VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 17639

Last change on this file since 17639 was 17627, checked in by vboxsync, 16 years ago

Always set VM_FF_PGM_SYNC_CR3 when changing mode

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 212.4 KB
Line 
1/* $Id: PGM.cpp 17627 2009-03-10 13:45:46Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574
575/** Saved state data unit version. */
576#define PGM_SAVED_STATE_VERSION 6
577
578/*******************************************************************************
579* Header Files *
580*******************************************************************************/
581#define LOG_GROUP LOG_GROUP_PGM
582#include <VBox/dbgf.h>
583#include <VBox/pgm.h>
584#include <VBox/cpum.h>
585#include <VBox/iom.h>
586#include <VBox/sup.h>
587#include <VBox/mm.h>
588#include <VBox/em.h>
589#include <VBox/stam.h>
590#include <VBox/rem.h>
591#include <VBox/dbgf.h>
592#include <VBox/rem.h>
593#include <VBox/selm.h>
594#include <VBox/ssm.h>
595#include "PGMInternal.h"
596#include <VBox/vm.h>
597#include <VBox/dbg.h>
598#include <VBox/hwaccm.h>
599
600#include <iprt/assert.h>
601#include <iprt/alloc.h>
602#include <iprt/asm.h>
603#include <iprt/thread.h>
604#include <iprt/string.h>
605#ifdef DEBUG_bird
606# include <iprt/env.h>
607#endif
608#include <VBox/param.h>
609#include <VBox/err.h>
610
611
612
613/*******************************************************************************
614* Internal Functions *
615*******************************************************************************/
616static int pgmR3InitPaging(PVM pVM);
617static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
618static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
619static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
620static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
621static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
622static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
623#ifdef VBOX_STRICT
624static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
625#endif
626static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
627static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
628static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
629static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
631
632#ifdef VBOX_WITH_STATISTICS
633static void pgmR3InitStats(PVM pVM);
634#endif
635
636#ifdef VBOX_WITH_DEBUGGER
637/** @todo all but the two last commands must be converted to 'info'. */
638static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# ifdef VBOX_STRICT
643static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# endif
645#endif
646
647
648/*******************************************************************************
649* Global Variables *
650*******************************************************************************/
651#ifdef VBOX_WITH_DEBUGGER
652/** Command descriptors. */
653static const DBGCCMD g_aCmds[] =
654{
655 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
656 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
657 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659#ifdef VBOX_STRICT
660 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
661#endif
662 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
663};
664#endif
665
666
667
668
669/*
670 * Shadow - 32-bit mode
671 */
672#define PGM_SHW_TYPE PGM_TYPE_32BIT
673#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
674#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
675#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
676#include "PGMShw.h"
677
678/* Guest - real mode */
679#define PGM_GST_TYPE PGM_TYPE_REAL
680#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
681#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
682#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
683#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
684#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
685#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
686#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
687#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
688#include "PGMBth.h"
689#include "PGMGstDefs.h"
690#include "PGMGst.h"
691#undef BTH_PGMPOOLKIND_PT_FOR_PT
692#undef BTH_PGMPOOLKIND_ROOT
693#undef PGM_BTH_NAME
694#undef PGM_BTH_NAME_RC_STR
695#undef PGM_BTH_NAME_R0_STR
696#undef PGM_GST_TYPE
697#undef PGM_GST_NAME
698#undef PGM_GST_NAME_RC_STR
699#undef PGM_GST_NAME_R0_STR
700
701/* Guest - protected mode */
702#define PGM_GST_TYPE PGM_TYPE_PROT
703#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
704#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
705#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
706#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
707#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
708#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
709#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
710#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
711#include "PGMBth.h"
712#include "PGMGstDefs.h"
713#include "PGMGst.h"
714#undef BTH_PGMPOOLKIND_PT_FOR_PT
715#undef BTH_PGMPOOLKIND_ROOT
716#undef PGM_BTH_NAME
717#undef PGM_BTH_NAME_RC_STR
718#undef PGM_BTH_NAME_R0_STR
719#undef PGM_GST_TYPE
720#undef PGM_GST_NAME
721#undef PGM_GST_NAME_RC_STR
722#undef PGM_GST_NAME_R0_STR
723
724/* Guest - 32-bit mode */
725#define PGM_GST_TYPE PGM_TYPE_32BIT
726#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
727#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
728#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
729#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
730#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
731#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
732#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
733#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
734#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
735#include "PGMBth.h"
736#include "PGMGstDefs.h"
737#include "PGMGst.h"
738#undef BTH_PGMPOOLKIND_PT_FOR_BIG
739#undef BTH_PGMPOOLKIND_PT_FOR_PT
740#undef BTH_PGMPOOLKIND_ROOT
741#undef PGM_BTH_NAME
742#undef PGM_BTH_NAME_RC_STR
743#undef PGM_BTH_NAME_R0_STR
744#undef PGM_GST_TYPE
745#undef PGM_GST_NAME
746#undef PGM_GST_NAME_RC_STR
747#undef PGM_GST_NAME_R0_STR
748
749#undef PGM_SHW_TYPE
750#undef PGM_SHW_NAME
751#undef PGM_SHW_NAME_RC_STR
752#undef PGM_SHW_NAME_R0_STR
753
754
755/*
756 * Shadow - PAE mode
757 */
758#define PGM_SHW_TYPE PGM_TYPE_PAE
759#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
760#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
761#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
762#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
763#include "PGMShw.h"
764
765/* Guest - real mode */
766#define PGM_GST_TYPE PGM_TYPE_REAL
767#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
768#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
769#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
770#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
771#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
772#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
773#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
774#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
775#include "PGMGstDefs.h"
776#include "PGMBth.h"
777#undef BTH_PGMPOOLKIND_PT_FOR_PT
778#undef BTH_PGMPOOLKIND_ROOT
779#undef PGM_BTH_NAME
780#undef PGM_BTH_NAME_RC_STR
781#undef PGM_BTH_NAME_R0_STR
782#undef PGM_GST_TYPE
783#undef PGM_GST_NAME
784#undef PGM_GST_NAME_RC_STR
785#undef PGM_GST_NAME_R0_STR
786
787/* Guest - protected mode */
788#define PGM_GST_TYPE PGM_TYPE_PROT
789#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
790#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
791#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
792#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
793#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
794#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
795#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
796#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
797#include "PGMGstDefs.h"
798#include "PGMBth.h"
799#undef BTH_PGMPOOLKIND_PT_FOR_PT
800#undef BTH_PGMPOOLKIND_ROOT
801#undef PGM_BTH_NAME
802#undef PGM_BTH_NAME_RC_STR
803#undef PGM_BTH_NAME_R0_STR
804#undef PGM_GST_TYPE
805#undef PGM_GST_NAME
806#undef PGM_GST_NAME_RC_STR
807#undef PGM_GST_NAME_R0_STR
808
809/* Guest - 32-bit mode */
810#define PGM_GST_TYPE PGM_TYPE_32BIT
811#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
812#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
813#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
814#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
815#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
816#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
817#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
818#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
819#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
820#include "PGMGstDefs.h"
821#include "PGMBth.h"
822#undef BTH_PGMPOOLKIND_PT_FOR_BIG
823#undef BTH_PGMPOOLKIND_PT_FOR_PT
824#undef BTH_PGMPOOLKIND_ROOT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833/* Guest - PAE mode */
834#define PGM_GST_TYPE PGM_TYPE_PAE
835#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
836#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
837#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
838#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
839#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
840#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
841#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
842#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
843#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
844#include "PGMBth.h"
845#include "PGMGstDefs.h"
846#include "PGMGst.h"
847#undef BTH_PGMPOOLKIND_PT_FOR_BIG
848#undef BTH_PGMPOOLKIND_PT_FOR_PT
849#undef BTH_PGMPOOLKIND_ROOT
850#undef PGM_BTH_NAME
851#undef PGM_BTH_NAME_RC_STR
852#undef PGM_BTH_NAME_R0_STR
853#undef PGM_GST_TYPE
854#undef PGM_GST_NAME
855#undef PGM_GST_NAME_RC_STR
856#undef PGM_GST_NAME_R0_STR
857
858#undef PGM_SHW_TYPE
859#undef PGM_SHW_NAME
860#undef PGM_SHW_NAME_RC_STR
861#undef PGM_SHW_NAME_R0_STR
862
863
864/*
865 * Shadow - AMD64 mode
866 */
867#define PGM_SHW_TYPE PGM_TYPE_AMD64
868#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
869#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
870#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
871#include "PGMShw.h"
872
873#ifdef VBOX_WITH_64_BITS_GUESTS
874/* Guest - AMD64 mode */
875# define PGM_GST_TYPE PGM_TYPE_AMD64
876# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
877# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
878# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
879# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
880# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
881# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
882# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
883# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
884# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
885# include "PGMBth.h"
886# include "PGMGstDefs.h"
887# include "PGMGst.h"
888# undef BTH_PGMPOOLKIND_PT_FOR_BIG
889# undef BTH_PGMPOOLKIND_PT_FOR_PT
890# undef BTH_PGMPOOLKIND_ROOT
891# undef PGM_BTH_NAME
892# undef PGM_BTH_NAME_RC_STR
893# undef PGM_BTH_NAME_R0_STR
894# undef PGM_GST_TYPE
895# undef PGM_GST_NAME
896# undef PGM_GST_NAME_RC_STR
897# undef PGM_GST_NAME_R0_STR
898#endif /* VBOX_WITH_64_BITS_GUESTS */
899
900#undef PGM_SHW_TYPE
901#undef PGM_SHW_NAME
902#undef PGM_SHW_NAME_RC_STR
903#undef PGM_SHW_NAME_R0_STR
904
905
906/*
907 * Shadow - Nested paging mode
908 */
909#define PGM_SHW_TYPE PGM_TYPE_NESTED
910#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
911#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
912#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
913#include "PGMShw.h"
914
915/* Guest - real mode */
916#define PGM_GST_TYPE PGM_TYPE_REAL
917#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
918#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
919#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
920#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
921#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
922#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
923#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
924#include "PGMGstDefs.h"
925#include "PGMBth.h"
926#undef BTH_PGMPOOLKIND_PT_FOR_PT
927#undef PGM_BTH_NAME
928#undef PGM_BTH_NAME_RC_STR
929#undef PGM_BTH_NAME_R0_STR
930#undef PGM_GST_TYPE
931#undef PGM_GST_NAME
932#undef PGM_GST_NAME_RC_STR
933#undef PGM_GST_NAME_R0_STR
934
935/* Guest - protected mode */
936#define PGM_GST_TYPE PGM_TYPE_PROT
937#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
938#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
939#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
940#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
941#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
942#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
943#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
944#include "PGMGstDefs.h"
945#include "PGMBth.h"
946#undef BTH_PGMPOOLKIND_PT_FOR_PT
947#undef PGM_BTH_NAME
948#undef PGM_BTH_NAME_RC_STR
949#undef PGM_BTH_NAME_R0_STR
950#undef PGM_GST_TYPE
951#undef PGM_GST_NAME
952#undef PGM_GST_NAME_RC_STR
953#undef PGM_GST_NAME_R0_STR
954
955/* Guest - 32-bit mode */
956#define PGM_GST_TYPE PGM_TYPE_32BIT
957#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
958#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
959#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
960#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
961#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
962#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
963#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
964#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
965#include "PGMGstDefs.h"
966#include "PGMBth.h"
967#undef BTH_PGMPOOLKIND_PT_FOR_BIG
968#undef BTH_PGMPOOLKIND_PT_FOR_PT
969#undef PGM_BTH_NAME
970#undef PGM_BTH_NAME_RC_STR
971#undef PGM_BTH_NAME_R0_STR
972#undef PGM_GST_TYPE
973#undef PGM_GST_NAME
974#undef PGM_GST_NAME_RC_STR
975#undef PGM_GST_NAME_R0_STR
976
977/* Guest - PAE mode */
978#define PGM_GST_TYPE PGM_TYPE_PAE
979#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
980#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
981#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
982#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
983#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
984#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
985#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
986#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
987#include "PGMGstDefs.h"
988#include "PGMBth.h"
989#undef BTH_PGMPOOLKIND_PT_FOR_BIG
990#undef BTH_PGMPOOLKIND_PT_FOR_PT
991#undef PGM_BTH_NAME
992#undef PGM_BTH_NAME_RC_STR
993#undef PGM_BTH_NAME_R0_STR
994#undef PGM_GST_TYPE
995#undef PGM_GST_NAME
996#undef PGM_GST_NAME_RC_STR
997#undef PGM_GST_NAME_R0_STR
998
999#ifdef VBOX_WITH_64_BITS_GUESTS
1000/* Guest - AMD64 mode */
1001# define PGM_GST_TYPE PGM_TYPE_AMD64
1002# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1003# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1004# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1005# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1006# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1007# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1008# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1009# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1010# include "PGMGstDefs.h"
1011# include "PGMBth.h"
1012# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1013# undef BTH_PGMPOOLKIND_PT_FOR_PT
1014# undef PGM_BTH_NAME
1015# undef PGM_BTH_NAME_RC_STR
1016# undef PGM_BTH_NAME_R0_STR
1017# undef PGM_GST_TYPE
1018# undef PGM_GST_NAME
1019# undef PGM_GST_NAME_RC_STR
1020# undef PGM_GST_NAME_R0_STR
1021#endif /* VBOX_WITH_64_BITS_GUESTS */
1022
1023#undef PGM_SHW_TYPE
1024#undef PGM_SHW_NAME
1025#undef PGM_SHW_NAME_RC_STR
1026#undef PGM_SHW_NAME_R0_STR
1027
1028
1029/*
1030 * Shadow - EPT
1031 */
1032#define PGM_SHW_TYPE PGM_TYPE_EPT
1033#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1034#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1035#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1036#include "PGMShw.h"
1037
1038/* Guest - real mode */
1039#define PGM_GST_TYPE PGM_TYPE_REAL
1040#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1041#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1042#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1043#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1044#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1045#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1046#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1047#include "PGMGstDefs.h"
1048#include "PGMBth.h"
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058/* Guest - protected mode */
1059#define PGM_GST_TYPE PGM_TYPE_PROT
1060#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1061#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1062#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1063#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1064#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1065#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1066#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1067#include "PGMGstDefs.h"
1068#include "PGMBth.h"
1069#undef BTH_PGMPOOLKIND_PT_FOR_PT
1070#undef PGM_BTH_NAME
1071#undef PGM_BTH_NAME_RC_STR
1072#undef PGM_BTH_NAME_R0_STR
1073#undef PGM_GST_TYPE
1074#undef PGM_GST_NAME
1075#undef PGM_GST_NAME_RC_STR
1076#undef PGM_GST_NAME_R0_STR
1077
1078/* Guest - 32-bit mode */
1079#define PGM_GST_TYPE PGM_TYPE_32BIT
1080#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1081#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1082#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1083#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1084#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1085#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1086#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1087#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1088#include "PGMGstDefs.h"
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1091#undef BTH_PGMPOOLKIND_PT_FOR_PT
1092#undef PGM_BTH_NAME
1093#undef PGM_BTH_NAME_RC_STR
1094#undef PGM_BTH_NAME_R0_STR
1095#undef PGM_GST_TYPE
1096#undef PGM_GST_NAME
1097#undef PGM_GST_NAME_RC_STR
1098#undef PGM_GST_NAME_R0_STR
1099
1100/* Guest - PAE mode */
1101#define PGM_GST_TYPE PGM_TYPE_PAE
1102#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1103#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1104#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1105#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1106#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1107#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1108#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1109#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1110#include "PGMGstDefs.h"
1111#include "PGMBth.h"
1112#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1113#undef BTH_PGMPOOLKIND_PT_FOR_PT
1114#undef PGM_BTH_NAME
1115#undef PGM_BTH_NAME_RC_STR
1116#undef PGM_BTH_NAME_R0_STR
1117#undef PGM_GST_TYPE
1118#undef PGM_GST_NAME
1119#undef PGM_GST_NAME_RC_STR
1120#undef PGM_GST_NAME_R0_STR
1121
1122#ifdef VBOX_WITH_64_BITS_GUESTS
1123/* Guest - AMD64 mode */
1124# define PGM_GST_TYPE PGM_TYPE_AMD64
1125# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1126# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1127# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1128# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1129# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1130# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1131# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1132# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1133# include "PGMGstDefs.h"
1134# include "PGMBth.h"
1135# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1136# undef BTH_PGMPOOLKIND_PT_FOR_PT
1137# undef PGM_BTH_NAME
1138# undef PGM_BTH_NAME_RC_STR
1139# undef PGM_BTH_NAME_R0_STR
1140# undef PGM_GST_TYPE
1141# undef PGM_GST_NAME
1142# undef PGM_GST_NAME_RC_STR
1143# undef PGM_GST_NAME_R0_STR
1144#endif /* VBOX_WITH_64_BITS_GUESTS */
1145
1146#undef PGM_SHW_TYPE
1147#undef PGM_SHW_NAME
1148#undef PGM_SHW_NAME_RC_STR
1149#undef PGM_SHW_NAME_R0_STR
1150
1151
1152
1153/**
1154 * Initiates the paging of VM.
1155 *
1156 * @returns VBox status code.
1157 * @param pVM Pointer to VM structure.
1158 */
1159VMMR3DECL(int) PGMR3Init(PVM pVM)
1160{
1161 LogFlow(("PGMR3Init:\n"));
1162 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1163 int rc;
1164
1165 /*
1166 * Assert alignment and sizes.
1167 */
1168 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1169
1170 /*
1171 * Init the structure.
1172 */
1173 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1174 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1175 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1176 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1177 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1178 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1179 pVM->pgm.s.fA20Enabled = true;
1180 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1181 pVM->pgm.s.pGstPaePdptR3 = NULL;
1182#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1183 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1184#endif
1185 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1186 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1187 {
1188 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1189#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1190 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1191#endif
1192 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1193 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1194 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1195 }
1196
1197 rc = CFGMR3QueryBoolDef(pCfgPGM, "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, false);
1198 AssertLogRelRCReturn(rc, rc);
1199
1200#if HC_ARCH_BITS == 64
1201 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1202#else
1203 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1204#endif
1205 AssertLogRelRCReturn(rc, rc);
1206 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1207 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1208
1209 /*
1210 * Get the configured RAM size - to estimate saved state size.
1211 */
1212 uint64_t cbRam;
1213 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1214 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1215 cbRam = pVM->pgm.s.cbRamSize = 0;
1216 else if (RT_SUCCESS(rc))
1217 {
1218 if (cbRam < PAGE_SIZE)
1219 cbRam = 0;
1220 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1221 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1222 }
1223 else
1224 {
1225 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1226 return rc;
1227 }
1228
1229 /*
1230 * Register callbacks, string formatters and the saved state data unit.
1231 */
1232#ifdef VBOX_STRICT
1233 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1234#endif
1235 PGMRegisterStringFormatTypes();
1236
1237 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1238 NULL, pgmR3Save, NULL,
1239 NULL, pgmR3Load, NULL);
1240 if (RT_FAILURE(rc))
1241 return rc;
1242
1243 /*
1244 * Initialize the PGM critical section and flush the phys TLBs
1245 */
1246 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1247 AssertRCReturn(rc, rc);
1248
1249 PGMR3PhysChunkInvalidateTLB(pVM);
1250 PGMPhysInvalidatePageR3MapTLB(pVM);
1251 PGMPhysInvalidatePageR0MapTLB(pVM);
1252 PGMPhysInvalidatePageGCMapTLB(pVM);
1253
1254#ifdef VBOX_WITH_NEW_PHYS_CODE
1255 /*
1256 * For the time being we sport a full set of handy pages in addition to the base
1257 * memory to simplify things.
1258 */
1259 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages));
1260 AssertRCReturn(rc, rc);
1261#endif
1262
1263 /*
1264 * Trees
1265 */
1266 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1267 if (RT_SUCCESS(rc))
1268 {
1269 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1270 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1271
1272 /*
1273 * Alocate the zero page.
1274 */
1275 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1276 }
1277 if (RT_SUCCESS(rc))
1278 {
1279 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1280 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1281 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1282 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1283 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1284
1285 /*
1286 * Init the paging.
1287 */
1288 rc = pgmR3InitPaging(pVM);
1289 }
1290 if (RT_SUCCESS(rc))
1291 {
1292 /*
1293 * Init the page pool.
1294 */
1295 rc = pgmR3PoolInit(pVM);
1296 }
1297 if (RT_SUCCESS(rc))
1298 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1299
1300 if (RT_SUCCESS(rc))
1301 {
1302 /*
1303 * Info & statistics
1304 */
1305 DBGFR3InfoRegisterInternal(pVM, "mode",
1306 "Shows the current paging mode. "
1307 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1308 pgmR3InfoMode);
1309 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1310 "Dumps all the entries in the top level paging table. No arguments.",
1311 pgmR3InfoCr3);
1312 DBGFR3InfoRegisterInternal(pVM, "phys",
1313 "Dumps all the physical address ranges. No arguments.",
1314 pgmR3PhysInfo);
1315 DBGFR3InfoRegisterInternal(pVM, "handlers",
1316 "Dumps physical, virtual and hyper virtual handlers. "
1317 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1318 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1319 pgmR3InfoHandlers);
1320 DBGFR3InfoRegisterInternal(pVM, "mappings",
1321 "Dumps guest mappings.",
1322 pgmR3MapInfo);
1323
1324 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1325 STAM_REL_REG(pVM, &pVM->pgm.s.cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1326#ifdef VBOX_WITH_STATISTICS
1327 pgmR3InitStats(pVM);
1328#endif
1329#ifdef VBOX_WITH_DEBUGGER
1330 /*
1331 * Debugger commands.
1332 */
1333 static bool fRegisteredCmds = false;
1334 if (!fRegisteredCmds)
1335 {
1336 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1337 if (RT_SUCCESS(rc))
1338 fRegisteredCmds = true;
1339 }
1340#endif
1341 return VINF_SUCCESS;
1342 }
1343
1344 /* Almost no cleanup necessary, MM frees all memory. */
1345 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1346
1347 return rc;
1348}
1349
1350
1351/**
1352 * Initializes the per-VCPU PGM.
1353 *
1354 * @returns VBox status code.
1355 * @param pVM The VM to operate on.
1356 */
1357VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1358{
1359 LogFlow(("PGMR3InitCPU\n"));
1360 return VINF_SUCCESS;
1361}
1362
1363
1364/**
1365 * Init paging.
1366 *
1367 * Since we need to check what mode the host is operating in before we can choose
1368 * the right paging functions for the host we have to delay this until R0 has
1369 * been initialized.
1370 *
1371 * @returns VBox status code.
1372 * @param pVM VM handle.
1373 */
1374static int pgmR3InitPaging(PVM pVM)
1375{
1376 /*
1377 * Force a recalculation of modes and switcher so everyone gets notified.
1378 */
1379 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1380 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1381 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1382
1383 /*
1384 * Allocate static mapping space for whatever the cr3 register
1385 * points to and in the case of PAE mode to the 4 PDs.
1386 */
1387 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1388 if (RT_FAILURE(rc))
1389 {
1390 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1391 return rc;
1392 }
1393 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1394
1395 /*
1396 * Allocate pages for the three possible intermediate contexts
1397 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1398 * for the sake of simplicity. The AMD64 uses the PAE for the
1399 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1400 *
1401 * We assume that two page tables will be enought for the core code
1402 * mappings (HC virtual and identity).
1403 */
1404 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1405 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1406 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1407 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1408 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1409 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1410 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1411 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1412 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1413 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1414 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1415 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1416 if ( !pVM->pgm.s.pInterPD
1417 || !pVM->pgm.s.apInterPTs[0]
1418 || !pVM->pgm.s.apInterPTs[1]
1419 || !pVM->pgm.s.apInterPaePTs[0]
1420 || !pVM->pgm.s.apInterPaePTs[1]
1421 || !pVM->pgm.s.apInterPaePDs[0]
1422 || !pVM->pgm.s.apInterPaePDs[1]
1423 || !pVM->pgm.s.apInterPaePDs[2]
1424 || !pVM->pgm.s.apInterPaePDs[3]
1425 || !pVM->pgm.s.pInterPaePDPT
1426 || !pVM->pgm.s.pInterPaePDPT64
1427 || !pVM->pgm.s.pInterPaePML4)
1428 {
1429 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1430 return VERR_NO_PAGE_MEMORY;
1431 }
1432
1433 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1434 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1435 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1436 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1437 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1438 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1439
1440 /*
1441 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1442 */
1443 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1444 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1445 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1446
1447 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1448 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1449
1450 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1451 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1452 {
1453 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1454 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1455 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1456 }
1457
1458 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1459 {
1460 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1461 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1462 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1463 }
1464
1465 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1466 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1467 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1468 | HCPhysInterPaePDPT64;
1469
1470 /*
1471 * Initialize paging workers and mode from current host mode
1472 * and the guest running in real mode.
1473 */
1474 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1475 switch (pVM->pgm.s.enmHostMode)
1476 {
1477 case SUPPAGINGMODE_32_BIT:
1478 case SUPPAGINGMODE_32_BIT_GLOBAL:
1479 case SUPPAGINGMODE_PAE:
1480 case SUPPAGINGMODE_PAE_GLOBAL:
1481 case SUPPAGINGMODE_PAE_NX:
1482 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1483 break;
1484
1485 case SUPPAGINGMODE_AMD64:
1486 case SUPPAGINGMODE_AMD64_GLOBAL:
1487 case SUPPAGINGMODE_AMD64_NX:
1488 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1489#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1490 if (ARCH_BITS != 64)
1491 {
1492 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1493 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1494 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1495 }
1496#endif
1497 break;
1498 default:
1499 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1500 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1501 }
1502 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1503 if (RT_SUCCESS(rc))
1504 {
1505 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1506#if HC_ARCH_BITS == 64
1507 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1508 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1509 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1510 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1511 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1512 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1513 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1514#endif
1515
1516 return VINF_SUCCESS;
1517 }
1518
1519 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1520 return rc;
1521}
1522
1523
1524#ifdef VBOX_WITH_STATISTICS
1525/**
1526 * Init statistics
1527 */
1528static void pgmR3InitStats(PVM pVM)
1529{
1530 PPGM pPGM = &pVM->pgm.s;
1531 unsigned i;
1532
1533 /*
1534 * Note! The layout of this function matches the member layout exactly!
1535 */
1536
1537 /* Common - misc variables */
1538 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1539 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1540 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1541 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1542 STAM_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1543 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1544 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1545
1546 /* Common - stats */
1547#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1548 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1549 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1550 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1551 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1552 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1553 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1554#endif
1555 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1556 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1557 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1558 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1559 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1560 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1561
1562 /* R3 only: */
1563 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1564 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1565 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1566 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1567#ifndef VBOX_WITH_NEW_PHYS_CODE
1568 STAM_REG(pVM, &pPGM->StatR3DynRamTotal, STAMTYPE_COUNTER, "/PGM/DynAlloc/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated MBs of guest ram.");
1569 STAM_REG(pVM, &pPGM->StatR3DynRamGrow, STAMTYPE_COUNTER, "/PGM/DynAlloc/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1570#endif
1571
1572 /* R0 only: */
1573 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1574 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1575 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1576 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1577 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1578 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1579 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1580 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1581 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1582 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1583 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1584 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1585 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1586 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1587 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1588 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1589 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1590 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1591 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1592 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1593 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1594 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1595 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1596 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1597 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1598 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1599 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1600 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1601 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1602 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1603 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1604 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1605 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1606 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1607 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1608 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1609
1610 /* GC only: */
1611 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1612 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1613 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1614 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1615
1616 /* RZ only: */
1617 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1618 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1619 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1620 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1621 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1622 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1624 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1625 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1660 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1661 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1662 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1663 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1664 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1665 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1666 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1667 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1668
1669 /* HC only: */
1670
1671 /* RZ & R3: */
1672 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1673 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1674 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1675 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1676 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1677 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1678 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1679 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1680 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1681 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1682 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1683 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1684 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1685 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1686 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1687 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1688 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1690 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1691 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1692 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1693 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1694 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1695 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1696 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1697 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1698 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1699 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1700 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1701 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1702 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1703 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1704 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1705 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1706 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1707 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1708 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1709 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1710 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1711 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1712 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1713 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1714 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1715 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1716 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1717 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1718 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1719/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1720 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1721 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1722 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1723 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1724 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1725 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1726
1727 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1728 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1729 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1730 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1731 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1732 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1733 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1734 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1735 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1736 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1737 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1738 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1739 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1740 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1741 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1742 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1743 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1745 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1746 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1747 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1748 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1749 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1750 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1751 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1752 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1753 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1754 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1755 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1756 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1757 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1758 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1759 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1760 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1761 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1762 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1763 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1764 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1765 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1766 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1767 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1768 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1769 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1770 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1771 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1772 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1773 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1774/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1775 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1776 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1777 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1778 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1779 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1780 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1781
1782}
1783#endif /* VBOX_WITH_STATISTICS */
1784
1785
1786/**
1787 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1788 *
1789 * The dynamic mapping area will also be allocated and initialized at this
1790 * time. We could allocate it during PGMR3Init of course, but the mapping
1791 * wouldn't be allocated at that time preventing us from setting up the
1792 * page table entries with the dummy page.
1793 *
1794 * @returns VBox status code.
1795 * @param pVM VM handle.
1796 */
1797VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1798{
1799 RTGCPTR GCPtr;
1800 int rc;
1801
1802 /*
1803 * Reserve space for the dynamic mappings.
1804 */
1805 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1806 if (RT_SUCCESS(rc))
1807 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1808
1809 if ( RT_SUCCESS(rc)
1810 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1811 {
1812 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1813 if (RT_SUCCESS(rc))
1814 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1815 }
1816 if (RT_SUCCESS(rc))
1817 {
1818 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1819 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1820 }
1821 return rc;
1822}
1823
1824
1825/**
1826 * Ring-3 init finalizing.
1827 *
1828 * @returns VBox status code.
1829 * @param pVM The VM handle.
1830 */
1831VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1832{
1833 int rc;
1834
1835 /*
1836 * Reserve space for the dynamic mappings.
1837 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1838 */
1839 /* get the pointer to the page table entries. */
1840 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1841 AssertRelease(pMapping);
1842 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1843 const unsigned iPT = off >> X86_PD_SHIFT;
1844 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1845 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1846 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1847
1848 /* init cache */
1849 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1850 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1851 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1852
1853 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1854 {
1855 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1856 AssertRCReturn(rc, rc);
1857 }
1858
1859 /*
1860 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1861 * Intel only goes up to 36 bits, so we stick to 36 as well.
1862 */
1863 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1864 uint32_t u32Dummy, u32Features;
1865 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1866
1867 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1868 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1869 else
1870 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1871
1872 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1873 return rc;
1874}
1875
1876
1877/**
1878 * Applies relocations to data and code managed by this component.
1879 *
1880 * This function will be called at init and whenever the VMM need to relocate it
1881 * self inside the GC.
1882 *
1883 * @param pVM The VM.
1884 * @param offDelta Relocation delta relative to old location.
1885 */
1886VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1887{
1888 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1889
1890 /*
1891 * Paging stuff.
1892 */
1893 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1894 /** @todo move this into shadow and guest specific relocation functions. */
1895 pVM->pgm.s.pGst32BitPdRC += offDelta;
1896 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1897 {
1898 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1899 }
1900 pVM->pgm.s.pGstPaePdptRC += offDelta;
1901
1902 pVM->pgm.s.pShwPageCR3RC += offDelta;
1903
1904 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1905 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1906
1907 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1908 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1909 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1910
1911 /*
1912 * Trees.
1913 */
1914 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1915
1916 /*
1917 * Ram ranges.
1918 */
1919 if (pVM->pgm.s.pRamRangesR3)
1920 {
1921 pVM->pgm.s.pRamRangesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pRamRangesR3);
1922 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1923 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1924 }
1925
1926 /*
1927 * Update the two page directories with all page table mappings.
1928 * (One or more of them have changed, that's why we're here.)
1929 */
1930 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1931 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1932 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1933
1934 /* Relocate GC addresses of Page Tables. */
1935 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1936 {
1937 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1938 {
1939 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1940 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1941 }
1942 }
1943
1944 /*
1945 * Dynamic page mapping area.
1946 */
1947 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1948 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1949 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1950
1951 /*
1952 * The Zero page.
1953 */
1954 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1955#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1956 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
1957#else
1958 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
1959#endif
1960
1961 /*
1962 * Physical and virtual handlers.
1963 */
1964 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1965 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1966 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1967
1968 /*
1969 * The page pool.
1970 */
1971 pgmR3PoolRelocate(pVM);
1972}
1973
1974
1975/**
1976 * Callback function for relocating a physical access handler.
1977 *
1978 * @returns 0 (continue enum)
1979 * @param pNode Pointer to a PGMPHYSHANDLER node.
1980 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1981 * not certain the delta will fit in a void pointer for all possible configs.
1982 */
1983static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1984{
1985 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1986 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1987 if (pHandler->pfnHandlerRC)
1988 pHandler->pfnHandlerRC += offDelta;
1989 if (pHandler->pvUserRC >= 0x10000)
1990 pHandler->pvUserRC += offDelta;
1991 return 0;
1992}
1993
1994
1995/**
1996 * Callback function for relocating a virtual access handler.
1997 *
1998 * @returns 0 (continue enum)
1999 * @param pNode Pointer to a PGMVIRTHANDLER node.
2000 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2001 * not certain the delta will fit in a void pointer for all possible configs.
2002 */
2003static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2004{
2005 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2006 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2007 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2008 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2009 Assert(pHandler->pfnHandlerRC);
2010 pHandler->pfnHandlerRC += offDelta;
2011 return 0;
2012}
2013
2014
2015/**
2016 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2017 *
2018 * @returns 0 (continue enum)
2019 * @param pNode Pointer to a PGMVIRTHANDLER node.
2020 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2021 * not certain the delta will fit in a void pointer for all possible configs.
2022 */
2023static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2024{
2025 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2026 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2027 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2028 Assert(pHandler->pfnHandlerRC);
2029 pHandler->pfnHandlerRC += offDelta;
2030 return 0;
2031}
2032
2033
2034/**
2035 * The VM is being reset.
2036 *
2037 * For the PGM component this means that any PD write monitors
2038 * needs to be removed.
2039 *
2040 * @param pVM VM handle.
2041 */
2042VMMR3DECL(void) PGMR3Reset(PVM pVM)
2043{
2044 LogFlow(("PGMR3Reset:\n"));
2045 VM_ASSERT_EMT(pVM);
2046
2047 pgmLock(pVM);
2048
2049 /*
2050 * Unfix any fixed mappings and disable CR3 monitoring.
2051 */
2052 pVM->pgm.s.fMappingsFixed = false;
2053 pVM->pgm.s.GCPtrMappingFixed = 0;
2054 pVM->pgm.s.cbMappingFixed = 0;
2055
2056 /* Exit the guest paging mode before the pgm pool gets reset.
2057 * Important to clean up the amd64 case.
2058 */
2059 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2060 AssertRC(rc);
2061#ifdef DEBUG
2062 DBGFR3InfoLog(pVM, "mappings", NULL);
2063 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2064#endif
2065
2066 /*
2067 * Reset the shadow page pool.
2068 */
2069 pgmR3PoolReset(pVM);
2070
2071 /*
2072 * Re-init other members.
2073 */
2074 pVM->pgm.s.fA20Enabled = true;
2075
2076 /*
2077 * Clear the FFs PGM owns.
2078 */
2079 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2080 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2081
2082 /*
2083 * Reset (zero) RAM pages.
2084 */
2085 rc = pgmR3PhysRamReset(pVM);
2086 if (RT_SUCCESS(rc))
2087 {
2088#ifdef VBOX_WITH_NEW_PHYS_CODE
2089 /*
2090 * Reset (zero) shadow ROM pages.
2091 */
2092 rc = pgmR3PhysRomReset(pVM);
2093#endif
2094 if (RT_SUCCESS(rc))
2095 {
2096 /*
2097 * Switch mode back to real mode.
2098 */
2099 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2100 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2101 }
2102 }
2103
2104 pgmUnlock(pVM);
2105 //return rc;
2106 AssertReleaseRC(rc);
2107}
2108
2109
2110#ifdef VBOX_STRICT
2111/**
2112 * VM state change callback for clearing fNoMorePhysWrites after
2113 * a snapshot has been created.
2114 */
2115static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2116{
2117 if (enmState == VMSTATE_RUNNING)
2118 pVM->pgm.s.fNoMorePhysWrites = false;
2119}
2120#endif
2121
2122
2123/**
2124 * Terminates the PGM.
2125 *
2126 * @returns VBox status code.
2127 * @param pVM Pointer to VM structure.
2128 */
2129VMMR3DECL(int) PGMR3Term(PVM pVM)
2130{
2131 PGMDeregisterStringFormatTypes();
2132 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2133}
2134
2135
2136/**
2137 * Terminates the per-VCPU PGM.
2138 *
2139 * Termination means cleaning up and freeing all resources,
2140 * the VM it self is at this point powered off or suspended.
2141 *
2142 * @returns VBox status code.
2143 * @param pVM The VM to operate on.
2144 */
2145VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2146{
2147 return 0;
2148}
2149
2150
2151/**
2152 * Execute state save operation.
2153 *
2154 * @returns VBox status code.
2155 * @param pVM VM Handle.
2156 * @param pSSM SSM operation handle.
2157 */
2158static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2159{
2160#ifdef VBOX_WITH_NEW_PHYS_CODE
2161 AssertReleaseFailedReturn(VERR_NOT_IMPLEMENTED); /** @todo */
2162#else
2163 PPGM pPGM = &pVM->pgm.s;
2164
2165 /* No more writes to physical memory after this point! */
2166 pVM->pgm.s.fNoMorePhysWrites = true;
2167
2168 /*
2169 * Save basic data (required / unaffected by relocation).
2170 */
2171#if 1
2172 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
2173#else
2174 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
2175#endif
2176 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
2177 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
2178 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
2179 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
2180 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
2181 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
2182 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
2183 SSMR3PutU32(pSSM, ~0); /* Separator. */
2184
2185 /*
2186 * The guest mappings.
2187 */
2188 uint32_t i = 0;
2189 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2190 {
2191 SSMR3PutU32(pSSM, i);
2192 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2193 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
2194 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2195 /* flags are done by the mapping owners! */
2196 }
2197 SSMR3PutU32(pSSM, ~0); /* terminator. */
2198
2199 /*
2200 * Ram range flags and bits.
2201 */
2202 i = 0;
2203 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2204 {
2205 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2206
2207 SSMR3PutU32(pSSM, i);
2208 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2209 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2210 SSMR3PutGCPhys(pSSM, pRam->cb);
2211 SSMR3PutU8(pSSM, !!pRam->pvR3); /* boolean indicating memory or not. */
2212
2213 /* Flags. */
2214 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2215 for (unsigned iPage = 0; iPage < cPages; iPage++)
2216 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2217
2218 /* any memory associated with the range. */
2219 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2220 {
2221 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2222 {
2223 if (pRam->paChunkR3Ptrs[iChunk])
2224 {
2225 SSMR3PutU8(pSSM, 1); /* chunk present */
2226 SSMR3PutMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2227 }
2228 else
2229 SSMR3PutU8(pSSM, 0); /* no chunk present */
2230 }
2231 }
2232 else if (pRam->pvR3)
2233 {
2234 int rc = SSMR3PutMem(pSSM, pRam->pvR3, pRam->cb);
2235 if (RT_FAILURE(rc))
2236 {
2237 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2238 return rc;
2239 }
2240 }
2241 }
2242#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2243 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2244}
2245
2246
2247/**
2248 * Execute state load operation.
2249 *
2250 * @returns VBox status code.
2251 * @param pVM VM Handle.
2252 * @param pSSM SSM operation handle.
2253 * @param u32Version Data layout version.
2254 */
2255static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2256{
2257#ifdef VBOX_WITH_NEW_PHYS_CODE
2258 AssertReleaseFailedReturn(VERR_NOT_IMPLEMENTED); /** @todo */
2259#else
2260 /*
2261 * Validate version.
2262 */
2263 if (u32Version != PGM_SAVED_STATE_VERSION)
2264 {
2265 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2266 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2267 }
2268
2269 /*
2270 * Call the reset function to make sure all the memory is cleared.
2271 */
2272 PGMR3Reset(pVM);
2273
2274 /*
2275 * Load basic data (required / unaffected by relocation).
2276 */
2277 PPGM pPGM = &pVM->pgm.s;
2278#if 1
2279 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2280#else
2281 uint32_t u;
2282 SSMR3GetU32(pSSM, &u);
2283 pPGM->fMappingsFixed = u;
2284#endif
2285 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2286 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2287
2288 RTUINT cbRamSize;
2289 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2290 if (RT_FAILURE(rc))
2291 return rc;
2292 if (cbRamSize != pPGM->cbRamSize)
2293 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2294 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2295 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2296 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2297 RTUINT uGuestMode;
2298 SSMR3GetUInt(pSSM, &uGuestMode);
2299 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2300
2301 /* check separator. */
2302 uint32_t u32Sep;
2303 SSMR3GetU32(pSSM, &u32Sep);
2304 if (RT_FAILURE(rc))
2305 return rc;
2306 if (u32Sep != (uint32_t)~0)
2307 {
2308 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2309 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2310 }
2311
2312 /*
2313 * The guest mappings.
2314 */
2315 uint32_t i = 0;
2316 for (;; i++)
2317 {
2318 /* Check the seqence number / separator. */
2319 rc = SSMR3GetU32(pSSM, &u32Sep);
2320 if (RT_FAILURE(rc))
2321 return rc;
2322 if (u32Sep == ~0U)
2323 break;
2324 if (u32Sep != i)
2325 {
2326 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2327 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2328 }
2329
2330 /* get the mapping details. */
2331 char szDesc[256];
2332 szDesc[0] = '\0';
2333 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2334 if (RT_FAILURE(rc))
2335 return rc;
2336 RTGCPTR GCPtr;
2337 SSMR3GetGCPtr(pSSM, &GCPtr);
2338 RTGCPTR cPTs;
2339 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2340 if (RT_FAILURE(rc))
2341 return rc;
2342
2343 /* find matching range. */
2344 PPGMMAPPING pMapping;
2345 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2346 if ( pMapping->cPTs == cPTs
2347 && !strcmp(pMapping->pszDesc, szDesc))
2348 break;
2349 if (!pMapping)
2350 {
2351 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2352 cPTs, szDesc, GCPtr));
2353 AssertFailed();
2354 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2355 }
2356
2357 /* relocate it. */
2358 if (pMapping->GCPtr != GCPtr)
2359 {
2360 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2361 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2362 }
2363 else
2364 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2365 }
2366
2367 /*
2368 * Ram range flags and bits.
2369 */
2370 i = 0;
2371 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2372 {
2373 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2374 /* Check the seqence number / separator. */
2375 rc = SSMR3GetU32(pSSM, &u32Sep);
2376 if (RT_FAILURE(rc))
2377 return rc;
2378 if (u32Sep == ~0U)
2379 break;
2380 if (u32Sep != i)
2381 {
2382 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2383 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2384 }
2385
2386 /* Get the range details. */
2387 RTGCPHYS GCPhys;
2388 SSMR3GetGCPhys(pSSM, &GCPhys);
2389 RTGCPHYS GCPhysLast;
2390 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2391 RTGCPHYS cb;
2392 SSMR3GetGCPhys(pSSM, &cb);
2393 uint8_t fHaveBits;
2394 rc = SSMR3GetU8(pSSM, &fHaveBits);
2395 if (RT_FAILURE(rc))
2396 return rc;
2397 if (fHaveBits & ~1)
2398 {
2399 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2400 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2401 }
2402
2403 /* Match it up with the current range. */
2404 if ( GCPhys != pRam->GCPhys
2405 || GCPhysLast != pRam->GCPhysLast
2406 || cb != pRam->cb
2407 || fHaveBits != !!pRam->pvR3)
2408 {
2409 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s\n"
2410 "State : %RGp-%RGp %RGp bytes %s\n",
2411 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits",
2412 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2413 /*
2414 * If we're loading a state for debugging purpose, don't make a fuss if
2415 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2416 */
2417 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2418 || GCPhys < 8 * _1M)
2419 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2420
2421 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2422 while (cPages-- > 0)
2423 {
2424 uint16_t u16Ignore;
2425 SSMR3GetU16(pSSM, &u16Ignore);
2426 }
2427 continue;
2428 }
2429
2430 /* Flags. */
2431 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2432 for (unsigned iPage = 0; iPage < cPages; iPage++)
2433 {
2434 uint16_t u16 = 0;
2435 SSMR3GetU16(pSSM, &u16);
2436 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2437 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2438 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2439 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2440 }
2441
2442 /* any memory associated with the range. */
2443 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2444 {
2445 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2446 {
2447 uint8_t fValidChunk;
2448
2449 rc = SSMR3GetU8(pSSM, &fValidChunk);
2450 if (RT_FAILURE(rc))
2451 return rc;
2452 if (fValidChunk > 1)
2453 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2454
2455 if (fValidChunk)
2456 {
2457 if (!pRam->paChunkR3Ptrs[iChunk])
2458 {
2459 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2460 if (RT_FAILURE(rc))
2461 return rc;
2462 }
2463 Assert(pRam->paChunkR3Ptrs[iChunk]);
2464
2465 SSMR3GetMem(pSSM, (void *)pRam->paChunkR3Ptrs[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2466 }
2467 /* else nothing to do */
2468 }
2469 }
2470 else if (pRam->pvR3)
2471 {
2472 int rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2473 if (RT_FAILURE(rc))
2474 {
2475 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Rrc\n", pRam->pvR3, pRam->cb, rc));
2476 return rc;
2477 }
2478 }
2479 }
2480
2481 /*
2482 * We require a full resync now.
2483 */
2484 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2485 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2486 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2487 pPGM->fPhysCacheFlushPending = true;
2488 pgmR3HandlerPhysicalUpdateAll(pVM);
2489
2490 /*
2491 * Change the paging mode.
2492 */
2493 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2494
2495 /* Restore pVM->pgm.s.GCPhysCR3. */
2496 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2497 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2498 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2499 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2500 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2501 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2502 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2503 else
2504 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2505 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2506
2507 return rc;
2508#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2509}
2510
2511
2512/**
2513 * Show paging mode.
2514 *
2515 * @param pVM VM Handle.
2516 * @param pHlp The info helpers.
2517 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2518 */
2519static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2520{
2521 /* digest argument. */
2522 bool fGuest, fShadow, fHost;
2523 if (pszArgs)
2524 pszArgs = RTStrStripL(pszArgs);
2525 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2526 fShadow = fHost = fGuest = true;
2527 else
2528 {
2529 fShadow = fHost = fGuest = false;
2530 if (strstr(pszArgs, "guest"))
2531 fGuest = true;
2532 if (strstr(pszArgs, "shadow"))
2533 fShadow = true;
2534 if (strstr(pszArgs, "host"))
2535 fHost = true;
2536 }
2537
2538 /* print info. */
2539 if (fGuest)
2540 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2541 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2542 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2543 if (fShadow)
2544 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2545 if (fHost)
2546 {
2547 const char *psz;
2548 switch (pVM->pgm.s.enmHostMode)
2549 {
2550 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2551 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2552 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2553 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2554 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2555 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2556 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2557 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2558 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2559 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2560 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2561 default: psz = "unknown"; break;
2562 }
2563 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2564 }
2565}
2566
2567
2568/**
2569 * Dump registered MMIO ranges to the log.
2570 *
2571 * @param pVM VM Handle.
2572 * @param pHlp The info helpers.
2573 * @param pszArgs Arguments, ignored.
2574 */
2575static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2576{
2577 NOREF(pszArgs);
2578 pHlp->pfnPrintf(pHlp,
2579 "RAM ranges (pVM=%p)\n"
2580 "%.*s %.*s\n",
2581 pVM,
2582 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2583 sizeof(RTHCPTR) * 2, "pvHC ");
2584
2585 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2586 pHlp->pfnPrintf(pHlp,
2587 "%RGp-%RGp %RHv %s\n",
2588 pCur->GCPhys,
2589 pCur->GCPhysLast,
2590 pCur->pvR3,
2591 pCur->pszDesc);
2592}
2593
2594/**
2595 * Dump the page directory to the log.
2596 *
2597 * @param pVM VM Handle.
2598 * @param pHlp The info helpers.
2599 * @param pszArgs Arguments, ignored.
2600 */
2601static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2602{
2603/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2604 /* Big pages supported? */
2605 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2606
2607 /* Global pages supported? */
2608 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2609
2610 NOREF(pszArgs);
2611
2612 /*
2613 * Get page directory addresses.
2614 */
2615 PX86PD pPDSrc = pVM->pgm.s.pGst32BitPdR3;
2616 Assert(pPDSrc);
2617 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2618
2619 /*
2620 * Iterate the page directory.
2621 */
2622 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2623 {
2624 X86PDE PdeSrc = pPDSrc->a[iPD];
2625 if (PdeSrc.n.u1Present)
2626 {
2627 if (PdeSrc.b.u1Size && fPSE)
2628 pHlp->pfnPrintf(pHlp,
2629 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2630 iPD,
2631 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2632 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2633 else
2634 pHlp->pfnPrintf(pHlp,
2635 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2636 iPD,
2637 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2638 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2639 }
2640 }
2641}
2642
2643
2644/**
2645 * Serivce a VMMCALLHOST_PGM_LOCK call.
2646 *
2647 * @returns VBox status code.
2648 * @param pVM The VM handle.
2649 */
2650VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2651{
2652 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2653 AssertRC(rc);
2654 return rc;
2655}
2656
2657
2658/**
2659 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2660 *
2661 * @returns PGM_TYPE_*.
2662 * @param pgmMode The mode value to convert.
2663 */
2664DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2665{
2666 switch (pgmMode)
2667 {
2668 case PGMMODE_REAL: return PGM_TYPE_REAL;
2669 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2670 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2671 case PGMMODE_PAE:
2672 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2673 case PGMMODE_AMD64:
2674 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2675 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2676 case PGMMODE_EPT: return PGM_TYPE_EPT;
2677 default:
2678 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2679 }
2680}
2681
2682
2683/**
2684 * Gets the index into the paging mode data array of a SHW+GST mode.
2685 *
2686 * @returns PGM::paPagingData index.
2687 * @param uShwType The shadow paging mode type.
2688 * @param uGstType The guest paging mode type.
2689 */
2690DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2691{
2692 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2693 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2694 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2695 + (uGstType - PGM_TYPE_REAL);
2696}
2697
2698
2699/**
2700 * Gets the index into the paging mode data array of a SHW+GST mode.
2701 *
2702 * @returns PGM::paPagingData index.
2703 * @param enmShw The shadow paging mode.
2704 * @param enmGst The guest paging mode.
2705 */
2706DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2707{
2708 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2709 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2710 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2711}
2712
2713
2714/**
2715 * Calculates the max data index.
2716 * @returns The number of entries in the paging data array.
2717 */
2718DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2719{
2720 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2721}
2722
2723
2724/**
2725 * Initializes the paging mode data kept in PGM::paModeData.
2726 *
2727 * @param pVM The VM handle.
2728 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2729 * This is used early in the init process to avoid trouble with PDM
2730 * not being initialized yet.
2731 */
2732static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2733{
2734 PPGMMODEDATA pModeData;
2735 int rc;
2736
2737 /*
2738 * Allocate the array on the first call.
2739 */
2740 if (!pVM->pgm.s.paModeData)
2741 {
2742 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2743 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2744 }
2745
2746 /*
2747 * Initialize the array entries.
2748 */
2749 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2750 pModeData->uShwType = PGM_TYPE_32BIT;
2751 pModeData->uGstType = PGM_TYPE_REAL;
2752 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755
2756 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2757 pModeData->uShwType = PGM_TYPE_32BIT;
2758 pModeData->uGstType = PGM_TYPE_PROT;
2759 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2760 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2761 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2762
2763 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2764 pModeData->uShwType = PGM_TYPE_32BIT;
2765 pModeData->uGstType = PGM_TYPE_32BIT;
2766 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2767 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2768 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2769
2770 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2771 pModeData->uShwType = PGM_TYPE_PAE;
2772 pModeData->uGstType = PGM_TYPE_REAL;
2773 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2774 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2775 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2776
2777 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2778 pModeData->uShwType = PGM_TYPE_PAE;
2779 pModeData->uGstType = PGM_TYPE_PROT;
2780 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2781 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2782 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2783
2784 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2785 pModeData->uShwType = PGM_TYPE_PAE;
2786 pModeData->uGstType = PGM_TYPE_32BIT;
2787 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2789 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790
2791 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2792 pModeData->uShwType = PGM_TYPE_PAE;
2793 pModeData->uGstType = PGM_TYPE_PAE;
2794 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2795 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2796 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2797
2798#ifdef VBOX_WITH_64_BITS_GUESTS
2799 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2800 pModeData->uShwType = PGM_TYPE_AMD64;
2801 pModeData->uGstType = PGM_TYPE_AMD64;
2802 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2803 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2804 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805#endif
2806
2807 /* The nested paging mode. */
2808 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2809 pModeData->uShwType = PGM_TYPE_NESTED;
2810 pModeData->uGstType = PGM_TYPE_REAL;
2811 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2813
2814 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2815 pModeData->uShwType = PGM_TYPE_NESTED;
2816 pModeData->uGstType = PGM_TYPE_PROT;
2817 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2818 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819
2820 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2821 pModeData->uShwType = PGM_TYPE_NESTED;
2822 pModeData->uGstType = PGM_TYPE_32BIT;
2823 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2824 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825
2826 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2827 pModeData->uShwType = PGM_TYPE_NESTED;
2828 pModeData->uGstType = PGM_TYPE_PAE;
2829 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2830 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2831
2832#ifdef VBOX_WITH_64_BITS_GUESTS
2833 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2834 pModeData->uShwType = PGM_TYPE_NESTED;
2835 pModeData->uGstType = PGM_TYPE_AMD64;
2836 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2837 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2838#endif
2839
2840 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2841 switch (pVM->pgm.s.enmHostMode)
2842 {
2843#if HC_ARCH_BITS == 32
2844 case SUPPAGINGMODE_32_BIT:
2845 case SUPPAGINGMODE_32_BIT_GLOBAL:
2846 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2847 {
2848 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2849 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850 }
2851# ifdef VBOX_WITH_64_BITS_GUESTS
2852 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2853 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2854# endif
2855 break;
2856
2857 case SUPPAGINGMODE_PAE:
2858 case SUPPAGINGMODE_PAE_NX:
2859 case SUPPAGINGMODE_PAE_GLOBAL:
2860 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2861 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2862 {
2863 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2864 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2865 }
2866# ifdef VBOX_WITH_64_BITS_GUESTS
2867 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2868 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869# endif
2870 break;
2871#endif /* HC_ARCH_BITS == 32 */
2872
2873#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2874 case SUPPAGINGMODE_AMD64:
2875 case SUPPAGINGMODE_AMD64_GLOBAL:
2876 case SUPPAGINGMODE_AMD64_NX:
2877 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2878# ifdef VBOX_WITH_64_BITS_GUESTS
2879 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2880# else
2881 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2882# endif
2883 {
2884 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2885 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2886 }
2887 break;
2888#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2889
2890 default:
2891 AssertFailed();
2892 break;
2893 }
2894
2895 /* Extended paging (EPT) / Intel VT-x */
2896 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2897 pModeData->uShwType = PGM_TYPE_EPT;
2898 pModeData->uGstType = PGM_TYPE_REAL;
2899 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2900 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902
2903 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2904 pModeData->uShwType = PGM_TYPE_EPT;
2905 pModeData->uGstType = PGM_TYPE_PROT;
2906 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909
2910 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2911 pModeData->uShwType = PGM_TYPE_EPT;
2912 pModeData->uGstType = PGM_TYPE_32BIT;
2913 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2914 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2915 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916
2917 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2918 pModeData->uShwType = PGM_TYPE_EPT;
2919 pModeData->uGstType = PGM_TYPE_PAE;
2920 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2921 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2922 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923
2924#ifdef VBOX_WITH_64_BITS_GUESTS
2925 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2926 pModeData->uShwType = PGM_TYPE_EPT;
2927 pModeData->uGstType = PGM_TYPE_AMD64;
2928 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2929 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2931#endif
2932 return VINF_SUCCESS;
2933}
2934
2935
2936/**
2937 * Switch to different (or relocated in the relocate case) mode data.
2938 *
2939 * @param pVM The VM handle.
2940 * @param enmShw The the shadow paging mode.
2941 * @param enmGst The the guest paging mode.
2942 */
2943static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2944{
2945 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2946
2947 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2948 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2949
2950 /* shadow */
2951 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2952 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2953 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2954 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2955 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2956
2957 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2958 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2959
2960 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2961 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2962
2963
2964 /* guest */
2965 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2966 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2967 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2968 Assert(pVM->pgm.s.pfnR3GstGetPage);
2969 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2970 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2971 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2972 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2973 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2974 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2975 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2976 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2977
2978 /* both */
2979 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2980 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2981 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2982 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2983 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2984 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2985 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2986#ifdef VBOX_STRICT
2987 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2988#endif
2989 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2990 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2991
2992 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2993 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2994 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2995 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2996 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2997 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2998#ifdef VBOX_STRICT
2999 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3000#endif
3001 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3002 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3003
3004 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3005 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3006 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3007 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3008 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3009 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3010#ifdef VBOX_STRICT
3011 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3012#endif
3013 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3014 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3015}
3016
3017
3018/**
3019 * Calculates the shadow paging mode.
3020 *
3021 * @returns The shadow paging mode.
3022 * @param pVM VM handle.
3023 * @param enmGuestMode The guest mode.
3024 * @param enmHostMode The host mode.
3025 * @param enmShadowMode The current shadow mode.
3026 * @param penmSwitcher Where to store the switcher to use.
3027 * VMMSWITCHER_INVALID means no change.
3028 */
3029static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3030{
3031 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3032 switch (enmGuestMode)
3033 {
3034 /*
3035 * When switching to real or protected mode we don't change
3036 * anything since it's likely that we'll switch back pretty soon.
3037 *
3038 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3039 * and is supposed to determine which shadow paging and switcher to
3040 * use during init.
3041 */
3042 case PGMMODE_REAL:
3043 case PGMMODE_PROTECTED:
3044 if ( enmShadowMode != PGMMODE_INVALID
3045 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3046 break; /* (no change) */
3047
3048 switch (enmHostMode)
3049 {
3050 case SUPPAGINGMODE_32_BIT:
3051 case SUPPAGINGMODE_32_BIT_GLOBAL:
3052 enmShadowMode = PGMMODE_32_BIT;
3053 enmSwitcher = VMMSWITCHER_32_TO_32;
3054 break;
3055
3056 case SUPPAGINGMODE_PAE:
3057 case SUPPAGINGMODE_PAE_NX:
3058 case SUPPAGINGMODE_PAE_GLOBAL:
3059 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3060 enmShadowMode = PGMMODE_PAE;
3061 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3062#ifdef DEBUG_bird
3063 if (RTEnvExist("VBOX_32BIT"))
3064 {
3065 enmShadowMode = PGMMODE_32_BIT;
3066 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3067 }
3068#endif
3069 break;
3070
3071 case SUPPAGINGMODE_AMD64:
3072 case SUPPAGINGMODE_AMD64_GLOBAL:
3073 case SUPPAGINGMODE_AMD64_NX:
3074 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3075 enmShadowMode = PGMMODE_PAE;
3076 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3077#ifdef DEBUG_bird
3078 if (RTEnvExist("VBOX_32BIT"))
3079 {
3080 enmShadowMode = PGMMODE_32_BIT;
3081 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3082 }
3083#endif
3084 break;
3085
3086 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3087 }
3088 break;
3089
3090 case PGMMODE_32_BIT:
3091 switch (enmHostMode)
3092 {
3093 case SUPPAGINGMODE_32_BIT:
3094 case SUPPAGINGMODE_32_BIT_GLOBAL:
3095 enmShadowMode = PGMMODE_32_BIT;
3096 enmSwitcher = VMMSWITCHER_32_TO_32;
3097 break;
3098
3099 case SUPPAGINGMODE_PAE:
3100 case SUPPAGINGMODE_PAE_NX:
3101 case SUPPAGINGMODE_PAE_GLOBAL:
3102 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3103 enmShadowMode = PGMMODE_PAE;
3104 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3105#ifdef DEBUG_bird
3106 if (RTEnvExist("VBOX_32BIT"))
3107 {
3108 enmShadowMode = PGMMODE_32_BIT;
3109 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3110 }
3111#endif
3112 break;
3113
3114 case SUPPAGINGMODE_AMD64:
3115 case SUPPAGINGMODE_AMD64_GLOBAL:
3116 case SUPPAGINGMODE_AMD64_NX:
3117 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3118 enmShadowMode = PGMMODE_PAE;
3119 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3120#ifdef DEBUG_bird
3121 if (RTEnvExist("VBOX_32BIT"))
3122 {
3123 enmShadowMode = PGMMODE_32_BIT;
3124 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3125 }
3126#endif
3127 break;
3128
3129 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3130 }
3131 break;
3132
3133 case PGMMODE_PAE:
3134 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3135 switch (enmHostMode)
3136 {
3137 case SUPPAGINGMODE_32_BIT:
3138 case SUPPAGINGMODE_32_BIT_GLOBAL:
3139 enmShadowMode = PGMMODE_PAE;
3140 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3141 break;
3142
3143 case SUPPAGINGMODE_PAE:
3144 case SUPPAGINGMODE_PAE_NX:
3145 case SUPPAGINGMODE_PAE_GLOBAL:
3146 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3147 enmShadowMode = PGMMODE_PAE;
3148 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3149 break;
3150
3151 case SUPPAGINGMODE_AMD64:
3152 case SUPPAGINGMODE_AMD64_GLOBAL:
3153 case SUPPAGINGMODE_AMD64_NX:
3154 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3155 enmShadowMode = PGMMODE_PAE;
3156 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3157 break;
3158
3159 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3160 }
3161 break;
3162
3163 case PGMMODE_AMD64:
3164 case PGMMODE_AMD64_NX:
3165 switch (enmHostMode)
3166 {
3167 case SUPPAGINGMODE_32_BIT:
3168 case SUPPAGINGMODE_32_BIT_GLOBAL:
3169 enmShadowMode = PGMMODE_AMD64;
3170 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3171 break;
3172
3173 case SUPPAGINGMODE_PAE:
3174 case SUPPAGINGMODE_PAE_NX:
3175 case SUPPAGINGMODE_PAE_GLOBAL:
3176 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3177 enmShadowMode = PGMMODE_AMD64;
3178 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3179 break;
3180
3181 case SUPPAGINGMODE_AMD64:
3182 case SUPPAGINGMODE_AMD64_GLOBAL:
3183 case SUPPAGINGMODE_AMD64_NX:
3184 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3185 enmShadowMode = PGMMODE_AMD64;
3186 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3187 break;
3188
3189 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3190 }
3191 break;
3192
3193
3194 default:
3195 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3196 return PGMMODE_INVALID;
3197 }
3198 /* Override the shadow mode is nested paging is active. */
3199 if (HWACCMIsNestedPagingActive(pVM))
3200 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3201
3202 *penmSwitcher = enmSwitcher;
3203 return enmShadowMode;
3204}
3205
3206
3207/**
3208 * Performs the actual mode change.
3209 * This is called by PGMChangeMode and pgmR3InitPaging().
3210 *
3211 * @returns VBox status code.
3212 * @param pVM VM handle.
3213 * @param enmGuestMode The new guest mode. This is assumed to be different from
3214 * the current mode.
3215 */
3216VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3217{
3218 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3219 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3220
3221 /*
3222 * Calc the shadow mode and switcher.
3223 */
3224 VMMSWITCHER enmSwitcher;
3225 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3226 if (enmSwitcher != VMMSWITCHER_INVALID)
3227 {
3228 /*
3229 * Select new switcher.
3230 */
3231 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3232 if (RT_FAILURE(rc))
3233 {
3234 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3235 return rc;
3236 }
3237 }
3238
3239 /*
3240 * Exit old mode(s).
3241 */
3242 /* shadow */
3243 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3244 {
3245 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3246 if (PGM_SHW_PFN(Exit, pVM))
3247 {
3248 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3249 if (RT_FAILURE(rc))
3250 {
3251 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3252 return rc;
3253 }
3254 }
3255
3256 }
3257 else
3258 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3259
3260 /* guest */
3261 if (PGM_GST_PFN(Exit, pVM))
3262 {
3263 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3264 if (RT_FAILURE(rc))
3265 {
3266 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3267 return rc;
3268 }
3269 }
3270
3271 /*
3272 * Load new paging mode data.
3273 */
3274 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3275
3276 /*
3277 * Enter new shadow mode (if changed).
3278 */
3279 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3280 {
3281 int rc;
3282 pVM->pgm.s.enmShadowMode = enmShadowMode;
3283 switch (enmShadowMode)
3284 {
3285 case PGMMODE_32_BIT:
3286 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3287 break;
3288 case PGMMODE_PAE:
3289 case PGMMODE_PAE_NX:
3290 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3291 break;
3292 case PGMMODE_AMD64:
3293 case PGMMODE_AMD64_NX:
3294 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3295 break;
3296 case PGMMODE_NESTED:
3297 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3298 break;
3299 case PGMMODE_EPT:
3300 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3301 break;
3302 case PGMMODE_REAL:
3303 case PGMMODE_PROTECTED:
3304 default:
3305 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3306 return VERR_INTERNAL_ERROR;
3307 }
3308 if (RT_FAILURE(rc))
3309 {
3310 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3311 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3312 return rc;
3313 }
3314 }
3315
3316 /*
3317 * Always flag the necessary updates
3318 */
3319 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3320
3321 /*
3322 * Enter the new guest and shadow+guest modes.
3323 */
3324 int rc = -1;
3325 int rc2 = -1;
3326 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3327 pVM->pgm.s.enmGuestMode = enmGuestMode;
3328 switch (enmGuestMode)
3329 {
3330 case PGMMODE_REAL:
3331 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3332 switch (pVM->pgm.s.enmShadowMode)
3333 {
3334 case PGMMODE_32_BIT:
3335 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3336 break;
3337 case PGMMODE_PAE:
3338 case PGMMODE_PAE_NX:
3339 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3340 break;
3341 case PGMMODE_NESTED:
3342 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3343 break;
3344 case PGMMODE_EPT:
3345 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3346 break;
3347 case PGMMODE_AMD64:
3348 case PGMMODE_AMD64_NX:
3349 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3350 default: AssertFailed(); break;
3351 }
3352 break;
3353
3354 case PGMMODE_PROTECTED:
3355 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3356 switch (pVM->pgm.s.enmShadowMode)
3357 {
3358 case PGMMODE_32_BIT:
3359 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3360 break;
3361 case PGMMODE_PAE:
3362 case PGMMODE_PAE_NX:
3363 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3364 break;
3365 case PGMMODE_NESTED:
3366 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3367 break;
3368 case PGMMODE_EPT:
3369 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3370 break;
3371 case PGMMODE_AMD64:
3372 case PGMMODE_AMD64_NX:
3373 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3374 default: AssertFailed(); break;
3375 }
3376 break;
3377
3378 case PGMMODE_32_BIT:
3379 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3380 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3381 switch (pVM->pgm.s.enmShadowMode)
3382 {
3383 case PGMMODE_32_BIT:
3384 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3385 break;
3386 case PGMMODE_PAE:
3387 case PGMMODE_PAE_NX:
3388 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3389 break;
3390 case PGMMODE_NESTED:
3391 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3392 break;
3393 case PGMMODE_EPT:
3394 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3395 break;
3396 case PGMMODE_AMD64:
3397 case PGMMODE_AMD64_NX:
3398 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3399 default: AssertFailed(); break;
3400 }
3401 break;
3402
3403 case PGMMODE_PAE_NX:
3404 case PGMMODE_PAE:
3405 {
3406 uint32_t u32Dummy, u32Features;
3407
3408 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3409 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3410 {
3411 /* Pause first, then inform Main. */
3412 rc = VMR3SuspendNoSave(pVM);
3413 AssertRC(rc);
3414
3415 VMSetRuntimeError(pVM, true, "PAEmode",
3416 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3417 /* we must return VINF_SUCCESS here otherwise the recompiler will assert */
3418 return VINF_SUCCESS;
3419 }
3420 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3421 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3422 switch (pVM->pgm.s.enmShadowMode)
3423 {
3424 case PGMMODE_PAE:
3425 case PGMMODE_PAE_NX:
3426 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3427 break;
3428 case PGMMODE_NESTED:
3429 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3430 break;
3431 case PGMMODE_EPT:
3432 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3433 break;
3434 case PGMMODE_32_BIT:
3435 case PGMMODE_AMD64:
3436 case PGMMODE_AMD64_NX:
3437 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3438 default: AssertFailed(); break;
3439 }
3440 break;
3441 }
3442
3443#ifdef VBOX_WITH_64_BITS_GUESTS
3444 case PGMMODE_AMD64_NX:
3445 case PGMMODE_AMD64:
3446 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3447 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3448 switch (pVM->pgm.s.enmShadowMode)
3449 {
3450 case PGMMODE_AMD64:
3451 case PGMMODE_AMD64_NX:
3452 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3453 break;
3454 case PGMMODE_NESTED:
3455 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3456 break;
3457 case PGMMODE_EPT:
3458 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3459 break;
3460 case PGMMODE_32_BIT:
3461 case PGMMODE_PAE:
3462 case PGMMODE_PAE_NX:
3463 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3464 default: AssertFailed(); break;
3465 }
3466 break;
3467#endif
3468
3469 default:
3470 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3471 rc = VERR_NOT_IMPLEMENTED;
3472 break;
3473 }
3474
3475 /* status codes. */
3476 AssertRC(rc);
3477 AssertRC(rc2);
3478 if (RT_SUCCESS(rc))
3479 {
3480 rc = rc2;
3481 if (RT_SUCCESS(rc)) /* no informational status codes. */
3482 rc = VINF_SUCCESS;
3483 }
3484
3485 /* Notify HWACCM as well. */
3486 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3487 return rc;
3488}
3489
3490
3491/**
3492 * Dumps a PAE shadow page table.
3493 *
3494 * @returns VBox status code (VINF_SUCCESS).
3495 * @param pVM The VM handle.
3496 * @param pPT Pointer to the page table.
3497 * @param u64Address The virtual address of the page table starts.
3498 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3499 * @param cMaxDepth The maxium depth.
3500 * @param pHlp Pointer to the output functions.
3501 */
3502static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3503{
3504 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3505 {
3506 X86PTEPAE Pte = pPT->a[i];
3507 if (Pte.n.u1Present)
3508 {
3509 pHlp->pfnPrintf(pHlp,
3510 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3511 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3512 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3513 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3514 Pte.n.u1Write ? 'W' : 'R',
3515 Pte.n.u1User ? 'U' : 'S',
3516 Pte.n.u1Accessed ? 'A' : '-',
3517 Pte.n.u1Dirty ? 'D' : '-',
3518 Pte.n.u1Global ? 'G' : '-',
3519 Pte.n.u1WriteThru ? "WT" : "--",
3520 Pte.n.u1CacheDisable? "CD" : "--",
3521 Pte.n.u1PAT ? "AT" : "--",
3522 Pte.n.u1NoExecute ? "NX" : "--",
3523 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3524 Pte.u & RT_BIT(10) ? '1' : '0',
3525 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3526 Pte.u & X86_PTE_PAE_PG_MASK);
3527 }
3528 }
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Dumps a PAE shadow page directory table.
3535 *
3536 * @returns VBox status code (VINF_SUCCESS).
3537 * @param pVM The VM handle.
3538 * @param HCPhys The physical address of the page directory table.
3539 * @param u64Address The virtual address of the page table starts.
3540 * @param cr4 The CR4, PSE is currently used.
3541 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3542 * @param cMaxDepth The maxium depth.
3543 * @param pHlp Pointer to the output functions.
3544 */
3545static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3546{
3547 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3548 if (!pPD)
3549 {
3550 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3551 fLongMode ? 16 : 8, u64Address, HCPhys);
3552 return VERR_INVALID_PARAMETER;
3553 }
3554 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3555
3556 int rc = VINF_SUCCESS;
3557 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3558 {
3559 X86PDEPAE Pde = pPD->a[i];
3560 if (Pde.n.u1Present)
3561 {
3562 if (fBigPagesSupported && Pde.b.u1Size)
3563 pHlp->pfnPrintf(pHlp,
3564 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3565 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3566 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3567 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3568 Pde.b.u1Write ? 'W' : 'R',
3569 Pde.b.u1User ? 'U' : 'S',
3570 Pde.b.u1Accessed ? 'A' : '-',
3571 Pde.b.u1Dirty ? 'D' : '-',
3572 Pde.b.u1Global ? 'G' : '-',
3573 Pde.b.u1WriteThru ? "WT" : "--",
3574 Pde.b.u1CacheDisable? "CD" : "--",
3575 Pde.b.u1PAT ? "AT" : "--",
3576 Pde.b.u1NoExecute ? "NX" : "--",
3577 Pde.u & RT_BIT_64(9) ? '1' : '0',
3578 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3579 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3580 Pde.u & X86_PDE_PAE_PG_MASK);
3581 else
3582 {
3583 pHlp->pfnPrintf(pHlp,
3584 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3585 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3586 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3587 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3588 Pde.n.u1Write ? 'W' : 'R',
3589 Pde.n.u1User ? 'U' : 'S',
3590 Pde.n.u1Accessed ? 'A' : '-',
3591 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3592 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3593 Pde.n.u1WriteThru ? "WT" : "--",
3594 Pde.n.u1CacheDisable? "CD" : "--",
3595 Pde.n.u1NoExecute ? "NX" : "--",
3596 Pde.u & RT_BIT_64(9) ? '1' : '0',
3597 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3598 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3599 Pde.u & X86_PDE_PAE_PG_MASK);
3600 if (cMaxDepth >= 1)
3601 {
3602 /** @todo what about using the page pool for mapping PTs? */
3603 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3604 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3605 PX86PTPAE pPT = NULL;
3606 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3607 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3608 else
3609 {
3610 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3611 {
3612 uint64_t off = u64AddressPT - pMap->GCPtr;
3613 if (off < pMap->cb)
3614 {
3615 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3616 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3617 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3618 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3619 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3620 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3621 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3622 }
3623 }
3624 }
3625 int rc2 = VERR_INVALID_PARAMETER;
3626 if (pPT)
3627 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3628 else
3629 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3630 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3631 if (rc2 < rc && RT_SUCCESS(rc))
3632 rc = rc2;
3633 }
3634 }
3635 }
3636 }
3637 return rc;
3638}
3639
3640
3641/**
3642 * Dumps a PAE shadow page directory pointer table.
3643 *
3644 * @returns VBox status code (VINF_SUCCESS).
3645 * @param pVM The VM handle.
3646 * @param HCPhys The physical address of the page directory pointer table.
3647 * @param u64Address The virtual address of the page table starts.
3648 * @param cr4 The CR4, PSE is currently used.
3649 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3650 * @param cMaxDepth The maxium depth.
3651 * @param pHlp Pointer to the output functions.
3652 */
3653static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3654{
3655 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3656 if (!pPDPT)
3657 {
3658 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3659 fLongMode ? 16 : 8, u64Address, HCPhys);
3660 return VERR_INVALID_PARAMETER;
3661 }
3662
3663 int rc = VINF_SUCCESS;
3664 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3665 for (unsigned i = 0; i < c; i++)
3666 {
3667 X86PDPE Pdpe = pPDPT->a[i];
3668 if (Pdpe.n.u1Present)
3669 {
3670 if (fLongMode)
3671 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3672 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3673 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3674 Pdpe.lm.u1Write ? 'W' : 'R',
3675 Pdpe.lm.u1User ? 'U' : 'S',
3676 Pdpe.lm.u1Accessed ? 'A' : '-',
3677 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3678 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3679 Pdpe.lm.u1WriteThru ? "WT" : "--",
3680 Pdpe.lm.u1CacheDisable? "CD" : "--",
3681 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3682 Pdpe.lm.u1NoExecute ? "NX" : "--",
3683 Pdpe.u & RT_BIT(9) ? '1' : '0',
3684 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3685 Pdpe.u & RT_BIT(11) ? '1' : '0',
3686 Pdpe.u & X86_PDPE_PG_MASK);
3687 else
3688 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3689 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3690 i << X86_PDPT_SHIFT,
3691 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3692 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3693 Pdpe.n.u1WriteThru ? "WT" : "--",
3694 Pdpe.n.u1CacheDisable? "CD" : "--",
3695 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3696 Pdpe.u & RT_BIT(9) ? '1' : '0',
3697 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3698 Pdpe.u & RT_BIT(11) ? '1' : '0',
3699 Pdpe.u & X86_PDPE_PG_MASK);
3700 if (cMaxDepth >= 1)
3701 {
3702 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3703 cr4, fLongMode, cMaxDepth - 1, pHlp);
3704 if (rc2 < rc && RT_SUCCESS(rc))
3705 rc = rc2;
3706 }
3707 }
3708 }
3709 return rc;
3710}
3711
3712
3713/**
3714 * Dumps a 32-bit shadow page table.
3715 *
3716 * @returns VBox status code (VINF_SUCCESS).
3717 * @param pVM The VM handle.
3718 * @param HCPhys The physical address of the table.
3719 * @param cr4 The CR4, PSE is currently used.
3720 * @param cMaxDepth The maxium depth.
3721 * @param pHlp Pointer to the output functions.
3722 */
3723static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3724{
3725 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3726 if (!pPML4)
3727 {
3728 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3729 return VERR_INVALID_PARAMETER;
3730 }
3731
3732 int rc = VINF_SUCCESS;
3733 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3734 {
3735 X86PML4E Pml4e = pPML4->a[i];
3736 if (Pml4e.n.u1Present)
3737 {
3738 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3739 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3740 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3741 u64Address,
3742 Pml4e.n.u1Write ? 'W' : 'R',
3743 Pml4e.n.u1User ? 'U' : 'S',
3744 Pml4e.n.u1Accessed ? 'A' : '-',
3745 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3746 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3747 Pml4e.n.u1WriteThru ? "WT" : "--",
3748 Pml4e.n.u1CacheDisable? "CD" : "--",
3749 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3750 Pml4e.n.u1NoExecute ? "NX" : "--",
3751 Pml4e.u & RT_BIT(9) ? '1' : '0',
3752 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3753 Pml4e.u & RT_BIT(11) ? '1' : '0',
3754 Pml4e.u & X86_PML4E_PG_MASK);
3755
3756 if (cMaxDepth >= 1)
3757 {
3758 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3759 if (rc2 < rc && RT_SUCCESS(rc))
3760 rc = rc2;
3761 }
3762 }
3763 }
3764 return rc;
3765}
3766
3767
3768/**
3769 * Dumps a 32-bit shadow page table.
3770 *
3771 * @returns VBox status code (VINF_SUCCESS).
3772 * @param pVM The VM handle.
3773 * @param pPT Pointer to the page table.
3774 * @param u32Address The virtual address this table starts at.
3775 * @param pHlp Pointer to the output functions.
3776 */
3777int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3778{
3779 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3780 {
3781 X86PTE Pte = pPT->a[i];
3782 if (Pte.n.u1Present)
3783 {
3784 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3785 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3786 u32Address + (i << X86_PT_SHIFT),
3787 Pte.n.u1Write ? 'W' : 'R',
3788 Pte.n.u1User ? 'U' : 'S',
3789 Pte.n.u1Accessed ? 'A' : '-',
3790 Pte.n.u1Dirty ? 'D' : '-',
3791 Pte.n.u1Global ? 'G' : '-',
3792 Pte.n.u1WriteThru ? "WT" : "--",
3793 Pte.n.u1CacheDisable? "CD" : "--",
3794 Pte.n.u1PAT ? "AT" : "--",
3795 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3796 Pte.u & RT_BIT(10) ? '1' : '0',
3797 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3798 Pte.u & X86_PDE_PG_MASK);
3799 }
3800 }
3801 return VINF_SUCCESS;
3802}
3803
3804
3805/**
3806 * Dumps a 32-bit shadow page directory and page tables.
3807 *
3808 * @returns VBox status code (VINF_SUCCESS).
3809 * @param pVM The VM handle.
3810 * @param cr3 The root of the hierarchy.
3811 * @param cr4 The CR4, PSE is currently used.
3812 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3813 * @param pHlp Pointer to the output functions.
3814 */
3815int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3816{
3817 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3818 if (!pPD)
3819 {
3820 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3821 return VERR_INVALID_PARAMETER;
3822 }
3823
3824 int rc = VINF_SUCCESS;
3825 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3826 {
3827 X86PDE Pde = pPD->a[i];
3828 if (Pde.n.u1Present)
3829 {
3830 const uint32_t u32Address = i << X86_PD_SHIFT;
3831 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3832 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3833 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3834 u32Address,
3835 Pde.b.u1Write ? 'W' : 'R',
3836 Pde.b.u1User ? 'U' : 'S',
3837 Pde.b.u1Accessed ? 'A' : '-',
3838 Pde.b.u1Dirty ? 'D' : '-',
3839 Pde.b.u1Global ? 'G' : '-',
3840 Pde.b.u1WriteThru ? "WT" : "--",
3841 Pde.b.u1CacheDisable? "CD" : "--",
3842 Pde.b.u1PAT ? "AT" : "--",
3843 Pde.u & RT_BIT_64(9) ? '1' : '0',
3844 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3845 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3846 Pde.u & X86_PDE4M_PG_MASK);
3847 else
3848 {
3849 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3850 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3851 u32Address,
3852 Pde.n.u1Write ? 'W' : 'R',
3853 Pde.n.u1User ? 'U' : 'S',
3854 Pde.n.u1Accessed ? 'A' : '-',
3855 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3856 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3857 Pde.n.u1WriteThru ? "WT" : "--",
3858 Pde.n.u1CacheDisable? "CD" : "--",
3859 Pde.u & RT_BIT_64(9) ? '1' : '0',
3860 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3861 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3862 Pde.u & X86_PDE_PG_MASK);
3863 if (cMaxDepth >= 1)
3864 {
3865 /** @todo what about using the page pool for mapping PTs? */
3866 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3867 PX86PT pPT = NULL;
3868 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3869 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3870 else
3871 {
3872 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3873 if (u32Address - pMap->GCPtr < pMap->cb)
3874 {
3875 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3876 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3877 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3878 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3879 pPT = pMap->aPTs[iPDE].pPTR3;
3880 }
3881 }
3882 int rc2 = VERR_INVALID_PARAMETER;
3883 if (pPT)
3884 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3885 else
3886 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3887 if (rc2 < rc && RT_SUCCESS(rc))
3888 rc = rc2;
3889 }
3890 }
3891 }
3892 }
3893
3894 return rc;
3895}
3896
3897
3898/**
3899 * Dumps a 32-bit shadow page table.
3900 *
3901 * @returns VBox status code (VINF_SUCCESS).
3902 * @param pVM The VM handle.
3903 * @param pPT Pointer to the page table.
3904 * @param u32Address The virtual address this table starts at.
3905 * @param PhysSearch Address to search for.
3906 */
3907int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3908{
3909 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3910 {
3911 X86PTE Pte = pPT->a[i];
3912 if (Pte.n.u1Present)
3913 {
3914 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3915 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3916 u32Address + (i << X86_PT_SHIFT),
3917 Pte.n.u1Write ? 'W' : 'R',
3918 Pte.n.u1User ? 'U' : 'S',
3919 Pte.n.u1Accessed ? 'A' : '-',
3920 Pte.n.u1Dirty ? 'D' : '-',
3921 Pte.n.u1Global ? 'G' : '-',
3922 Pte.n.u1WriteThru ? "WT" : "--",
3923 Pte.n.u1CacheDisable? "CD" : "--",
3924 Pte.n.u1PAT ? "AT" : "--",
3925 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3926 Pte.u & RT_BIT(10) ? '1' : '0',
3927 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3928 Pte.u & X86_PDE_PG_MASK));
3929
3930 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3931 {
3932 uint64_t fPageShw = 0;
3933 RTHCPHYS pPhysHC = 0;
3934
3935 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3936 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3937 }
3938 }
3939 }
3940 return VINF_SUCCESS;
3941}
3942
3943
3944/**
3945 * Dumps a 32-bit guest page directory and page tables.
3946 *
3947 * @returns VBox status code (VINF_SUCCESS).
3948 * @param pVM The VM handle.
3949 * @param cr3 The root of the hierarchy.
3950 * @param cr4 The CR4, PSE is currently used.
3951 * @param PhysSearch Address to search for.
3952 */
3953VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3954{
3955 bool fLongMode = false;
3956 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3957 PX86PD pPD = 0;
3958
3959 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3960 if (RT_FAILURE(rc) || !pPD)
3961 {
3962 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3963 return VERR_INVALID_PARAMETER;
3964 }
3965
3966 Log(("cr3=%08x cr4=%08x%s\n"
3967 "%-*s P - Present\n"
3968 "%-*s | R/W - Read (0) / Write (1)\n"
3969 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3970 "%-*s | | | A - Accessed\n"
3971 "%-*s | | | | D - Dirty\n"
3972 "%-*s | | | | | G - Global\n"
3973 "%-*s | | | | | | WT - Write thru\n"
3974 "%-*s | | | | | | | CD - Cache disable\n"
3975 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3976 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3977 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3978 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3979 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3980 "%-*s Level | | | | | | | | | | | | Page\n"
3981 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3982 - W U - - - -- -- -- -- -- 010 */
3983 , cr3, cr4, fLongMode ? " Long Mode" : "",
3984 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3985 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3986
3987 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3988 {
3989 X86PDE Pde = pPD->a[i];
3990 if (Pde.n.u1Present)
3991 {
3992 const uint32_t u32Address = i << X86_PD_SHIFT;
3993
3994 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3995 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3996 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3997 u32Address,
3998 Pde.b.u1Write ? 'W' : 'R',
3999 Pde.b.u1User ? 'U' : 'S',
4000 Pde.b.u1Accessed ? 'A' : '-',
4001 Pde.b.u1Dirty ? 'D' : '-',
4002 Pde.b.u1Global ? 'G' : '-',
4003 Pde.b.u1WriteThru ? "WT" : "--",
4004 Pde.b.u1CacheDisable? "CD" : "--",
4005 Pde.b.u1PAT ? "AT" : "--",
4006 Pde.u & RT_BIT(9) ? '1' : '0',
4007 Pde.u & RT_BIT(10) ? '1' : '0',
4008 Pde.u & RT_BIT(11) ? '1' : '0',
4009 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4010 /** @todo PhysSearch */
4011 else
4012 {
4013 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4014 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4015 u32Address,
4016 Pde.n.u1Write ? 'W' : 'R',
4017 Pde.n.u1User ? 'U' : 'S',
4018 Pde.n.u1Accessed ? 'A' : '-',
4019 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4020 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4021 Pde.n.u1WriteThru ? "WT" : "--",
4022 Pde.n.u1CacheDisable? "CD" : "--",
4023 Pde.u & RT_BIT(9) ? '1' : '0',
4024 Pde.u & RT_BIT(10) ? '1' : '0',
4025 Pde.u & RT_BIT(11) ? '1' : '0',
4026 Pde.u & X86_PDE_PG_MASK));
4027 ////if (cMaxDepth >= 1)
4028 {
4029 /** @todo what about using the page pool for mapping PTs? */
4030 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4031 PX86PT pPT = NULL;
4032
4033 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4034
4035 int rc2 = VERR_INVALID_PARAMETER;
4036 if (pPT)
4037 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4038 else
4039 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4040 if (rc2 < rc && RT_SUCCESS(rc))
4041 rc = rc2;
4042 }
4043 }
4044 }
4045 }
4046
4047 return rc;
4048}
4049
4050
4051/**
4052 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4053 *
4054 * @returns VBox status code (VINF_SUCCESS).
4055 * @param pVM The VM handle.
4056 * @param cr3 The root of the hierarchy.
4057 * @param cr4 The cr4, only PAE and PSE is currently used.
4058 * @param fLongMode Set if long mode, false if not long mode.
4059 * @param cMaxDepth Number of levels to dump.
4060 * @param pHlp Pointer to the output functions.
4061 */
4062VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4063{
4064 if (!pHlp)
4065 pHlp = DBGFR3InfoLogHlp();
4066 if (!cMaxDepth)
4067 return VINF_SUCCESS;
4068 const unsigned cch = fLongMode ? 16 : 8;
4069 pHlp->pfnPrintf(pHlp,
4070 "cr3=%08x cr4=%08x%s\n"
4071 "%-*s P - Present\n"
4072 "%-*s | R/W - Read (0) / Write (1)\n"
4073 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4074 "%-*s | | | A - Accessed\n"
4075 "%-*s | | | | D - Dirty\n"
4076 "%-*s | | | | | G - Global\n"
4077 "%-*s | | | | | | WT - Write thru\n"
4078 "%-*s | | | | | | | CD - Cache disable\n"
4079 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4080 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4081 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4082 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4083 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4084 "%-*s Level | | | | | | | | | | | | Page\n"
4085 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4086 - W U - - - -- -- -- -- -- 010 */
4087 , cr3, cr4, fLongMode ? " Long Mode" : "",
4088 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4089 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4090 if (cr4 & X86_CR4_PAE)
4091 {
4092 if (fLongMode)
4093 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4094 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4095 }
4096 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4097}
4098
4099#ifdef VBOX_WITH_DEBUGGER
4100
4101/**
4102 * The '.pgmram' command.
4103 *
4104 * @returns VBox status.
4105 * @param pCmd Pointer to the command descriptor (as registered).
4106 * @param pCmdHlp Pointer to command helper functions.
4107 * @param pVM Pointer to the current VM (if any).
4108 * @param paArgs Pointer to (readonly) array of arguments.
4109 * @param cArgs Number of arguments in the array.
4110 */
4111static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4112{
4113 /*
4114 * Validate input.
4115 */
4116 if (!pVM)
4117 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4118 if (!pVM->pgm.s.pRamRangesRC)
4119 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4120
4121 /*
4122 * Dump the ranges.
4123 */
4124 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4125 PPGMRAMRANGE pRam;
4126 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4127 {
4128 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4129 "%RGp - %RGp %p\n",
4130 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4131 if (RT_FAILURE(rc))
4132 return rc;
4133 }
4134
4135 return VINF_SUCCESS;
4136}
4137
4138
4139/**
4140 * The '.pgmmap' command.
4141 *
4142 * @returns VBox status.
4143 * @param pCmd Pointer to the command descriptor (as registered).
4144 * @param pCmdHlp Pointer to command helper functions.
4145 * @param pVM Pointer to the current VM (if any).
4146 * @param paArgs Pointer to (readonly) array of arguments.
4147 * @param cArgs Number of arguments in the array.
4148 */
4149static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4150{
4151 /*
4152 * Validate input.
4153 */
4154 if (!pVM)
4155 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4156 if (!pVM->pgm.s.pMappingsR3)
4157 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4158
4159 /*
4160 * Print message about the fixedness of the mappings.
4161 */
4162 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4163 if (RT_FAILURE(rc))
4164 return rc;
4165
4166 /*
4167 * Dump the ranges.
4168 */
4169 PPGMMAPPING pCur;
4170 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4171 {
4172 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4173 "%08x - %08x %s\n",
4174 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4175 if (RT_FAILURE(rc))
4176 return rc;
4177 }
4178
4179 return VINF_SUCCESS;
4180}
4181
4182
4183/**
4184 * The '.pgmsync' command.
4185 *
4186 * @returns VBox status.
4187 * @param pCmd Pointer to the command descriptor (as registered).
4188 * @param pCmdHlp Pointer to command helper functions.
4189 * @param pVM Pointer to the current VM (if any).
4190 * @param paArgs Pointer to (readonly) array of arguments.
4191 * @param cArgs Number of arguments in the array.
4192 */
4193static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4194{
4195 /*
4196 * Validate input.
4197 */
4198 if (!pVM)
4199 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4200
4201 /*
4202 * Force page directory sync.
4203 */
4204 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4205
4206 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4207 if (RT_FAILURE(rc))
4208 return rc;
4209
4210 return VINF_SUCCESS;
4211}
4212
4213
4214#ifdef VBOX_STRICT
4215/**
4216 * The '.pgmassertcr3' command.
4217 *
4218 * @returns VBox status.
4219 * @param pCmd Pointer to the command descriptor (as registered).
4220 * @param pCmdHlp Pointer to command helper functions.
4221 * @param pVM Pointer to the current VM (if any).
4222 * @param paArgs Pointer to (readonly) array of arguments.
4223 * @param cArgs Number of arguments in the array.
4224 */
4225static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4226{
4227 /*
4228 * Validate input.
4229 */
4230 if (!pVM)
4231 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4232
4233 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4234 if (RT_FAILURE(rc))
4235 return rc;
4236
4237 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4238
4239 return VINF_SUCCESS;
4240}
4241#endif /* VBOX_STRICT */
4242
4243
4244/**
4245 * The '.pgmsyncalways' command.
4246 *
4247 * @returns VBox status.
4248 * @param pCmd Pointer to the command descriptor (as registered).
4249 * @param pCmdHlp Pointer to command helper functions.
4250 * @param pVM Pointer to the current VM (if any).
4251 * @param paArgs Pointer to (readonly) array of arguments.
4252 * @param cArgs Number of arguments in the array.
4253 */
4254static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4255{
4256 /*
4257 * Validate input.
4258 */
4259 if (!pVM)
4260 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4261
4262 /*
4263 * Force page directory sync.
4264 */
4265 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4266 {
4267 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4268 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4269 }
4270 else
4271 {
4272 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4273 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4274 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4275 }
4276}
4277
4278#endif /* VBOX_WITH_DEBUGGER */
4279
4280/**
4281 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4282 */
4283typedef struct PGMCHECKINTARGS
4284{
4285 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4286 PPGMPHYSHANDLER pPrevPhys;
4287 PPGMVIRTHANDLER pPrevVirt;
4288 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4289 PVM pVM;
4290} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4291
4292/**
4293 * Validate a node in the physical handler tree.
4294 *
4295 * @returns 0 on if ok, other wise 1.
4296 * @param pNode The handler node.
4297 * @param pvUser pVM.
4298 */
4299static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4300{
4301 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4302 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4303 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4304 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4305 AssertReleaseMsg( !pArgs->pPrevPhys
4306 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4307 ("pPrevPhys=%p %RGp-%RGp %s\n"
4308 " pCur=%p %RGp-%RGp %s\n",
4309 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4310 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4311 pArgs->pPrevPhys = pCur;
4312 return 0;
4313}
4314
4315
4316/**
4317 * Validate a node in the virtual handler tree.
4318 *
4319 * @returns 0 on if ok, other wise 1.
4320 * @param pNode The handler node.
4321 * @param pvUser pVM.
4322 */
4323static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4324{
4325 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4326 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4327 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4328 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4329 AssertReleaseMsg( !pArgs->pPrevVirt
4330 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4331 ("pPrevVirt=%p %RGv-%RGv %s\n"
4332 " pCur=%p %RGv-%RGv %s\n",
4333 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4334 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4335 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4336 {
4337 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4338 ("pCur=%p %RGv-%RGv %s\n"
4339 "iPage=%d offVirtHandle=%#x expected %#x\n",
4340 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4341 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4342 }
4343 pArgs->pPrevVirt = pCur;
4344 return 0;
4345}
4346
4347
4348/**
4349 * Validate a node in the virtual handler tree.
4350 *
4351 * @returns 0 on if ok, other wise 1.
4352 * @param pNode The handler node.
4353 * @param pvUser pVM.
4354 */
4355static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4356{
4357 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4358 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4359 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4360 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4361 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4362 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4363 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4364 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4365 " pCur=%p %RGp-%RGp\n",
4366 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4367 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4368 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4369 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4370 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4371 " pCur=%p %RGp-%RGp\n",
4372 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4373 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4374 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4375 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4376 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4377 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4378 {
4379 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4380 for (;;)
4381 {
4382 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4383 AssertReleaseMsg(pCur2 != pCur,
4384 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4385 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4386 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4387 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4388 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4389 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4390 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4391 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4392 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4393 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4394 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4395 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4396 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4397 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4398 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4399 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4400 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4401 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4402 break;
4403 }
4404 }
4405
4406 pArgs->pPrevPhys2Virt = pCur;
4407 return 0;
4408}
4409
4410
4411/**
4412 * Perform an integrity check on the PGM component.
4413 *
4414 * @returns VINF_SUCCESS if everything is fine.
4415 * @returns VBox error status after asserting on integrity breach.
4416 * @param pVM The VM handle.
4417 */
4418VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4419{
4420 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4421
4422 /*
4423 * Check the trees.
4424 */
4425 int cErrors = 0;
4426 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4427 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4428 PGMCHECKINTARGS Args = s_LeftToRight;
4429 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4430 Args = s_RightToLeft;
4431 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4432 Args = s_LeftToRight;
4433 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4434 Args = s_RightToLeft;
4435 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4436 Args = s_LeftToRight;
4437 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4438 Args = s_RightToLeft;
4439 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4440 Args = s_LeftToRight;
4441 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4442 Args = s_RightToLeft;
4443 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4444
4445 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4446}
4447
4448
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette