VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 22017

Last change on this file since 22017 was 21994, checked in by vboxsync, 15 years ago

PGM: Added '.pgmphystofile <file> [nozero]' for getting more representative input for tstCompressionBenchmark.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 240.1 KB
Line 
1/* $Id: PGM.cpp 21994 2009-08-05 12:44:59Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include <VBox/hwaccm.h>
592#include "PGMInternal.h"
593#include <VBox/vm.h>
594
595#include <VBox/dbg.h>
596#include <VBox/param.h>
597#include <VBox/err.h>
598
599#include <iprt/asm.h>
600#include <iprt/assert.h>
601#include <iprt/env.h>
602#include <iprt/mem.h>
603#include <iprt/file.h>
604#include <iprt/string.h>
605#include <iprt/thread.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.5.x and later. */
612#define PGM_SAVED_STATE_VERSION 9
613/** Saved state data unit version for 2.2.2 and later. */
614#define PGM_SAVED_STATE_VERSION_2_2_2 8
615/** Saved state data unit version for 2.2.0. */
616#define PGM_SAVED_STATE_VERSION_RR_DESC 7
617/** Saved state data unit version. */
618#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
619
620
621/*******************************************************************************
622* Internal Functions *
623*******************************************************************************/
624static int pgmR3InitPaging(PVM pVM);
625static void pgmR3InitStats(PVM pVM);
626static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
629static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
632#ifdef VBOX_STRICT
633static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
634#endif
635static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
636static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
637static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
638static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
639static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
640
641#ifdef VBOX_WITH_DEBUGGER
642/** @todo Convert the first two commands to 'info' items. */
643static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# ifdef VBOX_STRICT
649static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650# endif
651static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
652#endif
653
654
655/*******************************************************************************
656* Global Variables *
657*******************************************************************************/
658#ifdef VBOX_WITH_DEBUGGER
659/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
660static const DBGCVARDESC g_aPgmErrorArgs[] =
661{
662 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
663 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
664};
665
666static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
667{
668 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
669 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
670 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
671};
672
673/** Command descriptors. */
674static const DBGCCMD g_aCmds[] =
675{
676 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
677 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
678 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
679 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
680 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
681 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
682#ifdef VBOX_STRICT
683 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
684#endif
685 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
686 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
687};
688#endif
689
690
691
692
693/*
694 * Shadow - 32-bit mode
695 */
696#define PGM_SHW_TYPE PGM_TYPE_32BIT
697#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
698#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
699#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
700#include "PGMShw.h"
701
702/* Guest - real mode */
703#define PGM_GST_TYPE PGM_TYPE_REAL
704#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
705#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
706#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
707#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
708#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
709#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
710#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
711#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
712#include "PGMBth.h"
713#include "PGMGstDefs.h"
714#include "PGMGst.h"
715#undef BTH_PGMPOOLKIND_PT_FOR_PT
716#undef BTH_PGMPOOLKIND_ROOT
717#undef PGM_BTH_NAME
718#undef PGM_BTH_NAME_RC_STR
719#undef PGM_BTH_NAME_R0_STR
720#undef PGM_GST_TYPE
721#undef PGM_GST_NAME
722#undef PGM_GST_NAME_RC_STR
723#undef PGM_GST_NAME_R0_STR
724
725/* Guest - protected mode */
726#define PGM_GST_TYPE PGM_TYPE_PROT
727#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
728#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
729#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
730#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
731#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
732#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
733#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
734#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
735#include "PGMBth.h"
736#include "PGMGstDefs.h"
737#include "PGMGst.h"
738#undef BTH_PGMPOOLKIND_PT_FOR_PT
739#undef BTH_PGMPOOLKIND_ROOT
740#undef PGM_BTH_NAME
741#undef PGM_BTH_NAME_RC_STR
742#undef PGM_BTH_NAME_R0_STR
743#undef PGM_GST_TYPE
744#undef PGM_GST_NAME
745#undef PGM_GST_NAME_RC_STR
746#undef PGM_GST_NAME_R0_STR
747
748/* Guest - 32-bit mode */
749#define PGM_GST_TYPE PGM_TYPE_32BIT
750#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
751#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
752#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
754#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
755#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
756#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
757#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
758#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
759#include "PGMBth.h"
760#include "PGMGstDefs.h"
761#include "PGMGst.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_BIG
763#undef BTH_PGMPOOLKIND_PT_FOR_PT
764#undef BTH_PGMPOOLKIND_ROOT
765#undef PGM_BTH_NAME
766#undef PGM_BTH_NAME_RC_STR
767#undef PGM_BTH_NAME_R0_STR
768#undef PGM_GST_TYPE
769#undef PGM_GST_NAME
770#undef PGM_GST_NAME_RC_STR
771#undef PGM_GST_NAME_R0_STR
772
773#undef PGM_SHW_TYPE
774#undef PGM_SHW_NAME
775#undef PGM_SHW_NAME_RC_STR
776#undef PGM_SHW_NAME_R0_STR
777
778
779/*
780 * Shadow - PAE mode
781 */
782#define PGM_SHW_TYPE PGM_TYPE_PAE
783#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
784#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
785#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
786#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
787#include "PGMShw.h"
788
789/* Guest - real mode */
790#define PGM_GST_TYPE PGM_TYPE_REAL
791#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
792#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
793#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
794#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
795#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
796#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
797#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
798#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
799#include "PGMGstDefs.h"
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_PT
802#undef BTH_PGMPOOLKIND_ROOT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - protected mode */
812#define PGM_GST_TYPE PGM_TYPE_PROT
813#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
820#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
821#include "PGMGstDefs.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_PT
824#undef BTH_PGMPOOLKIND_ROOT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833/* Guest - 32-bit mode */
834#define PGM_GST_TYPE PGM_TYPE_32BIT
835#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
836#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
837#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
838#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
839#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
840#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
841#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
842#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
843#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
844#include "PGMGstDefs.h"
845#include "PGMBth.h"
846#undef BTH_PGMPOOLKIND_PT_FOR_BIG
847#undef BTH_PGMPOOLKIND_PT_FOR_PT
848#undef BTH_PGMPOOLKIND_ROOT
849#undef PGM_BTH_NAME
850#undef PGM_BTH_NAME_RC_STR
851#undef PGM_BTH_NAME_R0_STR
852#undef PGM_GST_TYPE
853#undef PGM_GST_NAME
854#undef PGM_GST_NAME_RC_STR
855#undef PGM_GST_NAME_R0_STR
856
857/* Guest - PAE mode */
858#define PGM_GST_TYPE PGM_TYPE_PAE
859#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
860#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
861#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
862#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
863#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
864#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
865#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
866#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
867#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
868#include "PGMBth.h"
869#include "PGMGstDefs.h"
870#include "PGMGst.h"
871#undef BTH_PGMPOOLKIND_PT_FOR_BIG
872#undef BTH_PGMPOOLKIND_PT_FOR_PT
873#undef BTH_PGMPOOLKIND_ROOT
874#undef PGM_BTH_NAME
875#undef PGM_BTH_NAME_RC_STR
876#undef PGM_BTH_NAME_R0_STR
877#undef PGM_GST_TYPE
878#undef PGM_GST_NAME
879#undef PGM_GST_NAME_RC_STR
880#undef PGM_GST_NAME_R0_STR
881
882#undef PGM_SHW_TYPE
883#undef PGM_SHW_NAME
884#undef PGM_SHW_NAME_RC_STR
885#undef PGM_SHW_NAME_R0_STR
886
887
888/*
889 * Shadow - AMD64 mode
890 */
891#define PGM_SHW_TYPE PGM_TYPE_AMD64
892#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
893#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
894#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
895#include "PGMShw.h"
896
897#ifdef VBOX_WITH_64_BITS_GUESTS
898/* Guest - AMD64 mode */
899# define PGM_GST_TYPE PGM_TYPE_AMD64
900# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
901# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
902# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
903# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
904# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
905# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
906# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
907# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
908# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
909# include "PGMBth.h"
910# include "PGMGstDefs.h"
911# include "PGMGst.h"
912# undef BTH_PGMPOOLKIND_PT_FOR_BIG
913# undef BTH_PGMPOOLKIND_PT_FOR_PT
914# undef BTH_PGMPOOLKIND_ROOT
915# undef PGM_BTH_NAME
916# undef PGM_BTH_NAME_RC_STR
917# undef PGM_BTH_NAME_R0_STR
918# undef PGM_GST_TYPE
919# undef PGM_GST_NAME
920# undef PGM_GST_NAME_RC_STR
921# undef PGM_GST_NAME_R0_STR
922#endif /* VBOX_WITH_64_BITS_GUESTS */
923
924#undef PGM_SHW_TYPE
925#undef PGM_SHW_NAME
926#undef PGM_SHW_NAME_RC_STR
927#undef PGM_SHW_NAME_R0_STR
928
929
930/*
931 * Shadow - Nested paging mode
932 */
933#define PGM_SHW_TYPE PGM_TYPE_NESTED
934#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
935#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
936#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
937#include "PGMShw.h"
938
939/* Guest - real mode */
940#define PGM_GST_TYPE PGM_TYPE_REAL
941#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
942#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
943#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
944#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
945#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
946#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
947#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
948#include "PGMGstDefs.h"
949#include "PGMBth.h"
950#undef BTH_PGMPOOLKIND_PT_FOR_PT
951#undef PGM_BTH_NAME
952#undef PGM_BTH_NAME_RC_STR
953#undef PGM_BTH_NAME_R0_STR
954#undef PGM_GST_TYPE
955#undef PGM_GST_NAME
956#undef PGM_GST_NAME_RC_STR
957#undef PGM_GST_NAME_R0_STR
958
959/* Guest - protected mode */
960#define PGM_GST_TYPE PGM_TYPE_PROT
961#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
962#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
963#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
964#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
965#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
966#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
967#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
968#include "PGMGstDefs.h"
969#include "PGMBth.h"
970#undef BTH_PGMPOOLKIND_PT_FOR_PT
971#undef PGM_BTH_NAME
972#undef PGM_BTH_NAME_RC_STR
973#undef PGM_BTH_NAME_R0_STR
974#undef PGM_GST_TYPE
975#undef PGM_GST_NAME
976#undef PGM_GST_NAME_RC_STR
977#undef PGM_GST_NAME_R0_STR
978
979/* Guest - 32-bit mode */
980#define PGM_GST_TYPE PGM_TYPE_32BIT
981#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
982#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
983#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
984#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
985#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
986#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
987#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
988#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
989#include "PGMGstDefs.h"
990#include "PGMBth.h"
991#undef BTH_PGMPOOLKIND_PT_FOR_BIG
992#undef BTH_PGMPOOLKIND_PT_FOR_PT
993#undef PGM_BTH_NAME
994#undef PGM_BTH_NAME_RC_STR
995#undef PGM_BTH_NAME_R0_STR
996#undef PGM_GST_TYPE
997#undef PGM_GST_NAME
998#undef PGM_GST_NAME_RC_STR
999#undef PGM_GST_NAME_R0_STR
1000
1001/* Guest - PAE mode */
1002#define PGM_GST_TYPE PGM_TYPE_PAE
1003#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1004#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1005#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1006#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1007#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1008#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1009#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1010#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1011#include "PGMGstDefs.h"
1012#include "PGMBth.h"
1013#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1014#undef BTH_PGMPOOLKIND_PT_FOR_PT
1015#undef PGM_BTH_NAME
1016#undef PGM_BTH_NAME_RC_STR
1017#undef PGM_BTH_NAME_R0_STR
1018#undef PGM_GST_TYPE
1019#undef PGM_GST_NAME
1020#undef PGM_GST_NAME_RC_STR
1021#undef PGM_GST_NAME_R0_STR
1022
1023#ifdef VBOX_WITH_64_BITS_GUESTS
1024/* Guest - AMD64 mode */
1025# define PGM_GST_TYPE PGM_TYPE_AMD64
1026# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1027# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1028# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1029# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1030# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1031# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1032# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1033# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1034# include "PGMGstDefs.h"
1035# include "PGMBth.h"
1036# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1037# undef BTH_PGMPOOLKIND_PT_FOR_PT
1038# undef PGM_BTH_NAME
1039# undef PGM_BTH_NAME_RC_STR
1040# undef PGM_BTH_NAME_R0_STR
1041# undef PGM_GST_TYPE
1042# undef PGM_GST_NAME
1043# undef PGM_GST_NAME_RC_STR
1044# undef PGM_GST_NAME_R0_STR
1045#endif /* VBOX_WITH_64_BITS_GUESTS */
1046
1047#undef PGM_SHW_TYPE
1048#undef PGM_SHW_NAME
1049#undef PGM_SHW_NAME_RC_STR
1050#undef PGM_SHW_NAME_R0_STR
1051
1052
1053/*
1054 * Shadow - EPT
1055 */
1056#define PGM_SHW_TYPE PGM_TYPE_EPT
1057#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1058#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1059#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1060#include "PGMShw.h"
1061
1062/* Guest - real mode */
1063#define PGM_GST_TYPE PGM_TYPE_REAL
1064#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1065#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1066#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1067#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1068#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1069#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1070#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1071#include "PGMGstDefs.h"
1072#include "PGMBth.h"
1073#undef BTH_PGMPOOLKIND_PT_FOR_PT
1074#undef PGM_BTH_NAME
1075#undef PGM_BTH_NAME_RC_STR
1076#undef PGM_BTH_NAME_R0_STR
1077#undef PGM_GST_TYPE
1078#undef PGM_GST_NAME
1079#undef PGM_GST_NAME_RC_STR
1080#undef PGM_GST_NAME_R0_STR
1081
1082/* Guest - protected mode */
1083#define PGM_GST_TYPE PGM_TYPE_PROT
1084#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1085#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1086#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1087#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1088#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1089#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1090#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1091#include "PGMGstDefs.h"
1092#include "PGMBth.h"
1093#undef BTH_PGMPOOLKIND_PT_FOR_PT
1094#undef PGM_BTH_NAME
1095#undef PGM_BTH_NAME_RC_STR
1096#undef PGM_BTH_NAME_R0_STR
1097#undef PGM_GST_TYPE
1098#undef PGM_GST_NAME
1099#undef PGM_GST_NAME_RC_STR
1100#undef PGM_GST_NAME_R0_STR
1101
1102/* Guest - 32-bit mode */
1103#define PGM_GST_TYPE PGM_TYPE_32BIT
1104#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1105#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1106#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1107#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1108#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1109#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1110#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1111#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1112#include "PGMGstDefs.h"
1113#include "PGMBth.h"
1114#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1115#undef BTH_PGMPOOLKIND_PT_FOR_PT
1116#undef PGM_BTH_NAME
1117#undef PGM_BTH_NAME_RC_STR
1118#undef PGM_BTH_NAME_R0_STR
1119#undef PGM_GST_TYPE
1120#undef PGM_GST_NAME
1121#undef PGM_GST_NAME_RC_STR
1122#undef PGM_GST_NAME_R0_STR
1123
1124/* Guest - PAE mode */
1125#define PGM_GST_TYPE PGM_TYPE_PAE
1126#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1127#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1128#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1129#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1130#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1131#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1132#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1133#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1134#include "PGMGstDefs.h"
1135#include "PGMBth.h"
1136#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1137#undef BTH_PGMPOOLKIND_PT_FOR_PT
1138#undef PGM_BTH_NAME
1139#undef PGM_BTH_NAME_RC_STR
1140#undef PGM_BTH_NAME_R0_STR
1141#undef PGM_GST_TYPE
1142#undef PGM_GST_NAME
1143#undef PGM_GST_NAME_RC_STR
1144#undef PGM_GST_NAME_R0_STR
1145
1146#ifdef VBOX_WITH_64_BITS_GUESTS
1147/* Guest - AMD64 mode */
1148# define PGM_GST_TYPE PGM_TYPE_AMD64
1149# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1150# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1151# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1152# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1153# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1154# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1155# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1156# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1157# include "PGMGstDefs.h"
1158# include "PGMBth.h"
1159# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1160# undef BTH_PGMPOOLKIND_PT_FOR_PT
1161# undef PGM_BTH_NAME
1162# undef PGM_BTH_NAME_RC_STR
1163# undef PGM_BTH_NAME_R0_STR
1164# undef PGM_GST_TYPE
1165# undef PGM_GST_NAME
1166# undef PGM_GST_NAME_RC_STR
1167# undef PGM_GST_NAME_R0_STR
1168#endif /* VBOX_WITH_64_BITS_GUESTS */
1169
1170#undef PGM_SHW_TYPE
1171#undef PGM_SHW_NAME
1172#undef PGM_SHW_NAME_RC_STR
1173#undef PGM_SHW_NAME_R0_STR
1174
1175
1176
1177/**
1178 * Initiates the paging of VM.
1179 *
1180 * @returns VBox status code.
1181 * @param pVM Pointer to VM structure.
1182 */
1183VMMR3DECL(int) PGMR3Init(PVM pVM)
1184{
1185 LogFlow(("PGMR3Init:\n"));
1186 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1187 int rc;
1188
1189 /*
1190 * Assert alignment and sizes.
1191 */
1192 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1193 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1194
1195 /*
1196 * Init the structure.
1197 */
1198 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1199 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1200
1201 /* Init the per-CPU part. */
1202 for (unsigned i=0;i<pVM->cCPUs;i++)
1203 {
1204 PVMCPU pVCpu = &pVM->aCpus[i];
1205 PPGMCPU pPGM = &pVCpu->pgm.s;
1206
1207 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1208 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1209 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1210
1211 pPGM->enmShadowMode = PGMMODE_INVALID;
1212 pPGM->enmGuestMode = PGMMODE_INVALID;
1213
1214 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1215
1216 pPGM->pGstPaePdptR3 = NULL;
1217#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1218 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1219#endif
1220 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1221 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1222 {
1223 pPGM->apGstPaePDsR3[i] = NULL;
1224#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1225 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1226#endif
1227 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1228 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1229 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1230 }
1231
1232 pPGM->fA20Enabled = true;
1233 }
1234
1235 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1236 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1237 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1238
1239 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1240#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1241 true
1242#else
1243 false
1244#endif
1245 );
1246 AssertLogRelRCReturn(rc, rc);
1247
1248#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1249 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1250#else
1251 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1252#endif
1253 AssertLogRelRCReturn(rc, rc);
1254 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1255 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1256
1257 /*
1258 * Get the configured RAM size - to estimate saved state size.
1259 */
1260 uint64_t cbRam;
1261 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1262 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1263 cbRam = 0;
1264 else if (RT_SUCCESS(rc))
1265 {
1266 if (cbRam < PAGE_SIZE)
1267 cbRam = 0;
1268 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1269 }
1270 else
1271 {
1272 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1273 return rc;
1274 }
1275
1276 /*
1277 * Register callbacks, string formatters and the saved state data unit.
1278 */
1279#ifdef VBOX_STRICT
1280 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1281#endif
1282 PGMRegisterStringFormatTypes();
1283
1284 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1285 NULL, pgmR3Save, NULL,
1286 NULL, pgmR3Load, NULL);
1287 if (RT_FAILURE(rc))
1288 return rc;
1289
1290 /*
1291 * Initialize the PGM critical section and flush the phys TLBs
1292 */
1293 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1294 AssertRCReturn(rc, rc);
1295
1296 PGMR3PhysChunkInvalidateTLB(pVM);
1297 PGMPhysInvalidatePageR3MapTLB(pVM);
1298 PGMPhysInvalidatePageR0MapTLB(pVM);
1299 PGMPhysInvalidatePageGCMapTLB(pVM);
1300
1301 /*
1302 * For the time being we sport a full set of handy pages in addition to the base
1303 * memory to simplify things.
1304 */
1305 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1306 AssertRCReturn(rc, rc);
1307
1308 /*
1309 * Trees
1310 */
1311 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1312 if (RT_SUCCESS(rc))
1313 {
1314 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1315 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1316
1317 /*
1318 * Alocate the zero page.
1319 */
1320 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1321 }
1322 if (RT_SUCCESS(rc))
1323 {
1324 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1325 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1326 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1327 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1328
1329 /*
1330 * Init the paging.
1331 */
1332 rc = pgmR3InitPaging(pVM);
1333 }
1334 if (RT_SUCCESS(rc))
1335 {
1336 /*
1337 * Init the page pool.
1338 */
1339 rc = pgmR3PoolInit(pVM);
1340 }
1341 if (RT_SUCCESS(rc))
1342 {
1343 for (unsigned i=0;i<pVM->cCPUs;i++)
1344 {
1345 PVMCPU pVCpu = &pVM->aCpus[i];
1346
1347 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1348 if (RT_FAILURE(rc))
1349 break;
1350 }
1351 }
1352
1353 if (RT_SUCCESS(rc))
1354 {
1355 /*
1356 * Info & statistics
1357 */
1358 DBGFR3InfoRegisterInternal(pVM, "mode",
1359 "Shows the current paging mode. "
1360 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1361 pgmR3InfoMode);
1362 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1363 "Dumps all the entries in the top level paging table. No arguments.",
1364 pgmR3InfoCr3);
1365 DBGFR3InfoRegisterInternal(pVM, "phys",
1366 "Dumps all the physical address ranges. No arguments.",
1367 pgmR3PhysInfo);
1368 DBGFR3InfoRegisterInternal(pVM, "handlers",
1369 "Dumps physical, virtual and hyper virtual handlers. "
1370 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1371 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1372 pgmR3InfoHandlers);
1373 DBGFR3InfoRegisterInternal(pVM, "mappings",
1374 "Dumps guest mappings.",
1375 pgmR3MapInfo);
1376
1377 pgmR3InitStats(pVM);
1378
1379#ifdef VBOX_WITH_DEBUGGER
1380 /*
1381 * Debugger commands.
1382 */
1383 static bool s_fRegisteredCmds = false;
1384 if (!s_fRegisteredCmds)
1385 {
1386 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1387 if (RT_SUCCESS(rc))
1388 s_fRegisteredCmds = true;
1389 }
1390#endif
1391 return VINF_SUCCESS;
1392 }
1393
1394 /* Almost no cleanup necessary, MM frees all memory. */
1395 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1396
1397 return rc;
1398}
1399
1400
1401/**
1402 * Initializes the per-VCPU PGM.
1403 *
1404 * @returns VBox status code.
1405 * @param pVM The VM to operate on.
1406 */
1407VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1408{
1409 LogFlow(("PGMR3InitCPU\n"));
1410 return VINF_SUCCESS;
1411}
1412
1413
1414/**
1415 * Init paging.
1416 *
1417 * Since we need to check what mode the host is operating in before we can choose
1418 * the right paging functions for the host we have to delay this until R0 has
1419 * been initialized.
1420 *
1421 * @returns VBox status code.
1422 * @param pVM VM handle.
1423 */
1424static int pgmR3InitPaging(PVM pVM)
1425{
1426 /*
1427 * Force a recalculation of modes and switcher so everyone gets notified.
1428 */
1429 for (unsigned i=0;i<pVM->cCPUs;i++)
1430 {
1431 PVMCPU pVCpu = &pVM->aCpus[i];
1432
1433 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1434 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1435 }
1436
1437 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1438
1439 /*
1440 * Allocate static mapping space for whatever the cr3 register
1441 * points to and in the case of PAE mode to the 4 PDs.
1442 */
1443 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1444 if (RT_FAILURE(rc))
1445 {
1446 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1447 return rc;
1448 }
1449 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1450
1451 /*
1452 * Allocate pages for the three possible intermediate contexts
1453 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1454 * for the sake of simplicity. The AMD64 uses the PAE for the
1455 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1456 *
1457 * We assume that two page tables will be enought for the core code
1458 * mappings (HC virtual and identity).
1459 */
1460 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1470 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1471 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1472
1473 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1474 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1475 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1476 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1477 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1478 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1479
1480 /*
1481 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1482 */
1483 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1484 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1485 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1486
1487 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1488 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1489
1490 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1491 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1492 {
1493 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1494 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1495 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1496 }
1497
1498 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1499 {
1500 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1501 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1502 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1503 }
1504
1505 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1506 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1507 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1508 | HCPhysInterPaePDPT64;
1509
1510 /*
1511 * Initialize paging workers and mode from current host mode
1512 * and the guest running in real mode.
1513 */
1514 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1515 switch (pVM->pgm.s.enmHostMode)
1516 {
1517 case SUPPAGINGMODE_32_BIT:
1518 case SUPPAGINGMODE_32_BIT_GLOBAL:
1519 case SUPPAGINGMODE_PAE:
1520 case SUPPAGINGMODE_PAE_GLOBAL:
1521 case SUPPAGINGMODE_PAE_NX:
1522 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1523 break;
1524
1525 case SUPPAGINGMODE_AMD64:
1526 case SUPPAGINGMODE_AMD64_GLOBAL:
1527 case SUPPAGINGMODE_AMD64_NX:
1528 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1529#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1530 if (ARCH_BITS != 64)
1531 {
1532 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1533 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1534 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1535 }
1536#endif
1537 break;
1538 default:
1539 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1540 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1541 }
1542 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1543 if (RT_SUCCESS(rc))
1544 {
1545 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1546#if HC_ARCH_BITS == 64
1547 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1548 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1549 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1550 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1551 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1552 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1553 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1554#endif
1555
1556 return VINF_SUCCESS;
1557 }
1558
1559 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1560 return rc;
1561}
1562
1563
1564/**
1565 * Init statistics
1566 */
1567static void pgmR3InitStats(PVM pVM)
1568{
1569 PPGM pPGM = &pVM->pgm.s;
1570 int rc;
1571
1572 /* Common - misc variables */
1573 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1574 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1575 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1576 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1577 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1578 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1579 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1580 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1581
1582#ifdef VBOX_WITH_STATISTICS
1583
1584# define PGM_REG_COUNTER(a, b, c) \
1585 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1586 AssertRC(rc);
1587
1588# define PGM_REG_COUNTER_BYTES(a, b, c) \
1589 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1590 AssertRC(rc);
1591
1592# define PGM_REG_PROFILE(a, b, c) \
1593 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1594 AssertRC(rc);
1595
1596 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1597 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1598 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1599 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1600 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1601 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1602 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1603 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1604 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1605 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1606
1607 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1608 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1609 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1610 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1611 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1612 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1613 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1614 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1615
1616 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1617 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1618 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1619 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1620
1621 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1622 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1623 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1624 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1625
1626 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1627 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1628/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1629 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1630 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1631/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1632
1633 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1634 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1635 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1636 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1637 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1638 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1639 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1640 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1641
1642 /* GC only: */
1643 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1644 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1645 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1646 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1647
1648 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1649 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1650 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1651 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1652 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1653 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1654 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1655 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1656
1657# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1658 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1659 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1660 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1661 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1662 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1663 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1664# endif
1665
1666# undef PGM_REG_COUNTER
1667# undef PGM_REG_PROFILE
1668#endif
1669
1670 /*
1671 * Note! The layout below matches the member layout exactly!
1672 */
1673
1674 /*
1675 * Common - stats
1676 */
1677 for (unsigned i=0;i<pVM->cCPUs;i++)
1678 {
1679 PVMCPU pVCpu = &pVM->aCpus[i];
1680 PPGMCPU pPGM = &pVCpu->pgm.s;
1681
1682#define PGM_REG_COUNTER(a, b, c) \
1683 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1684 AssertRC(rc);
1685#define PGM_REG_PROFILE(a, b, c) \
1686 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1687 AssertRC(rc);
1688
1689 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1690
1691#ifdef VBOX_WITH_STATISTICS
1692 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1693 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1694 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1695 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1696 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1697 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1698
1699 /* R0 only: */
1700 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1701 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1702 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1703 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1704 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1705 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1706 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1707 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1708 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1709 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1710 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1711 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1712 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1713 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1714 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1715 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1716 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1717 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1718 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1719 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1720 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1721 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1722 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1723 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1724 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1725 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1726 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1727 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1728 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1729 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1730 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1731 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1732 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1733 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1734 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1735 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1736
1737 /* RZ only: */
1738 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1739 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1740 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1741 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1742 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1743 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1744 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1745 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1746 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1747 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1748 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1749 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1750 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1751 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1752 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1753 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1754 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1755 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1756 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1757 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1758 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1759 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1760 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1761 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1762 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1763 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1764 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1765 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1766 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1767 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1768 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1769 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1770 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1771 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1772 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1773 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1774 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1775 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1776 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1777 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1778 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1779 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1780 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1781 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1782 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1783 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1784
1785 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1786 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1787 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1788 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1789 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1790
1791 /* HC only: */
1792
1793 /* RZ & R3: */
1794 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1795 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1796 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1797 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1798 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1799 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1800 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1801 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1802 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1803 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1804 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1805 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1806 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1807 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1808 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1809 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1810 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1811 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1812 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1813 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1814 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1815 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1816 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageStale, "/PGM/CPU%d/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1817 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1818 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1819 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1820 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1821 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1822 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1823 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1824 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1825 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1826 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1827 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1828 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1829 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1830 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1831 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1832 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1833 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1834 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1835 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1836 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1837 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1838
1839 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1840 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1841 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1842 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1843 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1844 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1845 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1846 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1847 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1848 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1849 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1850 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1851 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1852 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1853 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1854 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1855 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1856 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1857 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1858 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1859 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1860 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1861 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1862 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1863 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1864 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1865 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1866 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1867 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1868 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1869 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1870 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1871 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1872 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1873 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1874 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1875 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1876 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1877 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1878 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1879 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1880 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1881 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1882#endif /* VBOX_WITH_STATISTICS */
1883
1884#undef PGM_REG_PROFILE
1885#undef PGM_REG_COUNTER
1886
1887 }
1888}
1889
1890
1891/**
1892 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1893 *
1894 * The dynamic mapping area will also be allocated and initialized at this
1895 * time. We could allocate it during PGMR3Init of course, but the mapping
1896 * wouldn't be allocated at that time preventing us from setting up the
1897 * page table entries with the dummy page.
1898 *
1899 * @returns VBox status code.
1900 * @param pVM VM handle.
1901 */
1902VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1903{
1904 RTGCPTR GCPtr;
1905 int rc;
1906
1907 /*
1908 * Reserve space for the dynamic mappings.
1909 */
1910 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1911 if (RT_SUCCESS(rc))
1912 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1913
1914 if ( RT_SUCCESS(rc)
1915 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1916 {
1917 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1918 if (RT_SUCCESS(rc))
1919 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1920 }
1921 if (RT_SUCCESS(rc))
1922 {
1923 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1924 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1925 }
1926 return rc;
1927}
1928
1929
1930/**
1931 * Ring-3 init finalizing.
1932 *
1933 * @returns VBox status code.
1934 * @param pVM The VM handle.
1935 */
1936VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1937{
1938 int rc;
1939
1940 /*
1941 * Reserve space for the dynamic mappings.
1942 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1943 */
1944 /* get the pointer to the page table entries. */
1945 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1946 AssertRelease(pMapping);
1947 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1948 const unsigned iPT = off >> X86_PD_SHIFT;
1949 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1950 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1951 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1952
1953 /* init cache */
1954 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1955 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1956 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1957
1958 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1959 {
1960 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1961 AssertRCReturn(rc, rc);
1962 }
1963
1964 /*
1965 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1966 * Intel only goes up to 36 bits, so we stick to 36 as well.
1967 */
1968 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1969 uint32_t u32Dummy, u32Features;
1970 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1971
1972 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1973 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1974 else
1975 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1976
1977 /*
1978 * Allocate memory if we're supposed to do that.
1979 */
1980 if (pVM->pgm.s.fRamPreAlloc)
1981 rc = pgmR3PhysRamPreAllocate(pVM);
1982
1983 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1984 return rc;
1985}
1986
1987
1988/**
1989 * Applies relocations to data and code managed by this component.
1990 *
1991 * This function will be called at init and whenever the VMM need to relocate it
1992 * self inside the GC.
1993 *
1994 * @param pVM The VM.
1995 * @param offDelta Relocation delta relative to old location.
1996 */
1997VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1998{
1999 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2000
2001 /*
2002 * Paging stuff.
2003 */
2004 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2005
2006 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2007
2008 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2009 for (unsigned i=0;i<pVM->cCPUs;i++)
2010 {
2011 PVMCPU pVCpu = &pVM->aCpus[i];
2012
2013 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2014
2015 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2016 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2017 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2018 }
2019
2020 /*
2021 * Trees.
2022 */
2023 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2024
2025 /*
2026 * Ram ranges.
2027 */
2028 if (pVM->pgm.s.pRamRangesR3)
2029 {
2030 /* Update the pSelfRC pointers and relink them. */
2031 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2032 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2033 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2034 pgmR3PhysRelinkRamRanges(pVM);
2035 }
2036
2037 /*
2038 * Update the two page directories with all page table mappings.
2039 * (One or more of them have changed, that's why we're here.)
2040 */
2041 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2042 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2043 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2044
2045 /* Relocate GC addresses of Page Tables. */
2046 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2047 {
2048 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2049 {
2050 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2051 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2052 }
2053 }
2054
2055 /*
2056 * Dynamic page mapping area.
2057 */
2058 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2059 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2060 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2061
2062 /*
2063 * The Zero page.
2064 */
2065 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2066#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2067 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2068#else
2069 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2070#endif
2071
2072 /*
2073 * Physical and virtual handlers.
2074 */
2075 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2076 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2077 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2078
2079 /*
2080 * The page pool.
2081 */
2082 pgmR3PoolRelocate(pVM);
2083}
2084
2085
2086/**
2087 * Callback function for relocating a physical access handler.
2088 *
2089 * @returns 0 (continue enum)
2090 * @param pNode Pointer to a PGMPHYSHANDLER node.
2091 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2092 * not certain the delta will fit in a void pointer for all possible configs.
2093 */
2094static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2095{
2096 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2097 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2098 if (pHandler->pfnHandlerRC)
2099 pHandler->pfnHandlerRC += offDelta;
2100 if (pHandler->pvUserRC >= 0x10000)
2101 pHandler->pvUserRC += offDelta;
2102 return 0;
2103}
2104
2105
2106/**
2107 * Callback function for relocating a virtual access handler.
2108 *
2109 * @returns 0 (continue enum)
2110 * @param pNode Pointer to a PGMVIRTHANDLER node.
2111 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2112 * not certain the delta will fit in a void pointer for all possible configs.
2113 */
2114static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2115{
2116 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2117 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2118 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2119 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2120 Assert(pHandler->pfnHandlerRC);
2121 pHandler->pfnHandlerRC += offDelta;
2122 return 0;
2123}
2124
2125
2126/**
2127 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2128 *
2129 * @returns 0 (continue enum)
2130 * @param pNode Pointer to a PGMVIRTHANDLER node.
2131 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2132 * not certain the delta will fit in a void pointer for all possible configs.
2133 */
2134static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2135{
2136 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2137 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2138 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2139 Assert(pHandler->pfnHandlerRC);
2140 pHandler->pfnHandlerRC += offDelta;
2141 return 0;
2142}
2143
2144
2145/**
2146 * The VM is being reset.
2147 *
2148 * For the PGM component this means that any PD write monitors
2149 * needs to be removed.
2150 *
2151 * @param pVM VM handle.
2152 */
2153VMMR3DECL(void) PGMR3Reset(PVM pVM)
2154{
2155 int rc;
2156
2157 LogFlow(("PGMR3Reset:\n"));
2158 VM_ASSERT_EMT(pVM);
2159
2160 pgmLock(pVM);
2161
2162 /*
2163 * Unfix any fixed mappings and disable CR3 monitoring.
2164 */
2165 pVM->pgm.s.fMappingsFixed = false;
2166 pVM->pgm.s.GCPtrMappingFixed = 0;
2167 pVM->pgm.s.cbMappingFixed = 0;
2168
2169 /* Exit the guest paging mode before the pgm pool gets reset.
2170 * Important to clean up the amd64 case.
2171 */
2172 for (unsigned i=0;i<pVM->cCPUs;i++)
2173 {
2174 PVMCPU pVCpu = &pVM->aCpus[i];
2175
2176 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2177 AssertRC(rc);
2178 }
2179
2180#ifdef DEBUG
2181 DBGFR3InfoLog(pVM, "mappings", NULL);
2182 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2183#endif
2184
2185 /*
2186 * Switch mode back to real mode. (before resetting the pgm pool!)
2187 */
2188 for (unsigned i=0;i<pVM->cCPUs;i++)
2189 {
2190 PVMCPU pVCpu = &pVM->aCpus[i];
2191
2192 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2193 AssertRC(rc);
2194
2195 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2196 }
2197
2198 /*
2199 * Reset the shadow page pool.
2200 */
2201 pgmR3PoolReset(pVM);
2202
2203 for (unsigned i=0;i<pVM->cCPUs;i++)
2204 {
2205 PVMCPU pVCpu = &pVM->aCpus[i];
2206
2207 /*
2208 * Re-init other members.
2209 */
2210 pVCpu->pgm.s.fA20Enabled = true;
2211
2212 /*
2213 * Clear the FFs PGM owns.
2214 */
2215 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2216 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2217 }
2218
2219 /*
2220 * Reset (zero) RAM pages.
2221 */
2222 rc = pgmR3PhysRamReset(pVM);
2223 if (RT_SUCCESS(rc))
2224 {
2225 /*
2226 * Reset (zero) shadow ROM pages.
2227 */
2228 rc = pgmR3PhysRomReset(pVM);
2229 }
2230
2231 pgmUnlock(pVM);
2232 //return rc;
2233 AssertReleaseRC(rc);
2234}
2235
2236
2237#ifdef VBOX_STRICT
2238/**
2239 * VM state change callback for clearing fNoMorePhysWrites after
2240 * a snapshot has been created.
2241 */
2242static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2243{
2244 if (enmState == VMSTATE_RUNNING)
2245 pVM->pgm.s.fNoMorePhysWrites = false;
2246}
2247#endif
2248
2249
2250/**
2251 * Terminates the PGM.
2252 *
2253 * @returns VBox status code.
2254 * @param pVM Pointer to VM structure.
2255 */
2256VMMR3DECL(int) PGMR3Term(PVM pVM)
2257{
2258 PGMDeregisterStringFormatTypes();
2259 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2260}
2261
2262
2263/**
2264 * Terminates the per-VCPU PGM.
2265 *
2266 * Termination means cleaning up and freeing all resources,
2267 * the VM it self is at this point powered off or suspended.
2268 *
2269 * @returns VBox status code.
2270 * @param pVM The VM to operate on.
2271 */
2272VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2273{
2274 return 0;
2275}
2276
2277
2278/**
2279 * Find the ROM tracking structure for the given page.
2280 *
2281 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2282 * that it's a ROM page.
2283 * @param pVM The VM handle.
2284 * @param GCPhys The address of the ROM page.
2285 */
2286static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2287{
2288 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2289 pRomRange;
2290 pRomRange = pRomRange->CTX_SUFF(pNext))
2291 {
2292 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2293 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2294 return &pRomRange->aPages[off >> PAGE_SHIFT];
2295 }
2296 return NULL;
2297}
2298
2299
2300/**
2301 * Save zero indicator + bits for the specified page.
2302 *
2303 * @returns VBox status code, errors are logged/asserted before returning.
2304 * @param pVM The VM handle.
2305 * @param pSSH The saved state handle.
2306 * @param pPage The page to save.
2307 * @param GCPhys The address of the page.
2308 * @param pRam The ram range (for error logging).
2309 */
2310static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2311{
2312 int rc;
2313 if (PGM_PAGE_IS_ZERO(pPage))
2314 rc = SSMR3PutU8(pSSM, 0);
2315 else
2316 {
2317 void const *pvPage;
2318 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2319 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2320
2321 SSMR3PutU8(pSSM, 1);
2322 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2323 }
2324 return rc;
2325}
2326
2327
2328/**
2329 * Save a shadowed ROM page.
2330 *
2331 * Format: Type, protection, and two pages with zero indicators.
2332 *
2333 * @returns VBox status code, errors are logged/asserted before returning.
2334 * @param pVM The VM handle.
2335 * @param pSSH The saved state handle.
2336 * @param pPage The page to save.
2337 * @param GCPhys The address of the page.
2338 * @param pRam The ram range (for error logging).
2339 */
2340static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2341{
2342 /* Need to save both pages and the current state. */
2343 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2344 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2345
2346 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2347 SSMR3PutU8(pSSM, pRomPage->enmProt);
2348
2349 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2350 if (RT_SUCCESS(rc))
2351 {
2352 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2353 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2354 }
2355 return rc;
2356}
2357
2358/** PGM fields to save/load. */
2359static const SSMFIELD s_aPGMFields[] =
2360{
2361 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2362 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2363 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2364 SSMFIELD_ENTRY_TERM()
2365};
2366
2367static const SSMFIELD s_aPGMCpuFields[] =
2368{
2369 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2370 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2371 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2372 SSMFIELD_ENTRY_TERM()
2373};
2374
2375/* For loading old saved states. (pre-smp) */
2376typedef struct
2377{
2378 /** If set no conflict checks are required. (boolean) */
2379 bool fMappingsFixed;
2380 /** Size of fixed mapping */
2381 uint32_t cbMappingFixed;
2382 /** Base address (GC) of fixed mapping */
2383 RTGCPTR GCPtrMappingFixed;
2384 /** A20 gate mask.
2385 * Our current approach to A20 emulation is to let REM do it and don't bother
2386 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2387 * But whould need arrise, we'll subject physical addresses to this mask. */
2388 RTGCPHYS GCPhysA20Mask;
2389 /** A20 gate state - boolean! */
2390 bool fA20Enabled;
2391 /** The guest paging mode. */
2392 PGMMODE enmGuestMode;
2393} PGMOLD;
2394
2395static const SSMFIELD s_aPGMFields_Old[] =
2396{
2397 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2398 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2399 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2400 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2401 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2402 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2403 SSMFIELD_ENTRY_TERM()
2404};
2405
2406
2407/**
2408 * Execute state save operation.
2409 *
2410 * @returns VBox status code.
2411 * @param pVM VM Handle.
2412 * @param pSSM SSM operation handle.
2413 */
2414static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2415{
2416 int rc;
2417 unsigned i;
2418 PPGM pPGM = &pVM->pgm.s;
2419
2420 /*
2421 * Lock PGM and set the no-more-writes indicator.
2422 */
2423 pgmLock(pVM);
2424 pVM->pgm.s.fNoMorePhysWrites = true;
2425
2426 /*
2427 * Save basic data (required / unaffected by relocation).
2428 */
2429 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2430
2431 for (i=0;i<pVM->cCPUs;i++)
2432 {
2433 PVMCPU pVCpu = &pVM->aCpus[i];
2434
2435 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2436 }
2437
2438 /*
2439 * The guest mappings.
2440 */
2441 i = 0;
2442 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2443 {
2444 SSMR3PutU32( pSSM, i);
2445 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2446 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2447 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2448 }
2449 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2450
2451 /*
2452 * Ram ranges and the memory they describe.
2453 */
2454 i = 0;
2455 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2456 {
2457 /*
2458 * Save the ram range details.
2459 */
2460 SSMR3PutU32(pSSM, i);
2461 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2462 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2463 SSMR3PutGCPhys(pSSM, pRam->cb);
2464 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2465 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2466
2467 /*
2468 * Iterate the pages, only two special case.
2469 */
2470 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2471 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2472 {
2473 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2474 PPGMPAGE pPage = &pRam->aPages[iPage];
2475 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2476
2477 if (uType == PGMPAGETYPE_ROM_SHADOW)
2478 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2479 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2480 {
2481 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2482 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2483 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2484 }
2485 else
2486 {
2487 SSMR3PutU8(pSSM, uType);
2488 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2489 }
2490 if (RT_FAILURE(rc))
2491 break;
2492 }
2493 if (RT_FAILURE(rc))
2494 break;
2495 }
2496
2497 pgmUnlock(pVM);
2498 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2499}
2500
2501
2502/**
2503 * Load an ignored page.
2504 *
2505 * @returns VBox status code.
2506 * @param pSSM The saved state handle.
2507 */
2508static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2509{
2510 uint8_t abPage[PAGE_SIZE];
2511 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2512}
2513
2514
2515/**
2516 * Loads a page without any bits in the saved state, i.e. making sure it's
2517 * really zero.
2518 *
2519 * @returns VBox status code.
2520 * @param pVM The VM handle.
2521 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2522 * state).
2523 * @param pPage The guest page tracking structure.
2524 * @param GCPhys The page address.
2525 * @param pRam The ram range (logging).
2526 */
2527static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2528{
2529 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2530 && uType != PGMPAGETYPE_INVALID)
2531 return VERR_SSM_UNEXPECTED_DATA;
2532
2533 /* I think this should be sufficient. */
2534 if (!PGM_PAGE_IS_ZERO(pPage))
2535 return VERR_SSM_UNEXPECTED_DATA;
2536
2537 NOREF(pVM);
2538 NOREF(GCPhys);
2539 NOREF(pRam);
2540 return VINF_SUCCESS;
2541}
2542
2543
2544/**
2545 * Loads a page from the saved state.
2546 *
2547 * @returns VBox status code.
2548 * @param pVM The VM handle.
2549 * @param pSSM The SSM handle.
2550 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2551 * state).
2552 * @param pPage The guest page tracking structure.
2553 * @param GCPhys The page address.
2554 * @param pRam The ram range (logging).
2555 */
2556static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2557{
2558 int rc;
2559
2560 /*
2561 * Match up the type, dealing with MMIO2 aliases (dropped).
2562 */
2563 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2564 || uType == PGMPAGETYPE_INVALID,
2565 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2566 VERR_SSM_UNEXPECTED_DATA);
2567
2568 /*
2569 * Load the page.
2570 */
2571 void *pvPage;
2572 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2573 if (RT_SUCCESS(rc))
2574 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2575
2576 return rc;
2577}
2578
2579
2580/**
2581 * Loads a page (counter part to pgmR3SavePage).
2582 *
2583 * @returns VBox status code, fully bitched errors.
2584 * @param pVM The VM handle.
2585 * @param pSSM The SSM handle.
2586 * @param uType The page type.
2587 * @param pPage The page.
2588 * @param GCPhys The page address.
2589 * @param pRam The RAM range (for error messages).
2590 */
2591static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2592{
2593 uint8_t uState;
2594 int rc = SSMR3GetU8(pSSM, &uState);
2595 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2596 if (uState == 0 /* zero */)
2597 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2598 else if (uState == 1)
2599 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2600 else
2601 rc = VERR_INTERNAL_ERROR;
2602 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2603 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2604 rc);
2605 return VINF_SUCCESS;
2606}
2607
2608
2609/**
2610 * Loads a shadowed ROM page.
2611 *
2612 * @returns VBox status code, errors are fully bitched.
2613 * @param pVM The VM handle.
2614 * @param pSSM The saved state handle.
2615 * @param pPage The page.
2616 * @param GCPhys The page address.
2617 * @param pRam The RAM range (for error messages).
2618 */
2619static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2620{
2621 /*
2622 * Load and set the protection first, then load the two pages, the first
2623 * one is the active the other is the passive.
2624 */
2625 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2626 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2627
2628 uint8_t uProt;
2629 int rc = SSMR3GetU8(pSSM, &uProt);
2630 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2631 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2632 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2633 && enmProt < PGMROMPROT_END,
2634 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2635 VERR_SSM_UNEXPECTED_DATA);
2636
2637 if (pRomPage->enmProt != enmProt)
2638 {
2639 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2640 AssertLogRelRCReturn(rc, rc);
2641 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2642 }
2643
2644 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2645 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2646 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2647 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2648
2649 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2650 if (RT_SUCCESS(rc))
2651 {
2652 *pPageActive = *pPage;
2653 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2654 }
2655 return rc;
2656}
2657
2658
2659/**
2660 * Worker for pgmR3Load.
2661 *
2662 * @returns VBox status code.
2663 *
2664 * @param pVM The VM handle.
2665 * @param pSSM The SSM handle.
2666 * @param u32Version The saved state version.
2667 */
2668static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2669{
2670 PPGM pPGM = &pVM->pgm.s;
2671 int rc;
2672 uint32_t u32Sep;
2673
2674 /*
2675 * Load basic data (required / unaffected by relocation).
2676 */
2677 if (u32Version >= PGM_SAVED_STATE_VERSION)
2678 {
2679 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2680 AssertLogRelRCReturn(rc, rc);
2681
2682 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2683 {
2684 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2685 AssertLogRelRCReturn(rc, rc);
2686 }
2687 }
2688 else if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2689 {
2690 AssertRelease(pVM->cCPUs == 1);
2691
2692 PGMOLD pgmOld;
2693 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2694 AssertLogRelRCReturn(rc, rc);
2695
2696 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2697 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2698 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2699
2700 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2701 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2702 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2703 }
2704 else
2705 {
2706 AssertRelease(pVM->cCPUs == 1);
2707
2708 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2709 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2710 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2711
2712 uint32_t cbRamSizeIgnored;
2713 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2714 if (RT_FAILURE(rc))
2715 return rc;
2716 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2717
2718 uint32_t u32 = 0;
2719 SSMR3GetUInt(pSSM, &u32);
2720 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2721 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2722 RTUINT uGuestMode;
2723 SSMR3GetUInt(pSSM, &uGuestMode);
2724 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2725
2726 /* check separator. */
2727 SSMR3GetU32(pSSM, &u32Sep);
2728 if (RT_FAILURE(rc))
2729 return rc;
2730 if (u32Sep != (uint32_t)~0)
2731 {
2732 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2733 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2734 }
2735 }
2736
2737 /*
2738 * The guest mappings.
2739 */
2740 uint32_t i = 0;
2741 for (;; i++)
2742 {
2743 /* Check the seqence number / separator. */
2744 rc = SSMR3GetU32(pSSM, &u32Sep);
2745 if (RT_FAILURE(rc))
2746 return rc;
2747 if (u32Sep == ~0U)
2748 break;
2749 if (u32Sep != i)
2750 {
2751 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2752 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2753 }
2754
2755 /* get the mapping details. */
2756 char szDesc[256];
2757 szDesc[0] = '\0';
2758 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2759 if (RT_FAILURE(rc))
2760 return rc;
2761 RTGCPTR GCPtr;
2762 SSMR3GetGCPtr(pSSM, &GCPtr);
2763 RTGCPTR cPTs;
2764 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2765 if (RT_FAILURE(rc))
2766 return rc;
2767
2768 /* find matching range. */
2769 PPGMMAPPING pMapping;
2770 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2771 if ( pMapping->cPTs == cPTs
2772 && !strcmp(pMapping->pszDesc, szDesc))
2773 break;
2774 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2775 cPTs, szDesc, GCPtr),
2776 VERR_SSM_LOAD_CONFIG_MISMATCH);
2777
2778 /* relocate it. */
2779 if (pMapping->GCPtr != GCPtr)
2780 {
2781 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2782 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2783 }
2784 else
2785 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2786 }
2787
2788 /*
2789 * Ram range flags and bits.
2790 */
2791 i = 0;
2792 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2793 {
2794 /* Check the seqence number / separator. */
2795 rc = SSMR3GetU32(pSSM, &u32Sep);
2796 if (RT_FAILURE(rc))
2797 return rc;
2798 if (u32Sep == ~0U)
2799 break;
2800 if (u32Sep != i)
2801 {
2802 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2803 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2804 }
2805 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2806
2807 /* Get the range details. */
2808 RTGCPHYS GCPhys;
2809 SSMR3GetGCPhys(pSSM, &GCPhys);
2810 RTGCPHYS GCPhysLast;
2811 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2812 RTGCPHYS cb;
2813 SSMR3GetGCPhys(pSSM, &cb);
2814 uint8_t fHaveBits;
2815 rc = SSMR3GetU8(pSSM, &fHaveBits);
2816 if (RT_FAILURE(rc))
2817 return rc;
2818 if (fHaveBits & ~1)
2819 {
2820 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2821 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2822 }
2823 size_t cchDesc = 0;
2824 char szDesc[256];
2825 szDesc[0] = '\0';
2826 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2827 {
2828 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2829 if (RT_FAILURE(rc))
2830 return rc;
2831 /* Since we've modified the description strings in r45878, only compare
2832 them if the saved state is more recent. */
2833 if (u32Version != PGM_SAVED_STATE_VERSION_RR_DESC)
2834 cchDesc = strlen(szDesc);
2835 }
2836
2837 /*
2838 * Match it up with the current range.
2839 *
2840 * Note there is a hack for dealing with the high BIOS mapping
2841 * in the old saved state format, this means we might not have
2842 * a 1:1 match on success.
2843 */
2844 if ( ( GCPhys != pRam->GCPhys
2845 || GCPhysLast != pRam->GCPhysLast
2846 || cb != pRam->cb
2847 || ( cchDesc
2848 && strcmp(szDesc, pRam->pszDesc)) )
2849 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2850 && ( u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2851 || GCPhys != UINT32_C(0xfff80000)
2852 || GCPhysLast != UINT32_C(0xffffffff)
2853 || pRam->GCPhysLast != GCPhysLast
2854 || pRam->GCPhys < GCPhys
2855 || !fHaveBits)
2856 )
2857 {
2858 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2859 "State : %RGp-%RGp %RGp bytes %s %s\n",
2860 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2861 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2862 /*
2863 * If we're loading a state for debugging purpose, don't make a fuss if
2864 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2865 */
2866 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2867 || GCPhys < 8 * _1M)
2868 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2869
2870 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2871 continue;
2872 }
2873
2874 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2875 if (u32Version >= PGM_SAVED_STATE_VERSION_RR_DESC)
2876 {
2877 /*
2878 * Load the pages one by one.
2879 */
2880 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2881 {
2882 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2883 PPGMPAGE pPage = &pRam->aPages[iPage];
2884 uint8_t uType;
2885 rc = SSMR3GetU8(pSSM, &uType);
2886 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2887 if (uType == PGMPAGETYPE_ROM_SHADOW)
2888 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2889 else
2890 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2891 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2892 }
2893 }
2894 else
2895 {
2896 /*
2897 * Old format.
2898 */
2899 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2900
2901 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2902 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2903 uint32_t fFlags = 0;
2904 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2905 {
2906 uint16_t u16Flags;
2907 rc = SSMR3GetU16(pSSM, &u16Flags);
2908 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2909 fFlags |= u16Flags;
2910 }
2911
2912 /* Load the bits */
2913 if ( !fHaveBits
2914 && GCPhysLast < UINT32_C(0xe0000000))
2915 {
2916 /*
2917 * Dynamic chunks.
2918 */
2919 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2920 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2921 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2922 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2923
2924 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2925 {
2926 uint8_t fPresent;
2927 rc = SSMR3GetU8(pSSM, &fPresent);
2928 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2929 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2930 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2931 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2932
2933 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2934 {
2935 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2936 PPGMPAGE pPage = &pRam->aPages[iPage];
2937 if (fPresent)
2938 {
2939 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2940 rc = pgmR3LoadPageToDevNull(pSSM);
2941 else
2942 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2943 }
2944 else
2945 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2946 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2947 }
2948 }
2949 }
2950 else if (pRam->pvR3)
2951 {
2952 /*
2953 * MMIO2.
2954 */
2955 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2956 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2957 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2958 AssertLogRelMsgReturn(pRam->pvR3,
2959 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2960 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2961
2962 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2963 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2964 }
2965 else if (GCPhysLast < UINT32_C(0xfff80000))
2966 {
2967 /*
2968 * PCI MMIO, no pages saved.
2969 */
2970 }
2971 else
2972 {
2973 /*
2974 * Load the 0xfff80000..0xffffffff BIOS range.
2975 * It starts with X reserved pages that we have to skip over since
2976 * the RAMRANGE create by the new code won't include those.
2977 */
2978 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2979 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2980 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2981 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2982 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2983 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2984 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2985
2986 /* Skip wasted reserved pages before the ROM. */
2987 while (GCPhys < pRam->GCPhys)
2988 {
2989 rc = pgmR3LoadPageToDevNull(pSSM);
2990 GCPhys += PAGE_SIZE;
2991 }
2992
2993 /* Load the bios pages. */
2994 cPages = pRam->cb >> PAGE_SHIFT;
2995 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2996 {
2997 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2998 PPGMPAGE pPage = &pRam->aPages[iPage];
2999
3000 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
3001 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
3002 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3003 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
3004 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3005 }
3006 }
3007 }
3008 }
3009
3010 return rc;
3011}
3012
3013
3014/**
3015 * Execute state load operation.
3016 *
3017 * @returns VBox status code.
3018 * @param pVM VM Handle.
3019 * @param pSSM SSM operation handle.
3020 * @param u32Version Data layout version.
3021 */
3022static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
3023{
3024 int rc;
3025 PPGM pPGM = &pVM->pgm.s;
3026
3027 /*
3028 * Validate version.
3029 */
3030 if ( u32Version != PGM_SAVED_STATE_VERSION
3031 && u32Version != PGM_SAVED_STATE_VERSION_2_2_2
3032 && u32Version != PGM_SAVED_STATE_VERSION_RR_DESC
3033 && u32Version != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3034 {
3035 AssertMsgFailed(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
3036 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3037 }
3038
3039 /*
3040 * Call the reset function to make sure all the memory is cleared.
3041 */
3042 PGMR3Reset(pVM);
3043
3044 /*
3045 * Do the loading while owning the lock because a bunch of the functions
3046 * we're using requires this.
3047 */
3048 pgmLock(pVM);
3049 rc = pgmR3LoadLocked(pVM, pSSM, u32Version);
3050 pgmUnlock(pVM);
3051 if (RT_SUCCESS(rc))
3052 {
3053 /*
3054 * We require a full resync now.
3055 */
3056 for (unsigned i=0;i<pVM->cCPUs;i++)
3057 {
3058 PVMCPU pVCpu = &pVM->aCpus[i];
3059 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3060 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3061
3062 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3063 }
3064
3065 pgmR3HandlerPhysicalUpdateAll(pVM);
3066
3067 for (unsigned i=0;i<pVM->cCPUs;i++)
3068 {
3069 PVMCPU pVCpu = &pVM->aCpus[i];
3070
3071 /*
3072 * Change the paging mode.
3073 */
3074 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3075
3076 /* Restore pVM->pgm.s.GCPhysCR3. */
3077 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3078 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3079 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3080 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3081 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3082 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3083 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3084 else
3085 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3086 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3087 }
3088 }
3089
3090 return rc;
3091}
3092
3093
3094/**
3095 * Show paging mode.
3096 *
3097 * @param pVM VM Handle.
3098 * @param pHlp The info helpers.
3099 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3100 */
3101static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3102{
3103 /* digest argument. */
3104 bool fGuest, fShadow, fHost;
3105 if (pszArgs)
3106 pszArgs = RTStrStripL(pszArgs);
3107 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3108 fShadow = fHost = fGuest = true;
3109 else
3110 {
3111 fShadow = fHost = fGuest = false;
3112 if (strstr(pszArgs, "guest"))
3113 fGuest = true;
3114 if (strstr(pszArgs, "shadow"))
3115 fShadow = true;
3116 if (strstr(pszArgs, "host"))
3117 fHost = true;
3118 }
3119
3120 /** @todo SMP support! */
3121 /* print info. */
3122 if (fGuest)
3123 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3124 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3125 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3126 if (fShadow)
3127 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3128 if (fHost)
3129 {
3130 const char *psz;
3131 switch (pVM->pgm.s.enmHostMode)
3132 {
3133 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3134 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3135 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3136 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3137 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3138 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3139 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3140 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3141 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3142 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3143 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3144 default: psz = "unknown"; break;
3145 }
3146 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3147 }
3148}
3149
3150
3151/**
3152 * Dump registered MMIO ranges to the log.
3153 *
3154 * @param pVM VM Handle.
3155 * @param pHlp The info helpers.
3156 * @param pszArgs Arguments, ignored.
3157 */
3158static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3159{
3160 NOREF(pszArgs);
3161 pHlp->pfnPrintf(pHlp,
3162 "RAM ranges (pVM=%p)\n"
3163 "%.*s %.*s\n",
3164 pVM,
3165 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3166 sizeof(RTHCPTR) * 2, "pvHC ");
3167
3168 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3169 pHlp->pfnPrintf(pHlp,
3170 "%RGp-%RGp %RHv %s\n",
3171 pCur->GCPhys,
3172 pCur->GCPhysLast,
3173 pCur->pvR3,
3174 pCur->pszDesc);
3175}
3176
3177/**
3178 * Dump the page directory to the log.
3179 *
3180 * @param pVM VM Handle.
3181 * @param pHlp The info helpers.
3182 * @param pszArgs Arguments, ignored.
3183 */
3184static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3185{
3186 /** @todo SMP support!! */
3187 PVMCPU pVCpu = &pVM->aCpus[0];
3188
3189/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3190 /* Big pages supported? */
3191 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3192
3193 /* Global pages supported? */
3194 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3195
3196 NOREF(pszArgs);
3197
3198 /*
3199 * Get page directory addresses.
3200 */
3201 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3202 Assert(pPDSrc);
3203 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3204
3205 /*
3206 * Iterate the page directory.
3207 */
3208 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3209 {
3210 X86PDE PdeSrc = pPDSrc->a[iPD];
3211 if (PdeSrc.n.u1Present)
3212 {
3213 if (PdeSrc.b.u1Size && fPSE)
3214 pHlp->pfnPrintf(pHlp,
3215 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3216 iPD,
3217 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3218 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3219 else
3220 pHlp->pfnPrintf(pHlp,
3221 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3222 iPD,
3223 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3224 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3225 }
3226 }
3227}
3228
3229
3230/**
3231 * Service a VMMCALLRING3_PGM_LOCK call.
3232 *
3233 * @returns VBox status code.
3234 * @param pVM The VM handle.
3235 */
3236VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3237{
3238 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3239 AssertRC(rc);
3240 return rc;
3241}
3242
3243
3244/**
3245 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3246 *
3247 * @returns PGM_TYPE_*.
3248 * @param pgmMode The mode value to convert.
3249 */
3250DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3251{
3252 switch (pgmMode)
3253 {
3254 case PGMMODE_REAL: return PGM_TYPE_REAL;
3255 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3256 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3257 case PGMMODE_PAE:
3258 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3259 case PGMMODE_AMD64:
3260 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3261 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3262 case PGMMODE_EPT: return PGM_TYPE_EPT;
3263 default:
3264 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3265 }
3266}
3267
3268
3269/**
3270 * Gets the index into the paging mode data array of a SHW+GST mode.
3271 *
3272 * @returns PGM::paPagingData index.
3273 * @param uShwType The shadow paging mode type.
3274 * @param uGstType The guest paging mode type.
3275 */
3276DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3277{
3278 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3279 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3280 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3281 + (uGstType - PGM_TYPE_REAL);
3282}
3283
3284
3285/**
3286 * Gets the index into the paging mode data array of a SHW+GST mode.
3287 *
3288 * @returns PGM::paPagingData index.
3289 * @param enmShw The shadow paging mode.
3290 * @param enmGst The guest paging mode.
3291 */
3292DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3293{
3294 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3295 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3296 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3297}
3298
3299
3300/**
3301 * Calculates the max data index.
3302 * @returns The number of entries in the paging data array.
3303 */
3304DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3305{
3306 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3307}
3308
3309
3310/**
3311 * Initializes the paging mode data kept in PGM::paModeData.
3312 *
3313 * @param pVM The VM handle.
3314 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3315 * This is used early in the init process to avoid trouble with PDM
3316 * not being initialized yet.
3317 */
3318static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3319{
3320 PPGMMODEDATA pModeData;
3321 int rc;
3322
3323 /*
3324 * Allocate the array on the first call.
3325 */
3326 if (!pVM->pgm.s.paModeData)
3327 {
3328 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3329 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3330 }
3331
3332 /*
3333 * Initialize the array entries.
3334 */
3335 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3336 pModeData->uShwType = PGM_TYPE_32BIT;
3337 pModeData->uGstType = PGM_TYPE_REAL;
3338 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3339 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3340 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3341
3342 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3343 pModeData->uShwType = PGM_TYPE_32BIT;
3344 pModeData->uGstType = PGM_TYPE_PROT;
3345 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3346 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3347 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3348
3349 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3350 pModeData->uShwType = PGM_TYPE_32BIT;
3351 pModeData->uGstType = PGM_TYPE_32BIT;
3352 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3353 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3354 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3355
3356 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3357 pModeData->uShwType = PGM_TYPE_PAE;
3358 pModeData->uGstType = PGM_TYPE_REAL;
3359 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3360 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3361 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3362
3363 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3364 pModeData->uShwType = PGM_TYPE_PAE;
3365 pModeData->uGstType = PGM_TYPE_PROT;
3366 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3367 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3368 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3369
3370 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3371 pModeData->uShwType = PGM_TYPE_PAE;
3372 pModeData->uGstType = PGM_TYPE_32BIT;
3373 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3374 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3375 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3376
3377 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3378 pModeData->uShwType = PGM_TYPE_PAE;
3379 pModeData->uGstType = PGM_TYPE_PAE;
3380 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3381 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3382 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3383
3384#ifdef VBOX_WITH_64_BITS_GUESTS
3385 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3386 pModeData->uShwType = PGM_TYPE_AMD64;
3387 pModeData->uGstType = PGM_TYPE_AMD64;
3388 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3389 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3390 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3391#endif
3392
3393 /* The nested paging mode. */
3394 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3395 pModeData->uShwType = PGM_TYPE_NESTED;
3396 pModeData->uGstType = PGM_TYPE_REAL;
3397 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3398 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3399
3400 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3401 pModeData->uShwType = PGM_TYPE_NESTED;
3402 pModeData->uGstType = PGM_TYPE_PROT;
3403 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3404 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3405
3406 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3407 pModeData->uShwType = PGM_TYPE_NESTED;
3408 pModeData->uGstType = PGM_TYPE_32BIT;
3409 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3410 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3411
3412 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3413 pModeData->uShwType = PGM_TYPE_NESTED;
3414 pModeData->uGstType = PGM_TYPE_PAE;
3415 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3416 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3417
3418#ifdef VBOX_WITH_64_BITS_GUESTS
3419 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3420 pModeData->uShwType = PGM_TYPE_NESTED;
3421 pModeData->uGstType = PGM_TYPE_AMD64;
3422 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3423 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3424#endif
3425
3426 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3427 switch (pVM->pgm.s.enmHostMode)
3428 {
3429#if HC_ARCH_BITS == 32
3430 case SUPPAGINGMODE_32_BIT:
3431 case SUPPAGINGMODE_32_BIT_GLOBAL:
3432 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3433 {
3434 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3435 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3436 }
3437# ifdef VBOX_WITH_64_BITS_GUESTS
3438 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3439 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3440# endif
3441 break;
3442
3443 case SUPPAGINGMODE_PAE:
3444 case SUPPAGINGMODE_PAE_NX:
3445 case SUPPAGINGMODE_PAE_GLOBAL:
3446 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3447 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3448 {
3449 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3450 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3451 }
3452# ifdef VBOX_WITH_64_BITS_GUESTS
3453 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3454 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3455# endif
3456 break;
3457#endif /* HC_ARCH_BITS == 32 */
3458
3459#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3460 case SUPPAGINGMODE_AMD64:
3461 case SUPPAGINGMODE_AMD64_GLOBAL:
3462 case SUPPAGINGMODE_AMD64_NX:
3463 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3464# ifdef VBOX_WITH_64_BITS_GUESTS
3465 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3466# else
3467 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3468# endif
3469 {
3470 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3471 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3472 }
3473 break;
3474#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3475
3476 default:
3477 AssertFailed();
3478 break;
3479 }
3480
3481 /* Extended paging (EPT) / Intel VT-x */
3482 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3483 pModeData->uShwType = PGM_TYPE_EPT;
3484 pModeData->uGstType = PGM_TYPE_REAL;
3485 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3486 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3487 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3488
3489 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3490 pModeData->uShwType = PGM_TYPE_EPT;
3491 pModeData->uGstType = PGM_TYPE_PROT;
3492 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3493 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3494 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3495
3496 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3497 pModeData->uShwType = PGM_TYPE_EPT;
3498 pModeData->uGstType = PGM_TYPE_32BIT;
3499 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3500 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3501 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3502
3503 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3504 pModeData->uShwType = PGM_TYPE_EPT;
3505 pModeData->uGstType = PGM_TYPE_PAE;
3506 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3507 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3508 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3509
3510#ifdef VBOX_WITH_64_BITS_GUESTS
3511 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3512 pModeData->uShwType = PGM_TYPE_EPT;
3513 pModeData->uGstType = PGM_TYPE_AMD64;
3514 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3515 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3516 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3517#endif
3518 return VINF_SUCCESS;
3519}
3520
3521
3522/**
3523 * Switch to different (or relocated in the relocate case) mode data.
3524 *
3525 * @param pVM The VM handle.
3526 * @param pVCpu The VMCPU to operate on.
3527 * @param enmShw The the shadow paging mode.
3528 * @param enmGst The the guest paging mode.
3529 */
3530static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3531{
3532 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3533
3534 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3535 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3536
3537 /* shadow */
3538 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3539 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3540 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3541 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3542 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3543
3544 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3545 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3546
3547 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3548 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3549
3550
3551 /* guest */
3552 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3553 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3554 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3555 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3556 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3557 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3558 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3559 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3560 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3561 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3562 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3563 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3564
3565 /* both */
3566 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3567 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3568 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3569 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3570 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3571 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3572 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3573#ifdef VBOX_STRICT
3574 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3575#endif
3576 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3577 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3578
3579 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3580 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3581 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3582 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3583 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3584 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3585#ifdef VBOX_STRICT
3586 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3587#endif
3588 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3589 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3590
3591 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3592 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3593 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3594 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3595 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3596 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3597#ifdef VBOX_STRICT
3598 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3599#endif
3600 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3601 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3602}
3603
3604
3605/**
3606 * Calculates the shadow paging mode.
3607 *
3608 * @returns The shadow paging mode.
3609 * @param pVM VM handle.
3610 * @param enmGuestMode The guest mode.
3611 * @param enmHostMode The host mode.
3612 * @param enmShadowMode The current shadow mode.
3613 * @param penmSwitcher Where to store the switcher to use.
3614 * VMMSWITCHER_INVALID means no change.
3615 */
3616static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3617{
3618 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3619 switch (enmGuestMode)
3620 {
3621 /*
3622 * When switching to real or protected mode we don't change
3623 * anything since it's likely that we'll switch back pretty soon.
3624 *
3625 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3626 * and is supposed to determine which shadow paging and switcher to
3627 * use during init.
3628 */
3629 case PGMMODE_REAL:
3630 case PGMMODE_PROTECTED:
3631 if ( enmShadowMode != PGMMODE_INVALID
3632 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3633 break; /* (no change) */
3634
3635 switch (enmHostMode)
3636 {
3637 case SUPPAGINGMODE_32_BIT:
3638 case SUPPAGINGMODE_32_BIT_GLOBAL:
3639 enmShadowMode = PGMMODE_32_BIT;
3640 enmSwitcher = VMMSWITCHER_32_TO_32;
3641 break;
3642
3643 case SUPPAGINGMODE_PAE:
3644 case SUPPAGINGMODE_PAE_NX:
3645 case SUPPAGINGMODE_PAE_GLOBAL:
3646 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3647 enmShadowMode = PGMMODE_PAE;
3648 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3649#ifdef DEBUG_bird
3650 if (RTEnvExist("VBOX_32BIT"))
3651 {
3652 enmShadowMode = PGMMODE_32_BIT;
3653 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3654 }
3655#endif
3656 break;
3657
3658 case SUPPAGINGMODE_AMD64:
3659 case SUPPAGINGMODE_AMD64_GLOBAL:
3660 case SUPPAGINGMODE_AMD64_NX:
3661 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3662 enmShadowMode = PGMMODE_PAE;
3663 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3664#ifdef DEBUG_bird
3665 if (RTEnvExist("VBOX_32BIT"))
3666 {
3667 enmShadowMode = PGMMODE_32_BIT;
3668 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3669 }
3670#endif
3671 break;
3672
3673 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3674 }
3675 break;
3676
3677 case PGMMODE_32_BIT:
3678 switch (enmHostMode)
3679 {
3680 case SUPPAGINGMODE_32_BIT:
3681 case SUPPAGINGMODE_32_BIT_GLOBAL:
3682 enmShadowMode = PGMMODE_32_BIT;
3683 enmSwitcher = VMMSWITCHER_32_TO_32;
3684 break;
3685
3686 case SUPPAGINGMODE_PAE:
3687 case SUPPAGINGMODE_PAE_NX:
3688 case SUPPAGINGMODE_PAE_GLOBAL:
3689 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3690 enmShadowMode = PGMMODE_PAE;
3691 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3692#ifdef DEBUG_bird
3693 if (RTEnvExist("VBOX_32BIT"))
3694 {
3695 enmShadowMode = PGMMODE_32_BIT;
3696 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3697 }
3698#endif
3699 break;
3700
3701 case SUPPAGINGMODE_AMD64:
3702 case SUPPAGINGMODE_AMD64_GLOBAL:
3703 case SUPPAGINGMODE_AMD64_NX:
3704 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3705 enmShadowMode = PGMMODE_PAE;
3706 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3707#ifdef DEBUG_bird
3708 if (RTEnvExist("VBOX_32BIT"))
3709 {
3710 enmShadowMode = PGMMODE_32_BIT;
3711 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3712 }
3713#endif
3714 break;
3715
3716 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3717 }
3718 break;
3719
3720 case PGMMODE_PAE:
3721 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3722 switch (enmHostMode)
3723 {
3724 case SUPPAGINGMODE_32_BIT:
3725 case SUPPAGINGMODE_32_BIT_GLOBAL:
3726 enmShadowMode = PGMMODE_PAE;
3727 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3728 break;
3729
3730 case SUPPAGINGMODE_PAE:
3731 case SUPPAGINGMODE_PAE_NX:
3732 case SUPPAGINGMODE_PAE_GLOBAL:
3733 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3734 enmShadowMode = PGMMODE_PAE;
3735 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3736 break;
3737
3738 case SUPPAGINGMODE_AMD64:
3739 case SUPPAGINGMODE_AMD64_GLOBAL:
3740 case SUPPAGINGMODE_AMD64_NX:
3741 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3742 enmShadowMode = PGMMODE_PAE;
3743 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3744 break;
3745
3746 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3747 }
3748 break;
3749
3750 case PGMMODE_AMD64:
3751 case PGMMODE_AMD64_NX:
3752 switch (enmHostMode)
3753 {
3754 case SUPPAGINGMODE_32_BIT:
3755 case SUPPAGINGMODE_32_BIT_GLOBAL:
3756 enmShadowMode = PGMMODE_AMD64;
3757 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3758 break;
3759
3760 case SUPPAGINGMODE_PAE:
3761 case SUPPAGINGMODE_PAE_NX:
3762 case SUPPAGINGMODE_PAE_GLOBAL:
3763 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3764 enmShadowMode = PGMMODE_AMD64;
3765 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3766 break;
3767
3768 case SUPPAGINGMODE_AMD64:
3769 case SUPPAGINGMODE_AMD64_GLOBAL:
3770 case SUPPAGINGMODE_AMD64_NX:
3771 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3772 enmShadowMode = PGMMODE_AMD64;
3773 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3774 break;
3775
3776 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3777 }
3778 break;
3779
3780
3781 default:
3782 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3783 return PGMMODE_INVALID;
3784 }
3785 /* Override the shadow mode is nested paging is active. */
3786 if (HWACCMIsNestedPagingActive(pVM))
3787 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3788
3789 *penmSwitcher = enmSwitcher;
3790 return enmShadowMode;
3791}
3792
3793
3794/**
3795 * Performs the actual mode change.
3796 * This is called by PGMChangeMode and pgmR3InitPaging().
3797 *
3798 * @returns VBox status code. May suspend or power off the VM on error, but this
3799 * will trigger using FFs and not status codes.
3800 *
3801 * @param pVM VM handle.
3802 * @param pVCpu The VMCPU to operate on.
3803 * @param enmGuestMode The new guest mode. This is assumed to be different from
3804 * the current mode.
3805 */
3806VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3807{
3808 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3809 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3810
3811 /*
3812 * Calc the shadow mode and switcher.
3813 */
3814 VMMSWITCHER enmSwitcher;
3815 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3816 if (enmSwitcher != VMMSWITCHER_INVALID)
3817 {
3818 /*
3819 * Select new switcher.
3820 */
3821 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3822 if (RT_FAILURE(rc))
3823 {
3824 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3825 return rc;
3826 }
3827 }
3828
3829 /*
3830 * Exit old mode(s).
3831 */
3832 /* shadow */
3833 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3834 {
3835 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3836 if (PGM_SHW_PFN(Exit, pVCpu))
3837 {
3838 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3839 if (RT_FAILURE(rc))
3840 {
3841 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3842 return rc;
3843 }
3844 }
3845
3846 }
3847 else
3848 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3849
3850 /* guest */
3851 if (PGM_GST_PFN(Exit, pVCpu))
3852 {
3853 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3854 if (RT_FAILURE(rc))
3855 {
3856 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3857 return rc;
3858 }
3859 }
3860
3861 /*
3862 * Load new paging mode data.
3863 */
3864 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3865
3866 /*
3867 * Enter new shadow mode (if changed).
3868 */
3869 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3870 {
3871 int rc;
3872 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3873 switch (enmShadowMode)
3874 {
3875 case PGMMODE_32_BIT:
3876 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu);
3877 break;
3878 case PGMMODE_PAE:
3879 case PGMMODE_PAE_NX:
3880 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu);
3881 break;
3882 case PGMMODE_AMD64:
3883 case PGMMODE_AMD64_NX:
3884 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu);
3885 break;
3886 case PGMMODE_NESTED:
3887 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu);
3888 break;
3889 case PGMMODE_EPT:
3890 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu);
3891 break;
3892 case PGMMODE_REAL:
3893 case PGMMODE_PROTECTED:
3894 default:
3895 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3896 return VERR_INTERNAL_ERROR;
3897 }
3898 if (RT_FAILURE(rc))
3899 {
3900 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3901 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3902 return rc;
3903 }
3904 }
3905
3906 /*
3907 * Always flag the necessary updates
3908 */
3909 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3910
3911 /*
3912 * Enter the new guest and shadow+guest modes.
3913 */
3914 int rc = -1;
3915 int rc2 = -1;
3916 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3917 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3918 switch (enmGuestMode)
3919 {
3920 case PGMMODE_REAL:
3921 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3922 switch (pVCpu->pgm.s.enmShadowMode)
3923 {
3924 case PGMMODE_32_BIT:
3925 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3926 break;
3927 case PGMMODE_PAE:
3928 case PGMMODE_PAE_NX:
3929 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3930 break;
3931 case PGMMODE_NESTED:
3932 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3933 break;
3934 case PGMMODE_EPT:
3935 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3936 break;
3937 case PGMMODE_AMD64:
3938 case PGMMODE_AMD64_NX:
3939 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3940 default: AssertFailed(); break;
3941 }
3942 break;
3943
3944 case PGMMODE_PROTECTED:
3945 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3946 switch (pVCpu->pgm.s.enmShadowMode)
3947 {
3948 case PGMMODE_32_BIT:
3949 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3950 break;
3951 case PGMMODE_PAE:
3952 case PGMMODE_PAE_NX:
3953 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3954 break;
3955 case PGMMODE_NESTED:
3956 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3957 break;
3958 case PGMMODE_EPT:
3959 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3960 break;
3961 case PGMMODE_AMD64:
3962 case PGMMODE_AMD64_NX:
3963 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3964 default: AssertFailed(); break;
3965 }
3966 break;
3967
3968 case PGMMODE_32_BIT:
3969 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3970 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3971 switch (pVCpu->pgm.s.enmShadowMode)
3972 {
3973 case PGMMODE_32_BIT:
3974 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3975 break;
3976 case PGMMODE_PAE:
3977 case PGMMODE_PAE_NX:
3978 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3979 break;
3980 case PGMMODE_NESTED:
3981 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3982 break;
3983 case PGMMODE_EPT:
3984 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3985 break;
3986 case PGMMODE_AMD64:
3987 case PGMMODE_AMD64_NX:
3988 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3989 default: AssertFailed(); break;
3990 }
3991 break;
3992
3993 case PGMMODE_PAE_NX:
3994 case PGMMODE_PAE:
3995 {
3996 uint32_t u32Dummy, u32Features;
3997
3998 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3999 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
4000 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
4001 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
4002
4003 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
4004 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
4005 switch (pVCpu->pgm.s.enmShadowMode)
4006 {
4007 case PGMMODE_PAE:
4008 case PGMMODE_PAE_NX:
4009 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
4010 break;
4011 case PGMMODE_NESTED:
4012 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
4013 break;
4014 case PGMMODE_EPT:
4015 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
4016 break;
4017 case PGMMODE_32_BIT:
4018 case PGMMODE_AMD64:
4019 case PGMMODE_AMD64_NX:
4020 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4021 default: AssertFailed(); break;
4022 }
4023 break;
4024 }
4025
4026#ifdef VBOX_WITH_64_BITS_GUESTS
4027 case PGMMODE_AMD64_NX:
4028 case PGMMODE_AMD64:
4029 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4030 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
4031 switch (pVCpu->pgm.s.enmShadowMode)
4032 {
4033 case PGMMODE_AMD64:
4034 case PGMMODE_AMD64_NX:
4035 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
4036 break;
4037 case PGMMODE_NESTED:
4038 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
4039 break;
4040 case PGMMODE_EPT:
4041 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
4042 break;
4043 case PGMMODE_32_BIT:
4044 case PGMMODE_PAE:
4045 case PGMMODE_PAE_NX:
4046 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4047 default: AssertFailed(); break;
4048 }
4049 break;
4050#endif
4051
4052 default:
4053 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4054 rc = VERR_NOT_IMPLEMENTED;
4055 break;
4056 }
4057
4058 /* status codes. */
4059 AssertRC(rc);
4060 AssertRC(rc2);
4061 if (RT_SUCCESS(rc))
4062 {
4063 rc = rc2;
4064 if (RT_SUCCESS(rc)) /* no informational status codes. */
4065 rc = VINF_SUCCESS;
4066 }
4067
4068 /* Notify HWACCM as well. */
4069 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4070 return rc;
4071}
4072
4073/**
4074 * Release the pgm lock if owned by the current VCPU
4075 *
4076 * @param pVM The VM to operate on.
4077 */
4078VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
4079{
4080 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
4081 PDMCritSectLeave(&pVM->pgm.s.CritSect);
4082}
4083
4084/**
4085 * Called by pgmPoolFlushAllInt prior to flushing the pool.
4086 *
4087 * @returns VBox status code, fully asserted.
4088 * @param pVM The VM handle.
4089 * @param pVCpu The VMCPU to operate on.
4090 */
4091int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
4092{
4093 /* Unmap the old CR3 value before flushing everything. */
4094 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
4095 AssertRC(rc);
4096
4097 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
4098 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4099 AssertRC(rc);
4100 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
4101 return rc;
4102}
4103
4104
4105/**
4106 * Called by pgmPoolFlushAllInt after flushing the pool.
4107 *
4108 * @returns VBox status code, fully asserted.
4109 * @param pVM The VM handle.
4110 * @param pVCpu The VMCPU to operate on.
4111 */
4112int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
4113{
4114 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4115 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
4116 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4117 AssertRCReturn(rc, rc);
4118 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
4119
4120 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
4121 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
4122 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
4123 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4124 return rc;
4125}
4126
4127
4128/**
4129 * Dumps a PAE shadow page table.
4130 *
4131 * @returns VBox status code (VINF_SUCCESS).
4132 * @param pVM The VM handle.
4133 * @param pPT Pointer to the page table.
4134 * @param u64Address The virtual address of the page table starts.
4135 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4136 * @param cMaxDepth The maxium depth.
4137 * @param pHlp Pointer to the output functions.
4138 */
4139static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4140{
4141 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4142 {
4143 X86PTEPAE Pte = pPT->a[i];
4144 if (Pte.n.u1Present)
4145 {
4146 pHlp->pfnPrintf(pHlp,
4147 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4148 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4149 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4150 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4151 Pte.n.u1Write ? 'W' : 'R',
4152 Pte.n.u1User ? 'U' : 'S',
4153 Pte.n.u1Accessed ? 'A' : '-',
4154 Pte.n.u1Dirty ? 'D' : '-',
4155 Pte.n.u1Global ? 'G' : '-',
4156 Pte.n.u1WriteThru ? "WT" : "--",
4157 Pte.n.u1CacheDisable? "CD" : "--",
4158 Pte.n.u1PAT ? "AT" : "--",
4159 Pte.n.u1NoExecute ? "NX" : "--",
4160 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4161 Pte.u & RT_BIT(10) ? '1' : '0',
4162 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4163 Pte.u & X86_PTE_PAE_PG_MASK);
4164 }
4165 }
4166 return VINF_SUCCESS;
4167}
4168
4169
4170/**
4171 * Dumps a PAE shadow page directory table.
4172 *
4173 * @returns VBox status code (VINF_SUCCESS).
4174 * @param pVM The VM handle.
4175 * @param HCPhys The physical address of the page directory table.
4176 * @param u64Address The virtual address of the page table starts.
4177 * @param cr4 The CR4, PSE is currently used.
4178 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4179 * @param cMaxDepth The maxium depth.
4180 * @param pHlp Pointer to the output functions.
4181 */
4182static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4183{
4184 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4185 if (!pPD)
4186 {
4187 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4188 fLongMode ? 16 : 8, u64Address, HCPhys);
4189 return VERR_INVALID_PARAMETER;
4190 }
4191 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4192
4193 int rc = VINF_SUCCESS;
4194 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4195 {
4196 X86PDEPAE Pde = pPD->a[i];
4197 if (Pde.n.u1Present)
4198 {
4199 if (fBigPagesSupported && Pde.b.u1Size)
4200 pHlp->pfnPrintf(pHlp,
4201 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4202 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4203 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4204 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4205 Pde.b.u1Write ? 'W' : 'R',
4206 Pde.b.u1User ? 'U' : 'S',
4207 Pde.b.u1Accessed ? 'A' : '-',
4208 Pde.b.u1Dirty ? 'D' : '-',
4209 Pde.b.u1Global ? 'G' : '-',
4210 Pde.b.u1WriteThru ? "WT" : "--",
4211 Pde.b.u1CacheDisable? "CD" : "--",
4212 Pde.b.u1PAT ? "AT" : "--",
4213 Pde.b.u1NoExecute ? "NX" : "--",
4214 Pde.u & RT_BIT_64(9) ? '1' : '0',
4215 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4216 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4217 Pde.u & X86_PDE_PAE_PG_MASK);
4218 else
4219 {
4220 pHlp->pfnPrintf(pHlp,
4221 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4222 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4223 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4224 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4225 Pde.n.u1Write ? 'W' : 'R',
4226 Pde.n.u1User ? 'U' : 'S',
4227 Pde.n.u1Accessed ? 'A' : '-',
4228 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4229 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4230 Pde.n.u1WriteThru ? "WT" : "--",
4231 Pde.n.u1CacheDisable? "CD" : "--",
4232 Pde.n.u1NoExecute ? "NX" : "--",
4233 Pde.u & RT_BIT_64(9) ? '1' : '0',
4234 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4235 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4236 Pde.u & X86_PDE_PAE_PG_MASK);
4237 if (cMaxDepth >= 1)
4238 {
4239 /** @todo what about using the page pool for mapping PTs? */
4240 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4241 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4242 PX86PTPAE pPT = NULL;
4243 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4244 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4245 else
4246 {
4247 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4248 {
4249 uint64_t off = u64AddressPT - pMap->GCPtr;
4250 if (off < pMap->cb)
4251 {
4252 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4253 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4254 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4255 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4256 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4257 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4258 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4259 }
4260 }
4261 }
4262 int rc2 = VERR_INVALID_PARAMETER;
4263 if (pPT)
4264 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4265 else
4266 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4267 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4268 if (rc2 < rc && RT_SUCCESS(rc))
4269 rc = rc2;
4270 }
4271 }
4272 }
4273 }
4274 return rc;
4275}
4276
4277
4278/**
4279 * Dumps a PAE shadow page directory pointer table.
4280 *
4281 * @returns VBox status code (VINF_SUCCESS).
4282 * @param pVM The VM handle.
4283 * @param HCPhys The physical address of the page directory pointer table.
4284 * @param u64Address The virtual address of the page table starts.
4285 * @param cr4 The CR4, PSE is currently used.
4286 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4287 * @param cMaxDepth The maxium depth.
4288 * @param pHlp Pointer to the output functions.
4289 */
4290static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4291{
4292 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4293 if (!pPDPT)
4294 {
4295 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4296 fLongMode ? 16 : 8, u64Address, HCPhys);
4297 return VERR_INVALID_PARAMETER;
4298 }
4299
4300 int rc = VINF_SUCCESS;
4301 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4302 for (unsigned i = 0; i < c; i++)
4303 {
4304 X86PDPE Pdpe = pPDPT->a[i];
4305 if (Pdpe.n.u1Present)
4306 {
4307 if (fLongMode)
4308 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4309 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4310 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4311 Pdpe.lm.u1Write ? 'W' : 'R',
4312 Pdpe.lm.u1User ? 'U' : 'S',
4313 Pdpe.lm.u1Accessed ? 'A' : '-',
4314 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4315 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4316 Pdpe.lm.u1WriteThru ? "WT" : "--",
4317 Pdpe.lm.u1CacheDisable? "CD" : "--",
4318 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4319 Pdpe.lm.u1NoExecute ? "NX" : "--",
4320 Pdpe.u & RT_BIT(9) ? '1' : '0',
4321 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4322 Pdpe.u & RT_BIT(11) ? '1' : '0',
4323 Pdpe.u & X86_PDPE_PG_MASK);
4324 else
4325 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4326 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4327 i << X86_PDPT_SHIFT,
4328 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4329 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4330 Pdpe.n.u1WriteThru ? "WT" : "--",
4331 Pdpe.n.u1CacheDisable? "CD" : "--",
4332 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4333 Pdpe.u & RT_BIT(9) ? '1' : '0',
4334 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4335 Pdpe.u & RT_BIT(11) ? '1' : '0',
4336 Pdpe.u & X86_PDPE_PG_MASK);
4337 if (cMaxDepth >= 1)
4338 {
4339 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4340 cr4, fLongMode, cMaxDepth - 1, pHlp);
4341 if (rc2 < rc && RT_SUCCESS(rc))
4342 rc = rc2;
4343 }
4344 }
4345 }
4346 return rc;
4347}
4348
4349
4350/**
4351 * Dumps a 32-bit shadow page table.
4352 *
4353 * @returns VBox status code (VINF_SUCCESS).
4354 * @param pVM The VM handle.
4355 * @param HCPhys The physical address of the table.
4356 * @param cr4 The CR4, PSE is currently used.
4357 * @param cMaxDepth The maxium depth.
4358 * @param pHlp Pointer to the output functions.
4359 */
4360static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4361{
4362 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4363 if (!pPML4)
4364 {
4365 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4366 return VERR_INVALID_PARAMETER;
4367 }
4368
4369 int rc = VINF_SUCCESS;
4370 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4371 {
4372 X86PML4E Pml4e = pPML4->a[i];
4373 if (Pml4e.n.u1Present)
4374 {
4375 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4376 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4377 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4378 u64Address,
4379 Pml4e.n.u1Write ? 'W' : 'R',
4380 Pml4e.n.u1User ? 'U' : 'S',
4381 Pml4e.n.u1Accessed ? 'A' : '-',
4382 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4383 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4384 Pml4e.n.u1WriteThru ? "WT" : "--",
4385 Pml4e.n.u1CacheDisable? "CD" : "--",
4386 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4387 Pml4e.n.u1NoExecute ? "NX" : "--",
4388 Pml4e.u & RT_BIT(9) ? '1' : '0',
4389 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4390 Pml4e.u & RT_BIT(11) ? '1' : '0',
4391 Pml4e.u & X86_PML4E_PG_MASK);
4392
4393 if (cMaxDepth >= 1)
4394 {
4395 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4396 if (rc2 < rc && RT_SUCCESS(rc))
4397 rc = rc2;
4398 }
4399 }
4400 }
4401 return rc;
4402}
4403
4404
4405/**
4406 * Dumps a 32-bit shadow page table.
4407 *
4408 * @returns VBox status code (VINF_SUCCESS).
4409 * @param pVM The VM handle.
4410 * @param pPT Pointer to the page table.
4411 * @param u32Address The virtual address this table starts at.
4412 * @param pHlp Pointer to the output functions.
4413 */
4414int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4415{
4416 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4417 {
4418 X86PTE Pte = pPT->a[i];
4419 if (Pte.n.u1Present)
4420 {
4421 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4422 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4423 u32Address + (i << X86_PT_SHIFT),
4424 Pte.n.u1Write ? 'W' : 'R',
4425 Pte.n.u1User ? 'U' : 'S',
4426 Pte.n.u1Accessed ? 'A' : '-',
4427 Pte.n.u1Dirty ? 'D' : '-',
4428 Pte.n.u1Global ? 'G' : '-',
4429 Pte.n.u1WriteThru ? "WT" : "--",
4430 Pte.n.u1CacheDisable? "CD" : "--",
4431 Pte.n.u1PAT ? "AT" : "--",
4432 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4433 Pte.u & RT_BIT(10) ? '1' : '0',
4434 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4435 Pte.u & X86_PDE_PG_MASK);
4436 }
4437 }
4438 return VINF_SUCCESS;
4439}
4440
4441
4442/**
4443 * Dumps a 32-bit shadow page directory and page tables.
4444 *
4445 * @returns VBox status code (VINF_SUCCESS).
4446 * @param pVM The VM handle.
4447 * @param cr3 The root of the hierarchy.
4448 * @param cr4 The CR4, PSE is currently used.
4449 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4450 * @param pHlp Pointer to the output functions.
4451 */
4452int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4453{
4454 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4455 if (!pPD)
4456 {
4457 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4458 return VERR_INVALID_PARAMETER;
4459 }
4460
4461 int rc = VINF_SUCCESS;
4462 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4463 {
4464 X86PDE Pde = pPD->a[i];
4465 if (Pde.n.u1Present)
4466 {
4467 const uint32_t u32Address = i << X86_PD_SHIFT;
4468 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4469 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4470 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4471 u32Address,
4472 Pde.b.u1Write ? 'W' : 'R',
4473 Pde.b.u1User ? 'U' : 'S',
4474 Pde.b.u1Accessed ? 'A' : '-',
4475 Pde.b.u1Dirty ? 'D' : '-',
4476 Pde.b.u1Global ? 'G' : '-',
4477 Pde.b.u1WriteThru ? "WT" : "--",
4478 Pde.b.u1CacheDisable? "CD" : "--",
4479 Pde.b.u1PAT ? "AT" : "--",
4480 Pde.u & RT_BIT_64(9) ? '1' : '0',
4481 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4482 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4483 Pde.u & X86_PDE4M_PG_MASK);
4484 else
4485 {
4486 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4487 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4488 u32Address,
4489 Pde.n.u1Write ? 'W' : 'R',
4490 Pde.n.u1User ? 'U' : 'S',
4491 Pde.n.u1Accessed ? 'A' : '-',
4492 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4493 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4494 Pde.n.u1WriteThru ? "WT" : "--",
4495 Pde.n.u1CacheDisable? "CD" : "--",
4496 Pde.u & RT_BIT_64(9) ? '1' : '0',
4497 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4498 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4499 Pde.u & X86_PDE_PG_MASK);
4500 if (cMaxDepth >= 1)
4501 {
4502 /** @todo what about using the page pool for mapping PTs? */
4503 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4504 PX86PT pPT = NULL;
4505 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4506 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4507 else
4508 {
4509 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4510 if (u32Address - pMap->GCPtr < pMap->cb)
4511 {
4512 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4513 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4514 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4515 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4516 pPT = pMap->aPTs[iPDE].pPTR3;
4517 }
4518 }
4519 int rc2 = VERR_INVALID_PARAMETER;
4520 if (pPT)
4521 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4522 else
4523 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4524 if (rc2 < rc && RT_SUCCESS(rc))
4525 rc = rc2;
4526 }
4527 }
4528 }
4529 }
4530
4531 return rc;
4532}
4533
4534
4535/**
4536 * Dumps a 32-bit shadow page table.
4537 *
4538 * @returns VBox status code (VINF_SUCCESS).
4539 * @param pVM The VM handle.
4540 * @param pPT Pointer to the page table.
4541 * @param u32Address The virtual address this table starts at.
4542 * @param PhysSearch Address to search for.
4543 */
4544int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4545{
4546 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4547 {
4548 X86PTE Pte = pPT->a[i];
4549 if (Pte.n.u1Present)
4550 {
4551 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4552 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4553 u32Address + (i << X86_PT_SHIFT),
4554 Pte.n.u1Write ? 'W' : 'R',
4555 Pte.n.u1User ? 'U' : 'S',
4556 Pte.n.u1Accessed ? 'A' : '-',
4557 Pte.n.u1Dirty ? 'D' : '-',
4558 Pte.n.u1Global ? 'G' : '-',
4559 Pte.n.u1WriteThru ? "WT" : "--",
4560 Pte.n.u1CacheDisable? "CD" : "--",
4561 Pte.n.u1PAT ? "AT" : "--",
4562 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4563 Pte.u & RT_BIT(10) ? '1' : '0',
4564 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4565 Pte.u & X86_PDE_PG_MASK));
4566
4567 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4568 {
4569 uint64_t fPageShw = 0;
4570 RTHCPHYS pPhysHC = 0;
4571
4572 /** @todo SMP support!! */
4573 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4574 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4575 }
4576 }
4577 }
4578 return VINF_SUCCESS;
4579}
4580
4581
4582/**
4583 * Dumps a 32-bit guest page directory and page tables.
4584 *
4585 * @returns VBox status code (VINF_SUCCESS).
4586 * @param pVM The VM handle.
4587 * @param cr3 The root of the hierarchy.
4588 * @param cr4 The CR4, PSE is currently used.
4589 * @param PhysSearch Address to search for.
4590 */
4591VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4592{
4593 bool fLongMode = false;
4594 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4595 PX86PD pPD = 0;
4596
4597 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4598 if (RT_FAILURE(rc) || !pPD)
4599 {
4600 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4601 return VERR_INVALID_PARAMETER;
4602 }
4603
4604 Log(("cr3=%08x cr4=%08x%s\n"
4605 "%-*s P - Present\n"
4606 "%-*s | R/W - Read (0) / Write (1)\n"
4607 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4608 "%-*s | | | A - Accessed\n"
4609 "%-*s | | | | D - Dirty\n"
4610 "%-*s | | | | | G - Global\n"
4611 "%-*s | | | | | | WT - Write thru\n"
4612 "%-*s | | | | | | | CD - Cache disable\n"
4613 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4614 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4615 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4616 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4617 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4618 "%-*s Level | | | | | | | | | | | | Page\n"
4619 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4620 - W U - - - -- -- -- -- -- 010 */
4621 , cr3, cr4, fLongMode ? " Long Mode" : "",
4622 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4623 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4624
4625 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4626 {
4627 X86PDE Pde = pPD->a[i];
4628 if (Pde.n.u1Present)
4629 {
4630 const uint32_t u32Address = i << X86_PD_SHIFT;
4631
4632 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4633 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4634 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4635 u32Address,
4636 Pde.b.u1Write ? 'W' : 'R',
4637 Pde.b.u1User ? 'U' : 'S',
4638 Pde.b.u1Accessed ? 'A' : '-',
4639 Pde.b.u1Dirty ? 'D' : '-',
4640 Pde.b.u1Global ? 'G' : '-',
4641 Pde.b.u1WriteThru ? "WT" : "--",
4642 Pde.b.u1CacheDisable? "CD" : "--",
4643 Pde.b.u1PAT ? "AT" : "--",
4644 Pde.u & RT_BIT(9) ? '1' : '0',
4645 Pde.u & RT_BIT(10) ? '1' : '0',
4646 Pde.u & RT_BIT(11) ? '1' : '0',
4647 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4648 /** @todo PhysSearch */
4649 else
4650 {
4651 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4652 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4653 u32Address,
4654 Pde.n.u1Write ? 'W' : 'R',
4655 Pde.n.u1User ? 'U' : 'S',
4656 Pde.n.u1Accessed ? 'A' : '-',
4657 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4658 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4659 Pde.n.u1WriteThru ? "WT" : "--",
4660 Pde.n.u1CacheDisable? "CD" : "--",
4661 Pde.u & RT_BIT(9) ? '1' : '0',
4662 Pde.u & RT_BIT(10) ? '1' : '0',
4663 Pde.u & RT_BIT(11) ? '1' : '0',
4664 Pde.u & X86_PDE_PG_MASK));
4665 ////if (cMaxDepth >= 1)
4666 {
4667 /** @todo what about using the page pool for mapping PTs? */
4668 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4669 PX86PT pPT = NULL;
4670
4671 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4672
4673 int rc2 = VERR_INVALID_PARAMETER;
4674 if (pPT)
4675 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4676 else
4677 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4678 if (rc2 < rc && RT_SUCCESS(rc))
4679 rc = rc2;
4680 }
4681 }
4682 }
4683 }
4684
4685 return rc;
4686}
4687
4688
4689/**
4690 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4691 *
4692 * @returns VBox status code (VINF_SUCCESS).
4693 * @param pVM The VM handle.
4694 * @param cr3 The root of the hierarchy.
4695 * @param cr4 The cr4, only PAE and PSE is currently used.
4696 * @param fLongMode Set if long mode, false if not long mode.
4697 * @param cMaxDepth Number of levels to dump.
4698 * @param pHlp Pointer to the output functions.
4699 */
4700VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4701{
4702 if (!pHlp)
4703 pHlp = DBGFR3InfoLogHlp();
4704 if (!cMaxDepth)
4705 return VINF_SUCCESS;
4706 const unsigned cch = fLongMode ? 16 : 8;
4707 pHlp->pfnPrintf(pHlp,
4708 "cr3=%08x cr4=%08x%s\n"
4709 "%-*s P - Present\n"
4710 "%-*s | R/W - Read (0) / Write (1)\n"
4711 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4712 "%-*s | | | A - Accessed\n"
4713 "%-*s | | | | D - Dirty\n"
4714 "%-*s | | | | | G - Global\n"
4715 "%-*s | | | | | | WT - Write thru\n"
4716 "%-*s | | | | | | | CD - Cache disable\n"
4717 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4718 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4719 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4720 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4721 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4722 "%-*s Level | | | | | | | | | | | | Page\n"
4723 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4724 - W U - - - -- -- -- -- -- 010 */
4725 , cr3, cr4, fLongMode ? " Long Mode" : "",
4726 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4727 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4728 if (cr4 & X86_CR4_PAE)
4729 {
4730 if (fLongMode)
4731 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4732 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4733 }
4734 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4735}
4736
4737#ifdef VBOX_WITH_DEBUGGER
4738
4739/**
4740 * The '.pgmram' command.
4741 *
4742 * @returns VBox status.
4743 * @param pCmd Pointer to the command descriptor (as registered).
4744 * @param pCmdHlp Pointer to command helper functions.
4745 * @param pVM Pointer to the current VM (if any).
4746 * @param paArgs Pointer to (readonly) array of arguments.
4747 * @param cArgs Number of arguments in the array.
4748 */
4749static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4750{
4751 /*
4752 * Validate input.
4753 */
4754 if (!pVM)
4755 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4756 if (!pVM->pgm.s.pRamRangesRC)
4757 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4758
4759 /*
4760 * Dump the ranges.
4761 */
4762 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4763 PPGMRAMRANGE pRam;
4764 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4765 {
4766 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4767 "%RGp - %RGp %p\n",
4768 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4769 if (RT_FAILURE(rc))
4770 return rc;
4771 }
4772
4773 return VINF_SUCCESS;
4774}
4775
4776
4777/**
4778 * The '.pgmmap' command.
4779 *
4780 * @returns VBox status.
4781 * @param pCmd Pointer to the command descriptor (as registered).
4782 * @param pCmdHlp Pointer to command helper functions.
4783 * @param pVM Pointer to the current VM (if any).
4784 * @param paArgs Pointer to (readonly) array of arguments.
4785 * @param cArgs Number of arguments in the array.
4786 */
4787static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4788{
4789 /*
4790 * Validate input.
4791 */
4792 if (!pVM)
4793 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4794 if (!pVM->pgm.s.pMappingsR3)
4795 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4796
4797 /*
4798 * Print message about the fixedness of the mappings.
4799 */
4800 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4801 if (RT_FAILURE(rc))
4802 return rc;
4803
4804 /*
4805 * Dump the ranges.
4806 */
4807 PPGMMAPPING pCur;
4808 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4809 {
4810 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4811 "%08x - %08x %s\n",
4812 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4813 if (RT_FAILURE(rc))
4814 return rc;
4815 }
4816
4817 return VINF_SUCCESS;
4818}
4819
4820
4821/**
4822 * The '.pgmerror' and '.pgmerroroff' commands.
4823 *
4824 * @returns VBox status.
4825 * @param pCmd Pointer to the command descriptor (as registered).
4826 * @param pCmdHlp Pointer to command helper functions.
4827 * @param pVM Pointer to the current VM (if any).
4828 * @param paArgs Pointer to (readonly) array of arguments.
4829 * @param cArgs Number of arguments in the array.
4830 */
4831static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4832{
4833 /*
4834 * Validate input.
4835 */
4836 if (!pVM)
4837 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4838 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4839 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4840
4841 if (!cArgs)
4842 {
4843 /*
4844 * Print the list of error injection locations with status.
4845 */
4846 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4847 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4848 }
4849 else
4850 {
4851
4852 /*
4853 * String switch on where to inject the error.
4854 */
4855 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4856 const char *pszWhere = paArgs[0].u.pszString;
4857 if (!strcmp(pszWhere, "handy"))
4858 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4859 else
4860 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4861 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4862 }
4863 return VINF_SUCCESS;
4864}
4865
4866
4867/**
4868 * The '.pgmsync' command.
4869 *
4870 * @returns VBox status.
4871 * @param pCmd Pointer to the command descriptor (as registered).
4872 * @param pCmdHlp Pointer to command helper functions.
4873 * @param pVM Pointer to the current VM (if any).
4874 * @param paArgs Pointer to (readonly) array of arguments.
4875 * @param cArgs Number of arguments in the array.
4876 */
4877static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4878{
4879 /** @todo SMP support */
4880 PVMCPU pVCpu = &pVM->aCpus[0];
4881
4882 /*
4883 * Validate input.
4884 */
4885 if (!pVM)
4886 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4887
4888 /*
4889 * Force page directory sync.
4890 */
4891 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4892
4893 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4894 if (RT_FAILURE(rc))
4895 return rc;
4896
4897 return VINF_SUCCESS;
4898}
4899
4900
4901#ifdef VBOX_STRICT
4902/**
4903 * The '.pgmassertcr3' command.
4904 *
4905 * @returns VBox status.
4906 * @param pCmd Pointer to the command descriptor (as registered).
4907 * @param pCmdHlp Pointer to command helper functions.
4908 * @param pVM Pointer to the current VM (if any).
4909 * @param paArgs Pointer to (readonly) array of arguments.
4910 * @param cArgs Number of arguments in the array.
4911 */
4912static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4913{
4914 /** @todo SMP support!! */
4915 PVMCPU pVCpu = &pVM->aCpus[0];
4916
4917 /*
4918 * Validate input.
4919 */
4920 if (!pVM)
4921 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4922
4923 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4924 if (RT_FAILURE(rc))
4925 return rc;
4926
4927 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4928
4929 return VINF_SUCCESS;
4930}
4931#endif /* VBOX_STRICT */
4932
4933
4934/**
4935 * The '.pgmsyncalways' command.
4936 *
4937 * @returns VBox status.
4938 * @param pCmd Pointer to the command descriptor (as registered).
4939 * @param pCmdHlp Pointer to command helper functions.
4940 * @param pVM Pointer to the current VM (if any).
4941 * @param paArgs Pointer to (readonly) array of arguments.
4942 * @param cArgs Number of arguments in the array.
4943 */
4944static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4945{
4946 /** @todo SMP support!! */
4947 PVMCPU pVCpu = &pVM->aCpus[0];
4948
4949 /*
4950 * Validate input.
4951 */
4952 if (!pVM)
4953 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4954
4955 /*
4956 * Force page directory sync.
4957 */
4958 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4959 {
4960 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4961 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4962 }
4963 else
4964 {
4965 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4966 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4967 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4968 }
4969}
4970
4971
4972/**
4973 * The '.pgmsyncalways' command.
4974 *
4975 * @returns VBox status.
4976 * @param pCmd Pointer to the command descriptor (as registered).
4977 * @param pCmdHlp Pointer to command helper functions.
4978 * @param pVM Pointer to the current VM (if any).
4979 * @param paArgs Pointer to (readonly) array of arguments.
4980 * @param cArgs Number of arguments in the array.
4981 */
4982static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4983{
4984 /*
4985 * Validate input.
4986 */
4987 if (!pVM)
4988 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4989 if ( cArgs < 1
4990 || cArgs > 2
4991 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4992 || ( cArgs > 1
4993 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4994 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4995 if ( cArgs >= 2
4996 && strcmp(paArgs[1].u.pszString, "nozero"))
4997 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4998 bool fIncZeroPgs = cArgs < 2;
4999
5000 /*
5001 * Open the output file and get the ram parameters.
5002 */
5003 RTFILE hFile;
5004 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
5005 if (RT_FAILURE(rc))
5006 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
5007
5008 uint32_t cbRamHole = 0;
5009 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
5010 uint64_t cbRam = 0;
5011 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
5012 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
5013
5014 /*
5015 * Dump the physical memory, page by page.
5016 */
5017 RTGCPHYS GCPhys = 0;
5018 char abZeroPg[PAGE_SIZE];
5019 RT_ZERO(abZeroPg);
5020
5021 pgmLock(pVM);
5022 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
5023 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
5024 pRam = pRam->pNextR3)
5025 {
5026 /* fill the gap */
5027 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
5028 {
5029 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
5030 {
5031 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5032 GCPhys += PAGE_SIZE;
5033 }
5034 }
5035
5036 PCPGMPAGE pPage = &pRam->aPages[0];
5037 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
5038 {
5039 if (PGM_PAGE_IS_ZERO(pPage))
5040 {
5041 if (fIncZeroPgs)
5042 {
5043 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5044 if (RT_FAILURE(rc))
5045 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5046 }
5047 }
5048 else
5049 {
5050 switch (PGM_PAGE_GET_TYPE(pPage))
5051 {
5052 case PGMPAGETYPE_RAM:
5053 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
5054 case PGMPAGETYPE_ROM:
5055 case PGMPAGETYPE_MMIO2:
5056 {
5057 void const *pvPage;
5058 PGMPAGEMAPLOCK Lock;
5059 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
5060 if (RT_SUCCESS(rc))
5061 {
5062 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
5063 PGMPhysReleasePageMappingLock(pVM, &Lock);
5064 if (RT_FAILURE(rc))
5065 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5066 }
5067 else
5068 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5069 break;
5070 }
5071
5072 default:
5073 AssertFailed();
5074 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
5075 case PGMPAGETYPE_MMIO:
5076 if (fIncZeroPgs)
5077 {
5078 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5079 if (RT_FAILURE(rc))
5080 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5081 }
5082 break;
5083 }
5084 }
5085
5086
5087 /* advance */
5088 GCPhys += PAGE_SIZE;
5089 pPage++;
5090 }
5091 }
5092 pgmUnlock(pVM);
5093
5094 RTFileClose(hFile);
5095 if (RT_SUCCESS(rc))
5096 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
5097 return VINF_SUCCESS;
5098}
5099
5100#endif /* VBOX_WITH_DEBUGGER */
5101
5102/**
5103 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
5104 */
5105typedef struct PGMCHECKINTARGS
5106{
5107 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
5108 PPGMPHYSHANDLER pPrevPhys;
5109 PPGMVIRTHANDLER pPrevVirt;
5110 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
5111 PVM pVM;
5112} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
5113
5114/**
5115 * Validate a node in the physical handler tree.
5116 *
5117 * @returns 0 on if ok, other wise 1.
5118 * @param pNode The handler node.
5119 * @param pvUser pVM.
5120 */
5121static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5122{
5123 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5124 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
5125 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5126 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5127 AssertReleaseMsg( !pArgs->pPrevPhys
5128 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
5129 ("pPrevPhys=%p %RGp-%RGp %s\n"
5130 " pCur=%p %RGp-%RGp %s\n",
5131 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
5132 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5133 pArgs->pPrevPhys = pCur;
5134 return 0;
5135}
5136
5137
5138/**
5139 * Validate a node in the virtual handler tree.
5140 *
5141 * @returns 0 on if ok, other wise 1.
5142 * @param pNode The handler node.
5143 * @param pvUser pVM.
5144 */
5145static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
5146{
5147 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5148 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
5149 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5150 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5151 AssertReleaseMsg( !pArgs->pPrevVirt
5152 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
5153 ("pPrevVirt=%p %RGv-%RGv %s\n"
5154 " pCur=%p %RGv-%RGv %s\n",
5155 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
5156 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5157 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
5158 {
5159 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
5160 ("pCur=%p %RGv-%RGv %s\n"
5161 "iPage=%d offVirtHandle=%#x expected %#x\n",
5162 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
5163 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
5164 }
5165 pArgs->pPrevVirt = pCur;
5166 return 0;
5167}
5168
5169
5170/**
5171 * Validate a node in the virtual handler tree.
5172 *
5173 * @returns 0 on if ok, other wise 1.
5174 * @param pNode The handler node.
5175 * @param pvUser pVM.
5176 */
5177static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5178{
5179 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5180 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
5181 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
5182 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
5183 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
5184 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5185 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5186 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5187 " pCur=%p %RGp-%RGp\n",
5188 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5189 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5190 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5191 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5192 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5193 " pCur=%p %RGp-%RGp\n",
5194 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5195 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5196 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
5197 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5198 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5199 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
5200 {
5201 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
5202 for (;;)
5203 {
5204 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
5205 AssertReleaseMsg(pCur2 != pCur,
5206 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5207 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5208 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5209 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5210 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5211 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5212 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5213 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5214 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5215 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5216 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5217 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5218 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5219 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5220 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5221 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5222 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5223 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5224 break;
5225 }
5226 }
5227
5228 pArgs->pPrevPhys2Virt = pCur;
5229 return 0;
5230}
5231
5232
5233/**
5234 * Perform an integrity check on the PGM component.
5235 *
5236 * @returns VINF_SUCCESS if everything is fine.
5237 * @returns VBox error status after asserting on integrity breach.
5238 * @param pVM The VM handle.
5239 */
5240VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5241{
5242 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5243
5244 /*
5245 * Check the trees.
5246 */
5247 int cErrors = 0;
5248 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5249 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5250 PGMCHECKINTARGS Args = s_LeftToRight;
5251 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5252 Args = s_RightToLeft;
5253 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5254 Args = s_LeftToRight;
5255 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5256 Args = s_RightToLeft;
5257 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5258 Args = s_LeftToRight;
5259 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5260 Args = s_RightToLeft;
5261 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5262 Args = s_LeftToRight;
5263 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5264 Args = s_RightToLeft;
5265 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5266
5267 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5268}
5269
5270
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette