VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 18880

Last change on this file since 18880 was 18880, checked in by vboxsync, 16 years ago

PGM/MM: Implemented the /RamPreAlloc CFGM option.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 229.9 KB
Line 
1/* $Id: PGM.cpp 18880 2009-04-14 09:42:01Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#ifdef DEBUG_bird
602# include <iprt/env.h>
603#endif
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.2.2 and later. */
612#define PGM_SAVED_STATE_VERSION 8
613/** Saved state data unit version for 2.2.0. */
614#define PGM_SAVED_STATE_VERSION_RR_DESC 7
615/** Saved state data unit version 2.1.x and earlier. */
616#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
617
618
619/*******************************************************************************
620* Internal Functions *
621*******************************************************************************/
622static int pgmR3InitPaging(PVM pVM);
623static void pgmR3InitStats(PVM pVM);
624static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
625static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
628static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630#ifdef VBOX_STRICT
631static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
632#endif
633static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
634static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
635static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
636static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
637static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
638
639#ifdef VBOX_WITH_DEBUGGER
640/** @todo Convert the first two commands to 'info' items. */
641static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646# ifdef VBOX_STRICT
647static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# endif
649#endif
650
651
652/*******************************************************************************
653* Global Variables *
654*******************************************************************************/
655#ifdef VBOX_WITH_DEBUGGER
656/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
657static const DBGCVARDESC g_aPgmErrorArgs[] =
658{
659 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
660 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
661};
662
663/** Command descriptors. */
664static const DBGCCMD g_aCmds[] =
665{
666 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
667 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
668 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
669 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
670 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
671 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
672#ifdef VBOX_STRICT
673 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
674#endif
675 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
676};
677#endif
678
679
680
681
682/*
683 * Shadow - 32-bit mode
684 */
685#define PGM_SHW_TYPE PGM_TYPE_32BIT
686#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
687#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
688#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
689#include "PGMShw.h"
690
691/* Guest - real mode */
692#define PGM_GST_TYPE PGM_TYPE_REAL
693#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
694#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
695#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
696#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
697#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
698#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
699#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
700#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
701#include "PGMBth.h"
702#include "PGMGstDefs.h"
703#include "PGMGst.h"
704#undef BTH_PGMPOOLKIND_PT_FOR_PT
705#undef BTH_PGMPOOLKIND_ROOT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - protected mode */
715#define PGM_GST_TYPE PGM_TYPE_PROT
716#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
723#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
724#include "PGMBth.h"
725#include "PGMGstDefs.h"
726#include "PGMGst.h"
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef BTH_PGMPOOLKIND_ROOT
729#undef PGM_BTH_NAME
730#undef PGM_BTH_NAME_RC_STR
731#undef PGM_BTH_NAME_R0_STR
732#undef PGM_GST_TYPE
733#undef PGM_GST_NAME
734#undef PGM_GST_NAME_RC_STR
735#undef PGM_GST_NAME_R0_STR
736
737/* Guest - 32-bit mode */
738#define PGM_GST_TYPE PGM_TYPE_32BIT
739#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
740#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
741#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
743#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
744#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
745#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
746#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
747#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
748#include "PGMBth.h"
749#include "PGMGstDefs.h"
750#include "PGMGst.h"
751#undef BTH_PGMPOOLKIND_PT_FOR_BIG
752#undef BTH_PGMPOOLKIND_PT_FOR_PT
753#undef BTH_PGMPOOLKIND_ROOT
754#undef PGM_BTH_NAME
755#undef PGM_BTH_NAME_RC_STR
756#undef PGM_BTH_NAME_R0_STR
757#undef PGM_GST_TYPE
758#undef PGM_GST_NAME
759#undef PGM_GST_NAME_RC_STR
760#undef PGM_GST_NAME_R0_STR
761
762#undef PGM_SHW_TYPE
763#undef PGM_SHW_NAME
764#undef PGM_SHW_NAME_RC_STR
765#undef PGM_SHW_NAME_R0_STR
766
767
768/*
769 * Shadow - PAE mode
770 */
771#define PGM_SHW_TYPE PGM_TYPE_PAE
772#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
773#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
774#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
775#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
776#include "PGMShw.h"
777
778/* Guest - real mode */
779#define PGM_GST_TYPE PGM_TYPE_REAL
780#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
781#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
782#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
783#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
784#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
785#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
786#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
787#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
788#include "PGMGstDefs.h"
789#include "PGMBth.h"
790#undef BTH_PGMPOOLKIND_PT_FOR_PT
791#undef BTH_PGMPOOLKIND_ROOT
792#undef PGM_BTH_NAME
793#undef PGM_BTH_NAME_RC_STR
794#undef PGM_BTH_NAME_R0_STR
795#undef PGM_GST_TYPE
796#undef PGM_GST_NAME
797#undef PGM_GST_NAME_RC_STR
798#undef PGM_GST_NAME_R0_STR
799
800/* Guest - protected mode */
801#define PGM_GST_TYPE PGM_TYPE_PROT
802#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
803#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
804#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
805#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
806#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
807#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
808#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
809#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
810#include "PGMGstDefs.h"
811#include "PGMBth.h"
812#undef BTH_PGMPOOLKIND_PT_FOR_PT
813#undef BTH_PGMPOOLKIND_ROOT
814#undef PGM_BTH_NAME
815#undef PGM_BTH_NAME_RC_STR
816#undef PGM_BTH_NAME_R0_STR
817#undef PGM_GST_TYPE
818#undef PGM_GST_NAME
819#undef PGM_GST_NAME_RC_STR
820#undef PGM_GST_NAME_R0_STR
821
822/* Guest - 32-bit mode */
823#define PGM_GST_TYPE PGM_TYPE_32BIT
824#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
825#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
826#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
827#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
828#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
829#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
830#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
831#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
832#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
833#include "PGMGstDefs.h"
834#include "PGMBth.h"
835#undef BTH_PGMPOOLKIND_PT_FOR_BIG
836#undef BTH_PGMPOOLKIND_PT_FOR_PT
837#undef BTH_PGMPOOLKIND_ROOT
838#undef PGM_BTH_NAME
839#undef PGM_BTH_NAME_RC_STR
840#undef PGM_BTH_NAME_R0_STR
841#undef PGM_GST_TYPE
842#undef PGM_GST_NAME
843#undef PGM_GST_NAME_RC_STR
844#undef PGM_GST_NAME_R0_STR
845
846/* Guest - PAE mode */
847#define PGM_GST_TYPE PGM_TYPE_PAE
848#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
849#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
850#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
851#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
852#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
853#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
854#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
855#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
856#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
857#include "PGMBth.h"
858#include "PGMGstDefs.h"
859#include "PGMGst.h"
860#undef BTH_PGMPOOLKIND_PT_FOR_BIG
861#undef BTH_PGMPOOLKIND_PT_FOR_PT
862#undef BTH_PGMPOOLKIND_ROOT
863#undef PGM_BTH_NAME
864#undef PGM_BTH_NAME_RC_STR
865#undef PGM_BTH_NAME_R0_STR
866#undef PGM_GST_TYPE
867#undef PGM_GST_NAME
868#undef PGM_GST_NAME_RC_STR
869#undef PGM_GST_NAME_R0_STR
870
871#undef PGM_SHW_TYPE
872#undef PGM_SHW_NAME
873#undef PGM_SHW_NAME_RC_STR
874#undef PGM_SHW_NAME_R0_STR
875
876
877/*
878 * Shadow - AMD64 mode
879 */
880#define PGM_SHW_TYPE PGM_TYPE_AMD64
881#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
882#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
883#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
884#include "PGMShw.h"
885
886#ifdef VBOX_WITH_64_BITS_GUESTS
887/* Guest - AMD64 mode */
888# define PGM_GST_TYPE PGM_TYPE_AMD64
889# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
890# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
891# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
892# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
893# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
894# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
895# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
896# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
897# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
898# include "PGMBth.h"
899# include "PGMGstDefs.h"
900# include "PGMGst.h"
901# undef BTH_PGMPOOLKIND_PT_FOR_BIG
902# undef BTH_PGMPOOLKIND_PT_FOR_PT
903# undef BTH_PGMPOOLKIND_ROOT
904# undef PGM_BTH_NAME
905# undef PGM_BTH_NAME_RC_STR
906# undef PGM_BTH_NAME_R0_STR
907# undef PGM_GST_TYPE
908# undef PGM_GST_NAME
909# undef PGM_GST_NAME_RC_STR
910# undef PGM_GST_NAME_R0_STR
911#endif /* VBOX_WITH_64_BITS_GUESTS */
912
913#undef PGM_SHW_TYPE
914#undef PGM_SHW_NAME
915#undef PGM_SHW_NAME_RC_STR
916#undef PGM_SHW_NAME_R0_STR
917
918
919/*
920 * Shadow - Nested paging mode
921 */
922#define PGM_SHW_TYPE PGM_TYPE_NESTED
923#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
924#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
925#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
926#include "PGMShw.h"
927
928/* Guest - real mode */
929#define PGM_GST_TYPE PGM_TYPE_REAL
930#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
931#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
932#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
933#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
934#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
935#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
936#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
937#include "PGMGstDefs.h"
938#include "PGMBth.h"
939#undef BTH_PGMPOOLKIND_PT_FOR_PT
940#undef PGM_BTH_NAME
941#undef PGM_BTH_NAME_RC_STR
942#undef PGM_BTH_NAME_R0_STR
943#undef PGM_GST_TYPE
944#undef PGM_GST_NAME
945#undef PGM_GST_NAME_RC_STR
946#undef PGM_GST_NAME_R0_STR
947
948/* Guest - protected mode */
949#define PGM_GST_TYPE PGM_TYPE_PROT
950#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
951#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
952#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
953#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
954#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
955#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
956#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
957#include "PGMGstDefs.h"
958#include "PGMBth.h"
959#undef BTH_PGMPOOLKIND_PT_FOR_PT
960#undef PGM_BTH_NAME
961#undef PGM_BTH_NAME_RC_STR
962#undef PGM_BTH_NAME_R0_STR
963#undef PGM_GST_TYPE
964#undef PGM_GST_NAME
965#undef PGM_GST_NAME_RC_STR
966#undef PGM_GST_NAME_R0_STR
967
968/* Guest - 32-bit mode */
969#define PGM_GST_TYPE PGM_TYPE_32BIT
970#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
971#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
972#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
973#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
974#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
975#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
976#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
977#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
978#include "PGMGstDefs.h"
979#include "PGMBth.h"
980#undef BTH_PGMPOOLKIND_PT_FOR_BIG
981#undef BTH_PGMPOOLKIND_PT_FOR_PT
982#undef PGM_BTH_NAME
983#undef PGM_BTH_NAME_RC_STR
984#undef PGM_BTH_NAME_R0_STR
985#undef PGM_GST_TYPE
986#undef PGM_GST_NAME
987#undef PGM_GST_NAME_RC_STR
988#undef PGM_GST_NAME_R0_STR
989
990/* Guest - PAE mode */
991#define PGM_GST_TYPE PGM_TYPE_PAE
992#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
993#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
994#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
995#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
996#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
997#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
998#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
999#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1000#include "PGMGstDefs.h"
1001#include "PGMBth.h"
1002#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1003#undef BTH_PGMPOOLKIND_PT_FOR_PT
1004#undef PGM_BTH_NAME
1005#undef PGM_BTH_NAME_RC_STR
1006#undef PGM_BTH_NAME_R0_STR
1007#undef PGM_GST_TYPE
1008#undef PGM_GST_NAME
1009#undef PGM_GST_NAME_RC_STR
1010#undef PGM_GST_NAME_R0_STR
1011
1012#ifdef VBOX_WITH_64_BITS_GUESTS
1013/* Guest - AMD64 mode */
1014# define PGM_GST_TYPE PGM_TYPE_AMD64
1015# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1016# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1017# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1018# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1019# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1020# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1021# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1022# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1023# include "PGMGstDefs.h"
1024# include "PGMBth.h"
1025# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1026# undef BTH_PGMPOOLKIND_PT_FOR_PT
1027# undef PGM_BTH_NAME
1028# undef PGM_BTH_NAME_RC_STR
1029# undef PGM_BTH_NAME_R0_STR
1030# undef PGM_GST_TYPE
1031# undef PGM_GST_NAME
1032# undef PGM_GST_NAME_RC_STR
1033# undef PGM_GST_NAME_R0_STR
1034#endif /* VBOX_WITH_64_BITS_GUESTS */
1035
1036#undef PGM_SHW_TYPE
1037#undef PGM_SHW_NAME
1038#undef PGM_SHW_NAME_RC_STR
1039#undef PGM_SHW_NAME_R0_STR
1040
1041
1042/*
1043 * Shadow - EPT
1044 */
1045#define PGM_SHW_TYPE PGM_TYPE_EPT
1046#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1047#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1048#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1049#include "PGMShw.h"
1050
1051/* Guest - real mode */
1052#define PGM_GST_TYPE PGM_TYPE_REAL
1053#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1054#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1055#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1056#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1057#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1058#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1059#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1060#include "PGMGstDefs.h"
1061#include "PGMBth.h"
1062#undef BTH_PGMPOOLKIND_PT_FOR_PT
1063#undef PGM_BTH_NAME
1064#undef PGM_BTH_NAME_RC_STR
1065#undef PGM_BTH_NAME_R0_STR
1066#undef PGM_GST_TYPE
1067#undef PGM_GST_NAME
1068#undef PGM_GST_NAME_RC_STR
1069#undef PGM_GST_NAME_R0_STR
1070
1071/* Guest - protected mode */
1072#define PGM_GST_TYPE PGM_TYPE_PROT
1073#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1074#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1075#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1076#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1077#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1078#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1079#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1080#include "PGMGstDefs.h"
1081#include "PGMBth.h"
1082#undef BTH_PGMPOOLKIND_PT_FOR_PT
1083#undef PGM_BTH_NAME
1084#undef PGM_BTH_NAME_RC_STR
1085#undef PGM_BTH_NAME_R0_STR
1086#undef PGM_GST_TYPE
1087#undef PGM_GST_NAME
1088#undef PGM_GST_NAME_RC_STR
1089#undef PGM_GST_NAME_R0_STR
1090
1091/* Guest - 32-bit mode */
1092#define PGM_GST_TYPE PGM_TYPE_32BIT
1093#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1094#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1095#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1096#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1097#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1098#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1099#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1100#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1101#include "PGMGstDefs.h"
1102#include "PGMBth.h"
1103#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1104#undef BTH_PGMPOOLKIND_PT_FOR_PT
1105#undef PGM_BTH_NAME
1106#undef PGM_BTH_NAME_RC_STR
1107#undef PGM_BTH_NAME_R0_STR
1108#undef PGM_GST_TYPE
1109#undef PGM_GST_NAME
1110#undef PGM_GST_NAME_RC_STR
1111#undef PGM_GST_NAME_R0_STR
1112
1113/* Guest - PAE mode */
1114#define PGM_GST_TYPE PGM_TYPE_PAE
1115#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1116#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1117#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1118#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1119#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1120#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1121#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1122#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1123#include "PGMGstDefs.h"
1124#include "PGMBth.h"
1125#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1126#undef BTH_PGMPOOLKIND_PT_FOR_PT
1127#undef PGM_BTH_NAME
1128#undef PGM_BTH_NAME_RC_STR
1129#undef PGM_BTH_NAME_R0_STR
1130#undef PGM_GST_TYPE
1131#undef PGM_GST_NAME
1132#undef PGM_GST_NAME_RC_STR
1133#undef PGM_GST_NAME_R0_STR
1134
1135#ifdef VBOX_WITH_64_BITS_GUESTS
1136/* Guest - AMD64 mode */
1137# define PGM_GST_TYPE PGM_TYPE_AMD64
1138# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1139# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1140# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1141# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1142# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1143# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1144# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1145# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1146# include "PGMGstDefs.h"
1147# include "PGMBth.h"
1148# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1149# undef BTH_PGMPOOLKIND_PT_FOR_PT
1150# undef PGM_BTH_NAME
1151# undef PGM_BTH_NAME_RC_STR
1152# undef PGM_BTH_NAME_R0_STR
1153# undef PGM_GST_TYPE
1154# undef PGM_GST_NAME
1155# undef PGM_GST_NAME_RC_STR
1156# undef PGM_GST_NAME_R0_STR
1157#endif /* VBOX_WITH_64_BITS_GUESTS */
1158
1159#undef PGM_SHW_TYPE
1160#undef PGM_SHW_NAME
1161#undef PGM_SHW_NAME_RC_STR
1162#undef PGM_SHW_NAME_R0_STR
1163
1164
1165
1166/**
1167 * Initiates the paging of VM.
1168 *
1169 * @returns VBox status code.
1170 * @param pVM Pointer to VM structure.
1171 */
1172VMMR3DECL(int) PGMR3Init(PVM pVM)
1173{
1174 LogFlow(("PGMR3Init:\n"));
1175 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1176 int rc;
1177
1178 /*
1179 * Assert alignment and sizes.
1180 */
1181 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1182
1183 /*
1184 * Init the structure.
1185 */
1186 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1187 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1188 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1189 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1190 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1191 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1192 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1193 pVM->pgm.s.fA20Enabled = true;
1194 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1195 pVM->pgm.s.pGstPaePdptR3 = NULL;
1196#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1197 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1198#endif
1199 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1200 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1201 {
1202 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1203#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1204 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1205#endif
1206 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1207 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1208 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1209 }
1210
1211 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc, false);
1212 AssertLogRelRCReturn(rc, rc);
1213
1214#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1215 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1216#else
1217 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1218#endif
1219 AssertLogRelRCReturn(rc, rc);
1220 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1221 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1222
1223 /*
1224 * Get the configured RAM size - to estimate saved state size.
1225 */
1226 uint64_t cbRam;
1227 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1228 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1229 cbRam = 0;
1230 else if (RT_SUCCESS(rc))
1231 {
1232 if (cbRam < PAGE_SIZE)
1233 cbRam = 0;
1234 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1235 }
1236 else
1237 {
1238 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1239 return rc;
1240 }
1241
1242 /*
1243 * Register callbacks, string formatters and the saved state data unit.
1244 */
1245#ifdef VBOX_STRICT
1246 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1247#endif
1248 PGMRegisterStringFormatTypes();
1249
1250 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1251 NULL, pgmR3Save, NULL,
1252 NULL, pgmR3Load, NULL);
1253 if (RT_FAILURE(rc))
1254 return rc;
1255
1256 /*
1257 * Initialize the PGM critical section and flush the phys TLBs
1258 */
1259 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1260 AssertRCReturn(rc, rc);
1261
1262 PGMR3PhysChunkInvalidateTLB(pVM);
1263 PGMPhysInvalidatePageR3MapTLB(pVM);
1264 PGMPhysInvalidatePageR0MapTLB(pVM);
1265 PGMPhysInvalidatePageGCMapTLB(pVM);
1266
1267 /*
1268 * For the time being we sport a full set of handy pages in addition to the base
1269 * memory to simplify things.
1270 */
1271 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1272 AssertRCReturn(rc, rc);
1273
1274 /*
1275 * Trees
1276 */
1277 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1278 if (RT_SUCCESS(rc))
1279 {
1280 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1281 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1282
1283 /*
1284 * Alocate the zero page.
1285 */
1286 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1287 }
1288 if (RT_SUCCESS(rc))
1289 {
1290 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1291 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1292 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1293 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1294
1295 /*
1296 * Init the paging.
1297 */
1298 rc = pgmR3InitPaging(pVM);
1299 }
1300 if (RT_SUCCESS(rc))
1301 {
1302 /*
1303 * Init the page pool.
1304 */
1305 rc = pgmR3PoolInit(pVM);
1306 }
1307 if (RT_SUCCESS(rc))
1308 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1309
1310 if (RT_SUCCESS(rc))
1311 {
1312 /*
1313 * Info & statistics
1314 */
1315 DBGFR3InfoRegisterInternal(pVM, "mode",
1316 "Shows the current paging mode. "
1317 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1318 pgmR3InfoMode);
1319 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1320 "Dumps all the entries in the top level paging table. No arguments.",
1321 pgmR3InfoCr3);
1322 DBGFR3InfoRegisterInternal(pVM, "phys",
1323 "Dumps all the physical address ranges. No arguments.",
1324 pgmR3PhysInfo);
1325 DBGFR3InfoRegisterInternal(pVM, "handlers",
1326 "Dumps physical, virtual and hyper virtual handlers. "
1327 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1328 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1329 pgmR3InfoHandlers);
1330 DBGFR3InfoRegisterInternal(pVM, "mappings",
1331 "Dumps guest mappings.",
1332 pgmR3MapInfo);
1333
1334 pgmR3InitStats(pVM);
1335
1336#ifdef VBOX_WITH_DEBUGGER
1337 /*
1338 * Debugger commands.
1339 */
1340 static bool s_fRegisteredCmds = false;
1341 if (!s_fRegisteredCmds)
1342 {
1343 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1344 if (RT_SUCCESS(rc))
1345 s_fRegisteredCmds = true;
1346 }
1347#endif
1348 return VINF_SUCCESS;
1349 }
1350
1351 /* Almost no cleanup necessary, MM frees all memory. */
1352 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1353
1354 return rc;
1355}
1356
1357
1358/**
1359 * Initializes the per-VCPU PGM.
1360 *
1361 * @returns VBox status code.
1362 * @param pVM The VM to operate on.
1363 */
1364VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1365{
1366 LogFlow(("PGMR3InitCPU\n"));
1367 return VINF_SUCCESS;
1368}
1369
1370
1371/**
1372 * Init paging.
1373 *
1374 * Since we need to check what mode the host is operating in before we can choose
1375 * the right paging functions for the host we have to delay this until R0 has
1376 * been initialized.
1377 *
1378 * @returns VBox status code.
1379 * @param pVM VM handle.
1380 */
1381static int pgmR3InitPaging(PVM pVM)
1382{
1383 /*
1384 * Force a recalculation of modes and switcher so everyone gets notified.
1385 */
1386 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1387 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1388 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1389
1390 /*
1391 * Allocate static mapping space for whatever the cr3 register
1392 * points to and in the case of PAE mode to the 4 PDs.
1393 */
1394 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1395 if (RT_FAILURE(rc))
1396 {
1397 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1398 return rc;
1399 }
1400 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1401
1402 /*
1403 * Allocate pages for the three possible intermediate contexts
1404 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1405 * for the sake of simplicity. The AMD64 uses the PAE for the
1406 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1407 *
1408 * We assume that two page tables will be enought for the core code
1409 * mappings (HC virtual and identity).
1410 */
1411 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1412 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1413 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1414 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1415 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1416 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1417 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1418 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1419 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1420 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1421 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1422 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1423 if ( !pVM->pgm.s.pInterPD
1424 || !pVM->pgm.s.apInterPTs[0]
1425 || !pVM->pgm.s.apInterPTs[1]
1426 || !pVM->pgm.s.apInterPaePTs[0]
1427 || !pVM->pgm.s.apInterPaePTs[1]
1428 || !pVM->pgm.s.apInterPaePDs[0]
1429 || !pVM->pgm.s.apInterPaePDs[1]
1430 || !pVM->pgm.s.apInterPaePDs[2]
1431 || !pVM->pgm.s.apInterPaePDs[3]
1432 || !pVM->pgm.s.pInterPaePDPT
1433 || !pVM->pgm.s.pInterPaePDPT64
1434 || !pVM->pgm.s.pInterPaePML4)
1435 {
1436 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1437 return VERR_NO_PAGE_MEMORY;
1438 }
1439
1440 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1441 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1442 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1443 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1444 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1445 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1446
1447 /*
1448 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1449 */
1450 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1451 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1452 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1453
1454 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1455 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1456
1457 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1458 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1459 {
1460 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1461 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1462 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1463 }
1464
1465 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1466 {
1467 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1468 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1469 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1470 }
1471
1472 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1473 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1474 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1475 | HCPhysInterPaePDPT64;
1476
1477 /*
1478 * Initialize paging workers and mode from current host mode
1479 * and the guest running in real mode.
1480 */
1481 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1482 switch (pVM->pgm.s.enmHostMode)
1483 {
1484 case SUPPAGINGMODE_32_BIT:
1485 case SUPPAGINGMODE_32_BIT_GLOBAL:
1486 case SUPPAGINGMODE_PAE:
1487 case SUPPAGINGMODE_PAE_GLOBAL:
1488 case SUPPAGINGMODE_PAE_NX:
1489 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1490 break;
1491
1492 case SUPPAGINGMODE_AMD64:
1493 case SUPPAGINGMODE_AMD64_GLOBAL:
1494 case SUPPAGINGMODE_AMD64_NX:
1495 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1496#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1497 if (ARCH_BITS != 64)
1498 {
1499 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1500 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1501 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1502 }
1503#endif
1504 break;
1505 default:
1506 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1507 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1508 }
1509 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1510 if (RT_SUCCESS(rc))
1511 {
1512 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1513#if HC_ARCH_BITS == 64
1514 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1515 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1516 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1517 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1518 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1519 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1520 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1521#endif
1522
1523 return VINF_SUCCESS;
1524 }
1525
1526 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1527 return rc;
1528}
1529
1530
1531/**
1532 * Init statistics
1533 */
1534static void pgmR3InitStats(PVM pVM)
1535{
1536 PPGM pPGM = &pVM->pgm.s;
1537 unsigned i;
1538
1539 /* Common - misc variables */
1540 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1541 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1542 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1543 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1544 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1545 STAM_REL_REG(pVM, &pPGM->cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1546 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1547 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1548 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1549
1550 /*
1551 * Note! The layout below matches the member layout exactly!
1552 */
1553
1554#ifdef VBOX_WITH_STATISTICS
1555 /* Common - stats */
1556# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1557 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1558 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1559 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1560 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1561 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1562 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1563# endif
1564 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1565 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1566 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1567 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1568 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1569 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1570
1571 /* R3 only: */
1572 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1573 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1574 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1575 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1576
1577 /* R0 only: */
1578 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1579 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1580 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1581 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1582 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1583 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1584 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1585 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1586 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1587 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1588 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1589 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1590 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1591 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1592 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1593 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1594 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1595 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1596 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1597 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1598 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1599 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1600 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1601 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1602 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1603 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1604 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1605 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1606 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1607 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1608 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1609 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1610 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1611 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1612 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1613 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1614
1615 /* GC only: */
1616 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1617 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1618 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1619 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1620
1621 /* RZ only: */
1622 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1623 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1624 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1625 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1626 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1627 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1628 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1660 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1664 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1665 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1666 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1667 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1668 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1669 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1670 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1671 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1672 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1673
1674 /* HC only: */
1675
1676 /* RZ & R3: */
1677 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1678 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1679 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1680 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1681 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1682 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1683 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1684 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1685 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1686 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1687 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1688 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1690 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1691 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1692 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1693 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1694 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1695 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1696 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1697 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1698 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1699 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1700 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1701 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1702 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1703 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1704 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1705 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1706 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1707 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1708 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1709 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1710 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1711 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1712 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1713 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1714 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1715 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1716 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1717 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1718 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1719 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1720 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1721 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1722 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1723 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1724/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1725 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1726 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1727 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1728 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1729 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1730 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1731
1732 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1733 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1734 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1735 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1736 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1737 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1738 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1739 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1740 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1741 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1742 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1743 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1745 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1746 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1747 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1748 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1749 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1750 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1751 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1752 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1753 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1754 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1755 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1756 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1757 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1758 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1759 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1760 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1761 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1762 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1763 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1764 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1765 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1766 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1767 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1768 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1769 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1770 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1771 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1772 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1773 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1774 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1775 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1776 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1777 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1778 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1779/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1780 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1781 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1782 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1783 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1784 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1785 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1786#endif /* VBOX_WITH_STATISTICS */
1787}
1788
1789
1790/**
1791 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1792 *
1793 * The dynamic mapping area will also be allocated and initialized at this
1794 * time. We could allocate it during PGMR3Init of course, but the mapping
1795 * wouldn't be allocated at that time preventing us from setting up the
1796 * page table entries with the dummy page.
1797 *
1798 * @returns VBox status code.
1799 * @param pVM VM handle.
1800 */
1801VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1802{
1803 RTGCPTR GCPtr;
1804 int rc;
1805
1806 /*
1807 * Reserve space for the dynamic mappings.
1808 */
1809 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1810 if (RT_SUCCESS(rc))
1811 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1812
1813 if ( RT_SUCCESS(rc)
1814 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1815 {
1816 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1817 if (RT_SUCCESS(rc))
1818 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1819 }
1820 if (RT_SUCCESS(rc))
1821 {
1822 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1823 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1824 }
1825 return rc;
1826}
1827
1828
1829/**
1830 * Ring-3 init finalizing.
1831 *
1832 * @returns VBox status code.
1833 * @param pVM The VM handle.
1834 */
1835VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1836{
1837 int rc;
1838
1839 /*
1840 * Reserve space for the dynamic mappings.
1841 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1842 */
1843 /* get the pointer to the page table entries. */
1844 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1845 AssertRelease(pMapping);
1846 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1847 const unsigned iPT = off >> X86_PD_SHIFT;
1848 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1849 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1850 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1851
1852 /* init cache */
1853 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1854 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1855 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1856
1857 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1858 {
1859 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1860 AssertRCReturn(rc, rc);
1861 }
1862
1863 /*
1864 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1865 * Intel only goes up to 36 bits, so we stick to 36 as well.
1866 */
1867 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1868 uint32_t u32Dummy, u32Features;
1869 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1870
1871 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1872 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1873 else
1874 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1875
1876 /*
1877 * Allocate memory if we're supposed to do that.
1878 */
1879 if (pVM->pgm.s.fRamPreAlloc)
1880 rc = pgmR3PhysRamPreAllocate(pVM);
1881
1882 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1883 return rc;
1884}
1885
1886
1887/**
1888 * Applies relocations to data and code managed by this component.
1889 *
1890 * This function will be called at init and whenever the VMM need to relocate it
1891 * self inside the GC.
1892 *
1893 * @param pVM The VM.
1894 * @param offDelta Relocation delta relative to old location.
1895 */
1896VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1897{
1898 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1899
1900 /*
1901 * Paging stuff.
1902 */
1903 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1904 /** @todo move this into shadow and guest specific relocation functions. */
1905 pVM->pgm.s.pGst32BitPdRC += offDelta;
1906 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1907 {
1908 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1909 }
1910 pVM->pgm.s.pGstPaePdptRC += offDelta;
1911
1912 pVM->pgm.s.pShwPageCR3RC += offDelta;
1913
1914 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1915 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1916
1917 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1918 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1919 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1920
1921 /*
1922 * Trees.
1923 */
1924 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1925
1926 /*
1927 * Ram ranges.
1928 */
1929 if (pVM->pgm.s.pRamRangesR3)
1930 {
1931 /* Update the pSelfRC pointers and relink them. */
1932 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1933 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
1934 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
1935 pgmR3PhysRelinkRamRanges(pVM);
1936 }
1937
1938 /*
1939 * Update the two page directories with all page table mappings.
1940 * (One or more of them have changed, that's why we're here.)
1941 */
1942 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1943 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1944 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1945
1946 /* Relocate GC addresses of Page Tables. */
1947 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1948 {
1949 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1950 {
1951 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1952 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1953 }
1954 }
1955
1956 /*
1957 * Dynamic page mapping area.
1958 */
1959 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1960 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1961 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1962
1963 /*
1964 * The Zero page.
1965 */
1966 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1967#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1968 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
1969#else
1970 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
1971#endif
1972
1973 /*
1974 * Physical and virtual handlers.
1975 */
1976 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1977 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1978 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1979
1980 /*
1981 * The page pool.
1982 */
1983 pgmR3PoolRelocate(pVM);
1984}
1985
1986
1987/**
1988 * Callback function for relocating a physical access handler.
1989 *
1990 * @returns 0 (continue enum)
1991 * @param pNode Pointer to a PGMPHYSHANDLER node.
1992 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1993 * not certain the delta will fit in a void pointer for all possible configs.
1994 */
1995static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1996{
1997 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1998 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1999 if (pHandler->pfnHandlerRC)
2000 pHandler->pfnHandlerRC += offDelta;
2001 if (pHandler->pvUserRC >= 0x10000)
2002 pHandler->pvUserRC += offDelta;
2003 return 0;
2004}
2005
2006
2007/**
2008 * Callback function for relocating a virtual access handler.
2009 *
2010 * @returns 0 (continue enum)
2011 * @param pNode Pointer to a PGMVIRTHANDLER node.
2012 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2013 * not certain the delta will fit in a void pointer for all possible configs.
2014 */
2015static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2016{
2017 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2018 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2019 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2020 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2021 Assert(pHandler->pfnHandlerRC);
2022 pHandler->pfnHandlerRC += offDelta;
2023 return 0;
2024}
2025
2026
2027/**
2028 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2029 *
2030 * @returns 0 (continue enum)
2031 * @param pNode Pointer to a PGMVIRTHANDLER node.
2032 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2033 * not certain the delta will fit in a void pointer for all possible configs.
2034 */
2035static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2036{
2037 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2038 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2039 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2040 Assert(pHandler->pfnHandlerRC);
2041 pHandler->pfnHandlerRC += offDelta;
2042 return 0;
2043}
2044
2045
2046/**
2047 * The VM is being reset.
2048 *
2049 * For the PGM component this means that any PD write monitors
2050 * needs to be removed.
2051 *
2052 * @param pVM VM handle.
2053 */
2054VMMR3DECL(void) PGMR3Reset(PVM pVM)
2055{
2056 LogFlow(("PGMR3Reset:\n"));
2057 VM_ASSERT_EMT(pVM);
2058
2059 pgmLock(pVM);
2060
2061 /*
2062 * Unfix any fixed mappings and disable CR3 monitoring.
2063 */
2064 pVM->pgm.s.fMappingsFixed = false;
2065 pVM->pgm.s.GCPtrMappingFixed = 0;
2066 pVM->pgm.s.cbMappingFixed = 0;
2067
2068 /* Exit the guest paging mode before the pgm pool gets reset.
2069 * Important to clean up the amd64 case.
2070 */
2071 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2072 AssertRC(rc);
2073#ifdef DEBUG
2074 DBGFR3InfoLog(pVM, "mappings", NULL);
2075 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2076#endif
2077
2078 /*
2079 * Reset the shadow page pool.
2080 */
2081 pgmR3PoolReset(pVM);
2082
2083 /*
2084 * Re-init other members.
2085 */
2086 pVM->pgm.s.fA20Enabled = true;
2087
2088 /*
2089 * Clear the FFs PGM owns.
2090 */
2091 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2092 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2093
2094 /*
2095 * Reset (zero) RAM pages.
2096 */
2097 rc = pgmR3PhysRamReset(pVM);
2098 if (RT_SUCCESS(rc))
2099 {
2100 /*
2101 * Reset (zero) shadow ROM pages.
2102 */
2103 rc = pgmR3PhysRomReset(pVM);
2104 if (RT_SUCCESS(rc))
2105 {
2106 /*
2107 * Switch mode back to real mode.
2108 */
2109 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2110 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2111 }
2112 }
2113
2114 pgmUnlock(pVM);
2115 //return rc;
2116 AssertReleaseRC(rc);
2117}
2118
2119
2120#ifdef VBOX_STRICT
2121/**
2122 * VM state change callback for clearing fNoMorePhysWrites after
2123 * a snapshot has been created.
2124 */
2125static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2126{
2127 if (enmState == VMSTATE_RUNNING)
2128 pVM->pgm.s.fNoMorePhysWrites = false;
2129}
2130#endif
2131
2132
2133/**
2134 * Terminates the PGM.
2135 *
2136 * @returns VBox status code.
2137 * @param pVM Pointer to VM structure.
2138 */
2139VMMR3DECL(int) PGMR3Term(PVM pVM)
2140{
2141 PGMDeregisterStringFormatTypes();
2142 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2143}
2144
2145
2146/**
2147 * Terminates the per-VCPU PGM.
2148 *
2149 * Termination means cleaning up and freeing all resources,
2150 * the VM it self is at this point powered off or suspended.
2151 *
2152 * @returns VBox status code.
2153 * @param pVM The VM to operate on.
2154 */
2155VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2156{
2157 return 0;
2158}
2159
2160
2161/**
2162 * Find the ROM tracking structure for the given page.
2163 *
2164 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2165 * that it's a ROM page.
2166 * @param pVM The VM handle.
2167 * @param GCPhys The address of the ROM page.
2168 */
2169static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2170{
2171 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2172 pRomRange;
2173 pRomRange = pRomRange->CTX_SUFF(pNext))
2174 {
2175 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2176 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2177 return &pRomRange->aPages[off >> PAGE_SHIFT];
2178 }
2179 return NULL;
2180}
2181
2182
2183/**
2184 * Save zero indicator + bits for the specified page.
2185 *
2186 * @returns VBox status code, errors are logged/asserted before returning.
2187 * @param pVM The VM handle.
2188 * @param pSSH The saved state handle.
2189 * @param pPage The page to save.
2190 * @param GCPhys The address of the page.
2191 * @param pRam The ram range (for error logging).
2192 */
2193static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2194{
2195 int rc;
2196 if (PGM_PAGE_IS_ZERO(pPage))
2197 rc = SSMR3PutU8(pSSM, 0);
2198 else
2199 {
2200 void const *pvPage;
2201 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2202 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2203
2204 SSMR3PutU8(pSSM, 1);
2205 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2206 }
2207 return rc;
2208}
2209
2210
2211/**
2212 * Save a shadowed ROM page.
2213 *
2214 * Format: Type, protection, and two pages with zero indicators.
2215 *
2216 * @returns VBox status code, errors are logged/asserted before returning.
2217 * @param pVM The VM handle.
2218 * @param pSSH The saved state handle.
2219 * @param pPage The page to save.
2220 * @param GCPhys The address of the page.
2221 * @param pRam The ram range (for error logging).
2222 */
2223static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2224{
2225 /* Need to save both pages and the current state. */
2226 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2227 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2228
2229 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2230 SSMR3PutU8(pSSM, pRomPage->enmProt);
2231
2232 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2233 if (RT_SUCCESS(rc))
2234 {
2235 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2236 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2237 }
2238 return rc;
2239}
2240
2241/** PGM fields to save/load. */
2242static SSMFIELD s_aPGMFields[] =
2243{
2244 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2245 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2246 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2247 SSMFIELD_ENTRY( PGM, fA20Enabled),
2248 SSMFIELD_ENTRY_GCPHYS( PGM, GCPhysA20Mask),
2249 SSMFIELD_ENTRY( PGM, enmGuestMode),
2250 SSMFIELD_ENTRY_TERM()
2251};
2252
2253
2254/**
2255 * Execute state save operation.
2256 *
2257 * @returns VBox status code.
2258 * @param pVM VM Handle.
2259 * @param pSSM SSM operation handle.
2260 */
2261static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2262{
2263 int rc;
2264 PPGM pPGM = &pVM->pgm.s;
2265
2266 /*
2267 * Lock PGM and set the no-more-writes indicator.
2268 */
2269 pgmLock(pVM);
2270 pVM->pgm.s.fNoMorePhysWrites = true;
2271
2272 /*
2273 * Save basic data (required / unaffected by relocation).
2274 */
2275 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2276
2277 /*
2278 * The guest mappings.
2279 */
2280 uint32_t i = 0;
2281 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2282 {
2283 SSMR3PutU32( pSSM, i);
2284 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2285 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2286 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2287 }
2288 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2289
2290 /*
2291 * Ram ranges and the memory they describe.
2292 */
2293 i = 0;
2294 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2295 {
2296 /*
2297 * Save the ram range details.
2298 */
2299 SSMR3PutU32(pSSM, i);
2300 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2301 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2302 SSMR3PutGCPhys(pSSM, pRam->cb);
2303 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2304 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2305
2306 /*
2307 * Iterate the pages, only two special case.
2308 */
2309 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2310 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2311 {
2312 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2313 PPGMPAGE pPage = &pRam->aPages[iPage];
2314 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2315
2316 if (uType == PGMPAGETYPE_ROM_SHADOW)
2317 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2318 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2319 {
2320 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2321 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2322 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2323 }
2324 else
2325 {
2326 SSMR3PutU8(pSSM, uType);
2327 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2328 }
2329 if (RT_FAILURE(rc))
2330 break;
2331 }
2332 if (RT_FAILURE(rc))
2333 break;
2334 }
2335
2336 pgmUnlock(pVM);
2337 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2338}
2339
2340
2341/**
2342 * Load an ignored page.
2343 *
2344 * @returns VBox status code.
2345 * @param pSSM The saved state handle.
2346 */
2347static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2348{
2349 uint8_t abPage[PAGE_SIZE];
2350 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2351}
2352
2353
2354/**
2355 * Loads a page without any bits in the saved state, i.e. making sure it's
2356 * really zero.
2357 *
2358 * @returns VBox status code.
2359 * @param pVM The VM handle.
2360 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2361 * state).
2362 * @param pPage The guest page tracking structure.
2363 * @param GCPhys The page address.
2364 * @param pRam The ram range (logging).
2365 */
2366static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2367{
2368 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2369 && uType != PGMPAGETYPE_INVALID)
2370 return VERR_SSM_UNEXPECTED_DATA;
2371
2372 /* I think this should be sufficient. */
2373 if (!PGM_PAGE_IS_ZERO(pPage))
2374 return VERR_SSM_UNEXPECTED_DATA;
2375
2376 NOREF(pVM);
2377 NOREF(GCPhys);
2378 NOREF(pRam);
2379 return VINF_SUCCESS;
2380}
2381
2382
2383/**
2384 * Loads a page from the saved state.
2385 *
2386 * @returns VBox status code.
2387 * @param pVM The VM handle.
2388 * @param pSSM The SSM handle.
2389 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2390 * state).
2391 * @param pPage The guest page tracking structure.
2392 * @param GCPhys The page address.
2393 * @param pRam The ram range (logging).
2394 */
2395static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2396{
2397 int rc;
2398
2399 /*
2400 * Match up the type, dealing with MMIO2 aliases (dropped).
2401 */
2402 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2403 || uType == PGMPAGETYPE_INVALID,
2404 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2405 VERR_SSM_UNEXPECTED_DATA);
2406
2407 /*
2408 * Load the page.
2409 */
2410 void *pvPage;
2411 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2412 if (RT_SUCCESS(rc))
2413 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2414
2415 return rc;
2416}
2417
2418
2419/**
2420 * Loads a page (counter part to pgmR3SavePage).
2421 *
2422 * @returns VBox status code, fully bitched errors.
2423 * @param pVM The VM handle.
2424 * @param pSSM The SSM handle.
2425 * @param uType The page type.
2426 * @param pPage The page.
2427 * @param GCPhys The page address.
2428 * @param pRam The RAM range (for error messages).
2429 */
2430static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2431{
2432 uint8_t uState;
2433 int rc = SSMR3GetU8(pSSM, &uState);
2434 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2435 if (uState == 0 /* zero */)
2436 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2437 else if (uState == 1)
2438 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2439 else
2440 rc = VERR_INTERNAL_ERROR;
2441 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2442 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2443 rc);
2444 return VINF_SUCCESS;
2445}
2446
2447
2448/**
2449 * Loads a shadowed ROM page.
2450 *
2451 * @returns VBox status code, errors are fully bitched.
2452 * @param pVM The VM handle.
2453 * @param pSSM The saved state handle.
2454 * @param pPage The page.
2455 * @param GCPhys The page address.
2456 * @param pRam The RAM range (for error messages).
2457 */
2458static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2459{
2460 /*
2461 * Load and set the protection first, then load the two pages, the first
2462 * one is the active the other is the passive.
2463 */
2464 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2465 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2466
2467 uint8_t uProt;
2468 int rc = SSMR3GetU8(pSSM, &uProt);
2469 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2470 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2471 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2472 && enmProt < PGMROMPROT_END,
2473 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2474 VERR_SSM_UNEXPECTED_DATA);
2475
2476 if (pRomPage->enmProt != enmProt)
2477 {
2478 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2479 AssertLogRelRCReturn(rc, rc);
2480 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2481 }
2482
2483 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2484 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2485 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2486 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2487
2488 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2489 if (RT_SUCCESS(rc))
2490 {
2491 *pPageActive = *pPage;
2492 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2493 }
2494 return rc;
2495}
2496
2497
2498/**
2499 * Worker for pgmR3Load.
2500 *
2501 * @returns VBox status code.
2502 *
2503 * @param pVM The VM handle.
2504 * @param pSSM The SSM handle.
2505 * @param u32Version The saved state version.
2506 */
2507static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2508{
2509 int rc;
2510 PPGM pPGM = &pVM->pgm.s;
2511 uint32_t u32Sep;
2512
2513 /*
2514 * Load basic data (required / unaffected by relocation).
2515 */
2516 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2517 {
2518 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2519 AssertLogRelRCReturn(rc, rc);
2520 }
2521 else
2522 {
2523 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2524 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2525 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2526
2527 uint32_t cbRamSizeIgnored;
2528 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2529 if (RT_FAILURE(rc))
2530 return rc;
2531 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2532
2533 uint32_t u32 = 0;
2534 SSMR3GetUInt(pSSM, &u32);
2535 pPGM->fA20Enabled = !!u32;
2536 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2537 RTUINT uGuestMode;
2538 SSMR3GetUInt(pSSM, &uGuestMode);
2539 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2540
2541 /* check separator. */
2542 SSMR3GetU32(pSSM, &u32Sep);
2543 if (RT_FAILURE(rc))
2544 return rc;
2545 if (u32Sep != (uint32_t)~0)
2546 {
2547 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2548 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2549 }
2550 }
2551
2552 /*
2553 * The guest mappings.
2554 */
2555 uint32_t i = 0;
2556 for (;; i++)
2557 {
2558 /* Check the seqence number / separator. */
2559 rc = SSMR3GetU32(pSSM, &u32Sep);
2560 if (RT_FAILURE(rc))
2561 return rc;
2562 if (u32Sep == ~0U)
2563 break;
2564 if (u32Sep != i)
2565 {
2566 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2567 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2568 }
2569
2570 /* get the mapping details. */
2571 char szDesc[256];
2572 szDesc[0] = '\0';
2573 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2574 if (RT_FAILURE(rc))
2575 return rc;
2576 RTGCPTR GCPtr;
2577 SSMR3GetGCPtr(pSSM, &GCPtr);
2578 RTGCPTR cPTs;
2579 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2580 if (RT_FAILURE(rc))
2581 return rc;
2582
2583 /* find matching range. */
2584 PPGMMAPPING pMapping;
2585 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2586 if ( pMapping->cPTs == cPTs
2587 && !strcmp(pMapping->pszDesc, szDesc))
2588 break;
2589 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2590 cPTs, szDesc, GCPtr),
2591 VERR_SSM_LOAD_CONFIG_MISMATCH);
2592
2593 /* relocate it. */
2594 if (pMapping->GCPtr != GCPtr)
2595 {
2596 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2597 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2598 }
2599 else
2600 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2601 }
2602
2603 /*
2604 * Ram range flags and bits.
2605 */
2606 i = 0;
2607 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2608 {
2609 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2610
2611 /* Check the seqence number / separator. */
2612 rc = SSMR3GetU32(pSSM, &u32Sep);
2613 if (RT_FAILURE(rc))
2614 return rc;
2615 if (u32Sep == ~0U)
2616 break;
2617 if (u32Sep != i)
2618 {
2619 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2620 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2621 }
2622
2623 /* Get the range details. */
2624 RTGCPHYS GCPhys;
2625 SSMR3GetGCPhys(pSSM, &GCPhys);
2626 RTGCPHYS GCPhysLast;
2627 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2628 RTGCPHYS cb;
2629 SSMR3GetGCPhys(pSSM, &cb);
2630 uint8_t fHaveBits;
2631 rc = SSMR3GetU8(pSSM, &fHaveBits);
2632 if (RT_FAILURE(rc))
2633 return rc;
2634 if (fHaveBits & ~1)
2635 {
2636 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2637 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2638 }
2639 size_t cchDesc = 0;
2640 char szDesc[256];
2641 szDesc[0] = '\0';
2642 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2643 {
2644 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2645 if (RT_FAILURE(rc))
2646 return rc;
2647 /* Since we've modified the description strings in r45878, only compare
2648 them if the saved state is more recent. */
2649 if (u32Version != PGM_SAVED_STATE_VERSION_RR_DESC)
2650 cchDesc = strlen(szDesc);
2651 }
2652
2653 /*
2654 * Match it up with the current range.
2655 *
2656 * Note there is a hack for dealing with the high BIOS mapping
2657 * in the old saved state format, this means we might not have
2658 * a 1:1 match on success.
2659 */
2660 if ( ( GCPhys != pRam->GCPhys
2661 || GCPhysLast != pRam->GCPhysLast
2662 || cb != pRam->cb
2663 || ( cchDesc
2664 && strcmp(szDesc, pRam->pszDesc)) )
2665 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2666 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2667 || GCPhys != UINT32_C(0xfff80000)
2668 || GCPhysLast != UINT32_C(0xffffffff)
2669 || pRam->GCPhysLast != GCPhysLast
2670 || pRam->GCPhys < GCPhys
2671 || !fHaveBits)
2672 )
2673 {
2674 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2675 "State : %RGp-%RGp %RGp bytes %s %s\n",
2676 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2677 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2678 /*
2679 * If we're loading a state for debugging purpose, don't make a fuss if
2680 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2681 */
2682 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2683 || GCPhys < 8 * _1M)
2684 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2685
2686 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2687 continue;
2688 }
2689
2690 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2691 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2692 {
2693 /*
2694 * Load the pages one by one.
2695 */
2696 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2697 {
2698 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2699 PPGMPAGE pPage = &pRam->aPages[iPage];
2700 uint8_t uType;
2701 rc = SSMR3GetU8(pSSM, &uType);
2702 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2703 if (uType == PGMPAGETYPE_ROM_SHADOW)
2704 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2705 else
2706 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2707 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2708 }
2709 }
2710 else
2711 {
2712 /*
2713 * Old format.
2714 */
2715 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2716
2717 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2718 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2719 uint32_t fFlags = 0;
2720 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2721 {
2722 uint16_t u16Flags;
2723 rc = SSMR3GetU16(pSSM, &u16Flags);
2724 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2725 fFlags |= u16Flags;
2726 }
2727
2728 /* Load the bits */
2729 if ( !fHaveBits
2730 && GCPhysLast < UINT32_C(0xe0000000))
2731 {
2732 /*
2733 * Dynamic chunks.
2734 */
2735 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2736 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2737 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2738 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2739
2740 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2741 {
2742 uint8_t fPresent;
2743 rc = SSMR3GetU8(pSSM, &fPresent);
2744 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2745 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2746 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2747 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2748
2749 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2750 {
2751 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2752 PPGMPAGE pPage = &pRam->aPages[iPage];
2753 if (fPresent)
2754 {
2755 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2756 rc = pgmR3LoadPageToDevNull(pSSM);
2757 else
2758 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2759 }
2760 else
2761 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2762 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2763 }
2764 }
2765 }
2766 else if (pRam->pvR3)
2767 {
2768 /*
2769 * MMIO2.
2770 */
2771 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2772 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2773 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2774 AssertLogRelMsgReturn(pRam->pvR3,
2775 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2776 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2777
2778 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2779 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2780 }
2781 else if (GCPhysLast < UINT32_C(0xfff80000))
2782 {
2783 /*
2784 * PCI MMIO, no pages saved.
2785 */
2786 }
2787 else
2788 {
2789 /*
2790 * Load the 0xfff80000..0xffffffff BIOS range.
2791 * It starts with X reserved pages that we have to skip over since
2792 * the RAMRANGE create by the new code won't include those.
2793 */
2794 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2795 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2796 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2797 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2798 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2799 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2800 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2801
2802 /* Skip wasted reserved pages before the ROM. */
2803 while (GCPhys < pRam->GCPhys)
2804 {
2805 rc = pgmR3LoadPageToDevNull(pSSM);
2806 GCPhys += PAGE_SIZE;
2807 }
2808
2809 /* Load the bios pages. */
2810 cPages = pRam->cb >> PAGE_SHIFT;
2811 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2812 {
2813 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2814 PPGMPAGE pPage = &pRam->aPages[iPage];
2815
2816 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2817 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2818 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2819 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2820 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2821 }
2822 }
2823 }
2824 }
2825
2826 return rc;
2827}
2828
2829
2830/**
2831 * Execute state load operation.
2832 *
2833 * @returns VBox status code.
2834 * @param pVM VM Handle.
2835 * @param pSSM SSM operation handle.
2836 * @param u32Version Data layout version.
2837 */
2838static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2839{
2840 int rc;
2841 PPGM pPGM = &pVM->pgm.s;
2842
2843 /*
2844 * Validate version.
2845 */
2846 if ( u32Version != PGM_SAVED_STATE_VERSION
2847 && u32Version != PGM_SAVED_STATE_VERSION_RR_DESC
2848 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2849 {
2850 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2851 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2852 }
2853
2854 /*
2855 * Call the reset function to make sure all the memory is cleared.
2856 */
2857 PGMR3Reset(pVM);
2858
2859 /*
2860 * Do the loading while owning the lock because a bunch of the functions
2861 * we're using requires this.
2862 */
2863 pgmLock(pVM);
2864 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
2865 pgmUnlock(pVM);
2866 if (RT_SUCCESS(rc))
2867 {
2868 /*
2869 * We require a full resync now.
2870 */
2871 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2872 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2873 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2874 pPGM->fPhysCacheFlushPending = true;
2875 pgmR3HandlerPhysicalUpdateAll(pVM);
2876
2877 /*
2878 * Change the paging mode.
2879 */
2880 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2881
2882 /* Restore pVM->pgm.s.GCPhysCR3. */
2883 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2884 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2885 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2886 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2887 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2888 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2889 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2890 else
2891 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2892 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2893 }
2894
2895 return rc;
2896}
2897
2898
2899/**
2900 * Show paging mode.
2901 *
2902 * @param pVM VM Handle.
2903 * @param pHlp The info helpers.
2904 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2905 */
2906static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2907{
2908 /* digest argument. */
2909 bool fGuest, fShadow, fHost;
2910 if (pszArgs)
2911 pszArgs = RTStrStripL(pszArgs);
2912 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2913 fShadow = fHost = fGuest = true;
2914 else
2915 {
2916 fShadow = fHost = fGuest = false;
2917 if (strstr(pszArgs, "guest"))
2918 fGuest = true;
2919 if (strstr(pszArgs, "shadow"))
2920 fShadow = true;
2921 if (strstr(pszArgs, "host"))
2922 fHost = true;
2923 }
2924
2925 /* print info. */
2926 if (fGuest)
2927 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2928 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2929 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2930 if (fShadow)
2931 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2932 if (fHost)
2933 {
2934 const char *psz;
2935 switch (pVM->pgm.s.enmHostMode)
2936 {
2937 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2938 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2939 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2940 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2941 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2942 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2943 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2944 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2945 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2946 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2947 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2948 default: psz = "unknown"; break;
2949 }
2950 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2951 }
2952}
2953
2954
2955/**
2956 * Dump registered MMIO ranges to the log.
2957 *
2958 * @param pVM VM Handle.
2959 * @param pHlp The info helpers.
2960 * @param pszArgs Arguments, ignored.
2961 */
2962static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2963{
2964 NOREF(pszArgs);
2965 pHlp->pfnPrintf(pHlp,
2966 "RAM ranges (pVM=%p)\n"
2967 "%.*s %.*s\n",
2968 pVM,
2969 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2970 sizeof(RTHCPTR) * 2, "pvHC ");
2971
2972 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2973 pHlp->pfnPrintf(pHlp,
2974 "%RGp-%RGp %RHv %s\n",
2975 pCur->GCPhys,
2976 pCur->GCPhysLast,
2977 pCur->pvR3,
2978 pCur->pszDesc);
2979}
2980
2981/**
2982 * Dump the page directory to the log.
2983 *
2984 * @param pVM VM Handle.
2985 * @param pHlp The info helpers.
2986 * @param pszArgs Arguments, ignored.
2987 */
2988static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2989{
2990/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2991 /* Big pages supported? */
2992 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2993
2994 /* Global pages supported? */
2995 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2996
2997 NOREF(pszArgs);
2998
2999 /*
3000 * Get page directory addresses.
3001 */
3002 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3003 Assert(pPDSrc);
3004 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3005
3006 /*
3007 * Iterate the page directory.
3008 */
3009 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3010 {
3011 X86PDE PdeSrc = pPDSrc->a[iPD];
3012 if (PdeSrc.n.u1Present)
3013 {
3014 if (PdeSrc.b.u1Size && fPSE)
3015 pHlp->pfnPrintf(pHlp,
3016 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3017 iPD,
3018 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3019 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3020 else
3021 pHlp->pfnPrintf(pHlp,
3022 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3023 iPD,
3024 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3025 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3026 }
3027 }
3028}
3029
3030
3031/**
3032 * Serivce a VMMCALLHOST_PGM_LOCK call.
3033 *
3034 * @returns VBox status code.
3035 * @param pVM The VM handle.
3036 */
3037VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3038{
3039 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3040 AssertRC(rc);
3041 return rc;
3042}
3043
3044
3045/**
3046 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3047 *
3048 * @returns PGM_TYPE_*.
3049 * @param pgmMode The mode value to convert.
3050 */
3051DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3052{
3053 switch (pgmMode)
3054 {
3055 case PGMMODE_REAL: return PGM_TYPE_REAL;
3056 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3057 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3058 case PGMMODE_PAE:
3059 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3060 case PGMMODE_AMD64:
3061 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3062 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3063 case PGMMODE_EPT: return PGM_TYPE_EPT;
3064 default:
3065 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3066 }
3067}
3068
3069
3070/**
3071 * Gets the index into the paging mode data array of a SHW+GST mode.
3072 *
3073 * @returns PGM::paPagingData index.
3074 * @param uShwType The shadow paging mode type.
3075 * @param uGstType The guest paging mode type.
3076 */
3077DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3078{
3079 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3080 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3081 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3082 + (uGstType - PGM_TYPE_REAL);
3083}
3084
3085
3086/**
3087 * Gets the index into the paging mode data array of a SHW+GST mode.
3088 *
3089 * @returns PGM::paPagingData index.
3090 * @param enmShw The shadow paging mode.
3091 * @param enmGst The guest paging mode.
3092 */
3093DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3094{
3095 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3096 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3097 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3098}
3099
3100
3101/**
3102 * Calculates the max data index.
3103 * @returns The number of entries in the paging data array.
3104 */
3105DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3106{
3107 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3108}
3109
3110
3111/**
3112 * Initializes the paging mode data kept in PGM::paModeData.
3113 *
3114 * @param pVM The VM handle.
3115 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3116 * This is used early in the init process to avoid trouble with PDM
3117 * not being initialized yet.
3118 */
3119static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3120{
3121 PPGMMODEDATA pModeData;
3122 int rc;
3123
3124 /*
3125 * Allocate the array on the first call.
3126 */
3127 if (!pVM->pgm.s.paModeData)
3128 {
3129 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3130 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3131 }
3132
3133 /*
3134 * Initialize the array entries.
3135 */
3136 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3137 pModeData->uShwType = PGM_TYPE_32BIT;
3138 pModeData->uGstType = PGM_TYPE_REAL;
3139 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3140 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3141 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3142
3143 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3144 pModeData->uShwType = PGM_TYPE_32BIT;
3145 pModeData->uGstType = PGM_TYPE_PROT;
3146 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3147 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3148 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3149
3150 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3151 pModeData->uShwType = PGM_TYPE_32BIT;
3152 pModeData->uGstType = PGM_TYPE_32BIT;
3153 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3154 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3155 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3156
3157 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3158 pModeData->uShwType = PGM_TYPE_PAE;
3159 pModeData->uGstType = PGM_TYPE_REAL;
3160 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3161 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3162 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3163
3164 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3165 pModeData->uShwType = PGM_TYPE_PAE;
3166 pModeData->uGstType = PGM_TYPE_PROT;
3167 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3168 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3169 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3170
3171 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3172 pModeData->uShwType = PGM_TYPE_PAE;
3173 pModeData->uGstType = PGM_TYPE_32BIT;
3174 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3175 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3176 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3177
3178 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3179 pModeData->uShwType = PGM_TYPE_PAE;
3180 pModeData->uGstType = PGM_TYPE_PAE;
3181 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3182 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3183 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3184
3185#ifdef VBOX_WITH_64_BITS_GUESTS
3186 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3187 pModeData->uShwType = PGM_TYPE_AMD64;
3188 pModeData->uGstType = PGM_TYPE_AMD64;
3189 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3190 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3191 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3192#endif
3193
3194 /* The nested paging mode. */
3195 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3196 pModeData->uShwType = PGM_TYPE_NESTED;
3197 pModeData->uGstType = PGM_TYPE_REAL;
3198 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3199 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3200
3201 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3202 pModeData->uShwType = PGM_TYPE_NESTED;
3203 pModeData->uGstType = PGM_TYPE_PROT;
3204 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3205 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3206
3207 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3208 pModeData->uShwType = PGM_TYPE_NESTED;
3209 pModeData->uGstType = PGM_TYPE_32BIT;
3210 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3211 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3212
3213 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3214 pModeData->uShwType = PGM_TYPE_NESTED;
3215 pModeData->uGstType = PGM_TYPE_PAE;
3216 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3217 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3218
3219#ifdef VBOX_WITH_64_BITS_GUESTS
3220 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3221 pModeData->uShwType = PGM_TYPE_NESTED;
3222 pModeData->uGstType = PGM_TYPE_AMD64;
3223 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3224 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3225#endif
3226
3227 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3228 switch (pVM->pgm.s.enmHostMode)
3229 {
3230#if HC_ARCH_BITS == 32
3231 case SUPPAGINGMODE_32_BIT:
3232 case SUPPAGINGMODE_32_BIT_GLOBAL:
3233 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3234 {
3235 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3236 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3237 }
3238# ifdef VBOX_WITH_64_BITS_GUESTS
3239 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3240 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3241# endif
3242 break;
3243
3244 case SUPPAGINGMODE_PAE:
3245 case SUPPAGINGMODE_PAE_NX:
3246 case SUPPAGINGMODE_PAE_GLOBAL:
3247 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3248 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3249 {
3250 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3251 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3252 }
3253# ifdef VBOX_WITH_64_BITS_GUESTS
3254 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3255 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3256# endif
3257 break;
3258#endif /* HC_ARCH_BITS == 32 */
3259
3260#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3261 case SUPPAGINGMODE_AMD64:
3262 case SUPPAGINGMODE_AMD64_GLOBAL:
3263 case SUPPAGINGMODE_AMD64_NX:
3264 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3265# ifdef VBOX_WITH_64_BITS_GUESTS
3266 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3267# else
3268 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3269# endif
3270 {
3271 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3272 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3273 }
3274 break;
3275#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3276
3277 default:
3278 AssertFailed();
3279 break;
3280 }
3281
3282 /* Extended paging (EPT) / Intel VT-x */
3283 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3284 pModeData->uShwType = PGM_TYPE_EPT;
3285 pModeData->uGstType = PGM_TYPE_REAL;
3286 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3287 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3288 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3289
3290 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3291 pModeData->uShwType = PGM_TYPE_EPT;
3292 pModeData->uGstType = PGM_TYPE_PROT;
3293 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3294 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3295 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3296
3297 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3298 pModeData->uShwType = PGM_TYPE_EPT;
3299 pModeData->uGstType = PGM_TYPE_32BIT;
3300 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3301 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3302 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3303
3304 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3305 pModeData->uShwType = PGM_TYPE_EPT;
3306 pModeData->uGstType = PGM_TYPE_PAE;
3307 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3308 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3309 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3310
3311#ifdef VBOX_WITH_64_BITS_GUESTS
3312 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3313 pModeData->uShwType = PGM_TYPE_EPT;
3314 pModeData->uGstType = PGM_TYPE_AMD64;
3315 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3316 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3317 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3318#endif
3319 return VINF_SUCCESS;
3320}
3321
3322
3323/**
3324 * Switch to different (or relocated in the relocate case) mode data.
3325 *
3326 * @param pVM The VM handle.
3327 * @param enmShw The the shadow paging mode.
3328 * @param enmGst The the guest paging mode.
3329 */
3330static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3331{
3332 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3333
3334 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3335 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3336
3337 /* shadow */
3338 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3339 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3340 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3341 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3342 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3343
3344 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3345 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3346
3347 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3348 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3349
3350
3351 /* guest */
3352 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3353 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3354 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3355 Assert(pVM->pgm.s.pfnR3GstGetPage);
3356 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3357 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3358 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3359 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3360 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3361 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3362 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3363 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3364
3365 /* both */
3366 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3367 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3368 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3369 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3370 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3371 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3372 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3373#ifdef VBOX_STRICT
3374 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3375#endif
3376 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3377 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3378
3379 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3380 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3381 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3382 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3383 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3384 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3385#ifdef VBOX_STRICT
3386 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3387#endif
3388 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3389 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3390
3391 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3392 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3393 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3394 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3395 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3396 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3397#ifdef VBOX_STRICT
3398 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3399#endif
3400 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3401 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3402}
3403
3404
3405/**
3406 * Calculates the shadow paging mode.
3407 *
3408 * @returns The shadow paging mode.
3409 * @param pVM VM handle.
3410 * @param enmGuestMode The guest mode.
3411 * @param enmHostMode The host mode.
3412 * @param enmShadowMode The current shadow mode.
3413 * @param penmSwitcher Where to store the switcher to use.
3414 * VMMSWITCHER_INVALID means no change.
3415 */
3416static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3417{
3418 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3419 switch (enmGuestMode)
3420 {
3421 /*
3422 * When switching to real or protected mode we don't change
3423 * anything since it's likely that we'll switch back pretty soon.
3424 *
3425 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3426 * and is supposed to determine which shadow paging and switcher to
3427 * use during init.
3428 */
3429 case PGMMODE_REAL:
3430 case PGMMODE_PROTECTED:
3431 if ( enmShadowMode != PGMMODE_INVALID
3432 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3433 break; /* (no change) */
3434
3435 switch (enmHostMode)
3436 {
3437 case SUPPAGINGMODE_32_BIT:
3438 case SUPPAGINGMODE_32_BIT_GLOBAL:
3439 enmShadowMode = PGMMODE_32_BIT;
3440 enmSwitcher = VMMSWITCHER_32_TO_32;
3441 break;
3442
3443 case SUPPAGINGMODE_PAE:
3444 case SUPPAGINGMODE_PAE_NX:
3445 case SUPPAGINGMODE_PAE_GLOBAL:
3446 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3447 enmShadowMode = PGMMODE_PAE;
3448 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3449#ifdef DEBUG_bird
3450 if (RTEnvExist("VBOX_32BIT"))
3451 {
3452 enmShadowMode = PGMMODE_32_BIT;
3453 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3454 }
3455#endif
3456 break;
3457
3458 case SUPPAGINGMODE_AMD64:
3459 case SUPPAGINGMODE_AMD64_GLOBAL:
3460 case SUPPAGINGMODE_AMD64_NX:
3461 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3462 enmShadowMode = PGMMODE_PAE;
3463 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3464#ifdef DEBUG_bird
3465 if (RTEnvExist("VBOX_32BIT"))
3466 {
3467 enmShadowMode = PGMMODE_32_BIT;
3468 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3469 }
3470#endif
3471 break;
3472
3473 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3474 }
3475 break;
3476
3477 case PGMMODE_32_BIT:
3478 switch (enmHostMode)
3479 {
3480 case SUPPAGINGMODE_32_BIT:
3481 case SUPPAGINGMODE_32_BIT_GLOBAL:
3482 enmShadowMode = PGMMODE_32_BIT;
3483 enmSwitcher = VMMSWITCHER_32_TO_32;
3484 break;
3485
3486 case SUPPAGINGMODE_PAE:
3487 case SUPPAGINGMODE_PAE_NX:
3488 case SUPPAGINGMODE_PAE_GLOBAL:
3489 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3490 enmShadowMode = PGMMODE_PAE;
3491 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3492#ifdef DEBUG_bird
3493 if (RTEnvExist("VBOX_32BIT"))
3494 {
3495 enmShadowMode = PGMMODE_32_BIT;
3496 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3497 }
3498#endif
3499 break;
3500
3501 case SUPPAGINGMODE_AMD64:
3502 case SUPPAGINGMODE_AMD64_GLOBAL:
3503 case SUPPAGINGMODE_AMD64_NX:
3504 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3505 enmShadowMode = PGMMODE_PAE;
3506 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3507#ifdef DEBUG_bird
3508 if (RTEnvExist("VBOX_32BIT"))
3509 {
3510 enmShadowMode = PGMMODE_32_BIT;
3511 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3512 }
3513#endif
3514 break;
3515
3516 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3517 }
3518 break;
3519
3520 case PGMMODE_PAE:
3521 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3522 switch (enmHostMode)
3523 {
3524 case SUPPAGINGMODE_32_BIT:
3525 case SUPPAGINGMODE_32_BIT_GLOBAL:
3526 enmShadowMode = PGMMODE_PAE;
3527 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3528 break;
3529
3530 case SUPPAGINGMODE_PAE:
3531 case SUPPAGINGMODE_PAE_NX:
3532 case SUPPAGINGMODE_PAE_GLOBAL:
3533 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3534 enmShadowMode = PGMMODE_PAE;
3535 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3536 break;
3537
3538 case SUPPAGINGMODE_AMD64:
3539 case SUPPAGINGMODE_AMD64_GLOBAL:
3540 case SUPPAGINGMODE_AMD64_NX:
3541 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3542 enmShadowMode = PGMMODE_PAE;
3543 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3544 break;
3545
3546 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3547 }
3548 break;
3549
3550 case PGMMODE_AMD64:
3551 case PGMMODE_AMD64_NX:
3552 switch (enmHostMode)
3553 {
3554 case SUPPAGINGMODE_32_BIT:
3555 case SUPPAGINGMODE_32_BIT_GLOBAL:
3556 enmShadowMode = PGMMODE_AMD64;
3557 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3558 break;
3559
3560 case SUPPAGINGMODE_PAE:
3561 case SUPPAGINGMODE_PAE_NX:
3562 case SUPPAGINGMODE_PAE_GLOBAL:
3563 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3564 enmShadowMode = PGMMODE_AMD64;
3565 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3566 break;
3567
3568 case SUPPAGINGMODE_AMD64:
3569 case SUPPAGINGMODE_AMD64_GLOBAL:
3570 case SUPPAGINGMODE_AMD64_NX:
3571 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3572 enmShadowMode = PGMMODE_AMD64;
3573 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3574 break;
3575
3576 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3577 }
3578 break;
3579
3580
3581 default:
3582 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3583 return PGMMODE_INVALID;
3584 }
3585 /* Override the shadow mode is nested paging is active. */
3586 if (HWACCMIsNestedPagingActive(pVM))
3587 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3588
3589 *penmSwitcher = enmSwitcher;
3590 return enmShadowMode;
3591}
3592
3593
3594/**
3595 * Performs the actual mode change.
3596 * This is called by PGMChangeMode and pgmR3InitPaging().
3597 *
3598 * @returns VBox status code. May suspend or power off the VM on error, but this
3599 * will trigger using FFs and not status codes.
3600 *
3601 * @param pVM VM handle.
3602 * @param enmGuestMode The new guest mode. This is assumed to be different from
3603 * the current mode.
3604 */
3605VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3606{
3607 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3608 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3609
3610 /*
3611 * Calc the shadow mode and switcher.
3612 */
3613 VMMSWITCHER enmSwitcher;
3614 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3615 if (enmSwitcher != VMMSWITCHER_INVALID)
3616 {
3617 /*
3618 * Select new switcher.
3619 */
3620 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3621 if (RT_FAILURE(rc))
3622 {
3623 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3624 return rc;
3625 }
3626 }
3627
3628 /*
3629 * Exit old mode(s).
3630 */
3631 /* shadow */
3632 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3633 {
3634 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3635 if (PGM_SHW_PFN(Exit, pVM))
3636 {
3637 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3638 if (RT_FAILURE(rc))
3639 {
3640 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3641 return rc;
3642 }
3643 }
3644
3645 }
3646 else
3647 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3648
3649 /* guest */
3650 if (PGM_GST_PFN(Exit, pVM))
3651 {
3652 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3653 if (RT_FAILURE(rc))
3654 {
3655 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3656 return rc;
3657 }
3658 }
3659
3660 /*
3661 * Load new paging mode data.
3662 */
3663 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3664
3665 /*
3666 * Enter new shadow mode (if changed).
3667 */
3668 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3669 {
3670 int rc;
3671 pVM->pgm.s.enmShadowMode = enmShadowMode;
3672 switch (enmShadowMode)
3673 {
3674 case PGMMODE_32_BIT:
3675 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3676 break;
3677 case PGMMODE_PAE:
3678 case PGMMODE_PAE_NX:
3679 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3680 break;
3681 case PGMMODE_AMD64:
3682 case PGMMODE_AMD64_NX:
3683 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3684 break;
3685 case PGMMODE_NESTED:
3686 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3687 break;
3688 case PGMMODE_EPT:
3689 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3690 break;
3691 case PGMMODE_REAL:
3692 case PGMMODE_PROTECTED:
3693 default:
3694 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3695 return VERR_INTERNAL_ERROR;
3696 }
3697 if (RT_FAILURE(rc))
3698 {
3699 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3700 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3701 return rc;
3702 }
3703 }
3704
3705 /*
3706 * Always flag the necessary updates
3707 */
3708 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3709
3710 /*
3711 * Enter the new guest and shadow+guest modes.
3712 */
3713 int rc = -1;
3714 int rc2 = -1;
3715 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3716 pVM->pgm.s.enmGuestMode = enmGuestMode;
3717 switch (enmGuestMode)
3718 {
3719 case PGMMODE_REAL:
3720 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3721 switch (pVM->pgm.s.enmShadowMode)
3722 {
3723 case PGMMODE_32_BIT:
3724 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3725 break;
3726 case PGMMODE_PAE:
3727 case PGMMODE_PAE_NX:
3728 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3729 break;
3730 case PGMMODE_NESTED:
3731 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3732 break;
3733 case PGMMODE_EPT:
3734 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3735 break;
3736 case PGMMODE_AMD64:
3737 case PGMMODE_AMD64_NX:
3738 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3739 default: AssertFailed(); break;
3740 }
3741 break;
3742
3743 case PGMMODE_PROTECTED:
3744 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3745 switch (pVM->pgm.s.enmShadowMode)
3746 {
3747 case PGMMODE_32_BIT:
3748 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3749 break;
3750 case PGMMODE_PAE:
3751 case PGMMODE_PAE_NX:
3752 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3753 break;
3754 case PGMMODE_NESTED:
3755 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3756 break;
3757 case PGMMODE_EPT:
3758 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3759 break;
3760 case PGMMODE_AMD64:
3761 case PGMMODE_AMD64_NX:
3762 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3763 default: AssertFailed(); break;
3764 }
3765 break;
3766
3767 case PGMMODE_32_BIT:
3768 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3769 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3770 switch (pVM->pgm.s.enmShadowMode)
3771 {
3772 case PGMMODE_32_BIT:
3773 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3774 break;
3775 case PGMMODE_PAE:
3776 case PGMMODE_PAE_NX:
3777 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3778 break;
3779 case PGMMODE_NESTED:
3780 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3781 break;
3782 case PGMMODE_EPT:
3783 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3784 break;
3785 case PGMMODE_AMD64:
3786 case PGMMODE_AMD64_NX:
3787 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3788 default: AssertFailed(); break;
3789 }
3790 break;
3791
3792 case PGMMODE_PAE_NX:
3793 case PGMMODE_PAE:
3794 {
3795 uint32_t u32Dummy, u32Features;
3796
3797 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3798 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3799 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3800 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3801
3802 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3803 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3804 switch (pVM->pgm.s.enmShadowMode)
3805 {
3806 case PGMMODE_PAE:
3807 case PGMMODE_PAE_NX:
3808 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3809 break;
3810 case PGMMODE_NESTED:
3811 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3812 break;
3813 case PGMMODE_EPT:
3814 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3815 break;
3816 case PGMMODE_32_BIT:
3817 case PGMMODE_AMD64:
3818 case PGMMODE_AMD64_NX:
3819 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3820 default: AssertFailed(); break;
3821 }
3822 break;
3823 }
3824
3825#ifdef VBOX_WITH_64_BITS_GUESTS
3826 case PGMMODE_AMD64_NX:
3827 case PGMMODE_AMD64:
3828 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3829 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3830 switch (pVM->pgm.s.enmShadowMode)
3831 {
3832 case PGMMODE_AMD64:
3833 case PGMMODE_AMD64_NX:
3834 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3835 break;
3836 case PGMMODE_NESTED:
3837 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3838 break;
3839 case PGMMODE_EPT:
3840 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3841 break;
3842 case PGMMODE_32_BIT:
3843 case PGMMODE_PAE:
3844 case PGMMODE_PAE_NX:
3845 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3846 default: AssertFailed(); break;
3847 }
3848 break;
3849#endif
3850
3851 default:
3852 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3853 rc = VERR_NOT_IMPLEMENTED;
3854 break;
3855 }
3856
3857 /* status codes. */
3858 AssertRC(rc);
3859 AssertRC(rc2);
3860 if (RT_SUCCESS(rc))
3861 {
3862 rc = rc2;
3863 if (RT_SUCCESS(rc)) /* no informational status codes. */
3864 rc = VINF_SUCCESS;
3865 }
3866
3867 /* Notify HWACCM as well. */
3868 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3869 return rc;
3870}
3871
3872
3873/**
3874 * Dumps a PAE shadow page table.
3875 *
3876 * @returns VBox status code (VINF_SUCCESS).
3877 * @param pVM The VM handle.
3878 * @param pPT Pointer to the page table.
3879 * @param u64Address The virtual address of the page table starts.
3880 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3881 * @param cMaxDepth The maxium depth.
3882 * @param pHlp Pointer to the output functions.
3883 */
3884static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3885{
3886 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3887 {
3888 X86PTEPAE Pte = pPT->a[i];
3889 if (Pte.n.u1Present)
3890 {
3891 pHlp->pfnPrintf(pHlp,
3892 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3893 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3894 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3895 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3896 Pte.n.u1Write ? 'W' : 'R',
3897 Pte.n.u1User ? 'U' : 'S',
3898 Pte.n.u1Accessed ? 'A' : '-',
3899 Pte.n.u1Dirty ? 'D' : '-',
3900 Pte.n.u1Global ? 'G' : '-',
3901 Pte.n.u1WriteThru ? "WT" : "--",
3902 Pte.n.u1CacheDisable? "CD" : "--",
3903 Pte.n.u1PAT ? "AT" : "--",
3904 Pte.n.u1NoExecute ? "NX" : "--",
3905 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3906 Pte.u & RT_BIT(10) ? '1' : '0',
3907 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3908 Pte.u & X86_PTE_PAE_PG_MASK);
3909 }
3910 }
3911 return VINF_SUCCESS;
3912}
3913
3914
3915/**
3916 * Dumps a PAE shadow page directory table.
3917 *
3918 * @returns VBox status code (VINF_SUCCESS).
3919 * @param pVM The VM handle.
3920 * @param HCPhys The physical address of the page directory table.
3921 * @param u64Address The virtual address of the page table starts.
3922 * @param cr4 The CR4, PSE is currently used.
3923 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3924 * @param cMaxDepth The maxium depth.
3925 * @param pHlp Pointer to the output functions.
3926 */
3927static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3928{
3929 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3930 if (!pPD)
3931 {
3932 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3933 fLongMode ? 16 : 8, u64Address, HCPhys);
3934 return VERR_INVALID_PARAMETER;
3935 }
3936 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3937
3938 int rc = VINF_SUCCESS;
3939 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3940 {
3941 X86PDEPAE Pde = pPD->a[i];
3942 if (Pde.n.u1Present)
3943 {
3944 if (fBigPagesSupported && Pde.b.u1Size)
3945 pHlp->pfnPrintf(pHlp,
3946 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3947 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3948 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3949 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3950 Pde.b.u1Write ? 'W' : 'R',
3951 Pde.b.u1User ? 'U' : 'S',
3952 Pde.b.u1Accessed ? 'A' : '-',
3953 Pde.b.u1Dirty ? 'D' : '-',
3954 Pde.b.u1Global ? 'G' : '-',
3955 Pde.b.u1WriteThru ? "WT" : "--",
3956 Pde.b.u1CacheDisable? "CD" : "--",
3957 Pde.b.u1PAT ? "AT" : "--",
3958 Pde.b.u1NoExecute ? "NX" : "--",
3959 Pde.u & RT_BIT_64(9) ? '1' : '0',
3960 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3961 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3962 Pde.u & X86_PDE_PAE_PG_MASK);
3963 else
3964 {
3965 pHlp->pfnPrintf(pHlp,
3966 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3967 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3968 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3969 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3970 Pde.n.u1Write ? 'W' : 'R',
3971 Pde.n.u1User ? 'U' : 'S',
3972 Pde.n.u1Accessed ? 'A' : '-',
3973 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3974 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3975 Pde.n.u1WriteThru ? "WT" : "--",
3976 Pde.n.u1CacheDisable? "CD" : "--",
3977 Pde.n.u1NoExecute ? "NX" : "--",
3978 Pde.u & RT_BIT_64(9) ? '1' : '0',
3979 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3980 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3981 Pde.u & X86_PDE_PAE_PG_MASK);
3982 if (cMaxDepth >= 1)
3983 {
3984 /** @todo what about using the page pool for mapping PTs? */
3985 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3986 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3987 PX86PTPAE pPT = NULL;
3988 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3989 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3990 else
3991 {
3992 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3993 {
3994 uint64_t off = u64AddressPT - pMap->GCPtr;
3995 if (off < pMap->cb)
3996 {
3997 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3998 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3999 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4000 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4001 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4002 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4003 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4004 }
4005 }
4006 }
4007 int rc2 = VERR_INVALID_PARAMETER;
4008 if (pPT)
4009 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4010 else
4011 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4012 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4013 if (rc2 < rc && RT_SUCCESS(rc))
4014 rc = rc2;
4015 }
4016 }
4017 }
4018 }
4019 return rc;
4020}
4021
4022
4023/**
4024 * Dumps a PAE shadow page directory pointer table.
4025 *
4026 * @returns VBox status code (VINF_SUCCESS).
4027 * @param pVM The VM handle.
4028 * @param HCPhys The physical address of the page directory pointer table.
4029 * @param u64Address The virtual address of the page table starts.
4030 * @param cr4 The CR4, PSE is currently used.
4031 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4032 * @param cMaxDepth The maxium depth.
4033 * @param pHlp Pointer to the output functions.
4034 */
4035static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4036{
4037 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4038 if (!pPDPT)
4039 {
4040 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4041 fLongMode ? 16 : 8, u64Address, HCPhys);
4042 return VERR_INVALID_PARAMETER;
4043 }
4044
4045 int rc = VINF_SUCCESS;
4046 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4047 for (unsigned i = 0; i < c; i++)
4048 {
4049 X86PDPE Pdpe = pPDPT->a[i];
4050 if (Pdpe.n.u1Present)
4051 {
4052 if (fLongMode)
4053 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4054 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4055 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4056 Pdpe.lm.u1Write ? 'W' : 'R',
4057 Pdpe.lm.u1User ? 'U' : 'S',
4058 Pdpe.lm.u1Accessed ? 'A' : '-',
4059 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4060 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4061 Pdpe.lm.u1WriteThru ? "WT" : "--",
4062 Pdpe.lm.u1CacheDisable? "CD" : "--",
4063 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4064 Pdpe.lm.u1NoExecute ? "NX" : "--",
4065 Pdpe.u & RT_BIT(9) ? '1' : '0',
4066 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4067 Pdpe.u & RT_BIT(11) ? '1' : '0',
4068 Pdpe.u & X86_PDPE_PG_MASK);
4069 else
4070 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4071 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4072 i << X86_PDPT_SHIFT,
4073 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4074 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4075 Pdpe.n.u1WriteThru ? "WT" : "--",
4076 Pdpe.n.u1CacheDisable? "CD" : "--",
4077 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4078 Pdpe.u & RT_BIT(9) ? '1' : '0',
4079 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4080 Pdpe.u & RT_BIT(11) ? '1' : '0',
4081 Pdpe.u & X86_PDPE_PG_MASK);
4082 if (cMaxDepth >= 1)
4083 {
4084 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4085 cr4, fLongMode, cMaxDepth - 1, pHlp);
4086 if (rc2 < rc && RT_SUCCESS(rc))
4087 rc = rc2;
4088 }
4089 }
4090 }
4091 return rc;
4092}
4093
4094
4095/**
4096 * Dumps a 32-bit shadow page table.
4097 *
4098 * @returns VBox status code (VINF_SUCCESS).
4099 * @param pVM The VM handle.
4100 * @param HCPhys The physical address of the table.
4101 * @param cr4 The CR4, PSE is currently used.
4102 * @param cMaxDepth The maxium depth.
4103 * @param pHlp Pointer to the output functions.
4104 */
4105static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4106{
4107 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4108 if (!pPML4)
4109 {
4110 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4111 return VERR_INVALID_PARAMETER;
4112 }
4113
4114 int rc = VINF_SUCCESS;
4115 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4116 {
4117 X86PML4E Pml4e = pPML4->a[i];
4118 if (Pml4e.n.u1Present)
4119 {
4120 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4121 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4122 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4123 u64Address,
4124 Pml4e.n.u1Write ? 'W' : 'R',
4125 Pml4e.n.u1User ? 'U' : 'S',
4126 Pml4e.n.u1Accessed ? 'A' : '-',
4127 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4128 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4129 Pml4e.n.u1WriteThru ? "WT" : "--",
4130 Pml4e.n.u1CacheDisable? "CD" : "--",
4131 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4132 Pml4e.n.u1NoExecute ? "NX" : "--",
4133 Pml4e.u & RT_BIT(9) ? '1' : '0',
4134 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4135 Pml4e.u & RT_BIT(11) ? '1' : '0',
4136 Pml4e.u & X86_PML4E_PG_MASK);
4137
4138 if (cMaxDepth >= 1)
4139 {
4140 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4141 if (rc2 < rc && RT_SUCCESS(rc))
4142 rc = rc2;
4143 }
4144 }
4145 }
4146 return rc;
4147}
4148
4149
4150/**
4151 * Dumps a 32-bit shadow page table.
4152 *
4153 * @returns VBox status code (VINF_SUCCESS).
4154 * @param pVM The VM handle.
4155 * @param pPT Pointer to the page table.
4156 * @param u32Address The virtual address this table starts at.
4157 * @param pHlp Pointer to the output functions.
4158 */
4159int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4160{
4161 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4162 {
4163 X86PTE Pte = pPT->a[i];
4164 if (Pte.n.u1Present)
4165 {
4166 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4167 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4168 u32Address + (i << X86_PT_SHIFT),
4169 Pte.n.u1Write ? 'W' : 'R',
4170 Pte.n.u1User ? 'U' : 'S',
4171 Pte.n.u1Accessed ? 'A' : '-',
4172 Pte.n.u1Dirty ? 'D' : '-',
4173 Pte.n.u1Global ? 'G' : '-',
4174 Pte.n.u1WriteThru ? "WT" : "--",
4175 Pte.n.u1CacheDisable? "CD" : "--",
4176 Pte.n.u1PAT ? "AT" : "--",
4177 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4178 Pte.u & RT_BIT(10) ? '1' : '0',
4179 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4180 Pte.u & X86_PDE_PG_MASK);
4181 }
4182 }
4183 return VINF_SUCCESS;
4184}
4185
4186
4187/**
4188 * Dumps a 32-bit shadow page directory and page tables.
4189 *
4190 * @returns VBox status code (VINF_SUCCESS).
4191 * @param pVM The VM handle.
4192 * @param cr3 The root of the hierarchy.
4193 * @param cr4 The CR4, PSE is currently used.
4194 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4195 * @param pHlp Pointer to the output functions.
4196 */
4197int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4198{
4199 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4200 if (!pPD)
4201 {
4202 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4203 return VERR_INVALID_PARAMETER;
4204 }
4205
4206 int rc = VINF_SUCCESS;
4207 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4208 {
4209 X86PDE Pde = pPD->a[i];
4210 if (Pde.n.u1Present)
4211 {
4212 const uint32_t u32Address = i << X86_PD_SHIFT;
4213 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4214 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4215 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4216 u32Address,
4217 Pde.b.u1Write ? 'W' : 'R',
4218 Pde.b.u1User ? 'U' : 'S',
4219 Pde.b.u1Accessed ? 'A' : '-',
4220 Pde.b.u1Dirty ? 'D' : '-',
4221 Pde.b.u1Global ? 'G' : '-',
4222 Pde.b.u1WriteThru ? "WT" : "--",
4223 Pde.b.u1CacheDisable? "CD" : "--",
4224 Pde.b.u1PAT ? "AT" : "--",
4225 Pde.u & RT_BIT_64(9) ? '1' : '0',
4226 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4227 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4228 Pde.u & X86_PDE4M_PG_MASK);
4229 else
4230 {
4231 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4232 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4233 u32Address,
4234 Pde.n.u1Write ? 'W' : 'R',
4235 Pde.n.u1User ? 'U' : 'S',
4236 Pde.n.u1Accessed ? 'A' : '-',
4237 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4238 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4239 Pde.n.u1WriteThru ? "WT" : "--",
4240 Pde.n.u1CacheDisable? "CD" : "--",
4241 Pde.u & RT_BIT_64(9) ? '1' : '0',
4242 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4243 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4244 Pde.u & X86_PDE_PG_MASK);
4245 if (cMaxDepth >= 1)
4246 {
4247 /** @todo what about using the page pool for mapping PTs? */
4248 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4249 PX86PT pPT = NULL;
4250 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4251 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4252 else
4253 {
4254 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4255 if (u32Address - pMap->GCPtr < pMap->cb)
4256 {
4257 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4258 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4259 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4260 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4261 pPT = pMap->aPTs[iPDE].pPTR3;
4262 }
4263 }
4264 int rc2 = VERR_INVALID_PARAMETER;
4265 if (pPT)
4266 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4267 else
4268 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4269 if (rc2 < rc && RT_SUCCESS(rc))
4270 rc = rc2;
4271 }
4272 }
4273 }
4274 }
4275
4276 return rc;
4277}
4278
4279
4280/**
4281 * Dumps a 32-bit shadow page table.
4282 *
4283 * @returns VBox status code (VINF_SUCCESS).
4284 * @param pVM The VM handle.
4285 * @param pPT Pointer to the page table.
4286 * @param u32Address The virtual address this table starts at.
4287 * @param PhysSearch Address to search for.
4288 */
4289int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4290{
4291 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4292 {
4293 X86PTE Pte = pPT->a[i];
4294 if (Pte.n.u1Present)
4295 {
4296 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4297 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4298 u32Address + (i << X86_PT_SHIFT),
4299 Pte.n.u1Write ? 'W' : 'R',
4300 Pte.n.u1User ? 'U' : 'S',
4301 Pte.n.u1Accessed ? 'A' : '-',
4302 Pte.n.u1Dirty ? 'D' : '-',
4303 Pte.n.u1Global ? 'G' : '-',
4304 Pte.n.u1WriteThru ? "WT" : "--",
4305 Pte.n.u1CacheDisable? "CD" : "--",
4306 Pte.n.u1PAT ? "AT" : "--",
4307 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4308 Pte.u & RT_BIT(10) ? '1' : '0',
4309 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4310 Pte.u & X86_PDE_PG_MASK));
4311
4312 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4313 {
4314 uint64_t fPageShw = 0;
4315 RTHCPHYS pPhysHC = 0;
4316
4317 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4318 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4319 }
4320 }
4321 }
4322 return VINF_SUCCESS;
4323}
4324
4325
4326/**
4327 * Dumps a 32-bit guest page directory and page tables.
4328 *
4329 * @returns VBox status code (VINF_SUCCESS).
4330 * @param pVM The VM handle.
4331 * @param cr3 The root of the hierarchy.
4332 * @param cr4 The CR4, PSE is currently used.
4333 * @param PhysSearch Address to search for.
4334 */
4335VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4336{
4337 bool fLongMode = false;
4338 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4339 PX86PD pPD = 0;
4340
4341 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4342 if (RT_FAILURE(rc) || !pPD)
4343 {
4344 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4345 return VERR_INVALID_PARAMETER;
4346 }
4347
4348 Log(("cr3=%08x cr4=%08x%s\n"
4349 "%-*s P - Present\n"
4350 "%-*s | R/W - Read (0) / Write (1)\n"
4351 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4352 "%-*s | | | A - Accessed\n"
4353 "%-*s | | | | D - Dirty\n"
4354 "%-*s | | | | | G - Global\n"
4355 "%-*s | | | | | | WT - Write thru\n"
4356 "%-*s | | | | | | | CD - Cache disable\n"
4357 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4358 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4359 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4360 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4361 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4362 "%-*s Level | | | | | | | | | | | | Page\n"
4363 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4364 - W U - - - -- -- -- -- -- 010 */
4365 , cr3, cr4, fLongMode ? " Long Mode" : "",
4366 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4367 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4368
4369 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4370 {
4371 X86PDE Pde = pPD->a[i];
4372 if (Pde.n.u1Present)
4373 {
4374 const uint32_t u32Address = i << X86_PD_SHIFT;
4375
4376 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4377 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4378 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4379 u32Address,
4380 Pde.b.u1Write ? 'W' : 'R',
4381 Pde.b.u1User ? 'U' : 'S',
4382 Pde.b.u1Accessed ? 'A' : '-',
4383 Pde.b.u1Dirty ? 'D' : '-',
4384 Pde.b.u1Global ? 'G' : '-',
4385 Pde.b.u1WriteThru ? "WT" : "--",
4386 Pde.b.u1CacheDisable? "CD" : "--",
4387 Pde.b.u1PAT ? "AT" : "--",
4388 Pde.u & RT_BIT(9) ? '1' : '0',
4389 Pde.u & RT_BIT(10) ? '1' : '0',
4390 Pde.u & RT_BIT(11) ? '1' : '0',
4391 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4392 /** @todo PhysSearch */
4393 else
4394 {
4395 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4396 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4397 u32Address,
4398 Pde.n.u1Write ? 'W' : 'R',
4399 Pde.n.u1User ? 'U' : 'S',
4400 Pde.n.u1Accessed ? 'A' : '-',
4401 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4402 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4403 Pde.n.u1WriteThru ? "WT" : "--",
4404 Pde.n.u1CacheDisable? "CD" : "--",
4405 Pde.u & RT_BIT(9) ? '1' : '0',
4406 Pde.u & RT_BIT(10) ? '1' : '0',
4407 Pde.u & RT_BIT(11) ? '1' : '0',
4408 Pde.u & X86_PDE_PG_MASK));
4409 ////if (cMaxDepth >= 1)
4410 {
4411 /** @todo what about using the page pool for mapping PTs? */
4412 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4413 PX86PT pPT = NULL;
4414
4415 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4416
4417 int rc2 = VERR_INVALID_PARAMETER;
4418 if (pPT)
4419 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4420 else
4421 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4422 if (rc2 < rc && RT_SUCCESS(rc))
4423 rc = rc2;
4424 }
4425 }
4426 }
4427 }
4428
4429 return rc;
4430}
4431
4432
4433/**
4434 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4435 *
4436 * @returns VBox status code (VINF_SUCCESS).
4437 * @param pVM The VM handle.
4438 * @param cr3 The root of the hierarchy.
4439 * @param cr4 The cr4, only PAE and PSE is currently used.
4440 * @param fLongMode Set if long mode, false if not long mode.
4441 * @param cMaxDepth Number of levels to dump.
4442 * @param pHlp Pointer to the output functions.
4443 */
4444VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4445{
4446 if (!pHlp)
4447 pHlp = DBGFR3InfoLogHlp();
4448 if (!cMaxDepth)
4449 return VINF_SUCCESS;
4450 const unsigned cch = fLongMode ? 16 : 8;
4451 pHlp->pfnPrintf(pHlp,
4452 "cr3=%08x cr4=%08x%s\n"
4453 "%-*s P - Present\n"
4454 "%-*s | R/W - Read (0) / Write (1)\n"
4455 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4456 "%-*s | | | A - Accessed\n"
4457 "%-*s | | | | D - Dirty\n"
4458 "%-*s | | | | | G - Global\n"
4459 "%-*s | | | | | | WT - Write thru\n"
4460 "%-*s | | | | | | | CD - Cache disable\n"
4461 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4462 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4463 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4464 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4465 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4466 "%-*s Level | | | | | | | | | | | | Page\n"
4467 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4468 - W U - - - -- -- -- -- -- 010 */
4469 , cr3, cr4, fLongMode ? " Long Mode" : "",
4470 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4471 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4472 if (cr4 & X86_CR4_PAE)
4473 {
4474 if (fLongMode)
4475 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4476 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4477 }
4478 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4479}
4480
4481#ifdef VBOX_WITH_DEBUGGER
4482
4483/**
4484 * The '.pgmram' command.
4485 *
4486 * @returns VBox status.
4487 * @param pCmd Pointer to the command descriptor (as registered).
4488 * @param pCmdHlp Pointer to command helper functions.
4489 * @param pVM Pointer to the current VM (if any).
4490 * @param paArgs Pointer to (readonly) array of arguments.
4491 * @param cArgs Number of arguments in the array.
4492 */
4493static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4494{
4495 /*
4496 * Validate input.
4497 */
4498 if (!pVM)
4499 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4500 if (!pVM->pgm.s.pRamRangesRC)
4501 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4502
4503 /*
4504 * Dump the ranges.
4505 */
4506 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4507 PPGMRAMRANGE pRam;
4508 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4509 {
4510 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4511 "%RGp - %RGp %p\n",
4512 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4513 if (RT_FAILURE(rc))
4514 return rc;
4515 }
4516
4517 return VINF_SUCCESS;
4518}
4519
4520
4521/**
4522 * The '.pgmmap' command.
4523 *
4524 * @returns VBox status.
4525 * @param pCmd Pointer to the command descriptor (as registered).
4526 * @param pCmdHlp Pointer to command helper functions.
4527 * @param pVM Pointer to the current VM (if any).
4528 * @param paArgs Pointer to (readonly) array of arguments.
4529 * @param cArgs Number of arguments in the array.
4530 */
4531static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4532{
4533 /*
4534 * Validate input.
4535 */
4536 if (!pVM)
4537 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4538 if (!pVM->pgm.s.pMappingsR3)
4539 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4540
4541 /*
4542 * Print message about the fixedness of the mappings.
4543 */
4544 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4545 if (RT_FAILURE(rc))
4546 return rc;
4547
4548 /*
4549 * Dump the ranges.
4550 */
4551 PPGMMAPPING pCur;
4552 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4553 {
4554 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4555 "%08x - %08x %s\n",
4556 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4557 if (RT_FAILURE(rc))
4558 return rc;
4559 }
4560
4561 return VINF_SUCCESS;
4562}
4563
4564
4565/**
4566 * The '.pgmerror' and '.pgmerroroff' commands.
4567 *
4568 * @returns VBox status.
4569 * @param pCmd Pointer to the command descriptor (as registered).
4570 * @param pCmdHlp Pointer to command helper functions.
4571 * @param pVM Pointer to the current VM (if any).
4572 * @param paArgs Pointer to (readonly) array of arguments.
4573 * @param cArgs Number of arguments in the array.
4574 */
4575static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4576{
4577 /*
4578 * Validate input.
4579 */
4580 if (!pVM)
4581 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4582 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4583 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4584
4585 if (!cArgs)
4586 {
4587 /*
4588 * Print the list of error injection locations with status.
4589 */
4590 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4591 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4592 }
4593 else
4594 {
4595
4596 /*
4597 * String switch on where to inject the error.
4598 */
4599 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4600 const char *pszWhere = paArgs[0].u.pszString;
4601 if (!strcmp(pszWhere, "handy"))
4602 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4603 else
4604 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4605 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4606 }
4607 return VINF_SUCCESS;
4608}
4609
4610
4611/**
4612 * The '.pgmsync' command.
4613 *
4614 * @returns VBox status.
4615 * @param pCmd Pointer to the command descriptor (as registered).
4616 * @param pCmdHlp Pointer to command helper functions.
4617 * @param pVM Pointer to the current VM (if any).
4618 * @param paArgs Pointer to (readonly) array of arguments.
4619 * @param cArgs Number of arguments in the array.
4620 */
4621static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4622{
4623 /*
4624 * Validate input.
4625 */
4626 if (!pVM)
4627 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4628
4629 /*
4630 * Force page directory sync.
4631 */
4632 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4633
4634 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4635 if (RT_FAILURE(rc))
4636 return rc;
4637
4638 return VINF_SUCCESS;
4639}
4640
4641
4642#ifdef VBOX_STRICT
4643/**
4644 * The '.pgmassertcr3' command.
4645 *
4646 * @returns VBox status.
4647 * @param pCmd Pointer to the command descriptor (as registered).
4648 * @param pCmdHlp Pointer to command helper functions.
4649 * @param pVM Pointer to the current VM (if any).
4650 * @param paArgs Pointer to (readonly) array of arguments.
4651 * @param cArgs Number of arguments in the array.
4652 */
4653static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4654{
4655 /*
4656 * Validate input.
4657 */
4658 if (!pVM)
4659 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4660
4661 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4662 if (RT_FAILURE(rc))
4663 return rc;
4664
4665 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4666
4667 return VINF_SUCCESS;
4668}
4669#endif /* VBOX_STRICT */
4670
4671
4672/**
4673 * The '.pgmsyncalways' command.
4674 *
4675 * @returns VBox status.
4676 * @param pCmd Pointer to the command descriptor (as registered).
4677 * @param pCmdHlp Pointer to command helper functions.
4678 * @param pVM Pointer to the current VM (if any).
4679 * @param paArgs Pointer to (readonly) array of arguments.
4680 * @param cArgs Number of arguments in the array.
4681 */
4682static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4683{
4684 /*
4685 * Validate input.
4686 */
4687 if (!pVM)
4688 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4689
4690 /*
4691 * Force page directory sync.
4692 */
4693 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4694 {
4695 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4696 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4697 }
4698 else
4699 {
4700 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4701 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4702 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4703 }
4704}
4705
4706#endif /* VBOX_WITH_DEBUGGER */
4707
4708/**
4709 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4710 */
4711typedef struct PGMCHECKINTARGS
4712{
4713 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4714 PPGMPHYSHANDLER pPrevPhys;
4715 PPGMVIRTHANDLER pPrevVirt;
4716 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4717 PVM pVM;
4718} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4719
4720/**
4721 * Validate a node in the physical handler tree.
4722 *
4723 * @returns 0 on if ok, other wise 1.
4724 * @param pNode The handler node.
4725 * @param pvUser pVM.
4726 */
4727static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4728{
4729 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4730 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4731 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4732 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4733 AssertReleaseMsg( !pArgs->pPrevPhys
4734 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4735 ("pPrevPhys=%p %RGp-%RGp %s\n"
4736 " pCur=%p %RGp-%RGp %s\n",
4737 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4738 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4739 pArgs->pPrevPhys = pCur;
4740 return 0;
4741}
4742
4743
4744/**
4745 * Validate a node in the virtual handler tree.
4746 *
4747 * @returns 0 on if ok, other wise 1.
4748 * @param pNode The handler node.
4749 * @param pvUser pVM.
4750 */
4751static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4752{
4753 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4754 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4755 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4756 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4757 AssertReleaseMsg( !pArgs->pPrevVirt
4758 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4759 ("pPrevVirt=%p %RGv-%RGv %s\n"
4760 " pCur=%p %RGv-%RGv %s\n",
4761 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4762 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4763 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4764 {
4765 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4766 ("pCur=%p %RGv-%RGv %s\n"
4767 "iPage=%d offVirtHandle=%#x expected %#x\n",
4768 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4769 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4770 }
4771 pArgs->pPrevVirt = pCur;
4772 return 0;
4773}
4774
4775
4776/**
4777 * Validate a node in the virtual handler tree.
4778 *
4779 * @returns 0 on if ok, other wise 1.
4780 * @param pNode The handler node.
4781 * @param pvUser pVM.
4782 */
4783static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4784{
4785 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4786 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4787 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4788 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4789 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4790 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4791 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4792 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4793 " pCur=%p %RGp-%RGp\n",
4794 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4795 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4796 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4797 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4798 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4799 " pCur=%p %RGp-%RGp\n",
4800 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4801 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4802 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4803 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4804 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4805 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4806 {
4807 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4808 for (;;)
4809 {
4810 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4811 AssertReleaseMsg(pCur2 != pCur,
4812 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4813 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4814 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4815 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4816 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4817 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4818 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4819 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4820 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4821 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4822 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4823 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4824 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4825 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4826 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4827 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4828 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4829 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4830 break;
4831 }
4832 }
4833
4834 pArgs->pPrevPhys2Virt = pCur;
4835 return 0;
4836}
4837
4838
4839/**
4840 * Perform an integrity check on the PGM component.
4841 *
4842 * @returns VINF_SUCCESS if everything is fine.
4843 * @returns VBox error status after asserting on integrity breach.
4844 * @param pVM The VM handle.
4845 */
4846VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4847{
4848 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4849
4850 /*
4851 * Check the trees.
4852 */
4853 int cErrors = 0;
4854 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4855 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4856 PGMCHECKINTARGS Args = s_LeftToRight;
4857 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4858 Args = s_RightToLeft;
4859 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4860 Args = s_LeftToRight;
4861 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4862 Args = s_RightToLeft;
4863 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4864 Args = s_LeftToRight;
4865 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4866 Args = s_RightToLeft;
4867 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4868 Args = s_LeftToRight;
4869 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4870 Args = s_RightToLeft;
4871 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4872
4873 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4874}
4875
4876
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette