VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 18891

Last change on this file since 18891 was 18889, checked in by vboxsync, 16 years ago

VMM: respect VBOX_WITH_PREALLOC_RAM_BY_DEFAULT

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 230.1 KB
Line 
1/* $Id: PGM.cpp 18889 2009-04-14 12:33:29Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#ifdef DEBUG_bird
602# include <iprt/env.h>
603#endif
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.2.2 and later. */
612#define PGM_SAVED_STATE_VERSION 8
613/** Saved state data unit version for 2.2.0. */
614#define PGM_SAVED_STATE_VERSION_RR_DESC 7
615/** Saved state data unit version 2.1.x and earlier. */
616#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
617
618
619/*******************************************************************************
620* Internal Functions *
621*******************************************************************************/
622static int pgmR3InitPaging(PVM pVM);
623static void pgmR3InitStats(PVM pVM);
624static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
625static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
628static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630#ifdef VBOX_STRICT
631static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
632#endif
633static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
634static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
635static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
636static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
637static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
638
639#ifdef VBOX_WITH_DEBUGGER
640/** @todo Convert the first two commands to 'info' items. */
641static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646# ifdef VBOX_STRICT
647static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# endif
649#endif
650
651
652/*******************************************************************************
653* Global Variables *
654*******************************************************************************/
655#ifdef VBOX_WITH_DEBUGGER
656/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
657static const DBGCVARDESC g_aPgmErrorArgs[] =
658{
659 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
660 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
661};
662
663/** Command descriptors. */
664static const DBGCCMD g_aCmds[] =
665{
666 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
667 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
668 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
669 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
670 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
671 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
672#ifdef VBOX_STRICT
673 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
674#endif
675 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
676};
677#endif
678
679
680
681
682/*
683 * Shadow - 32-bit mode
684 */
685#define PGM_SHW_TYPE PGM_TYPE_32BIT
686#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
687#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
688#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
689#include "PGMShw.h"
690
691/* Guest - real mode */
692#define PGM_GST_TYPE PGM_TYPE_REAL
693#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
694#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
695#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
696#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
697#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
698#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
699#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
700#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
701#include "PGMBth.h"
702#include "PGMGstDefs.h"
703#include "PGMGst.h"
704#undef BTH_PGMPOOLKIND_PT_FOR_PT
705#undef BTH_PGMPOOLKIND_ROOT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - protected mode */
715#define PGM_GST_TYPE PGM_TYPE_PROT
716#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
723#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
724#include "PGMBth.h"
725#include "PGMGstDefs.h"
726#include "PGMGst.h"
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef BTH_PGMPOOLKIND_ROOT
729#undef PGM_BTH_NAME
730#undef PGM_BTH_NAME_RC_STR
731#undef PGM_BTH_NAME_R0_STR
732#undef PGM_GST_TYPE
733#undef PGM_GST_NAME
734#undef PGM_GST_NAME_RC_STR
735#undef PGM_GST_NAME_R0_STR
736
737/* Guest - 32-bit mode */
738#define PGM_GST_TYPE PGM_TYPE_32BIT
739#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
740#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
741#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
743#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
744#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
745#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
746#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
747#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
748#include "PGMBth.h"
749#include "PGMGstDefs.h"
750#include "PGMGst.h"
751#undef BTH_PGMPOOLKIND_PT_FOR_BIG
752#undef BTH_PGMPOOLKIND_PT_FOR_PT
753#undef BTH_PGMPOOLKIND_ROOT
754#undef PGM_BTH_NAME
755#undef PGM_BTH_NAME_RC_STR
756#undef PGM_BTH_NAME_R0_STR
757#undef PGM_GST_TYPE
758#undef PGM_GST_NAME
759#undef PGM_GST_NAME_RC_STR
760#undef PGM_GST_NAME_R0_STR
761
762#undef PGM_SHW_TYPE
763#undef PGM_SHW_NAME
764#undef PGM_SHW_NAME_RC_STR
765#undef PGM_SHW_NAME_R0_STR
766
767
768/*
769 * Shadow - PAE mode
770 */
771#define PGM_SHW_TYPE PGM_TYPE_PAE
772#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
773#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
774#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
775#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
776#include "PGMShw.h"
777
778/* Guest - real mode */
779#define PGM_GST_TYPE PGM_TYPE_REAL
780#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
781#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
782#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
783#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
784#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
785#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
786#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
787#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
788#include "PGMGstDefs.h"
789#include "PGMBth.h"
790#undef BTH_PGMPOOLKIND_PT_FOR_PT
791#undef BTH_PGMPOOLKIND_ROOT
792#undef PGM_BTH_NAME
793#undef PGM_BTH_NAME_RC_STR
794#undef PGM_BTH_NAME_R0_STR
795#undef PGM_GST_TYPE
796#undef PGM_GST_NAME
797#undef PGM_GST_NAME_RC_STR
798#undef PGM_GST_NAME_R0_STR
799
800/* Guest - protected mode */
801#define PGM_GST_TYPE PGM_TYPE_PROT
802#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
803#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
804#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
805#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
806#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
807#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
808#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
809#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
810#include "PGMGstDefs.h"
811#include "PGMBth.h"
812#undef BTH_PGMPOOLKIND_PT_FOR_PT
813#undef BTH_PGMPOOLKIND_ROOT
814#undef PGM_BTH_NAME
815#undef PGM_BTH_NAME_RC_STR
816#undef PGM_BTH_NAME_R0_STR
817#undef PGM_GST_TYPE
818#undef PGM_GST_NAME
819#undef PGM_GST_NAME_RC_STR
820#undef PGM_GST_NAME_R0_STR
821
822/* Guest - 32-bit mode */
823#define PGM_GST_TYPE PGM_TYPE_32BIT
824#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
825#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
826#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
827#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
828#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
829#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
830#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
831#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
832#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
833#include "PGMGstDefs.h"
834#include "PGMBth.h"
835#undef BTH_PGMPOOLKIND_PT_FOR_BIG
836#undef BTH_PGMPOOLKIND_PT_FOR_PT
837#undef BTH_PGMPOOLKIND_ROOT
838#undef PGM_BTH_NAME
839#undef PGM_BTH_NAME_RC_STR
840#undef PGM_BTH_NAME_R0_STR
841#undef PGM_GST_TYPE
842#undef PGM_GST_NAME
843#undef PGM_GST_NAME_RC_STR
844#undef PGM_GST_NAME_R0_STR
845
846/* Guest - PAE mode */
847#define PGM_GST_TYPE PGM_TYPE_PAE
848#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
849#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
850#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
851#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
852#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
853#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
854#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
855#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
856#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
857#include "PGMBth.h"
858#include "PGMGstDefs.h"
859#include "PGMGst.h"
860#undef BTH_PGMPOOLKIND_PT_FOR_BIG
861#undef BTH_PGMPOOLKIND_PT_FOR_PT
862#undef BTH_PGMPOOLKIND_ROOT
863#undef PGM_BTH_NAME
864#undef PGM_BTH_NAME_RC_STR
865#undef PGM_BTH_NAME_R0_STR
866#undef PGM_GST_TYPE
867#undef PGM_GST_NAME
868#undef PGM_GST_NAME_RC_STR
869#undef PGM_GST_NAME_R0_STR
870
871#undef PGM_SHW_TYPE
872#undef PGM_SHW_NAME
873#undef PGM_SHW_NAME_RC_STR
874#undef PGM_SHW_NAME_R0_STR
875
876
877/*
878 * Shadow - AMD64 mode
879 */
880#define PGM_SHW_TYPE PGM_TYPE_AMD64
881#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
882#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
883#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
884#include "PGMShw.h"
885
886#ifdef VBOX_WITH_64_BITS_GUESTS
887/* Guest - AMD64 mode */
888# define PGM_GST_TYPE PGM_TYPE_AMD64
889# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
890# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
891# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
892# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
893# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
894# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
895# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
896# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
897# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
898# include "PGMBth.h"
899# include "PGMGstDefs.h"
900# include "PGMGst.h"
901# undef BTH_PGMPOOLKIND_PT_FOR_BIG
902# undef BTH_PGMPOOLKIND_PT_FOR_PT
903# undef BTH_PGMPOOLKIND_ROOT
904# undef PGM_BTH_NAME
905# undef PGM_BTH_NAME_RC_STR
906# undef PGM_BTH_NAME_R0_STR
907# undef PGM_GST_TYPE
908# undef PGM_GST_NAME
909# undef PGM_GST_NAME_RC_STR
910# undef PGM_GST_NAME_R0_STR
911#endif /* VBOX_WITH_64_BITS_GUESTS */
912
913#undef PGM_SHW_TYPE
914#undef PGM_SHW_NAME
915#undef PGM_SHW_NAME_RC_STR
916#undef PGM_SHW_NAME_R0_STR
917
918
919/*
920 * Shadow - Nested paging mode
921 */
922#define PGM_SHW_TYPE PGM_TYPE_NESTED
923#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
924#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
925#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
926#include "PGMShw.h"
927
928/* Guest - real mode */
929#define PGM_GST_TYPE PGM_TYPE_REAL
930#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
931#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
932#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
933#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
934#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
935#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
936#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
937#include "PGMGstDefs.h"
938#include "PGMBth.h"
939#undef BTH_PGMPOOLKIND_PT_FOR_PT
940#undef PGM_BTH_NAME
941#undef PGM_BTH_NAME_RC_STR
942#undef PGM_BTH_NAME_R0_STR
943#undef PGM_GST_TYPE
944#undef PGM_GST_NAME
945#undef PGM_GST_NAME_RC_STR
946#undef PGM_GST_NAME_R0_STR
947
948/* Guest - protected mode */
949#define PGM_GST_TYPE PGM_TYPE_PROT
950#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
951#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
952#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
953#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
954#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
955#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
956#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
957#include "PGMGstDefs.h"
958#include "PGMBth.h"
959#undef BTH_PGMPOOLKIND_PT_FOR_PT
960#undef PGM_BTH_NAME
961#undef PGM_BTH_NAME_RC_STR
962#undef PGM_BTH_NAME_R0_STR
963#undef PGM_GST_TYPE
964#undef PGM_GST_NAME
965#undef PGM_GST_NAME_RC_STR
966#undef PGM_GST_NAME_R0_STR
967
968/* Guest - 32-bit mode */
969#define PGM_GST_TYPE PGM_TYPE_32BIT
970#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
971#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
972#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
973#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
974#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
975#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
976#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
977#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
978#include "PGMGstDefs.h"
979#include "PGMBth.h"
980#undef BTH_PGMPOOLKIND_PT_FOR_BIG
981#undef BTH_PGMPOOLKIND_PT_FOR_PT
982#undef PGM_BTH_NAME
983#undef PGM_BTH_NAME_RC_STR
984#undef PGM_BTH_NAME_R0_STR
985#undef PGM_GST_TYPE
986#undef PGM_GST_NAME
987#undef PGM_GST_NAME_RC_STR
988#undef PGM_GST_NAME_R0_STR
989
990/* Guest - PAE mode */
991#define PGM_GST_TYPE PGM_TYPE_PAE
992#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
993#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
994#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
995#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
996#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
997#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
998#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
999#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1000#include "PGMGstDefs.h"
1001#include "PGMBth.h"
1002#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1003#undef BTH_PGMPOOLKIND_PT_FOR_PT
1004#undef PGM_BTH_NAME
1005#undef PGM_BTH_NAME_RC_STR
1006#undef PGM_BTH_NAME_R0_STR
1007#undef PGM_GST_TYPE
1008#undef PGM_GST_NAME
1009#undef PGM_GST_NAME_RC_STR
1010#undef PGM_GST_NAME_R0_STR
1011
1012#ifdef VBOX_WITH_64_BITS_GUESTS
1013/* Guest - AMD64 mode */
1014# define PGM_GST_TYPE PGM_TYPE_AMD64
1015# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1016# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1017# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1018# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1019# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1020# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1021# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1022# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1023# include "PGMGstDefs.h"
1024# include "PGMBth.h"
1025# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1026# undef BTH_PGMPOOLKIND_PT_FOR_PT
1027# undef PGM_BTH_NAME
1028# undef PGM_BTH_NAME_RC_STR
1029# undef PGM_BTH_NAME_R0_STR
1030# undef PGM_GST_TYPE
1031# undef PGM_GST_NAME
1032# undef PGM_GST_NAME_RC_STR
1033# undef PGM_GST_NAME_R0_STR
1034#endif /* VBOX_WITH_64_BITS_GUESTS */
1035
1036#undef PGM_SHW_TYPE
1037#undef PGM_SHW_NAME
1038#undef PGM_SHW_NAME_RC_STR
1039#undef PGM_SHW_NAME_R0_STR
1040
1041
1042/*
1043 * Shadow - EPT
1044 */
1045#define PGM_SHW_TYPE PGM_TYPE_EPT
1046#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1047#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1048#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1049#include "PGMShw.h"
1050
1051/* Guest - real mode */
1052#define PGM_GST_TYPE PGM_TYPE_REAL
1053#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1054#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1055#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1056#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1057#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1058#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1059#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1060#include "PGMGstDefs.h"
1061#include "PGMBth.h"
1062#undef BTH_PGMPOOLKIND_PT_FOR_PT
1063#undef PGM_BTH_NAME
1064#undef PGM_BTH_NAME_RC_STR
1065#undef PGM_BTH_NAME_R0_STR
1066#undef PGM_GST_TYPE
1067#undef PGM_GST_NAME
1068#undef PGM_GST_NAME_RC_STR
1069#undef PGM_GST_NAME_R0_STR
1070
1071/* Guest - protected mode */
1072#define PGM_GST_TYPE PGM_TYPE_PROT
1073#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1074#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1075#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1076#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1077#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1078#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1079#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1080#include "PGMGstDefs.h"
1081#include "PGMBth.h"
1082#undef BTH_PGMPOOLKIND_PT_FOR_PT
1083#undef PGM_BTH_NAME
1084#undef PGM_BTH_NAME_RC_STR
1085#undef PGM_BTH_NAME_R0_STR
1086#undef PGM_GST_TYPE
1087#undef PGM_GST_NAME
1088#undef PGM_GST_NAME_RC_STR
1089#undef PGM_GST_NAME_R0_STR
1090
1091/* Guest - 32-bit mode */
1092#define PGM_GST_TYPE PGM_TYPE_32BIT
1093#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1094#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1095#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1096#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1097#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1098#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1099#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1100#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1101#include "PGMGstDefs.h"
1102#include "PGMBth.h"
1103#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1104#undef BTH_PGMPOOLKIND_PT_FOR_PT
1105#undef PGM_BTH_NAME
1106#undef PGM_BTH_NAME_RC_STR
1107#undef PGM_BTH_NAME_R0_STR
1108#undef PGM_GST_TYPE
1109#undef PGM_GST_NAME
1110#undef PGM_GST_NAME_RC_STR
1111#undef PGM_GST_NAME_R0_STR
1112
1113/* Guest - PAE mode */
1114#define PGM_GST_TYPE PGM_TYPE_PAE
1115#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1116#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1117#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1118#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1119#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1120#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1121#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1122#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1123#include "PGMGstDefs.h"
1124#include "PGMBth.h"
1125#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1126#undef BTH_PGMPOOLKIND_PT_FOR_PT
1127#undef PGM_BTH_NAME
1128#undef PGM_BTH_NAME_RC_STR
1129#undef PGM_BTH_NAME_R0_STR
1130#undef PGM_GST_TYPE
1131#undef PGM_GST_NAME
1132#undef PGM_GST_NAME_RC_STR
1133#undef PGM_GST_NAME_R0_STR
1134
1135#ifdef VBOX_WITH_64_BITS_GUESTS
1136/* Guest - AMD64 mode */
1137# define PGM_GST_TYPE PGM_TYPE_AMD64
1138# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1139# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1140# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1141# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1142# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1143# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1144# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1145# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1146# include "PGMGstDefs.h"
1147# include "PGMBth.h"
1148# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1149# undef BTH_PGMPOOLKIND_PT_FOR_PT
1150# undef PGM_BTH_NAME
1151# undef PGM_BTH_NAME_RC_STR
1152# undef PGM_BTH_NAME_R0_STR
1153# undef PGM_GST_TYPE
1154# undef PGM_GST_NAME
1155# undef PGM_GST_NAME_RC_STR
1156# undef PGM_GST_NAME_R0_STR
1157#endif /* VBOX_WITH_64_BITS_GUESTS */
1158
1159#undef PGM_SHW_TYPE
1160#undef PGM_SHW_NAME
1161#undef PGM_SHW_NAME_RC_STR
1162#undef PGM_SHW_NAME_R0_STR
1163
1164
1165
1166/**
1167 * Initiates the paging of VM.
1168 *
1169 * @returns VBox status code.
1170 * @param pVM Pointer to VM structure.
1171 */
1172VMMR3DECL(int) PGMR3Init(PVM pVM)
1173{
1174 LogFlow(("PGMR3Init:\n"));
1175 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1176 int rc;
1177
1178 /*
1179 * Assert alignment and sizes.
1180 */
1181 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1182
1183 /*
1184 * Init the structure.
1185 */
1186 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1187 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1188 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1189 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1190 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1191 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1192 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1193 pVM->pgm.s.fA20Enabled = true;
1194 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1195 pVM->pgm.s.pGstPaePdptR3 = NULL;
1196#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1197 pVM->pgm.s.pGstPaePdptR0 = NIL_RTR0PTR;
1198#endif
1199 pVM->pgm.s.pGstPaePdptRC = NIL_RTRCPTR;
1200 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsR3); i++)
1201 {
1202 pVM->pgm.s.apGstPaePDsR3[i] = NULL;
1203#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1204 pVM->pgm.s.apGstPaePDsR0[i] = NIL_RTR0PTR;
1205#endif
1206 pVM->pgm.s.apGstPaePDsRC[i] = NIL_RTRCPTR;
1207 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1208 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1209 }
1210
1211 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1212#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1213 true
1214#else
1215 false
1216#endif
1217 );
1218 AssertLogRelRCReturn(rc, rc);
1219
1220#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1221 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1222#else
1223 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1224#endif
1225 AssertLogRelRCReturn(rc, rc);
1226 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1227 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1228
1229 /*
1230 * Get the configured RAM size - to estimate saved state size.
1231 */
1232 uint64_t cbRam;
1233 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1234 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1235 cbRam = 0;
1236 else if (RT_SUCCESS(rc))
1237 {
1238 if (cbRam < PAGE_SIZE)
1239 cbRam = 0;
1240 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1241 }
1242 else
1243 {
1244 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1245 return rc;
1246 }
1247
1248 /*
1249 * Register callbacks, string formatters and the saved state data unit.
1250 */
1251#ifdef VBOX_STRICT
1252 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1253#endif
1254 PGMRegisterStringFormatTypes();
1255
1256 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1257 NULL, pgmR3Save, NULL,
1258 NULL, pgmR3Load, NULL);
1259 if (RT_FAILURE(rc))
1260 return rc;
1261
1262 /*
1263 * Initialize the PGM critical section and flush the phys TLBs
1264 */
1265 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1266 AssertRCReturn(rc, rc);
1267
1268 PGMR3PhysChunkInvalidateTLB(pVM);
1269 PGMPhysInvalidatePageR3MapTLB(pVM);
1270 PGMPhysInvalidatePageR0MapTLB(pVM);
1271 PGMPhysInvalidatePageGCMapTLB(pVM);
1272
1273 /*
1274 * For the time being we sport a full set of handy pages in addition to the base
1275 * memory to simplify things.
1276 */
1277 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1278 AssertRCReturn(rc, rc);
1279
1280 /*
1281 * Trees
1282 */
1283 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1284 if (RT_SUCCESS(rc))
1285 {
1286 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1287 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1288
1289 /*
1290 * Alocate the zero page.
1291 */
1292 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1293 }
1294 if (RT_SUCCESS(rc))
1295 {
1296 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1297 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1298 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1299 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1300
1301 /*
1302 * Init the paging.
1303 */
1304 rc = pgmR3InitPaging(pVM);
1305 }
1306 if (RT_SUCCESS(rc))
1307 {
1308 /*
1309 * Init the page pool.
1310 */
1311 rc = pgmR3PoolInit(pVM);
1312 }
1313 if (RT_SUCCESS(rc))
1314 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1315
1316 if (RT_SUCCESS(rc))
1317 {
1318 /*
1319 * Info & statistics
1320 */
1321 DBGFR3InfoRegisterInternal(pVM, "mode",
1322 "Shows the current paging mode. "
1323 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1324 pgmR3InfoMode);
1325 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1326 "Dumps all the entries in the top level paging table. No arguments.",
1327 pgmR3InfoCr3);
1328 DBGFR3InfoRegisterInternal(pVM, "phys",
1329 "Dumps all the physical address ranges. No arguments.",
1330 pgmR3PhysInfo);
1331 DBGFR3InfoRegisterInternal(pVM, "handlers",
1332 "Dumps physical, virtual and hyper virtual handlers. "
1333 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1334 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1335 pgmR3InfoHandlers);
1336 DBGFR3InfoRegisterInternal(pVM, "mappings",
1337 "Dumps guest mappings.",
1338 pgmR3MapInfo);
1339
1340 pgmR3InitStats(pVM);
1341
1342#ifdef VBOX_WITH_DEBUGGER
1343 /*
1344 * Debugger commands.
1345 */
1346 static bool s_fRegisteredCmds = false;
1347 if (!s_fRegisteredCmds)
1348 {
1349 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1350 if (RT_SUCCESS(rc))
1351 s_fRegisteredCmds = true;
1352 }
1353#endif
1354 return VINF_SUCCESS;
1355 }
1356
1357 /* Almost no cleanup necessary, MM frees all memory. */
1358 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1359
1360 return rc;
1361}
1362
1363
1364/**
1365 * Initializes the per-VCPU PGM.
1366 *
1367 * @returns VBox status code.
1368 * @param pVM The VM to operate on.
1369 */
1370VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1371{
1372 LogFlow(("PGMR3InitCPU\n"));
1373 return VINF_SUCCESS;
1374}
1375
1376
1377/**
1378 * Init paging.
1379 *
1380 * Since we need to check what mode the host is operating in before we can choose
1381 * the right paging functions for the host we have to delay this until R0 has
1382 * been initialized.
1383 *
1384 * @returns VBox status code.
1385 * @param pVM VM handle.
1386 */
1387static int pgmR3InitPaging(PVM pVM)
1388{
1389 /*
1390 * Force a recalculation of modes and switcher so everyone gets notified.
1391 */
1392 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1393 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1394 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1395
1396 /*
1397 * Allocate static mapping space for whatever the cr3 register
1398 * points to and in the case of PAE mode to the 4 PDs.
1399 */
1400 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1401 if (RT_FAILURE(rc))
1402 {
1403 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1404 return rc;
1405 }
1406 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1407
1408 /*
1409 * Allocate pages for the three possible intermediate contexts
1410 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1411 * for the sake of simplicity. The AMD64 uses the PAE for the
1412 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1413 *
1414 * We assume that two page tables will be enought for the core code
1415 * mappings (HC virtual and identity).
1416 */
1417 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1418 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1419 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1420 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1421 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1422 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1423 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1424 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1425 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1426 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1427 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1428 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1429 if ( !pVM->pgm.s.pInterPD
1430 || !pVM->pgm.s.apInterPTs[0]
1431 || !pVM->pgm.s.apInterPTs[1]
1432 || !pVM->pgm.s.apInterPaePTs[0]
1433 || !pVM->pgm.s.apInterPaePTs[1]
1434 || !pVM->pgm.s.apInterPaePDs[0]
1435 || !pVM->pgm.s.apInterPaePDs[1]
1436 || !pVM->pgm.s.apInterPaePDs[2]
1437 || !pVM->pgm.s.apInterPaePDs[3]
1438 || !pVM->pgm.s.pInterPaePDPT
1439 || !pVM->pgm.s.pInterPaePDPT64
1440 || !pVM->pgm.s.pInterPaePML4)
1441 {
1442 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1443 return VERR_NO_PAGE_MEMORY;
1444 }
1445
1446 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1447 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1448 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1449 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1450 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1451 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1452
1453 /*
1454 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1455 */
1456 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1457 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1458 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1459
1460 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1461 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1462
1463 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1464 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1465 {
1466 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1467 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1468 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1469 }
1470
1471 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1472 {
1473 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1474 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1475 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1476 }
1477
1478 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1479 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1480 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1481 | HCPhysInterPaePDPT64;
1482
1483 /*
1484 * Initialize paging workers and mode from current host mode
1485 * and the guest running in real mode.
1486 */
1487 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1488 switch (pVM->pgm.s.enmHostMode)
1489 {
1490 case SUPPAGINGMODE_32_BIT:
1491 case SUPPAGINGMODE_32_BIT_GLOBAL:
1492 case SUPPAGINGMODE_PAE:
1493 case SUPPAGINGMODE_PAE_GLOBAL:
1494 case SUPPAGINGMODE_PAE_NX:
1495 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1496 break;
1497
1498 case SUPPAGINGMODE_AMD64:
1499 case SUPPAGINGMODE_AMD64_GLOBAL:
1500 case SUPPAGINGMODE_AMD64_NX:
1501 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1502#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1503 if (ARCH_BITS != 64)
1504 {
1505 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1506 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1507 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1508 }
1509#endif
1510 break;
1511 default:
1512 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1513 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1514 }
1515 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1516 if (RT_SUCCESS(rc))
1517 {
1518 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1519#if HC_ARCH_BITS == 64
1520 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1521 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1522 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1523 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1524 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1525 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1526 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1527#endif
1528
1529 return VINF_SUCCESS;
1530 }
1531
1532 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1533 return rc;
1534}
1535
1536
1537/**
1538 * Init statistics
1539 */
1540static void pgmR3InitStats(PVM pVM)
1541{
1542 PPGM pPGM = &pVM->pgm.s;
1543 unsigned i;
1544
1545 /* Common - misc variables */
1546 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1547 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1548 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1549 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1550 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1551 STAM_REL_REG(pVM, &pPGM->cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1552 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1553 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1554 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1555
1556 /*
1557 * Note! The layout below matches the member layout exactly!
1558 */
1559
1560#ifdef VBOX_WITH_STATISTICS
1561 /* Common - stats */
1562# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1563 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1564 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1565 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1566 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1567 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1568 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1569# endif
1570 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPtPD); i++)
1571 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1572 "The number of SyncPT per PD n.", "/PGM/PDSyncPT/%04X", i);
1573 for (i = 0; i < RT_ELEMENTS(pPGM->StatSyncPagePD); i++)
1574 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1575 "The number of SyncPage per PD n.", "/PGM/PDSyncPage/%04X", i);
1576
1577 /* R3 only: */
1578 STAM_REG(pVM, &pPGM->StatR3DetectedConflicts, STAMTYPE_COUNTER, "/PGM/R3/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1579 STAM_REG(pVM, &pPGM->StatR3ResolveConflict, STAMTYPE_PROFILE, "/PGM/R3/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1580 STAM_REG(pVM, &pPGM->StatR3GuestPDWrite, STAMTYPE_COUNTER, "/PGM/R3/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1581 STAM_REG(pVM, &pPGM->StatR3GuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/R3/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1582
1583 /* R0 only: */
1584 STAM_REG(pVM, &pPGM->StatR0DynMapMigrateInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapMigrateInvlPg", STAMUNIT_OCCURENCES, "invlpg count in PGMDynMapMigrateAutoSet.");
1585 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageGCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapGCPageInlined.");
1586 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1587 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1588 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamHits", STAMUNIT_OCCURENCES, "1st ram range hits.");
1589 STAM_REG(pVM, &pPGM->StatR0DynMapGCPageInlRamMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageGCPageInl/RamMisses", STAMUNIT_OCCURENCES, "1st ram range misses, takes slow path.");
1590 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInl, STAMTYPE_PROFILE, "/PGM/R0/DynMapPageHCPageInl", STAMUNIT_TICKS_PER_CALL, "Calls to pgmR0DynMapHCPageInlined.");
1591 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Hits", STAMUNIT_OCCURENCES, "Hash table lookup hits.");
1592 STAM_REG(pVM, &pPGM->StatR0DynMapHCPageInlMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPageHCPageInl/Misses", STAMUNIT_OCCURENCES, "Misses that falls back to code common with PGMDynMapHCPage.");
1593 STAM_REG(pVM, &pPGM->StatR0DynMapPage, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPage");
1594 STAM_REG(pVM, &pPGM->StatR0DynMapSetOptimize, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetOptimize", STAMUNIT_OCCURENCES, "Calls to pgmDynMapOptimizeAutoSet.");
1595 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchFlushes, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchFlushes",STAMUNIT_OCCURENCES, "Set search restorting to subset flushes.");
1596 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchHits", STAMUNIT_OCCURENCES, "Set search hits.");
1597 STAM_REG(pVM, &pPGM->StatR0DynMapSetSearchMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SetSearchMisses", STAMUNIT_OCCURENCES, "Set search misses.");
1598 STAM_REG(pVM, &pPGM->StatR0DynMapHCPage, STAMTYPE_PROFILE, "/PGM/R0/DynMapPage/HCPage", STAMUNIT_TICKS_PER_CALL, "Calls to PGMDynMapHCPage (ring-0).");
1599 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits0, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits0", STAMUNIT_OCCURENCES, "Hits at iPage+0");
1600 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits1, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits1", STAMUNIT_OCCURENCES, "Hits at iPage+1");
1601 STAM_REG(pVM, &pPGM->StatR0DynMapPageHits2, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Hits2", STAMUNIT_OCCURENCES, "Hits at iPage+2");
1602 STAM_REG(pVM, &pPGM->StatR0DynMapPageInvlPg, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/InvlPg", STAMUNIT_OCCURENCES, "invlpg count in pgmR0DynMapPageSlow.");
1603 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlow, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/Slow", STAMUNIT_OCCURENCES, "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1604 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopHits" , STAMUNIT_OCCURENCES, "Hits in the loop path.");
1605 STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLoopMisses, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLoopMisses", STAMUNIT_OCCURENCES, "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1606 //STAM_REG(pVM, &pPGM->StatR0DynMapPageSlowLostHits, STAMTYPE_COUNTER, "/PGM/R0/DynMapPage/SlowLostHits", STAMUNIT_OCCURENCES, "Lost hits.");
1607 STAM_REG(pVM, &pPGM->StatR0DynMapSubsets, STAMTYPE_COUNTER, "/PGM/R0/Subsets", STAMUNIT_OCCURENCES, "Times PGMDynMapPushAutoSubset was called.");
1608 STAM_REG(pVM, &pPGM->StatR0DynMapPopFlushes, STAMTYPE_COUNTER, "/PGM/R0/SubsetPopFlushes", STAMUNIT_OCCURENCES, "Times PGMDynMapPopAutoSubset flushes the subset.");
1609 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[0], STAMTYPE_COUNTER, "/PGM/R0/SetSize000..09", STAMUNIT_OCCURENCES, "00-09% filled");
1610 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[1], STAMTYPE_COUNTER, "/PGM/R0/SetSize010..19", STAMUNIT_OCCURENCES, "10-19% filled");
1611 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[2], STAMTYPE_COUNTER, "/PGM/R0/SetSize020..29", STAMUNIT_OCCURENCES, "20-29% filled");
1612 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[3], STAMTYPE_COUNTER, "/PGM/R0/SetSize030..39", STAMUNIT_OCCURENCES, "30-39% filled");
1613 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[4], STAMTYPE_COUNTER, "/PGM/R0/SetSize040..49", STAMUNIT_OCCURENCES, "40-49% filled");
1614 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[5], STAMTYPE_COUNTER, "/PGM/R0/SetSize050..59", STAMUNIT_OCCURENCES, "50-59% filled");
1615 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[6], STAMTYPE_COUNTER, "/PGM/R0/SetSize060..69", STAMUNIT_OCCURENCES, "60-69% filled");
1616 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[7], STAMTYPE_COUNTER, "/PGM/R0/SetSize070..79", STAMUNIT_OCCURENCES, "70-79% filled");
1617 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[8], STAMTYPE_COUNTER, "/PGM/R0/SetSize080..89", STAMUNIT_OCCURENCES, "80-89% filled");
1618 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[9], STAMTYPE_COUNTER, "/PGM/R0/SetSize090..99", STAMUNIT_OCCURENCES, "90-99% filled");
1619 STAM_REG(pVM, &pPGM->aStatR0DynMapSetSize[10], STAMTYPE_COUNTER, "/PGM/R0/SetSize100", STAMUNIT_OCCURENCES, "100% filled");
1620
1621 /* GC only: */
1622 STAM_REG(pVM, &pPGM->StatRCDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1623 STAM_REG(pVM, &pPGM->StatRCDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/RC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1624 STAM_REG(pVM, &pPGM->StatRCInvlPgConflict, STAMTYPE_COUNTER, "/PGM/RC/InvlPgConflict", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() detected a mapping conflict.");
1625 STAM_REG(pVM, &pPGM->StatRCInvlPgSyncMonCR3, STAMTYPE_COUNTER, "/PGM/RC/InvlPgSyncMonitorCR3", STAMUNIT_OCCURENCES, "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1626
1627 /* RZ only: */
1628 STAM_REG(pVM, &pPGM->StatRZTrap0e, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrap0eHandler() body.");
1629 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeCheckPageFault, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1630 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1631 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeMapping, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1632 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeOutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1633 STAM_REG(pVM, &pPGM->StatRZTrap0eTimeHandlers, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1634 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2CSAM, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1635 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2DirtyAndAccessed, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1636 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2GuestTrap, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1637 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1638 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerVirtual", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1639 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2HndUnhandled, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1640 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2Misc, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1641 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSync, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1642 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1643 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1644 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2OutOfSyncHndObs, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1645 STAM_REG(pVM, &pPGM->StatRZTrap0eTime2SyncPT, STAMTYPE_PROFILE, "/PGM/RZ/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1646 STAM_REG(pVM, &pPGM->StatRZTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1647 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1648 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1649 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersPhysical, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1650 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtual, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1651 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1652 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersVirtualUnmarked,STAMTYPE_COUNTER,"/PGM/RZ/Trap0e/Handlers/VirtualUnmarked",STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1653 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1654 STAM_REG(pVM, &pPGM->StatRZTrap0eHandlersInvalid, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1655 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1656 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1657 STAM_REG(pVM, &pPGM->StatRZTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1658 STAM_REG(pVM, &pPGM->StatRZTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1659 STAM_REG(pVM, &pPGM->StatRZTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1660 STAM_REG(pVM, &pPGM->StatRZTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1661 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1662 STAM_REG(pVM, &pPGM->StatRZTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1663 STAM_REG(pVM, &pPGM->StatRZTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1664 STAM_REG(pVM, &pPGM->StatRZTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1665 STAM_REG(pVM, &pPGM->StatRZTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/Err/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1666 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPF, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF", STAMUNIT_OCCURENCES, "Number of real guest page faults.");
1667 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFUnh, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of real guest page faults from the 'unhandled' case.");
1668 STAM_REG(pVM, &pPGM->StatRZTrap0eGuestPFMapping, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/GuestPF/InMapping", STAMUNIT_OCCURENCES, "Number of real guest page faults in a mapping.");
1669 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulInRZ, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/InRZ", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1670 STAM_REG(pVM, &pPGM->StatRZTrap0eWPEmulToR3, STAMTYPE_COUNTER, "/PGM/RZ/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1671 for (i = 0; i < RT_ELEMENTS(pPGM->StatRZTrap0ePD); i++)
1672 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1673 "The number of traps in page directory n.", "/PGM/RZ/Trap0e/PD/%04X", i);
1674 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1675 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1676 STAM_REG(pVM, &pPGM->StatRZGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/RZ/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1677 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteHandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1678 STAM_REG(pVM, &pPGM->StatRZGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/RZ/ROMWriteUnhandled", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1679
1680 /* HC only: */
1681
1682 /* RZ & R3: */
1683 STAM_REG(pVM, &pPGM->StatRZSyncCR3, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1684 STAM_REG(pVM, &pPGM->StatRZSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1685 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1686 STAM_REG(pVM, &pPGM->StatRZSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1687 STAM_REG(pVM, &pPGM->StatRZSyncCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1688 STAM_REG(pVM, &pPGM->StatRZSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1689 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1690 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1691 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1692 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1693 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1694 STAM_REG(pVM, &pPGM->StatRZSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/RZ/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1695 STAM_REG(pVM, &pPGM->StatRZSyncPT, STAMTYPE_PROFILE, "/PGM/RZ/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1696 STAM_REG(pVM, &pPGM->StatRZSyncPTFailed, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1697 STAM_REG(pVM, &pPGM->StatRZSyncPT4K, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1698 STAM_REG(pVM, &pPGM->StatRZSyncPT4M, STAMTYPE_COUNTER, "/PGM/RZ/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1699 STAM_REG(pVM, &pPGM->StatRZSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1700 STAM_REG(pVM, &pPGM->StatRZSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1701 STAM_REG(pVM, &pPGM->StatRZAccessedPage, STAMTYPE_COUNTER, "/PGM/RZ/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1702 STAM_REG(pVM, &pPGM->StatRZDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/RZ/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1703 STAM_REG(pVM, &pPGM->StatRZDirtyPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1704 STAM_REG(pVM, &pPGM->StatRZDirtyPageBig, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1705 STAM_REG(pVM, &pPGM->StatRZDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1706 STAM_REG(pVM, &pPGM->StatRZDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1707 STAM_REG(pVM, &pPGM->StatRZDirtiedPage, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1708 STAM_REG(pVM, &pPGM->StatRZDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1709 STAM_REG(pVM, &pPGM->StatRZPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/RZ/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1710 STAM_REG(pVM, &pPGM->StatRZInvalidatePage, STAMTYPE_PROFILE, "/PGM/RZ/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1711 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1712 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1713 STAM_REG(pVM, &pPGM->StatRZInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1714 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1715 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1716 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1717 STAM_REG(pVM, &pPGM->StatRZInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1718 STAM_REG(pVM, &pPGM->StatRZInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/RZ/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1719 STAM_REG(pVM, &pPGM->StatRZVirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/RZ/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1720 STAM_REG(pVM, &pPGM->StatRZPhysHandlerReset, STAMTYPE_COUNTER, "/PGM/RZ/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1721 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1722 STAM_REG(pVM, &pPGM->StatRZPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/RZ/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1723 STAM_REG(pVM, &pPGM->StatRZPrefetch, STAMTYPE_PROFILE, "/PGM/RZ/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1724 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsRZ", STAMUNIT_OCCURENCES, "TLB hits.");
1725 STAM_REG(pVM, &pPGM->StatRZChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesRZ", STAMUNIT_OCCURENCES, "TLB misses.");
1726 STAM_REG(pVM, &pPGM->StatRZPageMapTlbHits, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1727 STAM_REG(pVM, &pPGM->StatRZPageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/RZ/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1728 STAM_REG(pVM, &pPGM->StatRZPageReplaceShared, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1729 STAM_REG(pVM, &pPGM->StatRZPageReplaceZero, STAMTYPE_COUNTER, "/PGM/RZ/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1730/// @todo STAM_REG(pVM, &pPGM->StatRZPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/RZ/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1731 STAM_REG(pVM, &pPGM->StatRZFlushTLB, STAMTYPE_PROFILE, "/PGM/RZ/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1732 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1733 STAM_REG(pVM, &pPGM->StatRZFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1734 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1735 STAM_REG(pVM, &pPGM->StatRZFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/RZ/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1736 STAM_REG(pVM, &pPGM->StatRZGstModifyPage, STAMTYPE_PROFILE, "/PGM/RZ/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1737
1738 STAM_REG(pVM, &pPGM->StatR3SyncCR3, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1739 STAM_REG(pVM, &pPGM->StatR3SyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1740 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1741 STAM_REG(pVM, &pPGM->StatR3SyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/R3/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1742 STAM_REG(pVM, &pPGM->StatR3SyncCR3Global, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1743 STAM_REG(pVM, &pPGM->StatR3SyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1744 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1745 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1746 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1747 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1748 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1749 STAM_REG(pVM, &pPGM->StatR3SyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/R3/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1750 STAM_REG(pVM, &pPGM->StatR3SyncPT, STAMTYPE_PROFILE, "/PGM/R3/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the pfnSyncPT() body.");
1751 STAM_REG(pVM, &pPGM->StatR3SyncPTFailed, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times pfnSyncPT() failed.");
1752 STAM_REG(pVM, &pPGM->StatR3SyncPT4K, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4K", STAMUNIT_OCCURENCES, "Nr of 4K PT syncs");
1753 STAM_REG(pVM, &pPGM->StatR3SyncPT4M, STAMTYPE_COUNTER, "/PGM/R3/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1754 STAM_REG(pVM, &pPGM->StatR3SyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1755 STAM_REG(pVM, &pPGM->StatR3SyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1756 STAM_REG(pVM, &pPGM->StatR3AccessedPage, STAMTYPE_COUNTER, "/PGM/R3/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1757 STAM_REG(pVM, &pPGM->StatR3DirtyBitTracking, STAMTYPE_PROFILE, "/PGM/R3/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling the dirty bit tracking in CheckPageFault().");
1758 STAM_REG(pVM, &pPGM->StatR3DirtyPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1759 STAM_REG(pVM, &pPGM->StatR3DirtyPageBig, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1760 STAM_REG(pVM, &pPGM->StatR3DirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1761 STAM_REG(pVM, &pPGM->StatR3DirtyPageTrap, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1762 STAM_REG(pVM, &pPGM->StatR3DirtiedPage, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1763 STAM_REG(pVM, &pPGM->StatR3DirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1764 STAM_REG(pVM, &pPGM->StatR3PageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/R3/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1765 STAM_REG(pVM, &pPGM->StatR3InvalidatePage, STAMTYPE_PROFILE, "/PGM/R3/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMInvalidatePage() profiling.");
1766 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4KB page.");
1767 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a 4MB page.");
1768 STAM_REG(pVM, &pPGM->StatR3InvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() skipped a 4MB page.");
1769 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1770 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1771 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for a not present page directory.");
1772 STAM_REG(pVM, &pPGM->StatR3InvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1773 STAM_REG(pVM, &pPGM->StatR3InvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/R3/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1774 STAM_REG(pVM, &pPGM->StatR3VirtHandlerSearchByPhys, STAMTYPE_PROFILE, "/PGM/R3/VirtHandlerSearchByPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1775 STAM_REG(pVM, &pPGM->StatR3PhysHandlerReset, STAMTYPE_COUNTER, "/PGM/R3/PhysHandlerReset", STAMUNIT_OCCURENCES, "The number of times PGMHandlerPhysicalReset is called.");
1776 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1777 STAM_REG(pVM, &pPGM->StatR3PageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/R3/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1778 STAM_REG(pVM, &pPGM->StatR3Prefetch, STAMTYPE_PROFILE, "/PGM/R3/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMPrefetchPage profiling.");
1779 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHitsR3", STAMUNIT_OCCURENCES, "TLB hits.");
1780 STAM_REG(pVM, &pPGM->StatR3ChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMissesR3", STAMUNIT_OCCURENCES, "TLB misses.");
1781 STAM_REG(pVM, &pPGM->StatR3PageMapTlbHits, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1782 STAM_REG(pVM, &pPGM->StatR3PageMapTlbMisses, STAMTYPE_COUNTER, "/PGM/R3/Page/MapTlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1783 STAM_REG(pVM, &pPGM->StatR3PageReplaceShared, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1784 STAM_REG(pVM, &pPGM->StatR3PageReplaceZero, STAMTYPE_COUNTER, "/PGM/R3/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1785/// @todo STAM_REG(pVM, &pPGM->StatR3PageHandyAllocs, STAMTYPE_COUNTER, "/PGM/R3/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1786 STAM_REG(pVM, &pPGM->StatR3FlushTLB, STAMTYPE_PROFILE, "/PGM/R3/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1787 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1788 STAM_REG(pVM, &pPGM->StatR3FlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1789 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1790 STAM_REG(pVM, &pPGM->StatR3FlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/R3/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1791 STAM_REG(pVM, &pPGM->StatR3GstModifyPage, STAMTYPE_PROFILE, "/PGM/R3/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1792#endif /* VBOX_WITH_STATISTICS */
1793}
1794
1795
1796/**
1797 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1798 *
1799 * The dynamic mapping area will also be allocated and initialized at this
1800 * time. We could allocate it during PGMR3Init of course, but the mapping
1801 * wouldn't be allocated at that time preventing us from setting up the
1802 * page table entries with the dummy page.
1803 *
1804 * @returns VBox status code.
1805 * @param pVM VM handle.
1806 */
1807VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1808{
1809 RTGCPTR GCPtr;
1810 int rc;
1811
1812 /*
1813 * Reserve space for the dynamic mappings.
1814 */
1815 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1816 if (RT_SUCCESS(rc))
1817 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1818
1819 if ( RT_SUCCESS(rc)
1820 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1821 {
1822 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1823 if (RT_SUCCESS(rc))
1824 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1825 }
1826 if (RT_SUCCESS(rc))
1827 {
1828 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1829 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1830 }
1831 return rc;
1832}
1833
1834
1835/**
1836 * Ring-3 init finalizing.
1837 *
1838 * @returns VBox status code.
1839 * @param pVM The VM handle.
1840 */
1841VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1842{
1843 int rc;
1844
1845 /*
1846 * Reserve space for the dynamic mappings.
1847 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1848 */
1849 /* get the pointer to the page table entries. */
1850 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1851 AssertRelease(pMapping);
1852 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1853 const unsigned iPT = off >> X86_PD_SHIFT;
1854 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1855 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1856 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1857
1858 /* init cache */
1859 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1860 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1861 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1862
1863 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1864 {
1865 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1866 AssertRCReturn(rc, rc);
1867 }
1868
1869 /*
1870 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1871 * Intel only goes up to 36 bits, so we stick to 36 as well.
1872 */
1873 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1874 uint32_t u32Dummy, u32Features;
1875 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1876
1877 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1878 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1879 else
1880 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1881
1882 /*
1883 * Allocate memory if we're supposed to do that.
1884 */
1885 if (pVM->pgm.s.fRamPreAlloc)
1886 rc = pgmR3PhysRamPreAllocate(pVM);
1887
1888 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1889 return rc;
1890}
1891
1892
1893/**
1894 * Applies relocations to data and code managed by this component.
1895 *
1896 * This function will be called at init and whenever the VMM need to relocate it
1897 * self inside the GC.
1898 *
1899 * @param pVM The VM.
1900 * @param offDelta Relocation delta relative to old location.
1901 */
1902VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1903{
1904 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1905
1906 /*
1907 * Paging stuff.
1908 */
1909 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1910 /** @todo move this into shadow and guest specific relocation functions. */
1911 pVM->pgm.s.pGst32BitPdRC += offDelta;
1912 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apGstPaePDsRC); i++)
1913 {
1914 pVM->pgm.s.apGstPaePDsRC[i] += offDelta;
1915 }
1916 pVM->pgm.s.pGstPaePdptRC += offDelta;
1917
1918 pVM->pgm.s.pShwPageCR3RC += offDelta;
1919
1920 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1921 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1922
1923 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1924 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1925 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1926
1927 /*
1928 * Trees.
1929 */
1930 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1931
1932 /*
1933 * Ram ranges.
1934 */
1935 if (pVM->pgm.s.pRamRangesR3)
1936 {
1937 /* Update the pSelfRC pointers and relink them. */
1938 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1939 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
1940 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
1941 pgmR3PhysRelinkRamRanges(pVM);
1942 }
1943
1944 /*
1945 * Update the two page directories with all page table mappings.
1946 * (One or more of them have changed, that's why we're here.)
1947 */
1948 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
1949 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1950 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
1951
1952 /* Relocate GC addresses of Page Tables. */
1953 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1954 {
1955 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1956 {
1957 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
1958 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
1959 }
1960 }
1961
1962 /*
1963 * Dynamic page mapping area.
1964 */
1965 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1966 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1967 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1968
1969 /*
1970 * The Zero page.
1971 */
1972 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1973#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1974 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
1975#else
1976 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
1977#endif
1978
1979 /*
1980 * Physical and virtual handlers.
1981 */
1982 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1983 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1984 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1985
1986 /*
1987 * The page pool.
1988 */
1989 pgmR3PoolRelocate(pVM);
1990}
1991
1992
1993/**
1994 * Callback function for relocating a physical access handler.
1995 *
1996 * @returns 0 (continue enum)
1997 * @param pNode Pointer to a PGMPHYSHANDLER node.
1998 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1999 * not certain the delta will fit in a void pointer for all possible configs.
2000 */
2001static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2002{
2003 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2004 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2005 if (pHandler->pfnHandlerRC)
2006 pHandler->pfnHandlerRC += offDelta;
2007 if (pHandler->pvUserRC >= 0x10000)
2008 pHandler->pvUserRC += offDelta;
2009 return 0;
2010}
2011
2012
2013/**
2014 * Callback function for relocating a virtual access handler.
2015 *
2016 * @returns 0 (continue enum)
2017 * @param pNode Pointer to a PGMVIRTHANDLER node.
2018 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2019 * not certain the delta will fit in a void pointer for all possible configs.
2020 */
2021static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2022{
2023 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2024 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2025 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2026 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2027 Assert(pHandler->pfnHandlerRC);
2028 pHandler->pfnHandlerRC += offDelta;
2029 return 0;
2030}
2031
2032
2033/**
2034 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2035 *
2036 * @returns 0 (continue enum)
2037 * @param pNode Pointer to a PGMVIRTHANDLER node.
2038 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2039 * not certain the delta will fit in a void pointer for all possible configs.
2040 */
2041static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2042{
2043 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2044 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2045 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2046 Assert(pHandler->pfnHandlerRC);
2047 pHandler->pfnHandlerRC += offDelta;
2048 return 0;
2049}
2050
2051
2052/**
2053 * The VM is being reset.
2054 *
2055 * For the PGM component this means that any PD write monitors
2056 * needs to be removed.
2057 *
2058 * @param pVM VM handle.
2059 */
2060VMMR3DECL(void) PGMR3Reset(PVM pVM)
2061{
2062 LogFlow(("PGMR3Reset:\n"));
2063 VM_ASSERT_EMT(pVM);
2064
2065 pgmLock(pVM);
2066
2067 /*
2068 * Unfix any fixed mappings and disable CR3 monitoring.
2069 */
2070 pVM->pgm.s.fMappingsFixed = false;
2071 pVM->pgm.s.GCPtrMappingFixed = 0;
2072 pVM->pgm.s.cbMappingFixed = 0;
2073
2074 /* Exit the guest paging mode before the pgm pool gets reset.
2075 * Important to clean up the amd64 case.
2076 */
2077 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2078 AssertRC(rc);
2079#ifdef DEBUG
2080 DBGFR3InfoLog(pVM, "mappings", NULL);
2081 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2082#endif
2083
2084 /*
2085 * Reset the shadow page pool.
2086 */
2087 pgmR3PoolReset(pVM);
2088
2089 /*
2090 * Re-init other members.
2091 */
2092 pVM->pgm.s.fA20Enabled = true;
2093
2094 /*
2095 * Clear the FFs PGM owns.
2096 */
2097 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2098 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2099
2100 /*
2101 * Reset (zero) RAM pages.
2102 */
2103 rc = pgmR3PhysRamReset(pVM);
2104 if (RT_SUCCESS(rc))
2105 {
2106 /*
2107 * Reset (zero) shadow ROM pages.
2108 */
2109 rc = pgmR3PhysRomReset(pVM);
2110 if (RT_SUCCESS(rc))
2111 {
2112 /*
2113 * Switch mode back to real mode.
2114 */
2115 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
2116 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
2117 }
2118 }
2119
2120 pgmUnlock(pVM);
2121 //return rc;
2122 AssertReleaseRC(rc);
2123}
2124
2125
2126#ifdef VBOX_STRICT
2127/**
2128 * VM state change callback for clearing fNoMorePhysWrites after
2129 * a snapshot has been created.
2130 */
2131static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2132{
2133 if (enmState == VMSTATE_RUNNING)
2134 pVM->pgm.s.fNoMorePhysWrites = false;
2135}
2136#endif
2137
2138
2139/**
2140 * Terminates the PGM.
2141 *
2142 * @returns VBox status code.
2143 * @param pVM Pointer to VM structure.
2144 */
2145VMMR3DECL(int) PGMR3Term(PVM pVM)
2146{
2147 PGMDeregisterStringFormatTypes();
2148 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2149}
2150
2151
2152/**
2153 * Terminates the per-VCPU PGM.
2154 *
2155 * Termination means cleaning up and freeing all resources,
2156 * the VM it self is at this point powered off or suspended.
2157 *
2158 * @returns VBox status code.
2159 * @param pVM The VM to operate on.
2160 */
2161VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2162{
2163 return 0;
2164}
2165
2166
2167/**
2168 * Find the ROM tracking structure for the given page.
2169 *
2170 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2171 * that it's a ROM page.
2172 * @param pVM The VM handle.
2173 * @param GCPhys The address of the ROM page.
2174 */
2175static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2176{
2177 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2178 pRomRange;
2179 pRomRange = pRomRange->CTX_SUFF(pNext))
2180 {
2181 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2182 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2183 return &pRomRange->aPages[off >> PAGE_SHIFT];
2184 }
2185 return NULL;
2186}
2187
2188
2189/**
2190 * Save zero indicator + bits for the specified page.
2191 *
2192 * @returns VBox status code, errors are logged/asserted before returning.
2193 * @param pVM The VM handle.
2194 * @param pSSH The saved state handle.
2195 * @param pPage The page to save.
2196 * @param GCPhys The address of the page.
2197 * @param pRam The ram range (for error logging).
2198 */
2199static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2200{
2201 int rc;
2202 if (PGM_PAGE_IS_ZERO(pPage))
2203 rc = SSMR3PutU8(pSSM, 0);
2204 else
2205 {
2206 void const *pvPage;
2207 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2208 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2209
2210 SSMR3PutU8(pSSM, 1);
2211 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2212 }
2213 return rc;
2214}
2215
2216
2217/**
2218 * Save a shadowed ROM page.
2219 *
2220 * Format: Type, protection, and two pages with zero indicators.
2221 *
2222 * @returns VBox status code, errors are logged/asserted before returning.
2223 * @param pVM The VM handle.
2224 * @param pSSH The saved state handle.
2225 * @param pPage The page to save.
2226 * @param GCPhys The address of the page.
2227 * @param pRam The ram range (for error logging).
2228 */
2229static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2230{
2231 /* Need to save both pages and the current state. */
2232 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2233 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2234
2235 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2236 SSMR3PutU8(pSSM, pRomPage->enmProt);
2237
2238 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2239 if (RT_SUCCESS(rc))
2240 {
2241 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2242 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2243 }
2244 return rc;
2245}
2246
2247/** PGM fields to save/load. */
2248static SSMFIELD s_aPGMFields[] =
2249{
2250 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2251 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2252 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2253 SSMFIELD_ENTRY( PGM, fA20Enabled),
2254 SSMFIELD_ENTRY_GCPHYS( PGM, GCPhysA20Mask),
2255 SSMFIELD_ENTRY( PGM, enmGuestMode),
2256 SSMFIELD_ENTRY_TERM()
2257};
2258
2259
2260/**
2261 * Execute state save operation.
2262 *
2263 * @returns VBox status code.
2264 * @param pVM VM Handle.
2265 * @param pSSM SSM operation handle.
2266 */
2267static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2268{
2269 int rc;
2270 PPGM pPGM = &pVM->pgm.s;
2271
2272 /*
2273 * Lock PGM and set the no-more-writes indicator.
2274 */
2275 pgmLock(pVM);
2276 pVM->pgm.s.fNoMorePhysWrites = true;
2277
2278 /*
2279 * Save basic data (required / unaffected by relocation).
2280 */
2281 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2282
2283 /*
2284 * The guest mappings.
2285 */
2286 uint32_t i = 0;
2287 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2288 {
2289 SSMR3PutU32( pSSM, i);
2290 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2291 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2292 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2293 }
2294 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2295
2296 /*
2297 * Ram ranges and the memory they describe.
2298 */
2299 i = 0;
2300 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2301 {
2302 /*
2303 * Save the ram range details.
2304 */
2305 SSMR3PutU32(pSSM, i);
2306 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2307 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2308 SSMR3PutGCPhys(pSSM, pRam->cb);
2309 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2310 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2311
2312 /*
2313 * Iterate the pages, only two special case.
2314 */
2315 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2316 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2317 {
2318 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2319 PPGMPAGE pPage = &pRam->aPages[iPage];
2320 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2321
2322 if (uType == PGMPAGETYPE_ROM_SHADOW)
2323 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2324 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2325 {
2326 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2327 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2328 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2329 }
2330 else
2331 {
2332 SSMR3PutU8(pSSM, uType);
2333 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2334 }
2335 if (RT_FAILURE(rc))
2336 break;
2337 }
2338 if (RT_FAILURE(rc))
2339 break;
2340 }
2341
2342 pgmUnlock(pVM);
2343 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2344}
2345
2346
2347/**
2348 * Load an ignored page.
2349 *
2350 * @returns VBox status code.
2351 * @param pSSM The saved state handle.
2352 */
2353static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2354{
2355 uint8_t abPage[PAGE_SIZE];
2356 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2357}
2358
2359
2360/**
2361 * Loads a page without any bits in the saved state, i.e. making sure it's
2362 * really zero.
2363 *
2364 * @returns VBox status code.
2365 * @param pVM The VM handle.
2366 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2367 * state).
2368 * @param pPage The guest page tracking structure.
2369 * @param GCPhys The page address.
2370 * @param pRam The ram range (logging).
2371 */
2372static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2373{
2374 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2375 && uType != PGMPAGETYPE_INVALID)
2376 return VERR_SSM_UNEXPECTED_DATA;
2377
2378 /* I think this should be sufficient. */
2379 if (!PGM_PAGE_IS_ZERO(pPage))
2380 return VERR_SSM_UNEXPECTED_DATA;
2381
2382 NOREF(pVM);
2383 NOREF(GCPhys);
2384 NOREF(pRam);
2385 return VINF_SUCCESS;
2386}
2387
2388
2389/**
2390 * Loads a page from the saved state.
2391 *
2392 * @returns VBox status code.
2393 * @param pVM The VM handle.
2394 * @param pSSM The SSM handle.
2395 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2396 * state).
2397 * @param pPage The guest page tracking structure.
2398 * @param GCPhys The page address.
2399 * @param pRam The ram range (logging).
2400 */
2401static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2402{
2403 int rc;
2404
2405 /*
2406 * Match up the type, dealing with MMIO2 aliases (dropped).
2407 */
2408 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2409 || uType == PGMPAGETYPE_INVALID,
2410 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2411 VERR_SSM_UNEXPECTED_DATA);
2412
2413 /*
2414 * Load the page.
2415 */
2416 void *pvPage;
2417 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2418 if (RT_SUCCESS(rc))
2419 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2420
2421 return rc;
2422}
2423
2424
2425/**
2426 * Loads a page (counter part to pgmR3SavePage).
2427 *
2428 * @returns VBox status code, fully bitched errors.
2429 * @param pVM The VM handle.
2430 * @param pSSM The SSM handle.
2431 * @param uType The page type.
2432 * @param pPage The page.
2433 * @param GCPhys The page address.
2434 * @param pRam The RAM range (for error messages).
2435 */
2436static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2437{
2438 uint8_t uState;
2439 int rc = SSMR3GetU8(pSSM, &uState);
2440 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2441 if (uState == 0 /* zero */)
2442 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2443 else if (uState == 1)
2444 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2445 else
2446 rc = VERR_INTERNAL_ERROR;
2447 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2448 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2449 rc);
2450 return VINF_SUCCESS;
2451}
2452
2453
2454/**
2455 * Loads a shadowed ROM page.
2456 *
2457 * @returns VBox status code, errors are fully bitched.
2458 * @param pVM The VM handle.
2459 * @param pSSM The saved state handle.
2460 * @param pPage The page.
2461 * @param GCPhys The page address.
2462 * @param pRam The RAM range (for error messages).
2463 */
2464static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2465{
2466 /*
2467 * Load and set the protection first, then load the two pages, the first
2468 * one is the active the other is the passive.
2469 */
2470 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2471 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2472
2473 uint8_t uProt;
2474 int rc = SSMR3GetU8(pSSM, &uProt);
2475 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2476 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2477 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2478 && enmProt < PGMROMPROT_END,
2479 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2480 VERR_SSM_UNEXPECTED_DATA);
2481
2482 if (pRomPage->enmProt != enmProt)
2483 {
2484 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2485 AssertLogRelRCReturn(rc, rc);
2486 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2487 }
2488
2489 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2490 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2491 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2492 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2493
2494 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2495 if (RT_SUCCESS(rc))
2496 {
2497 *pPageActive = *pPage;
2498 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2499 }
2500 return rc;
2501}
2502
2503
2504/**
2505 * Worker for pgmR3Load.
2506 *
2507 * @returns VBox status code.
2508 *
2509 * @param pVM The VM handle.
2510 * @param pSSM The SSM handle.
2511 * @param u32Version The saved state version.
2512 */
2513static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2514{
2515 int rc;
2516 PPGM pPGM = &pVM->pgm.s;
2517 uint32_t u32Sep;
2518
2519 /*
2520 * Load basic data (required / unaffected by relocation).
2521 */
2522 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2523 {
2524 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2525 AssertLogRelRCReturn(rc, rc);
2526 }
2527 else
2528 {
2529 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2530 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2531 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2532
2533 uint32_t cbRamSizeIgnored;
2534 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2535 if (RT_FAILURE(rc))
2536 return rc;
2537 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2538
2539 uint32_t u32 = 0;
2540 SSMR3GetUInt(pSSM, &u32);
2541 pPGM->fA20Enabled = !!u32;
2542 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2543 RTUINT uGuestMode;
2544 SSMR3GetUInt(pSSM, &uGuestMode);
2545 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2546
2547 /* check separator. */
2548 SSMR3GetU32(pSSM, &u32Sep);
2549 if (RT_FAILURE(rc))
2550 return rc;
2551 if (u32Sep != (uint32_t)~0)
2552 {
2553 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2554 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2555 }
2556 }
2557
2558 /*
2559 * The guest mappings.
2560 */
2561 uint32_t i = 0;
2562 for (;; i++)
2563 {
2564 /* Check the seqence number / separator. */
2565 rc = SSMR3GetU32(pSSM, &u32Sep);
2566 if (RT_FAILURE(rc))
2567 return rc;
2568 if (u32Sep == ~0U)
2569 break;
2570 if (u32Sep != i)
2571 {
2572 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2573 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2574 }
2575
2576 /* get the mapping details. */
2577 char szDesc[256];
2578 szDesc[0] = '\0';
2579 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2580 if (RT_FAILURE(rc))
2581 return rc;
2582 RTGCPTR GCPtr;
2583 SSMR3GetGCPtr(pSSM, &GCPtr);
2584 RTGCPTR cPTs;
2585 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2586 if (RT_FAILURE(rc))
2587 return rc;
2588
2589 /* find matching range. */
2590 PPGMMAPPING pMapping;
2591 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2592 if ( pMapping->cPTs == cPTs
2593 && !strcmp(pMapping->pszDesc, szDesc))
2594 break;
2595 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2596 cPTs, szDesc, GCPtr),
2597 VERR_SSM_LOAD_CONFIG_MISMATCH);
2598
2599 /* relocate it. */
2600 if (pMapping->GCPtr != GCPtr)
2601 {
2602 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2603 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2604 }
2605 else
2606 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2607 }
2608
2609 /*
2610 * Ram range flags and bits.
2611 */
2612 i = 0;
2613 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2614 {
2615 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2616
2617 /* Check the seqence number / separator. */
2618 rc = SSMR3GetU32(pSSM, &u32Sep);
2619 if (RT_FAILURE(rc))
2620 return rc;
2621 if (u32Sep == ~0U)
2622 break;
2623 if (u32Sep != i)
2624 {
2625 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2626 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2627 }
2628
2629 /* Get the range details. */
2630 RTGCPHYS GCPhys;
2631 SSMR3GetGCPhys(pSSM, &GCPhys);
2632 RTGCPHYS GCPhysLast;
2633 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2634 RTGCPHYS cb;
2635 SSMR3GetGCPhys(pSSM, &cb);
2636 uint8_t fHaveBits;
2637 rc = SSMR3GetU8(pSSM, &fHaveBits);
2638 if (RT_FAILURE(rc))
2639 return rc;
2640 if (fHaveBits & ~1)
2641 {
2642 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2643 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2644 }
2645 size_t cchDesc = 0;
2646 char szDesc[256];
2647 szDesc[0] = '\0';
2648 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2649 {
2650 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2651 if (RT_FAILURE(rc))
2652 return rc;
2653 /* Since we've modified the description strings in r45878, only compare
2654 them if the saved state is more recent. */
2655 if (u32Version != PGM_SAVED_STATE_VERSION_RR_DESC)
2656 cchDesc = strlen(szDesc);
2657 }
2658
2659 /*
2660 * Match it up with the current range.
2661 *
2662 * Note there is a hack for dealing with the high BIOS mapping
2663 * in the old saved state format, this means we might not have
2664 * a 1:1 match on success.
2665 */
2666 if ( ( GCPhys != pRam->GCPhys
2667 || GCPhysLast != pRam->GCPhysLast
2668 || cb != pRam->cb
2669 || ( cchDesc
2670 && strcmp(szDesc, pRam->pszDesc)) )
2671 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2672 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2673 || GCPhys != UINT32_C(0xfff80000)
2674 || GCPhysLast != UINT32_C(0xffffffff)
2675 || pRam->GCPhysLast != GCPhysLast
2676 || pRam->GCPhys < GCPhys
2677 || !fHaveBits)
2678 )
2679 {
2680 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2681 "State : %RGp-%RGp %RGp bytes %s %s\n",
2682 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2683 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2684 /*
2685 * If we're loading a state for debugging purpose, don't make a fuss if
2686 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2687 */
2688 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2689 || GCPhys < 8 * _1M)
2690 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2691
2692 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2693 continue;
2694 }
2695
2696 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2697 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2698 {
2699 /*
2700 * Load the pages one by one.
2701 */
2702 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2703 {
2704 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2705 PPGMPAGE pPage = &pRam->aPages[iPage];
2706 uint8_t uType;
2707 rc = SSMR3GetU8(pSSM, &uType);
2708 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2709 if (uType == PGMPAGETYPE_ROM_SHADOW)
2710 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2711 else
2712 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2713 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2714 }
2715 }
2716 else
2717 {
2718 /*
2719 * Old format.
2720 */
2721 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2722
2723 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2724 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2725 uint32_t fFlags = 0;
2726 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2727 {
2728 uint16_t u16Flags;
2729 rc = SSMR3GetU16(pSSM, &u16Flags);
2730 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2731 fFlags |= u16Flags;
2732 }
2733
2734 /* Load the bits */
2735 if ( !fHaveBits
2736 && GCPhysLast < UINT32_C(0xe0000000))
2737 {
2738 /*
2739 * Dynamic chunks.
2740 */
2741 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2742 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2743 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2744 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2745
2746 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2747 {
2748 uint8_t fPresent;
2749 rc = SSMR3GetU8(pSSM, &fPresent);
2750 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2751 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2752 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2753 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2754
2755 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2756 {
2757 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2758 PPGMPAGE pPage = &pRam->aPages[iPage];
2759 if (fPresent)
2760 {
2761 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2762 rc = pgmR3LoadPageToDevNull(pSSM);
2763 else
2764 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2765 }
2766 else
2767 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2768 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2769 }
2770 }
2771 }
2772 else if (pRam->pvR3)
2773 {
2774 /*
2775 * MMIO2.
2776 */
2777 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2778 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2779 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2780 AssertLogRelMsgReturn(pRam->pvR3,
2781 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2782 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2783
2784 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2785 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2786 }
2787 else if (GCPhysLast < UINT32_C(0xfff80000))
2788 {
2789 /*
2790 * PCI MMIO, no pages saved.
2791 */
2792 }
2793 else
2794 {
2795 /*
2796 * Load the 0xfff80000..0xffffffff BIOS range.
2797 * It starts with X reserved pages that we have to skip over since
2798 * the RAMRANGE create by the new code won't include those.
2799 */
2800 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2801 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2802 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2803 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2804 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2805 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2806 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2807
2808 /* Skip wasted reserved pages before the ROM. */
2809 while (GCPhys < pRam->GCPhys)
2810 {
2811 rc = pgmR3LoadPageToDevNull(pSSM);
2812 GCPhys += PAGE_SIZE;
2813 }
2814
2815 /* Load the bios pages. */
2816 cPages = pRam->cb >> PAGE_SHIFT;
2817 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2818 {
2819 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2820 PPGMPAGE pPage = &pRam->aPages[iPage];
2821
2822 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2823 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2824 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2825 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2826 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2827 }
2828 }
2829 }
2830 }
2831
2832 return rc;
2833}
2834
2835
2836/**
2837 * Execute state load operation.
2838 *
2839 * @returns VBox status code.
2840 * @param pVM VM Handle.
2841 * @param pSSM SSM operation handle.
2842 * @param u32Version Data layout version.
2843 */
2844static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2845{
2846 int rc;
2847 PPGM pPGM = &pVM->pgm.s;
2848
2849 /*
2850 * Validate version.
2851 */
2852 if ( u32Version != PGM_SAVED_STATE_VERSION
2853 && u32Version != PGM_SAVED_STATE_VERSION_RR_DESC
2854 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2855 {
2856 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2857 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2858 }
2859
2860 /*
2861 * Call the reset function to make sure all the memory is cleared.
2862 */
2863 PGMR3Reset(pVM);
2864
2865 /*
2866 * Do the loading while owning the lock because a bunch of the functions
2867 * we're using requires this.
2868 */
2869 pgmLock(pVM);
2870 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
2871 pgmUnlock(pVM);
2872 if (RT_SUCCESS(rc))
2873 {
2874 /*
2875 * We require a full resync now.
2876 */
2877 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2878 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2879 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2880 pPGM->fPhysCacheFlushPending = true;
2881 pgmR3HandlerPhysicalUpdateAll(pVM);
2882
2883 /*
2884 * Change the paging mode.
2885 */
2886 rc = PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2887
2888 /* Restore pVM->pgm.s.GCPhysCR3. */
2889 Assert(pVM->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2890 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVM);
2891 if ( pVM->pgm.s.enmGuestMode == PGMMODE_PAE
2892 || pVM->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2893 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64
2894 || pVM->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2895 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2896 else
2897 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2898 pVM->pgm.s.GCPhysCR3 = GCPhysCR3;
2899 }
2900
2901 return rc;
2902}
2903
2904
2905/**
2906 * Show paging mode.
2907 *
2908 * @param pVM VM Handle.
2909 * @param pHlp The info helpers.
2910 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2911 */
2912static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2913{
2914 /* digest argument. */
2915 bool fGuest, fShadow, fHost;
2916 if (pszArgs)
2917 pszArgs = RTStrStripL(pszArgs);
2918 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2919 fShadow = fHost = fGuest = true;
2920 else
2921 {
2922 fShadow = fHost = fGuest = false;
2923 if (strstr(pszArgs, "guest"))
2924 fGuest = true;
2925 if (strstr(pszArgs, "shadow"))
2926 fShadow = true;
2927 if (strstr(pszArgs, "host"))
2928 fHost = true;
2929 }
2930
2931 /* print info. */
2932 if (fGuest)
2933 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2934 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2935 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2936 if (fShadow)
2937 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2938 if (fHost)
2939 {
2940 const char *psz;
2941 switch (pVM->pgm.s.enmHostMode)
2942 {
2943 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2944 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2945 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2946 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2947 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2948 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2949 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2950 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2951 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2952 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2953 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2954 default: psz = "unknown"; break;
2955 }
2956 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2957 }
2958}
2959
2960
2961/**
2962 * Dump registered MMIO ranges to the log.
2963 *
2964 * @param pVM VM Handle.
2965 * @param pHlp The info helpers.
2966 * @param pszArgs Arguments, ignored.
2967 */
2968static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2969{
2970 NOREF(pszArgs);
2971 pHlp->pfnPrintf(pHlp,
2972 "RAM ranges (pVM=%p)\n"
2973 "%.*s %.*s\n",
2974 pVM,
2975 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2976 sizeof(RTHCPTR) * 2, "pvHC ");
2977
2978 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2979 pHlp->pfnPrintf(pHlp,
2980 "%RGp-%RGp %RHv %s\n",
2981 pCur->GCPhys,
2982 pCur->GCPhysLast,
2983 pCur->pvR3,
2984 pCur->pszDesc);
2985}
2986
2987/**
2988 * Dump the page directory to the log.
2989 *
2990 * @param pVM VM Handle.
2991 * @param pHlp The info helpers.
2992 * @param pszArgs Arguments, ignored.
2993 */
2994static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2995{
2996/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2997 /* Big pages supported? */
2998 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2999
3000 /* Global pages supported? */
3001 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
3002
3003 NOREF(pszArgs);
3004
3005 /*
3006 * Get page directory addresses.
3007 */
3008 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVM->pgm.s);
3009 Assert(pPDSrc);
3010 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3011
3012 /*
3013 * Iterate the page directory.
3014 */
3015 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3016 {
3017 X86PDE PdeSrc = pPDSrc->a[iPD];
3018 if (PdeSrc.n.u1Present)
3019 {
3020 if (PdeSrc.b.u1Size && fPSE)
3021 pHlp->pfnPrintf(pHlp,
3022 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3023 iPD,
3024 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3025 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3026 else
3027 pHlp->pfnPrintf(pHlp,
3028 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3029 iPD,
3030 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3031 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3032 }
3033 }
3034}
3035
3036
3037/**
3038 * Serivce a VMMCALLHOST_PGM_LOCK call.
3039 *
3040 * @returns VBox status code.
3041 * @param pVM The VM handle.
3042 */
3043VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3044{
3045 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3046 AssertRC(rc);
3047 return rc;
3048}
3049
3050
3051/**
3052 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3053 *
3054 * @returns PGM_TYPE_*.
3055 * @param pgmMode The mode value to convert.
3056 */
3057DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3058{
3059 switch (pgmMode)
3060 {
3061 case PGMMODE_REAL: return PGM_TYPE_REAL;
3062 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3063 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3064 case PGMMODE_PAE:
3065 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3066 case PGMMODE_AMD64:
3067 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3068 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3069 case PGMMODE_EPT: return PGM_TYPE_EPT;
3070 default:
3071 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3072 }
3073}
3074
3075
3076/**
3077 * Gets the index into the paging mode data array of a SHW+GST mode.
3078 *
3079 * @returns PGM::paPagingData index.
3080 * @param uShwType The shadow paging mode type.
3081 * @param uGstType The guest paging mode type.
3082 */
3083DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3084{
3085 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3086 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3087 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3088 + (uGstType - PGM_TYPE_REAL);
3089}
3090
3091
3092/**
3093 * Gets the index into the paging mode data array of a SHW+GST mode.
3094 *
3095 * @returns PGM::paPagingData index.
3096 * @param enmShw The shadow paging mode.
3097 * @param enmGst The guest paging mode.
3098 */
3099DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3100{
3101 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3102 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3103 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3104}
3105
3106
3107/**
3108 * Calculates the max data index.
3109 * @returns The number of entries in the paging data array.
3110 */
3111DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3112{
3113 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3114}
3115
3116
3117/**
3118 * Initializes the paging mode data kept in PGM::paModeData.
3119 *
3120 * @param pVM The VM handle.
3121 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3122 * This is used early in the init process to avoid trouble with PDM
3123 * not being initialized yet.
3124 */
3125static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3126{
3127 PPGMMODEDATA pModeData;
3128 int rc;
3129
3130 /*
3131 * Allocate the array on the first call.
3132 */
3133 if (!pVM->pgm.s.paModeData)
3134 {
3135 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3136 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3137 }
3138
3139 /*
3140 * Initialize the array entries.
3141 */
3142 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3143 pModeData->uShwType = PGM_TYPE_32BIT;
3144 pModeData->uGstType = PGM_TYPE_REAL;
3145 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3146 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3147 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3148
3149 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3150 pModeData->uShwType = PGM_TYPE_32BIT;
3151 pModeData->uGstType = PGM_TYPE_PROT;
3152 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3153 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3154 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3155
3156 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3157 pModeData->uShwType = PGM_TYPE_32BIT;
3158 pModeData->uGstType = PGM_TYPE_32BIT;
3159 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3160 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3161 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3162
3163 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3164 pModeData->uShwType = PGM_TYPE_PAE;
3165 pModeData->uGstType = PGM_TYPE_REAL;
3166 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3167 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3168 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3169
3170 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3171 pModeData->uShwType = PGM_TYPE_PAE;
3172 pModeData->uGstType = PGM_TYPE_PROT;
3173 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3174 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3175 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3176
3177 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3178 pModeData->uShwType = PGM_TYPE_PAE;
3179 pModeData->uGstType = PGM_TYPE_32BIT;
3180 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3181 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3182 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3183
3184 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3185 pModeData->uShwType = PGM_TYPE_PAE;
3186 pModeData->uGstType = PGM_TYPE_PAE;
3187 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3188 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3189 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3190
3191#ifdef VBOX_WITH_64_BITS_GUESTS
3192 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3193 pModeData->uShwType = PGM_TYPE_AMD64;
3194 pModeData->uGstType = PGM_TYPE_AMD64;
3195 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3196 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3197 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3198#endif
3199
3200 /* The nested paging mode. */
3201 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3202 pModeData->uShwType = PGM_TYPE_NESTED;
3203 pModeData->uGstType = PGM_TYPE_REAL;
3204 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3205 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3206
3207 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3208 pModeData->uShwType = PGM_TYPE_NESTED;
3209 pModeData->uGstType = PGM_TYPE_PROT;
3210 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3211 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3212
3213 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3214 pModeData->uShwType = PGM_TYPE_NESTED;
3215 pModeData->uGstType = PGM_TYPE_32BIT;
3216 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3217 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3218
3219 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3220 pModeData->uShwType = PGM_TYPE_NESTED;
3221 pModeData->uGstType = PGM_TYPE_PAE;
3222 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3223 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3224
3225#ifdef VBOX_WITH_64_BITS_GUESTS
3226 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3227 pModeData->uShwType = PGM_TYPE_NESTED;
3228 pModeData->uGstType = PGM_TYPE_AMD64;
3229 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3230 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3231#endif
3232
3233 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3234 switch (pVM->pgm.s.enmHostMode)
3235 {
3236#if HC_ARCH_BITS == 32
3237 case SUPPAGINGMODE_32_BIT:
3238 case SUPPAGINGMODE_32_BIT_GLOBAL:
3239 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3240 {
3241 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3242 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3243 }
3244# ifdef VBOX_WITH_64_BITS_GUESTS
3245 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3246 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3247# endif
3248 break;
3249
3250 case SUPPAGINGMODE_PAE:
3251 case SUPPAGINGMODE_PAE_NX:
3252 case SUPPAGINGMODE_PAE_GLOBAL:
3253 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3254 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3255 {
3256 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3257 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3258 }
3259# ifdef VBOX_WITH_64_BITS_GUESTS
3260 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3261 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3262# endif
3263 break;
3264#endif /* HC_ARCH_BITS == 32 */
3265
3266#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3267 case SUPPAGINGMODE_AMD64:
3268 case SUPPAGINGMODE_AMD64_GLOBAL:
3269 case SUPPAGINGMODE_AMD64_NX:
3270 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3271# ifdef VBOX_WITH_64_BITS_GUESTS
3272 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3273# else
3274 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3275# endif
3276 {
3277 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3278 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3279 }
3280 break;
3281#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3282
3283 default:
3284 AssertFailed();
3285 break;
3286 }
3287
3288 /* Extended paging (EPT) / Intel VT-x */
3289 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3290 pModeData->uShwType = PGM_TYPE_EPT;
3291 pModeData->uGstType = PGM_TYPE_REAL;
3292 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3293 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3294 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3295
3296 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3297 pModeData->uShwType = PGM_TYPE_EPT;
3298 pModeData->uGstType = PGM_TYPE_PROT;
3299 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3300 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3301 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3302
3303 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3304 pModeData->uShwType = PGM_TYPE_EPT;
3305 pModeData->uGstType = PGM_TYPE_32BIT;
3306 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3307 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3308 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3309
3310 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3311 pModeData->uShwType = PGM_TYPE_EPT;
3312 pModeData->uGstType = PGM_TYPE_PAE;
3313 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3314 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3315 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3316
3317#ifdef VBOX_WITH_64_BITS_GUESTS
3318 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3319 pModeData->uShwType = PGM_TYPE_EPT;
3320 pModeData->uGstType = PGM_TYPE_AMD64;
3321 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3322 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3323 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3324#endif
3325 return VINF_SUCCESS;
3326}
3327
3328
3329/**
3330 * Switch to different (or relocated in the relocate case) mode data.
3331 *
3332 * @param pVM The VM handle.
3333 * @param enmShw The the shadow paging mode.
3334 * @param enmGst The the guest paging mode.
3335 */
3336static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
3337{
3338 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3339
3340 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3341 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3342
3343 /* shadow */
3344 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3345 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3346 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3347 Assert(pVM->pgm.s.pfnR3ShwGetPage);
3348 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3349
3350 pVM->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3351 pVM->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3352
3353 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3354 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3355
3356
3357 /* guest */
3358 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3359 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3360 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3361 Assert(pVM->pgm.s.pfnR3GstGetPage);
3362 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3363 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3364 pVM->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3365 pVM->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3366 pVM->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3367 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3368 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3369 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3370
3371 /* both */
3372 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3373 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3374 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3375 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
3376 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3377 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3378 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3379#ifdef VBOX_STRICT
3380 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3381#endif
3382 pVM->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3383 pVM->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3384
3385 pVM->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3386 pVM->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3387 pVM->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3388 pVM->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3389 pVM->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3390 pVM->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3391#ifdef VBOX_STRICT
3392 pVM->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3393#endif
3394 pVM->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3395 pVM->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3396
3397 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3398 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3399 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3400 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3401 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3402 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3403#ifdef VBOX_STRICT
3404 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3405#endif
3406 pVM->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3407 pVM->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3408}
3409
3410
3411/**
3412 * Calculates the shadow paging mode.
3413 *
3414 * @returns The shadow paging mode.
3415 * @param pVM VM handle.
3416 * @param enmGuestMode The guest mode.
3417 * @param enmHostMode The host mode.
3418 * @param enmShadowMode The current shadow mode.
3419 * @param penmSwitcher Where to store the switcher to use.
3420 * VMMSWITCHER_INVALID means no change.
3421 */
3422static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3423{
3424 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3425 switch (enmGuestMode)
3426 {
3427 /*
3428 * When switching to real or protected mode we don't change
3429 * anything since it's likely that we'll switch back pretty soon.
3430 *
3431 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3432 * and is supposed to determine which shadow paging and switcher to
3433 * use during init.
3434 */
3435 case PGMMODE_REAL:
3436 case PGMMODE_PROTECTED:
3437 if ( enmShadowMode != PGMMODE_INVALID
3438 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3439 break; /* (no change) */
3440
3441 switch (enmHostMode)
3442 {
3443 case SUPPAGINGMODE_32_BIT:
3444 case SUPPAGINGMODE_32_BIT_GLOBAL:
3445 enmShadowMode = PGMMODE_32_BIT;
3446 enmSwitcher = VMMSWITCHER_32_TO_32;
3447 break;
3448
3449 case SUPPAGINGMODE_PAE:
3450 case SUPPAGINGMODE_PAE_NX:
3451 case SUPPAGINGMODE_PAE_GLOBAL:
3452 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3453 enmShadowMode = PGMMODE_PAE;
3454 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3455#ifdef DEBUG_bird
3456 if (RTEnvExist("VBOX_32BIT"))
3457 {
3458 enmShadowMode = PGMMODE_32_BIT;
3459 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3460 }
3461#endif
3462 break;
3463
3464 case SUPPAGINGMODE_AMD64:
3465 case SUPPAGINGMODE_AMD64_GLOBAL:
3466 case SUPPAGINGMODE_AMD64_NX:
3467 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3468 enmShadowMode = PGMMODE_PAE;
3469 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3470#ifdef DEBUG_bird
3471 if (RTEnvExist("VBOX_32BIT"))
3472 {
3473 enmShadowMode = PGMMODE_32_BIT;
3474 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3475 }
3476#endif
3477 break;
3478
3479 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3480 }
3481 break;
3482
3483 case PGMMODE_32_BIT:
3484 switch (enmHostMode)
3485 {
3486 case SUPPAGINGMODE_32_BIT:
3487 case SUPPAGINGMODE_32_BIT_GLOBAL:
3488 enmShadowMode = PGMMODE_32_BIT;
3489 enmSwitcher = VMMSWITCHER_32_TO_32;
3490 break;
3491
3492 case SUPPAGINGMODE_PAE:
3493 case SUPPAGINGMODE_PAE_NX:
3494 case SUPPAGINGMODE_PAE_GLOBAL:
3495 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3496 enmShadowMode = PGMMODE_PAE;
3497 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3498#ifdef DEBUG_bird
3499 if (RTEnvExist("VBOX_32BIT"))
3500 {
3501 enmShadowMode = PGMMODE_32_BIT;
3502 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3503 }
3504#endif
3505 break;
3506
3507 case SUPPAGINGMODE_AMD64:
3508 case SUPPAGINGMODE_AMD64_GLOBAL:
3509 case SUPPAGINGMODE_AMD64_NX:
3510 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3511 enmShadowMode = PGMMODE_PAE;
3512 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3513#ifdef DEBUG_bird
3514 if (RTEnvExist("VBOX_32BIT"))
3515 {
3516 enmShadowMode = PGMMODE_32_BIT;
3517 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3518 }
3519#endif
3520 break;
3521
3522 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3523 }
3524 break;
3525
3526 case PGMMODE_PAE:
3527 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3528 switch (enmHostMode)
3529 {
3530 case SUPPAGINGMODE_32_BIT:
3531 case SUPPAGINGMODE_32_BIT_GLOBAL:
3532 enmShadowMode = PGMMODE_PAE;
3533 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3534 break;
3535
3536 case SUPPAGINGMODE_PAE:
3537 case SUPPAGINGMODE_PAE_NX:
3538 case SUPPAGINGMODE_PAE_GLOBAL:
3539 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3540 enmShadowMode = PGMMODE_PAE;
3541 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3542 break;
3543
3544 case SUPPAGINGMODE_AMD64:
3545 case SUPPAGINGMODE_AMD64_GLOBAL:
3546 case SUPPAGINGMODE_AMD64_NX:
3547 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3548 enmShadowMode = PGMMODE_PAE;
3549 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3550 break;
3551
3552 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3553 }
3554 break;
3555
3556 case PGMMODE_AMD64:
3557 case PGMMODE_AMD64_NX:
3558 switch (enmHostMode)
3559 {
3560 case SUPPAGINGMODE_32_BIT:
3561 case SUPPAGINGMODE_32_BIT_GLOBAL:
3562 enmShadowMode = PGMMODE_AMD64;
3563 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3564 break;
3565
3566 case SUPPAGINGMODE_PAE:
3567 case SUPPAGINGMODE_PAE_NX:
3568 case SUPPAGINGMODE_PAE_GLOBAL:
3569 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3570 enmShadowMode = PGMMODE_AMD64;
3571 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3572 break;
3573
3574 case SUPPAGINGMODE_AMD64:
3575 case SUPPAGINGMODE_AMD64_GLOBAL:
3576 case SUPPAGINGMODE_AMD64_NX:
3577 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3578 enmShadowMode = PGMMODE_AMD64;
3579 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3580 break;
3581
3582 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3583 }
3584 break;
3585
3586
3587 default:
3588 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3589 return PGMMODE_INVALID;
3590 }
3591 /* Override the shadow mode is nested paging is active. */
3592 if (HWACCMIsNestedPagingActive(pVM))
3593 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3594
3595 *penmSwitcher = enmSwitcher;
3596 return enmShadowMode;
3597}
3598
3599
3600/**
3601 * Performs the actual mode change.
3602 * This is called by PGMChangeMode and pgmR3InitPaging().
3603 *
3604 * @returns VBox status code. May suspend or power off the VM on error, but this
3605 * will trigger using FFs and not status codes.
3606 *
3607 * @param pVM VM handle.
3608 * @param enmGuestMode The new guest mode. This is assumed to be different from
3609 * the current mode.
3610 */
3611VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
3612{
3613 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3614 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
3615
3616 /*
3617 * Calc the shadow mode and switcher.
3618 */
3619 VMMSWITCHER enmSwitcher;
3620 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
3621 if (enmSwitcher != VMMSWITCHER_INVALID)
3622 {
3623 /*
3624 * Select new switcher.
3625 */
3626 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3627 if (RT_FAILURE(rc))
3628 {
3629 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3630 return rc;
3631 }
3632 }
3633
3634 /*
3635 * Exit old mode(s).
3636 */
3637 /* shadow */
3638 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3639 {
3640 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3641 if (PGM_SHW_PFN(Exit, pVM))
3642 {
3643 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
3644 if (RT_FAILURE(rc))
3645 {
3646 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVM->pgm.s.enmShadowMode, rc));
3647 return rc;
3648 }
3649 }
3650
3651 }
3652 else
3653 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode)));
3654
3655 /* guest */
3656 if (PGM_GST_PFN(Exit, pVM))
3657 {
3658 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
3659 if (RT_FAILURE(rc))
3660 {
3661 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVM->pgm.s.enmGuestMode, rc));
3662 return rc;
3663 }
3664 }
3665
3666 /*
3667 * Load new paging mode data.
3668 */
3669 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3670
3671 /*
3672 * Enter new shadow mode (if changed).
3673 */
3674 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3675 {
3676 int rc;
3677 pVM->pgm.s.enmShadowMode = enmShadowMode;
3678 switch (enmShadowMode)
3679 {
3680 case PGMMODE_32_BIT:
3681 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3682 break;
3683 case PGMMODE_PAE:
3684 case PGMMODE_PAE_NX:
3685 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3686 break;
3687 case PGMMODE_AMD64:
3688 case PGMMODE_AMD64_NX:
3689 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3690 break;
3691 case PGMMODE_NESTED:
3692 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3693 break;
3694 case PGMMODE_EPT:
3695 rc = PGM_SHW_NAME_EPT(Enter)(pVM);
3696 break;
3697 case PGMMODE_REAL:
3698 case PGMMODE_PROTECTED:
3699 default:
3700 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3701 return VERR_INTERNAL_ERROR;
3702 }
3703 if (RT_FAILURE(rc))
3704 {
3705 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3706 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3707 return rc;
3708 }
3709 }
3710
3711 /*
3712 * Always flag the necessary updates
3713 */
3714 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3715
3716 /*
3717 * Enter the new guest and shadow+guest modes.
3718 */
3719 int rc = -1;
3720 int rc2 = -1;
3721 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3722 pVM->pgm.s.enmGuestMode = enmGuestMode;
3723 switch (enmGuestMode)
3724 {
3725 case PGMMODE_REAL:
3726 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3727 switch (pVM->pgm.s.enmShadowMode)
3728 {
3729 case PGMMODE_32_BIT:
3730 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3731 break;
3732 case PGMMODE_PAE:
3733 case PGMMODE_PAE_NX:
3734 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3735 break;
3736 case PGMMODE_NESTED:
3737 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3738 break;
3739 case PGMMODE_EPT:
3740 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3741 break;
3742 case PGMMODE_AMD64:
3743 case PGMMODE_AMD64_NX:
3744 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3745 default: AssertFailed(); break;
3746 }
3747 break;
3748
3749 case PGMMODE_PROTECTED:
3750 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3751 switch (pVM->pgm.s.enmShadowMode)
3752 {
3753 case PGMMODE_32_BIT:
3754 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3755 break;
3756 case PGMMODE_PAE:
3757 case PGMMODE_PAE_NX:
3758 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3759 break;
3760 case PGMMODE_NESTED:
3761 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3762 break;
3763 case PGMMODE_EPT:
3764 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3765 break;
3766 case PGMMODE_AMD64:
3767 case PGMMODE_AMD64_NX:
3768 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3769 default: AssertFailed(); break;
3770 }
3771 break;
3772
3773 case PGMMODE_32_BIT:
3774 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3775 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3776 switch (pVM->pgm.s.enmShadowMode)
3777 {
3778 case PGMMODE_32_BIT:
3779 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3780 break;
3781 case PGMMODE_PAE:
3782 case PGMMODE_PAE_NX:
3783 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3784 break;
3785 case PGMMODE_NESTED:
3786 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3787 break;
3788 case PGMMODE_EPT:
3789 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, GCPhysCR3);
3790 break;
3791 case PGMMODE_AMD64:
3792 case PGMMODE_AMD64_NX:
3793 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3794 default: AssertFailed(); break;
3795 }
3796 break;
3797
3798 case PGMMODE_PAE_NX:
3799 case PGMMODE_PAE:
3800 {
3801 uint32_t u32Dummy, u32Features;
3802
3803 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3804 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3805 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3806 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3807
3808 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3809 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3810 switch (pVM->pgm.s.enmShadowMode)
3811 {
3812 case PGMMODE_PAE:
3813 case PGMMODE_PAE_NX:
3814 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3815 break;
3816 case PGMMODE_NESTED:
3817 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3818 break;
3819 case PGMMODE_EPT:
3820 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, GCPhysCR3);
3821 break;
3822 case PGMMODE_32_BIT:
3823 case PGMMODE_AMD64:
3824 case PGMMODE_AMD64_NX:
3825 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3826 default: AssertFailed(); break;
3827 }
3828 break;
3829 }
3830
3831#ifdef VBOX_WITH_64_BITS_GUESTS
3832 case PGMMODE_AMD64_NX:
3833 case PGMMODE_AMD64:
3834 GCPhysCR3 = CPUMGetGuestCR3(pVM) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3835 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3836 switch (pVM->pgm.s.enmShadowMode)
3837 {
3838 case PGMMODE_AMD64:
3839 case PGMMODE_AMD64_NX:
3840 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3841 break;
3842 case PGMMODE_NESTED:
3843 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3844 break;
3845 case PGMMODE_EPT:
3846 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, GCPhysCR3);
3847 break;
3848 case PGMMODE_32_BIT:
3849 case PGMMODE_PAE:
3850 case PGMMODE_PAE_NX:
3851 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3852 default: AssertFailed(); break;
3853 }
3854 break;
3855#endif
3856
3857 default:
3858 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3859 rc = VERR_NOT_IMPLEMENTED;
3860 break;
3861 }
3862
3863 /* status codes. */
3864 AssertRC(rc);
3865 AssertRC(rc2);
3866 if (RT_SUCCESS(rc))
3867 {
3868 rc = rc2;
3869 if (RT_SUCCESS(rc)) /* no informational status codes. */
3870 rc = VINF_SUCCESS;
3871 }
3872
3873 /* Notify HWACCM as well. */
3874 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
3875 return rc;
3876}
3877
3878
3879/**
3880 * Dumps a PAE shadow page table.
3881 *
3882 * @returns VBox status code (VINF_SUCCESS).
3883 * @param pVM The VM handle.
3884 * @param pPT Pointer to the page table.
3885 * @param u64Address The virtual address of the page table starts.
3886 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3887 * @param cMaxDepth The maxium depth.
3888 * @param pHlp Pointer to the output functions.
3889 */
3890static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3891{
3892 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3893 {
3894 X86PTEPAE Pte = pPT->a[i];
3895 if (Pte.n.u1Present)
3896 {
3897 pHlp->pfnPrintf(pHlp,
3898 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3899 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3900 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3901 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3902 Pte.n.u1Write ? 'W' : 'R',
3903 Pte.n.u1User ? 'U' : 'S',
3904 Pte.n.u1Accessed ? 'A' : '-',
3905 Pte.n.u1Dirty ? 'D' : '-',
3906 Pte.n.u1Global ? 'G' : '-',
3907 Pte.n.u1WriteThru ? "WT" : "--",
3908 Pte.n.u1CacheDisable? "CD" : "--",
3909 Pte.n.u1PAT ? "AT" : "--",
3910 Pte.n.u1NoExecute ? "NX" : "--",
3911 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3912 Pte.u & RT_BIT(10) ? '1' : '0',
3913 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3914 Pte.u & X86_PTE_PAE_PG_MASK);
3915 }
3916 }
3917 return VINF_SUCCESS;
3918}
3919
3920
3921/**
3922 * Dumps a PAE shadow page directory table.
3923 *
3924 * @returns VBox status code (VINF_SUCCESS).
3925 * @param pVM The VM handle.
3926 * @param HCPhys The physical address of the page directory table.
3927 * @param u64Address The virtual address of the page table starts.
3928 * @param cr4 The CR4, PSE is currently used.
3929 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3930 * @param cMaxDepth The maxium depth.
3931 * @param pHlp Pointer to the output functions.
3932 */
3933static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3934{
3935 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3936 if (!pPD)
3937 {
3938 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3939 fLongMode ? 16 : 8, u64Address, HCPhys);
3940 return VERR_INVALID_PARAMETER;
3941 }
3942 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3943
3944 int rc = VINF_SUCCESS;
3945 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3946 {
3947 X86PDEPAE Pde = pPD->a[i];
3948 if (Pde.n.u1Present)
3949 {
3950 if (fBigPagesSupported && Pde.b.u1Size)
3951 pHlp->pfnPrintf(pHlp,
3952 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3953 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3954 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3955 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3956 Pde.b.u1Write ? 'W' : 'R',
3957 Pde.b.u1User ? 'U' : 'S',
3958 Pde.b.u1Accessed ? 'A' : '-',
3959 Pde.b.u1Dirty ? 'D' : '-',
3960 Pde.b.u1Global ? 'G' : '-',
3961 Pde.b.u1WriteThru ? "WT" : "--",
3962 Pde.b.u1CacheDisable? "CD" : "--",
3963 Pde.b.u1PAT ? "AT" : "--",
3964 Pde.b.u1NoExecute ? "NX" : "--",
3965 Pde.u & RT_BIT_64(9) ? '1' : '0',
3966 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3967 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3968 Pde.u & X86_PDE_PAE_PG_MASK);
3969 else
3970 {
3971 pHlp->pfnPrintf(pHlp,
3972 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3973 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3974 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3975 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3976 Pde.n.u1Write ? 'W' : 'R',
3977 Pde.n.u1User ? 'U' : 'S',
3978 Pde.n.u1Accessed ? 'A' : '-',
3979 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3980 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3981 Pde.n.u1WriteThru ? "WT" : "--",
3982 Pde.n.u1CacheDisable? "CD" : "--",
3983 Pde.n.u1NoExecute ? "NX" : "--",
3984 Pde.u & RT_BIT_64(9) ? '1' : '0',
3985 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3986 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3987 Pde.u & X86_PDE_PAE_PG_MASK);
3988 if (cMaxDepth >= 1)
3989 {
3990 /** @todo what about using the page pool for mapping PTs? */
3991 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3992 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3993 PX86PTPAE pPT = NULL;
3994 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3995 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3996 else
3997 {
3998 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3999 {
4000 uint64_t off = u64AddressPT - pMap->GCPtr;
4001 if (off < pMap->cb)
4002 {
4003 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4004 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4005 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4006 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4007 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4008 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4009 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4010 }
4011 }
4012 }
4013 int rc2 = VERR_INVALID_PARAMETER;
4014 if (pPT)
4015 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4016 else
4017 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4018 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4019 if (rc2 < rc && RT_SUCCESS(rc))
4020 rc = rc2;
4021 }
4022 }
4023 }
4024 }
4025 return rc;
4026}
4027
4028
4029/**
4030 * Dumps a PAE shadow page directory pointer table.
4031 *
4032 * @returns VBox status code (VINF_SUCCESS).
4033 * @param pVM The VM handle.
4034 * @param HCPhys The physical address of the page directory pointer table.
4035 * @param u64Address The virtual address of the page table starts.
4036 * @param cr4 The CR4, PSE is currently used.
4037 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4038 * @param cMaxDepth The maxium depth.
4039 * @param pHlp Pointer to the output functions.
4040 */
4041static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4042{
4043 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4044 if (!pPDPT)
4045 {
4046 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4047 fLongMode ? 16 : 8, u64Address, HCPhys);
4048 return VERR_INVALID_PARAMETER;
4049 }
4050
4051 int rc = VINF_SUCCESS;
4052 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4053 for (unsigned i = 0; i < c; i++)
4054 {
4055 X86PDPE Pdpe = pPDPT->a[i];
4056 if (Pdpe.n.u1Present)
4057 {
4058 if (fLongMode)
4059 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4060 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4061 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4062 Pdpe.lm.u1Write ? 'W' : 'R',
4063 Pdpe.lm.u1User ? 'U' : 'S',
4064 Pdpe.lm.u1Accessed ? 'A' : '-',
4065 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4066 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4067 Pdpe.lm.u1WriteThru ? "WT" : "--",
4068 Pdpe.lm.u1CacheDisable? "CD" : "--",
4069 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4070 Pdpe.lm.u1NoExecute ? "NX" : "--",
4071 Pdpe.u & RT_BIT(9) ? '1' : '0',
4072 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4073 Pdpe.u & RT_BIT(11) ? '1' : '0',
4074 Pdpe.u & X86_PDPE_PG_MASK);
4075 else
4076 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4077 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4078 i << X86_PDPT_SHIFT,
4079 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4080 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4081 Pdpe.n.u1WriteThru ? "WT" : "--",
4082 Pdpe.n.u1CacheDisable? "CD" : "--",
4083 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4084 Pdpe.u & RT_BIT(9) ? '1' : '0',
4085 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4086 Pdpe.u & RT_BIT(11) ? '1' : '0',
4087 Pdpe.u & X86_PDPE_PG_MASK);
4088 if (cMaxDepth >= 1)
4089 {
4090 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4091 cr4, fLongMode, cMaxDepth - 1, pHlp);
4092 if (rc2 < rc && RT_SUCCESS(rc))
4093 rc = rc2;
4094 }
4095 }
4096 }
4097 return rc;
4098}
4099
4100
4101/**
4102 * Dumps a 32-bit shadow page table.
4103 *
4104 * @returns VBox status code (VINF_SUCCESS).
4105 * @param pVM The VM handle.
4106 * @param HCPhys The physical address of the table.
4107 * @param cr4 The CR4, PSE is currently used.
4108 * @param cMaxDepth The maxium depth.
4109 * @param pHlp Pointer to the output functions.
4110 */
4111static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4112{
4113 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4114 if (!pPML4)
4115 {
4116 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4117 return VERR_INVALID_PARAMETER;
4118 }
4119
4120 int rc = VINF_SUCCESS;
4121 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4122 {
4123 X86PML4E Pml4e = pPML4->a[i];
4124 if (Pml4e.n.u1Present)
4125 {
4126 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4127 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4128 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4129 u64Address,
4130 Pml4e.n.u1Write ? 'W' : 'R',
4131 Pml4e.n.u1User ? 'U' : 'S',
4132 Pml4e.n.u1Accessed ? 'A' : '-',
4133 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4134 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4135 Pml4e.n.u1WriteThru ? "WT" : "--",
4136 Pml4e.n.u1CacheDisable? "CD" : "--",
4137 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4138 Pml4e.n.u1NoExecute ? "NX" : "--",
4139 Pml4e.u & RT_BIT(9) ? '1' : '0',
4140 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4141 Pml4e.u & RT_BIT(11) ? '1' : '0',
4142 Pml4e.u & X86_PML4E_PG_MASK);
4143
4144 if (cMaxDepth >= 1)
4145 {
4146 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4147 if (rc2 < rc && RT_SUCCESS(rc))
4148 rc = rc2;
4149 }
4150 }
4151 }
4152 return rc;
4153}
4154
4155
4156/**
4157 * Dumps a 32-bit shadow page table.
4158 *
4159 * @returns VBox status code (VINF_SUCCESS).
4160 * @param pVM The VM handle.
4161 * @param pPT Pointer to the page table.
4162 * @param u32Address The virtual address this table starts at.
4163 * @param pHlp Pointer to the output functions.
4164 */
4165int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4166{
4167 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4168 {
4169 X86PTE Pte = pPT->a[i];
4170 if (Pte.n.u1Present)
4171 {
4172 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4173 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4174 u32Address + (i << X86_PT_SHIFT),
4175 Pte.n.u1Write ? 'W' : 'R',
4176 Pte.n.u1User ? 'U' : 'S',
4177 Pte.n.u1Accessed ? 'A' : '-',
4178 Pte.n.u1Dirty ? 'D' : '-',
4179 Pte.n.u1Global ? 'G' : '-',
4180 Pte.n.u1WriteThru ? "WT" : "--",
4181 Pte.n.u1CacheDisable? "CD" : "--",
4182 Pte.n.u1PAT ? "AT" : "--",
4183 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4184 Pte.u & RT_BIT(10) ? '1' : '0',
4185 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4186 Pte.u & X86_PDE_PG_MASK);
4187 }
4188 }
4189 return VINF_SUCCESS;
4190}
4191
4192
4193/**
4194 * Dumps a 32-bit shadow page directory and page tables.
4195 *
4196 * @returns VBox status code (VINF_SUCCESS).
4197 * @param pVM The VM handle.
4198 * @param cr3 The root of the hierarchy.
4199 * @param cr4 The CR4, PSE is currently used.
4200 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4201 * @param pHlp Pointer to the output functions.
4202 */
4203int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4204{
4205 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4206 if (!pPD)
4207 {
4208 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4209 return VERR_INVALID_PARAMETER;
4210 }
4211
4212 int rc = VINF_SUCCESS;
4213 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4214 {
4215 X86PDE Pde = pPD->a[i];
4216 if (Pde.n.u1Present)
4217 {
4218 const uint32_t u32Address = i << X86_PD_SHIFT;
4219 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4220 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4221 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4222 u32Address,
4223 Pde.b.u1Write ? 'W' : 'R',
4224 Pde.b.u1User ? 'U' : 'S',
4225 Pde.b.u1Accessed ? 'A' : '-',
4226 Pde.b.u1Dirty ? 'D' : '-',
4227 Pde.b.u1Global ? 'G' : '-',
4228 Pde.b.u1WriteThru ? "WT" : "--",
4229 Pde.b.u1CacheDisable? "CD" : "--",
4230 Pde.b.u1PAT ? "AT" : "--",
4231 Pde.u & RT_BIT_64(9) ? '1' : '0',
4232 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4233 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4234 Pde.u & X86_PDE4M_PG_MASK);
4235 else
4236 {
4237 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4238 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4239 u32Address,
4240 Pde.n.u1Write ? 'W' : 'R',
4241 Pde.n.u1User ? 'U' : 'S',
4242 Pde.n.u1Accessed ? 'A' : '-',
4243 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4244 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4245 Pde.n.u1WriteThru ? "WT" : "--",
4246 Pde.n.u1CacheDisable? "CD" : "--",
4247 Pde.u & RT_BIT_64(9) ? '1' : '0',
4248 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4249 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4250 Pde.u & X86_PDE_PG_MASK);
4251 if (cMaxDepth >= 1)
4252 {
4253 /** @todo what about using the page pool for mapping PTs? */
4254 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4255 PX86PT pPT = NULL;
4256 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4257 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4258 else
4259 {
4260 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4261 if (u32Address - pMap->GCPtr < pMap->cb)
4262 {
4263 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4264 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4265 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4266 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4267 pPT = pMap->aPTs[iPDE].pPTR3;
4268 }
4269 }
4270 int rc2 = VERR_INVALID_PARAMETER;
4271 if (pPT)
4272 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4273 else
4274 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4275 if (rc2 < rc && RT_SUCCESS(rc))
4276 rc = rc2;
4277 }
4278 }
4279 }
4280 }
4281
4282 return rc;
4283}
4284
4285
4286/**
4287 * Dumps a 32-bit shadow page table.
4288 *
4289 * @returns VBox status code (VINF_SUCCESS).
4290 * @param pVM The VM handle.
4291 * @param pPT Pointer to the page table.
4292 * @param u32Address The virtual address this table starts at.
4293 * @param PhysSearch Address to search for.
4294 */
4295int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4296{
4297 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4298 {
4299 X86PTE Pte = pPT->a[i];
4300 if (Pte.n.u1Present)
4301 {
4302 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4303 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4304 u32Address + (i << X86_PT_SHIFT),
4305 Pte.n.u1Write ? 'W' : 'R',
4306 Pte.n.u1User ? 'U' : 'S',
4307 Pte.n.u1Accessed ? 'A' : '-',
4308 Pte.n.u1Dirty ? 'D' : '-',
4309 Pte.n.u1Global ? 'G' : '-',
4310 Pte.n.u1WriteThru ? "WT" : "--",
4311 Pte.n.u1CacheDisable? "CD" : "--",
4312 Pte.n.u1PAT ? "AT" : "--",
4313 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4314 Pte.u & RT_BIT(10) ? '1' : '0',
4315 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4316 Pte.u & X86_PDE_PG_MASK));
4317
4318 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4319 {
4320 uint64_t fPageShw = 0;
4321 RTHCPHYS pPhysHC = 0;
4322
4323 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4324 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4325 }
4326 }
4327 }
4328 return VINF_SUCCESS;
4329}
4330
4331
4332/**
4333 * Dumps a 32-bit guest page directory and page tables.
4334 *
4335 * @returns VBox status code (VINF_SUCCESS).
4336 * @param pVM The VM handle.
4337 * @param cr3 The root of the hierarchy.
4338 * @param cr4 The CR4, PSE is currently used.
4339 * @param PhysSearch Address to search for.
4340 */
4341VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4342{
4343 bool fLongMode = false;
4344 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4345 PX86PD pPD = 0;
4346
4347 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4348 if (RT_FAILURE(rc) || !pPD)
4349 {
4350 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4351 return VERR_INVALID_PARAMETER;
4352 }
4353
4354 Log(("cr3=%08x cr4=%08x%s\n"
4355 "%-*s P - Present\n"
4356 "%-*s | R/W - Read (0) / Write (1)\n"
4357 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4358 "%-*s | | | A - Accessed\n"
4359 "%-*s | | | | D - Dirty\n"
4360 "%-*s | | | | | G - Global\n"
4361 "%-*s | | | | | | WT - Write thru\n"
4362 "%-*s | | | | | | | CD - Cache disable\n"
4363 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4364 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4365 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4366 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4367 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4368 "%-*s Level | | | | | | | | | | | | Page\n"
4369 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4370 - W U - - - -- -- -- -- -- 010 */
4371 , cr3, cr4, fLongMode ? " Long Mode" : "",
4372 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4373 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4374
4375 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4376 {
4377 X86PDE Pde = pPD->a[i];
4378 if (Pde.n.u1Present)
4379 {
4380 const uint32_t u32Address = i << X86_PD_SHIFT;
4381
4382 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4383 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4384 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4385 u32Address,
4386 Pde.b.u1Write ? 'W' : 'R',
4387 Pde.b.u1User ? 'U' : 'S',
4388 Pde.b.u1Accessed ? 'A' : '-',
4389 Pde.b.u1Dirty ? 'D' : '-',
4390 Pde.b.u1Global ? 'G' : '-',
4391 Pde.b.u1WriteThru ? "WT" : "--",
4392 Pde.b.u1CacheDisable? "CD" : "--",
4393 Pde.b.u1PAT ? "AT" : "--",
4394 Pde.u & RT_BIT(9) ? '1' : '0',
4395 Pde.u & RT_BIT(10) ? '1' : '0',
4396 Pde.u & RT_BIT(11) ? '1' : '0',
4397 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4398 /** @todo PhysSearch */
4399 else
4400 {
4401 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4402 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4403 u32Address,
4404 Pde.n.u1Write ? 'W' : 'R',
4405 Pde.n.u1User ? 'U' : 'S',
4406 Pde.n.u1Accessed ? 'A' : '-',
4407 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4408 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4409 Pde.n.u1WriteThru ? "WT" : "--",
4410 Pde.n.u1CacheDisable? "CD" : "--",
4411 Pde.u & RT_BIT(9) ? '1' : '0',
4412 Pde.u & RT_BIT(10) ? '1' : '0',
4413 Pde.u & RT_BIT(11) ? '1' : '0',
4414 Pde.u & X86_PDE_PG_MASK));
4415 ////if (cMaxDepth >= 1)
4416 {
4417 /** @todo what about using the page pool for mapping PTs? */
4418 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4419 PX86PT pPT = NULL;
4420
4421 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4422
4423 int rc2 = VERR_INVALID_PARAMETER;
4424 if (pPT)
4425 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4426 else
4427 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4428 if (rc2 < rc && RT_SUCCESS(rc))
4429 rc = rc2;
4430 }
4431 }
4432 }
4433 }
4434
4435 return rc;
4436}
4437
4438
4439/**
4440 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4441 *
4442 * @returns VBox status code (VINF_SUCCESS).
4443 * @param pVM The VM handle.
4444 * @param cr3 The root of the hierarchy.
4445 * @param cr4 The cr4, only PAE and PSE is currently used.
4446 * @param fLongMode Set if long mode, false if not long mode.
4447 * @param cMaxDepth Number of levels to dump.
4448 * @param pHlp Pointer to the output functions.
4449 */
4450VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4451{
4452 if (!pHlp)
4453 pHlp = DBGFR3InfoLogHlp();
4454 if (!cMaxDepth)
4455 return VINF_SUCCESS;
4456 const unsigned cch = fLongMode ? 16 : 8;
4457 pHlp->pfnPrintf(pHlp,
4458 "cr3=%08x cr4=%08x%s\n"
4459 "%-*s P - Present\n"
4460 "%-*s | R/W - Read (0) / Write (1)\n"
4461 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4462 "%-*s | | | A - Accessed\n"
4463 "%-*s | | | | D - Dirty\n"
4464 "%-*s | | | | | G - Global\n"
4465 "%-*s | | | | | | WT - Write thru\n"
4466 "%-*s | | | | | | | CD - Cache disable\n"
4467 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4468 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4469 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4470 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4471 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4472 "%-*s Level | | | | | | | | | | | | Page\n"
4473 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4474 - W U - - - -- -- -- -- -- 010 */
4475 , cr3, cr4, fLongMode ? " Long Mode" : "",
4476 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4477 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4478 if (cr4 & X86_CR4_PAE)
4479 {
4480 if (fLongMode)
4481 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4482 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4483 }
4484 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4485}
4486
4487#ifdef VBOX_WITH_DEBUGGER
4488
4489/**
4490 * The '.pgmram' command.
4491 *
4492 * @returns VBox status.
4493 * @param pCmd Pointer to the command descriptor (as registered).
4494 * @param pCmdHlp Pointer to command helper functions.
4495 * @param pVM Pointer to the current VM (if any).
4496 * @param paArgs Pointer to (readonly) array of arguments.
4497 * @param cArgs Number of arguments in the array.
4498 */
4499static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4500{
4501 /*
4502 * Validate input.
4503 */
4504 if (!pVM)
4505 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4506 if (!pVM->pgm.s.pRamRangesRC)
4507 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4508
4509 /*
4510 * Dump the ranges.
4511 */
4512 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4513 PPGMRAMRANGE pRam;
4514 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4515 {
4516 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4517 "%RGp - %RGp %p\n",
4518 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4519 if (RT_FAILURE(rc))
4520 return rc;
4521 }
4522
4523 return VINF_SUCCESS;
4524}
4525
4526
4527/**
4528 * The '.pgmmap' command.
4529 *
4530 * @returns VBox status.
4531 * @param pCmd Pointer to the command descriptor (as registered).
4532 * @param pCmdHlp Pointer to command helper functions.
4533 * @param pVM Pointer to the current VM (if any).
4534 * @param paArgs Pointer to (readonly) array of arguments.
4535 * @param cArgs Number of arguments in the array.
4536 */
4537static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4538{
4539 /*
4540 * Validate input.
4541 */
4542 if (!pVM)
4543 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4544 if (!pVM->pgm.s.pMappingsR3)
4545 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4546
4547 /*
4548 * Print message about the fixedness of the mappings.
4549 */
4550 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4551 if (RT_FAILURE(rc))
4552 return rc;
4553
4554 /*
4555 * Dump the ranges.
4556 */
4557 PPGMMAPPING pCur;
4558 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4559 {
4560 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4561 "%08x - %08x %s\n",
4562 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4563 if (RT_FAILURE(rc))
4564 return rc;
4565 }
4566
4567 return VINF_SUCCESS;
4568}
4569
4570
4571/**
4572 * The '.pgmerror' and '.pgmerroroff' commands.
4573 *
4574 * @returns VBox status.
4575 * @param pCmd Pointer to the command descriptor (as registered).
4576 * @param pCmdHlp Pointer to command helper functions.
4577 * @param pVM Pointer to the current VM (if any).
4578 * @param paArgs Pointer to (readonly) array of arguments.
4579 * @param cArgs Number of arguments in the array.
4580 */
4581static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4582{
4583 /*
4584 * Validate input.
4585 */
4586 if (!pVM)
4587 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4588 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4589 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4590
4591 if (!cArgs)
4592 {
4593 /*
4594 * Print the list of error injection locations with status.
4595 */
4596 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4597 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4598 }
4599 else
4600 {
4601
4602 /*
4603 * String switch on where to inject the error.
4604 */
4605 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4606 const char *pszWhere = paArgs[0].u.pszString;
4607 if (!strcmp(pszWhere, "handy"))
4608 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4609 else
4610 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4611 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4612 }
4613 return VINF_SUCCESS;
4614}
4615
4616
4617/**
4618 * The '.pgmsync' command.
4619 *
4620 * @returns VBox status.
4621 * @param pCmd Pointer to the command descriptor (as registered).
4622 * @param pCmdHlp Pointer to command helper functions.
4623 * @param pVM Pointer to the current VM (if any).
4624 * @param paArgs Pointer to (readonly) array of arguments.
4625 * @param cArgs Number of arguments in the array.
4626 */
4627static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4628{
4629 /*
4630 * Validate input.
4631 */
4632 if (!pVM)
4633 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4634
4635 /*
4636 * Force page directory sync.
4637 */
4638 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4639
4640 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4641 if (RT_FAILURE(rc))
4642 return rc;
4643
4644 return VINF_SUCCESS;
4645}
4646
4647
4648#ifdef VBOX_STRICT
4649/**
4650 * The '.pgmassertcr3' command.
4651 *
4652 * @returns VBox status.
4653 * @param pCmd Pointer to the command descriptor (as registered).
4654 * @param pCmdHlp Pointer to command helper functions.
4655 * @param pVM Pointer to the current VM (if any).
4656 * @param paArgs Pointer to (readonly) array of arguments.
4657 * @param cArgs Number of arguments in the array.
4658 */
4659static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4660{
4661 /*
4662 * Validate input.
4663 */
4664 if (!pVM)
4665 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4666
4667 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4668 if (RT_FAILURE(rc))
4669 return rc;
4670
4671 PGMAssertCR3(pVM, CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM));
4672
4673 return VINF_SUCCESS;
4674}
4675#endif /* VBOX_STRICT */
4676
4677
4678/**
4679 * The '.pgmsyncalways' command.
4680 *
4681 * @returns VBox status.
4682 * @param pCmd Pointer to the command descriptor (as registered).
4683 * @param pCmdHlp Pointer to command helper functions.
4684 * @param pVM Pointer to the current VM (if any).
4685 * @param paArgs Pointer to (readonly) array of arguments.
4686 * @param cArgs Number of arguments in the array.
4687 */
4688static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4689{
4690 /*
4691 * Validate input.
4692 */
4693 if (!pVM)
4694 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4695
4696 /*
4697 * Force page directory sync.
4698 */
4699 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4700 {
4701 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4702 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4703 }
4704 else
4705 {
4706 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4707 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4708 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4709 }
4710}
4711
4712#endif /* VBOX_WITH_DEBUGGER */
4713
4714/**
4715 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4716 */
4717typedef struct PGMCHECKINTARGS
4718{
4719 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4720 PPGMPHYSHANDLER pPrevPhys;
4721 PPGMVIRTHANDLER pPrevVirt;
4722 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4723 PVM pVM;
4724} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4725
4726/**
4727 * Validate a node in the physical handler tree.
4728 *
4729 * @returns 0 on if ok, other wise 1.
4730 * @param pNode The handler node.
4731 * @param pvUser pVM.
4732 */
4733static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4734{
4735 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4736 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4737 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4738 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4739 AssertReleaseMsg( !pArgs->pPrevPhys
4740 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4741 ("pPrevPhys=%p %RGp-%RGp %s\n"
4742 " pCur=%p %RGp-%RGp %s\n",
4743 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4744 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4745 pArgs->pPrevPhys = pCur;
4746 return 0;
4747}
4748
4749
4750/**
4751 * Validate a node in the virtual handler tree.
4752 *
4753 * @returns 0 on if ok, other wise 1.
4754 * @param pNode The handler node.
4755 * @param pvUser pVM.
4756 */
4757static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4758{
4759 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4760 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4761 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4762 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4763 AssertReleaseMsg( !pArgs->pPrevVirt
4764 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4765 ("pPrevVirt=%p %RGv-%RGv %s\n"
4766 " pCur=%p %RGv-%RGv %s\n",
4767 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4768 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4769 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4770 {
4771 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4772 ("pCur=%p %RGv-%RGv %s\n"
4773 "iPage=%d offVirtHandle=%#x expected %#x\n",
4774 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4775 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4776 }
4777 pArgs->pPrevVirt = pCur;
4778 return 0;
4779}
4780
4781
4782/**
4783 * Validate a node in the virtual handler tree.
4784 *
4785 * @returns 0 on if ok, other wise 1.
4786 * @param pNode The handler node.
4787 * @param pvUser pVM.
4788 */
4789static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4790{
4791 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4792 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4793 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4794 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4795 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4796 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4797 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4798 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4799 " pCur=%p %RGp-%RGp\n",
4800 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4801 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4802 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4803 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4804 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4805 " pCur=%p %RGp-%RGp\n",
4806 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4807 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4808 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4809 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4810 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4811 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4812 {
4813 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4814 for (;;)
4815 {
4816 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4817 AssertReleaseMsg(pCur2 != pCur,
4818 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4819 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4820 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4821 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4822 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4823 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4824 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4825 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4826 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4827 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4828 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4829 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4830 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4831 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4832 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4833 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4834 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4835 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4836 break;
4837 }
4838 }
4839
4840 pArgs->pPrevPhys2Virt = pCur;
4841 return 0;
4842}
4843
4844
4845/**
4846 * Perform an integrity check on the PGM component.
4847 *
4848 * @returns VINF_SUCCESS if everything is fine.
4849 * @returns VBox error status after asserting on integrity breach.
4850 * @param pVM The VM handle.
4851 */
4852VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4853{
4854 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4855
4856 /*
4857 * Check the trees.
4858 */
4859 int cErrors = 0;
4860 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4861 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4862 PGMCHECKINTARGS Args = s_LeftToRight;
4863 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4864 Args = s_RightToLeft;
4865 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4866 Args = s_LeftToRight;
4867 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4868 Args = s_RightToLeft;
4869 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4870 Args = s_LeftToRight;
4871 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4872 Args = s_RightToLeft;
4873 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4874 Args = s_LeftToRight;
4875 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4876 Args = s_RightToLeft;
4877 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4878
4879 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4880}
4881
4882
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette