VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 18927

Last change on this file since 18927 was 18927, checked in by vboxsync, 16 years ago

Big step to separate VMM data structures for guest SMP. (pgm, em)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 228.6 KB
Line 
1/* $Id: PGM.cpp 18927 2009-04-16 11:41:38Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#ifdef DEBUG_bird
602# include <iprt/env.h>
603#endif
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.5.x and later. */
612#define PGM_SAVED_STATE_VERSION 9
613/** Saved state data unit version for 2.2.0. */
614#define PGM_SAVED_STATE_VERSION_RR_DESC 7
615/** Saved state data unit version. */
616#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
617
618
619/*******************************************************************************
620* Internal Functions *
621*******************************************************************************/
622static int pgmR3InitPaging(PVM pVM);
623static void pgmR3InitStats(PVM pVM);
624static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
625static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
628static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630#ifdef VBOX_STRICT
631static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
632#endif
633static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
634static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
635static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
636static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
637static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
638
639#ifdef VBOX_WITH_DEBUGGER
640/** @todo Convert the first two commands to 'info' items. */
641static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646# ifdef VBOX_STRICT
647static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# endif
649#endif
650
651
652/*******************************************************************************
653* Global Variables *
654*******************************************************************************/
655#ifdef VBOX_WITH_DEBUGGER
656/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
657static const DBGCVARDESC g_aPgmErrorArgs[] =
658{
659 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
660 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
661};
662
663/** Command descriptors. */
664static const DBGCCMD g_aCmds[] =
665{
666 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
667 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
668 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
669 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
670 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
671 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
672#ifdef VBOX_STRICT
673 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
674#endif
675 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
676};
677#endif
678
679
680
681
682/*
683 * Shadow - 32-bit mode
684 */
685#define PGM_SHW_TYPE PGM_TYPE_32BIT
686#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
687#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
688#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
689#include "PGMShw.h"
690
691/* Guest - real mode */
692#define PGM_GST_TYPE PGM_TYPE_REAL
693#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
694#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
695#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
696#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
697#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
698#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
699#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
700#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
701#include "PGMBth.h"
702#include "PGMGstDefs.h"
703#include "PGMGst.h"
704#undef BTH_PGMPOOLKIND_PT_FOR_PT
705#undef BTH_PGMPOOLKIND_ROOT
706#undef PGM_BTH_NAME
707#undef PGM_BTH_NAME_RC_STR
708#undef PGM_BTH_NAME_R0_STR
709#undef PGM_GST_TYPE
710#undef PGM_GST_NAME
711#undef PGM_GST_NAME_RC_STR
712#undef PGM_GST_NAME_R0_STR
713
714/* Guest - protected mode */
715#define PGM_GST_TYPE PGM_TYPE_PROT
716#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
717#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
718#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
719#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
720#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
721#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
722#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
723#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
724#include "PGMBth.h"
725#include "PGMGstDefs.h"
726#include "PGMGst.h"
727#undef BTH_PGMPOOLKIND_PT_FOR_PT
728#undef BTH_PGMPOOLKIND_ROOT
729#undef PGM_BTH_NAME
730#undef PGM_BTH_NAME_RC_STR
731#undef PGM_BTH_NAME_R0_STR
732#undef PGM_GST_TYPE
733#undef PGM_GST_NAME
734#undef PGM_GST_NAME_RC_STR
735#undef PGM_GST_NAME_R0_STR
736
737/* Guest - 32-bit mode */
738#define PGM_GST_TYPE PGM_TYPE_32BIT
739#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
740#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
741#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
743#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
744#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
745#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
746#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
747#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
748#include "PGMBth.h"
749#include "PGMGstDefs.h"
750#include "PGMGst.h"
751#undef BTH_PGMPOOLKIND_PT_FOR_BIG
752#undef BTH_PGMPOOLKIND_PT_FOR_PT
753#undef BTH_PGMPOOLKIND_ROOT
754#undef PGM_BTH_NAME
755#undef PGM_BTH_NAME_RC_STR
756#undef PGM_BTH_NAME_R0_STR
757#undef PGM_GST_TYPE
758#undef PGM_GST_NAME
759#undef PGM_GST_NAME_RC_STR
760#undef PGM_GST_NAME_R0_STR
761
762#undef PGM_SHW_TYPE
763#undef PGM_SHW_NAME
764#undef PGM_SHW_NAME_RC_STR
765#undef PGM_SHW_NAME_R0_STR
766
767
768/*
769 * Shadow - PAE mode
770 */
771#define PGM_SHW_TYPE PGM_TYPE_PAE
772#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
773#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
774#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
775#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
776#include "PGMShw.h"
777
778/* Guest - real mode */
779#define PGM_GST_TYPE PGM_TYPE_REAL
780#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
781#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
782#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
783#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
784#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
785#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
786#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
787#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
788#include "PGMGstDefs.h"
789#include "PGMBth.h"
790#undef BTH_PGMPOOLKIND_PT_FOR_PT
791#undef BTH_PGMPOOLKIND_ROOT
792#undef PGM_BTH_NAME
793#undef PGM_BTH_NAME_RC_STR
794#undef PGM_BTH_NAME_R0_STR
795#undef PGM_GST_TYPE
796#undef PGM_GST_NAME
797#undef PGM_GST_NAME_RC_STR
798#undef PGM_GST_NAME_R0_STR
799
800/* Guest - protected mode */
801#define PGM_GST_TYPE PGM_TYPE_PROT
802#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
803#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
804#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
805#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
806#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
807#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
808#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
809#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
810#include "PGMGstDefs.h"
811#include "PGMBth.h"
812#undef BTH_PGMPOOLKIND_PT_FOR_PT
813#undef BTH_PGMPOOLKIND_ROOT
814#undef PGM_BTH_NAME
815#undef PGM_BTH_NAME_RC_STR
816#undef PGM_BTH_NAME_R0_STR
817#undef PGM_GST_TYPE
818#undef PGM_GST_NAME
819#undef PGM_GST_NAME_RC_STR
820#undef PGM_GST_NAME_R0_STR
821
822/* Guest - 32-bit mode */
823#define PGM_GST_TYPE PGM_TYPE_32BIT
824#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
825#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
826#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
827#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
828#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
829#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
830#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
831#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
832#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
833#include "PGMGstDefs.h"
834#include "PGMBth.h"
835#undef BTH_PGMPOOLKIND_PT_FOR_BIG
836#undef BTH_PGMPOOLKIND_PT_FOR_PT
837#undef BTH_PGMPOOLKIND_ROOT
838#undef PGM_BTH_NAME
839#undef PGM_BTH_NAME_RC_STR
840#undef PGM_BTH_NAME_R0_STR
841#undef PGM_GST_TYPE
842#undef PGM_GST_NAME
843#undef PGM_GST_NAME_RC_STR
844#undef PGM_GST_NAME_R0_STR
845
846/* Guest - PAE mode */
847#define PGM_GST_TYPE PGM_TYPE_PAE
848#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
849#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
850#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
851#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
852#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
853#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
854#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
855#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
856#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
857#include "PGMBth.h"
858#include "PGMGstDefs.h"
859#include "PGMGst.h"
860#undef BTH_PGMPOOLKIND_PT_FOR_BIG
861#undef BTH_PGMPOOLKIND_PT_FOR_PT
862#undef BTH_PGMPOOLKIND_ROOT
863#undef PGM_BTH_NAME
864#undef PGM_BTH_NAME_RC_STR
865#undef PGM_BTH_NAME_R0_STR
866#undef PGM_GST_TYPE
867#undef PGM_GST_NAME
868#undef PGM_GST_NAME_RC_STR
869#undef PGM_GST_NAME_R0_STR
870
871#undef PGM_SHW_TYPE
872#undef PGM_SHW_NAME
873#undef PGM_SHW_NAME_RC_STR
874#undef PGM_SHW_NAME_R0_STR
875
876
877/*
878 * Shadow - AMD64 mode
879 */
880#define PGM_SHW_TYPE PGM_TYPE_AMD64
881#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
882#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
883#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
884#include "PGMShw.h"
885
886#ifdef VBOX_WITH_64_BITS_GUESTS
887/* Guest - AMD64 mode */
888# define PGM_GST_TYPE PGM_TYPE_AMD64
889# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
890# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
891# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
892# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
893# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
894# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
895# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
896# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
897# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
898# include "PGMBth.h"
899# include "PGMGstDefs.h"
900# include "PGMGst.h"
901# undef BTH_PGMPOOLKIND_PT_FOR_BIG
902# undef BTH_PGMPOOLKIND_PT_FOR_PT
903# undef BTH_PGMPOOLKIND_ROOT
904# undef PGM_BTH_NAME
905# undef PGM_BTH_NAME_RC_STR
906# undef PGM_BTH_NAME_R0_STR
907# undef PGM_GST_TYPE
908# undef PGM_GST_NAME
909# undef PGM_GST_NAME_RC_STR
910# undef PGM_GST_NAME_R0_STR
911#endif /* VBOX_WITH_64_BITS_GUESTS */
912
913#undef PGM_SHW_TYPE
914#undef PGM_SHW_NAME
915#undef PGM_SHW_NAME_RC_STR
916#undef PGM_SHW_NAME_R0_STR
917
918
919/*
920 * Shadow - Nested paging mode
921 */
922#define PGM_SHW_TYPE PGM_TYPE_NESTED
923#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
924#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
925#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
926#include "PGMShw.h"
927
928/* Guest - real mode */
929#define PGM_GST_TYPE PGM_TYPE_REAL
930#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
931#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
932#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
933#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
934#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
935#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
936#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
937#include "PGMGstDefs.h"
938#include "PGMBth.h"
939#undef BTH_PGMPOOLKIND_PT_FOR_PT
940#undef PGM_BTH_NAME
941#undef PGM_BTH_NAME_RC_STR
942#undef PGM_BTH_NAME_R0_STR
943#undef PGM_GST_TYPE
944#undef PGM_GST_NAME
945#undef PGM_GST_NAME_RC_STR
946#undef PGM_GST_NAME_R0_STR
947
948/* Guest - protected mode */
949#define PGM_GST_TYPE PGM_TYPE_PROT
950#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
951#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
952#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
953#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
954#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
955#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
956#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
957#include "PGMGstDefs.h"
958#include "PGMBth.h"
959#undef BTH_PGMPOOLKIND_PT_FOR_PT
960#undef PGM_BTH_NAME
961#undef PGM_BTH_NAME_RC_STR
962#undef PGM_BTH_NAME_R0_STR
963#undef PGM_GST_TYPE
964#undef PGM_GST_NAME
965#undef PGM_GST_NAME_RC_STR
966#undef PGM_GST_NAME_R0_STR
967
968/* Guest - 32-bit mode */
969#define PGM_GST_TYPE PGM_TYPE_32BIT
970#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
971#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
972#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
973#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
974#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
975#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
976#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
977#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
978#include "PGMGstDefs.h"
979#include "PGMBth.h"
980#undef BTH_PGMPOOLKIND_PT_FOR_BIG
981#undef BTH_PGMPOOLKIND_PT_FOR_PT
982#undef PGM_BTH_NAME
983#undef PGM_BTH_NAME_RC_STR
984#undef PGM_BTH_NAME_R0_STR
985#undef PGM_GST_TYPE
986#undef PGM_GST_NAME
987#undef PGM_GST_NAME_RC_STR
988#undef PGM_GST_NAME_R0_STR
989
990/* Guest - PAE mode */
991#define PGM_GST_TYPE PGM_TYPE_PAE
992#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
993#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
994#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
995#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
996#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
997#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
998#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
999#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1000#include "PGMGstDefs.h"
1001#include "PGMBth.h"
1002#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1003#undef BTH_PGMPOOLKIND_PT_FOR_PT
1004#undef PGM_BTH_NAME
1005#undef PGM_BTH_NAME_RC_STR
1006#undef PGM_BTH_NAME_R0_STR
1007#undef PGM_GST_TYPE
1008#undef PGM_GST_NAME
1009#undef PGM_GST_NAME_RC_STR
1010#undef PGM_GST_NAME_R0_STR
1011
1012#ifdef VBOX_WITH_64_BITS_GUESTS
1013/* Guest - AMD64 mode */
1014# define PGM_GST_TYPE PGM_TYPE_AMD64
1015# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1016# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1017# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1018# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1019# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1020# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1021# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1022# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1023# include "PGMGstDefs.h"
1024# include "PGMBth.h"
1025# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1026# undef BTH_PGMPOOLKIND_PT_FOR_PT
1027# undef PGM_BTH_NAME
1028# undef PGM_BTH_NAME_RC_STR
1029# undef PGM_BTH_NAME_R0_STR
1030# undef PGM_GST_TYPE
1031# undef PGM_GST_NAME
1032# undef PGM_GST_NAME_RC_STR
1033# undef PGM_GST_NAME_R0_STR
1034#endif /* VBOX_WITH_64_BITS_GUESTS */
1035
1036#undef PGM_SHW_TYPE
1037#undef PGM_SHW_NAME
1038#undef PGM_SHW_NAME_RC_STR
1039#undef PGM_SHW_NAME_R0_STR
1040
1041
1042/*
1043 * Shadow - EPT
1044 */
1045#define PGM_SHW_TYPE PGM_TYPE_EPT
1046#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1047#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1048#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1049#include "PGMShw.h"
1050
1051/* Guest - real mode */
1052#define PGM_GST_TYPE PGM_TYPE_REAL
1053#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1054#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1055#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1056#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1057#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1058#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1059#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1060#include "PGMGstDefs.h"
1061#include "PGMBth.h"
1062#undef BTH_PGMPOOLKIND_PT_FOR_PT
1063#undef PGM_BTH_NAME
1064#undef PGM_BTH_NAME_RC_STR
1065#undef PGM_BTH_NAME_R0_STR
1066#undef PGM_GST_TYPE
1067#undef PGM_GST_NAME
1068#undef PGM_GST_NAME_RC_STR
1069#undef PGM_GST_NAME_R0_STR
1070
1071/* Guest - protected mode */
1072#define PGM_GST_TYPE PGM_TYPE_PROT
1073#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1074#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1075#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1076#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1077#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1078#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1079#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1080#include "PGMGstDefs.h"
1081#include "PGMBth.h"
1082#undef BTH_PGMPOOLKIND_PT_FOR_PT
1083#undef PGM_BTH_NAME
1084#undef PGM_BTH_NAME_RC_STR
1085#undef PGM_BTH_NAME_R0_STR
1086#undef PGM_GST_TYPE
1087#undef PGM_GST_NAME
1088#undef PGM_GST_NAME_RC_STR
1089#undef PGM_GST_NAME_R0_STR
1090
1091/* Guest - 32-bit mode */
1092#define PGM_GST_TYPE PGM_TYPE_32BIT
1093#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1094#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1095#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1096#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1097#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1098#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1099#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1100#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1101#include "PGMGstDefs.h"
1102#include "PGMBth.h"
1103#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1104#undef BTH_PGMPOOLKIND_PT_FOR_PT
1105#undef PGM_BTH_NAME
1106#undef PGM_BTH_NAME_RC_STR
1107#undef PGM_BTH_NAME_R0_STR
1108#undef PGM_GST_TYPE
1109#undef PGM_GST_NAME
1110#undef PGM_GST_NAME_RC_STR
1111#undef PGM_GST_NAME_R0_STR
1112
1113/* Guest - PAE mode */
1114#define PGM_GST_TYPE PGM_TYPE_PAE
1115#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1116#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1117#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1118#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1119#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1120#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1121#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1122#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1123#include "PGMGstDefs.h"
1124#include "PGMBth.h"
1125#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1126#undef BTH_PGMPOOLKIND_PT_FOR_PT
1127#undef PGM_BTH_NAME
1128#undef PGM_BTH_NAME_RC_STR
1129#undef PGM_BTH_NAME_R0_STR
1130#undef PGM_GST_TYPE
1131#undef PGM_GST_NAME
1132#undef PGM_GST_NAME_RC_STR
1133#undef PGM_GST_NAME_R0_STR
1134
1135#ifdef VBOX_WITH_64_BITS_GUESTS
1136/* Guest - AMD64 mode */
1137# define PGM_GST_TYPE PGM_TYPE_AMD64
1138# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1139# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1140# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1141# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1142# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1143# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1144# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1145# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1146# include "PGMGstDefs.h"
1147# include "PGMBth.h"
1148# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1149# undef BTH_PGMPOOLKIND_PT_FOR_PT
1150# undef PGM_BTH_NAME
1151# undef PGM_BTH_NAME_RC_STR
1152# undef PGM_BTH_NAME_R0_STR
1153# undef PGM_GST_TYPE
1154# undef PGM_GST_NAME
1155# undef PGM_GST_NAME_RC_STR
1156# undef PGM_GST_NAME_R0_STR
1157#endif /* VBOX_WITH_64_BITS_GUESTS */
1158
1159#undef PGM_SHW_TYPE
1160#undef PGM_SHW_NAME
1161#undef PGM_SHW_NAME_RC_STR
1162#undef PGM_SHW_NAME_R0_STR
1163
1164
1165
1166/**
1167 * Initiates the paging of VM.
1168 *
1169 * @returns VBox status code.
1170 * @param pVM Pointer to VM structure.
1171 */
1172VMMR3DECL(int) PGMR3Init(PVM pVM)
1173{
1174 LogFlow(("PGMR3Init:\n"));
1175 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1176 int rc;
1177
1178 /*
1179 * Assert alignment and sizes.
1180 */
1181 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1182
1183 /*
1184 * Init the structure.
1185 */
1186 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1187 pVM->pgm.s.offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1188
1189 /* Init the per-CPU part. */
1190 for (unsigned i=0;i<pVM->cCPUs;i++)
1191 {
1192 PVMCPU pVCpu = &pVM->aCpus[i];
1193 PPGMCPU pPGM = &pVCpu->pgm.s;
1194
1195 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1196 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1197 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1198
1199 pPGM->enmShadowMode = PGMMODE_INVALID;
1200 pPGM->enmGuestMode = PGMMODE_INVALID;
1201
1202 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1203
1204 pPGM->pGstPaePdptR3 = NULL;
1205#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1206 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1207#endif
1208 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1209 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1210 {
1211 pPGM->apGstPaePDsR3[i] = NULL;
1212#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1213 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1214#endif
1215 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1216 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1217 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1218 }
1219
1220 pPGM->fA20Enabled = true;
1221 }
1222
1223 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1224 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1225 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1226
1227 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1228#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1229 true
1230#else
1231 false
1232#endif
1233 );
1234 AssertLogRelRCReturn(rc, rc);
1235
1236#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1237 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1238#else
1239 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1240#endif
1241 AssertLogRelRCReturn(rc, rc);
1242 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1243 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1244
1245 /*
1246 * Get the configured RAM size - to estimate saved state size.
1247 */
1248 uint64_t cbRam;
1249 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1250 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1251 cbRam = 0;
1252 else if (RT_SUCCESS(rc))
1253 {
1254 if (cbRam < PAGE_SIZE)
1255 cbRam = 0;
1256 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1257 }
1258 else
1259 {
1260 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1261 return rc;
1262 }
1263
1264 /*
1265 * Register callbacks, string formatters and the saved state data unit.
1266 */
1267#ifdef VBOX_STRICT
1268 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1269#endif
1270 PGMRegisterStringFormatTypes();
1271
1272 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1273 NULL, pgmR3Save, NULL,
1274 NULL, pgmR3Load, NULL);
1275 if (RT_FAILURE(rc))
1276 return rc;
1277
1278 /*
1279 * Initialize the PGM critical section and flush the phys TLBs
1280 */
1281 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1282 AssertRCReturn(rc, rc);
1283
1284 PGMR3PhysChunkInvalidateTLB(pVM);
1285 PGMPhysInvalidatePageR3MapTLB(pVM);
1286 PGMPhysInvalidatePageR0MapTLB(pVM);
1287 PGMPhysInvalidatePageGCMapTLB(pVM);
1288
1289 /*
1290 * For the time being we sport a full set of handy pages in addition to the base
1291 * memory to simplify things.
1292 */
1293 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1294 AssertRCReturn(rc, rc);
1295
1296 /*
1297 * Trees
1298 */
1299 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1300 if (RT_SUCCESS(rc))
1301 {
1302 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1303 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1304
1305 /*
1306 * Alocate the zero page.
1307 */
1308 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1309 }
1310 if (RT_SUCCESS(rc))
1311 {
1312 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1313 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1314 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1315 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1316
1317 /*
1318 * Init the paging.
1319 */
1320 rc = pgmR3InitPaging(pVM);
1321 }
1322 if (RT_SUCCESS(rc))
1323 {
1324 /*
1325 * Init the page pool.
1326 */
1327 rc = pgmR3PoolInit(pVM);
1328 }
1329 if (RT_SUCCESS(rc))
1330 {
1331 for (unsigned i=0;i<pVM->cCPUs;i++)
1332 {
1333 PVMCPU pVCpu = &pVM->aCpus[i];
1334
1335 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1336 if (RT_FAILURE(rc))
1337 break;
1338 }
1339 }
1340
1341 if (RT_SUCCESS(rc))
1342 {
1343 /*
1344 * Info & statistics
1345 */
1346 DBGFR3InfoRegisterInternal(pVM, "mode",
1347 "Shows the current paging mode. "
1348 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1349 pgmR3InfoMode);
1350 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1351 "Dumps all the entries in the top level paging table. No arguments.",
1352 pgmR3InfoCr3);
1353 DBGFR3InfoRegisterInternal(pVM, "phys",
1354 "Dumps all the physical address ranges. No arguments.",
1355 pgmR3PhysInfo);
1356 DBGFR3InfoRegisterInternal(pVM, "handlers",
1357 "Dumps physical, virtual and hyper virtual handlers. "
1358 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1359 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1360 pgmR3InfoHandlers);
1361 DBGFR3InfoRegisterInternal(pVM, "mappings",
1362 "Dumps guest mappings.",
1363 pgmR3MapInfo);
1364
1365 pgmR3InitStats(pVM);
1366
1367#ifdef VBOX_WITH_DEBUGGER
1368 /*
1369 * Debugger commands.
1370 */
1371 static bool s_fRegisteredCmds = false;
1372 if (!s_fRegisteredCmds)
1373 {
1374 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1375 if (RT_SUCCESS(rc))
1376 s_fRegisteredCmds = true;
1377 }
1378#endif
1379 return VINF_SUCCESS;
1380 }
1381
1382 /* Almost no cleanup necessary, MM frees all memory. */
1383 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1384
1385 return rc;
1386}
1387
1388
1389/**
1390 * Initializes the per-VCPU PGM.
1391 *
1392 * @returns VBox status code.
1393 * @param pVM The VM to operate on.
1394 */
1395VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1396{
1397 LogFlow(("PGMR3InitCPU\n"));
1398 return VINF_SUCCESS;
1399}
1400
1401
1402/**
1403 * Init paging.
1404 *
1405 * Since we need to check what mode the host is operating in before we can choose
1406 * the right paging functions for the host we have to delay this until R0 has
1407 * been initialized.
1408 *
1409 * @returns VBox status code.
1410 * @param pVM VM handle.
1411 */
1412static int pgmR3InitPaging(PVM pVM)
1413{
1414 /*
1415 * Force a recalculation of modes and switcher so everyone gets notified.
1416 */
1417 for (unsigned i=0;i<pVM->cCPUs;i++)
1418 {
1419 PVMCPU pVCpu = &pVM->aCpus[i];
1420
1421 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1422 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1423 }
1424
1425 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1426
1427 /*
1428 * Allocate static mapping space for whatever the cr3 register
1429 * points to and in the case of PAE mode to the 4 PDs.
1430 */
1431 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1432 if (RT_FAILURE(rc))
1433 {
1434 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1435 return rc;
1436 }
1437 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1438
1439 /*
1440 * Allocate pages for the three possible intermediate contexts
1441 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1442 * for the sake of simplicity. The AMD64 uses the PAE for the
1443 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1444 *
1445 * We assume that two page tables will be enought for the core code
1446 * mappings (HC virtual and identity).
1447 */
1448 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1449 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1450 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1451 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1452 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1453 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1454 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1455 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1456 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1457 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1458 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1459 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1460 if ( !pVM->pgm.s.pInterPD
1461 || !pVM->pgm.s.apInterPTs[0]
1462 || !pVM->pgm.s.apInterPTs[1]
1463 || !pVM->pgm.s.apInterPaePTs[0]
1464 || !pVM->pgm.s.apInterPaePTs[1]
1465 || !pVM->pgm.s.apInterPaePDs[0]
1466 || !pVM->pgm.s.apInterPaePDs[1]
1467 || !pVM->pgm.s.apInterPaePDs[2]
1468 || !pVM->pgm.s.apInterPaePDs[3]
1469 || !pVM->pgm.s.pInterPaePDPT
1470 || !pVM->pgm.s.pInterPaePDPT64
1471 || !pVM->pgm.s.pInterPaePML4)
1472 {
1473 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1474 return VERR_NO_PAGE_MEMORY;
1475 }
1476
1477 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1478 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1479 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1480 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1481 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1482 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1483
1484 /*
1485 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1486 */
1487 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1488 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1489 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1490
1491 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1492 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1493
1494 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1495 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1496 {
1497 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1498 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1499 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1500 }
1501
1502 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1503 {
1504 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1505 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1506 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1507 }
1508
1509 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1510 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1511 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1512 | HCPhysInterPaePDPT64;
1513
1514 /*
1515 * Initialize paging workers and mode from current host mode
1516 * and the guest running in real mode.
1517 */
1518 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1519 switch (pVM->pgm.s.enmHostMode)
1520 {
1521 case SUPPAGINGMODE_32_BIT:
1522 case SUPPAGINGMODE_32_BIT_GLOBAL:
1523 case SUPPAGINGMODE_PAE:
1524 case SUPPAGINGMODE_PAE_GLOBAL:
1525 case SUPPAGINGMODE_PAE_NX:
1526 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1527 break;
1528
1529 case SUPPAGINGMODE_AMD64:
1530 case SUPPAGINGMODE_AMD64_GLOBAL:
1531 case SUPPAGINGMODE_AMD64_NX:
1532 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1533#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1534 if (ARCH_BITS != 64)
1535 {
1536 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1537 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1538 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1539 }
1540#endif
1541 break;
1542 default:
1543 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1544 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1545 }
1546 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1547 if (RT_SUCCESS(rc))
1548 {
1549 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1550#if HC_ARCH_BITS == 64
1551 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1552 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1553 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1554 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1555 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1556 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1557 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1558#endif
1559
1560 return VINF_SUCCESS;
1561 }
1562
1563 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1564 return rc;
1565}
1566
1567
1568/**
1569 * Init statistics
1570 */
1571static void pgmR3InitStats(PVM pVM)
1572{
1573 PPGM pPGM = &pVM->pgm.s;
1574 int rc;
1575
1576 /* Common - misc variables */
1577 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1578 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1579 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1580 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1581 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1582 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1583 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1584 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1585
1586#ifdef VBOX_WITH_STATISTICS
1587
1588# define PGM_REG_COUNTER(a, b, c) \
1589 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1590 AssertRC(rc);
1591
1592# define PGM_REG_PROFILE(a, b, c) \
1593 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1594 AssertRC(rc);
1595
1596 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1597 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1598
1599 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1600 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1601 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1602 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1603 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1604 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1605 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1606 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1607
1608 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1609 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1610 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1611 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1612
1613 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1614 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1615 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1616 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1617
1618 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1619 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1620/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1621 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1622 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1623/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1624
1625 /* GC only: */
1626 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1627 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1628 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1629 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1630
1631# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1632 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1633 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1634 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1635 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1636 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1637 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1638# endif
1639
1640# undef PGM_REG_COUNTER
1641# undef PGM_REG_PROFILE
1642#endif
1643
1644 /*
1645 * Note! The layout below matches the member layout exactly!
1646 */
1647
1648 /*
1649 * Common - stats
1650 */
1651 for (unsigned i=0;i<pVM->cCPUs;i++)
1652 {
1653 PVMCPU pVCpu = &pVM->aCpus[i];
1654 PPGMCPU pPGM = &pVCpu->pgm.s;
1655
1656#define PGM_REG_COUNTER(a, b, c) \
1657 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1658 AssertRC(rc);
1659#define PGM_REG_PROFILE(a, b, c) \
1660 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1661 AssertRC(rc);
1662
1663 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1664
1665#ifdef VBOX_WITH_STATISTICS
1666 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1667 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1668 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1669 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1670 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1671 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1672
1673 /* R0 only: */
1674 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1675 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1676 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1677 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1678 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1679 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1680 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1681 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1682 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1683 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1684 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1685 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1686 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1687 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1688 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1689 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1690 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1691 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1692 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1693 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1694 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1695 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1696 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1697 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1698 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1699 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1700 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1701 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1702 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1703 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1704 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1705 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1706 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1707 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1708 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1709 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1710
1711 /* RZ only: */
1712 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1713 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1714 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1715 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1716 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1717 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1718 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1719 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1720 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1721 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1722 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1723 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1724 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1725 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1726 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1727 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1728 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1729 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1730 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1731 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1732 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1733 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1734 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1735 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1736 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1737 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1738 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1739 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1740 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1741 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1742 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1743 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1744 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1745 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1746 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1747 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1748 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1749 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1750 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1751 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1752 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1753 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1754 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1755 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1756 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1757 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1758
1759 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1760 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1761 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1762 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1763 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1764
1765 /* HC only: */
1766
1767 /* RZ & R3: */
1768 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1769 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1770 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1771 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1772 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1773 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1774 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1775 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1776 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1777 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1778 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1779 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1780 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1781 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1782 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1783 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1784 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1785 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1786 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1787 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1788 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1789 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1790 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1791 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1792 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1793 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1794 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1795 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1796 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1797 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1798 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1799 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1800 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1801 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1802 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1803 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1804 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1805 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1806 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1807 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1808 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1809 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1810 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1811
1812 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1813 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1814 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1815 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1816 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1817 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1818 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1819 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1820 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1821 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1822 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1823 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1824 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1825 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1826 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1827 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1828 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1829 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1830 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1831 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1832 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1833 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1834 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1835 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1836 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1837 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1838 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1839 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1840 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1841 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1842 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1843 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1844 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1845 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1846 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1847 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1848 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1849 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1850 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1851 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1852 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1853 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1854 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1855#endif /* VBOX_WITH_STATISTICS */
1856
1857#undef PGM_REG_PROFILE
1858#undef PGM_REG_COUNTER
1859
1860 }
1861}
1862
1863
1864/**
1865 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1866 *
1867 * The dynamic mapping area will also be allocated and initialized at this
1868 * time. We could allocate it during PGMR3Init of course, but the mapping
1869 * wouldn't be allocated at that time preventing us from setting up the
1870 * page table entries with the dummy page.
1871 *
1872 * @returns VBox status code.
1873 * @param pVM VM handle.
1874 */
1875VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1876{
1877 RTGCPTR GCPtr;
1878 int rc;
1879
1880 /*
1881 * Reserve space for the dynamic mappings.
1882 */
1883 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1884 if (RT_SUCCESS(rc))
1885 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1886
1887 if ( RT_SUCCESS(rc)
1888 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1889 {
1890 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1891 if (RT_SUCCESS(rc))
1892 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1893 }
1894 if (RT_SUCCESS(rc))
1895 {
1896 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1897 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1898 }
1899 return rc;
1900}
1901
1902
1903/**
1904 * Ring-3 init finalizing.
1905 *
1906 * @returns VBox status code.
1907 * @param pVM The VM handle.
1908 */
1909VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1910{
1911 int rc;
1912
1913 /*
1914 * Reserve space for the dynamic mappings.
1915 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1916 */
1917 /* get the pointer to the page table entries. */
1918 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1919 AssertRelease(pMapping);
1920 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1921 const unsigned iPT = off >> X86_PD_SHIFT;
1922 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1923 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1924 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1925
1926 /* init cache */
1927 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1928 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1929 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1930
1931 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1932 {
1933 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1934 AssertRCReturn(rc, rc);
1935 }
1936
1937 /*
1938 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1939 * Intel only goes up to 36 bits, so we stick to 36 as well.
1940 */
1941 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1942 uint32_t u32Dummy, u32Features;
1943 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1944
1945 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1946 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1947 else
1948 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1949
1950 /*
1951 * Allocate memory if we're supposed to do that.
1952 */
1953 if (pVM->pgm.s.fRamPreAlloc)
1954 rc = pgmR3PhysRamPreAllocate(pVM);
1955
1956 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1957 return rc;
1958}
1959
1960
1961/**
1962 * Applies relocations to data and code managed by this component.
1963 *
1964 * This function will be called at init and whenever the VMM need to relocate it
1965 * self inside the GC.
1966 *
1967 * @param pVM The VM.
1968 * @param offDelta Relocation delta relative to old location.
1969 */
1970VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1971{
1972 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1973
1974 /*
1975 * Paging stuff.
1976 */
1977 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1978
1979 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1980
1981 /* Shadow, guest and both mode switch & relocation for each VCPU. */
1982 for (unsigned i=0;i<pVM->cCPUs;i++)
1983 {
1984 PVMCPU pVCpu = &pVM->aCpus[i];
1985
1986 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
1987
1988 PGM_SHW_PFN(Relocate, pVM)(pVM, pVCpu, offDelta);
1989 PGM_GST_PFN(Relocate, pVM)(pVM, pVCpu, offDelta);
1990 PGM_BTH_PFN(Relocate, pVM)(pVM, pVCpu, offDelta);
1991 }
1992
1993 /*
1994 * Trees.
1995 */
1996 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1997
1998 /*
1999 * Ram ranges.
2000 */
2001 if (pVM->pgm.s.pRamRangesR3)
2002 {
2003 /* Update the pSelfRC pointers and relink them. */
2004 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2005 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2006 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2007 pgmR3PhysRelinkRamRanges(pVM);
2008 }
2009
2010 /*
2011 * Update the two page directories with all page table mappings.
2012 * (One or more of them have changed, that's why we're here.)
2013 */
2014 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2015 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2016 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2017
2018 /* Relocate GC addresses of Page Tables. */
2019 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2020 {
2021 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2022 {
2023 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2024 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2025 }
2026 }
2027
2028 /*
2029 * Dynamic page mapping area.
2030 */
2031 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2032 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2033 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2034
2035 /*
2036 * The Zero page.
2037 */
2038 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2039#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2040 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2041#else
2042 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2043#endif
2044
2045 /*
2046 * Physical and virtual handlers.
2047 */
2048 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2049 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2050 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2051
2052 /*
2053 * The page pool.
2054 */
2055 pgmR3PoolRelocate(pVM);
2056}
2057
2058
2059/**
2060 * Callback function for relocating a physical access handler.
2061 *
2062 * @returns 0 (continue enum)
2063 * @param pNode Pointer to a PGMPHYSHANDLER node.
2064 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2065 * not certain the delta will fit in a void pointer for all possible configs.
2066 */
2067static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2068{
2069 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2070 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2071 if (pHandler->pfnHandlerRC)
2072 pHandler->pfnHandlerRC += offDelta;
2073 if (pHandler->pvUserRC >= 0x10000)
2074 pHandler->pvUserRC += offDelta;
2075 return 0;
2076}
2077
2078
2079/**
2080 * Callback function for relocating a virtual access handler.
2081 *
2082 * @returns 0 (continue enum)
2083 * @param pNode Pointer to a PGMVIRTHANDLER node.
2084 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2085 * not certain the delta will fit in a void pointer for all possible configs.
2086 */
2087static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2088{
2089 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2090 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2091 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2092 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2093 Assert(pHandler->pfnHandlerRC);
2094 pHandler->pfnHandlerRC += offDelta;
2095 return 0;
2096}
2097
2098
2099/**
2100 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2101 *
2102 * @returns 0 (continue enum)
2103 * @param pNode Pointer to a PGMVIRTHANDLER node.
2104 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2105 * not certain the delta will fit in a void pointer for all possible configs.
2106 */
2107static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2108{
2109 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2110 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2111 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2112 Assert(pHandler->pfnHandlerRC);
2113 pHandler->pfnHandlerRC += offDelta;
2114 return 0;
2115}
2116
2117
2118/**
2119 * The VM is being reset.
2120 *
2121 * For the PGM component this means that any PD write monitors
2122 * needs to be removed.
2123 *
2124 * @param pVM VM handle.
2125 */
2126VMMR3DECL(void) PGMR3Reset(PVM pVM)
2127{
2128 int rc;
2129
2130 LogFlow(("PGMR3Reset:\n"));
2131 VM_ASSERT_EMT(pVM);
2132
2133 pgmLock(pVM);
2134
2135 /*
2136 * Unfix any fixed mappings and disable CR3 monitoring.
2137 */
2138 pVM->pgm.s.fMappingsFixed = false;
2139 pVM->pgm.s.GCPtrMappingFixed = 0;
2140 pVM->pgm.s.cbMappingFixed = 0;
2141
2142 /* Exit the guest paging mode before the pgm pool gets reset.
2143 * Important to clean up the amd64 case.
2144 */
2145 for (unsigned i=0;i<pVM->cCPUs;i++)
2146 {
2147 PVMCPU pVCpu = &pVM->aCpus[i];
2148
2149 rc = PGM_GST_PFN(Exit, pVM)(pVM, pVCpu);
2150 AssertRC(rc);
2151 }
2152
2153#ifdef DEBUG
2154 DBGFR3InfoLog(pVM, "mappings", NULL);
2155 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2156#endif
2157
2158 /*
2159 * Reset the shadow page pool.
2160 */
2161 pgmR3PoolReset(pVM);
2162
2163 for (unsigned i=0;i<pVM->cCPUs;i++)
2164 {
2165 PVMCPU pVCpu = &pVM->aCpus[i];
2166
2167 /*
2168 * Re-init other members.
2169 */
2170 pVCpu->pgm.s.fA20Enabled = true;
2171
2172 /*
2173 * Clear the FFs PGM owns.
2174 */
2175 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
2176 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2177 }
2178
2179 /*
2180 * Reset (zero) RAM pages.
2181 */
2182 rc = pgmR3PhysRamReset(pVM);
2183 if (RT_SUCCESS(rc))
2184 {
2185 /*
2186 * Reset (zero) shadow ROM pages.
2187 */
2188 rc = pgmR3PhysRomReset(pVM);
2189 if (RT_SUCCESS(rc))
2190 {
2191 /*
2192 * Switch mode back to real mode.
2193 */
2194 for (unsigned i=0;i<pVM->cCPUs;i++)
2195 {
2196 PVMCPU pVCpu = &pVM->aCpus[i];
2197
2198 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2199 AssertRC(rc);
2200
2201 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2202 }
2203 }
2204 }
2205
2206 pgmUnlock(pVM);
2207 //return rc;
2208 AssertReleaseRC(rc);
2209}
2210
2211
2212#ifdef VBOX_STRICT
2213/**
2214 * VM state change callback for clearing fNoMorePhysWrites after
2215 * a snapshot has been created.
2216 */
2217static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2218{
2219 if (enmState == VMSTATE_RUNNING)
2220 pVM->pgm.s.fNoMorePhysWrites = false;
2221}
2222#endif
2223
2224
2225/**
2226 * Terminates the PGM.
2227 *
2228 * @returns VBox status code.
2229 * @param pVM Pointer to VM structure.
2230 */
2231VMMR3DECL(int) PGMR3Term(PVM pVM)
2232{
2233 PGMDeregisterStringFormatTypes();
2234 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2235}
2236
2237
2238/**
2239 * Terminates the per-VCPU PGM.
2240 *
2241 * Termination means cleaning up and freeing all resources,
2242 * the VM it self is at this point powered off or suspended.
2243 *
2244 * @returns VBox status code.
2245 * @param pVM The VM to operate on.
2246 */
2247VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2248{
2249 return 0;
2250}
2251
2252
2253/**
2254 * Find the ROM tracking structure for the given page.
2255 *
2256 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2257 * that it's a ROM page.
2258 * @param pVM The VM handle.
2259 * @param GCPhys The address of the ROM page.
2260 */
2261static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2262{
2263 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2264 pRomRange;
2265 pRomRange = pRomRange->CTX_SUFF(pNext))
2266 {
2267 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2268 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2269 return &pRomRange->aPages[off >> PAGE_SHIFT];
2270 }
2271 return NULL;
2272}
2273
2274
2275/**
2276 * Save zero indicator + bits for the specified page.
2277 *
2278 * @returns VBox status code, errors are logged/asserted before returning.
2279 * @param pVM The VM handle.
2280 * @param pSSH The saved state handle.
2281 * @param pPage The page to save.
2282 * @param GCPhys The address of the page.
2283 * @param pRam The ram range (for error logging).
2284 */
2285static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2286{
2287 int rc;
2288 if (PGM_PAGE_IS_ZERO(pPage))
2289 rc = SSMR3PutU8(pSSM, 0);
2290 else
2291 {
2292 void const *pvPage;
2293 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2294 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2295
2296 SSMR3PutU8(pSSM, 1);
2297 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2298 }
2299 return rc;
2300}
2301
2302
2303/**
2304 * Save a shadowed ROM page.
2305 *
2306 * Format: Type, protection, and two pages with zero indicators.
2307 *
2308 * @returns VBox status code, errors are logged/asserted before returning.
2309 * @param pVM The VM handle.
2310 * @param pSSH The saved state handle.
2311 * @param pPage The page to save.
2312 * @param GCPhys The address of the page.
2313 * @param pRam The ram range (for error logging).
2314 */
2315static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2316{
2317 /* Need to save both pages and the current state. */
2318 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2319 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2320
2321 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2322 SSMR3PutU8(pSSM, pRomPage->enmProt);
2323
2324 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2325 if (RT_SUCCESS(rc))
2326 {
2327 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2328 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2329 }
2330 return rc;
2331}
2332
2333/** PGM fields to save/load. */
2334static SSMFIELD s_aPGMFields[] =
2335{
2336 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2337 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2338 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2339 SSMFIELD_ENTRY_TERM()
2340};
2341
2342static SSMFIELD s_aPGMCpuFields[] =
2343{
2344 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2345 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2346 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2347 SSMFIELD_ENTRY_TERM()
2348};
2349
2350/* For loading old saved states. (pre-smp) */
2351typedef struct
2352{
2353 /** If set no conflict checks are required. (boolean) */
2354 bool fMappingsFixed;
2355 /** Size of fixed mapping */
2356 uint32_t cbMappingFixed;
2357 /** Base address (GC) of fixed mapping */
2358 RTGCPTR GCPtrMappingFixed;
2359 /** A20 gate mask.
2360 * Our current approach to A20 emulation is to let REM do it and don't bother
2361 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2362 * But whould need arrise, we'll subject physical addresses to this mask. */
2363 RTGCPHYS GCPhysA20Mask;
2364 /** A20 gate state - boolean! */
2365 bool fA20Enabled;
2366 /** The guest paging mode. */
2367 PGMMODE enmGuestMode;
2368} PGMOLD;
2369
2370static SSMFIELD s_aPGMFields_Old[] =
2371{
2372 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2373 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2374 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2375 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2376 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2377 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2378 SSMFIELD_ENTRY_TERM()
2379};
2380
2381
2382/**
2383 * Execute state save operation.
2384 *
2385 * @returns VBox status code.
2386 * @param pVM VM Handle.
2387 * @param pSSM SSM operation handle.
2388 */
2389static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2390{
2391 int rc;
2392 unsigned i;
2393 PPGM pPGM = &pVM->pgm.s;
2394
2395 /*
2396 * Lock PGM and set the no-more-writes indicator.
2397 */
2398 pgmLock(pVM);
2399 pVM->pgm.s.fNoMorePhysWrites = true;
2400
2401 /*
2402 * Save basic data (required / unaffected by relocation).
2403 */
2404 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2405
2406 for (i=0;i<pVM->cCPUs;i++)
2407 {
2408 PVMCPU pVCpu = &pVM->aCpus[i];
2409
2410 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2411 }
2412
2413 /*
2414 * The guest mappings.
2415 */
2416 i = 0;
2417 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2418 {
2419 SSMR3PutU32( pSSM, i);
2420 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2421 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2422 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2423 }
2424 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2425
2426 /*
2427 * Ram ranges and the memory they describe.
2428 */
2429 i = 0;
2430 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2431 {
2432 /*
2433 * Save the ram range details.
2434 */
2435 SSMR3PutU32(pSSM, i);
2436 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2437 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2438 SSMR3PutGCPhys(pSSM, pRam->cb);
2439 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2440 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2441
2442 /*
2443 * Iterate the pages, only two special case.
2444 */
2445 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2446 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2447 {
2448 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2449 PPGMPAGE pPage = &pRam->aPages[iPage];
2450 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2451
2452 if (uType == PGMPAGETYPE_ROM_SHADOW)
2453 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2454 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2455 {
2456 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2457 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2458 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2459 }
2460 else
2461 {
2462 SSMR3PutU8(pSSM, uType);
2463 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2464 }
2465 if (RT_FAILURE(rc))
2466 break;
2467 }
2468 if (RT_FAILURE(rc))
2469 break;
2470 }
2471
2472 pgmUnlock(pVM);
2473 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2474}
2475
2476
2477/**
2478 * Load an ignored page.
2479 *
2480 * @returns VBox status code.
2481 * @param pSSM The saved state handle.
2482 */
2483static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2484{
2485 uint8_t abPage[PAGE_SIZE];
2486 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2487}
2488
2489
2490/**
2491 * Loads a page without any bits in the saved state, i.e. making sure it's
2492 * really zero.
2493 *
2494 * @returns VBox status code.
2495 * @param pVM The VM handle.
2496 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2497 * state).
2498 * @param pPage The guest page tracking structure.
2499 * @param GCPhys The page address.
2500 * @param pRam The ram range (logging).
2501 */
2502static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2503{
2504 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2505 && uType != PGMPAGETYPE_INVALID)
2506 return VERR_SSM_UNEXPECTED_DATA;
2507
2508 /* I think this should be sufficient. */
2509 if (!PGM_PAGE_IS_ZERO(pPage))
2510 return VERR_SSM_UNEXPECTED_DATA;
2511
2512 NOREF(pVM);
2513 NOREF(GCPhys);
2514 NOREF(pRam);
2515 return VINF_SUCCESS;
2516}
2517
2518
2519/**
2520 * Loads a page from the saved state.
2521 *
2522 * @returns VBox status code.
2523 * @param pVM The VM handle.
2524 * @param pSSM The SSM handle.
2525 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2526 * state).
2527 * @param pPage The guest page tracking structure.
2528 * @param GCPhys The page address.
2529 * @param pRam The ram range (logging).
2530 */
2531static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2532{
2533 int rc;
2534
2535 /*
2536 * Match up the type, dealing with MMIO2 aliases (dropped).
2537 */
2538 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2539 || uType == PGMPAGETYPE_INVALID,
2540 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2541 VERR_SSM_UNEXPECTED_DATA);
2542
2543 /*
2544 * Load the page.
2545 */
2546 void *pvPage;
2547 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2548 if (RT_SUCCESS(rc))
2549 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2550
2551 return rc;
2552}
2553
2554
2555/**
2556 * Loads a page (counter part to pgmR3SavePage).
2557 *
2558 * @returns VBox status code, fully bitched errors.
2559 * @param pVM The VM handle.
2560 * @param pSSM The SSM handle.
2561 * @param uType The page type.
2562 * @param pPage The page.
2563 * @param GCPhys The page address.
2564 * @param pRam The RAM range (for error messages).
2565 */
2566static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2567{
2568 uint8_t uState;
2569 int rc = SSMR3GetU8(pSSM, &uState);
2570 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2571 if (uState == 0 /* zero */)
2572 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2573 else if (uState == 1)
2574 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2575 else
2576 rc = VERR_INTERNAL_ERROR;
2577 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2578 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2579 rc);
2580 return VINF_SUCCESS;
2581}
2582
2583
2584/**
2585 * Loads a shadowed ROM page.
2586 *
2587 * @returns VBox status code, errors are fully bitched.
2588 * @param pVM The VM handle.
2589 * @param pSSM The saved state handle.
2590 * @param pPage The page.
2591 * @param GCPhys The page address.
2592 * @param pRam The RAM range (for error messages).
2593 */
2594static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2595{
2596 /*
2597 * Load and set the protection first, then load the two pages, the first
2598 * one is the active the other is the passive.
2599 */
2600 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2601 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2602
2603 uint8_t uProt;
2604 int rc = SSMR3GetU8(pSSM, &uProt);
2605 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2606 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2607 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2608 && enmProt < PGMROMPROT_END,
2609 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2610 VERR_SSM_UNEXPECTED_DATA);
2611
2612 if (pRomPage->enmProt != enmProt)
2613 {
2614 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2615 AssertLogRelRCReturn(rc, rc);
2616 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2617 }
2618
2619 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2620 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2621 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2622 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2623
2624 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2625 if (RT_SUCCESS(rc))
2626 {
2627 *pPageActive = *pPage;
2628 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2629 }
2630 return rc;
2631}
2632
2633
2634/**
2635 * Worker for pgmR3Load.
2636 *
2637 * @returns VBox status code.
2638 *
2639 * @param pVM The VM handle.
2640 * @param pSSM The SSM handle.
2641 * @param u32Version The saved state version.
2642 */
2643static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2644{
2645 int rc;
2646 PPGM pPGM = &pVM->pgm.s;
2647 uint32_t u32Sep;
2648
2649 /*
2650 * Load basic data (required / unaffected by relocation).
2651 */
2652 if (u32Version >= PGM_SAVED_STATE_VERSION)
2653 {
2654 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2655 AssertLogRelRCReturn(rc, rc);
2656
2657 for (unsigned i=0;i<pVM->cCPUs;i++)
2658 {
2659 PVMCPU pVCpu = &pVM->aCpus[i];
2660
2661 rc = SSMR3GetStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2662 AssertLogRelRCReturn(rc, rc);
2663 }
2664 }
2665 else
2666 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2667 {
2668 PGMOLD pgmOld;
2669
2670 AssertRelease(pVM->cCPUs == 1);
2671
2672 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2673 AssertLogRelRCReturn(rc, rc);
2674
2675 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2676 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2677 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2678
2679 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2680 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2681 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2682 }
2683 else
2684 {
2685 AssertRelease(pVM->cCPUs == 1);
2686
2687 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2688 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2689 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2690
2691 uint32_t cbRamSizeIgnored;
2692 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2693 if (RT_FAILURE(rc))
2694 return rc;
2695 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2696
2697 uint32_t u32 = 0;
2698 SSMR3GetUInt(pSSM, &u32);
2699 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2700 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2701 RTUINT uGuestMode;
2702 SSMR3GetUInt(pSSM, &uGuestMode);
2703 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2704
2705 /* check separator. */
2706 SSMR3GetU32(pSSM, &u32Sep);
2707 if (RT_FAILURE(rc))
2708 return rc;
2709 if (u32Sep != (uint32_t)~0)
2710 {
2711 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2712 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2713 }
2714 }
2715
2716 /*
2717 * The guest mappings.
2718 */
2719 uint32_t i = 0;
2720 for (;; i++)
2721 {
2722 /* Check the seqence number / separator. */
2723 rc = SSMR3GetU32(pSSM, &u32Sep);
2724 if (RT_FAILURE(rc))
2725 return rc;
2726 if (u32Sep == ~0U)
2727 break;
2728 if (u32Sep != i)
2729 {
2730 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2731 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2732 }
2733
2734 /* get the mapping details. */
2735 char szDesc[256];
2736 szDesc[0] = '\0';
2737 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2738 if (RT_FAILURE(rc))
2739 return rc;
2740 RTGCPTR GCPtr;
2741 SSMR3GetGCPtr(pSSM, &GCPtr);
2742 RTGCPTR cPTs;
2743 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2744 if (RT_FAILURE(rc))
2745 return rc;
2746
2747 /* find matching range. */
2748 PPGMMAPPING pMapping;
2749 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2750 if ( pMapping->cPTs == cPTs
2751 && !strcmp(pMapping->pszDesc, szDesc))
2752 break;
2753 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2754 cPTs, szDesc, GCPtr),
2755 VERR_SSM_LOAD_CONFIG_MISMATCH);
2756
2757 /* relocate it. */
2758 if (pMapping->GCPtr != GCPtr)
2759 {
2760 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2761 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2762 }
2763 else
2764 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2765 }
2766
2767 /*
2768 * Ram range flags and bits.
2769 */
2770 i = 0;
2771 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2772 {
2773 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2774
2775 /* Check the seqence number / separator. */
2776 rc = SSMR3GetU32(pSSM, &u32Sep);
2777 if (RT_FAILURE(rc))
2778 return rc;
2779 if (u32Sep == ~0U)
2780 break;
2781 if (u32Sep != i)
2782 {
2783 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2784 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2785 }
2786
2787 /* Get the range details. */
2788 RTGCPHYS GCPhys;
2789 SSMR3GetGCPhys(pSSM, &GCPhys);
2790 RTGCPHYS GCPhysLast;
2791 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2792 RTGCPHYS cb;
2793 SSMR3GetGCPhys(pSSM, &cb);
2794 uint8_t fHaveBits;
2795 rc = SSMR3GetU8(pSSM, &fHaveBits);
2796 if (RT_FAILURE(rc))
2797 return rc;
2798 if (fHaveBits & ~1)
2799 {
2800 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2801 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2802 }
2803 size_t cchDesc = 0;
2804 char szDesc[256];
2805 szDesc[0] = '\0';
2806 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2807 {
2808 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2809 if (RT_FAILURE(rc))
2810 return rc;
2811 /* Since we've modified the description strings in r45878, only compare
2812 them if the saved state is more recent. */
2813 if (u32Version != PGM_SAVED_STATE_VERSION_RR_DESC)
2814 cchDesc = strlen(szDesc);
2815 }
2816
2817 /*
2818 * Match it up with the current range.
2819 *
2820 * Note there is a hack for dealing with the high BIOS mapping
2821 * in the old saved state format, this means we might not have
2822 * a 1:1 match on success.
2823 */
2824 if ( ( GCPhys != pRam->GCPhys
2825 || GCPhysLast != pRam->GCPhysLast
2826 || cb != pRam->cb
2827 || ( cchDesc
2828 && strcmp(szDesc, pRam->pszDesc)) )
2829 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2830 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2831 || GCPhys != UINT32_C(0xfff80000)
2832 || GCPhysLast != UINT32_C(0xffffffff)
2833 || pRam->GCPhysLast != GCPhysLast
2834 || pRam->GCPhys < GCPhys
2835 || !fHaveBits)
2836 )
2837 {
2838 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2839 "State : %RGp-%RGp %RGp bytes %s %s\n",
2840 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2841 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2842 /*
2843 * If we're loading a state for debugging purpose, don't make a fuss if
2844 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2845 */
2846 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2847 || GCPhys < 8 * _1M)
2848 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2849
2850 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2851 continue;
2852 }
2853
2854 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2855 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2856 {
2857 /*
2858 * Load the pages one by one.
2859 */
2860 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2861 {
2862 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2863 PPGMPAGE pPage = &pRam->aPages[iPage];
2864 uint8_t uType;
2865 rc = SSMR3GetU8(pSSM, &uType);
2866 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2867 if (uType == PGMPAGETYPE_ROM_SHADOW)
2868 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2869 else
2870 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2871 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2872 }
2873 }
2874 else
2875 {
2876 /*
2877 * Old format.
2878 */
2879 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2880
2881 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2882 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2883 uint32_t fFlags = 0;
2884 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2885 {
2886 uint16_t u16Flags;
2887 rc = SSMR3GetU16(pSSM, &u16Flags);
2888 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2889 fFlags |= u16Flags;
2890 }
2891
2892 /* Load the bits */
2893 if ( !fHaveBits
2894 && GCPhysLast < UINT32_C(0xe0000000))
2895 {
2896 /*
2897 * Dynamic chunks.
2898 */
2899 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2900 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2901 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2902 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2903
2904 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2905 {
2906 uint8_t fPresent;
2907 rc = SSMR3GetU8(pSSM, &fPresent);
2908 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2909 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2910 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2911 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2912
2913 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2914 {
2915 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2916 PPGMPAGE pPage = &pRam->aPages[iPage];
2917 if (fPresent)
2918 {
2919 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2920 rc = pgmR3LoadPageToDevNull(pSSM);
2921 else
2922 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2923 }
2924 else
2925 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2926 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2927 }
2928 }
2929 }
2930 else if (pRam->pvR3)
2931 {
2932 /*
2933 * MMIO2.
2934 */
2935 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2936 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2937 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2938 AssertLogRelMsgReturn(pRam->pvR3,
2939 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2940 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2941
2942 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2943 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2944 }
2945 else if (GCPhysLast < UINT32_C(0xfff80000))
2946 {
2947 /*
2948 * PCI MMIO, no pages saved.
2949 */
2950 }
2951 else
2952 {
2953 /*
2954 * Load the 0xfff80000..0xffffffff BIOS range.
2955 * It starts with X reserved pages that we have to skip over since
2956 * the RAMRANGE create by the new code won't include those.
2957 */
2958 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2959 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2960 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2961 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2962 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2963 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2964 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2965
2966 /* Skip wasted reserved pages before the ROM. */
2967 while (GCPhys < pRam->GCPhys)
2968 {
2969 rc = pgmR3LoadPageToDevNull(pSSM);
2970 GCPhys += PAGE_SIZE;
2971 }
2972
2973 /* Load the bios pages. */
2974 cPages = pRam->cb >> PAGE_SHIFT;
2975 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2976 {
2977 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2978 PPGMPAGE pPage = &pRam->aPages[iPage];
2979
2980 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2981 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2982 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2983 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2984 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2985 }
2986 }
2987 }
2988 }
2989
2990 return rc;
2991}
2992
2993
2994/**
2995 * Execute state load operation.
2996 *
2997 * @returns VBox status code.
2998 * @param pVM VM Handle.
2999 * @param pSSM SSM operation handle.
3000 * @param u32Version Data layout version.
3001 */
3002static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
3003{
3004 int rc;
3005 PPGM pPGM = &pVM->pgm.s;
3006
3007 /*
3008 * Validate version.
3009 */
3010 if ( u32Version != PGM_SAVED_STATE_VERSION
3011 && u32Version != PGM_SAVED_STATE_VERSION_RR_DESC
3012 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3013 {
3014 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
3015 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3016 }
3017
3018 /*
3019 * Call the reset function to make sure all the memory is cleared.
3020 */
3021 PGMR3Reset(pVM);
3022
3023 /*
3024 * Do the loading while owning the lock because a bunch of the functions
3025 * we're using requires this.
3026 */
3027 pgmLock(pVM);
3028 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
3029 pgmUnlock(pVM);
3030 if (RT_SUCCESS(rc))
3031 {
3032 /*
3033 * We require a full resync now.
3034 */
3035 for (unsigned i=0;i<pVM->cCPUs;i++)
3036 {
3037 PVMCPU pVCpu = &pVM->aCpus[i];
3038 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
3039 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3040
3041 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3042 }
3043
3044 pPGM->fPhysCacheFlushPending = true;
3045 pgmR3HandlerPhysicalUpdateAll(pVM);
3046
3047 for (unsigned i=0;i<pVM->cCPUs;i++)
3048 {
3049 PVMCPU pVCpu = &pVM->aCpus[i];
3050
3051 /*
3052 * Change the paging mode.
3053 */
3054 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3055
3056 /* Restore pVM->pgm.s.GCPhysCR3. */
3057 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3058 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3059 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3060 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3061 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3062 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3063 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3064 else
3065 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3066 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3067 }
3068 }
3069
3070 return rc;
3071}
3072
3073
3074/**
3075 * Show paging mode.
3076 *
3077 * @param pVM VM Handle.
3078 * @param pHlp The info helpers.
3079 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3080 */
3081static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3082{
3083 /* digest argument. */
3084 bool fGuest, fShadow, fHost;
3085 if (pszArgs)
3086 pszArgs = RTStrStripL(pszArgs);
3087 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3088 fShadow = fHost = fGuest = true;
3089 else
3090 {
3091 fShadow = fHost = fGuest = false;
3092 if (strstr(pszArgs, "guest"))
3093 fGuest = true;
3094 if (strstr(pszArgs, "shadow"))
3095 fShadow = true;
3096 if (strstr(pszArgs, "host"))
3097 fHost = true;
3098 }
3099
3100 /** @todo SMP support! */
3101 /* print info. */
3102 if (fGuest)
3103 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3104 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3105 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3106 if (fShadow)
3107 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3108 if (fHost)
3109 {
3110 const char *psz;
3111 switch (pVM->pgm.s.enmHostMode)
3112 {
3113 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3114 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3115 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3116 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3117 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3118 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3119 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3120 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3121 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3122 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3123 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3124 default: psz = "unknown"; break;
3125 }
3126 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3127 }
3128}
3129
3130
3131/**
3132 * Dump registered MMIO ranges to the log.
3133 *
3134 * @param pVM VM Handle.
3135 * @param pHlp The info helpers.
3136 * @param pszArgs Arguments, ignored.
3137 */
3138static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3139{
3140 NOREF(pszArgs);
3141 pHlp->pfnPrintf(pHlp,
3142 "RAM ranges (pVM=%p)\n"
3143 "%.*s %.*s\n",
3144 pVM,
3145 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3146 sizeof(RTHCPTR) * 2, "pvHC ");
3147
3148 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3149 pHlp->pfnPrintf(pHlp,
3150 "%RGp-%RGp %RHv %s\n",
3151 pCur->GCPhys,
3152 pCur->GCPhysLast,
3153 pCur->pvR3,
3154 pCur->pszDesc);
3155}
3156
3157/**
3158 * Dump the page directory to the log.
3159 *
3160 * @param pVM VM Handle.
3161 * @param pHlp The info helpers.
3162 * @param pszArgs Arguments, ignored.
3163 */
3164static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3165{
3166 /** @todo SMP support!! */
3167 PVMCPU pVCpu = &pVM->aCpus[0];
3168
3169/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3170 /* Big pages supported? */
3171 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3172
3173 /* Global pages supported? */
3174 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3175
3176 NOREF(pszArgs);
3177
3178 /*
3179 * Get page directory addresses.
3180 */
3181 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3182 Assert(pPDSrc);
3183 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3184
3185 /*
3186 * Iterate the page directory.
3187 */
3188 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3189 {
3190 X86PDE PdeSrc = pPDSrc->a[iPD];
3191 if (PdeSrc.n.u1Present)
3192 {
3193 if (PdeSrc.b.u1Size && fPSE)
3194 pHlp->pfnPrintf(pHlp,
3195 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3196 iPD,
3197 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3198 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3199 else
3200 pHlp->pfnPrintf(pHlp,
3201 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3202 iPD,
3203 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3204 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3205 }
3206 }
3207}
3208
3209
3210/**
3211 * Serivce a VMMCALLHOST_PGM_LOCK call.
3212 *
3213 * @returns VBox status code.
3214 * @param pVM The VM handle.
3215 */
3216VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3217{
3218 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3219 AssertRC(rc);
3220 return rc;
3221}
3222
3223
3224/**
3225 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3226 *
3227 * @returns PGM_TYPE_*.
3228 * @param pgmMode The mode value to convert.
3229 */
3230DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3231{
3232 switch (pgmMode)
3233 {
3234 case PGMMODE_REAL: return PGM_TYPE_REAL;
3235 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3236 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3237 case PGMMODE_PAE:
3238 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3239 case PGMMODE_AMD64:
3240 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3241 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3242 case PGMMODE_EPT: return PGM_TYPE_EPT;
3243 default:
3244 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3245 }
3246}
3247
3248
3249/**
3250 * Gets the index into the paging mode data array of a SHW+GST mode.
3251 *
3252 * @returns PGM::paPagingData index.
3253 * @param uShwType The shadow paging mode type.
3254 * @param uGstType The guest paging mode type.
3255 */
3256DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3257{
3258 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3259 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3260 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3261 + (uGstType - PGM_TYPE_REAL);
3262}
3263
3264
3265/**
3266 * Gets the index into the paging mode data array of a SHW+GST mode.
3267 *
3268 * @returns PGM::paPagingData index.
3269 * @param enmShw The shadow paging mode.
3270 * @param enmGst The guest paging mode.
3271 */
3272DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3273{
3274 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3275 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3276 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3277}
3278
3279
3280/**
3281 * Calculates the max data index.
3282 * @returns The number of entries in the paging data array.
3283 */
3284DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3285{
3286 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3287}
3288
3289
3290/**
3291 * Initializes the paging mode data kept in PGM::paModeData.
3292 *
3293 * @param pVM The VM handle.
3294 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3295 * This is used early in the init process to avoid trouble with PDM
3296 * not being initialized yet.
3297 */
3298static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3299{
3300 PPGMMODEDATA pModeData;
3301 int rc;
3302
3303 /*
3304 * Allocate the array on the first call.
3305 */
3306 if (!pVM->pgm.s.paModeData)
3307 {
3308 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3309 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3310 }
3311
3312 /*
3313 * Initialize the array entries.
3314 */
3315 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3316 pModeData->uShwType = PGM_TYPE_32BIT;
3317 pModeData->uGstType = PGM_TYPE_REAL;
3318 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3319 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3320 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3321
3322 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3323 pModeData->uShwType = PGM_TYPE_32BIT;
3324 pModeData->uGstType = PGM_TYPE_PROT;
3325 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3326 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3327 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3328
3329 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3330 pModeData->uShwType = PGM_TYPE_32BIT;
3331 pModeData->uGstType = PGM_TYPE_32BIT;
3332 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3333 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3334 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3335
3336 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3337 pModeData->uShwType = PGM_TYPE_PAE;
3338 pModeData->uGstType = PGM_TYPE_REAL;
3339 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3340 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3341 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3342
3343 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3344 pModeData->uShwType = PGM_TYPE_PAE;
3345 pModeData->uGstType = PGM_TYPE_PROT;
3346 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3347 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3348 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3349
3350 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3351 pModeData->uShwType = PGM_TYPE_PAE;
3352 pModeData->uGstType = PGM_TYPE_32BIT;
3353 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3354 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3355 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3356
3357 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3358 pModeData->uShwType = PGM_TYPE_PAE;
3359 pModeData->uGstType = PGM_TYPE_PAE;
3360 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3361 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3362 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3363
3364#ifdef VBOX_WITH_64_BITS_GUESTS
3365 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3366 pModeData->uShwType = PGM_TYPE_AMD64;
3367 pModeData->uGstType = PGM_TYPE_AMD64;
3368 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3369 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3370 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3371#endif
3372
3373 /* The nested paging mode. */
3374 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3375 pModeData->uShwType = PGM_TYPE_NESTED;
3376 pModeData->uGstType = PGM_TYPE_REAL;
3377 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3378 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3379
3380 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3381 pModeData->uShwType = PGM_TYPE_NESTED;
3382 pModeData->uGstType = PGM_TYPE_PROT;
3383 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3384 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3385
3386 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3387 pModeData->uShwType = PGM_TYPE_NESTED;
3388 pModeData->uGstType = PGM_TYPE_32BIT;
3389 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3390 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3391
3392 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3393 pModeData->uShwType = PGM_TYPE_NESTED;
3394 pModeData->uGstType = PGM_TYPE_PAE;
3395 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3396 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3397
3398#ifdef VBOX_WITH_64_BITS_GUESTS
3399 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3400 pModeData->uShwType = PGM_TYPE_NESTED;
3401 pModeData->uGstType = PGM_TYPE_AMD64;
3402 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3403 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3404#endif
3405
3406 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3407 switch (pVM->pgm.s.enmHostMode)
3408 {
3409#if HC_ARCH_BITS == 32
3410 case SUPPAGINGMODE_32_BIT:
3411 case SUPPAGINGMODE_32_BIT_GLOBAL:
3412 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3413 {
3414 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3415 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3416 }
3417# ifdef VBOX_WITH_64_BITS_GUESTS
3418 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3419 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3420# endif
3421 break;
3422
3423 case SUPPAGINGMODE_PAE:
3424 case SUPPAGINGMODE_PAE_NX:
3425 case SUPPAGINGMODE_PAE_GLOBAL:
3426 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3427 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3428 {
3429 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3430 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3431 }
3432# ifdef VBOX_WITH_64_BITS_GUESTS
3433 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3434 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3435# endif
3436 break;
3437#endif /* HC_ARCH_BITS == 32 */
3438
3439#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3440 case SUPPAGINGMODE_AMD64:
3441 case SUPPAGINGMODE_AMD64_GLOBAL:
3442 case SUPPAGINGMODE_AMD64_NX:
3443 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3444# ifdef VBOX_WITH_64_BITS_GUESTS
3445 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3446# else
3447 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3448# endif
3449 {
3450 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3451 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3452 }
3453 break;
3454#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3455
3456 default:
3457 AssertFailed();
3458 break;
3459 }
3460
3461 /* Extended paging (EPT) / Intel VT-x */
3462 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3463 pModeData->uShwType = PGM_TYPE_EPT;
3464 pModeData->uGstType = PGM_TYPE_REAL;
3465 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3466 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3467 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3468
3469 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3470 pModeData->uShwType = PGM_TYPE_EPT;
3471 pModeData->uGstType = PGM_TYPE_PROT;
3472 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3473 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3474 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3475
3476 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3477 pModeData->uShwType = PGM_TYPE_EPT;
3478 pModeData->uGstType = PGM_TYPE_32BIT;
3479 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3480 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3481 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3482
3483 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3484 pModeData->uShwType = PGM_TYPE_EPT;
3485 pModeData->uGstType = PGM_TYPE_PAE;
3486 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3487 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3488 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3489
3490#ifdef VBOX_WITH_64_BITS_GUESTS
3491 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3492 pModeData->uShwType = PGM_TYPE_EPT;
3493 pModeData->uGstType = PGM_TYPE_AMD64;
3494 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3495 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3496 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3497#endif
3498 return VINF_SUCCESS;
3499}
3500
3501
3502/**
3503 * Switch to different (or relocated in the relocate case) mode data.
3504 *
3505 * @param pVM The VM handle.
3506 * @param pVCpu The VMCPU to operate on.
3507 * @param enmShw The the shadow paging mode.
3508 * @param enmGst The the guest paging mode.
3509 */
3510static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3511{
3512 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3513
3514 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3515 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3516
3517 /* shadow */
3518 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3519 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3520 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3521 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3522 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3523
3524 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3525 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3526
3527 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3528 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3529
3530
3531 /* guest */
3532 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3533 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3534 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3535 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3536 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3537 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3538 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3539 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3540 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3541 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3542 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3543 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3544
3545 /* both */
3546 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3547 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3548 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3549 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3550 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3551 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3552 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3553#ifdef VBOX_STRICT
3554 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3555#endif
3556 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3557 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3558
3559 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3560 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3561 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3562 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3563 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3564 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3565#ifdef VBOX_STRICT
3566 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3567#endif
3568 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3569 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3570
3571 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3572 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3573 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3574 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3575 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3576 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3577#ifdef VBOX_STRICT
3578 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3579#endif
3580 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3581 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3582}
3583
3584
3585/**
3586 * Calculates the shadow paging mode.
3587 *
3588 * @returns The shadow paging mode.
3589 * @param pVM VM handle.
3590 * @param enmGuestMode The guest mode.
3591 * @param enmHostMode The host mode.
3592 * @param enmShadowMode The current shadow mode.
3593 * @param penmSwitcher Where to store the switcher to use.
3594 * VMMSWITCHER_INVALID means no change.
3595 */
3596static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3597{
3598 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3599 switch (enmGuestMode)
3600 {
3601 /*
3602 * When switching to real or protected mode we don't change
3603 * anything since it's likely that we'll switch back pretty soon.
3604 *
3605 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3606 * and is supposed to determine which shadow paging and switcher to
3607 * use during init.
3608 */
3609 case PGMMODE_REAL:
3610 case PGMMODE_PROTECTED:
3611 if ( enmShadowMode != PGMMODE_INVALID
3612 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3613 break; /* (no change) */
3614
3615 switch (enmHostMode)
3616 {
3617 case SUPPAGINGMODE_32_BIT:
3618 case SUPPAGINGMODE_32_BIT_GLOBAL:
3619 enmShadowMode = PGMMODE_32_BIT;
3620 enmSwitcher = VMMSWITCHER_32_TO_32;
3621 break;
3622
3623 case SUPPAGINGMODE_PAE:
3624 case SUPPAGINGMODE_PAE_NX:
3625 case SUPPAGINGMODE_PAE_GLOBAL:
3626 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3627 enmShadowMode = PGMMODE_PAE;
3628 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3629#ifdef DEBUG_bird
3630 if (RTEnvExist("VBOX_32BIT"))
3631 {
3632 enmShadowMode = PGMMODE_32_BIT;
3633 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3634 }
3635#endif
3636 break;
3637
3638 case SUPPAGINGMODE_AMD64:
3639 case SUPPAGINGMODE_AMD64_GLOBAL:
3640 case SUPPAGINGMODE_AMD64_NX:
3641 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3642 enmShadowMode = PGMMODE_PAE;
3643 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3644#ifdef DEBUG_bird
3645 if (RTEnvExist("VBOX_32BIT"))
3646 {
3647 enmShadowMode = PGMMODE_32_BIT;
3648 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3649 }
3650#endif
3651 break;
3652
3653 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3654 }
3655 break;
3656
3657 case PGMMODE_32_BIT:
3658 switch (enmHostMode)
3659 {
3660 case SUPPAGINGMODE_32_BIT:
3661 case SUPPAGINGMODE_32_BIT_GLOBAL:
3662 enmShadowMode = PGMMODE_32_BIT;
3663 enmSwitcher = VMMSWITCHER_32_TO_32;
3664 break;
3665
3666 case SUPPAGINGMODE_PAE:
3667 case SUPPAGINGMODE_PAE_NX:
3668 case SUPPAGINGMODE_PAE_GLOBAL:
3669 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3670 enmShadowMode = PGMMODE_PAE;
3671 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3672#ifdef DEBUG_bird
3673 if (RTEnvExist("VBOX_32BIT"))
3674 {
3675 enmShadowMode = PGMMODE_32_BIT;
3676 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3677 }
3678#endif
3679 break;
3680
3681 case SUPPAGINGMODE_AMD64:
3682 case SUPPAGINGMODE_AMD64_GLOBAL:
3683 case SUPPAGINGMODE_AMD64_NX:
3684 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3685 enmShadowMode = PGMMODE_PAE;
3686 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3687#ifdef DEBUG_bird
3688 if (RTEnvExist("VBOX_32BIT"))
3689 {
3690 enmShadowMode = PGMMODE_32_BIT;
3691 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3692 }
3693#endif
3694 break;
3695
3696 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3697 }
3698 break;
3699
3700 case PGMMODE_PAE:
3701 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3702 switch (enmHostMode)
3703 {
3704 case SUPPAGINGMODE_32_BIT:
3705 case SUPPAGINGMODE_32_BIT_GLOBAL:
3706 enmShadowMode = PGMMODE_PAE;
3707 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3708 break;
3709
3710 case SUPPAGINGMODE_PAE:
3711 case SUPPAGINGMODE_PAE_NX:
3712 case SUPPAGINGMODE_PAE_GLOBAL:
3713 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3714 enmShadowMode = PGMMODE_PAE;
3715 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3716 break;
3717
3718 case SUPPAGINGMODE_AMD64:
3719 case SUPPAGINGMODE_AMD64_GLOBAL:
3720 case SUPPAGINGMODE_AMD64_NX:
3721 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3722 enmShadowMode = PGMMODE_PAE;
3723 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3724 break;
3725
3726 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3727 }
3728 break;
3729
3730 case PGMMODE_AMD64:
3731 case PGMMODE_AMD64_NX:
3732 switch (enmHostMode)
3733 {
3734 case SUPPAGINGMODE_32_BIT:
3735 case SUPPAGINGMODE_32_BIT_GLOBAL:
3736 enmShadowMode = PGMMODE_AMD64;
3737 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3738 break;
3739
3740 case SUPPAGINGMODE_PAE:
3741 case SUPPAGINGMODE_PAE_NX:
3742 case SUPPAGINGMODE_PAE_GLOBAL:
3743 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3744 enmShadowMode = PGMMODE_AMD64;
3745 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3746 break;
3747
3748 case SUPPAGINGMODE_AMD64:
3749 case SUPPAGINGMODE_AMD64_GLOBAL:
3750 case SUPPAGINGMODE_AMD64_NX:
3751 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3752 enmShadowMode = PGMMODE_AMD64;
3753 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3754 break;
3755
3756 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3757 }
3758 break;
3759
3760
3761 default:
3762 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3763 return PGMMODE_INVALID;
3764 }
3765 /* Override the shadow mode is nested paging is active. */
3766 if (HWACCMIsNestedPagingActive(pVM))
3767 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3768
3769 *penmSwitcher = enmSwitcher;
3770 return enmShadowMode;
3771}
3772
3773
3774/**
3775 * Performs the actual mode change.
3776 * This is called by PGMChangeMode and pgmR3InitPaging().
3777 *
3778 * @returns VBox status code. May suspend or power off the VM on error, but this
3779 * will trigger using FFs and not status codes.
3780 *
3781 * @param pVM VM handle.
3782 * @param pVCpu The VMCPU to operate on.
3783 * @param enmGuestMode The new guest mode. This is assumed to be different from
3784 * the current mode.
3785 */
3786VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3787{
3788 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3789 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3790
3791 /*
3792 * Calc the shadow mode and switcher.
3793 */
3794 VMMSWITCHER enmSwitcher;
3795 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3796 if (enmSwitcher != VMMSWITCHER_INVALID)
3797 {
3798 /*
3799 * Select new switcher.
3800 */
3801 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3802 if (RT_FAILURE(rc))
3803 {
3804 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3805 return rc;
3806 }
3807 }
3808
3809 /*
3810 * Exit old mode(s).
3811 */
3812 /* shadow */
3813 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3814 {
3815 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3816 if (PGM_SHW_PFN(Exit, pVM))
3817 {
3818 int rc = PGM_SHW_PFN(Exit, pVM)(pVM, pVCpu);
3819 if (RT_FAILURE(rc))
3820 {
3821 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3822 return rc;
3823 }
3824 }
3825
3826 }
3827 else
3828 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3829
3830 /* guest */
3831 if (PGM_GST_PFN(Exit, pVM))
3832 {
3833 int rc = PGM_GST_PFN(Exit, pVM)(pVM, pVCpu);
3834 if (RT_FAILURE(rc))
3835 {
3836 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3837 return rc;
3838 }
3839 }
3840
3841 /*
3842 * Load new paging mode data.
3843 */
3844 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3845
3846 /*
3847 * Enter new shadow mode (if changed).
3848 */
3849 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3850 {
3851 int rc;
3852 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3853 switch (enmShadowMode)
3854 {
3855 case PGMMODE_32_BIT:
3856 rc = PGM_SHW_NAME_32BIT(Enter)(pVM, pVCpu);
3857 break;
3858 case PGMMODE_PAE:
3859 case PGMMODE_PAE_NX:
3860 rc = PGM_SHW_NAME_PAE(Enter)(pVM, pVCpu);
3861 break;
3862 case PGMMODE_AMD64:
3863 case PGMMODE_AMD64_NX:
3864 rc = PGM_SHW_NAME_AMD64(Enter)(pVM, pVCpu);
3865 break;
3866 case PGMMODE_NESTED:
3867 rc = PGM_SHW_NAME_NESTED(Enter)(pVM, pVCpu);
3868 break;
3869 case PGMMODE_EPT:
3870 rc = PGM_SHW_NAME_EPT(Enter)(pVM, pVCpu);
3871 break;
3872 case PGMMODE_REAL:
3873 case PGMMODE_PROTECTED:
3874 default:
3875 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3876 return VERR_INTERNAL_ERROR;
3877 }
3878 if (RT_FAILURE(rc))
3879 {
3880 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3881 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3882 return rc;
3883 }
3884 }
3885
3886 /*
3887 * Always flag the necessary updates
3888 */
3889 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3890
3891 /*
3892 * Enter the new guest and shadow+guest modes.
3893 */
3894 int rc = -1;
3895 int rc2 = -1;
3896 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3897 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3898 switch (enmGuestMode)
3899 {
3900 case PGMMODE_REAL:
3901 rc = PGM_GST_NAME_REAL(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3902 switch (pVCpu->pgm.s.enmShadowMode)
3903 {
3904 case PGMMODE_32_BIT:
3905 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3906 break;
3907 case PGMMODE_PAE:
3908 case PGMMODE_PAE_NX:
3909 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3910 break;
3911 case PGMMODE_NESTED:
3912 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3913 break;
3914 case PGMMODE_EPT:
3915 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3916 break;
3917 case PGMMODE_AMD64:
3918 case PGMMODE_AMD64_NX:
3919 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3920 default: AssertFailed(); break;
3921 }
3922 break;
3923
3924 case PGMMODE_PROTECTED:
3925 rc = PGM_GST_NAME_PROT(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3926 switch (pVCpu->pgm.s.enmShadowMode)
3927 {
3928 case PGMMODE_32_BIT:
3929 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3930 break;
3931 case PGMMODE_PAE:
3932 case PGMMODE_PAE_NX:
3933 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3934 break;
3935 case PGMMODE_NESTED:
3936 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3937 break;
3938 case PGMMODE_EPT:
3939 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVM, pVCpu, NIL_RTGCPHYS);
3940 break;
3941 case PGMMODE_AMD64:
3942 case PGMMODE_AMD64_NX:
3943 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3944 default: AssertFailed(); break;
3945 }
3946 break;
3947
3948 case PGMMODE_32_BIT:
3949 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3950 rc = PGM_GST_NAME_32BIT(Enter)(pVM, pVCpu, GCPhysCR3);
3951 switch (pVCpu->pgm.s.enmShadowMode)
3952 {
3953 case PGMMODE_32_BIT:
3954 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, pVCpu, GCPhysCR3);
3955 break;
3956 case PGMMODE_PAE:
3957 case PGMMODE_PAE_NX:
3958 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, pVCpu, GCPhysCR3);
3959 break;
3960 case PGMMODE_NESTED:
3961 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, pVCpu, GCPhysCR3);
3962 break;
3963 case PGMMODE_EPT:
3964 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVM, pVCpu, GCPhysCR3);
3965 break;
3966 case PGMMODE_AMD64:
3967 case PGMMODE_AMD64_NX:
3968 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3969 default: AssertFailed(); break;
3970 }
3971 break;
3972
3973 case PGMMODE_PAE_NX:
3974 case PGMMODE_PAE:
3975 {
3976 uint32_t u32Dummy, u32Features;
3977
3978 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3979 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3980 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3981 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3982
3983 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3984 rc = PGM_GST_NAME_PAE(Enter)(pVM, pVCpu, GCPhysCR3);
3985 switch (pVCpu->pgm.s.enmShadowMode)
3986 {
3987 case PGMMODE_PAE:
3988 case PGMMODE_PAE_NX:
3989 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, pVCpu, GCPhysCR3);
3990 break;
3991 case PGMMODE_NESTED:
3992 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, pVCpu, GCPhysCR3);
3993 break;
3994 case PGMMODE_EPT:
3995 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVM, pVCpu, GCPhysCR3);
3996 break;
3997 case PGMMODE_32_BIT:
3998 case PGMMODE_AMD64:
3999 case PGMMODE_AMD64_NX:
4000 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4001 default: AssertFailed(); break;
4002 }
4003 break;
4004 }
4005
4006#ifdef VBOX_WITH_64_BITS_GUESTS
4007 case PGMMODE_AMD64_NX:
4008 case PGMMODE_AMD64:
4009 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4010 rc = PGM_GST_NAME_AMD64(Enter)(pVM, pVCpu, GCPhysCR3);
4011 switch (pVCpu->pgm.s.enmShadowMode)
4012 {
4013 case PGMMODE_AMD64:
4014 case PGMMODE_AMD64_NX:
4015 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, pVCpu, GCPhysCR3);
4016 break;
4017 case PGMMODE_NESTED:
4018 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, pVCpu, GCPhysCR3);
4019 break;
4020 case PGMMODE_EPT:
4021 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVM, pVCpu, GCPhysCR3);
4022 break;
4023 case PGMMODE_32_BIT:
4024 case PGMMODE_PAE:
4025 case PGMMODE_PAE_NX:
4026 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4027 default: AssertFailed(); break;
4028 }
4029 break;
4030#endif
4031
4032 default:
4033 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4034 rc = VERR_NOT_IMPLEMENTED;
4035 break;
4036 }
4037
4038 /* status codes. */
4039 AssertRC(rc);
4040 AssertRC(rc2);
4041 if (RT_SUCCESS(rc))
4042 {
4043 rc = rc2;
4044 if (RT_SUCCESS(rc)) /* no informational status codes. */
4045 rc = VINF_SUCCESS;
4046 }
4047
4048 /* Notify HWACCM as well. */
4049 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4050 return rc;
4051}
4052
4053
4054/**
4055 * Dumps a PAE shadow page table.
4056 *
4057 * @returns VBox status code (VINF_SUCCESS).
4058 * @param pVM The VM handle.
4059 * @param pPT Pointer to the page table.
4060 * @param u64Address The virtual address of the page table starts.
4061 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4062 * @param cMaxDepth The maxium depth.
4063 * @param pHlp Pointer to the output functions.
4064 */
4065static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4066{
4067 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4068 {
4069 X86PTEPAE Pte = pPT->a[i];
4070 if (Pte.n.u1Present)
4071 {
4072 pHlp->pfnPrintf(pHlp,
4073 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4074 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4075 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4076 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4077 Pte.n.u1Write ? 'W' : 'R',
4078 Pte.n.u1User ? 'U' : 'S',
4079 Pte.n.u1Accessed ? 'A' : '-',
4080 Pte.n.u1Dirty ? 'D' : '-',
4081 Pte.n.u1Global ? 'G' : '-',
4082 Pte.n.u1WriteThru ? "WT" : "--",
4083 Pte.n.u1CacheDisable? "CD" : "--",
4084 Pte.n.u1PAT ? "AT" : "--",
4085 Pte.n.u1NoExecute ? "NX" : "--",
4086 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4087 Pte.u & RT_BIT(10) ? '1' : '0',
4088 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4089 Pte.u & X86_PTE_PAE_PG_MASK);
4090 }
4091 }
4092 return VINF_SUCCESS;
4093}
4094
4095
4096/**
4097 * Dumps a PAE shadow page directory table.
4098 *
4099 * @returns VBox status code (VINF_SUCCESS).
4100 * @param pVM The VM handle.
4101 * @param HCPhys The physical address of the page directory table.
4102 * @param u64Address The virtual address of the page table starts.
4103 * @param cr4 The CR4, PSE is currently used.
4104 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4105 * @param cMaxDepth The maxium depth.
4106 * @param pHlp Pointer to the output functions.
4107 */
4108static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4109{
4110 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4111 if (!pPD)
4112 {
4113 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4114 fLongMode ? 16 : 8, u64Address, HCPhys);
4115 return VERR_INVALID_PARAMETER;
4116 }
4117 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4118
4119 int rc = VINF_SUCCESS;
4120 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4121 {
4122 X86PDEPAE Pde = pPD->a[i];
4123 if (Pde.n.u1Present)
4124 {
4125 if (fBigPagesSupported && Pde.b.u1Size)
4126 pHlp->pfnPrintf(pHlp,
4127 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4128 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4129 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4130 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4131 Pde.b.u1Write ? 'W' : 'R',
4132 Pde.b.u1User ? 'U' : 'S',
4133 Pde.b.u1Accessed ? 'A' : '-',
4134 Pde.b.u1Dirty ? 'D' : '-',
4135 Pde.b.u1Global ? 'G' : '-',
4136 Pde.b.u1WriteThru ? "WT" : "--",
4137 Pde.b.u1CacheDisable? "CD" : "--",
4138 Pde.b.u1PAT ? "AT" : "--",
4139 Pde.b.u1NoExecute ? "NX" : "--",
4140 Pde.u & RT_BIT_64(9) ? '1' : '0',
4141 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4142 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4143 Pde.u & X86_PDE_PAE_PG_MASK);
4144 else
4145 {
4146 pHlp->pfnPrintf(pHlp,
4147 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4148 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4149 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4150 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4151 Pde.n.u1Write ? 'W' : 'R',
4152 Pde.n.u1User ? 'U' : 'S',
4153 Pde.n.u1Accessed ? 'A' : '-',
4154 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4155 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4156 Pde.n.u1WriteThru ? "WT" : "--",
4157 Pde.n.u1CacheDisable? "CD" : "--",
4158 Pde.n.u1NoExecute ? "NX" : "--",
4159 Pde.u & RT_BIT_64(9) ? '1' : '0',
4160 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4161 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4162 Pde.u & X86_PDE_PAE_PG_MASK);
4163 if (cMaxDepth >= 1)
4164 {
4165 /** @todo what about using the page pool for mapping PTs? */
4166 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4167 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4168 PX86PTPAE pPT = NULL;
4169 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4170 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4171 else
4172 {
4173 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4174 {
4175 uint64_t off = u64AddressPT - pMap->GCPtr;
4176 if (off < pMap->cb)
4177 {
4178 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4179 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4180 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4181 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4182 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4183 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4184 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4185 }
4186 }
4187 }
4188 int rc2 = VERR_INVALID_PARAMETER;
4189 if (pPT)
4190 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4191 else
4192 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4193 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4194 if (rc2 < rc && RT_SUCCESS(rc))
4195 rc = rc2;
4196 }
4197 }
4198 }
4199 }
4200 return rc;
4201}
4202
4203
4204/**
4205 * Dumps a PAE shadow page directory pointer table.
4206 *
4207 * @returns VBox status code (VINF_SUCCESS).
4208 * @param pVM The VM handle.
4209 * @param HCPhys The physical address of the page directory pointer table.
4210 * @param u64Address The virtual address of the page table starts.
4211 * @param cr4 The CR4, PSE is currently used.
4212 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4213 * @param cMaxDepth The maxium depth.
4214 * @param pHlp Pointer to the output functions.
4215 */
4216static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4217{
4218 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4219 if (!pPDPT)
4220 {
4221 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4222 fLongMode ? 16 : 8, u64Address, HCPhys);
4223 return VERR_INVALID_PARAMETER;
4224 }
4225
4226 int rc = VINF_SUCCESS;
4227 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4228 for (unsigned i = 0; i < c; i++)
4229 {
4230 X86PDPE Pdpe = pPDPT->a[i];
4231 if (Pdpe.n.u1Present)
4232 {
4233 if (fLongMode)
4234 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4235 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4236 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4237 Pdpe.lm.u1Write ? 'W' : 'R',
4238 Pdpe.lm.u1User ? 'U' : 'S',
4239 Pdpe.lm.u1Accessed ? 'A' : '-',
4240 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4241 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4242 Pdpe.lm.u1WriteThru ? "WT" : "--",
4243 Pdpe.lm.u1CacheDisable? "CD" : "--",
4244 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4245 Pdpe.lm.u1NoExecute ? "NX" : "--",
4246 Pdpe.u & RT_BIT(9) ? '1' : '0',
4247 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4248 Pdpe.u & RT_BIT(11) ? '1' : '0',
4249 Pdpe.u & X86_PDPE_PG_MASK);
4250 else
4251 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4252 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4253 i << X86_PDPT_SHIFT,
4254 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4255 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4256 Pdpe.n.u1WriteThru ? "WT" : "--",
4257 Pdpe.n.u1CacheDisable? "CD" : "--",
4258 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4259 Pdpe.u & RT_BIT(9) ? '1' : '0',
4260 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4261 Pdpe.u & RT_BIT(11) ? '1' : '0',
4262 Pdpe.u & X86_PDPE_PG_MASK);
4263 if (cMaxDepth >= 1)
4264 {
4265 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4266 cr4, fLongMode, cMaxDepth - 1, pHlp);
4267 if (rc2 < rc && RT_SUCCESS(rc))
4268 rc = rc2;
4269 }
4270 }
4271 }
4272 return rc;
4273}
4274
4275
4276/**
4277 * Dumps a 32-bit shadow page table.
4278 *
4279 * @returns VBox status code (VINF_SUCCESS).
4280 * @param pVM The VM handle.
4281 * @param HCPhys The physical address of the table.
4282 * @param cr4 The CR4, PSE is currently used.
4283 * @param cMaxDepth The maxium depth.
4284 * @param pHlp Pointer to the output functions.
4285 */
4286static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4287{
4288 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4289 if (!pPML4)
4290 {
4291 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4292 return VERR_INVALID_PARAMETER;
4293 }
4294
4295 int rc = VINF_SUCCESS;
4296 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4297 {
4298 X86PML4E Pml4e = pPML4->a[i];
4299 if (Pml4e.n.u1Present)
4300 {
4301 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4302 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4303 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4304 u64Address,
4305 Pml4e.n.u1Write ? 'W' : 'R',
4306 Pml4e.n.u1User ? 'U' : 'S',
4307 Pml4e.n.u1Accessed ? 'A' : '-',
4308 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4309 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4310 Pml4e.n.u1WriteThru ? "WT" : "--",
4311 Pml4e.n.u1CacheDisable? "CD" : "--",
4312 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4313 Pml4e.n.u1NoExecute ? "NX" : "--",
4314 Pml4e.u & RT_BIT(9) ? '1' : '0',
4315 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4316 Pml4e.u & RT_BIT(11) ? '1' : '0',
4317 Pml4e.u & X86_PML4E_PG_MASK);
4318
4319 if (cMaxDepth >= 1)
4320 {
4321 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4322 if (rc2 < rc && RT_SUCCESS(rc))
4323 rc = rc2;
4324 }
4325 }
4326 }
4327 return rc;
4328}
4329
4330
4331/**
4332 * Dumps a 32-bit shadow page table.
4333 *
4334 * @returns VBox status code (VINF_SUCCESS).
4335 * @param pVM The VM handle.
4336 * @param pPT Pointer to the page table.
4337 * @param u32Address The virtual address this table starts at.
4338 * @param pHlp Pointer to the output functions.
4339 */
4340int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4341{
4342 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4343 {
4344 X86PTE Pte = pPT->a[i];
4345 if (Pte.n.u1Present)
4346 {
4347 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4348 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4349 u32Address + (i << X86_PT_SHIFT),
4350 Pte.n.u1Write ? 'W' : 'R',
4351 Pte.n.u1User ? 'U' : 'S',
4352 Pte.n.u1Accessed ? 'A' : '-',
4353 Pte.n.u1Dirty ? 'D' : '-',
4354 Pte.n.u1Global ? 'G' : '-',
4355 Pte.n.u1WriteThru ? "WT" : "--",
4356 Pte.n.u1CacheDisable? "CD" : "--",
4357 Pte.n.u1PAT ? "AT" : "--",
4358 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4359 Pte.u & RT_BIT(10) ? '1' : '0',
4360 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4361 Pte.u & X86_PDE_PG_MASK);
4362 }
4363 }
4364 return VINF_SUCCESS;
4365}
4366
4367
4368/**
4369 * Dumps a 32-bit shadow page directory and page tables.
4370 *
4371 * @returns VBox status code (VINF_SUCCESS).
4372 * @param pVM The VM handle.
4373 * @param cr3 The root of the hierarchy.
4374 * @param cr4 The CR4, PSE is currently used.
4375 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4376 * @param pHlp Pointer to the output functions.
4377 */
4378int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4379{
4380 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4381 if (!pPD)
4382 {
4383 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4384 return VERR_INVALID_PARAMETER;
4385 }
4386
4387 int rc = VINF_SUCCESS;
4388 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4389 {
4390 X86PDE Pde = pPD->a[i];
4391 if (Pde.n.u1Present)
4392 {
4393 const uint32_t u32Address = i << X86_PD_SHIFT;
4394 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4395 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4396 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4397 u32Address,
4398 Pde.b.u1Write ? 'W' : 'R',
4399 Pde.b.u1User ? 'U' : 'S',
4400 Pde.b.u1Accessed ? 'A' : '-',
4401 Pde.b.u1Dirty ? 'D' : '-',
4402 Pde.b.u1Global ? 'G' : '-',
4403 Pde.b.u1WriteThru ? "WT" : "--",
4404 Pde.b.u1CacheDisable? "CD" : "--",
4405 Pde.b.u1PAT ? "AT" : "--",
4406 Pde.u & RT_BIT_64(9) ? '1' : '0',
4407 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4408 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4409 Pde.u & X86_PDE4M_PG_MASK);
4410 else
4411 {
4412 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4413 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4414 u32Address,
4415 Pde.n.u1Write ? 'W' : 'R',
4416 Pde.n.u1User ? 'U' : 'S',
4417 Pde.n.u1Accessed ? 'A' : '-',
4418 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4419 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4420 Pde.n.u1WriteThru ? "WT" : "--",
4421 Pde.n.u1CacheDisable? "CD" : "--",
4422 Pde.u & RT_BIT_64(9) ? '1' : '0',
4423 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4424 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4425 Pde.u & X86_PDE_PG_MASK);
4426 if (cMaxDepth >= 1)
4427 {
4428 /** @todo what about using the page pool for mapping PTs? */
4429 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4430 PX86PT pPT = NULL;
4431 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4432 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4433 else
4434 {
4435 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4436 if (u32Address - pMap->GCPtr < pMap->cb)
4437 {
4438 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4439 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4440 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4441 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4442 pPT = pMap->aPTs[iPDE].pPTR3;
4443 }
4444 }
4445 int rc2 = VERR_INVALID_PARAMETER;
4446 if (pPT)
4447 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4448 else
4449 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4450 if (rc2 < rc && RT_SUCCESS(rc))
4451 rc = rc2;
4452 }
4453 }
4454 }
4455 }
4456
4457 return rc;
4458}
4459
4460
4461/**
4462 * Dumps a 32-bit shadow page table.
4463 *
4464 * @returns VBox status code (VINF_SUCCESS).
4465 * @param pVM The VM handle.
4466 * @param pPT Pointer to the page table.
4467 * @param u32Address The virtual address this table starts at.
4468 * @param PhysSearch Address to search for.
4469 */
4470int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4471{
4472 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4473 {
4474 X86PTE Pte = pPT->a[i];
4475 if (Pte.n.u1Present)
4476 {
4477 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4478 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4479 u32Address + (i << X86_PT_SHIFT),
4480 Pte.n.u1Write ? 'W' : 'R',
4481 Pte.n.u1User ? 'U' : 'S',
4482 Pte.n.u1Accessed ? 'A' : '-',
4483 Pte.n.u1Dirty ? 'D' : '-',
4484 Pte.n.u1Global ? 'G' : '-',
4485 Pte.n.u1WriteThru ? "WT" : "--",
4486 Pte.n.u1CacheDisable? "CD" : "--",
4487 Pte.n.u1PAT ? "AT" : "--",
4488 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4489 Pte.u & RT_BIT(10) ? '1' : '0',
4490 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4491 Pte.u & X86_PDE_PG_MASK));
4492
4493 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4494 {
4495 uint64_t fPageShw = 0;
4496 RTHCPHYS pPhysHC = 0;
4497
4498 /** @todo SMP support!! */
4499 PGMShwGetPage(pVM, &pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4500 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4501 }
4502 }
4503 }
4504 return VINF_SUCCESS;
4505}
4506
4507
4508/**
4509 * Dumps a 32-bit guest page directory and page tables.
4510 *
4511 * @returns VBox status code (VINF_SUCCESS).
4512 * @param pVM The VM handle.
4513 * @param cr3 The root of the hierarchy.
4514 * @param cr4 The CR4, PSE is currently used.
4515 * @param PhysSearch Address to search for.
4516 */
4517VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4518{
4519 bool fLongMode = false;
4520 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4521 PX86PD pPD = 0;
4522
4523 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4524 if (RT_FAILURE(rc) || !pPD)
4525 {
4526 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4527 return VERR_INVALID_PARAMETER;
4528 }
4529
4530 Log(("cr3=%08x cr4=%08x%s\n"
4531 "%-*s P - Present\n"
4532 "%-*s | R/W - Read (0) / Write (1)\n"
4533 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4534 "%-*s | | | A - Accessed\n"
4535 "%-*s | | | | D - Dirty\n"
4536 "%-*s | | | | | G - Global\n"
4537 "%-*s | | | | | | WT - Write thru\n"
4538 "%-*s | | | | | | | CD - Cache disable\n"
4539 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4540 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4541 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4542 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4543 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4544 "%-*s Level | | | | | | | | | | | | Page\n"
4545 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4546 - W U - - - -- -- -- -- -- 010 */
4547 , cr3, cr4, fLongMode ? " Long Mode" : "",
4548 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4549 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4550
4551 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4552 {
4553 X86PDE Pde = pPD->a[i];
4554 if (Pde.n.u1Present)
4555 {
4556 const uint32_t u32Address = i << X86_PD_SHIFT;
4557
4558 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4559 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4560 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4561 u32Address,
4562 Pde.b.u1Write ? 'W' : 'R',
4563 Pde.b.u1User ? 'U' : 'S',
4564 Pde.b.u1Accessed ? 'A' : '-',
4565 Pde.b.u1Dirty ? 'D' : '-',
4566 Pde.b.u1Global ? 'G' : '-',
4567 Pde.b.u1WriteThru ? "WT" : "--",
4568 Pde.b.u1CacheDisable? "CD" : "--",
4569 Pde.b.u1PAT ? "AT" : "--",
4570 Pde.u & RT_BIT(9) ? '1' : '0',
4571 Pde.u & RT_BIT(10) ? '1' : '0',
4572 Pde.u & RT_BIT(11) ? '1' : '0',
4573 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4574 /** @todo PhysSearch */
4575 else
4576 {
4577 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4578 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4579 u32Address,
4580 Pde.n.u1Write ? 'W' : 'R',
4581 Pde.n.u1User ? 'U' : 'S',
4582 Pde.n.u1Accessed ? 'A' : '-',
4583 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4584 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4585 Pde.n.u1WriteThru ? "WT" : "--",
4586 Pde.n.u1CacheDisable? "CD" : "--",
4587 Pde.u & RT_BIT(9) ? '1' : '0',
4588 Pde.u & RT_BIT(10) ? '1' : '0',
4589 Pde.u & RT_BIT(11) ? '1' : '0',
4590 Pde.u & X86_PDE_PG_MASK));
4591 ////if (cMaxDepth >= 1)
4592 {
4593 /** @todo what about using the page pool for mapping PTs? */
4594 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4595 PX86PT pPT = NULL;
4596
4597 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4598
4599 int rc2 = VERR_INVALID_PARAMETER;
4600 if (pPT)
4601 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4602 else
4603 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4604 if (rc2 < rc && RT_SUCCESS(rc))
4605 rc = rc2;
4606 }
4607 }
4608 }
4609 }
4610
4611 return rc;
4612}
4613
4614
4615/**
4616 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4617 *
4618 * @returns VBox status code (VINF_SUCCESS).
4619 * @param pVM The VM handle.
4620 * @param cr3 The root of the hierarchy.
4621 * @param cr4 The cr4, only PAE and PSE is currently used.
4622 * @param fLongMode Set if long mode, false if not long mode.
4623 * @param cMaxDepth Number of levels to dump.
4624 * @param pHlp Pointer to the output functions.
4625 */
4626VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4627{
4628 if (!pHlp)
4629 pHlp = DBGFR3InfoLogHlp();
4630 if (!cMaxDepth)
4631 return VINF_SUCCESS;
4632 const unsigned cch = fLongMode ? 16 : 8;
4633 pHlp->pfnPrintf(pHlp,
4634 "cr3=%08x cr4=%08x%s\n"
4635 "%-*s P - Present\n"
4636 "%-*s | R/W - Read (0) / Write (1)\n"
4637 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4638 "%-*s | | | A - Accessed\n"
4639 "%-*s | | | | D - Dirty\n"
4640 "%-*s | | | | | G - Global\n"
4641 "%-*s | | | | | | WT - Write thru\n"
4642 "%-*s | | | | | | | CD - Cache disable\n"
4643 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4644 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4645 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4646 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4647 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4648 "%-*s Level | | | | | | | | | | | | Page\n"
4649 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4650 - W U - - - -- -- -- -- -- 010 */
4651 , cr3, cr4, fLongMode ? " Long Mode" : "",
4652 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4653 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4654 if (cr4 & X86_CR4_PAE)
4655 {
4656 if (fLongMode)
4657 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4658 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4659 }
4660 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4661}
4662
4663#ifdef VBOX_WITH_DEBUGGER
4664
4665/**
4666 * The '.pgmram' command.
4667 *
4668 * @returns VBox status.
4669 * @param pCmd Pointer to the command descriptor (as registered).
4670 * @param pCmdHlp Pointer to command helper functions.
4671 * @param pVM Pointer to the current VM (if any).
4672 * @param paArgs Pointer to (readonly) array of arguments.
4673 * @param cArgs Number of arguments in the array.
4674 */
4675static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4676{
4677 /*
4678 * Validate input.
4679 */
4680 if (!pVM)
4681 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4682 if (!pVM->pgm.s.pRamRangesRC)
4683 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4684
4685 /*
4686 * Dump the ranges.
4687 */
4688 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4689 PPGMRAMRANGE pRam;
4690 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4691 {
4692 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4693 "%RGp - %RGp %p\n",
4694 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4695 if (RT_FAILURE(rc))
4696 return rc;
4697 }
4698
4699 return VINF_SUCCESS;
4700}
4701
4702
4703/**
4704 * The '.pgmmap' command.
4705 *
4706 * @returns VBox status.
4707 * @param pCmd Pointer to the command descriptor (as registered).
4708 * @param pCmdHlp Pointer to command helper functions.
4709 * @param pVM Pointer to the current VM (if any).
4710 * @param paArgs Pointer to (readonly) array of arguments.
4711 * @param cArgs Number of arguments in the array.
4712 */
4713static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4714{
4715 /*
4716 * Validate input.
4717 */
4718 if (!pVM)
4719 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4720 if (!pVM->pgm.s.pMappingsR3)
4721 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4722
4723 /*
4724 * Print message about the fixedness of the mappings.
4725 */
4726 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4727 if (RT_FAILURE(rc))
4728 return rc;
4729
4730 /*
4731 * Dump the ranges.
4732 */
4733 PPGMMAPPING pCur;
4734 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4735 {
4736 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4737 "%08x - %08x %s\n",
4738 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4739 if (RT_FAILURE(rc))
4740 return rc;
4741 }
4742
4743 return VINF_SUCCESS;
4744}
4745
4746
4747/**
4748 * The '.pgmerror' and '.pgmerroroff' commands.
4749 *
4750 * @returns VBox status.
4751 * @param pCmd Pointer to the command descriptor (as registered).
4752 * @param pCmdHlp Pointer to command helper functions.
4753 * @param pVM Pointer to the current VM (if any).
4754 * @param paArgs Pointer to (readonly) array of arguments.
4755 * @param cArgs Number of arguments in the array.
4756 */
4757static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4758{
4759 /*
4760 * Validate input.
4761 */
4762 if (!pVM)
4763 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4764 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4765 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4766
4767 if (!cArgs)
4768 {
4769 /*
4770 * Print the list of error injection locations with status.
4771 */
4772 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4773 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4774 }
4775 else
4776 {
4777
4778 /*
4779 * String switch on where to inject the error.
4780 */
4781 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4782 const char *pszWhere = paArgs[0].u.pszString;
4783 if (!strcmp(pszWhere, "handy"))
4784 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4785 else
4786 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4787 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4788 }
4789 return VINF_SUCCESS;
4790}
4791
4792
4793/**
4794 * The '.pgmsync' command.
4795 *
4796 * @returns VBox status.
4797 * @param pCmd Pointer to the command descriptor (as registered).
4798 * @param pCmdHlp Pointer to command helper functions.
4799 * @param pVM Pointer to the current VM (if any).
4800 * @param paArgs Pointer to (readonly) array of arguments.
4801 * @param cArgs Number of arguments in the array.
4802 */
4803static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4804{
4805 /*
4806 * Validate input.
4807 */
4808 if (!pVM)
4809 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4810
4811 /*
4812 * Force page directory sync.
4813 */
4814 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4815
4816 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4817 if (RT_FAILURE(rc))
4818 return rc;
4819
4820 return VINF_SUCCESS;
4821}
4822
4823
4824#ifdef VBOX_STRICT
4825/**
4826 * The '.pgmassertcr3' command.
4827 *
4828 * @returns VBox status.
4829 * @param pCmd Pointer to the command descriptor (as registered).
4830 * @param pCmdHlp Pointer to command helper functions.
4831 * @param pVM Pointer to the current VM (if any).
4832 * @param paArgs Pointer to (readonly) array of arguments.
4833 * @param cArgs Number of arguments in the array.
4834 */
4835static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4836{
4837 /** @todo SMP support!! */
4838 PVMCPU pVCpu = &pVM->aCpus[0];
4839
4840 /*
4841 * Validate input.
4842 */
4843 if (!pVM)
4844 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4845
4846 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4847 if (RT_FAILURE(rc))
4848 return rc;
4849
4850 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4851
4852 return VINF_SUCCESS;
4853}
4854#endif /* VBOX_STRICT */
4855
4856
4857/**
4858 * The '.pgmsyncalways' command.
4859 *
4860 * @returns VBox status.
4861 * @param pCmd Pointer to the command descriptor (as registered).
4862 * @param pCmdHlp Pointer to command helper functions.
4863 * @param pVM Pointer to the current VM (if any).
4864 * @param paArgs Pointer to (readonly) array of arguments.
4865 * @param cArgs Number of arguments in the array.
4866 */
4867static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4868{
4869 /** @todo SMP support!! */
4870 PVMCPU pVCpu = &pVM->aCpus[0];
4871
4872 /*
4873 * Validate input.
4874 */
4875 if (!pVM)
4876 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4877
4878 /*
4879 * Force page directory sync.
4880 */
4881 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4882 {
4883 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4884 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4885 }
4886 else
4887 {
4888 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4889 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
4890 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4891 }
4892}
4893
4894#endif /* VBOX_WITH_DEBUGGER */
4895
4896/**
4897 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4898 */
4899typedef struct PGMCHECKINTARGS
4900{
4901 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4902 PPGMPHYSHANDLER pPrevPhys;
4903 PPGMVIRTHANDLER pPrevVirt;
4904 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4905 PVM pVM;
4906} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4907
4908/**
4909 * Validate a node in the physical handler tree.
4910 *
4911 * @returns 0 on if ok, other wise 1.
4912 * @param pNode The handler node.
4913 * @param pvUser pVM.
4914 */
4915static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4916{
4917 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4918 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4919 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4920 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4921 AssertReleaseMsg( !pArgs->pPrevPhys
4922 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4923 ("pPrevPhys=%p %RGp-%RGp %s\n"
4924 " pCur=%p %RGp-%RGp %s\n",
4925 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4926 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4927 pArgs->pPrevPhys = pCur;
4928 return 0;
4929}
4930
4931
4932/**
4933 * Validate a node in the virtual handler tree.
4934 *
4935 * @returns 0 on if ok, other wise 1.
4936 * @param pNode The handler node.
4937 * @param pvUser pVM.
4938 */
4939static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4940{
4941 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4942 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4943 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4944 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4945 AssertReleaseMsg( !pArgs->pPrevVirt
4946 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4947 ("pPrevVirt=%p %RGv-%RGv %s\n"
4948 " pCur=%p %RGv-%RGv %s\n",
4949 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4950 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4951 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4952 {
4953 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4954 ("pCur=%p %RGv-%RGv %s\n"
4955 "iPage=%d offVirtHandle=%#x expected %#x\n",
4956 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4957 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4958 }
4959 pArgs->pPrevVirt = pCur;
4960 return 0;
4961}
4962
4963
4964/**
4965 * Validate a node in the virtual handler tree.
4966 *
4967 * @returns 0 on if ok, other wise 1.
4968 * @param pNode The handler node.
4969 * @param pvUser pVM.
4970 */
4971static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4972{
4973 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4974 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4975 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4976 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4977 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4978 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4979 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4980 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4981 " pCur=%p %RGp-%RGp\n",
4982 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4983 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4984 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4985 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4986 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4987 " pCur=%p %RGp-%RGp\n",
4988 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4989 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4990 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4991 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4992 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4993 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4994 {
4995 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4996 for (;;)
4997 {
4998 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4999 AssertReleaseMsg(pCur2 != pCur,
5000 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5001 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5002 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5003 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5004 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5005 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5006 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5007 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5008 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5009 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5010 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5011 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5012 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5013 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5014 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5015 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5016 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5017 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5018 break;
5019 }
5020 }
5021
5022 pArgs->pPrevPhys2Virt = pCur;
5023 return 0;
5024}
5025
5026
5027/**
5028 * Perform an integrity check on the PGM component.
5029 *
5030 * @returns VINF_SUCCESS if everything is fine.
5031 * @returns VBox error status after asserting on integrity breach.
5032 * @param pVM The VM handle.
5033 */
5034VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5035{
5036 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5037
5038 /*
5039 * Check the trees.
5040 */
5041 int cErrors = 0;
5042 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5043 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5044 PGMCHECKINTARGS Args = s_LeftToRight;
5045 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5046 Args = s_RightToLeft;
5047 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5048 Args = s_LeftToRight;
5049 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5050 Args = s_RightToLeft;
5051 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5052 Args = s_LeftToRight;
5053 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5054 Args = s_RightToLeft;
5055 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5056 Args = s_LeftToRight;
5057 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5058 Args = s_RightToLeft;
5059 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5060
5061 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5062}
5063
5064
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette