VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 22544

Last change on this file since 22544 was 22480, checked in by vboxsync, 15 years ago

SSM,VMM,Devices,Main,VBoxBFE: Live snapshot/migration SSM API adjustments.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 240.6 KB
Line 
1/* $Id: PGM.cpp 22480 2009-08-26 17:14:13Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include <VBox/hwaccm.h>
592#include "PGMInternal.h"
593#include <VBox/vm.h>
594
595#include <VBox/dbg.h>
596#include <VBox/param.h>
597#include <VBox/err.h>
598
599#include <iprt/asm.h>
600#include <iprt/assert.h>
601#include <iprt/env.h>
602#include <iprt/mem.h>
603#include <iprt/file.h>
604#include <iprt/string.h>
605#include <iprt/thread.h>
606
607
608/*******************************************************************************
609* Defined Constants And Macros *
610*******************************************************************************/
611/** Saved state data unit version for 2.5.x and later. */
612#define PGM_SAVED_STATE_VERSION 9
613/** Saved state data unit version for 2.2.2 and later. */
614#define PGM_SAVED_STATE_VERSION_2_2_2 8
615/** Saved state data unit version for 2.2.0. */
616#define PGM_SAVED_STATE_VERSION_RR_DESC 7
617/** Saved state data unit version. */
618#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
619
620
621/*******************************************************************************
622* Internal Functions *
623*******************************************************************************/
624static int pgmR3InitPaging(PVM pVM);
625static void pgmR3InitStats(PVM pVM);
626static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
629static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
632#ifdef VBOX_STRICT
633static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
634#endif
635static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
636static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPhase);
637static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
638static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
639static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
640
641#ifdef VBOX_WITH_DEBUGGER
642/** @todo Convert the first two commands to 'info' items. */
643static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648# ifdef VBOX_STRICT
649static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
650# endif
651static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
652#endif
653
654
655/*******************************************************************************
656* Global Variables *
657*******************************************************************************/
658#ifdef VBOX_WITH_DEBUGGER
659/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
660static const DBGCVARDESC g_aPgmErrorArgs[] =
661{
662 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
663 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
664};
665
666static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
667{
668 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
669 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
670 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
671};
672
673/** Command descriptors. */
674static const DBGCCMD g_aCmds[] =
675{
676 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
677 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
678 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
679 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
680 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
681 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
682#ifdef VBOX_STRICT
683 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
684#endif
685 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
686 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
687};
688#endif
689
690
691
692
693/*
694 * Shadow - 32-bit mode
695 */
696#define PGM_SHW_TYPE PGM_TYPE_32BIT
697#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
698#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
699#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
700#include "PGMShw.h"
701
702/* Guest - real mode */
703#define PGM_GST_TYPE PGM_TYPE_REAL
704#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
705#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
706#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
707#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
708#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
709#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
710#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
711#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
712#include "PGMBth.h"
713#include "PGMGstDefs.h"
714#include "PGMGst.h"
715#undef BTH_PGMPOOLKIND_PT_FOR_PT
716#undef BTH_PGMPOOLKIND_ROOT
717#undef PGM_BTH_NAME
718#undef PGM_BTH_NAME_RC_STR
719#undef PGM_BTH_NAME_R0_STR
720#undef PGM_GST_TYPE
721#undef PGM_GST_NAME
722#undef PGM_GST_NAME_RC_STR
723#undef PGM_GST_NAME_R0_STR
724
725/* Guest - protected mode */
726#define PGM_GST_TYPE PGM_TYPE_PROT
727#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
728#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
729#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
730#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
731#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
732#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
733#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
734#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
735#include "PGMBth.h"
736#include "PGMGstDefs.h"
737#include "PGMGst.h"
738#undef BTH_PGMPOOLKIND_PT_FOR_PT
739#undef BTH_PGMPOOLKIND_ROOT
740#undef PGM_BTH_NAME
741#undef PGM_BTH_NAME_RC_STR
742#undef PGM_BTH_NAME_R0_STR
743#undef PGM_GST_TYPE
744#undef PGM_GST_NAME
745#undef PGM_GST_NAME_RC_STR
746#undef PGM_GST_NAME_R0_STR
747
748/* Guest - 32-bit mode */
749#define PGM_GST_TYPE PGM_TYPE_32BIT
750#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
751#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
752#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
753#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
754#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
755#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
756#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
757#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
758#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
759#include "PGMBth.h"
760#include "PGMGstDefs.h"
761#include "PGMGst.h"
762#undef BTH_PGMPOOLKIND_PT_FOR_BIG
763#undef BTH_PGMPOOLKIND_PT_FOR_PT
764#undef BTH_PGMPOOLKIND_ROOT
765#undef PGM_BTH_NAME
766#undef PGM_BTH_NAME_RC_STR
767#undef PGM_BTH_NAME_R0_STR
768#undef PGM_GST_TYPE
769#undef PGM_GST_NAME
770#undef PGM_GST_NAME_RC_STR
771#undef PGM_GST_NAME_R0_STR
772
773#undef PGM_SHW_TYPE
774#undef PGM_SHW_NAME
775#undef PGM_SHW_NAME_RC_STR
776#undef PGM_SHW_NAME_R0_STR
777
778
779/*
780 * Shadow - PAE mode
781 */
782#define PGM_SHW_TYPE PGM_TYPE_PAE
783#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
784#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
785#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
786#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
787#include "PGMShw.h"
788
789/* Guest - real mode */
790#define PGM_GST_TYPE PGM_TYPE_REAL
791#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
792#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
793#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
794#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
795#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
796#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
797#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
798#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
799#include "PGMGstDefs.h"
800#include "PGMBth.h"
801#undef BTH_PGMPOOLKIND_PT_FOR_PT
802#undef BTH_PGMPOOLKIND_ROOT
803#undef PGM_BTH_NAME
804#undef PGM_BTH_NAME_RC_STR
805#undef PGM_BTH_NAME_R0_STR
806#undef PGM_GST_TYPE
807#undef PGM_GST_NAME
808#undef PGM_GST_NAME_RC_STR
809#undef PGM_GST_NAME_R0_STR
810
811/* Guest - protected mode */
812#define PGM_GST_TYPE PGM_TYPE_PROT
813#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
814#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
815#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
816#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
817#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
818#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
819#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
820#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
821#include "PGMGstDefs.h"
822#include "PGMBth.h"
823#undef BTH_PGMPOOLKIND_PT_FOR_PT
824#undef BTH_PGMPOOLKIND_ROOT
825#undef PGM_BTH_NAME
826#undef PGM_BTH_NAME_RC_STR
827#undef PGM_BTH_NAME_R0_STR
828#undef PGM_GST_TYPE
829#undef PGM_GST_NAME
830#undef PGM_GST_NAME_RC_STR
831#undef PGM_GST_NAME_R0_STR
832
833/* Guest - 32-bit mode */
834#define PGM_GST_TYPE PGM_TYPE_32BIT
835#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
836#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
837#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
838#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
839#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
840#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
841#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
842#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
843#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
844#include "PGMGstDefs.h"
845#include "PGMBth.h"
846#undef BTH_PGMPOOLKIND_PT_FOR_BIG
847#undef BTH_PGMPOOLKIND_PT_FOR_PT
848#undef BTH_PGMPOOLKIND_ROOT
849#undef PGM_BTH_NAME
850#undef PGM_BTH_NAME_RC_STR
851#undef PGM_BTH_NAME_R0_STR
852#undef PGM_GST_TYPE
853#undef PGM_GST_NAME
854#undef PGM_GST_NAME_RC_STR
855#undef PGM_GST_NAME_R0_STR
856
857/* Guest - PAE mode */
858#define PGM_GST_TYPE PGM_TYPE_PAE
859#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
860#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
861#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
862#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
863#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
864#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
865#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
866#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
867#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
868#include "PGMBth.h"
869#include "PGMGstDefs.h"
870#include "PGMGst.h"
871#undef BTH_PGMPOOLKIND_PT_FOR_BIG
872#undef BTH_PGMPOOLKIND_PT_FOR_PT
873#undef BTH_PGMPOOLKIND_ROOT
874#undef PGM_BTH_NAME
875#undef PGM_BTH_NAME_RC_STR
876#undef PGM_BTH_NAME_R0_STR
877#undef PGM_GST_TYPE
878#undef PGM_GST_NAME
879#undef PGM_GST_NAME_RC_STR
880#undef PGM_GST_NAME_R0_STR
881
882#undef PGM_SHW_TYPE
883#undef PGM_SHW_NAME
884#undef PGM_SHW_NAME_RC_STR
885#undef PGM_SHW_NAME_R0_STR
886
887
888/*
889 * Shadow - AMD64 mode
890 */
891#define PGM_SHW_TYPE PGM_TYPE_AMD64
892#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
893#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
894#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
895#include "PGMShw.h"
896
897#ifdef VBOX_WITH_64_BITS_GUESTS
898/* Guest - AMD64 mode */
899# define PGM_GST_TYPE PGM_TYPE_AMD64
900# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
901# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
902# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
903# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
904# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
905# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
906# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
907# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
908# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
909# include "PGMBth.h"
910# include "PGMGstDefs.h"
911# include "PGMGst.h"
912# undef BTH_PGMPOOLKIND_PT_FOR_BIG
913# undef BTH_PGMPOOLKIND_PT_FOR_PT
914# undef BTH_PGMPOOLKIND_ROOT
915# undef PGM_BTH_NAME
916# undef PGM_BTH_NAME_RC_STR
917# undef PGM_BTH_NAME_R0_STR
918# undef PGM_GST_TYPE
919# undef PGM_GST_NAME
920# undef PGM_GST_NAME_RC_STR
921# undef PGM_GST_NAME_R0_STR
922#endif /* VBOX_WITH_64_BITS_GUESTS */
923
924#undef PGM_SHW_TYPE
925#undef PGM_SHW_NAME
926#undef PGM_SHW_NAME_RC_STR
927#undef PGM_SHW_NAME_R0_STR
928
929
930/*
931 * Shadow - Nested paging mode
932 */
933#define PGM_SHW_TYPE PGM_TYPE_NESTED
934#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
935#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
936#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
937#include "PGMShw.h"
938
939/* Guest - real mode */
940#define PGM_GST_TYPE PGM_TYPE_REAL
941#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
942#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
943#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
944#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
945#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
946#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
947#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
948#include "PGMGstDefs.h"
949#include "PGMBth.h"
950#undef BTH_PGMPOOLKIND_PT_FOR_PT
951#undef PGM_BTH_NAME
952#undef PGM_BTH_NAME_RC_STR
953#undef PGM_BTH_NAME_R0_STR
954#undef PGM_GST_TYPE
955#undef PGM_GST_NAME
956#undef PGM_GST_NAME_RC_STR
957#undef PGM_GST_NAME_R0_STR
958
959/* Guest - protected mode */
960#define PGM_GST_TYPE PGM_TYPE_PROT
961#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
962#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
963#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
964#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
965#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
966#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
967#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
968#include "PGMGstDefs.h"
969#include "PGMBth.h"
970#undef BTH_PGMPOOLKIND_PT_FOR_PT
971#undef PGM_BTH_NAME
972#undef PGM_BTH_NAME_RC_STR
973#undef PGM_BTH_NAME_R0_STR
974#undef PGM_GST_TYPE
975#undef PGM_GST_NAME
976#undef PGM_GST_NAME_RC_STR
977#undef PGM_GST_NAME_R0_STR
978
979/* Guest - 32-bit mode */
980#define PGM_GST_TYPE PGM_TYPE_32BIT
981#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
982#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
983#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
984#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
985#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
986#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
987#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
988#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
989#include "PGMGstDefs.h"
990#include "PGMBth.h"
991#undef BTH_PGMPOOLKIND_PT_FOR_BIG
992#undef BTH_PGMPOOLKIND_PT_FOR_PT
993#undef PGM_BTH_NAME
994#undef PGM_BTH_NAME_RC_STR
995#undef PGM_BTH_NAME_R0_STR
996#undef PGM_GST_TYPE
997#undef PGM_GST_NAME
998#undef PGM_GST_NAME_RC_STR
999#undef PGM_GST_NAME_R0_STR
1000
1001/* Guest - PAE mode */
1002#define PGM_GST_TYPE PGM_TYPE_PAE
1003#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1004#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1005#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1006#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1007#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1008#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1009#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1010#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1011#include "PGMGstDefs.h"
1012#include "PGMBth.h"
1013#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1014#undef BTH_PGMPOOLKIND_PT_FOR_PT
1015#undef PGM_BTH_NAME
1016#undef PGM_BTH_NAME_RC_STR
1017#undef PGM_BTH_NAME_R0_STR
1018#undef PGM_GST_TYPE
1019#undef PGM_GST_NAME
1020#undef PGM_GST_NAME_RC_STR
1021#undef PGM_GST_NAME_R0_STR
1022
1023#ifdef VBOX_WITH_64_BITS_GUESTS
1024/* Guest - AMD64 mode */
1025# define PGM_GST_TYPE PGM_TYPE_AMD64
1026# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1027# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1028# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1029# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1030# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1031# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1032# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1033# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1034# include "PGMGstDefs.h"
1035# include "PGMBth.h"
1036# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1037# undef BTH_PGMPOOLKIND_PT_FOR_PT
1038# undef PGM_BTH_NAME
1039# undef PGM_BTH_NAME_RC_STR
1040# undef PGM_BTH_NAME_R0_STR
1041# undef PGM_GST_TYPE
1042# undef PGM_GST_NAME
1043# undef PGM_GST_NAME_RC_STR
1044# undef PGM_GST_NAME_R0_STR
1045#endif /* VBOX_WITH_64_BITS_GUESTS */
1046
1047#undef PGM_SHW_TYPE
1048#undef PGM_SHW_NAME
1049#undef PGM_SHW_NAME_RC_STR
1050#undef PGM_SHW_NAME_R0_STR
1051
1052
1053/*
1054 * Shadow - EPT
1055 */
1056#define PGM_SHW_TYPE PGM_TYPE_EPT
1057#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1058#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1059#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1060#include "PGMShw.h"
1061
1062/* Guest - real mode */
1063#define PGM_GST_TYPE PGM_TYPE_REAL
1064#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1065#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1066#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1067#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1068#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1069#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1070#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1071#include "PGMGstDefs.h"
1072#include "PGMBth.h"
1073#undef BTH_PGMPOOLKIND_PT_FOR_PT
1074#undef PGM_BTH_NAME
1075#undef PGM_BTH_NAME_RC_STR
1076#undef PGM_BTH_NAME_R0_STR
1077#undef PGM_GST_TYPE
1078#undef PGM_GST_NAME
1079#undef PGM_GST_NAME_RC_STR
1080#undef PGM_GST_NAME_R0_STR
1081
1082/* Guest - protected mode */
1083#define PGM_GST_TYPE PGM_TYPE_PROT
1084#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1085#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1086#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1087#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1088#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1089#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1090#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1091#include "PGMGstDefs.h"
1092#include "PGMBth.h"
1093#undef BTH_PGMPOOLKIND_PT_FOR_PT
1094#undef PGM_BTH_NAME
1095#undef PGM_BTH_NAME_RC_STR
1096#undef PGM_BTH_NAME_R0_STR
1097#undef PGM_GST_TYPE
1098#undef PGM_GST_NAME
1099#undef PGM_GST_NAME_RC_STR
1100#undef PGM_GST_NAME_R0_STR
1101
1102/* Guest - 32-bit mode */
1103#define PGM_GST_TYPE PGM_TYPE_32BIT
1104#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1105#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1106#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1107#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1108#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1109#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1110#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1111#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1112#include "PGMGstDefs.h"
1113#include "PGMBth.h"
1114#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1115#undef BTH_PGMPOOLKIND_PT_FOR_PT
1116#undef PGM_BTH_NAME
1117#undef PGM_BTH_NAME_RC_STR
1118#undef PGM_BTH_NAME_R0_STR
1119#undef PGM_GST_TYPE
1120#undef PGM_GST_NAME
1121#undef PGM_GST_NAME_RC_STR
1122#undef PGM_GST_NAME_R0_STR
1123
1124/* Guest - PAE mode */
1125#define PGM_GST_TYPE PGM_TYPE_PAE
1126#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1127#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1128#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1129#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1130#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1131#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1132#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1133#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1134#include "PGMGstDefs.h"
1135#include "PGMBth.h"
1136#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1137#undef BTH_PGMPOOLKIND_PT_FOR_PT
1138#undef PGM_BTH_NAME
1139#undef PGM_BTH_NAME_RC_STR
1140#undef PGM_BTH_NAME_R0_STR
1141#undef PGM_GST_TYPE
1142#undef PGM_GST_NAME
1143#undef PGM_GST_NAME_RC_STR
1144#undef PGM_GST_NAME_R0_STR
1145
1146#ifdef VBOX_WITH_64_BITS_GUESTS
1147/* Guest - AMD64 mode */
1148# define PGM_GST_TYPE PGM_TYPE_AMD64
1149# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1150# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1151# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1152# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1153# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1154# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1155# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1156# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1157# include "PGMGstDefs.h"
1158# include "PGMBth.h"
1159# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1160# undef BTH_PGMPOOLKIND_PT_FOR_PT
1161# undef PGM_BTH_NAME
1162# undef PGM_BTH_NAME_RC_STR
1163# undef PGM_BTH_NAME_R0_STR
1164# undef PGM_GST_TYPE
1165# undef PGM_GST_NAME
1166# undef PGM_GST_NAME_RC_STR
1167# undef PGM_GST_NAME_R0_STR
1168#endif /* VBOX_WITH_64_BITS_GUESTS */
1169
1170#undef PGM_SHW_TYPE
1171#undef PGM_SHW_NAME
1172#undef PGM_SHW_NAME_RC_STR
1173#undef PGM_SHW_NAME_R0_STR
1174
1175
1176
1177/**
1178 * Initiates the paging of VM.
1179 *
1180 * @returns VBox status code.
1181 * @param pVM Pointer to VM structure.
1182 */
1183VMMR3DECL(int) PGMR3Init(PVM pVM)
1184{
1185 LogFlow(("PGMR3Init:\n"));
1186 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1187 int rc;
1188
1189 /*
1190 * Assert alignment and sizes.
1191 */
1192 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1193 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1194
1195 /*
1196 * Init the structure.
1197 */
1198 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1199 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1200
1201 /* Init the per-CPU part. */
1202 for (unsigned i=0;i<pVM->cCPUs;i++)
1203 {
1204 PVMCPU pVCpu = &pVM->aCpus[i];
1205 PPGMCPU pPGM = &pVCpu->pgm.s;
1206
1207 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1208 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1209 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1210
1211 pPGM->enmShadowMode = PGMMODE_INVALID;
1212 pPGM->enmGuestMode = PGMMODE_INVALID;
1213
1214 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1215
1216 pPGM->pGstPaePdptR3 = NULL;
1217#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1218 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1219#endif
1220 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1221 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1222 {
1223 pPGM->apGstPaePDsR3[i] = NULL;
1224#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1225 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1226#endif
1227 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1228 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1229 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1230 }
1231
1232 pPGM->fA20Enabled = true;
1233 }
1234
1235 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1236 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1237 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1238
1239 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1240#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1241 true
1242#else
1243 false
1244#endif
1245 );
1246 AssertLogRelRCReturn(rc, rc);
1247
1248#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1249 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1250#else
1251 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1252#endif
1253 AssertLogRelRCReturn(rc, rc);
1254 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1255 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1256
1257 /*
1258 * Get the configured RAM size - to estimate saved state size.
1259 */
1260 uint64_t cbRam;
1261 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1262 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1263 cbRam = 0;
1264 else if (RT_SUCCESS(rc))
1265 {
1266 if (cbRam < PAGE_SIZE)
1267 cbRam = 0;
1268 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1269 }
1270 else
1271 {
1272 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1273 return rc;
1274 }
1275
1276 /*
1277 * Register callbacks, string formatters and the saved state data unit.
1278 */
1279#ifdef VBOX_STRICT
1280 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1281#endif
1282 PGMRegisterStringFormatTypes();
1283
1284 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1285 NULL, NULL, NULL,
1286 NULL, pgmR3Save, NULL,
1287 NULL, pgmR3Load, NULL);
1288 if (RT_FAILURE(rc))
1289 return rc;
1290
1291 /*
1292 * Initialize the PGM critical section and flush the phys TLBs
1293 */
1294 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1295 AssertRCReturn(rc, rc);
1296
1297 PGMR3PhysChunkInvalidateTLB(pVM);
1298 PGMPhysInvalidatePageR3MapTLB(pVM);
1299 PGMPhysInvalidatePageR0MapTLB(pVM);
1300 PGMPhysInvalidatePageGCMapTLB(pVM);
1301
1302 /*
1303 * For the time being we sport a full set of handy pages in addition to the base
1304 * memory to simplify things.
1305 */
1306 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1307 AssertRCReturn(rc, rc);
1308
1309 /*
1310 * Trees
1311 */
1312 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1313 if (RT_SUCCESS(rc))
1314 {
1315 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1316 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1317
1318 /*
1319 * Alocate the zero page.
1320 */
1321 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1322 }
1323 if (RT_SUCCESS(rc))
1324 {
1325 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1326 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1327 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1328 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1329
1330 /*
1331 * Init the paging.
1332 */
1333 rc = pgmR3InitPaging(pVM);
1334 }
1335 if (RT_SUCCESS(rc))
1336 {
1337 /*
1338 * Init the page pool.
1339 */
1340 rc = pgmR3PoolInit(pVM);
1341 }
1342 if (RT_SUCCESS(rc))
1343 {
1344 for (unsigned i=0;i<pVM->cCPUs;i++)
1345 {
1346 PVMCPU pVCpu = &pVM->aCpus[i];
1347
1348 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1349 if (RT_FAILURE(rc))
1350 break;
1351 }
1352 }
1353
1354 if (RT_SUCCESS(rc))
1355 {
1356 /*
1357 * Info & statistics
1358 */
1359 DBGFR3InfoRegisterInternal(pVM, "mode",
1360 "Shows the current paging mode. "
1361 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1362 pgmR3InfoMode);
1363 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1364 "Dumps all the entries in the top level paging table. No arguments.",
1365 pgmR3InfoCr3);
1366 DBGFR3InfoRegisterInternal(pVM, "phys",
1367 "Dumps all the physical address ranges. No arguments.",
1368 pgmR3PhysInfo);
1369 DBGFR3InfoRegisterInternal(pVM, "handlers",
1370 "Dumps physical, virtual and hyper virtual handlers. "
1371 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1372 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1373 pgmR3InfoHandlers);
1374 DBGFR3InfoRegisterInternal(pVM, "mappings",
1375 "Dumps guest mappings.",
1376 pgmR3MapInfo);
1377
1378 pgmR3InitStats(pVM);
1379
1380#ifdef VBOX_WITH_DEBUGGER
1381 /*
1382 * Debugger commands.
1383 */
1384 static bool s_fRegisteredCmds = false;
1385 if (!s_fRegisteredCmds)
1386 {
1387 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1388 if (RT_SUCCESS(rc))
1389 s_fRegisteredCmds = true;
1390 }
1391#endif
1392 return VINF_SUCCESS;
1393 }
1394
1395 /* Almost no cleanup necessary, MM frees all memory. */
1396 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1397
1398 return rc;
1399}
1400
1401
1402/**
1403 * Initializes the per-VCPU PGM.
1404 *
1405 * @returns VBox status code.
1406 * @param pVM The VM to operate on.
1407 */
1408VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1409{
1410 LogFlow(("PGMR3InitCPU\n"));
1411 return VINF_SUCCESS;
1412}
1413
1414
1415/**
1416 * Init paging.
1417 *
1418 * Since we need to check what mode the host is operating in before we can choose
1419 * the right paging functions for the host we have to delay this until R0 has
1420 * been initialized.
1421 *
1422 * @returns VBox status code.
1423 * @param pVM VM handle.
1424 */
1425static int pgmR3InitPaging(PVM pVM)
1426{
1427 /*
1428 * Force a recalculation of modes and switcher so everyone gets notified.
1429 */
1430 for (unsigned i=0;i<pVM->cCPUs;i++)
1431 {
1432 PVMCPU pVCpu = &pVM->aCpus[i];
1433
1434 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1435 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1436 }
1437
1438 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1439
1440 /*
1441 * Allocate static mapping space for whatever the cr3 register
1442 * points to and in the case of PAE mode to the 4 PDs.
1443 */
1444 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1445 if (RT_FAILURE(rc))
1446 {
1447 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1448 return rc;
1449 }
1450 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1451
1452 /*
1453 * Allocate pages for the three possible intermediate contexts
1454 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1455 * for the sake of simplicity. The AMD64 uses the PAE for the
1456 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1457 *
1458 * We assume that two page tables will be enought for the core code
1459 * mappings (HC virtual and identity).
1460 */
1461 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1470 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1471 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1472 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1473
1474 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1475 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1476 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1477 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1478 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1479 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1480
1481 /*
1482 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1483 */
1484 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1485 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1486 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1487
1488 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1489 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1490
1491 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1492 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1493 {
1494 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1495 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1496 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1497 }
1498
1499 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1500 {
1501 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1502 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1503 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1504 }
1505
1506 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1507 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1508 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1509 | HCPhysInterPaePDPT64;
1510
1511 /*
1512 * Initialize paging workers and mode from current host mode
1513 * and the guest running in real mode.
1514 */
1515 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1516 switch (pVM->pgm.s.enmHostMode)
1517 {
1518 case SUPPAGINGMODE_32_BIT:
1519 case SUPPAGINGMODE_32_BIT_GLOBAL:
1520 case SUPPAGINGMODE_PAE:
1521 case SUPPAGINGMODE_PAE_GLOBAL:
1522 case SUPPAGINGMODE_PAE_NX:
1523 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1524 break;
1525
1526 case SUPPAGINGMODE_AMD64:
1527 case SUPPAGINGMODE_AMD64_GLOBAL:
1528 case SUPPAGINGMODE_AMD64_NX:
1529 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1530#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1531 if (ARCH_BITS != 64)
1532 {
1533 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1534 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1535 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1536 }
1537#endif
1538 break;
1539 default:
1540 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1541 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1542 }
1543 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1544 if (RT_SUCCESS(rc))
1545 {
1546 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1547#if HC_ARCH_BITS == 64
1548 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1549 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1550 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1551 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1552 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1553 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1554 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1555#endif
1556
1557 return VINF_SUCCESS;
1558 }
1559
1560 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1561 return rc;
1562}
1563
1564
1565/**
1566 * Init statistics
1567 */
1568static void pgmR3InitStats(PVM pVM)
1569{
1570 PPGM pPGM = &pVM->pgm.s;
1571 int rc;
1572
1573 /* Common - misc variables */
1574 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1575 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1576 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1577 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1578 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_OCCURENCES, "The number of handy pages (not included in cAllPages).");
1579 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES, "Number of hypervisor relocations.");
1580 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1581 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1582
1583#ifdef VBOX_WITH_STATISTICS
1584
1585# define PGM_REG_COUNTER(a, b, c) \
1586 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1587 AssertRC(rc);
1588
1589# define PGM_REG_COUNTER_BYTES(a, b, c) \
1590 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1591 AssertRC(rc);
1592
1593# define PGM_REG_PROFILE(a, b, c) \
1594 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1595 AssertRC(rc);
1596
1597 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1598 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1599 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1600 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1601 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1602 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1603 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1604 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1605 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1606 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1607
1608 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1609 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1610 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1611 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1612 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1613 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1614 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1615 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1616
1617 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1618 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1619 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1620 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1621
1622 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1623 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1624 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1625 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1626
1627 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1628 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1629/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1630 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1631 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1632/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1633
1634 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1635 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1636 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1637 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1638 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1639 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1640 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1641 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1642
1643 /* GC only: */
1644 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1645 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1646 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1647 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1648
1649 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1650 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1651 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1652 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1653 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1654 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1655 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1656 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1657
1658# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1659 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1660 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1661 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1662 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1663 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1664 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1665# endif
1666
1667# undef PGM_REG_COUNTER
1668# undef PGM_REG_PROFILE
1669#endif
1670
1671 /*
1672 * Note! The layout below matches the member layout exactly!
1673 */
1674
1675 /*
1676 * Common - stats
1677 */
1678 for (unsigned i=0;i<pVM->cCPUs;i++)
1679 {
1680 PVMCPU pVCpu = &pVM->aCpus[i];
1681 PPGMCPU pPGM = &pVCpu->pgm.s;
1682
1683#define PGM_REG_COUNTER(a, b, c) \
1684 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, i); \
1685 AssertRC(rc);
1686#define PGM_REG_PROFILE(a, b, c) \
1687 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, i); \
1688 AssertRC(rc);
1689
1690 PGM_REG_COUNTER(&pPGM->cGuestModeChanges, "/PGM/CPU%d/cGuestModeChanges", "Number of guest mode changes.");
1691
1692#ifdef VBOX_WITH_STATISTICS
1693
1694# if 0 /* rarely useful; leave for debugging. */
1695 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPtPD); j++)
1696 STAMR3RegisterF(pVM, &pPGM->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1697 "The number of SyncPT per PD n.", "/PGM/CPU%d/PDSyncPT/%04X", i, j);
1698 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatSyncPagePD); j++)
1699 STAMR3RegisterF(pVM, &pPGM->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1700 "The number of SyncPage per PD n.", "/PGM/CPU%d/PDSyncPage/%04X", i, j);
1701# endif
1702 /* R0 only: */
1703 PGM_REG_COUNTER(&pPGM->StatR0DynMapMigrateInvlPg, "/PGM/CPU%d/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1704 PGM_REG_PROFILE(&pPGM->StatR0DynMapGCPageInl, "/PGM/CPU%d/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1705 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1706 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1707 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1708 PGM_REG_COUNTER(&pPGM->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%d/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1709 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPageInl, "/PGM/CPU%d/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1710 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlHits, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1711 PGM_REG_COUNTER(&pPGM->StatR0DynMapHCPageInlMisses, "/PGM/CPU%d/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1712 PGM_REG_COUNTER(&pPGM->StatR0DynMapPage, "/PGM/CPU%d/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1713 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetOptimize, "/PGM/CPU%d/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1714 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchFlushes, "/PGM/CPU%d/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1715 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchHits, "/PGM/CPU%d/R0/DynMapPage/SetSearchHits", "Set search hits.");
1716 PGM_REG_COUNTER(&pPGM->StatR0DynMapSetSearchMisses, "/PGM/CPU%d/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1717 PGM_REG_PROFILE(&pPGM->StatR0DynMapHCPage, "/PGM/CPU%d/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1718 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits0, "/PGM/CPU%d/R0/DynMapPage/Hits0", "Hits at iPage+0");
1719 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits1, "/PGM/CPU%d/R0/DynMapPage/Hits1", "Hits at iPage+1");
1720 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageHits2, "/PGM/CPU%d/R0/DynMapPage/Hits2", "Hits at iPage+2");
1721 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageInvlPg, "/PGM/CPU%d/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1722 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlow, "/PGM/CPU%d/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1723 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%d/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1724 PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%d/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1725 //PGM_REG_COUNTER(&pPGM->StatR0DynMapPageSlowLostHits, "/PGM/CPU%d/R0/DynMapPage/SlowLostHits", "Lost hits.");
1726 PGM_REG_COUNTER(&pPGM->StatR0DynMapSubsets, "/PGM/CPU%d/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1727 PGM_REG_COUNTER(&pPGM->StatR0DynMapPopFlushes, "/PGM/CPU%d/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1728 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[0], "/PGM/CPU%d/R0/SetSize000..09", "00-09% filled");
1729 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[1], "/PGM/CPU%d/R0/SetSize010..19", "10-19% filled");
1730 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[2], "/PGM/CPU%d/R0/SetSize020..29", "20-29% filled");
1731 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[3], "/PGM/CPU%d/R0/SetSize030..39", "30-39% filled");
1732 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[4], "/PGM/CPU%d/R0/SetSize040..49", "40-49% filled");
1733 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[5], "/PGM/CPU%d/R0/SetSize050..59", "50-59% filled");
1734 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[6], "/PGM/CPU%d/R0/SetSize060..69", "60-69% filled");
1735 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[7], "/PGM/CPU%d/R0/SetSize070..79", "70-79% filled");
1736 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[8], "/PGM/CPU%d/R0/SetSize080..89", "80-89% filled");
1737 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[9], "/PGM/CPU%d/R0/SetSize090..99", "90-99% filled");
1738 PGM_REG_COUNTER(&pPGM->aStatR0DynMapSetSize[10], "/PGM/CPU%d/R0/SetSize100", "100% filled");
1739
1740 /* RZ only: */
1741 PGM_REG_PROFILE(&pPGM->StatRZTrap0e, "/PGM/CPU%d/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1742 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%d/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1743 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeSyncPT, "/PGM/CPU%d/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1744 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeMapping, "/PGM/CPU%d/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1745 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1746 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTimeHandlers, "/PGM/CPU%d/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1747 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2CSAM, "/PGM/CPU%d/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1748 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%d/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1749 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%d/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1750 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1751 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1752 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%d/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1753 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2Misc, "/PGM/CPU%d/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1754 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1755 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1756 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1757 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%d/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1758 PGM_REG_PROFILE(&pPGM->StatRZTrap0eTime2SyncPT, "/PGM/CPU%d/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1759 PGM_REG_COUNTER(&pPGM->StatRZTrap0eConflicts, "/PGM/CPU%d/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1760 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersMapping, "/PGM/CPU%d/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1761 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%d/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1762 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersPhysical, "/PGM/CPU%d/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1763 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtual, "/PGM/CPU%d/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1764 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1765 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%d/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1766 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%d/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1767 PGM_REG_COUNTER(&pPGM->StatRZTrap0eHandlersInvalid, "/PGM/CPU%d/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1768 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1769 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1770 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSWrite, "/PGM/CPU%d/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1771 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSReserved, "/PGM/CPU%d/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1772 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1773 PGM_REG_COUNTER(&pPGM->StatRZTrap0eUSRead, "/PGM/CPU%d/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1774 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1775 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1776 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVWrite, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1777 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSVReserved, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1778 PGM_REG_COUNTER(&pPGM->StatRZTrap0eSNXE, "/PGM/CPU%d/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1779 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPF, "/PGM/CPU%d/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1780 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFUnh, "/PGM/CPU%d/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1781 PGM_REG_COUNTER(&pPGM->StatRZTrap0eGuestPFMapping, "/PGM/CPU%d/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1782 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%d/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1783 PGM_REG_COUNTER(&pPGM->StatRZTrap0eWPEmulToR3, "/PGM/CPU%d/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1784#if 0 /* rarely useful; leave for debugging. */
1785 for (unsigned j = 0; j < RT_ELEMENTS(pPGM->StatRZTrap0ePD); j++)
1786 STAMR3RegisterF(pVM, &pPGM->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1787 "The number of traps in page directory n.", "/PGM/CPU%d/RZ/Trap0e/PD/%04X", i, j);
1788#endif
1789 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteHandled, "/PGM/CPU%d/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1790 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%d/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1791 PGM_REG_COUNTER(&pPGM->StatRZGuestCR3WriteConflict, "/PGM/CPU%d/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1792 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteHandled, "/PGM/CPU%d/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1793 PGM_REG_COUNTER(&pPGM->StatRZGuestROMWriteUnhandled, "/PGM/CPU%d/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1794
1795 /* HC only: */
1796
1797 /* RZ & R3: */
1798 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3, "/PGM/CPU%d/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1799 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3Handlers, "/PGM/CPU%d/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1800 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3Global, "/PGM/CPU%d/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1801 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3NotGlobal, "/PGM/CPU%d/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1802 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstCacheHit, "/PGM/CPU%d/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1803 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreed, "/PGM/CPU%d/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1804 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%d/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1805 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstNotPresent, "/PGM/CPU%d/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1806 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1807 PGM_REG_COUNTER(&pPGM->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1808 PGM_REG_PROFILE(&pPGM->StatRZSyncPT, "/PGM/CPU%d/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1809 PGM_REG_COUNTER(&pPGM->StatRZSyncPTFailed, "/PGM/CPU%d/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1810 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4K, "/PGM/CPU%d/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1811 PGM_REG_COUNTER(&pPGM->StatRZSyncPT4M, "/PGM/CPU%d/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1812 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDNAs, "/PGM/CPU%d/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1813 PGM_REG_COUNTER(&pPGM->StatRZSyncPagePDOutOfSync, "/PGM/CPU%d/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1814 PGM_REG_COUNTER(&pPGM->StatRZAccessedPage, "/PGM/CPU%d/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1815 PGM_REG_PROFILE(&pPGM->StatRZDirtyBitTracking, "/PGM/CPU%d/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1816 PGM_REG_COUNTER(&pPGM->StatRZDirtyPage, "/PGM/CPU%d/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1817 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageBig, "/PGM/CPU%d/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1818 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageSkipped, "/PGM/CPU%d/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1819 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageTrap, "/PGM/CPU%d/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1820 PGM_REG_COUNTER(&pPGM->StatRZDirtyPageStale, "/PGM/CPU%d/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1821 PGM_REG_COUNTER(&pPGM->StatRZDirtiedPage, "/PGM/CPU%d/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1822 PGM_REG_COUNTER(&pPGM->StatRZDirtyTrackRealPF, "/PGM/CPU%d/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1823 PGM_REG_COUNTER(&pPGM->StatRZPageAlreadyDirty, "/PGM/CPU%d/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1824 PGM_REG_PROFILE(&pPGM->StatRZInvalidatePage, "/PGM/CPU%d/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1825 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4KBPages, "/PGM/CPU%d/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1826 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPages, "/PGM/CPU%d/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1827 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%d/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1828 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDMappings, "/PGM/CPU%d/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1829 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNAs, "/PGM/CPU%d/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1830 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDNPs, "/PGM/CPU%d/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1831 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%d/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1832 PGM_REG_COUNTER(&pPGM->StatRZInvalidatePageSkipped, "/PGM/CPU%d/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1833 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%d/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1834 PGM_REG_COUNTER(&pPGM->StatRZPageOutOfSyncUser, "/PGM/CPU%d/RZ/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1835 PGM_REG_PROFILE(&pPGM->StatRZPrefetch, "/PGM/CPU%d/RZ/Prefetch", "PGMPrefetchPage profiling.");
1836 PGM_REG_PROFILE(&pPGM->StatRZFlushTLB, "/PGM/CPU%d/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1837 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3, "/PGM/CPU%d/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1838 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBNewCR3Global, "/PGM/CPU%d/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1839 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3, "/PGM/CPU%d/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1840 PGM_REG_COUNTER(&pPGM->StatRZFlushTLBSameCR3Global, "/PGM/CPU%d/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1841 PGM_REG_PROFILE(&pPGM->StatRZGstModifyPage, "/PGM/CPU%d/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1842
1843 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3, "/PGM/CPU%d/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1844 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3Handlers, "/PGM/CPU%d/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1845 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3Global, "/PGM/CPU%d/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1846 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3NotGlobal, "/PGM/CPU%d/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1847 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstCacheHit, "/PGM/CPU%d/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1848 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreed, "/PGM/CPU%d/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1849 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%d/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1850 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstNotPresent, "/PGM/CPU%d/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1851 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1852 PGM_REG_COUNTER(&pPGM->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%d/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1853 PGM_REG_PROFILE(&pPGM->StatR3SyncPT, "/PGM/CPU%d/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1854 PGM_REG_COUNTER(&pPGM->StatR3SyncPTFailed, "/PGM/CPU%d/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1855 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4K, "/PGM/CPU%d/R3/SyncPT/4K", "Nr of 4K PT syncs");
1856 PGM_REG_COUNTER(&pPGM->StatR3SyncPT4M, "/PGM/CPU%d/R3/SyncPT/4M", "Nr of 4M PT syncs");
1857 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDNAs, "/PGM/CPU%d/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1858 PGM_REG_COUNTER(&pPGM->StatR3SyncPagePDOutOfSync, "/PGM/CPU%d/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1859 PGM_REG_COUNTER(&pPGM->StatR3AccessedPage, "/PGM/CPU%d/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1860 PGM_REG_PROFILE(&pPGM->StatR3DirtyBitTracking, "/PGM/CPU%d/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1861 PGM_REG_COUNTER(&pPGM->StatR3DirtyPage, "/PGM/CPU%d/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1862 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageBig, "/PGM/CPU%d/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1863 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageSkipped, "/PGM/CPU%d/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1864 PGM_REG_COUNTER(&pPGM->StatR3DirtyPageTrap, "/PGM/CPU%d/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1865 PGM_REG_COUNTER(&pPGM->StatR3DirtiedPage, "/PGM/CPU%d/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1866 PGM_REG_COUNTER(&pPGM->StatR3DirtyTrackRealPF, "/PGM/CPU%d/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1867 PGM_REG_COUNTER(&pPGM->StatR3PageAlreadyDirty, "/PGM/CPU%d/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1868 PGM_REG_PROFILE(&pPGM->StatR3InvalidatePage, "/PGM/CPU%d/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1869 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4KBPages, "/PGM/CPU%d/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1870 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPages, "/PGM/CPU%d/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1871 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%d/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1872 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDMappings, "/PGM/CPU%d/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1873 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNAs, "/PGM/CPU%d/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1874 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDNPs, "/PGM/CPU%d/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1875 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%d/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1876 PGM_REG_COUNTER(&pPGM->StatR3InvalidatePageSkipped, "/PGM/CPU%d/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1877 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%d/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1878 PGM_REG_COUNTER(&pPGM->StatR3PageOutOfSyncUser, "/PGM/CPU%d/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1879 PGM_REG_PROFILE(&pPGM->StatR3Prefetch, "/PGM/CPU%d/R3/Prefetch", "PGMPrefetchPage profiling.");
1880 PGM_REG_PROFILE(&pPGM->StatR3FlushTLB, "/PGM/CPU%d/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1881 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3, "/PGM/CPU%d/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1882 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBNewCR3Global, "/PGM/CPU%d/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1883 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3, "/PGM/CPU%d/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1884 PGM_REG_COUNTER(&pPGM->StatR3FlushTLBSameCR3Global, "/PGM/CPU%d/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1885 PGM_REG_PROFILE(&pPGM->StatR3GstModifyPage, "/PGM/CPU%d/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1886#endif /* VBOX_WITH_STATISTICS */
1887
1888#undef PGM_REG_PROFILE
1889#undef PGM_REG_COUNTER
1890
1891 }
1892}
1893
1894
1895/**
1896 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1897 *
1898 * The dynamic mapping area will also be allocated and initialized at this
1899 * time. We could allocate it during PGMR3Init of course, but the mapping
1900 * wouldn't be allocated at that time preventing us from setting up the
1901 * page table entries with the dummy page.
1902 *
1903 * @returns VBox status code.
1904 * @param pVM VM handle.
1905 */
1906VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1907{
1908 RTGCPTR GCPtr;
1909 int rc;
1910
1911 /*
1912 * Reserve space for the dynamic mappings.
1913 */
1914 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1915 if (RT_SUCCESS(rc))
1916 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1917
1918 if ( RT_SUCCESS(rc)
1919 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1920 {
1921 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1922 if (RT_SUCCESS(rc))
1923 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1924 }
1925 if (RT_SUCCESS(rc))
1926 {
1927 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1928 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1929 }
1930 return rc;
1931}
1932
1933
1934/**
1935 * Ring-3 init finalizing.
1936 *
1937 * @returns VBox status code.
1938 * @param pVM The VM handle.
1939 */
1940VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1941{
1942 int rc;
1943
1944 /*
1945 * Reserve space for the dynamic mappings.
1946 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1947 */
1948 /* get the pointer to the page table entries. */
1949 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1950 AssertRelease(pMapping);
1951 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1952 const unsigned iPT = off >> X86_PD_SHIFT;
1953 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1954 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1955 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1956
1957 /* init cache */
1958 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1959 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1960 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1961
1962 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1963 {
1964 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1965 AssertRCReturn(rc, rc);
1966 }
1967
1968 /*
1969 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1970 * Intel only goes up to 36 bits, so we stick to 36 as well.
1971 */
1972 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1973 uint32_t u32Dummy, u32Features;
1974 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1975
1976 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1977 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1978 else
1979 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1980
1981 /*
1982 * Allocate memory if we're supposed to do that.
1983 */
1984 if (pVM->pgm.s.fRamPreAlloc)
1985 rc = pgmR3PhysRamPreAllocate(pVM);
1986
1987 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
1988 return rc;
1989}
1990
1991
1992/**
1993 * Applies relocations to data and code managed by this component.
1994 *
1995 * This function will be called at init and whenever the VMM need to relocate it
1996 * self inside the GC.
1997 *
1998 * @param pVM The VM.
1999 * @param offDelta Relocation delta relative to old location.
2000 */
2001VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2002{
2003 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2004
2005 /*
2006 * Paging stuff.
2007 */
2008 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2009
2010 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2011
2012 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2013 for (unsigned i=0;i<pVM->cCPUs;i++)
2014 {
2015 PVMCPU pVCpu = &pVM->aCpus[i];
2016
2017 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2018
2019 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2020 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2021 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2022 }
2023
2024 /*
2025 * Trees.
2026 */
2027 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2028
2029 /*
2030 * Ram ranges.
2031 */
2032 if (pVM->pgm.s.pRamRangesR3)
2033 {
2034 /* Update the pSelfRC pointers and relink them. */
2035 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2036 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2037 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2038 pgmR3PhysRelinkRamRanges(pVM);
2039 }
2040
2041 /*
2042 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2043 * be mapped and thus not included in the above exercise.
2044 */
2045 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2046 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2047 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2048
2049 /*
2050 * Update the two page directories with all page table mappings.
2051 * (One or more of them have changed, that's why we're here.)
2052 */
2053 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2054 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2055 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2056
2057 /* Relocate GC addresses of Page Tables. */
2058 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2059 {
2060 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2061 {
2062 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2063 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2064 }
2065 }
2066
2067 /*
2068 * Dynamic page mapping area.
2069 */
2070 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2071 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2072 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2073
2074 /*
2075 * The Zero page.
2076 */
2077 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2078#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2079 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2080#else
2081 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2082#endif
2083
2084 /*
2085 * Physical and virtual handlers.
2086 */
2087 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2088 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2089 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2090
2091 /*
2092 * The page pool.
2093 */
2094 pgmR3PoolRelocate(pVM);
2095}
2096
2097
2098/**
2099 * Callback function for relocating a physical access handler.
2100 *
2101 * @returns 0 (continue enum)
2102 * @param pNode Pointer to a PGMPHYSHANDLER node.
2103 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2104 * not certain the delta will fit in a void pointer for all possible configs.
2105 */
2106static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2107{
2108 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2109 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2110 if (pHandler->pfnHandlerRC)
2111 pHandler->pfnHandlerRC += offDelta;
2112 if (pHandler->pvUserRC >= 0x10000)
2113 pHandler->pvUserRC += offDelta;
2114 return 0;
2115}
2116
2117
2118/**
2119 * Callback function for relocating a virtual access handler.
2120 *
2121 * @returns 0 (continue enum)
2122 * @param pNode Pointer to a PGMVIRTHANDLER node.
2123 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2124 * not certain the delta will fit in a void pointer for all possible configs.
2125 */
2126static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2127{
2128 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2129 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2130 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2131 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2132 Assert(pHandler->pfnHandlerRC);
2133 pHandler->pfnHandlerRC += offDelta;
2134 return 0;
2135}
2136
2137
2138/**
2139 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2140 *
2141 * @returns 0 (continue enum)
2142 * @param pNode Pointer to a PGMVIRTHANDLER node.
2143 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2144 * not certain the delta will fit in a void pointer for all possible configs.
2145 */
2146static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2147{
2148 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2149 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2150 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2151 Assert(pHandler->pfnHandlerRC);
2152 pHandler->pfnHandlerRC += offDelta;
2153 return 0;
2154}
2155
2156
2157/**
2158 * The VM is being reset.
2159 *
2160 * For the PGM component this means that any PD write monitors
2161 * needs to be removed.
2162 *
2163 * @param pVM VM handle.
2164 */
2165VMMR3DECL(void) PGMR3Reset(PVM pVM)
2166{
2167 int rc;
2168
2169 LogFlow(("PGMR3Reset:\n"));
2170 VM_ASSERT_EMT(pVM);
2171
2172 pgmLock(pVM);
2173
2174 /*
2175 * Unfix any fixed mappings and disable CR3 monitoring.
2176 */
2177 pVM->pgm.s.fMappingsFixed = false;
2178 pVM->pgm.s.GCPtrMappingFixed = 0;
2179 pVM->pgm.s.cbMappingFixed = 0;
2180
2181 /* Exit the guest paging mode before the pgm pool gets reset.
2182 * Important to clean up the amd64 case.
2183 */
2184 for (unsigned i=0;i<pVM->cCPUs;i++)
2185 {
2186 PVMCPU pVCpu = &pVM->aCpus[i];
2187
2188 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2189 AssertRC(rc);
2190 }
2191
2192#ifdef DEBUG
2193 DBGFR3InfoLog(pVM, "mappings", NULL);
2194 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2195#endif
2196
2197 /*
2198 * Switch mode back to real mode. (before resetting the pgm pool!)
2199 */
2200 for (unsigned i=0;i<pVM->cCPUs;i++)
2201 {
2202 PVMCPU pVCpu = &pVM->aCpus[i];
2203
2204 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2205 AssertRC(rc);
2206
2207 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2208 }
2209
2210 /*
2211 * Reset the shadow page pool.
2212 */
2213 pgmR3PoolReset(pVM);
2214
2215 for (unsigned i=0;i<pVM->cCPUs;i++)
2216 {
2217 PVMCPU pVCpu = &pVM->aCpus[i];
2218
2219 /*
2220 * Re-init other members.
2221 */
2222 pVCpu->pgm.s.fA20Enabled = true;
2223
2224 /*
2225 * Clear the FFs PGM owns.
2226 */
2227 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2228 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2229 }
2230
2231 /*
2232 * Reset (zero) RAM pages.
2233 */
2234 rc = pgmR3PhysRamReset(pVM);
2235 if (RT_SUCCESS(rc))
2236 {
2237 /*
2238 * Reset (zero) shadow ROM pages.
2239 */
2240 rc = pgmR3PhysRomReset(pVM);
2241 }
2242
2243 pgmUnlock(pVM);
2244 //return rc;
2245 AssertReleaseRC(rc);
2246}
2247
2248
2249#ifdef VBOX_STRICT
2250/**
2251 * VM state change callback for clearing fNoMorePhysWrites after
2252 * a snapshot has been created.
2253 */
2254static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2255{
2256 if (enmState == VMSTATE_RUNNING)
2257 pVM->pgm.s.fNoMorePhysWrites = false;
2258}
2259#endif
2260
2261
2262/**
2263 * Terminates the PGM.
2264 *
2265 * @returns VBox status code.
2266 * @param pVM Pointer to VM structure.
2267 */
2268VMMR3DECL(int) PGMR3Term(PVM pVM)
2269{
2270 PGMDeregisterStringFormatTypes();
2271 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2272}
2273
2274
2275/**
2276 * Terminates the per-VCPU PGM.
2277 *
2278 * Termination means cleaning up and freeing all resources,
2279 * the VM it self is at this point powered off or suspended.
2280 *
2281 * @returns VBox status code.
2282 * @param pVM The VM to operate on.
2283 */
2284VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2285{
2286 return 0;
2287}
2288
2289
2290/**
2291 * Find the ROM tracking structure for the given page.
2292 *
2293 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
2294 * that it's a ROM page.
2295 * @param pVM The VM handle.
2296 * @param GCPhys The address of the ROM page.
2297 */
2298static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys)
2299{
2300 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
2301 pRomRange;
2302 pRomRange = pRomRange->CTX_SUFF(pNext))
2303 {
2304 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
2305 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
2306 return &pRomRange->aPages[off >> PAGE_SHIFT];
2307 }
2308 return NULL;
2309}
2310
2311
2312/**
2313 * Save zero indicator + bits for the specified page.
2314 *
2315 * @returns VBox status code, errors are logged/asserted before returning.
2316 * @param pVM The VM handle.
2317 * @param pSSH The saved state handle.
2318 * @param pPage The page to save.
2319 * @param GCPhys The address of the page.
2320 * @param pRam The ram range (for error logging).
2321 */
2322static int pgmR3SavePage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2323{
2324 int rc;
2325 if (PGM_PAGE_IS_ZERO(pPage))
2326 rc = SSMR3PutU8(pSSM, 0);
2327 else
2328 {
2329 void const *pvPage;
2330 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, GCPhys, &pvPage);
2331 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2332
2333 SSMR3PutU8(pSSM, 1);
2334 rc = SSMR3PutMem(pSSM, pvPage, PAGE_SIZE);
2335 }
2336 return rc;
2337}
2338
2339
2340/**
2341 * Save a shadowed ROM page.
2342 *
2343 * Format: Type, protection, and two pages with zero indicators.
2344 *
2345 * @returns VBox status code, errors are logged/asserted before returning.
2346 * @param pVM The VM handle.
2347 * @param pSSH The saved state handle.
2348 * @param pPage The page to save.
2349 * @param GCPhys The address of the page.
2350 * @param pRam The ram range (for error logging).
2351 */
2352static int pgmR3SaveShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2353{
2354 /* Need to save both pages and the current state. */
2355 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2356 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2357
2358 SSMR3PutU8(pSSM, PGMPAGETYPE_ROM_SHADOW);
2359 SSMR3PutU8(pSSM, pRomPage->enmProt);
2360
2361 int rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhys, pRam);
2362 if (RT_SUCCESS(rc))
2363 {
2364 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2365 rc = pgmR3SavePage(pVM, pSSM, pPagePassive, GCPhys, pRam);
2366 }
2367 return rc;
2368}
2369
2370/** PGM fields to save/load. */
2371static const SSMFIELD s_aPGMFields[] =
2372{
2373 SSMFIELD_ENTRY( PGM, fMappingsFixed),
2374 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
2375 SSMFIELD_ENTRY( PGM, cbMappingFixed),
2376 SSMFIELD_ENTRY_TERM()
2377};
2378
2379static const SSMFIELD s_aPGMCpuFields[] =
2380{
2381 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
2382 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
2383 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
2384 SSMFIELD_ENTRY_TERM()
2385};
2386
2387/* For loading old saved states. (pre-smp) */
2388typedef struct
2389{
2390 /** If set no conflict checks are required. (boolean) */
2391 bool fMappingsFixed;
2392 /** Size of fixed mapping */
2393 uint32_t cbMappingFixed;
2394 /** Base address (GC) of fixed mapping */
2395 RTGCPTR GCPtrMappingFixed;
2396 /** A20 gate mask.
2397 * Our current approach to A20 emulation is to let REM do it and don't bother
2398 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2399 * But whould need arrise, we'll subject physical addresses to this mask. */
2400 RTGCPHYS GCPhysA20Mask;
2401 /** A20 gate state - boolean! */
2402 bool fA20Enabled;
2403 /** The guest paging mode. */
2404 PGMMODE enmGuestMode;
2405} PGMOLD;
2406
2407static const SSMFIELD s_aPGMFields_Old[] =
2408{
2409 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
2410 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
2411 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
2412 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
2413 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
2414 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
2415 SSMFIELD_ENTRY_TERM()
2416};
2417
2418
2419/**
2420 * Execute state save operation.
2421 *
2422 * @returns VBox status code.
2423 * @param pVM VM Handle.
2424 * @param pSSM SSM operation handle.
2425 */
2426static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
2427{
2428 int rc;
2429 unsigned i;
2430 PPGM pPGM = &pVM->pgm.s;
2431
2432 /*
2433 * Lock PGM and set the no-more-writes indicator.
2434 */
2435 pgmLock(pVM);
2436 pVM->pgm.s.fNoMorePhysWrites = true;
2437
2438 /*
2439 * Save basic data (required / unaffected by relocation).
2440 */
2441 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2442
2443 for (i=0;i<pVM->cCPUs;i++)
2444 {
2445 PVMCPU pVCpu = &pVM->aCpus[i];
2446
2447 SSMR3PutStruct(pSSM, &pVCpu->pgm.s, &s_aPGMCpuFields[0]);
2448 }
2449
2450 /*
2451 * The guest mappings.
2452 */
2453 i = 0;
2454 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
2455 {
2456 SSMR3PutU32( pSSM, i);
2457 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
2458 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
2459 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
2460 }
2461 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
2462
2463 /*
2464 * Ram ranges and the memory they describe.
2465 */
2466 i = 0;
2467 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2468 {
2469 /*
2470 * Save the ram range details.
2471 */
2472 SSMR3PutU32(pSSM, i);
2473 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2474 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2475 SSMR3PutGCPhys(pSSM, pRam->cb);
2476 SSMR3PutU8(pSSM, !!pRam->pvR3); /* Boolean indicating memory or not. */
2477 SSMR3PutStrZ(pSSM, pRam->pszDesc); /* This is the best unique id we have... */
2478
2479 /*
2480 * Iterate the pages, only two special case.
2481 */
2482 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2483 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2484 {
2485 RTGCPHYS GCPhysPage = pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2486 PPGMPAGE pPage = &pRam->aPages[iPage];
2487 uint8_t uType = PGM_PAGE_GET_TYPE(pPage);
2488
2489 if (uType == PGMPAGETYPE_ROM_SHADOW)
2490 rc = pgmR3SaveShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2491 else if (uType == PGMPAGETYPE_MMIO2_ALIAS_MMIO)
2492 {
2493 /* MMIO2 alias -> MMIO; the device will just have to deal with this. */
2494 SSMR3PutU8(pSSM, PGMPAGETYPE_MMIO);
2495 rc = SSMR3PutU8(pSSM, 0 /* ZERO */);
2496 }
2497 else
2498 {
2499 SSMR3PutU8(pSSM, uType);
2500 rc = pgmR3SavePage(pVM, pSSM, pPage, GCPhysPage, pRam);
2501 }
2502 if (RT_FAILURE(rc))
2503 break;
2504 }
2505 if (RT_FAILURE(rc))
2506 break;
2507 }
2508
2509 pgmUnlock(pVM);
2510 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2511}
2512
2513
2514/**
2515 * Load an ignored page.
2516 *
2517 * @returns VBox status code.
2518 * @param pSSM The saved state handle.
2519 */
2520static int pgmR3LoadPageToDevNull(PSSMHANDLE pSSM)
2521{
2522 uint8_t abPage[PAGE_SIZE];
2523 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2524}
2525
2526
2527/**
2528 * Loads a page without any bits in the saved state, i.e. making sure it's
2529 * really zero.
2530 *
2531 * @returns VBox status code.
2532 * @param pVM The VM handle.
2533 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2534 * state).
2535 * @param pPage The guest page tracking structure.
2536 * @param GCPhys The page address.
2537 * @param pRam The ram range (logging).
2538 */
2539static int pgmR3LoadPageZero(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2540{
2541 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2542 && uType != PGMPAGETYPE_INVALID)
2543 return VERR_SSM_UNEXPECTED_DATA;
2544
2545 /* I think this should be sufficient. */
2546 if (!PGM_PAGE_IS_ZERO(pPage))
2547 return VERR_SSM_UNEXPECTED_DATA;
2548
2549 NOREF(pVM);
2550 NOREF(GCPhys);
2551 NOREF(pRam);
2552 return VINF_SUCCESS;
2553}
2554
2555
2556/**
2557 * Loads a page from the saved state.
2558 *
2559 * @returns VBox status code.
2560 * @param pVM The VM handle.
2561 * @param pSSM The SSM handle.
2562 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2563 * state).
2564 * @param pPage The guest page tracking structure.
2565 * @param GCPhys The page address.
2566 * @param pRam The ram range (logging).
2567 */
2568static int pgmR3LoadPageBits(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2569{
2570 int rc;
2571
2572 /*
2573 * Match up the type, dealing with MMIO2 aliases (dropped).
2574 */
2575 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2576 || uType == PGMPAGETYPE_INVALID,
2577 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2578 VERR_SSM_UNEXPECTED_DATA);
2579
2580 /*
2581 * Load the page.
2582 */
2583 void *pvPage;
2584 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2585 if (RT_SUCCESS(rc))
2586 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2587
2588 return rc;
2589}
2590
2591
2592/**
2593 * Loads a page (counter part to pgmR3SavePage).
2594 *
2595 * @returns VBox status code, fully bitched errors.
2596 * @param pVM The VM handle.
2597 * @param pSSM The SSM handle.
2598 * @param uType The page type.
2599 * @param pPage The page.
2600 * @param GCPhys The page address.
2601 * @param pRam The RAM range (for error messages).
2602 */
2603static int pgmR3LoadPage(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2604{
2605 uint8_t uState;
2606 int rc = SSMR3GetU8(pSSM, &uState);
2607 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2608 if (uState == 0 /* zero */)
2609 rc = pgmR3LoadPageZero(pVM, uType, pPage, GCPhys, pRam);
2610 else if (uState == 1)
2611 rc = pgmR3LoadPageBits(pVM, pSSM, uType, pPage, GCPhys, pRam);
2612 else
2613 rc = VERR_INTERNAL_ERROR;
2614 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2615 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2616 rc);
2617 return VINF_SUCCESS;
2618}
2619
2620
2621/**
2622 * Loads a shadowed ROM page.
2623 *
2624 * @returns VBox status code, errors are fully bitched.
2625 * @param pVM The VM handle.
2626 * @param pSSM The saved state handle.
2627 * @param pPage The page.
2628 * @param GCPhys The page address.
2629 * @param pRam The RAM range (for error messages).
2630 */
2631static int pgmR3LoadShadowedRomPage(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2632{
2633 /*
2634 * Load and set the protection first, then load the two pages, the first
2635 * one is the active the other is the passive.
2636 */
2637 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2638 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2639
2640 uint8_t uProt;
2641 int rc = SSMR3GetU8(pSSM, &uProt);
2642 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2643 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2644 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2645 && enmProt < PGMROMPROT_END,
2646 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2647 VERR_SSM_UNEXPECTED_DATA);
2648
2649 if (pRomPage->enmProt != enmProt)
2650 {
2651 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2652 AssertLogRelRCReturn(rc, rc);
2653 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2654 }
2655
2656 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2657 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2658 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2659 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2660
2661 rc = pgmR3LoadPage(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2662 if (RT_SUCCESS(rc))
2663 {
2664 *pPageActive = *pPage;
2665 rc = pgmR3LoadPage(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2666 }
2667 return rc;
2668}
2669
2670
2671/**
2672 * Worker for pgmR3Load.
2673 *
2674 * @returns VBox status code.
2675 *
2676 * @param pVM The VM handle.
2677 * @param pSSM The SSM handle.
2678 * @param uVersion The saved state version.
2679 */
2680static int pgmR3LoadLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2681{
2682 PPGM pPGM = &pVM->pgm.s;
2683 int rc;
2684 uint32_t u32Sep;
2685
2686 /*
2687 * Load basic data (required / unaffected by relocation).
2688 */
2689 if (uVersion >= PGM_SAVED_STATE_VERSION)
2690 {
2691 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2692 AssertLogRelRCReturn(rc, rc);
2693
2694 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2695 {
2696 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2697 AssertLogRelRCReturn(rc, rc);
2698 }
2699 }
2700 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2701 {
2702 AssertRelease(pVM->cCPUs == 1);
2703
2704 PGMOLD pgmOld;
2705 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2706 AssertLogRelRCReturn(rc, rc);
2707
2708 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2709 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2710 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2711
2712 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2713 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2714 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2715 }
2716 else
2717 {
2718 AssertRelease(pVM->cCPUs == 1);
2719
2720 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2721 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2722 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2723
2724 uint32_t cbRamSizeIgnored;
2725 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2726 if (RT_FAILURE(rc))
2727 return rc;
2728 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2729
2730 uint32_t u32 = 0;
2731 SSMR3GetUInt(pSSM, &u32);
2732 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2733 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2734 RTUINT uGuestMode;
2735 SSMR3GetUInt(pSSM, &uGuestMode);
2736 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2737
2738 /* check separator. */
2739 SSMR3GetU32(pSSM, &u32Sep);
2740 if (RT_FAILURE(rc))
2741 return rc;
2742 if (u32Sep != (uint32_t)~0)
2743 {
2744 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2745 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2746 }
2747 }
2748
2749 /*
2750 * The guest mappings.
2751 */
2752 uint32_t i = 0;
2753 for (;; i++)
2754 {
2755 /* Check the seqence number / separator. */
2756 rc = SSMR3GetU32(pSSM, &u32Sep);
2757 if (RT_FAILURE(rc))
2758 return rc;
2759 if (u32Sep == ~0U)
2760 break;
2761 if (u32Sep != i)
2762 {
2763 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2764 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2765 }
2766
2767 /* get the mapping details. */
2768 char szDesc[256];
2769 szDesc[0] = '\0';
2770 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2771 if (RT_FAILURE(rc))
2772 return rc;
2773 RTGCPTR GCPtr;
2774 SSMR3GetGCPtr(pSSM, &GCPtr);
2775 RTGCPTR cPTs;
2776 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2777 if (RT_FAILURE(rc))
2778 return rc;
2779
2780 /* find matching range. */
2781 PPGMMAPPING pMapping;
2782 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2783 if ( pMapping->cPTs == cPTs
2784 && !strcmp(pMapping->pszDesc, szDesc))
2785 break;
2786 AssertLogRelMsgReturn(pMapping, ("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%RGv)\n",
2787 cPTs, szDesc, GCPtr),
2788 VERR_SSM_LOAD_CONFIG_MISMATCH);
2789
2790 /* relocate it. */
2791 if (pMapping->GCPtr != GCPtr)
2792 {
2793 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%RGv\n", GCPtr));
2794 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2795 }
2796 else
2797 Log(("pgmR3Load: '%s' needed no relocation (%RGv)\n", szDesc, GCPtr));
2798 }
2799
2800 /*
2801 * Ram range flags and bits.
2802 */
2803 i = 0;
2804 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2805 {
2806 /* Check the seqence number / separator. */
2807 rc = SSMR3GetU32(pSSM, &u32Sep);
2808 if (RT_FAILURE(rc))
2809 return rc;
2810 if (u32Sep == ~0U)
2811 break;
2812 if (u32Sep != i)
2813 {
2814 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2815 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2816 }
2817 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2818
2819 /* Get the range details. */
2820 RTGCPHYS GCPhys;
2821 SSMR3GetGCPhys(pSSM, &GCPhys);
2822 RTGCPHYS GCPhysLast;
2823 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2824 RTGCPHYS cb;
2825 SSMR3GetGCPhys(pSSM, &cb);
2826 uint8_t fHaveBits;
2827 rc = SSMR3GetU8(pSSM, &fHaveBits);
2828 if (RT_FAILURE(rc))
2829 return rc;
2830 if (fHaveBits & ~1)
2831 {
2832 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2833 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2834 }
2835 size_t cchDesc = 0;
2836 char szDesc[256];
2837 szDesc[0] = '\0';
2838 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2839 {
2840 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2841 if (RT_FAILURE(rc))
2842 return rc;
2843 /* Since we've modified the description strings in r45878, only compare
2844 them if the saved state is more recent. */
2845 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2846 cchDesc = strlen(szDesc);
2847 }
2848
2849 /*
2850 * Match it up with the current range.
2851 *
2852 * Note there is a hack for dealing with the high BIOS mapping
2853 * in the old saved state format, this means we might not have
2854 * a 1:1 match on success.
2855 */
2856 if ( ( GCPhys != pRam->GCPhys
2857 || GCPhysLast != pRam->GCPhysLast
2858 || cb != pRam->cb
2859 || ( cchDesc
2860 && strcmp(szDesc, pRam->pszDesc)) )
2861 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2862 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2863 || GCPhys != UINT32_C(0xfff80000)
2864 || GCPhysLast != UINT32_C(0xffffffff)
2865 || pRam->GCPhysLast != GCPhysLast
2866 || pRam->GCPhys < GCPhys
2867 || !fHaveBits)
2868 )
2869 {
2870 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2871 "State : %RGp-%RGp %RGp bytes %s %s\n",
2872 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2873 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2874 /*
2875 * If we're loading a state for debugging purpose, don't make a fuss if
2876 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2877 */
2878 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2879 || GCPhys < 8 * _1M)
2880 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2881
2882 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2883 continue;
2884 }
2885
2886 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2887 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2888 {
2889 /*
2890 * Load the pages one by one.
2891 */
2892 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2893 {
2894 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2895 PPGMPAGE pPage = &pRam->aPages[iPage];
2896 uint8_t uType;
2897 rc = SSMR3GetU8(pSSM, &uType);
2898 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2899 if (uType == PGMPAGETYPE_ROM_SHADOW)
2900 rc = pgmR3LoadShadowedRomPage(pVM, pSSM, pPage, GCPhysPage, pRam);
2901 else
2902 rc = pgmR3LoadPage(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2903 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2904 }
2905 }
2906 else
2907 {
2908 /*
2909 * Old format.
2910 */
2911 AssertLogRelReturn(!pVM->pgm.s.fRamPreAlloc, VERR_NOT_SUPPORTED); /* can't be detected. */
2912
2913 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2914 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2915 uint32_t fFlags = 0;
2916 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2917 {
2918 uint16_t u16Flags;
2919 rc = SSMR3GetU16(pSSM, &u16Flags);
2920 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2921 fFlags |= u16Flags;
2922 }
2923
2924 /* Load the bits */
2925 if ( !fHaveBits
2926 && GCPhysLast < UINT32_C(0xe0000000))
2927 {
2928 /*
2929 * Dynamic chunks.
2930 */
2931 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2932 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2933 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2934 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2935
2936 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2937 {
2938 uint8_t fPresent;
2939 rc = SSMR3GetU8(pSSM, &fPresent);
2940 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2941 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2942 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2943 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2944
2945 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2946 {
2947 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2948 PPGMPAGE pPage = &pRam->aPages[iPage];
2949 if (fPresent)
2950 {
2951 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2952 rc = pgmR3LoadPageToDevNull(pSSM);
2953 else
2954 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2955 }
2956 else
2957 rc = pgmR3LoadPageZero(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2958 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2959 }
2960 }
2961 }
2962 else if (pRam->pvR3)
2963 {
2964 /*
2965 * MMIO2.
2966 */
2967 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2968 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2969 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2970 AssertLogRelMsgReturn(pRam->pvR3,
2971 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2972 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2973
2974 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2975 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2976 }
2977 else if (GCPhysLast < UINT32_C(0xfff80000))
2978 {
2979 /*
2980 * PCI MMIO, no pages saved.
2981 */
2982 }
2983 else
2984 {
2985 /*
2986 * Load the 0xfff80000..0xffffffff BIOS range.
2987 * It starts with X reserved pages that we have to skip over since
2988 * the RAMRANGE create by the new code won't include those.
2989 */
2990 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2991 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2992 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2993 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2994 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2995 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2996 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2997
2998 /* Skip wasted reserved pages before the ROM. */
2999 while (GCPhys < pRam->GCPhys)
3000 {
3001 rc = pgmR3LoadPageToDevNull(pSSM);
3002 GCPhys += PAGE_SIZE;
3003 }
3004
3005 /* Load the bios pages. */
3006 cPages = pRam->cb >> PAGE_SHIFT;
3007 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3008 {
3009 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
3010 PPGMPAGE pPage = &pRam->aPages[iPage];
3011
3012 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
3013 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
3014 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3015 rc = pgmR3LoadPageBits(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
3016 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
3017 }
3018 }
3019 }
3020 }
3021
3022 return rc;
3023}
3024
3025
3026/**
3027 * Execute state load operation.
3028 *
3029 * @returns VBox status code.
3030 * @param pVM VM Handle.
3031 * @param pSSM SSM operation handle.
3032 * @param uVersion Data layout version.
3033 * @param uPhase The data phase.
3034 */
3035static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPhase)
3036{
3037 int rc;
3038 PPGM pPGM = &pVM->pgm.s;
3039 Assert(uPhase == SSM_PHASE_FINAL); NOREF(uPhase);
3040
3041 /*
3042 * Validate version.
3043 */
3044 if ( uVersion != PGM_SAVED_STATE_VERSION
3045 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3046 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3047 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3048 {
3049 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3050 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3051 }
3052
3053 /*
3054 * Call the reset function to make sure all the memory is cleared.
3055 */
3056 PGMR3Reset(pVM);
3057
3058 /*
3059 * Do the loading while owning the lock because a bunch of the functions
3060 * we're using requires this.
3061 */
3062 pgmLock(pVM);
3063 rc = pgmR3LoadLocked(pVM, pSSM, uVersion);
3064 pgmUnlock(pVM);
3065 if (RT_SUCCESS(rc))
3066 {
3067 /*
3068 * We require a full resync now.
3069 */
3070 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
3071 {
3072 PVMCPU pVCpu = &pVM->aCpus[i];
3073 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3074 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3075
3076 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3077 }
3078
3079 pgmR3HandlerPhysicalUpdateAll(pVM);
3080
3081 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
3082 {
3083 PVMCPU pVCpu = &pVM->aCpus[i];
3084
3085 /*
3086 * Change the paging mode.
3087 */
3088 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3089
3090 /* Restore pVM->pgm.s.GCPhysCR3. */
3091 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3092 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3093 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3094 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3095 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3096 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3097 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3098 else
3099 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3100 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3101 }
3102 }
3103
3104 return rc;
3105}
3106
3107
3108/**
3109 * Show paging mode.
3110 *
3111 * @param pVM VM Handle.
3112 * @param pHlp The info helpers.
3113 * @param pszArgs "all" (default), "guest", "shadow" or "host".
3114 */
3115static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3116{
3117 /* digest argument. */
3118 bool fGuest, fShadow, fHost;
3119 if (pszArgs)
3120 pszArgs = RTStrStripL(pszArgs);
3121 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
3122 fShadow = fHost = fGuest = true;
3123 else
3124 {
3125 fShadow = fHost = fGuest = false;
3126 if (strstr(pszArgs, "guest"))
3127 fGuest = true;
3128 if (strstr(pszArgs, "shadow"))
3129 fShadow = true;
3130 if (strstr(pszArgs, "host"))
3131 fHost = true;
3132 }
3133
3134 /** @todo SMP support! */
3135 /* print info. */
3136 if (fGuest)
3137 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
3138 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
3139 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
3140 if (fShadow)
3141 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
3142 if (fHost)
3143 {
3144 const char *psz;
3145 switch (pVM->pgm.s.enmHostMode)
3146 {
3147 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
3148 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
3149 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
3150 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
3151 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
3152 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
3153 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
3154 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
3155 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
3156 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
3157 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
3158 default: psz = "unknown"; break;
3159 }
3160 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
3161 }
3162}
3163
3164
3165/**
3166 * Dump registered MMIO ranges to the log.
3167 *
3168 * @param pVM VM Handle.
3169 * @param pHlp The info helpers.
3170 * @param pszArgs Arguments, ignored.
3171 */
3172static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3173{
3174 NOREF(pszArgs);
3175 pHlp->pfnPrintf(pHlp,
3176 "RAM ranges (pVM=%p)\n"
3177 "%.*s %.*s\n",
3178 pVM,
3179 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
3180 sizeof(RTHCPTR) * 2, "pvHC ");
3181
3182 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
3183 pHlp->pfnPrintf(pHlp,
3184 "%RGp-%RGp %RHv %s\n",
3185 pCur->GCPhys,
3186 pCur->GCPhysLast,
3187 pCur->pvR3,
3188 pCur->pszDesc);
3189}
3190
3191/**
3192 * Dump the page directory to the log.
3193 *
3194 * @param pVM VM Handle.
3195 * @param pHlp The info helpers.
3196 * @param pszArgs Arguments, ignored.
3197 */
3198static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3199{
3200 /** @todo SMP support!! */
3201 PVMCPU pVCpu = &pVM->aCpus[0];
3202
3203/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
3204 /* Big pages supported? */
3205 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
3206
3207 /* Global pages supported? */
3208 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
3209
3210 NOREF(pszArgs);
3211
3212 /*
3213 * Get page directory addresses.
3214 */
3215 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
3216 Assert(pPDSrc);
3217 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
3218
3219 /*
3220 * Iterate the page directory.
3221 */
3222 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
3223 {
3224 X86PDE PdeSrc = pPDSrc->a[iPD];
3225 if (PdeSrc.n.u1Present)
3226 {
3227 if (PdeSrc.b.u1Size && fPSE)
3228 pHlp->pfnPrintf(pHlp,
3229 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
3230 iPD,
3231 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
3232 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
3233 else
3234 pHlp->pfnPrintf(pHlp,
3235 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
3236 iPD,
3237 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
3238 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
3239 }
3240 }
3241}
3242
3243
3244/**
3245 * Service a VMMCALLRING3_PGM_LOCK call.
3246 *
3247 * @returns VBox status code.
3248 * @param pVM The VM handle.
3249 */
3250VMMR3DECL(int) PGMR3LockCall(PVM pVM)
3251{
3252 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
3253 AssertRC(rc);
3254 return rc;
3255}
3256
3257
3258/**
3259 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
3260 *
3261 * @returns PGM_TYPE_*.
3262 * @param pgmMode The mode value to convert.
3263 */
3264DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
3265{
3266 switch (pgmMode)
3267 {
3268 case PGMMODE_REAL: return PGM_TYPE_REAL;
3269 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
3270 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
3271 case PGMMODE_PAE:
3272 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
3273 case PGMMODE_AMD64:
3274 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
3275 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
3276 case PGMMODE_EPT: return PGM_TYPE_EPT;
3277 default:
3278 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
3279 }
3280}
3281
3282
3283/**
3284 * Gets the index into the paging mode data array of a SHW+GST mode.
3285 *
3286 * @returns PGM::paPagingData index.
3287 * @param uShwType The shadow paging mode type.
3288 * @param uGstType The guest paging mode type.
3289 */
3290DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
3291{
3292 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
3293 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
3294 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
3295 + (uGstType - PGM_TYPE_REAL);
3296}
3297
3298
3299/**
3300 * Gets the index into the paging mode data array of a SHW+GST mode.
3301 *
3302 * @returns PGM::paPagingData index.
3303 * @param enmShw The shadow paging mode.
3304 * @param enmGst The guest paging mode.
3305 */
3306DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
3307{
3308 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
3309 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
3310 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
3311}
3312
3313
3314/**
3315 * Calculates the max data index.
3316 * @returns The number of entries in the paging data array.
3317 */
3318DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
3319{
3320 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
3321}
3322
3323
3324/**
3325 * Initializes the paging mode data kept in PGM::paModeData.
3326 *
3327 * @param pVM The VM handle.
3328 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
3329 * This is used early in the init process to avoid trouble with PDM
3330 * not being initialized yet.
3331 */
3332static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
3333{
3334 PPGMMODEDATA pModeData;
3335 int rc;
3336
3337 /*
3338 * Allocate the array on the first call.
3339 */
3340 if (!pVM->pgm.s.paModeData)
3341 {
3342 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
3343 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
3344 }
3345
3346 /*
3347 * Initialize the array entries.
3348 */
3349 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
3350 pModeData->uShwType = PGM_TYPE_32BIT;
3351 pModeData->uGstType = PGM_TYPE_REAL;
3352 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3353 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3354 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3355
3356 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
3357 pModeData->uShwType = PGM_TYPE_32BIT;
3358 pModeData->uGstType = PGM_TYPE_PROT;
3359 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3360 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3361 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3362
3363 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
3364 pModeData->uShwType = PGM_TYPE_32BIT;
3365 pModeData->uGstType = PGM_TYPE_32BIT;
3366 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3367 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3368 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3369
3370 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
3371 pModeData->uShwType = PGM_TYPE_PAE;
3372 pModeData->uGstType = PGM_TYPE_REAL;
3373 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3374 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3375 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3376
3377 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
3378 pModeData->uShwType = PGM_TYPE_PAE;
3379 pModeData->uGstType = PGM_TYPE_PROT;
3380 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3381 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3382 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3383
3384 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
3385 pModeData->uShwType = PGM_TYPE_PAE;
3386 pModeData->uGstType = PGM_TYPE_32BIT;
3387 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3388 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3389 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3390
3391 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
3392 pModeData->uShwType = PGM_TYPE_PAE;
3393 pModeData->uGstType = PGM_TYPE_PAE;
3394 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3395 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3396 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3397
3398#ifdef VBOX_WITH_64_BITS_GUESTS
3399 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
3400 pModeData->uShwType = PGM_TYPE_AMD64;
3401 pModeData->uGstType = PGM_TYPE_AMD64;
3402 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3403 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3404 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3405#endif
3406
3407 /* The nested paging mode. */
3408 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
3409 pModeData->uShwType = PGM_TYPE_NESTED;
3410 pModeData->uGstType = PGM_TYPE_REAL;
3411 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3412 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3413
3414 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
3415 pModeData->uShwType = PGM_TYPE_NESTED;
3416 pModeData->uGstType = PGM_TYPE_PROT;
3417 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3418 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3419
3420 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
3421 pModeData->uShwType = PGM_TYPE_NESTED;
3422 pModeData->uGstType = PGM_TYPE_32BIT;
3423 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3424 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3425
3426 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
3427 pModeData->uShwType = PGM_TYPE_NESTED;
3428 pModeData->uGstType = PGM_TYPE_PAE;
3429 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3430 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3431
3432#ifdef VBOX_WITH_64_BITS_GUESTS
3433 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3434 pModeData->uShwType = PGM_TYPE_NESTED;
3435 pModeData->uGstType = PGM_TYPE_AMD64;
3436 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3437 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3438#endif
3439
3440 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
3441 switch (pVM->pgm.s.enmHostMode)
3442 {
3443#if HC_ARCH_BITS == 32
3444 case SUPPAGINGMODE_32_BIT:
3445 case SUPPAGINGMODE_32_BIT_GLOBAL:
3446 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3447 {
3448 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3449 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3450 }
3451# ifdef VBOX_WITH_64_BITS_GUESTS
3452 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3453 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3454# endif
3455 break;
3456
3457 case SUPPAGINGMODE_PAE:
3458 case SUPPAGINGMODE_PAE_NX:
3459 case SUPPAGINGMODE_PAE_GLOBAL:
3460 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3461 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3462 {
3463 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3464 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3465 }
3466# ifdef VBOX_WITH_64_BITS_GUESTS
3467 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3468 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3469# endif
3470 break;
3471#endif /* HC_ARCH_BITS == 32 */
3472
3473#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3474 case SUPPAGINGMODE_AMD64:
3475 case SUPPAGINGMODE_AMD64_GLOBAL:
3476 case SUPPAGINGMODE_AMD64_NX:
3477 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3478# ifdef VBOX_WITH_64_BITS_GUESTS
3479 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3480# else
3481 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3482# endif
3483 {
3484 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3485 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3486 }
3487 break;
3488#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3489
3490 default:
3491 AssertFailed();
3492 break;
3493 }
3494
3495 /* Extended paging (EPT) / Intel VT-x */
3496 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3497 pModeData->uShwType = PGM_TYPE_EPT;
3498 pModeData->uGstType = PGM_TYPE_REAL;
3499 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3500 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3501 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3502
3503 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3504 pModeData->uShwType = PGM_TYPE_EPT;
3505 pModeData->uGstType = PGM_TYPE_PROT;
3506 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3507 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3508 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3509
3510 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3511 pModeData->uShwType = PGM_TYPE_EPT;
3512 pModeData->uGstType = PGM_TYPE_32BIT;
3513 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3514 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3515 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3516
3517 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3518 pModeData->uShwType = PGM_TYPE_EPT;
3519 pModeData->uGstType = PGM_TYPE_PAE;
3520 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3521 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3522 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3523
3524#ifdef VBOX_WITH_64_BITS_GUESTS
3525 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3526 pModeData->uShwType = PGM_TYPE_EPT;
3527 pModeData->uGstType = PGM_TYPE_AMD64;
3528 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3529 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3530 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3531#endif
3532 return VINF_SUCCESS;
3533}
3534
3535
3536/**
3537 * Switch to different (or relocated in the relocate case) mode data.
3538 *
3539 * @param pVM The VM handle.
3540 * @param pVCpu The VMCPU to operate on.
3541 * @param enmShw The the shadow paging mode.
3542 * @param enmGst The the guest paging mode.
3543 */
3544static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3545{
3546 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3547
3548 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3549 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3550
3551 /* shadow */
3552 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3553 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3554 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3555 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3556 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3557
3558 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3559 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3560
3561 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3562 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3563
3564
3565 /* guest */
3566 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3567 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3568 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3569 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3570 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3571 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3572 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3573 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3574 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3575 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3576 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3577 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3578
3579 /* both */
3580 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3581 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3582 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3583 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3584 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
3585 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3586 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3587#ifdef VBOX_STRICT
3588 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3589#endif
3590 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3591 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3592
3593 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3594 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3595 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3596 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
3597 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3598 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3599#ifdef VBOX_STRICT
3600 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3601#endif
3602 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3603 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3604
3605 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3606 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3607 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3608 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
3609 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3610 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3611#ifdef VBOX_STRICT
3612 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3613#endif
3614 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3615 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3616}
3617
3618
3619/**
3620 * Calculates the shadow paging mode.
3621 *
3622 * @returns The shadow paging mode.
3623 * @param pVM VM handle.
3624 * @param enmGuestMode The guest mode.
3625 * @param enmHostMode The host mode.
3626 * @param enmShadowMode The current shadow mode.
3627 * @param penmSwitcher Where to store the switcher to use.
3628 * VMMSWITCHER_INVALID means no change.
3629 */
3630static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3631{
3632 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3633 switch (enmGuestMode)
3634 {
3635 /*
3636 * When switching to real or protected mode we don't change
3637 * anything since it's likely that we'll switch back pretty soon.
3638 *
3639 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3640 * and is supposed to determine which shadow paging and switcher to
3641 * use during init.
3642 */
3643 case PGMMODE_REAL:
3644 case PGMMODE_PROTECTED:
3645 if ( enmShadowMode != PGMMODE_INVALID
3646 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3647 break; /* (no change) */
3648
3649 switch (enmHostMode)
3650 {
3651 case SUPPAGINGMODE_32_BIT:
3652 case SUPPAGINGMODE_32_BIT_GLOBAL:
3653 enmShadowMode = PGMMODE_32_BIT;
3654 enmSwitcher = VMMSWITCHER_32_TO_32;
3655 break;
3656
3657 case SUPPAGINGMODE_PAE:
3658 case SUPPAGINGMODE_PAE_NX:
3659 case SUPPAGINGMODE_PAE_GLOBAL:
3660 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3661 enmShadowMode = PGMMODE_PAE;
3662 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3663#ifdef DEBUG_bird
3664 if (RTEnvExist("VBOX_32BIT"))
3665 {
3666 enmShadowMode = PGMMODE_32_BIT;
3667 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3668 }
3669#endif
3670 break;
3671
3672 case SUPPAGINGMODE_AMD64:
3673 case SUPPAGINGMODE_AMD64_GLOBAL:
3674 case SUPPAGINGMODE_AMD64_NX:
3675 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3676 enmShadowMode = PGMMODE_PAE;
3677 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3678#ifdef DEBUG_bird
3679 if (RTEnvExist("VBOX_32BIT"))
3680 {
3681 enmShadowMode = PGMMODE_32_BIT;
3682 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3683 }
3684#endif
3685 break;
3686
3687 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3688 }
3689 break;
3690
3691 case PGMMODE_32_BIT:
3692 switch (enmHostMode)
3693 {
3694 case SUPPAGINGMODE_32_BIT:
3695 case SUPPAGINGMODE_32_BIT_GLOBAL:
3696 enmShadowMode = PGMMODE_32_BIT;
3697 enmSwitcher = VMMSWITCHER_32_TO_32;
3698 break;
3699
3700 case SUPPAGINGMODE_PAE:
3701 case SUPPAGINGMODE_PAE_NX:
3702 case SUPPAGINGMODE_PAE_GLOBAL:
3703 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3704 enmShadowMode = PGMMODE_PAE;
3705 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3706#ifdef DEBUG_bird
3707 if (RTEnvExist("VBOX_32BIT"))
3708 {
3709 enmShadowMode = PGMMODE_32_BIT;
3710 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3711 }
3712#endif
3713 break;
3714
3715 case SUPPAGINGMODE_AMD64:
3716 case SUPPAGINGMODE_AMD64_GLOBAL:
3717 case SUPPAGINGMODE_AMD64_NX:
3718 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3719 enmShadowMode = PGMMODE_PAE;
3720 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3721#ifdef DEBUG_bird
3722 if (RTEnvExist("VBOX_32BIT"))
3723 {
3724 enmShadowMode = PGMMODE_32_BIT;
3725 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3726 }
3727#endif
3728 break;
3729
3730 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3731 }
3732 break;
3733
3734 case PGMMODE_PAE:
3735 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3736 switch (enmHostMode)
3737 {
3738 case SUPPAGINGMODE_32_BIT:
3739 case SUPPAGINGMODE_32_BIT_GLOBAL:
3740 enmShadowMode = PGMMODE_PAE;
3741 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3742 break;
3743
3744 case SUPPAGINGMODE_PAE:
3745 case SUPPAGINGMODE_PAE_NX:
3746 case SUPPAGINGMODE_PAE_GLOBAL:
3747 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3748 enmShadowMode = PGMMODE_PAE;
3749 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3750 break;
3751
3752 case SUPPAGINGMODE_AMD64:
3753 case SUPPAGINGMODE_AMD64_GLOBAL:
3754 case SUPPAGINGMODE_AMD64_NX:
3755 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3756 enmShadowMode = PGMMODE_PAE;
3757 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3758 break;
3759
3760 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3761 }
3762 break;
3763
3764 case PGMMODE_AMD64:
3765 case PGMMODE_AMD64_NX:
3766 switch (enmHostMode)
3767 {
3768 case SUPPAGINGMODE_32_BIT:
3769 case SUPPAGINGMODE_32_BIT_GLOBAL:
3770 enmShadowMode = PGMMODE_AMD64;
3771 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3772 break;
3773
3774 case SUPPAGINGMODE_PAE:
3775 case SUPPAGINGMODE_PAE_NX:
3776 case SUPPAGINGMODE_PAE_GLOBAL:
3777 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3778 enmShadowMode = PGMMODE_AMD64;
3779 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3780 break;
3781
3782 case SUPPAGINGMODE_AMD64:
3783 case SUPPAGINGMODE_AMD64_GLOBAL:
3784 case SUPPAGINGMODE_AMD64_NX:
3785 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3786 enmShadowMode = PGMMODE_AMD64;
3787 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3788 break;
3789
3790 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3791 }
3792 break;
3793
3794
3795 default:
3796 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3797 return PGMMODE_INVALID;
3798 }
3799 /* Override the shadow mode is nested paging is active. */
3800 if (HWACCMIsNestedPagingActive(pVM))
3801 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3802
3803 *penmSwitcher = enmSwitcher;
3804 return enmShadowMode;
3805}
3806
3807
3808/**
3809 * Performs the actual mode change.
3810 * This is called by PGMChangeMode and pgmR3InitPaging().
3811 *
3812 * @returns VBox status code. May suspend or power off the VM on error, but this
3813 * will trigger using FFs and not status codes.
3814 *
3815 * @param pVM VM handle.
3816 * @param pVCpu The VMCPU to operate on.
3817 * @param enmGuestMode The new guest mode. This is assumed to be different from
3818 * the current mode.
3819 */
3820VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3821{
3822 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3823 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3824
3825 /*
3826 * Calc the shadow mode and switcher.
3827 */
3828 VMMSWITCHER enmSwitcher;
3829 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3830 if (enmSwitcher != VMMSWITCHER_INVALID)
3831 {
3832 /*
3833 * Select new switcher.
3834 */
3835 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3836 if (RT_FAILURE(rc))
3837 {
3838 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3839 return rc;
3840 }
3841 }
3842
3843 /*
3844 * Exit old mode(s).
3845 */
3846 /* shadow */
3847 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3848 {
3849 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3850 if (PGM_SHW_PFN(Exit, pVCpu))
3851 {
3852 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3853 if (RT_FAILURE(rc))
3854 {
3855 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3856 return rc;
3857 }
3858 }
3859
3860 }
3861 else
3862 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3863
3864 /* guest */
3865 if (PGM_GST_PFN(Exit, pVCpu))
3866 {
3867 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3868 if (RT_FAILURE(rc))
3869 {
3870 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3871 return rc;
3872 }
3873 }
3874
3875 /*
3876 * Load new paging mode data.
3877 */
3878 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3879
3880 /*
3881 * Enter new shadow mode (if changed).
3882 */
3883 if (enmShadowMode != pVCpu->pgm.s.enmShadowMode)
3884 {
3885 int rc;
3886 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3887 switch (enmShadowMode)
3888 {
3889 case PGMMODE_32_BIT:
3890 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu);
3891 break;
3892 case PGMMODE_PAE:
3893 case PGMMODE_PAE_NX:
3894 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu);
3895 break;
3896 case PGMMODE_AMD64:
3897 case PGMMODE_AMD64_NX:
3898 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu);
3899 break;
3900 case PGMMODE_NESTED:
3901 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu);
3902 break;
3903 case PGMMODE_EPT:
3904 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu);
3905 break;
3906 case PGMMODE_REAL:
3907 case PGMMODE_PROTECTED:
3908 default:
3909 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3910 return VERR_INTERNAL_ERROR;
3911 }
3912 if (RT_FAILURE(rc))
3913 {
3914 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3915 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3916 return rc;
3917 }
3918 }
3919
3920 /*
3921 * Always flag the necessary updates
3922 */
3923 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3924
3925 /*
3926 * Enter the new guest and shadow+guest modes.
3927 */
3928 int rc = -1;
3929 int rc2 = -1;
3930 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3931 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3932 switch (enmGuestMode)
3933 {
3934 case PGMMODE_REAL:
3935 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3936 switch (pVCpu->pgm.s.enmShadowMode)
3937 {
3938 case PGMMODE_32_BIT:
3939 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3940 break;
3941 case PGMMODE_PAE:
3942 case PGMMODE_PAE_NX:
3943 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3944 break;
3945 case PGMMODE_NESTED:
3946 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3947 break;
3948 case PGMMODE_EPT:
3949 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3950 break;
3951 case PGMMODE_AMD64:
3952 case PGMMODE_AMD64_NX:
3953 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3954 default: AssertFailed(); break;
3955 }
3956 break;
3957
3958 case PGMMODE_PROTECTED:
3959 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3960 switch (pVCpu->pgm.s.enmShadowMode)
3961 {
3962 case PGMMODE_32_BIT:
3963 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3964 break;
3965 case PGMMODE_PAE:
3966 case PGMMODE_PAE_NX:
3967 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3968 break;
3969 case PGMMODE_NESTED:
3970 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3971 break;
3972 case PGMMODE_EPT:
3973 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3974 break;
3975 case PGMMODE_AMD64:
3976 case PGMMODE_AMD64_NX:
3977 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3978 default: AssertFailed(); break;
3979 }
3980 break;
3981
3982 case PGMMODE_32_BIT:
3983 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3984 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3985 switch (pVCpu->pgm.s.enmShadowMode)
3986 {
3987 case PGMMODE_32_BIT:
3988 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3989 break;
3990 case PGMMODE_PAE:
3991 case PGMMODE_PAE_NX:
3992 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3993 break;
3994 case PGMMODE_NESTED:
3995 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3996 break;
3997 case PGMMODE_EPT:
3998 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3999 break;
4000 case PGMMODE_AMD64:
4001 case PGMMODE_AMD64_NX:
4002 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4003 default: AssertFailed(); break;
4004 }
4005 break;
4006
4007 case PGMMODE_PAE_NX:
4008 case PGMMODE_PAE:
4009 {
4010 uint32_t u32Dummy, u32Features;
4011
4012 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
4013 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
4014 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
4015 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
4016
4017 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
4018 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
4019 switch (pVCpu->pgm.s.enmShadowMode)
4020 {
4021 case PGMMODE_PAE:
4022 case PGMMODE_PAE_NX:
4023 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
4024 break;
4025 case PGMMODE_NESTED:
4026 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
4027 break;
4028 case PGMMODE_EPT:
4029 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
4030 break;
4031 case PGMMODE_32_BIT:
4032 case PGMMODE_AMD64:
4033 case PGMMODE_AMD64_NX:
4034 AssertMsgFailed(("Should use PAE shadow mode!\n"));
4035 default: AssertFailed(); break;
4036 }
4037 break;
4038 }
4039
4040#ifdef VBOX_WITH_64_BITS_GUESTS
4041 case PGMMODE_AMD64_NX:
4042 case PGMMODE_AMD64:
4043 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
4044 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
4045 switch (pVCpu->pgm.s.enmShadowMode)
4046 {
4047 case PGMMODE_AMD64:
4048 case PGMMODE_AMD64_NX:
4049 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
4050 break;
4051 case PGMMODE_NESTED:
4052 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
4053 break;
4054 case PGMMODE_EPT:
4055 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
4056 break;
4057 case PGMMODE_32_BIT:
4058 case PGMMODE_PAE:
4059 case PGMMODE_PAE_NX:
4060 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
4061 default: AssertFailed(); break;
4062 }
4063 break;
4064#endif
4065
4066 default:
4067 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
4068 rc = VERR_NOT_IMPLEMENTED;
4069 break;
4070 }
4071
4072 /* status codes. */
4073 AssertRC(rc);
4074 AssertRC(rc2);
4075 if (RT_SUCCESS(rc))
4076 {
4077 rc = rc2;
4078 if (RT_SUCCESS(rc)) /* no informational status codes. */
4079 rc = VINF_SUCCESS;
4080 }
4081
4082 /* Notify HWACCM as well. */
4083 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
4084 return rc;
4085}
4086
4087/**
4088 * Release the pgm lock if owned by the current VCPU
4089 *
4090 * @param pVM The VM to operate on.
4091 */
4092VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
4093{
4094 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
4095 PDMCritSectLeave(&pVM->pgm.s.CritSect);
4096}
4097
4098/**
4099 * Called by pgmPoolFlushAllInt prior to flushing the pool.
4100 *
4101 * @returns VBox status code, fully asserted.
4102 * @param pVM The VM handle.
4103 * @param pVCpu The VMCPU to operate on.
4104 */
4105int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
4106{
4107 /* Unmap the old CR3 value before flushing everything. */
4108 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
4109 AssertRC(rc);
4110
4111 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
4112 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
4113 AssertRC(rc);
4114 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
4115 return rc;
4116}
4117
4118
4119/**
4120 * Called by pgmPoolFlushAllInt after flushing the pool.
4121 *
4122 * @returns VBox status code, fully asserted.
4123 * @param pVM The VM handle.
4124 * @param pVCpu The VMCPU to operate on.
4125 */
4126int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
4127{
4128 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
4129 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
4130 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
4131 AssertRCReturn(rc, rc);
4132 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
4133
4134 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
4135 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
4136 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
4137 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
4138 return rc;
4139}
4140
4141
4142/**
4143 * Dumps a PAE shadow page table.
4144 *
4145 * @returns VBox status code (VINF_SUCCESS).
4146 * @param pVM The VM handle.
4147 * @param pPT Pointer to the page table.
4148 * @param u64Address The virtual address of the page table starts.
4149 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4150 * @param cMaxDepth The maxium depth.
4151 * @param pHlp Pointer to the output functions.
4152 */
4153static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4154{
4155 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4156 {
4157 X86PTEPAE Pte = pPT->a[i];
4158 if (Pte.n.u1Present)
4159 {
4160 pHlp->pfnPrintf(pHlp,
4161 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4162 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
4163 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
4164 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
4165 Pte.n.u1Write ? 'W' : 'R',
4166 Pte.n.u1User ? 'U' : 'S',
4167 Pte.n.u1Accessed ? 'A' : '-',
4168 Pte.n.u1Dirty ? 'D' : '-',
4169 Pte.n.u1Global ? 'G' : '-',
4170 Pte.n.u1WriteThru ? "WT" : "--",
4171 Pte.n.u1CacheDisable? "CD" : "--",
4172 Pte.n.u1PAT ? "AT" : "--",
4173 Pte.n.u1NoExecute ? "NX" : "--",
4174 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4175 Pte.u & RT_BIT(10) ? '1' : '0',
4176 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
4177 Pte.u & X86_PTE_PAE_PG_MASK);
4178 }
4179 }
4180 return VINF_SUCCESS;
4181}
4182
4183
4184/**
4185 * Dumps a PAE shadow page directory table.
4186 *
4187 * @returns VBox status code (VINF_SUCCESS).
4188 * @param pVM The VM handle.
4189 * @param HCPhys The physical address of the page directory table.
4190 * @param u64Address The virtual address of the page table starts.
4191 * @param cr4 The CR4, PSE is currently used.
4192 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4193 * @param cMaxDepth The maxium depth.
4194 * @param pHlp Pointer to the output functions.
4195 */
4196static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4197{
4198 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
4199 if (!pPD)
4200 {
4201 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
4202 fLongMode ? 16 : 8, u64Address, HCPhys);
4203 return VERR_INVALID_PARAMETER;
4204 }
4205 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
4206
4207 int rc = VINF_SUCCESS;
4208 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4209 {
4210 X86PDEPAE Pde = pPD->a[i];
4211 if (Pde.n.u1Present)
4212 {
4213 if (fBigPagesSupported && Pde.b.u1Size)
4214 pHlp->pfnPrintf(pHlp,
4215 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4216 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
4217 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
4218 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4219 Pde.b.u1Write ? 'W' : 'R',
4220 Pde.b.u1User ? 'U' : 'S',
4221 Pde.b.u1Accessed ? 'A' : '-',
4222 Pde.b.u1Dirty ? 'D' : '-',
4223 Pde.b.u1Global ? 'G' : '-',
4224 Pde.b.u1WriteThru ? "WT" : "--",
4225 Pde.b.u1CacheDisable? "CD" : "--",
4226 Pde.b.u1PAT ? "AT" : "--",
4227 Pde.b.u1NoExecute ? "NX" : "--",
4228 Pde.u & RT_BIT_64(9) ? '1' : '0',
4229 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4230 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4231 Pde.u & X86_PDE_PAE_PG_MASK);
4232 else
4233 {
4234 pHlp->pfnPrintf(pHlp,
4235 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
4236 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
4237 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
4238 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
4239 Pde.n.u1Write ? 'W' : 'R',
4240 Pde.n.u1User ? 'U' : 'S',
4241 Pde.n.u1Accessed ? 'A' : '-',
4242 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4243 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4244 Pde.n.u1WriteThru ? "WT" : "--",
4245 Pde.n.u1CacheDisable? "CD" : "--",
4246 Pde.n.u1NoExecute ? "NX" : "--",
4247 Pde.u & RT_BIT_64(9) ? '1' : '0',
4248 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4249 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4250 Pde.u & X86_PDE_PAE_PG_MASK);
4251 if (cMaxDepth >= 1)
4252 {
4253 /** @todo what about using the page pool for mapping PTs? */
4254 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
4255 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
4256 PX86PTPAE pPT = NULL;
4257 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4258 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
4259 else
4260 {
4261 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4262 {
4263 uint64_t off = u64AddressPT - pMap->GCPtr;
4264 if (off < pMap->cb)
4265 {
4266 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
4267 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
4268 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
4269 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4270 fLongMode ? 16 : 8, u64AddressPT, iPDE,
4271 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
4272 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
4273 }
4274 }
4275 }
4276 int rc2 = VERR_INVALID_PARAMETER;
4277 if (pPT)
4278 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
4279 else
4280 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
4281 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
4282 if (rc2 < rc && RT_SUCCESS(rc))
4283 rc = rc2;
4284 }
4285 }
4286 }
4287 }
4288 return rc;
4289}
4290
4291
4292/**
4293 * Dumps a PAE shadow page directory pointer table.
4294 *
4295 * @returns VBox status code (VINF_SUCCESS).
4296 * @param pVM The VM handle.
4297 * @param HCPhys The physical address of the page directory pointer table.
4298 * @param u64Address The virtual address of the page table starts.
4299 * @param cr4 The CR4, PSE is currently used.
4300 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
4301 * @param cMaxDepth The maxium depth.
4302 * @param pHlp Pointer to the output functions.
4303 */
4304static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4305{
4306 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
4307 if (!pPDPT)
4308 {
4309 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
4310 fLongMode ? 16 : 8, u64Address, HCPhys);
4311 return VERR_INVALID_PARAMETER;
4312 }
4313
4314 int rc = VINF_SUCCESS;
4315 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
4316 for (unsigned i = 0; i < c; i++)
4317 {
4318 X86PDPE Pdpe = pPDPT->a[i];
4319 if (Pdpe.n.u1Present)
4320 {
4321 if (fLongMode)
4322 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4323 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4324 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4325 Pdpe.lm.u1Write ? 'W' : 'R',
4326 Pdpe.lm.u1User ? 'U' : 'S',
4327 Pdpe.lm.u1Accessed ? 'A' : '-',
4328 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
4329 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
4330 Pdpe.lm.u1WriteThru ? "WT" : "--",
4331 Pdpe.lm.u1CacheDisable? "CD" : "--",
4332 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
4333 Pdpe.lm.u1NoExecute ? "NX" : "--",
4334 Pdpe.u & RT_BIT(9) ? '1' : '0',
4335 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4336 Pdpe.u & RT_BIT(11) ? '1' : '0',
4337 Pdpe.u & X86_PDPE_PG_MASK);
4338 else
4339 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
4340 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
4341 i << X86_PDPT_SHIFT,
4342 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
4343 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
4344 Pdpe.n.u1WriteThru ? "WT" : "--",
4345 Pdpe.n.u1CacheDisable? "CD" : "--",
4346 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
4347 Pdpe.u & RT_BIT(9) ? '1' : '0',
4348 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4349 Pdpe.u & RT_BIT(11) ? '1' : '0',
4350 Pdpe.u & X86_PDPE_PG_MASK);
4351 if (cMaxDepth >= 1)
4352 {
4353 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
4354 cr4, fLongMode, cMaxDepth - 1, pHlp);
4355 if (rc2 < rc && RT_SUCCESS(rc))
4356 rc = rc2;
4357 }
4358 }
4359 }
4360 return rc;
4361}
4362
4363
4364/**
4365 * Dumps a 32-bit shadow page table.
4366 *
4367 * @returns VBox status code (VINF_SUCCESS).
4368 * @param pVM The VM handle.
4369 * @param HCPhys The physical address of the table.
4370 * @param cr4 The CR4, PSE is currently used.
4371 * @param cMaxDepth The maxium depth.
4372 * @param pHlp Pointer to the output functions.
4373 */
4374static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4375{
4376 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
4377 if (!pPML4)
4378 {
4379 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
4380 return VERR_INVALID_PARAMETER;
4381 }
4382
4383 int rc = VINF_SUCCESS;
4384 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
4385 {
4386 X86PML4E Pml4e = pPML4->a[i];
4387 if (Pml4e.n.u1Present)
4388 {
4389 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
4390 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
4391 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
4392 u64Address,
4393 Pml4e.n.u1Write ? 'W' : 'R',
4394 Pml4e.n.u1User ? 'U' : 'S',
4395 Pml4e.n.u1Accessed ? 'A' : '-',
4396 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
4397 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
4398 Pml4e.n.u1WriteThru ? "WT" : "--",
4399 Pml4e.n.u1CacheDisable? "CD" : "--",
4400 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
4401 Pml4e.n.u1NoExecute ? "NX" : "--",
4402 Pml4e.u & RT_BIT(9) ? '1' : '0',
4403 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
4404 Pml4e.u & RT_BIT(11) ? '1' : '0',
4405 Pml4e.u & X86_PML4E_PG_MASK);
4406
4407 if (cMaxDepth >= 1)
4408 {
4409 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
4410 if (rc2 < rc && RT_SUCCESS(rc))
4411 rc = rc2;
4412 }
4413 }
4414 }
4415 return rc;
4416}
4417
4418
4419/**
4420 * Dumps a 32-bit shadow page table.
4421 *
4422 * @returns VBox status code (VINF_SUCCESS).
4423 * @param pVM The VM handle.
4424 * @param pPT Pointer to the page table.
4425 * @param u32Address The virtual address this table starts at.
4426 * @param pHlp Pointer to the output functions.
4427 */
4428int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
4429{
4430 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4431 {
4432 X86PTE Pte = pPT->a[i];
4433 if (Pte.n.u1Present)
4434 {
4435 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4436 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4437 u32Address + (i << X86_PT_SHIFT),
4438 Pte.n.u1Write ? 'W' : 'R',
4439 Pte.n.u1User ? 'U' : 'S',
4440 Pte.n.u1Accessed ? 'A' : '-',
4441 Pte.n.u1Dirty ? 'D' : '-',
4442 Pte.n.u1Global ? 'G' : '-',
4443 Pte.n.u1WriteThru ? "WT" : "--",
4444 Pte.n.u1CacheDisable? "CD" : "--",
4445 Pte.n.u1PAT ? "AT" : "--",
4446 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4447 Pte.u & RT_BIT(10) ? '1' : '0',
4448 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4449 Pte.u & X86_PDE_PG_MASK);
4450 }
4451 }
4452 return VINF_SUCCESS;
4453}
4454
4455
4456/**
4457 * Dumps a 32-bit shadow page directory and page tables.
4458 *
4459 * @returns VBox status code (VINF_SUCCESS).
4460 * @param pVM The VM handle.
4461 * @param cr3 The root of the hierarchy.
4462 * @param cr4 The CR4, PSE is currently used.
4463 * @param cMaxDepth How deep into the hierarchy the dumper should go.
4464 * @param pHlp Pointer to the output functions.
4465 */
4466int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4467{
4468 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
4469 if (!pPD)
4470 {
4471 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
4472 return VERR_INVALID_PARAMETER;
4473 }
4474
4475 int rc = VINF_SUCCESS;
4476 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4477 {
4478 X86PDE Pde = pPD->a[i];
4479 if (Pde.n.u1Present)
4480 {
4481 const uint32_t u32Address = i << X86_PD_SHIFT;
4482 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4483 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4484 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4485 u32Address,
4486 Pde.b.u1Write ? 'W' : 'R',
4487 Pde.b.u1User ? 'U' : 'S',
4488 Pde.b.u1Accessed ? 'A' : '-',
4489 Pde.b.u1Dirty ? 'D' : '-',
4490 Pde.b.u1Global ? 'G' : '-',
4491 Pde.b.u1WriteThru ? "WT" : "--",
4492 Pde.b.u1CacheDisable? "CD" : "--",
4493 Pde.b.u1PAT ? "AT" : "--",
4494 Pde.u & RT_BIT_64(9) ? '1' : '0',
4495 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4496 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4497 Pde.u & X86_PDE4M_PG_MASK);
4498 else
4499 {
4500 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
4501 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4502 u32Address,
4503 Pde.n.u1Write ? 'W' : 'R',
4504 Pde.n.u1User ? 'U' : 'S',
4505 Pde.n.u1Accessed ? 'A' : '-',
4506 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4507 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4508 Pde.n.u1WriteThru ? "WT" : "--",
4509 Pde.n.u1CacheDisable? "CD" : "--",
4510 Pde.u & RT_BIT_64(9) ? '1' : '0',
4511 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
4512 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
4513 Pde.u & X86_PDE_PG_MASK);
4514 if (cMaxDepth >= 1)
4515 {
4516 /** @todo what about using the page pool for mapping PTs? */
4517 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
4518 PX86PT pPT = NULL;
4519 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
4520 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
4521 else
4522 {
4523 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
4524 if (u32Address - pMap->GCPtr < pMap->cb)
4525 {
4526 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
4527 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
4528 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
4529 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
4530 pPT = pMap->aPTs[iPDE].pPTR3;
4531 }
4532 }
4533 int rc2 = VERR_INVALID_PARAMETER;
4534 if (pPT)
4535 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
4536 else
4537 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
4538 if (rc2 < rc && RT_SUCCESS(rc))
4539 rc = rc2;
4540 }
4541 }
4542 }
4543 }
4544
4545 return rc;
4546}
4547
4548
4549/**
4550 * Dumps a 32-bit shadow page table.
4551 *
4552 * @returns VBox status code (VINF_SUCCESS).
4553 * @param pVM The VM handle.
4554 * @param pPT Pointer to the page table.
4555 * @param u32Address The virtual address this table starts at.
4556 * @param PhysSearch Address to search for.
4557 */
4558int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
4559{
4560 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
4561 {
4562 X86PTE Pte = pPT->a[i];
4563 if (Pte.n.u1Present)
4564 {
4565 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4566 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
4567 u32Address + (i << X86_PT_SHIFT),
4568 Pte.n.u1Write ? 'W' : 'R',
4569 Pte.n.u1User ? 'U' : 'S',
4570 Pte.n.u1Accessed ? 'A' : '-',
4571 Pte.n.u1Dirty ? 'D' : '-',
4572 Pte.n.u1Global ? 'G' : '-',
4573 Pte.n.u1WriteThru ? "WT" : "--",
4574 Pte.n.u1CacheDisable? "CD" : "--",
4575 Pte.n.u1PAT ? "AT" : "--",
4576 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
4577 Pte.u & RT_BIT(10) ? '1' : '0',
4578 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
4579 Pte.u & X86_PDE_PG_MASK));
4580
4581 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
4582 {
4583 uint64_t fPageShw = 0;
4584 RTHCPHYS pPhysHC = 0;
4585
4586 /** @todo SMP support!! */
4587 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
4588 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
4589 }
4590 }
4591 }
4592 return VINF_SUCCESS;
4593}
4594
4595
4596/**
4597 * Dumps a 32-bit guest page directory and page tables.
4598 *
4599 * @returns VBox status code (VINF_SUCCESS).
4600 * @param pVM The VM handle.
4601 * @param cr3 The root of the hierarchy.
4602 * @param cr4 The CR4, PSE is currently used.
4603 * @param PhysSearch Address to search for.
4604 */
4605VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4606{
4607 bool fLongMode = false;
4608 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4609 PX86PD pPD = 0;
4610
4611 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
4612 if (RT_FAILURE(rc) || !pPD)
4613 {
4614 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4615 return VERR_INVALID_PARAMETER;
4616 }
4617
4618 Log(("cr3=%08x cr4=%08x%s\n"
4619 "%-*s P - Present\n"
4620 "%-*s | R/W - Read (0) / Write (1)\n"
4621 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4622 "%-*s | | | A - Accessed\n"
4623 "%-*s | | | | D - Dirty\n"
4624 "%-*s | | | | | G - Global\n"
4625 "%-*s | | | | | | WT - Write thru\n"
4626 "%-*s | | | | | | | CD - Cache disable\n"
4627 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4628 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4629 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4630 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4631 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4632 "%-*s Level | | | | | | | | | | | | Page\n"
4633 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4634 - W U - - - -- -- -- -- -- 010 */
4635 , cr3, cr4, fLongMode ? " Long Mode" : "",
4636 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4637 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4638
4639 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4640 {
4641 X86PDE Pde = pPD->a[i];
4642 if (Pde.n.u1Present)
4643 {
4644 const uint32_t u32Address = i << X86_PD_SHIFT;
4645
4646 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4647 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4648 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4649 u32Address,
4650 Pde.b.u1Write ? 'W' : 'R',
4651 Pde.b.u1User ? 'U' : 'S',
4652 Pde.b.u1Accessed ? 'A' : '-',
4653 Pde.b.u1Dirty ? 'D' : '-',
4654 Pde.b.u1Global ? 'G' : '-',
4655 Pde.b.u1WriteThru ? "WT" : "--",
4656 Pde.b.u1CacheDisable? "CD" : "--",
4657 Pde.b.u1PAT ? "AT" : "--",
4658 Pde.u & RT_BIT(9) ? '1' : '0',
4659 Pde.u & RT_BIT(10) ? '1' : '0',
4660 Pde.u & RT_BIT(11) ? '1' : '0',
4661 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4662 /** @todo PhysSearch */
4663 else
4664 {
4665 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4666 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4667 u32Address,
4668 Pde.n.u1Write ? 'W' : 'R',
4669 Pde.n.u1User ? 'U' : 'S',
4670 Pde.n.u1Accessed ? 'A' : '-',
4671 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4672 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4673 Pde.n.u1WriteThru ? "WT" : "--",
4674 Pde.n.u1CacheDisable? "CD" : "--",
4675 Pde.u & RT_BIT(9) ? '1' : '0',
4676 Pde.u & RT_BIT(10) ? '1' : '0',
4677 Pde.u & RT_BIT(11) ? '1' : '0',
4678 Pde.u & X86_PDE_PG_MASK));
4679 ////if (cMaxDepth >= 1)
4680 {
4681 /** @todo what about using the page pool for mapping PTs? */
4682 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4683 PX86PT pPT = NULL;
4684
4685 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
4686
4687 int rc2 = VERR_INVALID_PARAMETER;
4688 if (pPT)
4689 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4690 else
4691 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4692 if (rc2 < rc && RT_SUCCESS(rc))
4693 rc = rc2;
4694 }
4695 }
4696 }
4697 }
4698
4699 return rc;
4700}
4701
4702
4703/**
4704 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4705 *
4706 * @returns VBox status code (VINF_SUCCESS).
4707 * @param pVM The VM handle.
4708 * @param cr3 The root of the hierarchy.
4709 * @param cr4 The cr4, only PAE and PSE is currently used.
4710 * @param fLongMode Set if long mode, false if not long mode.
4711 * @param cMaxDepth Number of levels to dump.
4712 * @param pHlp Pointer to the output functions.
4713 */
4714VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4715{
4716 if (!pHlp)
4717 pHlp = DBGFR3InfoLogHlp();
4718 if (!cMaxDepth)
4719 return VINF_SUCCESS;
4720 const unsigned cch = fLongMode ? 16 : 8;
4721 pHlp->pfnPrintf(pHlp,
4722 "cr3=%08x cr4=%08x%s\n"
4723 "%-*s P - Present\n"
4724 "%-*s | R/W - Read (0) / Write (1)\n"
4725 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4726 "%-*s | | | A - Accessed\n"
4727 "%-*s | | | | D - Dirty\n"
4728 "%-*s | | | | | G - Global\n"
4729 "%-*s | | | | | | WT - Write thru\n"
4730 "%-*s | | | | | | | CD - Cache disable\n"
4731 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4732 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4733 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4734 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4735 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4736 "%-*s Level | | | | | | | | | | | | Page\n"
4737 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4738 - W U - - - -- -- -- -- -- 010 */
4739 , cr3, cr4, fLongMode ? " Long Mode" : "",
4740 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4741 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4742 if (cr4 & X86_CR4_PAE)
4743 {
4744 if (fLongMode)
4745 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4746 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4747 }
4748 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4749}
4750
4751#ifdef VBOX_WITH_DEBUGGER
4752
4753/**
4754 * The '.pgmram' command.
4755 *
4756 * @returns VBox status.
4757 * @param pCmd Pointer to the command descriptor (as registered).
4758 * @param pCmdHlp Pointer to command helper functions.
4759 * @param pVM Pointer to the current VM (if any).
4760 * @param paArgs Pointer to (readonly) array of arguments.
4761 * @param cArgs Number of arguments in the array.
4762 */
4763static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4764{
4765 /*
4766 * Validate input.
4767 */
4768 if (!pVM)
4769 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4770 if (!pVM->pgm.s.pRamRangesRC)
4771 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4772
4773 /*
4774 * Dump the ranges.
4775 */
4776 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4777 PPGMRAMRANGE pRam;
4778 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4779 {
4780 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4781 "%RGp - %RGp %p\n",
4782 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4783 if (RT_FAILURE(rc))
4784 return rc;
4785 }
4786
4787 return VINF_SUCCESS;
4788}
4789
4790
4791/**
4792 * The '.pgmmap' command.
4793 *
4794 * @returns VBox status.
4795 * @param pCmd Pointer to the command descriptor (as registered).
4796 * @param pCmdHlp Pointer to command helper functions.
4797 * @param pVM Pointer to the current VM (if any).
4798 * @param paArgs Pointer to (readonly) array of arguments.
4799 * @param cArgs Number of arguments in the array.
4800 */
4801static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4802{
4803 /*
4804 * Validate input.
4805 */
4806 if (!pVM)
4807 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4808 if (!pVM->pgm.s.pMappingsR3)
4809 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
4810
4811 /*
4812 * Print message about the fixedness of the mappings.
4813 */
4814 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
4815 if (RT_FAILURE(rc))
4816 return rc;
4817
4818 /*
4819 * Dump the ranges.
4820 */
4821 PPGMMAPPING pCur;
4822 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
4823 {
4824 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4825 "%08x - %08x %s\n",
4826 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
4827 if (RT_FAILURE(rc))
4828 return rc;
4829 }
4830
4831 return VINF_SUCCESS;
4832}
4833
4834
4835/**
4836 * The '.pgmerror' and '.pgmerroroff' commands.
4837 *
4838 * @returns VBox status.
4839 * @param pCmd Pointer to the command descriptor (as registered).
4840 * @param pCmdHlp Pointer to command helper functions.
4841 * @param pVM Pointer to the current VM (if any).
4842 * @param paArgs Pointer to (readonly) array of arguments.
4843 * @param cArgs Number of arguments in the array.
4844 */
4845static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4846{
4847 /*
4848 * Validate input.
4849 */
4850 if (!pVM)
4851 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4852 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4853 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4854
4855 if (!cArgs)
4856 {
4857 /*
4858 * Print the list of error injection locations with status.
4859 */
4860 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4861 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4862 }
4863 else
4864 {
4865
4866 /*
4867 * String switch on where to inject the error.
4868 */
4869 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4870 const char *pszWhere = paArgs[0].u.pszString;
4871 if (!strcmp(pszWhere, "handy"))
4872 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4873 else
4874 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4875 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4876 }
4877 return VINF_SUCCESS;
4878}
4879
4880
4881/**
4882 * The '.pgmsync' command.
4883 *
4884 * @returns VBox status.
4885 * @param pCmd Pointer to the command descriptor (as registered).
4886 * @param pCmdHlp Pointer to command helper functions.
4887 * @param pVM Pointer to the current VM (if any).
4888 * @param paArgs Pointer to (readonly) array of arguments.
4889 * @param cArgs Number of arguments in the array.
4890 */
4891static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4892{
4893 /** @todo SMP support */
4894 PVMCPU pVCpu = &pVM->aCpus[0];
4895
4896 /*
4897 * Validate input.
4898 */
4899 if (!pVM)
4900 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4901
4902 /*
4903 * Force page directory sync.
4904 */
4905 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4906
4907 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4908 if (RT_FAILURE(rc))
4909 return rc;
4910
4911 return VINF_SUCCESS;
4912}
4913
4914
4915#ifdef VBOX_STRICT
4916/**
4917 * The '.pgmassertcr3' command.
4918 *
4919 * @returns VBox status.
4920 * @param pCmd Pointer to the command descriptor (as registered).
4921 * @param pCmdHlp Pointer to command helper functions.
4922 * @param pVM Pointer to the current VM (if any).
4923 * @param paArgs Pointer to (readonly) array of arguments.
4924 * @param cArgs Number of arguments in the array.
4925 */
4926static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4927{
4928 /** @todo SMP support!! */
4929 PVMCPU pVCpu = &pVM->aCpus[0];
4930
4931 /*
4932 * Validate input.
4933 */
4934 if (!pVM)
4935 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4936
4937 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4938 if (RT_FAILURE(rc))
4939 return rc;
4940
4941 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4942
4943 return VINF_SUCCESS;
4944}
4945#endif /* VBOX_STRICT */
4946
4947
4948/**
4949 * The '.pgmsyncalways' command.
4950 *
4951 * @returns VBox status.
4952 * @param pCmd Pointer to the command descriptor (as registered).
4953 * @param pCmdHlp Pointer to command helper functions.
4954 * @param pVM Pointer to the current VM (if any).
4955 * @param paArgs Pointer to (readonly) array of arguments.
4956 * @param cArgs Number of arguments in the array.
4957 */
4958static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4959{
4960 /** @todo SMP support!! */
4961 PVMCPU pVCpu = &pVM->aCpus[0];
4962
4963 /*
4964 * Validate input.
4965 */
4966 if (!pVM)
4967 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4968
4969 /*
4970 * Force page directory sync.
4971 */
4972 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4973 {
4974 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4975 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4976 }
4977 else
4978 {
4979 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4980 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4981 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4982 }
4983}
4984
4985
4986/**
4987 * The '.pgmsyncalways' command.
4988 *
4989 * @returns VBox status.
4990 * @param pCmd Pointer to the command descriptor (as registered).
4991 * @param pCmdHlp Pointer to command helper functions.
4992 * @param pVM Pointer to the current VM (if any).
4993 * @param paArgs Pointer to (readonly) array of arguments.
4994 * @param cArgs Number of arguments in the array.
4995 */
4996static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4997{
4998 /*
4999 * Validate input.
5000 */
5001 if (!pVM)
5002 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
5003 if ( cArgs < 1
5004 || cArgs > 2
5005 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
5006 || ( cArgs > 1
5007 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
5008 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
5009 if ( cArgs >= 2
5010 && strcmp(paArgs[1].u.pszString, "nozero"))
5011 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
5012 bool fIncZeroPgs = cArgs < 2;
5013
5014 /*
5015 * Open the output file and get the ram parameters.
5016 */
5017 RTFILE hFile;
5018 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
5019 if (RT_FAILURE(rc))
5020 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
5021
5022 uint32_t cbRamHole = 0;
5023 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
5024 uint64_t cbRam = 0;
5025 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
5026 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
5027
5028 /*
5029 * Dump the physical memory, page by page.
5030 */
5031 RTGCPHYS GCPhys = 0;
5032 char abZeroPg[PAGE_SIZE];
5033 RT_ZERO(abZeroPg);
5034
5035 pgmLock(pVM);
5036 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
5037 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
5038 pRam = pRam->pNextR3)
5039 {
5040 /* fill the gap */
5041 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
5042 {
5043 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
5044 {
5045 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5046 GCPhys += PAGE_SIZE;
5047 }
5048 }
5049
5050 PCPGMPAGE pPage = &pRam->aPages[0];
5051 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
5052 {
5053 if (PGM_PAGE_IS_ZERO(pPage))
5054 {
5055 if (fIncZeroPgs)
5056 {
5057 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5058 if (RT_FAILURE(rc))
5059 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5060 }
5061 }
5062 else
5063 {
5064 switch (PGM_PAGE_GET_TYPE(pPage))
5065 {
5066 case PGMPAGETYPE_RAM:
5067 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
5068 case PGMPAGETYPE_ROM:
5069 case PGMPAGETYPE_MMIO2:
5070 {
5071 void const *pvPage;
5072 PGMPAGEMAPLOCK Lock;
5073 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
5074 if (RT_SUCCESS(rc))
5075 {
5076 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
5077 PGMPhysReleasePageMappingLock(pVM, &Lock);
5078 if (RT_FAILURE(rc))
5079 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5080 }
5081 else
5082 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5083 break;
5084 }
5085
5086 default:
5087 AssertFailed();
5088 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
5089 case PGMPAGETYPE_MMIO:
5090 if (fIncZeroPgs)
5091 {
5092 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
5093 if (RT_FAILURE(rc))
5094 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
5095 }
5096 break;
5097 }
5098 }
5099
5100
5101 /* advance */
5102 GCPhys += PAGE_SIZE;
5103 pPage++;
5104 }
5105 }
5106 pgmUnlock(pVM);
5107
5108 RTFileClose(hFile);
5109 if (RT_SUCCESS(rc))
5110 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
5111 return VINF_SUCCESS;
5112}
5113
5114#endif /* VBOX_WITH_DEBUGGER */
5115
5116/**
5117 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
5118 */
5119typedef struct PGMCHECKINTARGS
5120{
5121 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
5122 PPGMPHYSHANDLER pPrevPhys;
5123 PPGMVIRTHANDLER pPrevVirt;
5124 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
5125 PVM pVM;
5126} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
5127
5128/**
5129 * Validate a node in the physical handler tree.
5130 *
5131 * @returns 0 on if ok, other wise 1.
5132 * @param pNode The handler node.
5133 * @param pvUser pVM.
5134 */
5135static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5136{
5137 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5138 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
5139 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5140 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5141 AssertReleaseMsg( !pArgs->pPrevPhys
5142 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
5143 ("pPrevPhys=%p %RGp-%RGp %s\n"
5144 " pCur=%p %RGp-%RGp %s\n",
5145 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
5146 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5147 pArgs->pPrevPhys = pCur;
5148 return 0;
5149}
5150
5151
5152/**
5153 * Validate a node in the virtual handler tree.
5154 *
5155 * @returns 0 on if ok, other wise 1.
5156 * @param pNode The handler node.
5157 * @param pvUser pVM.
5158 */
5159static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
5160{
5161 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5162 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
5163 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
5164 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5165 AssertReleaseMsg( !pArgs->pPrevVirt
5166 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
5167 ("pPrevVirt=%p %RGv-%RGv %s\n"
5168 " pCur=%p %RGv-%RGv %s\n",
5169 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
5170 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
5171 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
5172 {
5173 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
5174 ("pCur=%p %RGv-%RGv %s\n"
5175 "iPage=%d offVirtHandle=%#x expected %#x\n",
5176 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
5177 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
5178 }
5179 pArgs->pPrevVirt = pCur;
5180 return 0;
5181}
5182
5183
5184/**
5185 * Validate a node in the virtual handler tree.
5186 *
5187 * @returns 0 on if ok, other wise 1.
5188 * @param pNode The handler node.
5189 * @param pvUser pVM.
5190 */
5191static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
5192{
5193 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
5194 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
5195 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
5196 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
5197 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
5198 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5199 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5200 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5201 " pCur=%p %RGp-%RGp\n",
5202 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5203 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5204 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
5205 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
5206 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
5207 " pCur=%p %RGp-%RGp\n",
5208 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
5209 pCur, pCur->Core.Key, pCur->Core.KeyLast));
5210 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
5211 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5212 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5213 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
5214 {
5215 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
5216 for (;;)
5217 {
5218 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
5219 AssertReleaseMsg(pCur2 != pCur,
5220 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5221 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
5222 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
5223 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5224 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5225 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5226 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5227 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
5228 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5229 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5230 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5231 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5232 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
5233 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
5234 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
5235 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
5236 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
5237 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
5238 break;
5239 }
5240 }
5241
5242 pArgs->pPrevPhys2Virt = pCur;
5243 return 0;
5244}
5245
5246
5247/**
5248 * Perform an integrity check on the PGM component.
5249 *
5250 * @returns VINF_SUCCESS if everything is fine.
5251 * @returns VBox error status after asserting on integrity breach.
5252 * @param pVM The VM handle.
5253 */
5254VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
5255{
5256 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
5257
5258 /*
5259 * Check the trees.
5260 */
5261 int cErrors = 0;
5262 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
5263 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
5264 PGMCHECKINTARGS Args = s_LeftToRight;
5265 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5266 Args = s_RightToLeft;
5267 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
5268 Args = s_LeftToRight;
5269 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5270 Args = s_RightToLeft;
5271 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5272 Args = s_LeftToRight;
5273 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5274 Args = s_RightToLeft;
5275 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
5276 Args = s_LeftToRight;
5277 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5278 Args = s_RightToLeft;
5279 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
5280
5281 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
5282}
5283
5284
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette