fine.
4611 * @returns VBox error status after asserting on integrity breach.
4612 * @param pVM The VM handle.
4613 */
4614VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4615{
4616 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4617
4618 /*
4619 * Check the trees.
4620 */
4621 int cErrors = 0;
4622 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4623 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4624 PGMCHECKINTARGS Args = s_LeftToRight;
4625 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4626 Args = s_RightToLeft;
4627 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4628 Args = s_LeftToRight;
4629 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4630 Args = s_RightToLeft;
4631 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4632 Args = s_LeftToRight;
4633 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4634 Args = s_RightToLeft;
4635 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4636 Args = s_LeftToRight;
4637 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4638 Args = s_RightToLeft;
4639 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4640
4641 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4642}
4643
4644
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette