VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 21249

Last change on this file since 21249 was 21168, checked in by vboxsync, 16 years ago

More statistics

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 234.5 KB
Line 
1/* $Id: PGM.cpp 21168 2009-07-02 14:28:47Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#ifdef DEBUG_bird
602# include <iprt/env.h>
603#endif
604#include <VBox/param.h>
605#include <VBox/err.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.5.x and later. */
612#define PGM_SAVED_STATE_VERSION 9
613/** Saved state data unit version for 2.2.2 and later. */
614#define PGM_SAVED_STATE_VERSION_2_2_2 8
615/** Saved state data unit version for 2.2.0. */
616#define PGM_SAVED_STATE_VERSION_RR_DESC 7
617/** Saved state data unit version. */
618#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
619
620
621/*******************************************************************************
622* Internal Functions *
623*******************************************************************************/
624static int pgmR3InitPaging(PVM pVM);
625static void pgmR3InitStats(PVM pVM);
626static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
629static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
632#ifdef VBOX_STRICT
633static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
634#endif
635static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
636static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
637static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
638static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
639static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
640
641#ifdef VBOX_WITH_DEBUGGER
642/** @todo Convert the first two commands to 'info' items. */
643static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# ifdef VBOX_STRICT
649static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650# endif
651#endif
652
653
654/*******************************************************************************
655* Global Variables *
656*******************************************************************************/
657#ifdef VBOX_WITH_DEBUGGER
658/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
659static const DBGCVARDESC g_aPgmErrorArgs[] =
660{
661 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
662 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
663};
664
665/** Command descriptors. */
666static const DBGCCMD g_aCmds[] =
667{
668 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
669 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
670 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
671 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
672 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
673 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0],1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
674#ifdef VBOX_STRICT
675 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
676#endif
677 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
678};
679#endif
680
681
682
683
684/*
685 * Shadow - 32-bit mode
686 */
687#define PGM_SHW_TYPE PGM_TYPE_32BIT
688#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
689#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
690#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
691#include "PGMShw.h"
692
693/* Guest - real mode */
694#define PGM_GST_TYPE PGM_TYPE_REAL
695#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
696#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
697#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
698#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
699#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
700#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
701#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
702#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
703#include "PGMBth.h"
704#include "PGMGstDefs.h"
705#include "PGMGst.h"
706#undef BTH_PGMPOOLKIND_PT_FOR_PT
707#undef BTH_PGMPOOLKIND_ROOT
708#undef PGM_BTH_NAME
709#undef PGM_BTH_NAME_RC_STR
710#undef PGM_BTH_NAME_R0_STR
711#undef PGM_GST_TYPE
712#undef PGM_GST_NAME
713#undef PGM_GST_NAME_RC_STR
714#undef PGM_GST_NAME_R0_STR
715
716/* Guest - protected mode */
717#define PGM_GST_TYPE PGM_TYPE_PROT
718#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
719#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
720#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
721#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
722#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
723#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
724#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
725#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
726#include "PGMBth.h"
727#include "PGMGstDefs.h"
728#include "PGMGst.h"
729#undef BTH_PGMPOOLKIND_PT_FOR_PT
730#undef BTH_PGMPOOLKIND_ROOT
731#undef PGM_BTH_NAME
732#undef PGM_BTH_NAME_RC_STR
733#undef PGM_BTH_NAME_R0_STR
734#undef PGM_GST_TYPE
735#undef PGM_GST_NAME
736#undef PGM_GST_NAME_RC_STR
737#undef PGM_GST_NAME_R0_STR
738
739/* Guest - 32-bit mode */
740#define PGM_GST_TYPE PGM_TYPE_32BIT
741#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
742#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
743#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
744#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
745#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
746#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
747#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
748#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
749#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
750#include "PGMBth.h"
751#include "PGMGstDefs.h"
752#include "PGMGst.h"
753#undef BTH_PGMPOOLKIND_PT_FOR_BIG
754#undef BTH_PGMPOOLKIND_PT_FOR_PT
755#undef BTH_PGMPOOLKIND_ROOT
756#undef PGM_BTH_NAME
757#undef PGM_BTH_NAME_RC_STR
758#undef PGM_BTH_NAME_R0_STR
759#undef PGM_GST_TYPE
760#undef PGM_GST_NAME
761#undef PGM_GST_NAME_RC_STR
762#undef PGM_GST_NAME_R0_STR
763
764#undef PGM_SHW_TYPE
765#undef PGM_SHW_NAME
766#undef PGM_SHW_NAME_RC_STR
767#undef PGM_SHW_NAME_R0_STR
768
769
770/*
771 * Shadow - PAE mode
772 */
773#define PGM_SHW_TYPE PGM_TYPE_PAE
774#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
775#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
776#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
777#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
778#include "PGMShw.h"
779
780/* Guest - real mode */
781#define PGM_GST_TYPE PGM_TYPE_REAL
782#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
783#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
784#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
785#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
786#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
787#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
788#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
789#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
790#include "PGMGstDefs.h"
791#include "PGMBth.h"
792#undef BTH_PGMPOOLKIND_PT_FOR_PT
793#undef BTH_PGMPOOLKIND_ROOT
794#undef PGM_BTH_NAME
795#undef PGM_BTH_NAME_RC_STR
796#undef PGM_BTH_NAME_R0_STR
797#undef PGM_GST_TYPE
798#undef PGM_GST_NAME
799#undef PGM_GST_NAME_RC_STR
800#undef PGM_GST_NAME_R0_STR
801
802/* Guest - protected mode */
803#define PGM_GST_TYPE PGM_TYPE_PROT
804#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
805#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
806#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
807#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
808#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
809#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
810#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
811#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
812#include "PGMGstDefs.h"
813#include "PGMBth.h"
814#undef BTH_PGMPOOLKIND_PT_FOR_PT
815#undef BTH_PGMPOOLKIND_ROOT
816#undef PGM_BTH_NAME
817#undef PGM_BTH_NAME_RC_STR
818#undef PGM_BTH_NAME_R0_STR
819#undef PGM_GST_TYPE
820#undef PGM_GST_NAME
821#undef PGM_GST_NAME_RC_STR
822#undef PGM_GST_NAME_R0_STR
823
824/* Guest - 32-bit mode */
825#define PGM_GST_TYPE PGM_TYPE_32BIT
826#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
827#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
828#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
829#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
830#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
831#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
832#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
833#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
834#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
835#include "PGMGstDefs.h"
836#include "PGMBth.h"
837#undef BTH_PGMPOOLKIND_PT_FOR_BIG
838#undef BTH_PGMPOOLKIND_PT_FOR_PT
839#undef BTH_PGMPOOLKIND_ROOT
840#undef PGM_BTH_NAME
841#undef PGM_BTH_NAME_RC_STR
842#undef PGM_BTH_NAME_R0_STR
843#undef PGM_GST_TYPE
844#undef PGM_GST_NAME
845#undef PGM_GST_NAME_RC_STR
846#undef PGM_GST_NAME_R0_STR
847
848/* Guest - PAE mode */
849#define PGM_GST_TYPE PGM_TYPE_PAE
850#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
851#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
852#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
853#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
854#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
855#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
856#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
857#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
858#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
859#include "PGMBth.h"
860#include "PGMGstDefs.h"
861#include "PGMGst.h"
862#undef BTH_PGMPOOLKIND_PT_FOR_BIG
863#undef BTH_PGMPOOLKIND_PT_FOR_PT
864#undef BTH_PGMPOOLKIND_ROOT
865#undef PGM_BTH_NAME
866#undef PGM_BTH_NAME_RC_STR
867#undef PGM_BTH_NAME_R0_STR
868#undef PGM_GST_TYPE
869#undef PGM_GST_NAME
870#undef PGM_GST_NAME_RC_STR
871#undef PGM_GST_NAME_R0_STR
872
873#undef PGM_SHW_TYPE
874#undef PGM_SHW_NAME
875#undef PGM_SHW_NAME_RC_STR
876#undef PGM_SHW_NAME_R0_STR
877
878
879/*
880 * Shadow - AMD64 mode
881 */
882#define PGM_SHW_TYPE PGM_TYPE_AMD64
883#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
884#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
885#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
886#include "PGMShw.h"
887
888#ifdef VBOX_WITH_64_BITS_GUESTS
889/* Guest - AMD64 mode */
890# define PGM_GST_TYPE PGM_TYPE_AMD64
891# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
892# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
893# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
894# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
895# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
896# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
897# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
898# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
899# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
900# include "PGMBth.h"
901# include "PGMGstDefs.h"
902# include "PGMGst.h"
903# undef BTH_PGMPOOLKIND_PT_FOR_BIG
904# undef BTH_PGMPOOLKIND_PT_FOR_PT
905# undef BTH_PGMPOOLKIND_ROOT
906# undef PGM_BTH_NAME
907# undef PGM_BTH_NAME_RC_STR
908# undef PGM_BTH_NAME_R0_STR
909# undef PGM_GST_TYPE
910# undef PGM_GST_NAME
911# undef PGM_GST_NAME_RC_STR
912# undef PGM_GST_NAME_R0_STR
913#endif /* VBOX_WITH_64_BITS_GUESTS */
914
915#undef PGM_SHW_TYPE
916#undef PGM_SHW_NAME
917#undef PGM_SHW_NAME_RC_STR
918#undef PGM_SHW_NAME_R0_STR
919
920
921/*
922 * Shadow - Nested paging mode
923 */
924#define PGM_SHW_TYPE PGM_TYPE_NESTED
925#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
926#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
927#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
928#include "PGMShw.h"
929
930/* Guest - real mode */
931#define PGM_GST_TYPE PGM_TYPE_REAL
932#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
933#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
934#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
935#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
936#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
937#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
938#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
939#include "PGMGstDefs.h"
940#include "PGMBth.h"
941#undef BTH_PGMPOOLKIND_PT_FOR_PT
942#undef PGM_BTH_NAME
943#undef PGM_BTH_NAME_RC_STR
944#undef PGM_BTH_NAME_R0_STR
945#undef PGM_GST_TYPE
946#undef PGM_GST_NAME
947#undef PGM_GST_NAME_RC_STR
948#undef PGM_GST_NAME_R0_STR
949
950/* Guest - protected mode */
951#define PGM_GST_TYPE PGM_TYPE_PROT
952#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
953#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
954#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
955#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
956#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
957#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
958#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
959#include "PGMGstDefs.h"
960#include "PGMBth.h"
961#undef BTH_PGMPOOLKIND_PT_FOR_PT
962#undef PGM_BTH_NAME
963#undef PGM_BTH_NAME_RC_STR
964#undef PGM_BTH_NAME_R0_STR
965#undef PGM_GST_TYPE
966#undef PGM_GST_NAME
967#undef PGM_GST_NAME_RC_STR
968#undef PGM_GST_NAME_R0_STR
969
970/* Guest - 32-bit mode */
971#define PGM_GST_TYPE PGM_TYPE_32BIT
972#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
973#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
974#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
975#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
976#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
977#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
978#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
979#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
980#include "PGMGstDefs.h"
981#include "PGMBth.h"
982#undef BTH_PGMPOOLKIND_PT_FOR_BIG
983#undef BTH_PGMPOOLKIND_PT_FOR_PT
984#undef PGM_BTH_NAME
985#undef PGM_BTH_NAME_RC_STR
986#undef PGM_BTH_NAME_R0_STR
987#undef PGM_GST_TYPE
988#undef PGM_GST_NAME
989#undef PGM_GST_NAME_RC_STR
990#undef PGM_GST_NAME_R0_STR
991
992/* Guest - PAE mode */
993#define PGM_GST_TYPE PGM_TYPE_PAE
994#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
995#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
996#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
997#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
998#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
999#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1000#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1001#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1002#include "PGMGstDefs.h"
1003#include "PGMBth.h"
1004#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1005#undef BTH_PGMPOOLKIND_PT_FOR_PT
1006#undef PGM_BTH_NAME
1007#undef PGM_BTH_NAME_RC_STR
1008#undef PGM_BTH_NAME_R0_STR
1009#undef PGM_GST_TYPE
1010#undef PGM_GST_NAME
1011#undef PGM_GST_NAME_RC_STR
1012#undef PGM_GST_NAME_R0_STR
1013
1014#ifdef VBOX_WITH_64_BITS_GUESTS
1015/* Guest - AMD64 mode */
1016# define PGM_GST_TYPE PGM_TYPE_AMD64
1017# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1018# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1019# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1020# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1021# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1022# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1023# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1024# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1025# include "PGMGstDefs.h"
1026# include "PGMBth.h"
1027# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1028# undef BTH_PGMPOOLKIND_PT_FOR_PT
1029# undef PGM_BTH_NAME
1030# undef PGM_BTH_NAME_RC_STR
1031# undef PGM_BTH_NAME_R0_STR
1032# undef PGM_GST_TYPE
1033# undef PGM_GST_NAME
1034# undef PGM_GST_NAME_RC_STR
1035# undef PGM_GST_NAME_R0_STR
1036#endif /* VBOX_WITH_64_BITS_GUESTS */
1037
1038#undef PGM_SHW_TYPE
1039#undef PGM_SHW_NAME
1040#undef PGM_SHW_NAME_RC_STR
1041#undef PGM_SHW_NAME_R0_STR
1042
1043
1044/*
1045 * Shadow - EPT
1046 */
1047#define PGM_SHW_TYPE PGM_TYPE_EPT
1048#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1049#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1050#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1051#include "PGMShw.h"
1052
1053/* Guest - real mode */
1054#define PGM_GST_TYPE PGM_TYPE_REAL
1055#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1056#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1057#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1058#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1059#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1060#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1061#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1062#include "PGMGstDefs.h"
1063#include "PGMBth.h"
1064#undef BTH_PGMPOOLKIND_PT_FOR_PT
1065#undef PGM_BTH_NAME
1066#undef PGM_BTH_NAME_RC_STR
1067#undef PGM_BTH_NAME_R0_STR
1068#undef PGM_GST_TYPE
1069#undef PGM_GST_NAME
1070#undef PGM_GST_NAME_RC_STR
1071#undef PGM_GST_NAME_R0_STR
1072
1073/* Guest - protected mode */
1074#define PGM_GST_TYPE PGM_TYPE_PROT
1075#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1076#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1077#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1078#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1079#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1080#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1081#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1082#include "PGMGstDefs.h"
1083#include "PGMBth.h"
1084#undef BTH_PGMPOOLKIND_PT_FOR_PT
1085#undef PGM_BTH_NAME
1086#undef PGM_BTH_NAME_RC_STR
1087#undef PGM_BTH_NAME_R0_STR
1088#undef PGM_GST_TYPE
1089#undef PGM_GST_NAME
1090#undef PGM_GST_NAME_RC_STR
1091#undef PGM_GST_NAME_R0_STR
1092
1093/* Guest - 32-bit mode */
1094#define PGM_GST_TYPE PGM_TYPE_32BIT
1095#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1096#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1097#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1098#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1099#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1100#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1101#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1102#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1103#include "PGMGstDefs.h"
1104#include "PGMBth.h"
1105#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1106#undef BTH_PGMPOOLKIND_PT_FOR_PT
1107#undef PGM_BTH_NAME
1108#undef PGM_BTH_NAME_RC_STR
1109#undef PGM_BTH_NAME_R0_STR
1110#undef PGM_GST_TYPE
1111#undef PGM_GST_NAME
1112#undef PGM_GST_NAME_RC_STR
1113#undef PGM_GST_NAME_R0_STR
1114
1115/* Guest - PAE mode */
1116#define PGM_GST_TYPE PGM_TYPE_PAE
1117#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1118#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1119#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1120#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1121#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1122#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1123#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1124#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1125#include "PGMGstDefs.h"
1126#include "PGMBth.h"
1127#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1128#undef BTH_PGMPOOLKIND_PT_FOR_PT
1129#undef PGM_BTH_NAME
1130#undef PGM_BTH_NAME_RC_STR
1131#undef PGM_BTH_NAME_R0_STR
1132#undef PGM_GST_TYPE
1133#undef PGM_GST_NAME
1134#undef PGM_GST_NAME_RC_STR
1135#undef PGM_GST_NAME_R0_STR
1136
1137#ifdef VBOX_WITH_64_BITS_GUESTS
1138/* Guest - AMD64 mode */
1139# define PGM_GST_TYPE PGM_TYPE_AMD64
1140# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1141# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1142# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1143# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1144# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1145# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1146# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1147# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1148# include "PGMGstDefs.h"
1149# include "PGMBth.h"
1150# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1151# undef BTH_PGMPOOLKIND_PT_FOR_PT
1152# undef PGM_BTH_NAME
1153# undef PGM_BTH_NAME_RC_STR
1154# undef PGM_BTH_NAME_R0_STR
1155# undef PGM_GST_TYPE
1156# undef PGM_GST_NAME
1157# undef PGM_GST_NAME_RC_STR
1158# undef PGM_GST_NAME_R0_STR
1159#endif /* VBOX_WITH_64_BITS_GUESTS */
1160
1161#undef PGM_SHW_TYPE
1162#undef PGM_SHW_NAME
1163#undef PGM_SHW_NAME_RC_STR
1164#undef PGM_SHW_NAME_R0_STR
1165
1166
1167
1168/**
1169 * Initiates the paging of VM.
1170 *
1171 * @returns VBox status code.
1172 * @param pVM Pointer to VM structure.
1173 */
1174VMMR3DECL(int) PGMR3Init(PVM pVM)
1175{
1176 LogFlow(("PGMR3Init:\n"));
1177 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1178 int rc;
1179
1180 /*
1181 * Assert alignment and sizes.
1182 */
1183 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1184 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1185
1186 /*
1187 * Init the structure.
1188 */
1189 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1190 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1191
1192 /* Init the per-CPU part. */
1193 for (unsigned i=0;i<pVM->cCPUs;i++)
1194 {
1195 PVMCPU pVCpu = &pVM->aCpus[i];
1196 PPGMCPU pPGM = &pVCpu->pgm.s;
1197
1198 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1199 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1200 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1201
1202 pPGM->enmShadowMode = PGMMODE_INVALID;
1203 pPGM->enmGuestMode = PGMMODE_INVALID;
1204
1205 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1206
1207 pPGM->pGstPaePdptR3 = NULL;
1208#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1209 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1210#endif
1211 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1212 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1213 {
1214 pPGM->apGstPaePDsR3[i] = NULL;
1215#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1216 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1217#endif
1218 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1219 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1220 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1221 }
1222
1223 pPGM->fA20Enabled = true;
1224 }
1225
1226 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1227 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1228 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1229
1230 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1231#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1232 true
1233#else
1234 false
1235#endif
1236 );
1237 AssertLogRelRCReturn(rc, rc);
1238
1239#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1240 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1241#else
1242 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1243#endif
1244 AssertLogRelRCReturn(rc, rc);
1245 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1246 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1247
1248 /*
1249 * Get the configured RAM size - to estimate saved state size.
1250 */
1251 uint64_t cbRam;
1252 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1253 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1254 cbRam = 0;
1255 else if (RT_SUCCESS(rc))
1256 {
1257 if (cbRam < PAGE_SIZE)
1258 cbRam = 0;
1259 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1260 }
1261 else
1262 {
1263 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1264 return rc;
1265 }
1266
1267 /*
1268 * Register callbacks, string formatters and the saved state data unit.
1269 */
1270#ifdef VBOX_STRICT
1271 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1272#endif
1273 PGMRegisterStringFormatTypes();
1274
1275 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1276 NULL, pgmR3Save, NULL,
1277 NULL, pgmR3Load, NULL);
1278 if (RT_FAILURE(rc))
1279 return rc;
1280
1281 /*
1282 * Initialize the PGM critical section and flush the phys TLBs
1283 */
1284 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1285 AssertRCReturn(rc, rc);
1286
1287 PGMR3PhysChunkInvalidateTLB(pVM);
1288 PGMPhysInvalidatePageR3MapTLB(pVM);
1289 PGMPhysInvalidatePageR0MapTLB(pVM);
1290 PGMPhysInvalidatePageGCMapTLB(pVM);
1291
1292 /*
1293 * For the time being we sport a full set of handy pages in addition to the base
1294 * memory to simplify things.
1295 */
1296 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1297 AssertRCReturn(rc, rc);
1298
1299 /*
1300 * Trees
1301 */
1302 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1303 if (RT_SUCCESS(rc))
1304 {
1305 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1306 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1307
1308 /*
1309 * Alocate the zero page.
1310 */
1311 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1312 }
1313 if (RT_SUCCESS(rc))
1314 {
1315 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1316 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1317 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1318 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1319
1320 /*
1321 * Init the paging.
1322 */
1323 rc = pgmR3InitPaging(pVM);
1324 }
1325 if (RT_SUCCESS(rc))
1326 {
1327 /*
1328 * Init the page pool.
1329 */
1330 rc = pgmR3PoolInit(pVM);
1331 }
1332 if (RT_SUCCESS(rc))
1333 {
1334 for (unsigned i=0;i<pVM->cCPUs;i++)
1335 {
1336 PVMCPU pVCpu = &pVM->aCpus[i];
1337
1338 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1339 if (RT_FAILURE(rc))
1340 break;
1341 }
1342 }
1343
1344 if (RT_SUCCESS(rc))
1345 {
1346 /*
1347 * Info & statistics
1348 */
1349 DBGFR3InfoRegisterInternal(pVM, "mode",
1350 "Shows the current paging mode. "
1351 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1352 pgmR3InfoMode);
1353 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1354 "Dumps all the entries in the top level paging table. No arguments.",
1355 pgmR3InfoCr3);
1356 DBGFR3InfoRegisterInternal(pVM, "phys",
1357 "Dumps all the physical address ranges. No arguments.",
1358 pgmR3PhysInfo);
1359 DBGFR3InfoRegisterInternal(pVM, "handlers",
1360 "Dumps physical, virtual and hyper virtual handlers. "
1361 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1362 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1363 pgmR3InfoHandlers);
1364 DBGFR3InfoRegisterInternal(pVM, "mappings",
1365 "Dumps guest mappings.",
1366 pgmR3MapInfo);
1367
1368 pgmR3InitStats(pVM);
1369
1370#ifdef VBOX_WITH_DEBUGGER
1371 /*
1372 * Debugger commands.
1373 */
1374 static bool s_fRegisteredCmds = false;
1375 if (!s_fRegisteredCmds)
1376 {
1377 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1378 if (RT_SUCCESS(rc))
1379 s_fRegisteredCmds = true;
1380 }
1381#endif
1382 return VINF_SUCCESS;
1383 }
1384
1385 /* Almost no cleanup necessary, MM frees all memory. */
1386 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1387
1388 return rc;
1389}
1390
1391
1392/**
1393 * Initializes the per-VCPU PGM.
1394 *
1395 * @returns VBox status code.
1396 * @param pVM The VM to operate on.
1397 */
1398VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1399{
1400 LogFlow(("PGMR3InitCPU\n"));
1401 return VINF_SUCCESS;
1402}
1403
1404
1405/**
1406 * Init paging.
1407 *
1408 * Since we need to check what mode the host is operating in before we can choose
1409 * the right paging functions for the host we have to delay this until R0 has
1410 * been initialized.
1411 *
1412 * @returns VBox status code.
1413 * @param pVM VM handle.
1414 */
1415static int pgmR3InitPaging(PVM pVM)
1416{
1417 /*
1418 * Force a recalculation of modes and switcher so everyone gets notified.
1419 */
1420 for (unsigned i=0;i<pVM->cCPUs;i++)
1421 {
1422 PVMCPU pVCpu = &pVM->aCpus[i];
1423
1424 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1425 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1426 }
1427
1428 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1429
1430 /*
1431 * Allocate static mapping space for whatever the cr3 register
1432 * points to and in the case of PAE mode to the 4 PDs.
1433 */
1434 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1435 if (RT_FAILURE(rc))
1436 {
1437 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1438 return rc;
1439 }
1440 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1441
1442 /*
1443 * Allocate pages for the three possible intermediate contexts
1444 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1445 * for the sake of simplicity. The AMD64 uses the PAE for the
1446 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1447 *
1448 * We assume that two page tables will be enought for the core code
1449 * mappings (HC virtual and identity).
1450 */
1451 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1452 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1453 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1454 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1455 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1456 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1457 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1458 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1459 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1463
1464 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1465 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1466 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1467 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1468 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1469 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1470
1471 /*
1472 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1473 */
1474 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1475 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1476 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1477
1478 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1479 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1480
1481 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1482 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1483 {
1484 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1485 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1486 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1487 }
1488
1489 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1490 {
1491 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1492 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1493 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1494 }
1495
1496 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1497 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1498 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1499 | HCPhysInterPaePDPT64;
1500
1501 /*
1502 * Initialize paging workers and mode from current host mode
1503 * and the guest running in real mode.
1504 */
1505 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1506 switch (pVM->pgm.s.enmHostMode)
1507 {
1508 case SUPPAGINGMODE_32_BIT:
1509 case SUPPAGINGMODE_32_BIT_GLOBAL:
1510 case SUPPAGINGMODE_PAE:
1511 case SUPPAGINGMODE_PAE_GLOBAL:
1512 case SUPPAGINGMODE_PAE_NX:
1513 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1514 break;
1515
1516 case SUPPAGINGMODE_AMD64:
1517 case SUPPAGINGMODE_AMD64_GLOBAL:
1518 case SUPPAGINGMODE_AMD64_NX:
1519 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1520#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1521 if (ARCH_BITS != 64)
1522 {
1523 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1524 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1525 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1526 }
1527#endif
1528 break;
1529 default:
1530 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1531 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1532 }
1533 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1534 if (RT_SUCCESS(rc))
1535 {
1536 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1537#if HC_ARCH_BITS == 64
1538 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1539 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1540 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1541 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1542 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1543 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1544 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1545#endif
1546
1547 return VINF_SUCCESS;
1548 }
1549
1550 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1551 return rc;
1552}
1553
1554
1555/**
1556 * Init statistics
1557 */
1558static void pgmR3InitStats(PVM pVM)
1559{
1560 PPGM pPGM = &pVM->pgm.s;
1561 int rc;
1562
1563 /* Common - misc variables */
1564 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1565 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1566 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1567 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1568 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1569 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1570 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1571 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1572
1573#ifdef VBOX_WITH_STATISTICS
1574
1575# define PGM_REG_COUNTER(a, b, c) \
1576 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1577 AssertRC(rc);
1578
1579# define PGM_REG_COUNTER_BYTES(a, b, c) \
1580 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1581 AssertRC(rc);
1582
1583# define PGM_REG_PROFILE(a, b, c) \
1584 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1585 AssertRC(rc);
1586
1587 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1588 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1589 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1590 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1591 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1592 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1593 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1594 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1595 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1596 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1597
1598 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1599 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1600 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1601 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1602 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1603 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1604 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1605 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1606
1607 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1608 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1609 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1610 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1611
1612 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1613 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1614 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1615 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1616
1617 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1618 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1619/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1620 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1621 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1622/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1623
1624 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1625 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1626 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1627 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1628 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1629 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1630 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1631 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1632
1633 /* GC only: */
1634 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1635 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1636 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1637 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1638
1639 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1640 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1641 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1642 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1643 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1644 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1645 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1646 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1647
1648# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1649 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1650 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1651 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1652 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1653 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1654 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1655# endif
1656
1657# undef PGM_REG_COUNTER
1658# undef PGM_REG_PROFILE
1659#endif
1660
1661 /*
1662 * Note! The layout below matches the member layout exactly!
1663 */
1664
1665 /*
1666 * Common - stats
1667 */
1668 for (unsigned i=0;i<pVM->cCPUs;i++)
1669 {
1670 PVMCPU pVCpu = &pVM->aCpus[i];
1671 PPGMCPU pPGM = &pVCpu->pgm.s;
1672
1673#define PGM_REG_COUNTER(a, b, c) \
1674 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1675 AssertRC(rc);
1676#define PGM_REG_PROFILE(a, b, c) \
1677 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1678 AssertRC(rc);
1679
1680 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1681
1682#ifdef VBOX_WITH_STATISTICS
1683 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1684 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1685 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1686 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1687 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1688 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1689
1690 /* R0 only: */
1691 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1692 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1693 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1694 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1695 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1696 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1697 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1698 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1699 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1700 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1701 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1702 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1703 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1704 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1705 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1706 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1707 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1708 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1709 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1710 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1711 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1712 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1713 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1714 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1715 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1716 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1717 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1718 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1719 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1720 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1721 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1722 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1723 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1724 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1725 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1726 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1727
1728 /* RZ only: */
1729 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1730 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1731 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1732 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1733 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1734 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1735 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1736 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1737 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1738 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1739 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1740 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1741 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1742 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1743 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1744 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1745 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1746 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1747 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1748 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1749 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1750 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1751 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1752 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1753 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1754 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1755 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1756 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1757 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1758 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1759 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1760 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1761 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1762 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1763 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1764 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1765 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1766 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1767 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1768 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1769 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1770 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1771 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1772 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1773 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1774 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1775
1776 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1777 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1778 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1779 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1780 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1781
1782 /* HC only: */
1783
1784 /* RZ & R3: */
1785 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1786 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1787 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1788 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1789 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1790 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1791 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1792 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1793 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1794 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1795 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1796 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1797 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1798 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1799 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1800 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1801 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1802 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1803 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1804 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1805 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1806 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1807 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageStale, "/PGM/CPU%d/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1808 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1809 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1810 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1811 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1812 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1813 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1814 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1815 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1816 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1817 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1818 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1819 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1820 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1821 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1822 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1823 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1824 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1825 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1826 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1827 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1828 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1829
1830 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1831 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1832 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1833 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1834 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1835 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1836 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1837 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1838 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1839 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1840 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1841 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1842 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1843 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1844 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1845 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1846 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1847 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1848 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1849 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1850 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1851 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1852 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1853 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1854 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1855 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1856 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1857 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1858 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1859 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1860 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1861 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1862 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1863 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1864 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1865 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1866 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1867 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1868 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1869 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1870 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1871 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1872 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1873#endif /* VBOX_WITH_STATISTICS */
1874
1875#undef PGM_REG_PROFILE
1876#undef PGM_REG_COUNTER
1877
1878 }
1879}
1880
1881
1882/**
1883 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1884 *
1885 * The dynamic mapping area will also be allocated and initialized at this
1886 * time. We could allocate it during PGMR3Init of course, but the mapping
1887 * wouldn't be allocated at that time preventing us from setting up the
1888 * page table entries with the dummy page.
1889 *
1890 * @returns VBox status code.
1891 * @param pVM VM handle.
1892 */
1893VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1894{
1895 RTGCPTR GCPtr;
1896 int rc;
1897
1898 /*
1899 * Reserve space for the dynamic mappings.
1900 */
1901 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1902 if (RT_SUCCESS(rc))
1903 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1904
1905 if ( RT_SUCCESS(rc)
1906 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1907 {
1908 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1909 if (RT_SUCCESS(rc))
1910 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1911 }
1912 if (RT_SUCCESS(rc))
1913 {
1914 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1915 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1916 }
1917 return rc;
1918}
1919
1920
1921/**
1922 * Ring-3 init finalizing.
1923 *
1924 * @returns VBox status code.
1925 * @param pVM The VM handle.
1926 */
1927VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1928{
1929 int rc;
1930
1931 /*
1932 * Reserve space for the dynamic mappings.
1933 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1934 */
1935 /* get the pointer to the page table entries. */
1936 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1937 AssertRelease(pMapping);
1938 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1939 const unsigned iPT = off >> X86_PD_SHIFT;
1940 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1941 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1942 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1943
1944 /* init cache */
1945 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1946 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1947 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1948
1949 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1950 {
1951 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1952 AssertRCReturn(rc, rc);
1953 }
1954
1955 /*
1956 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1957 * Intel only goes up to 36 bits, so we stick to 36 as well.
1958 */
1959 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1960 uint32_t u32Dummy, u32Features;
1961 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1962
1963 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1964 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1965 else
1966 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1967
1968 /*
1969 * Allocate memory if we're supposed to do that.
1970 */
1971 if (pVM->pgm.s.fRamPreAlloc)
1972 rc = pgmR3PhysRamPreAllocate(pVM);
1973
1974 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1975 return rc;
1976}
1977
1978
1979/**
1980 * Applies relocations to data and code managed by this component.
1981 *
1982 * This function will be called at init and whenever the VMM need to relocate it
1983 * self inside the GC.
1984 *
1985 * @param pVM The VM.
1986 * @param offDelta Relocation delta relative to old location.
1987 */
1988VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1989{
1990 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
1991
1992 /*
1993 * Paging stuff.
1994 */
1995 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1996
1997 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1998
1999 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2000 for (unsigned i=0;i<pVM->cCPUs;i++)
2001 {
2002 PVMCPU pVCpu = &pVM->aCpus[i];
2003
2004 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2005
2006 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2007 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2008 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2009 }
2010
2011 /*
2012 * Trees.
2013 */
2014 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2015
2016 /*
2017 * Ram ranges.
2018 */
2019 if (pVM->pgm.s.pRamRangesR3)
2020 {
2021 /* Update the pSelfRC pointers and relink them. */
2022 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2023 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2024 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2025 pgmR3PhysRelinkRamRanges(pVM);
2026 }
2027
2028 /*
2029 * Update the two page directories with all page table mappings.
2030 * (One or more of them have changed, that's why we're here.)
2031 */
2032 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2033 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2034 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2035
2036 /* Relocate GC addresses of Page Tables. */
2037 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2038 {
2039 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2040 {
2041 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2042 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2043 }
2044 }
2045
2046 /*
2047 * Dynamic page mapping area.
2048 */
2049 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2050 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2051 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2052
2053 /*
2054 * The Zero page.
2055 */
2056 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2057#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2058 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2059#else
2060 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2061#endif
2062
2063 /*
2064 * Physical and virtual handlers.
2065 */
2066 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2067 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2068 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2069
2070 /*
2071 * The page pool.
2072 */
2073 pgmR3PoolRelocate(pVM);
2074}
2075
2076
2077/**
2078 * Callback function for relocating a physical access handler.
2079 *
2080 * @returns 0 (continue enum)
2081 * @param pNode Pointer to a PGMPHYSHANDLER node.
2082 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2083 * not certain the delta will fit in a void pointer for all possible configs.
2084 */
2085static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2086{
2087 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2088 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2089 if (pHandler->pfnHandlerRC)
2090 pHandler->pfnHandlerRC += offDelta;
2091 if (pHandler->pvUserRC >= 0x10000)
2092 pHandler->pvUserRC += offDelta;
2093 return 0;
2094}
2095
2096
2097/**
2098 * Callback function for relocating a virtual access handler.
2099 *
2100 * @returns 0 (continue enum)
2101 * @param pNode Pointer to a PGMVIRTHANDLER node.
2102 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2103 * not certain the delta will fit in a void pointer for all possible configs.
2104 */
2105static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2106{
2107 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2108 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2109 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2110 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2111 Assert(pHandler->pfnHandlerRC);
2112 pHandler->pfnHandlerRC += offDelta;
2113 return 0;
2114}
2115
2116
2117/**
2118 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2119 *
2120 * @returns 0 (continue enum)
2121 * @param pNode Pointer to a PGMVIRTHANDLER node.
2122 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2123 * not certain the delta will fit in a void pointer for all possible configs.
2124 */
2125static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2126{
2127 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2128 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2129 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2130 Assert(pHandler->pfnHandlerRC);
2131 pHandler->pfnHandlerRC += offDelta;
2132 return 0;
2133}
2134
2135
2136/**
2137 * The VM is being reset.
2138 *
2139 * For the PGM component this means that any PD write monitors
2140 * needs to be removed.
2141 *
2142 * @param pVM VM handle.
2143 */
2144VMMR3DECL(void) PGMR3Reset(PVM pVM)
2145{
2146 int rc;
2147
2148 LogFlow(("PGMR3Reset:\n"));
2149 VM_ASSERT_EMT(pVM);
2150
2151 pgmLock(pVM);
2152
2153 /*
2154 * Unfix any fixed mappings and disable CR3 monitoring.
2155 */
2156 pVM->pgm.s.fMappingsFixed = false;
2157 pVM->pgm.s.GCPtrMappingFixed = 0;
2158 pVM->pgm.s.cbMappingFixed = 0;
2159
2160 /* Exit the guest paging mode before the pgm pool gets reset.
2161 * Important to clean up the amd64 case.
2162 */
2163 for (unsigned i=0;i<pVM->cCPUs;i++)
2164 {
2165 PVMCPU pVCpu = &pVM->aCpus[i];
2166
2167 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2168 AssertRC(rc);
2169 }
2170
2171#ifdef DEBUG
2172 DBGFR3InfoLog(pVM, "mappings", NULL);
2173 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2174#endif
2175
2176 /*
2177 * Switch mode back to real mode. (before resetting the pgm pool!)
2178 */
2179 for (unsigned i=0;i<pVM->cCPUs;i++)
2180 {
2181 PVMCPU pVCpu = &pVM->aCpus[i];
2182
2183 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2184 AssertRC(rc);
2185
2186 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2187 }
2188
2189 /*
2190 * Reset the shadow page pool.
2191 */
2192 pgmR3PoolReset(pVM);
2193
2194 for (unsigned i=0;i<pVM->cCPUs;i++)
2195 {
2196 PVMCPU pVCpu = &pVM->aCpus[i];
2197
2198 /*
2199 * Re-init other members.
2200 */
2201 pVCpu->pgm.s.fA20Enabled = true;
2202
2203 /*
2204 * Clear the FFs PGM owns.
2205 */
2206 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2207 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2208 }
2209
2210 /*
2211 * Reset (zero) RAM pages.
2212 */
2213 rc = pgmR3PhysRamReset(pVM);
2214 if (RT_SUCCESS(rc))
2215 {
2216 /*
2217 * Reset (zero) shadow ROM pages.
2218 */
2219 rc = pgmR3PhysRomReset(pVM);
2220 }
2221
2222 pgmUnlock(pVM);
2223 //return rc;
2224 AssertReleaseRC(rc);
2225}
2226
2227
2228#ifdef VBOX_STRICT
2229/**
2230 * VM state change callback for clearing fNoMorePhysWrites after
2231 * a snapshot has been created.
2232 */
2233static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2234{
2235 if (enmState == VMSTATE_RUNNING)
2236 pVM->pgm.s.fNoMorePhysWrites = false;
2237}
2238#endif
2239
2240
2241/**
2242 * Terminates the PGM.
2243 *
2244 * @returns VBox status code.
2245 * @param pVM Pointer to VM structure.
2246 */
2247VMMR3DECL(int) PGMR3Term(PVM pVM)
2248{
2249 PGMDeregisterStringFormatTypes();
2250 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2251}
2252
2253
2254/**
2255 * Terminates the per-VCPU PGM.
2256 *
2257 * Termination means cleaning up and freeing all resources,
2258 * the VM it self is at this point powered off or suspended.
2259 *
2260 * @returns VBox status code.
2261 * @param pVM The VM to operate on.
2262 */
2263VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2264{
2265 return 0;
2266}
2267
2268
2269/**
2270 * Find the ROM tracking structure for the given page.
2271 *
2272 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2273 * that it's a ROM page.
2274 * @param pVM The VM handle.
2275 * @param GCPhys The address of the ROM page.
2276 */
2277static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2278{
2279 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2280 pRomRange;
2281 pRomRange = pRomRange->CTX_SUFF(pNext))
2282 {
2283 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2284 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2285 return &pRomRange->aPages[off >> PAGE_SHIFT];
2286 }
2287 return NULL;
2288}
2289
2290
2291/**
2292 * Save zero indicator + bits for the specified page.
2293 *
2294 * @returns VBox status code, errors are logged/asserted before returning.
2295 * @param pVM The VM handle.
2296 * @param pSSH The saved state handle.
2297 * @param pPage The page to save.
2298 * @param GCPhys The address of the page.
2299 * @param pRam The ram range (for error logging).
2300 */
2301static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2302{
2303 int rc;
2304 if (PGM_PAGE_IS_ZERO(pPage))
2305 rc = SSMR3PutU8(pSSM, 0);
2306 else
2307 {
2308 void const *pvPage;
2309 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2310 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2311
2312 SSMR3PutU8(pSSM, 1);
2313 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2314 }
2315 return rc;
2316}
2317
2318
2319/**
2320 * Save a shadowed ROM page.
2321 *
2322 * Format: Type, protection, and two pages with zero indicators.
2323 *
2324 * @returns VBox status code, errors are logged/asserted before returning.
2325 * @param pVM The VM handle.
2326 * @param pSSH The saved state handle.
2327 * @param pPage The page to save.
2328 * @param GCPhys The address of the page.
2329 * @param pRam The ram range (for error logging).
2330 */
2331static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2332{
2333 /* Need to save both pages and the current state. */
2334 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2335 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2336
2337 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2338 SSMR3PutU8(pSSM, pRomPage->enmProt);
2339
2340 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2341 if (RT_SUCCESS(rc))
2342 {
2343 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2344 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2345 }
2346 return rc;
2347}
2348
2349/** PGM fields to save/load. */
2350static const SSMFIELD s_aPGMFields[] =
2351{
2352 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2353 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2354 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2355 SSMFIELD_ENTRY_TERM()
2356};
2357
2358static const SSMFIELD s_aPGMCpuFields[] =
2359{
2360 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2361 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2362 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2363 SSMFIELD_ENTRY_TERM()
2364};
2365
2366/* For loading old saved states. (pre-smp) */
2367typedef struct
2368{
2369 /** If set no conflict checks are required. (boolean) */
2370 bool fMappingsFixed;
2371 /** Size of fixed mapping */
2372 uint32_t cbMappingFixed;
2373 /** Base address (GC) of fixed mapping */
2374 RTGCPTR GCPtrMappingFixed;
2375 /** A20 gate mask.
2376 * Our current approach to A20 emulation is to let REM do it and don't bother
2377 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2378 * But whould need arrise, we'll subject physical addresses to this mask. */
2379 RTGCPHYS GCPhysA20Mask;
2380 /** A20 gate state - boolean! */
2381 bool fA20Enabled;
2382 /** The guest paging mode. */
2383 PGMMODE enmGuestMode;
2384} PGMOLD;
2385
2386static const SSMFIELD s_aPGMFields_Old[] =
2387{
2388 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2389 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2390 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2391 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2392 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2393 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2394 SSMFIELD_ENTRY_TERM()
2395};
2396
2397
2398/**
2399 * Execute state save operation.
2400 *
2401 * @returns VBox status code.
2402 * @param pVM VM Handle.
2403 * @param pSSM SSM operation handle.
2404 */
2405static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2406{
2407 int rc;
2408 unsigned i;
2409 PPGM pPGM = &pVM->pgm.s;
2410
2411 /*
2412 * Lock PGM and set the no-more-writes indicator.
2413 */
2414 pgmLock(pVM);
2415 pVM->pgm.s.fNoMorePhysWrites = true;
2416
2417 /*
2418 * Save basic data (required / unaffected by relocation).
2419 */
2420 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2421
2422 for (i=0;i<pVM->cCPUs;i++)
2423 {
2424 PVMCPU pVCpu = &pVM->aCpus[i];
2425
2426 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2427 }
2428
2429 /*
2430 * The guest mappings.
2431 */
2432 i = 0;
2433 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2434 {
2435 SSMR3PutU32( pSSM, i);
2436 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2437 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2438 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2439 }
2440 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2441
2442 /*
2443 * Ram ranges and the memory they describe.
2444 */
2445 i = 0;
2446 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2447 {
2448 /*
2449 * Save the ram range details.
2450 */
2451 SSMR3PutU32(pSSM, i);
2452 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2453 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2454 SSMR3PutGCPhys(pSSM, pRam->cb);
2455 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2456 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2457
2458 /*
2459 * Iterate the pages, only two special case.
2460 */
2461 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2462 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2463 {
2464 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2465 PPGMPAGE pPage = &pRam->aPages[iPage];
2466 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2467
2468 if (uType == PGMPAGETYPE_ROM_SHADOW)
2469 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2470 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2471 {
2472 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2473 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2474 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2475 }
2476 else
2477 {
2478 SSMR3PutU8(pSSM, uType);
2479 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2480 }
2481 if (RT_FAILURE(rc))
2482 break;
2483 }
2484 if (RT_FAILURE(rc))
2485 break;
2486 }
2487
2488 pgmUnlock(pVM);
2489 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2490}
2491
2492
2493/**
2494 * Load an ignored page.
2495 *
2496 * @returns VBox status code.
2497 * @param pSSM The saved state handle.
2498 */
2499static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2500{
2501 uint8_t abPage[PAGE_SIZE];
2502 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2503}
2504
2505
2506/**
2507 * Loads a page without any bits in the saved state, i.e. making sure it's
2508 * really zero.
2509 *
2510 * @returns VBox status code.
2511 * @param pVM The VM handle.
2512 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2513 * state).
2514 * @param pPage The guest page tracking structure.
2515 * @param GCPhys The page address.
2516 * @param pRam The ram range (logging).
2517 */
2518static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2519{
2520 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2521 && uType != PGMPAGETYPE_INVALID)
2522 return VERR_SSM_UNEXPECTED_DATA;
2523
2524 /* I think this should be sufficient. */
2525 if (!PGM_PAGE_IS_ZERO(pPage))
2526 return VERR_SSM_UNEXPECTED_DATA;
2527
2528 NOREF(pVM);
2529 NOREF(GCPhys);
2530 NOREF(pRam);
2531 return VINF_SUCCESS;
2532}
2533
2534
2535/**
2536 * Loads a page from the saved state.
2537 *
2538 * @returns VBox status code.
2539 * @param pVM The VM handle.
2540 * @param pSSM The SSM handle.
2541 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2542 * state).
2543 * @param pPage The guest page tracking structure.
2544 * @param GCPhys The page address.
2545 * @param pRam The ram range (logging).
2546 */
2547static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2548{
2549 int rc;
2550
2551 /*
2552 * Match up the type, dealing with MMIO2 aliases (dropped).
2553 */
2554 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2555 || uType == PGMPAGETYPE_INVALID,
2556 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2557 VERR_SSM_UNEXPECTED_DATA);
2558
2559 /*
2560 * Load the page.
2561 */
2562 void *pvPage;
2563 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2564 if (RT_SUCCESS(rc))
2565 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2566
2567 return rc;
2568}
2569
2570
2571/**
2572 * Loads a page (counter part to pgmR3SavePage).
2573 *
2574 * @returns VBox status code, fully bitched errors.
2575 * @param pVM The VM handle.
2576 * @param pSSM The SSM handle.
2577 * @param uType The page type.
2578 * @param pPage The page.
2579 * @param GCPhys The page address.
2580 * @param pRam The RAM range (for error messages).
2581 */
2582static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2583{
2584 uint8_t uState;
2585 int rc = SSMR3GetU8(pSSM, &uState);
2586 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2587 if (uState == 0 /* zero */)
2588 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2589 else if (uState == 1)
2590 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2591 else
2592 rc = VERR_INTERNAL_ERROR;
2593 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2594 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2595 rc);
2596 return VINF_SUCCESS;
2597}
2598
2599
2600/**
2601 * Loads a shadowed ROM page.
2602 *
2603 * @returns VBox status code, errors are fully bitched.
2604 * @param pVM The VM handle.
2605 * @param pSSM The saved state handle.
2606 * @param pPage The page.
2607 * @param GCPhys The page address.
2608 * @param pRam The RAM range (for error messages).
2609 */
2610static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2611{
2612 /*
2613 * Load and set the protection first, then load the two pages, the first
2614 * one is the active the other is the passive.
2615 */
2616 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2617 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2618
2619 uint8_t uProt;
2620 int rc = SSMR3GetU8(pSSM, &uProt);
2621 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2622 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2623 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2624 && enmProt < PGMROMPROT_END,
2625 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2626 VERR_SSM_UNEXPECTED_DATA);
2627
2628 if (pRomPage->enmProt != enmProt)
2629 {
2630 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2631 AssertLogRelRCReturn(rc, rc);
2632 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2633 }
2634
2635 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2636 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2637 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2638 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2639
2640 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2641 if (RT_SUCCESS(rc))
2642 {
2643 *pPageActive = *pPage;
2644 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2645 }
2646 return rc;
2647}
2648
2649
2650/**
2651 * Worker for pgmR3Load.
2652 *
2653 * @returns VBox status code.
2654 *
2655 * @param pVM The VM handle.
2656 * @param pSSM The SSM handle.
2657 * @param u32Version The saved state version.
2658 */
2659static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2660{
2661 int rc;
2662 PPGM pPGM = &pVM->pgm.s;
2663 uint32_t u32Sep;
2664
2665 /*
2666 * Load basic data (required / unaffected by relocation).
2667 */
2668 if (u32Version >= PGM_SAVED_STATE_VERSION)
2669 {
2670 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2671 AssertLogRelRCReturn(rc, rc);
2672
2673 for (unsigned i=0;i<pVM->cCPUs;i++)
2674 {
2675 PVMCPU pVCpu = &pVM->aCpus[i];
2676
2677 rc = SSMR3GetStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2678 AssertLogRelRCReturn(rc, rc);
2679 }
2680 }
2681 else
2682 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2683 {
2684 PGMOLD pgmOld;
2685
2686 AssertRelease(pVM->cCPUs == 1);
2687
2688 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2689 AssertLogRelRCReturn(rc, rc);
2690
2691 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2692 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2693 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2694
2695 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2696 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2697 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2698 }
2699 else
2700 {
2701 AssertRelease(pVM->cCPUs == 1);
2702
2703 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2704 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2705 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2706
2707 uint32_t cbRamSizeIgnored;
2708 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2709 if (RT_FAILURE(rc))
2710 return rc;
2711 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2712
2713 uint32_t u32 = 0;
2714 SSMR3GetUInt(pSSM, &u32);
2715 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2716 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2717 RTUINT uGuestMode;
2718 SSMR3GetUInt(pSSM, &uGuestMode);
2719 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2720
2721 /* check separator. */
2722 SSMR3GetU32(pSSM, &u32Sep);
2723 if (RT_FAILURE(rc))
2724 return rc;
2725 if (u32Sep != (uint32_t)~0)
2726 {
2727 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2728 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2729 }
2730 }
2731
2732 /*
2733 * The guest mappings.
2734 */
2735 uint32_t i = 0;
2736 for (;; i++)
2737 {
2738 /* Check the seqence number / separator. */
2739 rc = SSMR3GetU32(pSSM, &u32Sep);
2740 if (RT_FAILURE(rc))
2741 return rc;
2742 if (u32Sep == ~0U)
2743 break;
2744 if (u32Sep != i)
2745 {
2746 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2747 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2748 }
2749
2750 /* get the mapping details. */
2751 char szDesc[256];
2752 szDesc[0] = '\0';
2753 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2754 if (RT_FAILURE(rc))
2755 return rc;
2756 RTGCPTR GCPtr;
2757 SSMR3GetGCPtr(pSSM, &GCPtr);
2758 RTGCPTR cPTs;
2759 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2760 if (RT_FAILURE(rc))
2761 return rc;
2762
2763 /* find matching range. */
2764 PPGMMAPPING pMapping;
2765 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2766 if ( pMapping->cPTs == cPTs
2767 && !strcmp(pMapping->pszDesc, szDesc))
2768 break;
2769 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2770 cPTs, szDesc, GCPtr),
2771 VERR_SSM_LOAD_CONFIG_MISMATCH);
2772
2773 /* relocate it. */
2774 if (pMapping->GCPtr != GCPtr)
2775 {
2776 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2777 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2778 }
2779 else
2780 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2781 }
2782
2783 /*
2784 * Ram range flags and bits.
2785 */
2786 i = 0;
2787 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2788 {
2789 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2790
2791 /* Check the seqence number / separator. */
2792 rc = SSMR3GetU32(pSSM, &u32Sep);
2793 if (RT_FAILURE(rc))
2794 return rc;
2795 if (u32Sep == ~0U)
2796 break;
2797 if (u32Sep != i)
2798 {
2799 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2800 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2801 }
2802
2803 /* Get the range details. */
2804 RTGCPHYS GCPhys;
2805 SSMR3GetGCPhys(pSSM, &GCPhys);
2806 RTGCPHYS GCPhysLast;
2807 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2808 RTGCPHYS cb;
2809 SSMR3GetGCPhys(pSSM, &cb);
2810 uint8_t fHaveBits;
2811 rc = SSMR3GetU8(pSSM, &fHaveBits);
2812 if (RT_FAILURE(rc))
2813 return rc;
2814 if (fHaveBits & ~1)
2815 {
2816 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2817 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2818 }
2819 size_t cchDesc = 0;
2820 char szDesc[256];
2821 szDesc[0] = '\0';
2822 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2823 {
2824 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2825 if (RT_FAILURE(rc))
2826 return rc;
2827 /* Since we've modified the description strings in r45878, only compare
2828 them if the saved state is more recent. */
2829 if (u32Version != PGM_SAVED_STATE_VERSION_RR_DESC)
2830 cchDesc = strlen(szDesc);
2831 }
2832
2833 /*
2834 * Match it up with the current range.
2835 *
2836 * Note there is a hack for dealing with the high BIOS mapping
2837 * in the old saved state format, this means we might not have
2838 * a 1:1 match on success.
2839 */
2840 if ( ( GCPhys != pRam->GCPhys
2841 || GCPhysLast != pRam->GCPhysLast
2842 || cb != pRam->cb
2843 || ( cchDesc
2844 && strcmp(szDesc, pRam->pszDesc)) )
2845 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2846 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2847 || GCPhys != UINT32_C(0xfff80000)
2848 || GCPhysLast != UINT32_C(0xffffffff)
2849 || pRam->GCPhysLast != GCPhysLast
2850 || pRam->GCPhys < GCPhys
2851 || !fHaveBits)
2852 )
2853 {
2854 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2855 "State : %RGp-%RGp %RGp bytes %s %s\n",
2856 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2857 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2858 /*
2859 * If we're loading a state for debugging purpose, don't make a fuss if
2860 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2861 */
2862 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2863 || GCPhys < 8 * _1M)
2864 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2865
2866 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2867 continue;
2868 }
2869
2870 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2871 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2872 {
2873 /*
2874 * Load the pages one by one.
2875 */
2876 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2877 {
2878 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2879 PPGMPAGE pPage = &pRam->aPages[iPage];
2880 uint8_t uType;
2881 rc = SSMR3GetU8(pSSM, &uType);
2882 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2883 if (uType == PGMPAGETYPE_ROM_SHADOW)
2884 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2885 else
2886 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2887 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2888 }
2889 }
2890 else
2891 {
2892 /*
2893 * Old format.
2894 */
2895 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2896
2897 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2898 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2899 uint32_t fFlags = 0;
2900 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2901 {
2902 uint16_t u16Flags;
2903 rc = SSMR3GetU16(pSSM, &u16Flags);
2904 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2905 fFlags |= u16Flags;
2906 }
2907
2908 /* Load the bits */
2909 if ( !fHaveBits
2910 && GCPhysLast < UINT32_C(0xe0000000))
2911 {
2912 /*
2913 * Dynamic chunks.
2914 */
2915 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2916 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2917 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2918 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2919
2920 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2921 {
2922 uint8_t fPresent;
2923 rc = SSMR3GetU8(pSSM, &fPresent);
2924 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2925 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2926 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2927 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2928
2929 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2930 {
2931 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2932 PPGMPAGE pPage = &pRam->aPages[iPage];
2933 if (fPresent)
2934 {
2935 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2936 rc = pgmR3LoadPageToDevNull(pSSM);
2937 else
2938 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2939 }
2940 else
2941 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2942 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2943 }
2944 }
2945 }
2946 else if (pRam->pvR3)
2947 {
2948 /*
2949 * MMIO2.
2950 */
2951 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2952 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2953 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2954 AssertLogRelMsgReturn(pRam->pvR3,
2955 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2956 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2957
2958 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2959 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2960 }
2961 else if (GCPhysLast < UINT32_C(0xfff80000))
2962 {
2963 /*
2964 * PCI MMIO, no pages saved.
2965 */
2966 }
2967 else
2968 {
2969 /*
2970 * Load the 0xfff80000..0xffffffff BIOS range.
2971 * It starts with X reserved pages that we have to skip over since
2972 * the RAMRANGE create by the new code won't include those.
2973 */
2974 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2975 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2976 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2977 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2978 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2979 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2980 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2981
2982 /* Skip wasted reserved pages before the ROM. */
2983 while (GCPhys < pRam->GCPhys)
2984 {
2985 rc = pgmR3LoadPageToDevNull(pSSM);
2986 GCPhys += PAGE_SIZE;
2987 }
2988
2989 /* Load the bios pages. */
2990 cPages = pRam->cb >> PAGE_SHIFT;
2991 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2992 {
2993 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2994 PPGMPAGE pPage = &pRam->aPages[iPage];
2995
2996 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2997 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2998 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2999 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
3000 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3001 }
3002 }
3003 }
3004 }
3005
3006 return rc;
3007}
3008
3009
3010/**
3011 * Execute state load operation.
3012 *
3013 * @returns VBox status code.
3014 * @param pVM VM Handle.
3015 * @param pSSM SSM operation handle.
3016 * @param u32Version Data layout version.
3017 */
3018static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
3019{
3020 int rc;
3021 PPGM pPGM = &pVM->pgm.s;
3022
3023 /*
3024 * Validate version.
3025 */
3026 if ( u32Version != PGM_SAVED_STATE_VERSION
3027 && u32Version != PGM_SAVED_STATE_VERSION_2_2_2
3028 && u32Version != PGM_SAVED_STATE_VERSION_RR_DESC
3029 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3030 {
3031 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
3032 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3033 }
3034
3035 /*
3036 * Call the reset function to make sure all the memory is cleared.
3037 */
3038 PGMR3Reset(pVM);
3039
3040 /*
3041 * Do the loading while owning the lock because a bunch of the functions
3042 * we're using requires this.
3043 */
3044 pgmLock(pVM);
3045 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
3046 pgmUnlock(pVM);
3047 if (RT_SUCCESS(rc))
3048 {
3049 /*
3050 * We require a full resync now.
3051 */
3052 for (unsigned i=0;i<pVM->cCPUs;i++)
3053 {
3054 PVMCPU pVCpu = &pVM->aCpus[i];
3055 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3056 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3057
3058 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3059 }
3060
3061 pgmR3HandlerPhysicalUpdateAll(pVM);
3062
3063 for (unsigned i=0;i<pVM->cCPUs;i++)
3064 {
3065 PVMCPU pVCpu = &pVM->aCpus[i];
3066
3067 /*
3068 * Change the paging mode.
3069 */
3070 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3071
3072 /* Restore pVM->pgm.s.GCPhysCR3. */
3073 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3074 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3075 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3076 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3077 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3078 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3079 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3080 else
3081 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3082 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3083 }
3084 }
3085
3086 return rc;
3087}
3088
3089
3090/**
3091 * Show paging mode.
3092 *
3093 * @param pVM VM Handle.
3094 * @param pHlp The info helpers.
3095 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3096 */
3097static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3098{
3099 /* digest argument. */
3100 bool fGuest, fShadow, fHost;
3101 if (pszArgs)
3102 pszArgs = RTStrStripL(pszArgs);
3103 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3104 fShadow = fHost = fGuest = true;
3105 else
3106 {
3107 fShadow = fHost = fGuest = false;
3108 if (strstr(pszArgs, "guest"))
3109 fGuest = true;
3110 if (strstr(pszArgs, "shadow"))
3111 fShadow = true;
3112 if (strstr(pszArgs, "host"))
3113 fHost = true;
3114 }
3115
3116 /** @todo SMP support! */
3117 /* print info. */
3118 if (fGuest)
3119 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3120 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3121 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3122 if (fShadow)
3123 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3124 if (fHost)
3125 {
3126 const char *psz;
3127 switch (pVM->pgm.s.enmHostMode)
3128 {
3129 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3130 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3131 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3132 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3133 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3134 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3135 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3136 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3137 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3138 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3139 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3140 default: psz = "unknown"; break;
3141 }
3142 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3143 }
3144}
3145
3146
3147/**
3148 * Dump registered MMIO ranges to the log.
3149 *
3150 * @param pVM VM Handle.
3151 * @param pHlp The info helpers.
3152 * @param pszArgs Arguments, ignored.
3153 */
3154static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3155{
3156 NOREF(pszArgs);
3157 pHlp->pfnPrintf(pHlp,
3158 "RAM ranges (pVM=%p)\n"
3159 "%.*s %.*s\n",
3160 pVM,
3161 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3162 sizeof(RTHCPTR) * 2, "pvHC ");
3163
3164 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3165 pHlp->pfnPrintf(pHlp,
3166 "%RGp-%RGp %RHv %s\n",
3167 pCur->GCPhys,
3168 pCur->GCPhysLast,
3169 pCur->pvR3,
3170 pCur->pszDesc);
3171}
3172
3173/**
3174 * Dump the page directory to the log.
3175 *
3176 * @param pVM VM Handle.
3177 * @param pHlp The info helpers.
3178 * @param pszArgs Arguments, ignored.
3179 */
3180static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3181{
3182 /** @todo SMP support!! */
3183 PVMCPU pVCpu = &pVM->aCpus[0];
3184
3185/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3186 /* Big pages supported? */
3187 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3188
3189 /* Global pages supported? */
3190 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3191
3192 NOREF(pszArgs);
3193
3194 /*
3195 * Get page directory addresses.
3196 */
3197 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3198 Assert(pPDSrc);
3199 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3200
3201 /*
3202 * Iterate the page directory.
3203 */
3204 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3205 {
3206 X86PDE PdeSrc = pPDSrc->a[iPD];
3207 if (PdeSrc.n.u1Present)
3208 {
3209 if (PdeSrc.b.u1Size && fPSE)
3210 pHlp->pfnPrintf(pHlp,
3211 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3212 iPD,
3213 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3214 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3215 else
3216 pHlp->pfnPrintf(pHlp,
3217 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3218 iPD,
3219 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3220 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3221 }
3222 }
3223}
3224
3225
3226/**
3227 * Service a VMMCALLRING3_PGM_LOCK call.
3228 *
3229 * @returns VBox status code.
3230 * @param pVM The VM handle.
3231 */
3232VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3233{
3234 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3235 AssertRC(rc);
3236 return rc;
3237}
3238
3239
3240/**
3241 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3242 *
3243 * @returns PGM_TYPE_*.
3244 * @param pgmMode The mode value to convert.
3245 */
3246DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3247{
3248 switch (pgmMode)
3249 {
3250 case PGMMODE_REAL: return PGM_TYPE_REAL;
3251 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3252 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3253 case PGMMODE_PAE:
3254 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3255 case PGMMODE_AMD64:
3256 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3257 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3258 case PGMMODE_EPT: return PGM_TYPE_EPT;
3259 default:
3260 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3261 }
3262}
3263
3264
3265/**
3266 * Gets the index into the paging mode data array of a SHW+GST mode.
3267 *
3268 * @returns PGM::paPagingData index.
3269 * @param uShwType The shadow paging mode type.
3270 * @param uGstType The guest paging mode type.
3271 */
3272DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3273{
3274 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3275 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3276 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3277 + (uGstType - PGM_TYPE_REAL);
3278}
3279
3280
3281/**
3282 * Gets the index into the paging mode data array of a SHW+GST mode.
3283 *
3284 * @returns PGM::paPagingData index.
3285 * @param enmShw The shadow paging mode.
3286 * @param enmGst The guest paging mode.
3287 */
3288DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3289{
3290 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3291 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3292 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3293}
3294
3295
3296/**
3297 * Calculates the max data index.
3298 * @returns The number of entries in the paging data array.
3299 */
3300DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3301{
3302 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3303}
3304
3305
3306/**
3307 * Initializes the paging mode data kept in PGM::paModeData.
3308 *
3309 * @param pVM The VM handle.
3310 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3311 * This is used early in the init process to avoid trouble with PDM
3312 * not being initialized yet.
3313 */
3314static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3315{
3316 PPGMMODEDATA pModeData;
3317 int rc;
3318
3319 /*
3320 * Allocate the array on the first call.
3321 */
3322 if (!pVM->pgm.s.paModeData)
3323 {
3324 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3325 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3326 }
3327
3328 /*
3329 * Initialize the array entries.
3330 */
3331 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3332 pModeData->uShwType = PGM_TYPE_32BIT;
3333 pModeData->uGstType = PGM_TYPE_REAL;
3334 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3335 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3336 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3337
3338 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3339 pModeData->uShwType = PGM_TYPE_32BIT;
3340 pModeData->uGstType = PGM_TYPE_PROT;
3341 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3342 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3343 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3344
3345 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3346 pModeData->uShwType = PGM_TYPE_32BIT;
3347 pModeData->uGstType = PGM_TYPE_32BIT;
3348 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3349 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3350 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3351
3352 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3353 pModeData->uShwType = PGM_TYPE_PAE;
3354 pModeData->uGstType = PGM_TYPE_REAL;
3355 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3356 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3357 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3358
3359 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3360 pModeData->uShwType = PGM_TYPE_PAE;
3361 pModeData->uGstType = PGM_TYPE_PROT;
3362 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3363 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3364 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3365
3366 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3367 pModeData->uShwType = PGM_TYPE_PAE;
3368 pModeData->uGstType = PGM_TYPE_32BIT;
3369 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3370 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3371 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3372
3373 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3374 pModeData->uShwType = PGM_TYPE_PAE;
3375 pModeData->uGstType = PGM_TYPE_PAE;
3376 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3377 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3378 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3379
3380#ifdef VBOX_WITH_64_BITS_GUESTS
3381 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3382 pModeData->uShwType = PGM_TYPE_AMD64;
3383 pModeData->uGstType = PGM_TYPE_AMD64;
3384 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3385 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3386 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3387#endif
3388
3389 /* The nested paging mode. */
3390 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3391 pModeData->uShwType = PGM_TYPE_NESTED;
3392 pModeData->uGstType = PGM_TYPE_REAL;
3393 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3394 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3395
3396 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3397 pModeData->uShwType = PGM_TYPE_NESTED;
3398 pModeData->uGstType = PGM_TYPE_PROT;
3399 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3400 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3401
3402 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3403 pModeData->uShwType = PGM_TYPE_NESTED;
3404 pModeData->uGstType = PGM_TYPE_32BIT;
3405 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3406 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3407
3408 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3409 pModeData->uShwType = PGM_TYPE_NESTED;
3410 pModeData->uGstType = PGM_TYPE_PAE;
3411 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3412 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3413
3414#ifdef VBOX_WITH_64_BITS_GUESTS
3415 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3416 pModeData->uShwType = PGM_TYPE_NESTED;
3417 pModeData->uGstType = PGM_TYPE_AMD64;
3418 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3419 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3420#endif
3421
3422 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3423 switch (pVM->pgm.s.enmHostMode)
3424 {
3425#if HC_ARCH_BITS == 32
3426 case SUPPAGINGMODE_32_BIT:
3427 case SUPPAGINGMODE_32_BIT_GLOBAL:
3428 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3429 {
3430 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3431 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3432 }
3433# ifdef VBOX_WITH_64_BITS_GUESTS
3434 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3435 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3436# endif
3437 break;
3438
3439 case SUPPAGINGMODE_PAE:
3440 case SUPPAGINGMODE_PAE_NX:
3441 case SUPPAGINGMODE_PAE_GLOBAL:
3442 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3443 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3444 {
3445 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3446 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3447 }
3448# ifdef VBOX_WITH_64_BITS_GUESTS
3449 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3450 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3451# endif
3452 break;
3453#endif /* HC_ARCH_BITS == 32 */
3454
3455#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3456 case SUPPAGINGMODE_AMD64:
3457 case SUPPAGINGMODE_AMD64_GLOBAL:
3458 case SUPPAGINGMODE_AMD64_NX:
3459 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3460# ifdef VBOX_WITH_64_BITS_GUESTS
3461 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3462# else
3463 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3464# endif
3465 {
3466 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3467 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3468 }
3469 break;
3470#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3471
3472 default:
3473 AssertFailed();
3474 break;
3475 }
3476
3477 /* Extended paging (EPT) / Intel VT-x */
3478 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3479 pModeData->uShwType = PGM_TYPE_EPT;
3480 pModeData->uGstType = PGM_TYPE_REAL;
3481 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3482 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3483 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3484
3485 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3486 pModeData->uShwType = PGM_TYPE_EPT;
3487 pModeData->uGstType = PGM_TYPE_PROT;
3488 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3489 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3490 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3491
3492 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3493 pModeData->uShwType = PGM_TYPE_EPT;
3494 pModeData->uGstType = PGM_TYPE_32BIT;
3495 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3496 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3497 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3498
3499 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3500 pModeData->uShwType = PGM_TYPE_EPT;
3501 pModeData->uGstType = PGM_TYPE_PAE;
3502 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3503 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3504 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3505
3506#ifdef VBOX_WITH_64_BITS_GUESTS
3507 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3508 pModeData->uShwType = PGM_TYPE_EPT;
3509 pModeData->uGstType = PGM_TYPE_AMD64;
3510 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3511 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3512 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3513#endif
3514 return VINF_SUCCESS;
3515}
3516
3517
3518/**
3519 * Switch to different (or relocated in the relocate case) mode data.
3520 *
3521 * @param pVM The VM handle.
3522 * @param pVCpu The VMCPU to operate on.
3523 * @param enmShw The the shadow paging mode.
3524 * @param enmGst The the guest paging mode.
3525 */
3526static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3527{
3528 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3529
3530 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3531 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3532
3533 /* shadow */
3534 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3535 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3536 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3537 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3538 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3539
3540 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3541 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3542
3543 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3544 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3545
3546
3547 /* guest */
3548 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3549 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3550 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3551 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3552 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3553 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3554 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3555 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3556 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3557 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3558 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3559 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3560
3561 /* both */
3562 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3563 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3564 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3565 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3566 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3567 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3568 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3569#ifdef VBOX_STRICT
3570 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3571#endif
3572 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3573 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3574
3575 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3576 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3577 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3578 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3579 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3580 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3581#ifdef VBOX_STRICT
3582 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3583#endif
3584 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3585 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3586
3587 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3588 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3589 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3590 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3591 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3592 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3593#ifdef VBOX_STRICT
3594 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3595#endif
3596 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3597 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3598}
3599
3600
3601/**
3602 * Calculates the shadow paging mode.
3603 *
3604 * @returns The shadow paging mode.
3605 * @param pVM VM handle.
3606 * @param enmGuestMode The guest mode.
3607 * @param enmHostMode The host mode.
3608 * @param enmShadowMode The current shadow mode.
3609 * @param penmSwitcher Where to store the switcher to use.
3610 * VMMSWITCHER_INVALID means no change.
3611 */
3612static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3613{
3614 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3615 switch (enmGuestMode)
3616 {
3617 /*
3618 * When switching to real or protected mode we don't change
3619 * anything since it's likely that we'll switch back pretty soon.
3620 *
3621 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3622 * and is supposed to determine which shadow paging and switcher to
3623 * use during init.
3624 */
3625 case PGMMODE_REAL:
3626 case PGMMODE_PROTECTED:
3627 if ( enmShadowMode != PGMMODE_INVALID
3628 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3629 break; /* (no change) */
3630
3631 switch (enmHostMode)
3632 {
3633 case SUPPAGINGMODE_32_BIT:
3634 case SUPPAGINGMODE_32_BIT_GLOBAL:
3635 enmShadowMode = PGMMODE_32_BIT;
3636 enmSwitcher = VMMSWITCHER_32_TO_32;
3637 break;
3638
3639 case SUPPAGINGMODE_PAE:
3640 case SUPPAGINGMODE_PAE_NX:
3641 case SUPPAGINGMODE_PAE_GLOBAL:
3642 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3643 enmShadowMode = PGMMODE_PAE;
3644 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3645#ifdef DEBUG_bird
3646 if (RTEnvExist("VBOX_32BIT"))
3647 {
3648 enmShadowMode = PGMMODE_32_BIT;
3649 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3650 }
3651#endif
3652 break;
3653
3654 case SUPPAGINGMODE_AMD64:
3655 case SUPPAGINGMODE_AMD64_GLOBAL:
3656 case SUPPAGINGMODE_AMD64_NX:
3657 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3658 enmShadowMode = PGMMODE_PAE;
3659 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3660#ifdef DEBUG_bird
3661 if (RTEnvExist("VBOX_32BIT"))
3662 {
3663 enmShadowMode = PGMMODE_32_BIT;
3664 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3665 }
3666#endif
3667 break;
3668
3669 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3670 }
3671 break;
3672
3673 case PGMMODE_32_BIT:
3674 switch (enmHostMode)
3675 {
3676 case SUPPAGINGMODE_32_BIT:
3677 case SUPPAGINGMODE_32_BIT_GLOBAL:
3678 enmShadowMode = PGMMODE_32_BIT;
3679 enmSwitcher = VMMSWITCHER_32_TO_32;
3680 break;
3681
3682 case SUPPAGINGMODE_PAE:
3683 case SUPPAGINGMODE_PAE_NX:
3684 case SUPPAGINGMODE_PAE_GLOBAL:
3685 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3686 enmShadowMode = PGMMODE_PAE;
3687 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3688#ifdef DEBUG_bird
3689 if (RTEnvExist("VBOX_32BIT"))
3690 {
3691 enmShadowMode = PGMMODE_32_BIT;
3692 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3693 }
3694#endif
3695 break;
3696
3697 case SUPPAGINGMODE_AMD64:
3698 case SUPPAGINGMODE_AMD64_GLOBAL:
3699 case SUPPAGINGMODE_AMD64_NX:
3700 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3701 enmShadowMode = PGMMODE_PAE;
3702 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3703#ifdef DEBUG_bird
3704 if (RTEnvExist("VBOX_32BIT"))
3705 {
3706 enmShadowMode = PGMMODE_32_BIT;
3707 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3708 }
3709#endif
3710 break;
3711
3712 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3713 }
3714 break;
3715
3716 case PGMMODE_PAE:
3717 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3718 switch (enmHostMode)
3719 {
3720 case SUPPAGINGMODE_32_BIT:
3721 case SUPPAGINGMODE_32_BIT_GLOBAL:
3722 enmShadowMode = PGMMODE_PAE;
3723 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3724 break;
3725
3726 case SUPPAGINGMODE_PAE:
3727 case SUPPAGINGMODE_PAE_NX:
3728 case SUPPAGINGMODE_PAE_GLOBAL:
3729 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3730 enmShadowMode = PGMMODE_PAE;
3731 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3732 break;
3733
3734 case SUPPAGINGMODE_AMD64:
3735 case SUPPAGINGMODE_AMD64_GLOBAL:
3736 case SUPPAGINGMODE_AMD64_NX:
3737 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3738 enmShadowMode = PGMMODE_PAE;
3739 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3740 break;
3741
3742 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3743 }
3744 break;
3745
3746 case PGMMODE_AMD64:
3747 case PGMMODE_AMD64_NX:
3748 switch (enmHostMode)
3749 {
3750 case SUPPAGINGMODE_32_BIT:
3751 case SUPPAGINGMODE_32_BIT_GLOBAL:
3752 enmShadowMode = PGMMODE_AMD64;
3753 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3754 break;
3755
3756 case SUPPAGINGMODE_PAE:
3757 case SUPPAGINGMODE_PAE_NX:
3758 case SUPPAGINGMODE_PAE_GLOBAL:
3759 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3760 enmShadowMode = PGMMODE_AMD64;
3761 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3762 break;
3763
3764 case SUPPAGINGMODE_AMD64:
3765 case SUPPAGINGMODE_AMD64_GLOBAL:
3766 case SUPPAGINGMODE_AMD64_NX:
3767 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3768 enmShadowMode = PGMMODE_AMD64;
3769 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3770 break;
3771
3772 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3773 }
3774 break;
3775
3776
3777 default:
3778 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3779 return PGMMODE_INVALID;
3780 }
3781 /* Override the shadow mode is nested paging is active. */
3782 if (HWACCMIsNestedPagingActive(pVM))
3783 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3784
3785 *penmSwitcher = enmSwitcher;
3786 return enmShadowMode;
3787}
3788
3789
3790/**
3791 * Performs the actual mode change.
3792 * This is called by PGMChangeMode and pgmR3InitPaging().
3793 *
3794 * @returns VBox status code. May suspend or power off the VM on error, but this
3795 * will trigger using FFs and not status codes.
3796 *
3797 * @param pVM VM handle.
3798 * @param pVCpu The VMCPU to operate on.
3799 * @param enmGuestMode The new guest mode. This is assumed to be different from
3800 * the current mode.
3801 */
3802VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3803{
3804 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3805 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3806
3807 /*
3808 * Calc the shadow mode and switcher.
3809 */
3810 VMMSWITCHER enmSwitcher;
3811 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3812 if (enmSwitcher != VMMSWITCHER_INVALID)
3813 {
3814 /*
3815 * Select new switcher.
3816 */
3817 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3818 if (RT_FAILURE(rc))
3819 {
3820 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3821 return rc;
3822 }
3823 }
3824
3825 /*
3826 * Exit old mode(s).
3827 */
3828 /* shadow */
3829 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3830 {
3831 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3832 if (PGM_SHW_PFN(Exit, pVCpu))
3833 {
3834 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3835 if (RT_FAILURE(rc))
3836 {
3837 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3838 return rc;
3839 }
3840 }
3841
3842 }
3843 else
3844 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3845
3846 /* guest */
3847 if (PGM_GST_PFN(Exit, pVCpu))
3848 {
3849 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3850 if (RT_FAILURE(rc))
3851 {
3852 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3853 return rc;
3854 }
3855 }
3856
3857 /*
3858 * Load new paging mode data.
3859 */
3860 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3861
3862 /*
3863 * Enter new shadow mode (if changed).
3864 */
3865 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3866 {
3867 int rc;
3868 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3869 switch (enmShadowMode)
3870 {
3871 case PGMMODE_32_BIT:
3872 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu);
3873 break;
3874 case PGMMODE_PAE:
3875 case PGMMODE_PAE_NX:
3876 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu);
3877 break;
3878 case PGMMODE_AMD64:
3879 case PGMMODE_AMD64_NX:
3880 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu);
3881 break;
3882 case PGMMODE_NESTED:
3883 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu);
3884 break;
3885 case PGMMODE_EPT:
3886 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu);
3887 break;
3888 case PGMMODE_REAL:
3889 case PGMMODE_PROTECTED:
3890 default:
3891 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3892 return VERR_INTERNAL_ERROR;
3893 }
3894 if (RT_FAILURE(rc))
3895 {
3896 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3897 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3898 return rc;
3899 }
3900 }
3901
3902 /*
3903 * Always flag the necessary updates
3904 */
3905 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3906
3907 /*
3908 * Enter the new guest and shadow+guest modes.
3909 */
3910 int rc = -1;
3911 int rc2 = -1;
3912 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3913 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3914 switch (enmGuestMode)
3915 {
3916 case PGMMODE_REAL:
3917 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3918 switch (pVCpu->pgm.s.enmShadowMode)
3919 {
3920 case PGMMODE_32_BIT:
3921 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3922 break;
3923 case PGMMODE_PAE:
3924 case PGMMODE_PAE_NX:
3925 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3926 break;
3927 case PGMMODE_NESTED:
3928 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3929 break;
3930 case PGMMODE_EPT:
3931 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3932 break;
3933 case PGMMODE_AMD64:
3934 case PGMMODE_AMD64_NX:
3935 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3936 default: AssertFailed(); break;
3937 }
3938 break;
3939
3940 case PGMMODE_PROTECTED:
3941 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3942 switch (pVCpu->pgm.s.enmShadowMode)
3943 {
3944 case PGMMODE_32_BIT:
3945 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3946 break;
3947 case PGMMODE_PAE:
3948 case PGMMODE_PAE_NX:
3949 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3950 break;
3951 case PGMMODE_NESTED:
3952 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3953 break;
3954 case PGMMODE_EPT:
3955 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3956 break;
3957 case PGMMODE_AMD64:
3958 case PGMMODE_AMD64_NX:
3959 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3960 default: AssertFailed(); break;
3961 }
3962 break;
3963
3964 case PGMMODE_32_BIT:
3965 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3966 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3967 switch (pVCpu->pgm.s.enmShadowMode)
3968 {
3969 case PGMMODE_32_BIT:
3970 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3971 break;
3972 case PGMMODE_PAE:
3973 case PGMMODE_PAE_NX:
3974 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3975 break;
3976 case PGMMODE_NESTED:
3977 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3978 break;
3979 case PGMMODE_EPT:
3980 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3981 break;
3982 case PGMMODE_AMD64:
3983 case PGMMODE_AMD64_NX:
3984 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3985 default: AssertFailed(); break;
3986 }
3987 break;
3988
3989 case PGMMODE_PAE_NX:
3990 case PGMMODE_PAE:
3991 {
3992 uint32_t u32Dummy, u32Features;
3993
3994 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3995 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3996 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3997 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3998
3999 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
4000 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
4001 switch (pVCpu->pgm.s.enmShadowMode)
4002 {
4003 case PGMMODE_PAE:
4004 case PGMMODE_PAE_NX:
4005 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
4006 break;
4007 case PGMMODE_NESTED:
4008 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
4009 break;
4010 case PGMMODE_EPT:
4011 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
4012 break;
4013 case PGMMODE_32_BIT:
4014 case PGMMODE_AMD64:
4015 case PGMMODE_AMD64_NX:
4016 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4017 default: AssertFailed(); break;
4018 }
4019 break;
4020 }
4021
4022#ifdef VBOX_WITH_64_BITS_GUESTS
4023 case PGMMODE_AMD64_NX:
4024 case PGMMODE_AMD64:
4025 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4026 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
4027 switch (pVCpu->pgm.s.enmShadowMode)
4028 {
4029 case PGMMODE_AMD64:
4030 case PGMMODE_AMD64_NX:
4031 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
4032 break;
4033 case PGMMODE_NESTED:
4034 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
4035 break;
4036 case PGMMODE_EPT:
4037 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
4038 break;
4039 case PGMMODE_32_BIT:
4040 case PGMMODE_PAE:
4041 case PGMMODE_PAE_NX:
4042 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4043 default: AssertFailed(); break;
4044 }
4045 break;
4046#endif
4047
4048 default:
4049 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4050 rc = VERR_NOT_IMPLEMENTED;
4051 break;
4052 }
4053
4054 /* status codes. */
4055 AssertRC(rc);
4056 AssertRC(rc2);
4057 if (RT_SUCCESS(rc))
4058 {
4059 rc = rc2;
4060 if (RT_SUCCESS(rc)) /* no informational status codes. */
4061 rc = VINF_SUCCESS;
4062 }
4063
4064 /* Notify HWACCM as well. */
4065 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4066 return rc;
4067}
4068
4069/**
4070 * Release the pgm lock if owned by the current VCPU
4071 *
4072 * @param pVM The VM to operate on.
4073 */
4074VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
4075{
4076 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
4077 PDMCritSectLeave(&pVM->pgm.s.CritSect);
4078}
4079
4080/**
4081 * Called by pgmPoolFlushAllInt prior to flushing the pool.
4082 *
4083 * @returns VBox status code, fully asserted.
4084 * @param pVM The VM handle.
4085 * @param pVCpu The VMCPU to operate on.
4086 */
4087int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
4088{
4089 /* Unmap the old CR3 value before flushing everything. */
4090 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
4091 AssertRC(rc);
4092
4093 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
4094 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4095 AssertRC(rc);
4096 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
4097 return rc;
4098}
4099
4100
4101/**
4102 * Called by pgmPoolFlushAllInt after flushing the pool.
4103 *
4104 * @returns VBox status code, fully asserted.
4105 * @param pVM The VM handle.
4106 * @param pVCpu The VMCPU to operate on.
4107 */
4108int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
4109{
4110 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4111 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
4112 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4113 AssertRCReturn(rc, rc);
4114 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
4115
4116 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
4117 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
4118 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
4119 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4120 return rc;
4121}
4122
4123
4124/**
4125 * Dumps a PAE shadow page table.
4126 *
4127 * @returns VBox status code (VINF_SUCCESS).
4128 * @param pVM The VM handle.
4129 * @param pPT Pointer to the page table.
4130 * @param u64Address The virtual address of the page table starts.
4131 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4132 * @param cMaxDepth The maxium depth.
4133 * @param pHlp Pointer to the output functions.
4134 */
4135static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4136{
4137 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4138 {
4139 X86PTEPAE Pte = pPT->a[i];
4140 if (Pte.n.u1Present)
4141 {
4142 pHlp->pfnPrintf(pHlp,
4143 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4144 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4145 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4146 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4147 Pte.n.u1Write ? 'W' : 'R',
4148 Pte.n.u1User ? 'U' : 'S',
4149 Pte.n.u1Accessed ? 'A' : '-',
4150 Pte.n.u1Dirty ? 'D' : '-',
4151 Pte.n.u1Global ? 'G' : '-',
4152 Pte.n.u1WriteThru ? "WT" : "--",
4153 Pte.n.u1CacheDisable? "CD" : "--",
4154 Pte.n.u1PAT ? "AT" : "--",
4155 Pte.n.u1NoExecute ? "NX" : "--",
4156 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4157 Pte.u & RT_BIT(10) ? '1' : '0',
4158 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4159 Pte.u & X86_PTE_PAE_PG_MASK);
4160 }
4161 }
4162 return VINF_SUCCESS;
4163}
4164
4165
4166/**
4167 * Dumps a PAE shadow page directory table.
4168 *
4169 * @returns VBox status code (VINF_SUCCESS).
4170 * @param pVM The VM handle.
4171 * @param HCPhys The physical address of the page directory table.
4172 * @param u64Address The virtual address of the page table starts.
4173 * @param cr4 The CR4, PSE is currently used.
4174 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4175 * @param cMaxDepth The maxium depth.
4176 * @param pHlp Pointer to the output functions.
4177 */
4178static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4179{
4180 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4181 if (!pPD)
4182 {
4183 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4184 fLongMode ? 16 : 8, u64Address, HCPhys);
4185 return VERR_INVALID_PARAMETER;
4186 }
4187 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4188
4189 int rc = VINF_SUCCESS;
4190 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4191 {
4192 X86PDEPAE Pde = pPD->a[i];
4193 if (Pde.n.u1Present)
4194 {
4195 if (fBigPagesSupported && Pde.b.u1Size)
4196 pHlp->pfnPrintf(pHlp,
4197 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4198 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4199 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4200 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4201 Pde.b.u1Write ? 'W' : 'R',
4202 Pde.b.u1User ? 'U' : 'S',
4203 Pde.b.u1Accessed ? 'A' : '-',
4204 Pde.b.u1Dirty ? 'D' : '-',
4205 Pde.b.u1Global ? 'G' : '-',
4206 Pde.b.u1WriteThru ? "WT" : "--",
4207 Pde.b.u1CacheDisable? "CD" : "--",
4208 Pde.b.u1PAT ? "AT" : "--",
4209 Pde.b.u1NoExecute ? "NX" : "--",
4210 Pde.u & RT_BIT_64(9) ? '1' : '0',
4211 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4212 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4213 Pde.u & X86_PDE_PAE_PG_MASK);
4214 else
4215 {
4216 pHlp->pfnPrintf(pHlp,
4217 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4218 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4219 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4220 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4221 Pde.n.u1Write ? 'W' : 'R',
4222 Pde.n.u1User ? 'U' : 'S',
4223 Pde.n.u1Accessed ? 'A' : '-',
4224 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4225 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4226 Pde.n.u1WriteThru ? "WT" : "--",
4227 Pde.n.u1CacheDisable? "CD" : "--",
4228 Pde.n.u1NoExecute ? "NX" : "--",
4229 Pde.u & RT_BIT_64(9) ? '1' : '0',
4230 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4231 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4232 Pde.u & X86_PDE_PAE_PG_MASK);
4233 if (cMaxDepth >= 1)
4234 {
4235 /** @todo what about using the page pool for mapping PTs? */
4236 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4237 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4238 PX86PTPAE pPT = NULL;
4239 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4240 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4241 else
4242 {
4243 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4244 {
4245 uint64_t off = u64AddressPT - pMap->GCPtr;
4246 if (off < pMap->cb)
4247 {
4248 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4249 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4250 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4251 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4252 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4253 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4254 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4255 }
4256 }
4257 }
4258 int rc2 = VERR_INVALID_PARAMETER;
4259 if (pPT)
4260 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4261 else
4262 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4263 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4264 if (rc2 < rc && RT_SUCCESS(rc))
4265 rc = rc2;
4266 }
4267 }
4268 }
4269 }
4270 return rc;
4271}
4272
4273
4274/**
4275 * Dumps a PAE shadow page directory pointer table.
4276 *
4277 * @returns VBox status code (VINF_SUCCESS).
4278 * @param pVM The VM handle.
4279 * @param HCPhys The physical address of the page directory pointer table.
4280 * @param u64Address The virtual address of the page table starts.
4281 * @param cr4 The CR4, PSE is currently used.
4282 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4283 * @param cMaxDepth The maxium depth.
4284 * @param pHlp Pointer to the output functions.
4285 */
4286static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4287{
4288 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4289 if (!pPDPT)
4290 {
4291 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4292 fLongMode ? 16 : 8, u64Address, HCPhys);
4293 return VERR_INVALID_PARAMETER;
4294 }
4295
4296 int rc = VINF_SUCCESS;
4297 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4298 for (unsigned i = 0; i < c; i++)
4299 {
4300 X86PDPE Pdpe = pPDPT->a[i];
4301 if (Pdpe.n.u1Present)
4302 {
4303 if (fLongMode)
4304 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4305 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4306 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4307 Pdpe.lm.u1Write ? 'W' : 'R',
4308 Pdpe.lm.u1User ? 'U' : 'S',
4309 Pdpe.lm.u1Accessed ? 'A' : '-',
4310 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4311 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4312 Pdpe.lm.u1WriteThru ? "WT" : "--",
4313 Pdpe.lm.u1CacheDisable? "CD" : "--",
4314 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4315 Pdpe.lm.u1NoExecute ? "NX" : "--",
4316 Pdpe.u & RT_BIT(9) ? '1' : '0',
4317 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4318 Pdpe.u & RT_BIT(11) ? '1' : '0',
4319 Pdpe.u & X86_PDPE_PG_MASK);
4320 else
4321 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4322 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4323 i << X86_PDPT_SHIFT,
4324 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4325 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4326 Pdpe.n.u1WriteThru ? "WT" : "--",
4327 Pdpe.n.u1CacheDisable? "CD" : "--",
4328 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4329 Pdpe.u & RT_BIT(9) ? '1' : '0',
4330 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4331 Pdpe.u & RT_BIT(11) ? '1' : '0',
4332 Pdpe.u & X86_PDPE_PG_MASK);
4333 if (cMaxDepth >= 1)
4334 {
4335 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4336 cr4, fLongMode, cMaxDepth - 1, pHlp);
4337 if (rc2 < rc && RT_SUCCESS(rc))
4338 rc = rc2;
4339 }
4340 }
4341 }
4342 return rc;
4343}
4344
4345
4346/**
4347 * Dumps a 32-bit shadow page table.
4348 *
4349 * @returns VBox status code (VINF_SUCCESS).
4350 * @param pVM The VM handle.
4351 * @param HCPhys The physical address of the table.
4352 * @param cr4 The CR4, PSE is currently used.
4353 * @param cMaxDepth The maxium depth.
4354 * @param pHlp Pointer to the output functions.
4355 */
4356static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4357{
4358 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4359 if (!pPML4)
4360 {
4361 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4362 return VERR_INVALID_PARAMETER;
4363 }
4364
4365 int rc = VINF_SUCCESS;
4366 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4367 {
4368 X86PML4E Pml4e = pPML4->a[i];
4369 if (Pml4e.n.u1Present)
4370 {
4371 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4372 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4373 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4374 u64Address,
4375 Pml4e.n.u1Write ? 'W' : 'R',
4376 Pml4e.n.u1User ? 'U' : 'S',
4377 Pml4e.n.u1Accessed ? 'A' : '-',
4378 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4379 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4380 Pml4e.n.u1WriteThru ? "WT" : "--",
4381 Pml4e.n.u1CacheDisable? "CD" : "--",
4382 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4383 Pml4e.n.u1NoExecute ? "NX" : "--",
4384 Pml4e.u & RT_BIT(9) ? '1' : '0',
4385 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4386 Pml4e.u & RT_BIT(11) ? '1' : '0',
4387 Pml4e.u & X86_PML4E_PG_MASK);
4388
4389 if (cMaxDepth >= 1)
4390 {
4391 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4392 if (rc2 < rc && RT_SUCCESS(rc))
4393 rc = rc2;
4394 }
4395 }
4396 }
4397 return rc;
4398}
4399
4400
4401/**
4402 * Dumps a 32-bit shadow page table.
4403 *
4404 * @returns VBox status code (VINF_SUCCESS).
4405 * @param pVM The VM handle.
4406 * @param pPT Pointer to the page table.
4407 * @param u32Address The virtual address this table starts at.
4408 * @param pHlp Pointer to the output functions.
4409 */
4410int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4411{
4412 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4413 {
4414 X86PTE Pte = pPT->a[i];
4415 if (Pte.n.u1Present)
4416 {
4417 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4418 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4419 u32Address + (i << X86_PT_SHIFT),
4420 Pte.n.u1Write ? 'W' : 'R',
4421 Pte.n.u1User ? 'U' : 'S',
4422 Pte.n.u1Accessed ? 'A' : '-',
4423 Pte.n.u1Dirty ? 'D' : '-',
4424 Pte.n.u1Global ? 'G' : '-',
4425 Pte.n.u1WriteThru ? "WT" : "--",
4426 Pte.n.u1CacheDisable? "CD" : "--",
4427 Pte.n.u1PAT ? "AT" : "--",
4428 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4429 Pte.u & RT_BIT(10) ? '1' : '0',
4430 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4431 Pte.u & X86_PDE_PG_MASK);
4432 }
4433 }
4434 return VINF_SUCCESS;
4435}
4436
4437
4438/**
4439 * Dumps a 32-bit shadow page directory and page tables.
4440 *
4441 * @returns VBox status code (VINF_SUCCESS).
4442 * @param pVM The VM handle.
4443 * @param cr3 The root of the hierarchy.
4444 * @param cr4 The CR4, PSE is currently used.
4445 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4446 * @param pHlp Pointer to the output functions.
4447 */
4448int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4449{
4450 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4451 if (!pPD)
4452 {
4453 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4454 return VERR_INVALID_PARAMETER;
4455 }
4456
4457 int rc = VINF_SUCCESS;
4458 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4459 {
4460 X86PDE Pde = pPD->a[i];
4461 if (Pde.n.u1Present)
4462 {
4463 const uint32_t u32Address = i << X86_PD_SHIFT;
4464 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4465 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4466 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4467 u32Address,
4468 Pde.b.u1Write ? 'W' : 'R',
4469 Pde.b.u1User ? 'U' : 'S',
4470 Pde.b.u1Accessed ? 'A' : '-',
4471 Pde.b.u1Dirty ? 'D' : '-',
4472 Pde.b.u1Global ? 'G' : '-',
4473 Pde.b.u1WriteThru ? "WT" : "--",
4474 Pde.b.u1CacheDisable? "CD" : "--",
4475 Pde.b.u1PAT ? "AT" : "--",
4476 Pde.u & RT_BIT_64(9) ? '1' : '0',
4477 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4478 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4479 Pde.u & X86_PDE4M_PG_MASK);
4480 else
4481 {
4482 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4483 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4484 u32Address,
4485 Pde.n.u1Write ? 'W' : 'R',
4486 Pde.n.u1User ? 'U' : 'S',
4487 Pde.n.u1Accessed ? 'A' : '-',
4488 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4489 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4490 Pde.n.u1WriteThru ? "WT" : "--",
4491 Pde.n.u1CacheDisable? "CD" : "--",
4492 Pde.u & RT_BIT_64(9) ? '1' : '0',
4493 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4494 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4495 Pde.u & X86_PDE_PG_MASK);
4496 if (cMaxDepth >= 1)
4497 {
4498 /** @todo what about using the page pool for mapping PTs? */
4499 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4500 PX86PT pPT = NULL;
4501 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4502 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4503 else
4504 {
4505 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4506 if (u32Address - pMap->GCPtr < pMap->cb)
4507 {
4508 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4509 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4510 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4511 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4512 pPT = pMap->aPTs[iPDE].pPTR3;
4513 }
4514 }
4515 int rc2 = VERR_INVALID_PARAMETER;
4516 if (pPT)
4517 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4518 else
4519 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4520 if (rc2 < rc && RT_SUCCESS(rc))
4521 rc = rc2;
4522 }
4523 }
4524 }
4525 }
4526
4527 return rc;
4528}
4529
4530
4531/**
4532 * Dumps a 32-bit shadow page table.
4533 *
4534 * @returns VBox status code (VINF_SUCCESS).
4535 * @param pVM The VM handle.
4536 * @param pPT Pointer to the page table.
4537 * @param u32Address The virtual address this table starts at.
4538 * @param PhysSearch Address to search for.
4539 */
4540int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4541{
4542 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4543 {
4544 X86PTE Pte = pPT->a[i];
4545 if (Pte.n.u1Present)
4546 {
4547 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4548 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4549 u32Address + (i << X86_PT_SHIFT),
4550 Pte.n.u1Write ? 'W' : 'R',
4551 Pte.n.u1User ? 'U' : 'S',
4552 Pte.n.u1Accessed ? 'A' : '-',
4553 Pte.n.u1Dirty ? 'D' : '-',
4554 Pte.n.u1Global ? 'G' : '-',
4555 Pte.n.u1WriteThru ? "WT" : "--",
4556 Pte.n.u1CacheDisable? "CD" : "--",
4557 Pte.n.u1PAT ? "AT" : "--",
4558 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4559 Pte.u & RT_BIT(10) ? '1' : '0',
4560 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4561 Pte.u & X86_PDE_PG_MASK));
4562
4563 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4564 {
4565 uint64_t fPageShw = 0;
4566 RTHCPHYS pPhysHC = 0;
4567
4568 /** @todo SMP support!! */
4569 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4570 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4571 }
4572 }
4573 }
4574 return VINF_SUCCESS;
4575}
4576
4577
4578/**
4579 * Dumps a 32-bit guest page directory and page tables.
4580 *
4581 * @returns VBox status code (VINF_SUCCESS).
4582 * @param pVM The VM handle.
4583 * @param cr3 The root of the hierarchy.
4584 * @param cr4 The CR4, PSE is currently used.
4585 * @param PhysSearch Address to search for.
4586 */
4587VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4588{
4589 bool fLongMode = false;
4590 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4591 PX86PD pPD = 0;
4592
4593 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4594 if (RT_FAILURE(rc) || !pPD)
4595 {
4596 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4597 return VERR_INVALID_PARAMETER;
4598 }
4599
4600 Log(("cr3=%08x cr4=%08x%s\n"
4601 "%-*s P - Present\n"
4602 "%-*s | R/W - Read (0) / Write (1)\n"
4603 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4604 "%-*s | | | A - Accessed\n"
4605 "%-*s | | | | D - Dirty\n"
4606 "%-*s | | | | | G - Global\n"
4607 "%-*s | | | | | | WT - Write thru\n"
4608 "%-*s | | | | | | | CD - Cache disable\n"
4609 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4610 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4611 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4612 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4613 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4614 "%-*s Level | | | | | | | | | | | | Page\n"
4615 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4616 - W U - - - -- -- -- -- -- 010 */
4617 , cr3, cr4, fLongMode ? " Long Mode" : "",
4618 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4619 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4620
4621 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4622 {
4623 X86PDE Pde = pPD->a[i];
4624 if (Pde.n.u1Present)
4625 {
4626 const uint32_t u32Address = i << X86_PD_SHIFT;
4627
4628 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4629 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4630 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4631 u32Address,
4632 Pde.b.u1Write ? 'W' : 'R',
4633 Pde.b.u1User ? 'U' : 'S',
4634 Pde.b.u1Accessed ? 'A' : '-',
4635 Pde.b.u1Dirty ? 'D' : '-',
4636 Pde.b.u1Global ? 'G' : '-',
4637 Pde.b.u1WriteThru ? "WT" : "--",
4638 Pde.b.u1CacheDisable? "CD" : "--",
4639 Pde.b.u1PAT ? "AT" : "--",
4640 Pde.u & RT_BIT(9) ? '1' : '0',
4641 Pde.u & RT_BIT(10) ? '1' : '0',
4642 Pde.u & RT_BIT(11) ? '1' : '0',
4643 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4644 /** @todo PhysSearch */
4645 else
4646 {
4647 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4648 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4649 u32Address,
4650 Pde.n.u1Write ? 'W' : 'R',
4651 Pde.n.u1User ? 'U' : 'S',
4652 Pde.n.u1Accessed ? 'A' : '-',
4653 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4654 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4655 Pde.n.u1WriteThru ? "WT" : "--",
4656 Pde.n.u1CacheDisable? "CD" : "--",
4657 Pde.u & RT_BIT(9) ? '1' : '0',
4658 Pde.u & RT_BIT(10) ? '1' : '0',
4659 Pde.u & RT_BIT(11) ? '1' : '0',
4660 Pde.u & X86_PDE_PG_MASK));
4661 ////if (cMaxDepth >= 1)
4662 {
4663 /** @todo what about using the page pool for mapping PTs? */
4664 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4665 PX86PT pPT = NULL;
4666
4667 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4668
4669 int rc2 = VERR_INVALID_PARAMETER;
4670 if (pPT)
4671 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4672 else
4673 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4674 if (rc2 < rc && RT_SUCCESS(rc))
4675 rc = rc2;
4676 }
4677 }
4678 }
4679 }
4680
4681 return rc;
4682}
4683
4684
4685/**
4686 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4687 *
4688 * @returns VBox status code (VINF_SUCCESS).
4689 * @param pVM The VM handle.
4690 * @param cr3 The root of the hierarchy.
4691 * @param cr4 The cr4, only PAE and PSE is currently used.
4692 * @param fLongMode Set if long mode, false if not long mode.
4693 * @param cMaxDepth Number of levels to dump.
4694 * @param pHlp Pointer to the output functions.
4695 */
4696VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4697{
4698 if (!pHlp)
4699 pHlp = DBGFR3InfoLogHlp();
4700 if (!cMaxDepth)
4701 return VINF_SUCCESS;
4702 const unsigned cch = fLongMode ? 16 : 8;
4703 pHlp->pfnPrintf(pHlp,
4704 "cr3=%08x cr4=%08x%s\n"
4705 "%-*s P - Present\n"
4706 "%-*s | R/W - Read (0) / Write (1)\n"
4707 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4708 "%-*s | | | A - Accessed\n"
4709 "%-*s | | | | D - Dirty\n"
4710 "%-*s | | | | | G - Global\n"
4711 "%-*s | | | | | | WT - Write thru\n"
4712 "%-*s | | | | | | | CD - Cache disable\n"
4713 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4714 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4715 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4716 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4717 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4718 "%-*s Level | | | | | | | | | | | | Page\n"
4719 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4720 - W U - - - -- -- -- -- -- 010 */
4721 , cr3, cr4, fLongMode ? " Long Mode" : "",
4722 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4723 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4724 if (cr4 & X86_CR4_PAE)
4725 {
4726 if (fLongMode)
4727 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4728 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4729 }
4730 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4731}
4732
4733#ifdef VBOX_WITH_DEBUGGER
4734
4735/**
4736 * The '.pgmram' command.
4737 *
4738 * @returns VBox status.
4739 * @param pCmd Pointer to the command descriptor (as registered).
4740 * @param pCmdHlp Pointer to command helper functions.
4741 * @param pVM Pointer to the current VM (if any).
4742 * @param paArgs Pointer to (readonly) array of arguments.
4743 * @param cArgs Number of arguments in the array.
4744 */
4745static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4746{
4747 /*
4748 * Validate input.
4749 */
4750 if (!pVM)
4751 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4752 if (!pVM->pgm.s.pRamRangesRC)
4753 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4754
4755 /*
4756 * Dump the ranges.
4757 */
4758 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4759 PPGMRAMRANGE pRam;
4760 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4761 {
4762 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4763 "%RGp - %RGp %p\n",
4764 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4765 if (RT_FAILURE(rc))
4766 return rc;
4767 }
4768
4769 return VINF_SUCCESS;
4770}
4771
4772
4773/**
4774 * The '.pgmmap' command.
4775 *
4776 * @returns VBox status.
4777 * @param pCmd Pointer to the command descriptor (as registered).
4778 * @param pCmdHlp Pointer to command helper functions.
4779 * @param pVM Pointer to the current VM (if any).
4780 * @param paArgs Pointer to (readonly) array of arguments.
4781 * @param cArgs Number of arguments in the array.
4782 */
4783static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4784{
4785 /*
4786 * Validate input.
4787 */
4788 if (!pVM)
4789 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4790 if (!pVM->pgm.s.pMappingsR3)
4791 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4792
4793 /*
4794 * Print message about the fixedness of the mappings.
4795 */
4796 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4797 if (RT_FAILURE(rc))
4798 return rc;
4799
4800 /*
4801 * Dump the ranges.
4802 */
4803 PPGMMAPPING pCur;
4804 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4805 {
4806 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4807 "%08x - %08x %s\n",
4808 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4809 if (RT_FAILURE(rc))
4810 return rc;
4811 }
4812
4813 return VINF_SUCCESS;
4814}
4815
4816
4817/**
4818 * The '.pgmerror' and '.pgmerroroff' commands.
4819 *
4820 * @returns VBox status.
4821 * @param pCmd Pointer to the command descriptor (as registered).
4822 * @param pCmdHlp Pointer to command helper functions.
4823 * @param pVM Pointer to the current VM (if any).
4824 * @param paArgs Pointer to (readonly) array of arguments.
4825 * @param cArgs Number of arguments in the array.
4826 */
4827static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4828{
4829 /*
4830 * Validate input.
4831 */
4832 if (!pVM)
4833 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4834 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4835 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4836
4837 if (!cArgs)
4838 {
4839 /*
4840 * Print the list of error injection locations with status.
4841 */
4842 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4843 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4844 }
4845 else
4846 {
4847
4848 /*
4849 * String switch on where to inject the error.
4850 */
4851 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4852 const char *pszWhere = paArgs[0].u.pszString;
4853 if (!strcmp(pszWhere, "handy"))
4854 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4855 else
4856 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4857 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4858 }
4859 return VINF_SUCCESS;
4860}
4861
4862
4863/**
4864 * The '.pgmsync' command.
4865 *
4866 * @returns VBox status.
4867 * @param pCmd Pointer to the command descriptor (as registered).
4868 * @param pCmdHlp Pointer to command helper functions.
4869 * @param pVM Pointer to the current VM (if any).
4870 * @param paArgs Pointer to (readonly) array of arguments.
4871 * @param cArgs Number of arguments in the array.
4872 */
4873static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4874{
4875 /** @todo SMP support */
4876 PVMCPU pVCpu = &pVM->aCpus[0];
4877
4878 /*
4879 * Validate input.
4880 */
4881 if (!pVM)
4882 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4883
4884 /*
4885 * Force page directory sync.
4886 */
4887 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4888
4889 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4890 if (RT_FAILURE(rc))
4891 return rc;
4892
4893 return VINF_SUCCESS;
4894}
4895
4896
4897#ifdef VBOX_STRICT
4898/**
4899 * The '.pgmassertcr3' command.
4900 *
4901 * @returns VBox status.
4902 * @param pCmd Pointer to the command descriptor (as registered).
4903 * @param pCmdHlp Pointer to command helper functions.
4904 * @param pVM Pointer to the current VM (if any).
4905 * @param paArgs Pointer to (readonly) array of arguments.
4906 * @param cArgs Number of arguments in the array.
4907 */
4908static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4909{
4910 /** @todo SMP support!! */
4911 PVMCPU pVCpu = &pVM->aCpus[0];
4912
4913 /*
4914 * Validate input.
4915 */
4916 if (!pVM)
4917 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4918
4919 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4920 if (RT_FAILURE(rc))
4921 return rc;
4922
4923 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4924
4925 return VINF_SUCCESS;
4926}
4927#endif /* VBOX_STRICT */
4928
4929
4930/**
4931 * The '.pgmsyncalways' command.
4932 *
4933 * @returns VBox status.
4934 * @param pCmd Pointer to the command descriptor (as registered).
4935 * @param pCmdHlp Pointer to command helper functions.
4936 * @param pVM Pointer to the current VM (if any).
4937 * @param paArgs Pointer to (readonly) array of arguments.
4938 * @param cArgs Number of arguments in the array.
4939 */
4940static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4941{
4942 /** @todo SMP support!! */
4943 PVMCPU pVCpu = &pVM->aCpus[0];
4944
4945 /*
4946 * Validate input.
4947 */
4948 if (!pVM)
4949 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4950
4951 /*
4952 * Force page directory sync.
4953 */
4954 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4955 {
4956 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4957 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4958 }
4959 else
4960 {
4961 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4962 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4963 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4964 }
4965}
4966
4967#endif /* VBOX_WITH_DEBUGGER */
4968
4969/**
4970 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4971 */
4972typedef struct PGMCHECKINTARGS
4973{
4974 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4975 PPGMPHYSHANDLER pPrevPhys;
4976 PPGMVIRTHANDLER pPrevVirt;
4977 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4978 PVM pVM;
4979} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4980
4981/**
4982 * Validate a node in the physical handler tree.
4983 *
4984 * @returns 0 on if ok, other wise 1.
4985 * @param pNode The handler node.
4986 * @param pvUser pVM.
4987 */
4988static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4989{
4990 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4991 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4992 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4993 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4994 AssertReleaseMsg( !pArgs->pPrevPhys
4995 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4996 ("pPrevPhys=%p %RGp-%RGp %s\n"
4997 " pCur=%p %RGp-%RGp %s\n",
4998 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4999 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5000 pArgs->pPrevPhys = pCur;
5001 return 0;
5002}
5003
5004
5005/**
5006 * Validate a node in the virtual handler tree.
5007 *
5008 * @returns 0 on if ok, other wise 1.
5009 * @param pNode The handler node.
5010 * @param pvUser pVM.
5011 */
5012static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
5013{
5014 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5015 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
5016 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5017 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5018 AssertReleaseMsg( !pArgs->pPrevVirt
5019 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
5020 ("pPrevVirt=%p %RGv-%RGv %s\n"
5021 " pCur=%p %RGv-%RGv %s\n",
5022 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
5023 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5024 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
5025 {
5026 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
5027 ("pCur=%p %RGv-%RGv %s\n"
5028 "iPage=%d offVirtHandle=%#x expected %#x\n",
5029 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
5030 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
5031 }
5032 pArgs->pPrevVirt = pCur;
5033 return 0;
5034}
5035
5036
5037/**
5038 * Validate a node in the virtual handler tree.
5039 *
5040 * @returns 0 on if ok, other wise 1.
5041 * @param pNode The handler node.
5042 * @param pvUser pVM.
5043 */
5044static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5045{
5046 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5047 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
5048 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
5049 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
5050 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
5051 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5052 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5053 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5054 " pCur=%p %RGp-%RGp\n",
5055 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5056 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5057 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5058 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5059 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5060 " pCur=%p %RGp-%RGp\n",
5061 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5062 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5063 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
5064 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5065 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5066 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
5067 {
5068 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
5069 for (;;)
5070 {
5071 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
5072 AssertReleaseMsg(pCur2 != pCur,
5073 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5074 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5075 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5076 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5077 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5078 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5079 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5080 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5081 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5082 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5083 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5084 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5085 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5086 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5087 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5088 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5089 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5090 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5091 break;
5092 }
5093 }
5094
5095 pArgs->pPrevPhys2Virt = pCur;
5096 return 0;
5097}
5098
5099
5100/**
5101 * Perform an integrity check on the PGM component.
5102 *
5103 * @returns VINF_SUCCESS if everything is fine.
5104 * @returns VBox error status after asserting on integrity breach.
5105 * @param pVM The VM handle.
5106 */
5107VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5108{
5109 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5110
5111 /*
5112 * Check the trees.
5113 */
5114 int cErrors = 0;
5115 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5116 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5117 PGMCHECKINTARGS Args = s_LeftToRight;
5118 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5119 Args = s_RightToLeft;
5120 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5121 Args = s_LeftToRight;
5122 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5123 Args = s_RightToLeft;
5124 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5125 Args = s_LeftToRight;
5126 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5127 Args = s_RightToLeft;
5128 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5129 Args = s_LeftToRight;
5130 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5131 Args = s_RightToLeft;
5132 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5133
5134 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5135}
5136
5137
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette