VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 28137

Last change on this file since 28137 was 27585, checked in by vboxsync, 15 years ago

Duplicate counter

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 218.1 KB
Line 
1/* $Id: PGM.cpp 27585 2010-03-22 12:23:44Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/selm.h>
588#include <VBox/ssm.h>
589#include <VBox/hwaccm.h>
590#include "PGMInternal.h"
591#include <VBox/vm.h>
592#include "PGMInline.h"
593
594#include <VBox/dbg.h>
595#include <VBox/param.h>
596#include <VBox/err.h>
597
598#include <iprt/asm.h>
599#include <iprt/assert.h>
600#include <iprt/env.h>
601#include <iprt/mem.h>
602#include <iprt/file.h>
603#include <iprt/string.h>
604#include <iprt/thread.h>
605
606
607/*******************************************************************************
608* Defined Constants And Macros *
609*******************************************************************************/
610/** Saved state data unit version for 2.5.x and later. */
611#define PGM_SAVED_STATE_VERSION 9
612/** Saved state data unit version for 2.2.2 and later. */
613#define PGM_SAVED_STATE_VERSION_2_2_2 8
614/** Saved state data unit version for 2.2.0. */
615#define PGM_SAVED_STATE_VERSION_RR_DESC 7
616/** Saved state data unit version. */
617#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
618
619
620/*******************************************************************************
621* Internal Functions *
622*******************************************************************************/
623static int pgmR3InitPaging(PVM pVM);
624static void pgmR3InitStats(PVM pVM);
625static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
628static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
631#ifdef VBOX_STRICT
632static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
633#endif
634static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
635static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
636static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
637
638#ifdef VBOX_WITH_DEBUGGER
639/** @todo Convert the first two commands to 'info' items. */
640static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
644# ifdef VBOX_STRICT
645static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
646# endif
647static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
648#endif
649
650
651/*******************************************************************************
652* Global Variables *
653*******************************************************************************/
654#ifdef VBOX_WITH_DEBUGGER
655/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
656static const DBGCVARDESC g_aPgmErrorArgs[] =
657{
658 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
659 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
660};
661
662static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
663{
664 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
665 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
666 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
667};
668
669/** Command descriptors. */
670static const DBGCCMD g_aCmds[] =
671{
672 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
673 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
674 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
675 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
676 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
677#ifdef VBOX_STRICT
678 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
679#endif
680 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
681 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
682};
683#endif
684
685
686
687
688/*
689 * Shadow - 32-bit mode
690 */
691#define PGM_SHW_TYPE PGM_TYPE_32BIT
692#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
693#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
694#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
695#include "PGMShw.h"
696
697/* Guest - real mode */
698#define PGM_GST_TYPE PGM_TYPE_REAL
699#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
700#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
701#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
702#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
703#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
704#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
705#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
706#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
707#include "PGMBth.h"
708#include "PGMGstDefs.h"
709#include "PGMGst.h"
710#undef BTH_PGMPOOLKIND_PT_FOR_PT
711#undef BTH_PGMPOOLKIND_ROOT
712#undef PGM_BTH_NAME
713#undef PGM_BTH_NAME_RC_STR
714#undef PGM_BTH_NAME_R0_STR
715#undef PGM_GST_TYPE
716#undef PGM_GST_NAME
717#undef PGM_GST_NAME_RC_STR
718#undef PGM_GST_NAME_R0_STR
719
720/* Guest - protected mode */
721#define PGM_GST_TYPE PGM_TYPE_PROT
722#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
723#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
724#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
725#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
726#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
727#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
728#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
729#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
730#include "PGMBth.h"
731#include "PGMGstDefs.h"
732#include "PGMGst.h"
733#undef BTH_PGMPOOLKIND_PT_FOR_PT
734#undef BTH_PGMPOOLKIND_ROOT
735#undef PGM_BTH_NAME
736#undef PGM_BTH_NAME_RC_STR
737#undef PGM_BTH_NAME_R0_STR
738#undef PGM_GST_TYPE
739#undef PGM_GST_NAME
740#undef PGM_GST_NAME_RC_STR
741#undef PGM_GST_NAME_R0_STR
742
743/* Guest - 32-bit mode */
744#define PGM_GST_TYPE PGM_TYPE_32BIT
745#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
746#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
747#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
748#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
749#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
750#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
751#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
752#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
753#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
754#include "PGMBth.h"
755#include "PGMGstDefs.h"
756#include "PGMGst.h"
757#undef BTH_PGMPOOLKIND_PT_FOR_BIG
758#undef BTH_PGMPOOLKIND_PT_FOR_PT
759#undef BTH_PGMPOOLKIND_ROOT
760#undef PGM_BTH_NAME
761#undef PGM_BTH_NAME_RC_STR
762#undef PGM_BTH_NAME_R0_STR
763#undef PGM_GST_TYPE
764#undef PGM_GST_NAME
765#undef PGM_GST_NAME_RC_STR
766#undef PGM_GST_NAME_R0_STR
767
768#undef PGM_SHW_TYPE
769#undef PGM_SHW_NAME
770#undef PGM_SHW_NAME_RC_STR
771#undef PGM_SHW_NAME_R0_STR
772
773
774/*
775 * Shadow - PAE mode
776 */
777#define PGM_SHW_TYPE PGM_TYPE_PAE
778#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
779#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
780#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
781#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
782#include "PGMShw.h"
783
784/* Guest - real mode */
785#define PGM_GST_TYPE PGM_TYPE_REAL
786#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
787#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
788#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
789#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
790#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
791#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
792#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
793#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
794#include "PGMGstDefs.h"
795#include "PGMBth.h"
796#undef BTH_PGMPOOLKIND_PT_FOR_PT
797#undef BTH_PGMPOOLKIND_ROOT
798#undef PGM_BTH_NAME
799#undef PGM_BTH_NAME_RC_STR
800#undef PGM_BTH_NAME_R0_STR
801#undef PGM_GST_TYPE
802#undef PGM_GST_NAME
803#undef PGM_GST_NAME_RC_STR
804#undef PGM_GST_NAME_R0_STR
805
806/* Guest - protected mode */
807#define PGM_GST_TYPE PGM_TYPE_PROT
808#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
809#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
810#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
811#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
812#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
813#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
814#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
815#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
816#include "PGMGstDefs.h"
817#include "PGMBth.h"
818#undef BTH_PGMPOOLKIND_PT_FOR_PT
819#undef BTH_PGMPOOLKIND_ROOT
820#undef PGM_BTH_NAME
821#undef PGM_BTH_NAME_RC_STR
822#undef PGM_BTH_NAME_R0_STR
823#undef PGM_GST_TYPE
824#undef PGM_GST_NAME
825#undef PGM_GST_NAME_RC_STR
826#undef PGM_GST_NAME_R0_STR
827
828/* Guest - 32-bit mode */
829#define PGM_GST_TYPE PGM_TYPE_32BIT
830#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
831#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
832#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
833#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
834#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
835#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
836#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
837#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
838#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
839#include "PGMGstDefs.h"
840#include "PGMBth.h"
841#undef BTH_PGMPOOLKIND_PT_FOR_BIG
842#undef BTH_PGMPOOLKIND_PT_FOR_PT
843#undef BTH_PGMPOOLKIND_ROOT
844#undef PGM_BTH_NAME
845#undef PGM_BTH_NAME_RC_STR
846#undef PGM_BTH_NAME_R0_STR
847#undef PGM_GST_TYPE
848#undef PGM_GST_NAME
849#undef PGM_GST_NAME_RC_STR
850#undef PGM_GST_NAME_R0_STR
851
852/* Guest - PAE mode */
853#define PGM_GST_TYPE PGM_TYPE_PAE
854#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
855#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
856#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
857#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
858#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
859#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
860#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
861#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
862#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
863#include "PGMBth.h"
864#include "PGMGstDefs.h"
865#include "PGMGst.h"
866#undef BTH_PGMPOOLKIND_PT_FOR_BIG
867#undef BTH_PGMPOOLKIND_PT_FOR_PT
868#undef BTH_PGMPOOLKIND_ROOT
869#undef PGM_BTH_NAME
870#undef PGM_BTH_NAME_RC_STR
871#undef PGM_BTH_NAME_R0_STR
872#undef PGM_GST_TYPE
873#undef PGM_GST_NAME
874#undef PGM_GST_NAME_RC_STR
875#undef PGM_GST_NAME_R0_STR
876
877#undef PGM_SHW_TYPE
878#undef PGM_SHW_NAME
879#undef PGM_SHW_NAME_RC_STR
880#undef PGM_SHW_NAME_R0_STR
881
882
883/*
884 * Shadow - AMD64 mode
885 */
886#define PGM_SHW_TYPE PGM_TYPE_AMD64
887#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
888#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
889#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
890#include "PGMShw.h"
891
892#ifdef VBOX_WITH_64_BITS_GUESTS
893/* Guest - AMD64 mode */
894# define PGM_GST_TYPE PGM_TYPE_AMD64
895# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
896# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
897# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
898# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
899# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
900# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
901# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
902# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
903# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
904# include "PGMBth.h"
905# include "PGMGstDefs.h"
906# include "PGMGst.h"
907# undef BTH_PGMPOOLKIND_PT_FOR_BIG
908# undef BTH_PGMPOOLKIND_PT_FOR_PT
909# undef BTH_PGMPOOLKIND_ROOT
910# undef PGM_BTH_NAME
911# undef PGM_BTH_NAME_RC_STR
912# undef PGM_BTH_NAME_R0_STR
913# undef PGM_GST_TYPE
914# undef PGM_GST_NAME
915# undef PGM_GST_NAME_RC_STR
916# undef PGM_GST_NAME_R0_STR
917#endif /* VBOX_WITH_64_BITS_GUESTS */
918
919#undef PGM_SHW_TYPE
920#undef PGM_SHW_NAME
921#undef PGM_SHW_NAME_RC_STR
922#undef PGM_SHW_NAME_R0_STR
923
924
925/*
926 * Shadow - Nested paging mode
927 */
928#define PGM_SHW_TYPE PGM_TYPE_NESTED
929#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
930#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
931#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
932#include "PGMShw.h"
933
934/* Guest - real mode */
935#define PGM_GST_TYPE PGM_TYPE_REAL
936#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
937#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
938#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
939#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
940#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
941#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
942#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
943#include "PGMGstDefs.h"
944#include "PGMBth.h"
945#undef BTH_PGMPOOLKIND_PT_FOR_PT
946#undef PGM_BTH_NAME
947#undef PGM_BTH_NAME_RC_STR
948#undef PGM_BTH_NAME_R0_STR
949#undef PGM_GST_TYPE
950#undef PGM_GST_NAME
951#undef PGM_GST_NAME_RC_STR
952#undef PGM_GST_NAME_R0_STR
953
954/* Guest - protected mode */
955#define PGM_GST_TYPE PGM_TYPE_PROT
956#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
957#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
958#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
959#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
960#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
961#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
962#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
963#include "PGMGstDefs.h"
964#include "PGMBth.h"
965#undef BTH_PGMPOOLKIND_PT_FOR_PT
966#undef PGM_BTH_NAME
967#undef PGM_BTH_NAME_RC_STR
968#undef PGM_BTH_NAME_R0_STR
969#undef PGM_GST_TYPE
970#undef PGM_GST_NAME
971#undef PGM_GST_NAME_RC_STR
972#undef PGM_GST_NAME_R0_STR
973
974/* Guest - 32-bit mode */
975#define PGM_GST_TYPE PGM_TYPE_32BIT
976#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
977#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
978#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
979#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
980#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
981#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
982#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
983#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
984#include "PGMGstDefs.h"
985#include "PGMBth.h"
986#undef BTH_PGMPOOLKIND_PT_FOR_BIG
987#undef BTH_PGMPOOLKIND_PT_FOR_PT
988#undef PGM_BTH_NAME
989#undef PGM_BTH_NAME_RC_STR
990#undef PGM_BTH_NAME_R0_STR
991#undef PGM_GST_TYPE
992#undef PGM_GST_NAME
993#undef PGM_GST_NAME_RC_STR
994#undef PGM_GST_NAME_R0_STR
995
996/* Guest - PAE mode */
997#define PGM_GST_TYPE PGM_TYPE_PAE
998#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
999#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1000#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1001#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1002#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1003#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1004#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1005#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1006#include "PGMGstDefs.h"
1007#include "PGMBth.h"
1008#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1009#undef BTH_PGMPOOLKIND_PT_FOR_PT
1010#undef PGM_BTH_NAME
1011#undef PGM_BTH_NAME_RC_STR
1012#undef PGM_BTH_NAME_R0_STR
1013#undef PGM_GST_TYPE
1014#undef PGM_GST_NAME
1015#undef PGM_GST_NAME_RC_STR
1016#undef PGM_GST_NAME_R0_STR
1017
1018#ifdef VBOX_WITH_64_BITS_GUESTS
1019/* Guest - AMD64 mode */
1020# define PGM_GST_TYPE PGM_TYPE_AMD64
1021# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1022# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1023# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1024# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1025# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1026# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1027# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1028# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1029# include "PGMGstDefs.h"
1030# include "PGMBth.h"
1031# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1032# undef BTH_PGMPOOLKIND_PT_FOR_PT
1033# undef PGM_BTH_NAME
1034# undef PGM_BTH_NAME_RC_STR
1035# undef PGM_BTH_NAME_R0_STR
1036# undef PGM_GST_TYPE
1037# undef PGM_GST_NAME
1038# undef PGM_GST_NAME_RC_STR
1039# undef PGM_GST_NAME_R0_STR
1040#endif /* VBOX_WITH_64_BITS_GUESTS */
1041
1042#undef PGM_SHW_TYPE
1043#undef PGM_SHW_NAME
1044#undef PGM_SHW_NAME_RC_STR
1045#undef PGM_SHW_NAME_R0_STR
1046
1047
1048/*
1049 * Shadow - EPT
1050 */
1051#define PGM_SHW_TYPE PGM_TYPE_EPT
1052#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1053#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1054#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1055#include "PGMShw.h"
1056
1057/* Guest - real mode */
1058#define PGM_GST_TYPE PGM_TYPE_REAL
1059#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1060#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1061#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1062#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1063#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1064#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1065#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1066#include "PGMGstDefs.h"
1067#include "PGMBth.h"
1068#undef BTH_PGMPOOLKIND_PT_FOR_PT
1069#undef PGM_BTH_NAME
1070#undef PGM_BTH_NAME_RC_STR
1071#undef PGM_BTH_NAME_R0_STR
1072#undef PGM_GST_TYPE
1073#undef PGM_GST_NAME
1074#undef PGM_GST_NAME_RC_STR
1075#undef PGM_GST_NAME_R0_STR
1076
1077/* Guest - protected mode */
1078#define PGM_GST_TYPE PGM_TYPE_PROT
1079#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1080#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1081#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1082#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1083#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1084#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1085#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1086#include "PGMGstDefs.h"
1087#include "PGMBth.h"
1088#undef BTH_PGMPOOLKIND_PT_FOR_PT
1089#undef PGM_BTH_NAME
1090#undef PGM_BTH_NAME_RC_STR
1091#undef PGM_BTH_NAME_R0_STR
1092#undef PGM_GST_TYPE
1093#undef PGM_GST_NAME
1094#undef PGM_GST_NAME_RC_STR
1095#undef PGM_GST_NAME_R0_STR
1096
1097/* Guest - 32-bit mode */
1098#define PGM_GST_TYPE PGM_TYPE_32BIT
1099#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1100#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1101#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1102#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1103#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1104#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1105#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1106#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1107#include "PGMGstDefs.h"
1108#include "PGMBth.h"
1109#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1110#undef BTH_PGMPOOLKIND_PT_FOR_PT
1111#undef PGM_BTH_NAME
1112#undef PGM_BTH_NAME_RC_STR
1113#undef PGM_BTH_NAME_R0_STR
1114#undef PGM_GST_TYPE
1115#undef PGM_GST_NAME
1116#undef PGM_GST_NAME_RC_STR
1117#undef PGM_GST_NAME_R0_STR
1118
1119/* Guest - PAE mode */
1120#define PGM_GST_TYPE PGM_TYPE_PAE
1121#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1122#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1123#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1124#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1125#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1126#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1127#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1128#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1129#include "PGMGstDefs.h"
1130#include "PGMBth.h"
1131#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1132#undef BTH_PGMPOOLKIND_PT_FOR_PT
1133#undef PGM_BTH_NAME
1134#undef PGM_BTH_NAME_RC_STR
1135#undef PGM_BTH_NAME_R0_STR
1136#undef PGM_GST_TYPE
1137#undef PGM_GST_NAME
1138#undef PGM_GST_NAME_RC_STR
1139#undef PGM_GST_NAME_R0_STR
1140
1141#ifdef VBOX_WITH_64_BITS_GUESTS
1142/* Guest - AMD64 mode */
1143# define PGM_GST_TYPE PGM_TYPE_AMD64
1144# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1145# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1146# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1147# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1148# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1149# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1150# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1151# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1152# include "PGMGstDefs.h"
1153# include "PGMBth.h"
1154# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1155# undef BTH_PGMPOOLKIND_PT_FOR_PT
1156# undef PGM_BTH_NAME
1157# undef PGM_BTH_NAME_RC_STR
1158# undef PGM_BTH_NAME_R0_STR
1159# undef PGM_GST_TYPE
1160# undef PGM_GST_NAME
1161# undef PGM_GST_NAME_RC_STR
1162# undef PGM_GST_NAME_R0_STR
1163#endif /* VBOX_WITH_64_BITS_GUESTS */
1164
1165#undef PGM_SHW_TYPE
1166#undef PGM_SHW_NAME
1167#undef PGM_SHW_NAME_RC_STR
1168#undef PGM_SHW_NAME_R0_STR
1169
1170
1171
1172/**
1173 * Initiates the paging of VM.
1174 *
1175 * @returns VBox status code.
1176 * @param pVM Pointer to VM structure.
1177 */
1178VMMR3DECL(int) PGMR3Init(PVM pVM)
1179{
1180 LogFlow(("PGMR3Init:\n"));
1181 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1182 int rc;
1183
1184 /*
1185 * Assert alignment and sizes.
1186 */
1187 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1188 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1189 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1190
1191 /*
1192 * Init the structure.
1193 */
1194#ifdef PGM_WITHOUT_MAPPINGS
1195 pVM->pgm.s.fMappingsDisabled = true;
1196#endif
1197 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1198 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1199
1200 /* Init the per-CPU part. */
1201 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1202 {
1203 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1204 PPGMCPU pPGM = &pVCpu->pgm.s;
1205
1206 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1207 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1208 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1209
1210 pPGM->enmShadowMode = PGMMODE_INVALID;
1211 pPGM->enmGuestMode = PGMMODE_INVALID;
1212
1213 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1214
1215 pPGM->pGstPaePdptR3 = NULL;
1216#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1217 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1218#endif
1219 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1220 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1221 {
1222 pPGM->apGstPaePDsR3[i] = NULL;
1223#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1224 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1225#endif
1226 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1227 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1228 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1229 }
1230
1231 pPGM->fA20Enabled = true;
1232 }
1233
1234 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1235 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1236 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1237
1238 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1239#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1240 true
1241#else
1242 false
1243#endif
1244 );
1245 AssertLogRelRCReturn(rc, rc);
1246
1247#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1248 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1249#else
1250 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1251#endif
1252 AssertLogRelRCReturn(rc, rc);
1253 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1254 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1255
1256 /*
1257 * Get the configured RAM size - to estimate saved state size.
1258 */
1259 uint64_t cbRam;
1260 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1261 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1262 cbRam = 0;
1263 else if (RT_SUCCESS(rc))
1264 {
1265 if (cbRam < PAGE_SIZE)
1266 cbRam = 0;
1267 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1268 }
1269 else
1270 {
1271 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1272 return rc;
1273 }
1274
1275 /*
1276 * Register callbacks, string formatters and the saved state data unit.
1277 */
1278#ifdef VBOX_STRICT
1279 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1280#endif
1281 PGMRegisterStringFormatTypes();
1282
1283 rc = pgmR3InitSavedState(pVM, cbRam);
1284 if (RT_FAILURE(rc))
1285 return rc;
1286
1287 /*
1288 * Initialize the PGM critical section and flush the phys TLBs
1289 */
1290 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1291 AssertRCReturn(rc, rc);
1292
1293 PGMR3PhysChunkInvalidateTLB(pVM);
1294 PGMPhysInvalidatePageMapTLB(pVM);
1295
1296 /*
1297 * For the time being we sport a full set of handy pages in addition to the base
1298 * memory to simplify things.
1299 */
1300 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1301 AssertRCReturn(rc, rc);
1302
1303 /*
1304 * Trees
1305 */
1306 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1307 if (RT_SUCCESS(rc))
1308 {
1309 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1310 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1311
1312 /*
1313 * Alocate the zero page.
1314 */
1315 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1316 }
1317 if (RT_SUCCESS(rc))
1318 {
1319 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1320 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1321 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1322 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1323
1324 /*
1325 * Init the paging.
1326 */
1327 rc = pgmR3InitPaging(pVM);
1328 }
1329 if (RT_SUCCESS(rc))
1330 {
1331 /*
1332 * Init the page pool.
1333 */
1334 rc = pgmR3PoolInit(pVM);
1335 }
1336 if (RT_SUCCESS(rc))
1337 {
1338 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1339 {
1340 PVMCPU pVCpu = &pVM->aCpus[i];
1341 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1342 if (RT_FAILURE(rc))
1343 break;
1344 }
1345 }
1346
1347 if (RT_SUCCESS(rc))
1348 {
1349 /*
1350 * Info & statistics
1351 */
1352 DBGFR3InfoRegisterInternal(pVM, "mode",
1353 "Shows the current paging mode. "
1354 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1355 pgmR3InfoMode);
1356 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1357 "Dumps all the entries in the top level paging table. No arguments.",
1358 pgmR3InfoCr3);
1359 DBGFR3InfoRegisterInternal(pVM, "phys",
1360 "Dumps all the physical address ranges. No arguments.",
1361 pgmR3PhysInfo);
1362 DBGFR3InfoRegisterInternal(pVM, "handlers",
1363 "Dumps physical, virtual and hyper virtual handlers. "
1364 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1365 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1366 pgmR3InfoHandlers);
1367 DBGFR3InfoRegisterInternal(pVM, "mappings",
1368 "Dumps guest mappings.",
1369 pgmR3MapInfo);
1370
1371 pgmR3InitStats(pVM);
1372
1373#ifdef VBOX_WITH_DEBUGGER
1374 /*
1375 * Debugger commands.
1376 */
1377 static bool s_fRegisteredCmds = false;
1378 if (!s_fRegisteredCmds)
1379 {
1380 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1381 if (RT_SUCCESS(rc2))
1382 s_fRegisteredCmds = true;
1383 }
1384#endif
1385 return VINF_SUCCESS;
1386 }
1387
1388 /* Almost no cleanup necessary, MM frees all memory. */
1389 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1390
1391 return rc;
1392}
1393
1394
1395/**
1396 * Initializes the per-VCPU PGM.
1397 *
1398 * @returns VBox status code.
1399 * @param pVM The VM to operate on.
1400 */
1401VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1402{
1403 LogFlow(("PGMR3InitCPU\n"));
1404 return VINF_SUCCESS;
1405}
1406
1407
1408/**
1409 * Init paging.
1410 *
1411 * Since we need to check what mode the host is operating in before we can choose
1412 * the right paging functions for the host we have to delay this until R0 has
1413 * been initialized.
1414 *
1415 * @returns VBox status code.
1416 * @param pVM VM handle.
1417 */
1418static int pgmR3InitPaging(PVM pVM)
1419{
1420 /*
1421 * Force a recalculation of modes and switcher so everyone gets notified.
1422 */
1423 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1424 {
1425 PVMCPU pVCpu = &pVM->aCpus[i];
1426
1427 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1428 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1429 }
1430
1431 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1432
1433 /*
1434 * Allocate static mapping space for whatever the cr3 register
1435 * points to and in the case of PAE mode to the 4 PDs.
1436 */
1437 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1438 if (RT_FAILURE(rc))
1439 {
1440 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1441 return rc;
1442 }
1443 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1444
1445 /*
1446 * Allocate pages for the three possible intermediate contexts
1447 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1448 * for the sake of simplicity. The AMD64 uses the PAE for the
1449 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1450 *
1451 * We assume that two page tables will be enought for the core code
1452 * mappings (HC virtual and identity).
1453 */
1454 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1455 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1456 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1457 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1458 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1459 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1466
1467 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1468 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1469 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1470 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1471 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1472 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1473
1474 /*
1475 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1476 */
1477 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1478 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1479 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1480
1481 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1482 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1483
1484 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1485 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1486 {
1487 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1488 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1489 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1490 }
1491
1492 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1493 {
1494 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1495 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1496 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1497 }
1498
1499 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1500 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1501 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1502 | HCPhysInterPaePDPT64;
1503
1504 /*
1505 * Initialize paging workers and mode from current host mode
1506 * and the guest running in real mode.
1507 */
1508 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1509 switch (pVM->pgm.s.enmHostMode)
1510 {
1511 case SUPPAGINGMODE_32_BIT:
1512 case SUPPAGINGMODE_32_BIT_GLOBAL:
1513 case SUPPAGINGMODE_PAE:
1514 case SUPPAGINGMODE_PAE_GLOBAL:
1515 case SUPPAGINGMODE_PAE_NX:
1516 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1517 break;
1518
1519 case SUPPAGINGMODE_AMD64:
1520 case SUPPAGINGMODE_AMD64_GLOBAL:
1521 case SUPPAGINGMODE_AMD64_NX:
1522 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1523#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1524 if (ARCH_BITS != 64)
1525 {
1526 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1527 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1528 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1529 }
1530#endif
1531 break;
1532 default:
1533 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1534 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1535 }
1536 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1537 if (RT_SUCCESS(rc))
1538 {
1539 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1540#if HC_ARCH_BITS == 64
1541 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1542 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1543 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1544 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1545 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1546 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1547 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1548#endif
1549
1550 return VINF_SUCCESS;
1551 }
1552
1553 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1554 return rc;
1555}
1556
1557
1558/**
1559 * Init statistics
1560 */
1561static void pgmR3InitStats(PVM pVM)
1562{
1563 PPGM pPGM = &pVM->pgm.s;
1564 int rc;
1565
1566 /* Common - misc variables */
1567 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1568 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1569 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1570 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1571 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1572 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1573 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1574 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1575 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1576 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1577 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1578 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1579 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1580 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1581
1582 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1583 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1584 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1585 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1586
1587 /* Live save */
1588 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1589 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1590 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1591 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1592 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1593 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1594 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1595 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1596 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1597 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1598 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1599 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1600 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1601 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1602 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1603 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1604 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1605 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1606
1607#ifdef VBOX_WITH_STATISTICS
1608
1609# define PGM_REG_COUNTER(a, b, c) \
1610 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1611 AssertRC(rc);
1612
1613# define PGM_REG_COUNTER_BYTES(a, b, c) \
1614 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1615 AssertRC(rc);
1616
1617# define PGM_REG_PROFILE(a, b, c) \
1618 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1619 AssertRC(rc);
1620
1621 PGM_REG_PROFILE(&pPGM->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1622 PGM_REG_PROFILE(&pPGM->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1623 PGM_REG_PROFILE(&pPGM->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1624 PGM_REG_PROFILE(&pPGM->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1625
1626 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1627 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1628 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1629 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1630 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1631 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1632 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1633 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1634 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1635 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1636
1637 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1638 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1639 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1640 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1641 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1642 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1643 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1644 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1645 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1646 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1647
1648 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1649 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1650 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1651 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1652
1653 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1654 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1655 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1656 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1657
1658 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1659 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1660/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1661 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1662 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1663/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1664
1665 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1666 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1667 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1668 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1669 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1670 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1671 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1672 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1673
1674 /* GC only: */
1675 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1676 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1677 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1678 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1679
1680 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1681 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1682 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1683 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1684 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1685 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1686 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1687 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1688
1689 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1690 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1691 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1692 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1693 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1694 PGM_REG_COUNTER(&pPGM->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1695 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1696
1697# undef PGM_REG_COUNTER
1698# undef PGM_REG_PROFILE
1699#endif
1700
1701 /*
1702 * Note! The layout below matches the member layout exactly!
1703 */
1704
1705 /*
1706 * Common - stats
1707 */
1708 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1709 {
1710 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1711
1712#define PGM_REG_COUNTER(a, b, c) \
1713 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1714 AssertRC(rc);
1715#define PGM_REG_PROFILE(a, b, c) \
1716 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1717 AssertRC(rc);
1718
1719 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1720
1721#ifdef VBOX_WITH_STATISTICS
1722
1723# if 0 /* rarely useful; leave for debugging. */
1724 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1725 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1726 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1727 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPagePD); j++)
1728 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1729 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1730# endif
1731 /* R0 only: */
1732 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1733 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1734 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1735 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1736 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1737 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1738 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1739 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1740 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1741 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1742 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1743 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1744 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1745 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1746 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1747 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1748 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1749 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1750 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1751 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1752 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1753 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1754 //PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1755 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1756 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1757 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1758 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1759 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1760 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1761 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1762 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1763 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1764 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1765 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1766 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1767 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1768
1769 /* RZ only: */
1770 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1771 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%u/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1772 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeSyncPT, "/PGM/CPU%u/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1773 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeMapping, "/PGM/CPU%u/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1774 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1775 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeHandlers, "/PGM/CPU%u/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1776 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1777 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1778 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1779 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1780 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1781 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1782 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1783 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1784 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1785 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1786 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1787 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1788 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1789 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1790 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1791 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1792 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1793 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1794 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1795 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1796 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1797 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1798 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1799 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1800 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1801 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1802 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1803 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1804 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1805 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1806 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1807 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1808 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1809 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFUnh, "/PGM/CPU%u/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1810 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1811 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1812 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1813#if 0 /* rarely useful; leave for debugging. */
1814 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatRZTrap0ePD); j++)
1815 STAMR3RegisterF(pVM, &pPgmCpu->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1816 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1817#endif
1818 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1819 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1820 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1821 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1822 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1823
1824 /* HC only: */
1825
1826 /* RZ & R3: */
1827 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1828 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1829 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1830 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1831 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1832 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1833 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1834 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1835 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1836 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1837 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1838 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1839 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1840 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1841 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1842 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1843 PGM_REG_COUNTER(&pPgmCpu->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1844 PGM_REG_PROFILE(&pPgmCpu->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1845 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1846 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1847 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1848 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1849 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1850 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1851 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1852 PGM_REG_COUNTER(&pPgmCpu->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1853 PGM_REG_PROFILE(&pPgmCpu->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1854 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1855 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1856 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1857 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1858 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1859 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1860 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1861 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1862 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1863 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1864 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1865 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1866 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1867 PGM_REG_PROFILE(&pPgmCpu->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1868 PGM_REG_PROFILE(&pPgmCpu->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1869 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1870 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1871 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1872 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1873 PGM_REG_PROFILE(&pPgmCpu->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1874
1875 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1876 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1877 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1878 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1879 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1880 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1881 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1882 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1883 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1884 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1885 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1886 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1887 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1888 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1889 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1890 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1891 PGM_REG_COUNTER(&pPgmCpu->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1892 PGM_REG_PROFILE(&pPgmCpu->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1893 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1894 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1895 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1896 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1897 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1898 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1899 PGM_REG_COUNTER(&pPgmCpu->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1900 PGM_REG_PROFILE(&pPgmCpu->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1901 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1902 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1903 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1904 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1905 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1906 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1907 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1908 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1909 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1910 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1911 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1912 PGM_REG_PROFILE(&pPgmCpu->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1913 PGM_REG_PROFILE(&pPgmCpu->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1914 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1915 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1916 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1917 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1918 PGM_REG_PROFILE(&pPgmCpu->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1919#endif /* VBOX_WITH_STATISTICS */
1920
1921#undef PGM_REG_PROFILE
1922#undef PGM_REG_COUNTER
1923
1924 }
1925}
1926
1927
1928/**
1929 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1930 *
1931 * The dynamic mapping area will also be allocated and initialized at this
1932 * time. We could allocate it during PGMR3Init of course, but the mapping
1933 * wouldn't be allocated at that time preventing us from setting up the
1934 * page table entries with the dummy page.
1935 *
1936 * @returns VBox status code.
1937 * @param pVM VM handle.
1938 */
1939VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1940{
1941 RTGCPTR GCPtr;
1942 int rc;
1943
1944 /*
1945 * Reserve space for the dynamic mappings.
1946 */
1947 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1948 if (RT_SUCCESS(rc))
1949 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1950
1951 if ( RT_SUCCESS(rc)
1952 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1953 {
1954 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1955 if (RT_SUCCESS(rc))
1956 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1957 }
1958 if (RT_SUCCESS(rc))
1959 {
1960 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1961 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1962 }
1963 return rc;
1964}
1965
1966
1967/**
1968 * Ring-3 init finalizing.
1969 *
1970 * @returns VBox status code.
1971 * @param pVM The VM handle.
1972 */
1973VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1974{
1975 int rc;
1976
1977 /*
1978 * Reserve space for the dynamic mappings.
1979 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1980 */
1981 /* get the pointer to the page table entries. */
1982 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1983 AssertRelease(pMapping);
1984 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1985 const unsigned iPT = off >> X86_PD_SHIFT;
1986 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1987 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1988 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1989
1990 /* init cache */
1991 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1992 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1993 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1994
1995 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1996 {
1997 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1998 AssertRCReturn(rc, rc);
1999 }
2000
2001 /*
2002 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2003 * Intel only goes up to 36 bits, so we stick to 36 as well.
2004 */
2005 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
2006 uint32_t u32Dummy, u32Features;
2007 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2008
2009 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2010 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
2011 else
2012 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2013
2014 /*
2015 * Allocate memory if we're supposed to do that.
2016 */
2017 if (pVM->pgm.s.fRamPreAlloc)
2018 rc = pgmR3PhysRamPreAllocate(pVM);
2019
2020 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2021 return rc;
2022}
2023
2024
2025/**
2026 * Applies relocations to data and code managed by this component.
2027 *
2028 * This function will be called at init and whenever the VMM need to relocate it
2029 * self inside the GC.
2030 *
2031 * @param pVM The VM.
2032 * @param offDelta Relocation delta relative to old location.
2033 */
2034VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2035{
2036 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2037
2038 /*
2039 * Paging stuff.
2040 */
2041 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2042
2043 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2044
2045 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2046 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2047 {
2048 PVMCPU pVCpu = &pVM->aCpus[i];
2049
2050 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2051
2052 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2053 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2054 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2055 }
2056
2057 /*
2058 * Trees.
2059 */
2060 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2061
2062 /*
2063 * Ram ranges.
2064 */
2065 if (pVM->pgm.s.pRamRangesR3)
2066 {
2067 /* Update the pSelfRC pointers and relink them. */
2068 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2069 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2070 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2071 pgmR3PhysRelinkRamRanges(pVM);
2072 }
2073
2074 /*
2075 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2076 * be mapped and thus not included in the above exercise.
2077 */
2078 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2079 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2080 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2081
2082 /*
2083 * Update the two page directories with all page table mappings.
2084 * (One or more of them have changed, that's why we're here.)
2085 */
2086 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2087 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2088 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2089
2090 /* Relocate GC addresses of Page Tables. */
2091 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2092 {
2093 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2094 {
2095 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2096 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2097 }
2098 }
2099
2100 /*
2101 * Dynamic page mapping area.
2102 */
2103 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2104 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2105 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2106
2107 /*
2108 * The Zero page.
2109 */
2110 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2111#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2112 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2113#else
2114 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2115#endif
2116
2117 /*
2118 * Physical and virtual handlers.
2119 */
2120 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2121 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2122 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2123
2124 /*
2125 * The page pool.
2126 */
2127 pgmR3PoolRelocate(pVM);
2128}
2129
2130
2131/**
2132 * Callback function for relocating a physical access handler.
2133 *
2134 * @returns 0 (continue enum)
2135 * @param pNode Pointer to a PGMPHYSHANDLER node.
2136 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2137 * not certain the delta will fit in a void pointer for all possible configs.
2138 */
2139static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2140{
2141 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2142 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2143 if (pHandler->pfnHandlerRC)
2144 pHandler->pfnHandlerRC += offDelta;
2145 if (pHandler->pvUserRC >= 0x10000)
2146 pHandler->pvUserRC += offDelta;
2147 return 0;
2148}
2149
2150
2151/**
2152 * Callback function for relocating a virtual access handler.
2153 *
2154 * @returns 0 (continue enum)
2155 * @param pNode Pointer to a PGMVIRTHANDLER node.
2156 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2157 * not certain the delta will fit in a void pointer for all possible configs.
2158 */
2159static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2160{
2161 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2162 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2163 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2164 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2165 Assert(pHandler->pfnHandlerRC);
2166 pHandler->pfnHandlerRC += offDelta;
2167 return 0;
2168}
2169
2170
2171/**
2172 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2173 *
2174 * @returns 0 (continue enum)
2175 * @param pNode Pointer to a PGMVIRTHANDLER node.
2176 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2177 * not certain the delta will fit in a void pointer for all possible configs.
2178 */
2179static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2180{
2181 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2182 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2183 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2184 Assert(pHandler->pfnHandlerRC);
2185 pHandler->pfnHandlerRC += offDelta;
2186 return 0;
2187}
2188
2189
2190/**
2191 * Resets a virtual CPU when unplugged.
2192 *
2193 * @param pVM The VM handle.
2194 * @param pVCpu The virtual CPU handle.
2195 */
2196VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2197{
2198 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2199 AssertRC(rc);
2200
2201 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2202 AssertRC(rc);
2203
2204 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2205
2206 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2207
2208 /*
2209 * Re-init other members.
2210 */
2211 pVCpu->pgm.s.fA20Enabled = true;
2212
2213 /*
2214 * Clear the FFs PGM owns.
2215 */
2216 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2217 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2218}
2219
2220
2221/**
2222 * The VM is being reset.
2223 *
2224 * For the PGM component this means that any PD write monitors
2225 * needs to be removed.
2226 *
2227 * @param pVM VM handle.
2228 */
2229VMMR3DECL(void) PGMR3Reset(PVM pVM)
2230{
2231 int rc;
2232
2233 LogFlow(("PGMR3Reset:\n"));
2234 VM_ASSERT_EMT(pVM);
2235
2236 pgmLock(pVM);
2237
2238 /*
2239 * Unfix any fixed mappings and disable CR3 monitoring.
2240 */
2241 pVM->pgm.s.fMappingsFixed = false;
2242 pVM->pgm.s.fMappingsFixedRestored = false;
2243 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2244 pVM->pgm.s.cbMappingFixed = 0;
2245
2246 /*
2247 * Exit the guest paging mode before the pgm pool gets reset.
2248 * Important to clean up the amd64 case.
2249 */
2250 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2251 {
2252 PVMCPU pVCpu = &pVM->aCpus[i];
2253 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2254 AssertRC(rc);
2255 }
2256
2257#ifdef DEBUG
2258 DBGFR3InfoLog(pVM, "mappings", NULL);
2259 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2260#endif
2261
2262 /*
2263 * Switch mode back to real mode. (before resetting the pgm pool!)
2264 */
2265 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2266 {
2267 PVMCPU pVCpu = &pVM->aCpus[i];
2268
2269 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2270 AssertRC(rc);
2271
2272 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2273 }
2274
2275 /*
2276 * Reset the shadow page pool.
2277 */
2278 pgmR3PoolReset(pVM);
2279
2280 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2281 {
2282 PVMCPU pVCpu = &pVM->aCpus[i];
2283
2284 /*
2285 * Re-init other members.
2286 */
2287 pVCpu->pgm.s.fA20Enabled = true;
2288
2289 /*
2290 * Clear the FFs PGM owns.
2291 */
2292 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2293 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2294 }
2295
2296 /*
2297 * Reset (zero) RAM pages.
2298 */
2299 rc = pgmR3PhysRamReset(pVM);
2300 if (RT_SUCCESS(rc))
2301 {
2302 /*
2303 * Reset (zero) shadow ROM pages.
2304 */
2305 rc = pgmR3PhysRomReset(pVM);
2306 }
2307
2308 pgmUnlock(pVM);
2309 AssertReleaseRC(rc);
2310}
2311
2312
2313#ifdef VBOX_STRICT
2314/**
2315 * VM state change callback for clearing fNoMorePhysWrites after
2316 * a snapshot has been created.
2317 */
2318static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2319{
2320 if ( enmState == VMSTATE_RUNNING
2321 || enmState == VMSTATE_RESUMING)
2322 pVM->pgm.s.fNoMorePhysWrites = false;
2323}
2324#endif
2325
2326
2327/**
2328 * Terminates the PGM.
2329 *
2330 * @returns VBox status code.
2331 * @param pVM Pointer to VM structure.
2332 */
2333VMMR3DECL(int) PGMR3Term(PVM pVM)
2334{
2335 PGMDeregisterStringFormatTypes();
2336 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2337}
2338
2339
2340/**
2341 * Terminates the per-VCPU PGM.
2342 *
2343 * Termination means cleaning up and freeing all resources,
2344 * the VM it self is at this point powered off or suspended.
2345 *
2346 * @returns VBox status code.
2347 * @param pVM The VM to operate on.
2348 */
2349VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2350{
2351 return 0;
2352}
2353
2354
2355/**
2356 * Show paging mode.
2357 *
2358 * @param pVM VM Handle.
2359 * @param pHlp The info helpers.
2360 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2361 */
2362static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2363{
2364 /* digest argument. */
2365 bool fGuest, fShadow, fHost;
2366 if (pszArgs)
2367 pszArgs = RTStrStripL(pszArgs);
2368 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2369 fShadow = fHost = fGuest = true;
2370 else
2371 {
2372 fShadow = fHost = fGuest = false;
2373 if (strstr(pszArgs, "guest"))
2374 fGuest = true;
2375 if (strstr(pszArgs, "shadow"))
2376 fShadow = true;
2377 if (strstr(pszArgs, "host"))
2378 fHost = true;
2379 }
2380
2381 /** @todo SMP support! */
2382 /* print info. */
2383 if (fGuest)
2384 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2385 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2386 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2387 if (fShadow)
2388 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2389 if (fHost)
2390 {
2391 const char *psz;
2392 switch (pVM->pgm.s.enmHostMode)
2393 {
2394 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2395 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2396 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2397 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2398 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2399 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2400 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2401 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2402 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2403 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2404 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2405 default: psz = "unknown"; break;
2406 }
2407 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2408 }
2409}
2410
2411
2412/**
2413 * Dump registered MMIO ranges to the log.
2414 *
2415 * @param pVM VM Handle.
2416 * @param pHlp The info helpers.
2417 * @param pszArgs Arguments, ignored.
2418 */
2419static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2420{
2421 NOREF(pszArgs);
2422 pHlp->pfnPrintf(pHlp,
2423 "RAM ranges (pVM=%p)\n"
2424 "%.*s %.*s\n",
2425 pVM,
2426 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2427 sizeof(RTHCPTR) * 2, "pvHC ");
2428
2429 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2430 pHlp->pfnPrintf(pHlp,
2431 "%RGp-%RGp %RHv %s\n",
2432 pCur->GCPhys,
2433 pCur->GCPhysLast,
2434 pCur->pvR3,
2435 pCur->pszDesc);
2436}
2437
2438/**
2439 * Dump the page directory to the log.
2440 *
2441 * @param pVM VM Handle.
2442 * @param pHlp The info helpers.
2443 * @param pszArgs Arguments, ignored.
2444 */
2445static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2446{
2447 /** @todo SMP support!! */
2448 PVMCPU pVCpu = &pVM->aCpus[0];
2449
2450/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2451 /* Big pages supported? */
2452 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2453
2454 /* Global pages supported? */
2455 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2456
2457 NOREF(pszArgs);
2458
2459 /*
2460 * Get page directory addresses.
2461 */
2462 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
2463 Assert(pPDSrc);
2464 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2465
2466 /*
2467 * Iterate the page directory.
2468 */
2469 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2470 {
2471 X86PDE PdeSrc = pPDSrc->a[iPD];
2472 if (PdeSrc.n.u1Present)
2473 {
2474 if (PdeSrc.b.u1Size && fPSE)
2475 pHlp->pfnPrintf(pHlp,
2476 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2477 iPD,
2478 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2479 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2480 else
2481 pHlp->pfnPrintf(pHlp,
2482 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2483 iPD,
2484 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2485 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2486 }
2487 }
2488}
2489
2490
2491/**
2492 * Service a VMMCALLRING3_PGM_LOCK call.
2493 *
2494 * @returns VBox status code.
2495 * @param pVM The VM handle.
2496 */
2497VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2498{
2499 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2500 AssertRC(rc);
2501 return rc;
2502}
2503
2504
2505/**
2506 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2507 *
2508 * @returns PGM_TYPE_*.
2509 * @param pgmMode The mode value to convert.
2510 */
2511DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2512{
2513 switch (pgmMode)
2514 {
2515 case PGMMODE_REAL: return PGM_TYPE_REAL;
2516 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2517 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2518 case PGMMODE_PAE:
2519 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2520 case PGMMODE_AMD64:
2521 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2522 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2523 case PGMMODE_EPT: return PGM_TYPE_EPT;
2524 default:
2525 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2526 }
2527}
2528
2529
2530/**
2531 * Gets the index into the paging mode data array of a SHW+GST mode.
2532 *
2533 * @returns PGM::paPagingData index.
2534 * @param uShwType The shadow paging mode type.
2535 * @param uGstType The guest paging mode type.
2536 */
2537DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2538{
2539 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2540 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2541 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2542 + (uGstType - PGM_TYPE_REAL);
2543}
2544
2545
2546/**
2547 * Gets the index into the paging mode data array of a SHW+GST mode.
2548 *
2549 * @returns PGM::paPagingData index.
2550 * @param enmShw The shadow paging mode.
2551 * @param enmGst The guest paging mode.
2552 */
2553DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2554{
2555 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2556 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2557 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2558}
2559
2560
2561/**
2562 * Calculates the max data index.
2563 * @returns The number of entries in the paging data array.
2564 */
2565DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2566{
2567 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2568}
2569
2570
2571/**
2572 * Initializes the paging mode data kept in PGM::paModeData.
2573 *
2574 * @param pVM The VM handle.
2575 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2576 * This is used early in the init process to avoid trouble with PDM
2577 * not being initialized yet.
2578 */
2579static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2580{
2581 PPGMMODEDATA pModeData;
2582 int rc;
2583
2584 /*
2585 * Allocate the array on the first call.
2586 */
2587 if (!pVM->pgm.s.paModeData)
2588 {
2589 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2590 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2591 }
2592
2593 /*
2594 * Initialize the array entries.
2595 */
2596 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2597 pModeData->uShwType = PGM_TYPE_32BIT;
2598 pModeData->uGstType = PGM_TYPE_REAL;
2599 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2600 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2601 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2602
2603 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2604 pModeData->uShwType = PGM_TYPE_32BIT;
2605 pModeData->uGstType = PGM_TYPE_PROT;
2606 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2607 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2608 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2609
2610 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2611 pModeData->uShwType = PGM_TYPE_32BIT;
2612 pModeData->uGstType = PGM_TYPE_32BIT;
2613 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2614 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2615 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2616
2617 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2618 pModeData->uShwType = PGM_TYPE_PAE;
2619 pModeData->uGstType = PGM_TYPE_REAL;
2620 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2621 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2622 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2623
2624 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2625 pModeData->uShwType = PGM_TYPE_PAE;
2626 pModeData->uGstType = PGM_TYPE_PROT;
2627 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2628 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2629 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2630
2631 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2632 pModeData->uShwType = PGM_TYPE_PAE;
2633 pModeData->uGstType = PGM_TYPE_32BIT;
2634 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2635 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2636 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2637
2638 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2639 pModeData->uShwType = PGM_TYPE_PAE;
2640 pModeData->uGstType = PGM_TYPE_PAE;
2641 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2642 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2643 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2644
2645#ifdef VBOX_WITH_64_BITS_GUESTS
2646 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2647 pModeData->uShwType = PGM_TYPE_AMD64;
2648 pModeData->uGstType = PGM_TYPE_AMD64;
2649 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2650 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2651 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2652#endif
2653
2654 /* The nested paging mode. */
2655 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2656 pModeData->uShwType = PGM_TYPE_NESTED;
2657 pModeData->uGstType = PGM_TYPE_REAL;
2658 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2659 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2660
2661 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2662 pModeData->uShwType = PGM_TYPE_NESTED;
2663 pModeData->uGstType = PGM_TYPE_PROT;
2664 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2665 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2666
2667 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2668 pModeData->uShwType = PGM_TYPE_NESTED;
2669 pModeData->uGstType = PGM_TYPE_32BIT;
2670 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2671 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2672
2673 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2674 pModeData->uShwType = PGM_TYPE_NESTED;
2675 pModeData->uGstType = PGM_TYPE_PAE;
2676 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2677 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2678
2679#ifdef VBOX_WITH_64_BITS_GUESTS
2680 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2681 pModeData->uShwType = PGM_TYPE_NESTED;
2682 pModeData->uGstType = PGM_TYPE_AMD64;
2683 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2684 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685#endif
2686
2687 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2688 switch (pVM->pgm.s.enmHostMode)
2689 {
2690#if HC_ARCH_BITS == 32
2691 case SUPPAGINGMODE_32_BIT:
2692 case SUPPAGINGMODE_32_BIT_GLOBAL:
2693 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2694 {
2695 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2696 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2697 }
2698# ifdef VBOX_WITH_64_BITS_GUESTS
2699 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2700 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2701# endif
2702 break;
2703
2704 case SUPPAGINGMODE_PAE:
2705 case SUPPAGINGMODE_PAE_NX:
2706 case SUPPAGINGMODE_PAE_GLOBAL:
2707 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2708 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2709 {
2710 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2711 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2712 }
2713# ifdef VBOX_WITH_64_BITS_GUESTS
2714 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2715 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2716# endif
2717 break;
2718#endif /* HC_ARCH_BITS == 32 */
2719
2720#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2721 case SUPPAGINGMODE_AMD64:
2722 case SUPPAGINGMODE_AMD64_GLOBAL:
2723 case SUPPAGINGMODE_AMD64_NX:
2724 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2725# ifdef VBOX_WITH_64_BITS_GUESTS
2726 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2727# else
2728 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2729# endif
2730 {
2731 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2732 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733 }
2734 break;
2735#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2736
2737 default:
2738 AssertFailed();
2739 break;
2740 }
2741
2742 /* Extended paging (EPT) / Intel VT-x */
2743 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2744 pModeData->uShwType = PGM_TYPE_EPT;
2745 pModeData->uGstType = PGM_TYPE_REAL;
2746 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2747 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2748 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749
2750 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2751 pModeData->uShwType = PGM_TYPE_EPT;
2752 pModeData->uGstType = PGM_TYPE_PROT;
2753 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756
2757 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2758 pModeData->uShwType = PGM_TYPE_EPT;
2759 pModeData->uGstType = PGM_TYPE_32BIT;
2760 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2761 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2762 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763
2764 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2765 pModeData->uShwType = PGM_TYPE_EPT;
2766 pModeData->uGstType = PGM_TYPE_PAE;
2767 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2768 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2769 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2770
2771#ifdef VBOX_WITH_64_BITS_GUESTS
2772 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2773 pModeData->uShwType = PGM_TYPE_EPT;
2774 pModeData->uGstType = PGM_TYPE_AMD64;
2775 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2776 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778#endif
2779 return VINF_SUCCESS;
2780}
2781
2782
2783/**
2784 * Switch to different (or relocated in the relocate case) mode data.
2785 *
2786 * @param pVM The VM handle.
2787 * @param pVCpu The VMCPU to operate on.
2788 * @param enmShw The the shadow paging mode.
2789 * @param enmGst The the guest paging mode.
2790 */
2791static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2792{
2793 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2794
2795 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2796 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2797
2798 /* shadow */
2799 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2800 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2801 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2802 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2803 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2804
2805 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2806 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2807
2808 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2809 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2810
2811
2812 /* guest */
2813 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2814 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2815 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2816 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2817 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2818 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2819 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2820 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2821 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2822 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2823 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2824 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2825
2826 /* both */
2827 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2828 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2829 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2830 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2831 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2832 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2833 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2834#ifdef VBOX_STRICT
2835 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2836#endif
2837 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2838 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2839
2840 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2841 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2842 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2843 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2844 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2845 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2846#ifdef VBOX_STRICT
2847 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2848#endif
2849 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2850 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2851
2852 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2853 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2854 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2855 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2856 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2857 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2858#ifdef VBOX_STRICT
2859 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2860#endif
2861 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2862 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2863}
2864
2865
2866/**
2867 * Calculates the shadow paging mode.
2868 *
2869 * @returns The shadow paging mode.
2870 * @param pVM VM handle.
2871 * @param enmGuestMode The guest mode.
2872 * @param enmHostMode The host mode.
2873 * @param enmShadowMode The current shadow mode.
2874 * @param penmSwitcher Where to store the switcher to use.
2875 * VMMSWITCHER_INVALID means no change.
2876 */
2877static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2878{
2879 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2880 switch (enmGuestMode)
2881 {
2882 /*
2883 * When switching to real or protected mode we don't change
2884 * anything since it's likely that we'll switch back pretty soon.
2885 *
2886 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2887 * and is supposed to determine which shadow paging and switcher to
2888 * use during init.
2889 */
2890 case PGMMODE_REAL:
2891 case PGMMODE_PROTECTED:
2892 if ( enmShadowMode != PGMMODE_INVALID
2893 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2894 break; /* (no change) */
2895
2896 switch (enmHostMode)
2897 {
2898 case SUPPAGINGMODE_32_BIT:
2899 case SUPPAGINGMODE_32_BIT_GLOBAL:
2900 enmShadowMode = PGMMODE_32_BIT;
2901 enmSwitcher = VMMSWITCHER_32_TO_32;
2902 break;
2903
2904 case SUPPAGINGMODE_PAE:
2905 case SUPPAGINGMODE_PAE_NX:
2906 case SUPPAGINGMODE_PAE_GLOBAL:
2907 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2908 enmShadowMode = PGMMODE_PAE;
2909 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2910#ifdef DEBUG_bird
2911 if (RTEnvExist("VBOX_32BIT"))
2912 {
2913 enmShadowMode = PGMMODE_32_BIT;
2914 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2915 }
2916#endif
2917 break;
2918
2919 case SUPPAGINGMODE_AMD64:
2920 case SUPPAGINGMODE_AMD64_GLOBAL:
2921 case SUPPAGINGMODE_AMD64_NX:
2922 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2923 enmShadowMode = PGMMODE_PAE;
2924 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2925#ifdef DEBUG_bird
2926 if (RTEnvExist("VBOX_32BIT"))
2927 {
2928 enmShadowMode = PGMMODE_32_BIT;
2929 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2930 }
2931#endif
2932 break;
2933
2934 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2935 }
2936 break;
2937
2938 case PGMMODE_32_BIT:
2939 switch (enmHostMode)
2940 {
2941 case SUPPAGINGMODE_32_BIT:
2942 case SUPPAGINGMODE_32_BIT_GLOBAL:
2943 enmShadowMode = PGMMODE_32_BIT;
2944 enmSwitcher = VMMSWITCHER_32_TO_32;
2945 break;
2946
2947 case SUPPAGINGMODE_PAE:
2948 case SUPPAGINGMODE_PAE_NX:
2949 case SUPPAGINGMODE_PAE_GLOBAL:
2950 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2951 enmShadowMode = PGMMODE_PAE;
2952 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2953#ifdef DEBUG_bird
2954 if (RTEnvExist("VBOX_32BIT"))
2955 {
2956 enmShadowMode = PGMMODE_32_BIT;
2957 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2958 }
2959#endif
2960 break;
2961
2962 case SUPPAGINGMODE_AMD64:
2963 case SUPPAGINGMODE_AMD64_GLOBAL:
2964 case SUPPAGINGMODE_AMD64_NX:
2965 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2966 enmShadowMode = PGMMODE_PAE;
2967 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2968#ifdef DEBUG_bird
2969 if (RTEnvExist("VBOX_32BIT"))
2970 {
2971 enmShadowMode = PGMMODE_32_BIT;
2972 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2973 }
2974#endif
2975 break;
2976
2977 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2978 }
2979 break;
2980
2981 case PGMMODE_PAE:
2982 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2983 switch (enmHostMode)
2984 {
2985 case SUPPAGINGMODE_32_BIT:
2986 case SUPPAGINGMODE_32_BIT_GLOBAL:
2987 enmShadowMode = PGMMODE_PAE;
2988 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2989 break;
2990
2991 case SUPPAGINGMODE_PAE:
2992 case SUPPAGINGMODE_PAE_NX:
2993 case SUPPAGINGMODE_PAE_GLOBAL:
2994 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2995 enmShadowMode = PGMMODE_PAE;
2996 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2997 break;
2998
2999 case SUPPAGINGMODE_AMD64:
3000 case SUPPAGINGMODE_AMD64_GLOBAL:
3001 case SUPPAGINGMODE_AMD64_NX:
3002 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3003 enmShadowMode = PGMMODE_PAE;
3004 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3005 break;
3006
3007 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3008 }
3009 break;
3010
3011 case PGMMODE_AMD64:
3012 case PGMMODE_AMD64_NX:
3013 switch (enmHostMode)
3014 {
3015 case SUPPAGINGMODE_32_BIT:
3016 case SUPPAGINGMODE_32_BIT_GLOBAL:
3017 enmShadowMode = PGMMODE_AMD64;
3018 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3019 break;
3020
3021 case SUPPAGINGMODE_PAE:
3022 case SUPPAGINGMODE_PAE_NX:
3023 case SUPPAGINGMODE_PAE_GLOBAL:
3024 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3025 enmShadowMode = PGMMODE_AMD64;
3026 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3027 break;
3028
3029 case SUPPAGINGMODE_AMD64:
3030 case SUPPAGINGMODE_AMD64_GLOBAL:
3031 case SUPPAGINGMODE_AMD64_NX:
3032 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3033 enmShadowMode = PGMMODE_AMD64;
3034 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3035 break;
3036
3037 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3038 }
3039 break;
3040
3041
3042 default:
3043 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3044 *penmSwitcher = VMMSWITCHER_INVALID;
3045 return PGMMODE_INVALID;
3046 }
3047 /* Override the shadow mode is nested paging is active. */
3048 if (HWACCMIsNestedPagingActive(pVM))
3049 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3050
3051 *penmSwitcher = enmSwitcher;
3052 return enmShadowMode;
3053}
3054
3055
3056/**
3057 * Performs the actual mode change.
3058 * This is called by PGMChangeMode and pgmR3InitPaging().
3059 *
3060 * @returns VBox status code. May suspend or power off the VM on error, but this
3061 * will trigger using FFs and not status codes.
3062 *
3063 * @param pVM VM handle.
3064 * @param pVCpu The VMCPU to operate on.
3065 * @param enmGuestMode The new guest mode. This is assumed to be different from
3066 * the current mode.
3067 */
3068VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3069{
3070 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3071 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3072
3073 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3074 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3075
3076 /*
3077 * Calc the shadow mode and switcher.
3078 */
3079 VMMSWITCHER enmSwitcher;
3080 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3081
3082#ifdef VBOX_WITH_RAW_MODE
3083 if (enmSwitcher != VMMSWITCHER_INVALID)
3084 {
3085 /*
3086 * Select new switcher.
3087 */
3088 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3089 if (RT_FAILURE(rc))
3090 {
3091 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3092 return rc;
3093 }
3094 }
3095#endif
3096
3097 /*
3098 * Exit old mode(s).
3099 */
3100#if HC_ARCH_BITS == 32
3101 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3102 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3103 && enmShadowMode == PGMMODE_NESTED);
3104#else
3105 const bool fForceShwEnterExit = false;
3106#endif
3107 /* shadow */
3108 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3109 || fForceShwEnterExit)
3110 {
3111 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3112 if (PGM_SHW_PFN(Exit, pVCpu))
3113 {
3114 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3115 if (RT_FAILURE(rc))
3116 {
3117 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3118 return rc;
3119 }
3120 }
3121
3122 }
3123 else
3124 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3125
3126 /* guest */
3127 if (PGM_GST_PFN(Exit, pVCpu))
3128 {
3129 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3130 if (RT_FAILURE(rc))
3131 {
3132 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3133 return rc;
3134 }
3135 }
3136
3137 /*
3138 * Load new paging mode data.
3139 */
3140 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3141
3142 /*
3143 * Enter new shadow mode (if changed).
3144 */
3145 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3146 || fForceShwEnterExit)
3147 {
3148 int rc;
3149 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3150 switch (enmShadowMode)
3151 {
3152 case PGMMODE_32_BIT:
3153 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3154 break;
3155 case PGMMODE_PAE:
3156 case PGMMODE_PAE_NX:
3157 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3158 break;
3159 case PGMMODE_AMD64:
3160 case PGMMODE_AMD64_NX:
3161 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3162 break;
3163 case PGMMODE_NESTED:
3164 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3165 break;
3166 case PGMMODE_EPT:
3167 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3168 break;
3169 case PGMMODE_REAL:
3170 case PGMMODE_PROTECTED:
3171 default:
3172 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3173 return VERR_INTERNAL_ERROR;
3174 }
3175 if (RT_FAILURE(rc))
3176 {
3177 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3178 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3179 return rc;
3180 }
3181 }
3182
3183 /*
3184 * Always flag the necessary updates
3185 */
3186 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3187
3188 /*
3189 * Enter the new guest and shadow+guest modes.
3190 */
3191 int rc = -1;
3192 int rc2 = -1;
3193 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3194 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3195 switch (enmGuestMode)
3196 {
3197 case PGMMODE_REAL:
3198 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3199 switch (pVCpu->pgm.s.enmShadowMode)
3200 {
3201 case PGMMODE_32_BIT:
3202 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3203 break;
3204 case PGMMODE_PAE:
3205 case PGMMODE_PAE_NX:
3206 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3207 break;
3208 case PGMMODE_NESTED:
3209 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3210 break;
3211 case PGMMODE_EPT:
3212 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3213 break;
3214 case PGMMODE_AMD64:
3215 case PGMMODE_AMD64_NX:
3216 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3217 default: AssertFailed(); break;
3218 }
3219 break;
3220
3221 case PGMMODE_PROTECTED:
3222 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3223 switch (pVCpu->pgm.s.enmShadowMode)
3224 {
3225 case PGMMODE_32_BIT:
3226 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3227 break;
3228 case PGMMODE_PAE:
3229 case PGMMODE_PAE_NX:
3230 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3231 break;
3232 case PGMMODE_NESTED:
3233 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3234 break;
3235 case PGMMODE_EPT:
3236 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3237 break;
3238 case PGMMODE_AMD64:
3239 case PGMMODE_AMD64_NX:
3240 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3241 default: AssertFailed(); break;
3242 }
3243 break;
3244
3245 case PGMMODE_32_BIT:
3246 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3247 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3248 switch (pVCpu->pgm.s.enmShadowMode)
3249 {
3250 case PGMMODE_32_BIT:
3251 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3252 break;
3253 case PGMMODE_PAE:
3254 case PGMMODE_PAE_NX:
3255 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3256 break;
3257 case PGMMODE_NESTED:
3258 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3259 break;
3260 case PGMMODE_EPT:
3261 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3262 break;
3263 case PGMMODE_AMD64:
3264 case PGMMODE_AMD64_NX:
3265 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3266 default: AssertFailed(); break;
3267 }
3268 break;
3269
3270 case PGMMODE_PAE_NX:
3271 case PGMMODE_PAE:
3272 {
3273 uint32_t u32Dummy, u32Features;
3274
3275 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3276 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3277 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3278 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3279
3280 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3281 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3282 switch (pVCpu->pgm.s.enmShadowMode)
3283 {
3284 case PGMMODE_PAE:
3285 case PGMMODE_PAE_NX:
3286 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3287 break;
3288 case PGMMODE_NESTED:
3289 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3290 break;
3291 case PGMMODE_EPT:
3292 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3293 break;
3294 case PGMMODE_32_BIT:
3295 case PGMMODE_AMD64:
3296 case PGMMODE_AMD64_NX:
3297 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3298 default: AssertFailed(); break;
3299 }
3300 break;
3301 }
3302
3303#ifdef VBOX_WITH_64_BITS_GUESTS
3304 case PGMMODE_AMD64_NX:
3305 case PGMMODE_AMD64:
3306 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3307 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3308 switch (pVCpu->pgm.s.enmShadowMode)
3309 {
3310 case PGMMODE_AMD64:
3311 case PGMMODE_AMD64_NX:
3312 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3313 break;
3314 case PGMMODE_NESTED:
3315 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3316 break;
3317 case PGMMODE_EPT:
3318 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3319 break;
3320 case PGMMODE_32_BIT:
3321 case PGMMODE_PAE:
3322 case PGMMODE_PAE_NX:
3323 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3324 default: AssertFailed(); break;
3325 }
3326 break;
3327#endif
3328
3329 default:
3330 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3331 rc = VERR_NOT_IMPLEMENTED;
3332 break;
3333 }
3334
3335 /* status codes. */
3336 AssertRC(rc);
3337 AssertRC(rc2);
3338 if (RT_SUCCESS(rc))
3339 {
3340 rc = rc2;
3341 if (RT_SUCCESS(rc)) /* no informational status codes. */
3342 rc = VINF_SUCCESS;
3343 }
3344
3345 /* Notify HWACCM as well. */
3346 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3347 return rc;
3348}
3349
3350/**
3351 * Release the pgm lock if owned by the current VCPU
3352 *
3353 * @param pVM The VM to operate on.
3354 */
3355VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
3356{
3357 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
3358 PDMCritSectLeave(&pVM->pgm.s.CritSect);
3359}
3360
3361/**
3362 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3363 *
3364 * @returns VBox status code, fully asserted.
3365 * @param pVM The VM handle.
3366 * @param pVCpu The VMCPU to operate on.
3367 */
3368int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3369{
3370 /* Unmap the old CR3 value before flushing everything. */
3371 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3372 AssertRC(rc);
3373
3374 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3375 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3376 AssertRC(rc);
3377 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3378 return rc;
3379}
3380
3381
3382/**
3383 * Called by pgmPoolFlushAllInt after flushing the pool.
3384 *
3385 * @returns VBox status code, fully asserted.
3386 * @param pVM The VM handle.
3387 * @param pVCpu The VMCPU to operate on.
3388 */
3389int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3390{
3391 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3392 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3393 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3394 AssertRCReturn(rc, rc);
3395 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3396
3397 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3398 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3399 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3400 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3401 return rc;
3402}
3403
3404
3405/**
3406 * Dumps a PAE shadow page table.
3407 *
3408 * @returns VBox status code (VINF_SUCCESS).
3409 * @param pVM The VM handle.
3410 * @param pPT Pointer to the page table.
3411 * @param u64Address The virtual address of the page table starts.
3412 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3413 * @param cMaxDepth The maxium depth.
3414 * @param pHlp Pointer to the output functions.
3415 */
3416static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3417{
3418 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3419 {
3420 X86PTEPAE Pte = pPT->a[i];
3421 if (Pte.n.u1Present)
3422 {
3423 pHlp->pfnPrintf(pHlp,
3424 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3425 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3426 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3427 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3428 Pte.n.u1Write ? 'W' : 'R',
3429 Pte.n.u1User ? 'U' : 'S',
3430 Pte.n.u1Accessed ? 'A' : '-',
3431 Pte.n.u1Dirty ? 'D' : '-',
3432 Pte.n.u1Global ? 'G' : '-',
3433 Pte.n.u1WriteThru ? "WT" : "--",
3434 Pte.n.u1CacheDisable? "CD" : "--",
3435 Pte.n.u1PAT ? "AT" : "--",
3436 Pte.n.u1NoExecute ? "NX" : "--",
3437 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3438 Pte.u & RT_BIT(10) ? '1' : '0',
3439 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3440 Pte.u & X86_PTE_PAE_PG_MASK);
3441 }
3442 }
3443 return VINF_SUCCESS;
3444}
3445
3446
3447/**
3448 * Dumps a PAE shadow page directory table.
3449 *
3450 * @returns VBox status code (VINF_SUCCESS).
3451 * @param pVM The VM handle.
3452 * @param HCPhys The physical address of the page directory table.
3453 * @param u64Address The virtual address of the page table starts.
3454 * @param cr4 The CR4, PSE is currently used.
3455 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3456 * @param cMaxDepth The maxium depth.
3457 * @param pHlp Pointer to the output functions.
3458 */
3459static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3460{
3461 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3462 if (!pPD)
3463 {
3464 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3465 fLongMode ? 16 : 8, u64Address, HCPhys);
3466 return VERR_INVALID_PARAMETER;
3467 }
3468 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3469
3470 int rc = VINF_SUCCESS;
3471 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3472 {
3473 X86PDEPAE Pde = pPD->a[i];
3474 if (Pde.n.u1Present)
3475 {
3476 if (fBigPagesSupported && Pde.b.u1Size)
3477 pHlp->pfnPrintf(pHlp,
3478 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3479 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3480 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3481 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3482 Pde.b.u1Write ? 'W' : 'R',
3483 Pde.b.u1User ? 'U' : 'S',
3484 Pde.b.u1Accessed ? 'A' : '-',
3485 Pde.b.u1Dirty ? 'D' : '-',
3486 Pde.b.u1Global ? 'G' : '-',
3487 Pde.b.u1WriteThru ? "WT" : "--",
3488 Pde.b.u1CacheDisable? "CD" : "--",
3489 Pde.b.u1PAT ? "AT" : "--",
3490 Pde.b.u1NoExecute ? "NX" : "--",
3491 Pde.u & RT_BIT_64(9) ? '1' : '0',
3492 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3493 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3494 Pde.u & X86_PDE_PAE_PG_MASK);
3495 else
3496 {
3497 pHlp->pfnPrintf(pHlp,
3498 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3499 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3500 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3501 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3502 Pde.n.u1Write ? 'W' : 'R',
3503 Pde.n.u1User ? 'U' : 'S',
3504 Pde.n.u1Accessed ? 'A' : '-',
3505 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3506 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3507 Pde.n.u1WriteThru ? "WT" : "--",
3508 Pde.n.u1CacheDisable? "CD" : "--",
3509 Pde.n.u1NoExecute ? "NX" : "--",
3510 Pde.u & RT_BIT_64(9) ? '1' : '0',
3511 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3512 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3513 Pde.u & X86_PDE_PAE_PG_MASK);
3514 if (cMaxDepth >= 1)
3515 {
3516 /** @todo what about using the page pool for mapping PTs? */
3517 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3518 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3519 PX86PTPAE pPT = NULL;
3520 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3521 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3522 else
3523 {
3524 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3525 {
3526 uint64_t off = u64AddressPT - pMap->GCPtr;
3527 if (off < pMap->cb)
3528 {
3529 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3530 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3531 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3532 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3533 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3534 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3535 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3536 }
3537 }
3538 }
3539 int rc2 = VERR_INVALID_PARAMETER;
3540 if (pPT)
3541 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3542 else
3543 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3544 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3545 if (rc2 < rc && RT_SUCCESS(rc))
3546 rc = rc2;
3547 }
3548 }
3549 }
3550 }
3551 return rc;
3552}
3553
3554
3555/**
3556 * Dumps a PAE shadow page directory pointer table.
3557 *
3558 * @returns VBox status code (VINF_SUCCESS).
3559 * @param pVM The VM handle.
3560 * @param HCPhys The physical address of the page directory pointer table.
3561 * @param u64Address The virtual address of the page table starts.
3562 * @param cr4 The CR4, PSE is currently used.
3563 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3564 * @param cMaxDepth The maxium depth.
3565 * @param pHlp Pointer to the output functions.
3566 */
3567static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3568{
3569 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3570 if (!pPDPT)
3571 {
3572 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3573 fLongMode ? 16 : 8, u64Address, HCPhys);
3574 return VERR_INVALID_PARAMETER;
3575 }
3576
3577 int rc = VINF_SUCCESS;
3578 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3579 for (unsigned i = 0; i < c; i++)
3580 {
3581 X86PDPE Pdpe = pPDPT->a[i];
3582 if (Pdpe.n.u1Present)
3583 {
3584 if (fLongMode)
3585 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3586 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3587 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3588 Pdpe.lm.u1Write ? 'W' : 'R',
3589 Pdpe.lm.u1User ? 'U' : 'S',
3590 Pdpe.lm.u1Accessed ? 'A' : '-',
3591 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3592 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3593 Pdpe.lm.u1WriteThru ? "WT" : "--",
3594 Pdpe.lm.u1CacheDisable? "CD" : "--",
3595 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3596 Pdpe.lm.u1NoExecute ? "NX" : "--",
3597 Pdpe.u & RT_BIT(9) ? '1' : '0',
3598 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3599 Pdpe.u & RT_BIT(11) ? '1' : '0',
3600 Pdpe.u & X86_PDPE_PG_MASK);
3601 else
3602 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3603 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3604 i << X86_PDPT_SHIFT,
3605 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3606 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3607 Pdpe.n.u1WriteThru ? "WT" : "--",
3608 Pdpe.n.u1CacheDisable? "CD" : "--",
3609 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3610 Pdpe.u & RT_BIT(9) ? '1' : '0',
3611 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3612 Pdpe.u & RT_BIT(11) ? '1' : '0',
3613 Pdpe.u & X86_PDPE_PG_MASK);
3614 if (cMaxDepth >= 1)
3615 {
3616 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3617 cr4, fLongMode, cMaxDepth - 1, pHlp);
3618 if (rc2 < rc && RT_SUCCESS(rc))
3619 rc = rc2;
3620 }
3621 }
3622 }
3623 return rc;
3624}
3625
3626
3627/**
3628 * Dumps a 32-bit shadow page table.
3629 *
3630 * @returns VBox status code (VINF_SUCCESS).
3631 * @param pVM The VM handle.
3632 * @param HCPhys The physical address of the table.
3633 * @param cr4 The CR4, PSE is currently used.
3634 * @param cMaxDepth The maxium depth.
3635 * @param pHlp Pointer to the output functions.
3636 */
3637static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3638{
3639 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3640 if (!pPML4)
3641 {
3642 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3643 return VERR_INVALID_PARAMETER;
3644 }
3645
3646 int rc = VINF_SUCCESS;
3647 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3648 {
3649 X86PML4E Pml4e = pPML4->a[i];
3650 if (Pml4e.n.u1Present)
3651 {
3652 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3653 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3654 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3655 u64Address,
3656 Pml4e.n.u1Write ? 'W' : 'R',
3657 Pml4e.n.u1User ? 'U' : 'S',
3658 Pml4e.n.u1Accessed ? 'A' : '-',
3659 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3660 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3661 Pml4e.n.u1WriteThru ? "WT" : "--",
3662 Pml4e.n.u1CacheDisable? "CD" : "--",
3663 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3664 Pml4e.n.u1NoExecute ? "NX" : "--",
3665 Pml4e.u & RT_BIT(9) ? '1' : '0',
3666 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3667 Pml4e.u & RT_BIT(11) ? '1' : '0',
3668 Pml4e.u & X86_PML4E_PG_MASK);
3669
3670 if (cMaxDepth >= 1)
3671 {
3672 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3673 if (rc2 < rc && RT_SUCCESS(rc))
3674 rc = rc2;
3675 }
3676 }
3677 }
3678 return rc;
3679}
3680
3681
3682/**
3683 * Dumps a 32-bit shadow page table.
3684 *
3685 * @returns VBox status code (VINF_SUCCESS).
3686 * @param pVM The VM handle.
3687 * @param pPT Pointer to the page table.
3688 * @param u32Address The virtual address this table starts at.
3689 * @param pHlp Pointer to the output functions.
3690 */
3691int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3692{
3693 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3694 {
3695 X86PTE Pte = pPT->a[i];
3696 if (Pte.n.u1Present)
3697 {
3698 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3699 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3700 u32Address + (i << X86_PT_SHIFT),
3701 Pte.n.u1Write ? 'W' : 'R',
3702 Pte.n.u1User ? 'U' : 'S',
3703 Pte.n.u1Accessed ? 'A' : '-',
3704 Pte.n.u1Dirty ? 'D' : '-',
3705 Pte.n.u1Global ? 'G' : '-',
3706 Pte.n.u1WriteThru ? "WT" : "--",
3707 Pte.n.u1CacheDisable? "CD" : "--",
3708 Pte.n.u1PAT ? "AT" : "--",
3709 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3710 Pte.u & RT_BIT(10) ? '1' : '0',
3711 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3712 Pte.u & X86_PDE_PG_MASK);
3713 }
3714 }
3715 return VINF_SUCCESS;
3716}
3717
3718
3719/**
3720 * Dumps a 32-bit shadow page directory and page tables.
3721 *
3722 * @returns VBox status code (VINF_SUCCESS).
3723 * @param pVM The VM handle.
3724 * @param cr3 The root of the hierarchy.
3725 * @param cr4 The CR4, PSE is currently used.
3726 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3727 * @param pHlp Pointer to the output functions.
3728 */
3729int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3730{
3731 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3732 if (!pPD)
3733 {
3734 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3735 return VERR_INVALID_PARAMETER;
3736 }
3737
3738 int rc = VINF_SUCCESS;
3739 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3740 {
3741 X86PDE Pde = pPD->a[i];
3742 if (Pde.n.u1Present)
3743 {
3744 const uint32_t u32Address = i << X86_PD_SHIFT;
3745 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3746 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3747 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3748 u32Address,
3749 Pde.b.u1Write ? 'W' : 'R',
3750 Pde.b.u1User ? 'U' : 'S',
3751 Pde.b.u1Accessed ? 'A' : '-',
3752 Pde.b.u1Dirty ? 'D' : '-',
3753 Pde.b.u1Global ? 'G' : '-',
3754 Pde.b.u1WriteThru ? "WT" : "--",
3755 Pde.b.u1CacheDisable? "CD" : "--",
3756 Pde.b.u1PAT ? "AT" : "--",
3757 Pde.u & RT_BIT_64(9) ? '1' : '0',
3758 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3759 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3760 Pde.u & X86_PDE4M_PG_MASK);
3761 else
3762 {
3763 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3764 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3765 u32Address,
3766 Pde.n.u1Write ? 'W' : 'R',
3767 Pde.n.u1User ? 'U' : 'S',
3768 Pde.n.u1Accessed ? 'A' : '-',
3769 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3770 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3771 Pde.n.u1WriteThru ? "WT" : "--",
3772 Pde.n.u1CacheDisable? "CD" : "--",
3773 Pde.u & RT_BIT_64(9) ? '1' : '0',
3774 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3775 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3776 Pde.u & X86_PDE_PG_MASK);
3777 if (cMaxDepth >= 1)
3778 {
3779 /** @todo what about using the page pool for mapping PTs? */
3780 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3781 PX86PT pPT = NULL;
3782 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3783 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3784 else
3785 {
3786 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3787 if (u32Address - pMap->GCPtr < pMap->cb)
3788 {
3789 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3790 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3791 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3792 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3793 pPT = pMap->aPTs[iPDE].pPTR3;
3794 }
3795 }
3796 int rc2 = VERR_INVALID_PARAMETER;
3797 if (pPT)
3798 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3799 else
3800 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3801 if (rc2 < rc && RT_SUCCESS(rc))
3802 rc = rc2;
3803 }
3804 }
3805 }
3806 }
3807
3808 return rc;
3809}
3810
3811
3812/**
3813 * Dumps a 32-bit shadow page table.
3814 *
3815 * @returns VBox status code (VINF_SUCCESS).
3816 * @param pVM The VM handle.
3817 * @param pPT Pointer to the page table.
3818 * @param u32Address The virtual address this table starts at.
3819 * @param PhysSearch Address to search for.
3820 */
3821int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3822{
3823 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3824 {
3825 X86PTE Pte = pPT->a[i];
3826 if (Pte.n.u1Present)
3827 {
3828 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3829 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3830 u32Address + (i << X86_PT_SHIFT),
3831 Pte.n.u1Write ? 'W' : 'R',
3832 Pte.n.u1User ? 'U' : 'S',
3833 Pte.n.u1Accessed ? 'A' : '-',
3834 Pte.n.u1Dirty ? 'D' : '-',
3835 Pte.n.u1Global ? 'G' : '-',
3836 Pte.n.u1WriteThru ? "WT" : "--",
3837 Pte.n.u1CacheDisable? "CD" : "--",
3838 Pte.n.u1PAT ? "AT" : "--",
3839 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3840 Pte.u & RT_BIT(10) ? '1' : '0',
3841 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3842 Pte.u & X86_PDE_PG_MASK));
3843
3844 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3845 {
3846 uint64_t fPageShw = 0;
3847 RTHCPHYS pPhysHC = 0;
3848
3849 /** @todo SMP support!! */
3850 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3851 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3852 }
3853 }
3854 }
3855 return VINF_SUCCESS;
3856}
3857
3858
3859/**
3860 * Dumps a 32-bit guest page directory and page tables.
3861 *
3862 * @returns VBox status code (VINF_SUCCESS).
3863 * @param pVM The VM handle.
3864 * @param cr3 The root of the hierarchy.
3865 * @param cr4 The CR4, PSE is currently used.
3866 * @param PhysSearch Address to search for.
3867 */
3868VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3869{
3870 bool fLongMode = false;
3871 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3872 PX86PD pPD = 0;
3873
3874 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3875 if (RT_FAILURE(rc) || !pPD)
3876 {
3877 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3878 return VERR_INVALID_PARAMETER;
3879 }
3880
3881 Log(("cr3=%08x cr4=%08x%s\n"
3882 "%-*s P - Present\n"
3883 "%-*s | R/W - Read (0) / Write (1)\n"
3884 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3885 "%-*s | | | A - Accessed\n"
3886 "%-*s | | | | D - Dirty\n"
3887 "%-*s | | | | | G - Global\n"
3888 "%-*s | | | | | | WT - Write thru\n"
3889 "%-*s | | | | | | | CD - Cache disable\n"
3890 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3891 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3892 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3893 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3894 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3895 "%-*s Level | | | | | | | | | | | | Page\n"
3896 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3897 - W U - - - -- -- -- -- -- 010 */
3898 , cr3, cr4, fLongMode ? " Long Mode" : "",
3899 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3900 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3901
3902 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3903 {
3904 X86PDE Pde = pPD->a[i];
3905 if (Pde.n.u1Present)
3906 {
3907 const uint32_t u32Address = i << X86_PD_SHIFT;
3908
3909 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3910 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3911 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3912 u32Address,
3913 Pde.b.u1Write ? 'W' : 'R',
3914 Pde.b.u1User ? 'U' : 'S',
3915 Pde.b.u1Accessed ? 'A' : '-',
3916 Pde.b.u1Dirty ? 'D' : '-',
3917 Pde.b.u1Global ? 'G' : '-',
3918 Pde.b.u1WriteThru ? "WT" : "--",
3919 Pde.b.u1CacheDisable? "CD" : "--",
3920 Pde.b.u1PAT ? "AT" : "--",
3921 Pde.u & RT_BIT(9) ? '1' : '0',
3922 Pde.u & RT_BIT(10) ? '1' : '0',
3923 Pde.u & RT_BIT(11) ? '1' : '0',
3924 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3925 /** @todo PhysSearch */
3926 else
3927 {
3928 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3929 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3930 u32Address,
3931 Pde.n.u1Write ? 'W' : 'R',
3932 Pde.n.u1User ? 'U' : 'S',
3933 Pde.n.u1Accessed ? 'A' : '-',
3934 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3935 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3936 Pde.n.u1WriteThru ? "WT" : "--",
3937 Pde.n.u1CacheDisable? "CD" : "--",
3938 Pde.u & RT_BIT(9) ? '1' : '0',
3939 Pde.u & RT_BIT(10) ? '1' : '0',
3940 Pde.u & RT_BIT(11) ? '1' : '0',
3941 Pde.u & X86_PDE_PG_MASK));
3942 ////if (cMaxDepth >= 1)
3943 {
3944 /** @todo what about using the page pool for mapping PTs? */
3945 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3946 PX86PT pPT = NULL;
3947
3948 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3949
3950 int rc2 = VERR_INVALID_PARAMETER;
3951 if (pPT)
3952 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3953 else
3954 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3955 if (rc2 < rc && RT_SUCCESS(rc))
3956 rc = rc2;
3957 }
3958 }
3959 }
3960 }
3961
3962 return rc;
3963}
3964
3965
3966/**
3967 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3968 *
3969 * @returns VBox status code (VINF_SUCCESS).
3970 * @param pVM The VM handle.
3971 * @param cr3 The root of the hierarchy.
3972 * @param cr4 The cr4, only PAE and PSE is currently used.
3973 * @param fLongMode Set if long mode, false if not long mode.
3974 * @param cMaxDepth Number of levels to dump.
3975 * @param pHlp Pointer to the output functions.
3976 */
3977VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3978{
3979 if (!pHlp)
3980 pHlp = DBGFR3InfoLogHlp();
3981 if (!cMaxDepth)
3982 return VINF_SUCCESS;
3983 const unsigned cch = fLongMode ? 16 : 8;
3984 pHlp->pfnPrintf(pHlp,
3985 "cr3=%08x cr4=%08x%s\n"
3986 "%-*s P - Present\n"
3987 "%-*s | R/W - Read (0) / Write (1)\n"
3988 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3989 "%-*s | | | A - Accessed\n"
3990 "%-*s | | | | D - Dirty\n"
3991 "%-*s | | | | | G - Global\n"
3992 "%-*s | | | | | | WT - Write thru\n"
3993 "%-*s | | | | | | | CD - Cache disable\n"
3994 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3995 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3996 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3997 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3998 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3999 "%-*s Level | | | | | | | | | | | | Page\n"
4000 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4001 - W U - - - -- -- -- -- -- 010 */
4002 , cr3, cr4, fLongMode ? " Long Mode" : "",
4003 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4004 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4005 if (cr4 & X86_CR4_PAE)
4006 {
4007 if (fLongMode)
4008 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4009 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4010 }
4011 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4012}
4013
4014#ifdef VBOX_WITH_DEBUGGER
4015
4016/**
4017 * The '.pgmram' command.
4018 *
4019 * @returns VBox status.
4020 * @param pCmd Pointer to the command descriptor (as registered).
4021 * @param pCmdHlp Pointer to command helper functions.
4022 * @param pVM Pointer to the current VM (if any).
4023 * @param paArgs Pointer to (readonly) array of arguments.
4024 * @param cArgs Number of arguments in the array.
4025 */
4026static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4027{
4028 /*
4029 * Validate input.
4030 */
4031 if (!pVM)
4032 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4033 if (!pVM->pgm.s.pRamRangesRC)
4034 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4035
4036 /*
4037 * Dump the ranges.
4038 */
4039 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4040 PPGMRAMRANGE pRam;
4041 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4042 {
4043 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4044 "%RGp - %RGp %p\n",
4045 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4046 if (RT_FAILURE(rc))
4047 return rc;
4048 }
4049
4050 return VINF_SUCCESS;
4051}
4052
4053
4054/**
4055 * The '.pgmerror' and '.pgmerroroff' commands.
4056 *
4057 * @returns VBox status.
4058 * @param pCmd Pointer to the command descriptor (as registered).
4059 * @param pCmdHlp Pointer to command helper functions.
4060 * @param pVM Pointer to the current VM (if any).
4061 * @param paArgs Pointer to (readonly) array of arguments.
4062 * @param cArgs Number of arguments in the array.
4063 */
4064static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4065{
4066 /*
4067 * Validate input.
4068 */
4069 if (!pVM)
4070 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4071 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4072 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4073
4074 if (!cArgs)
4075 {
4076 /*
4077 * Print the list of error injection locations with status.
4078 */
4079 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4080 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4081 }
4082 else
4083 {
4084
4085 /*
4086 * String switch on where to inject the error.
4087 */
4088 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4089 const char *pszWhere = paArgs[0].u.pszString;
4090 if (!strcmp(pszWhere, "handy"))
4091 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4092 else
4093 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4094 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4095 }
4096 return VINF_SUCCESS;
4097}
4098
4099
4100/**
4101 * The '.pgmsync' command.
4102 *
4103 * @returns VBox status.
4104 * @param pCmd Pointer to the command descriptor (as registered).
4105 * @param pCmdHlp Pointer to command helper functions.
4106 * @param pVM Pointer to the current VM (if any).
4107 * @param paArgs Pointer to (readonly) array of arguments.
4108 * @param cArgs Number of arguments in the array.
4109 */
4110static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4111{
4112 /** @todo SMP support */
4113 PVMCPU pVCpu = &pVM->aCpus[0];
4114
4115 /*
4116 * Validate input.
4117 */
4118 if (!pVM)
4119 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4120
4121 /*
4122 * Force page directory sync.
4123 */
4124 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4125
4126 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4127 if (RT_FAILURE(rc))
4128 return rc;
4129
4130 return VINF_SUCCESS;
4131}
4132
4133
4134#ifdef VBOX_STRICT
4135/**
4136 * The '.pgmassertcr3' command.
4137 *
4138 * @returns VBox status.
4139 * @param pCmd Pointer to the command descriptor (as registered).
4140 * @param pCmdHlp Pointer to command helper functions.
4141 * @param pVM Pointer to the current VM (if any).
4142 * @param paArgs Pointer to (readonly) array of arguments.
4143 * @param cArgs Number of arguments in the array.
4144 */
4145static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4146{
4147 /** @todo SMP support!! */
4148 PVMCPU pVCpu = &pVM->aCpus[0];
4149
4150 /*
4151 * Validate input.
4152 */
4153 if (!pVM)
4154 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4155
4156 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4157 if (RT_FAILURE(rc))
4158 return rc;
4159
4160 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4161
4162 return VINF_SUCCESS;
4163}
4164#endif /* VBOX_STRICT */
4165
4166
4167/**
4168 * The '.pgmsyncalways' command.
4169 *
4170 * @returns VBox status.
4171 * @param pCmd Pointer to the command descriptor (as registered).
4172 * @param pCmdHlp Pointer to command helper functions.
4173 * @param pVM Pointer to the current VM (if any).
4174 * @param paArgs Pointer to (readonly) array of arguments.
4175 * @param cArgs Number of arguments in the array.
4176 */
4177static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4178{
4179 /** @todo SMP support!! */
4180 PVMCPU pVCpu = &pVM->aCpus[0];
4181
4182 /*
4183 * Validate input.
4184 */
4185 if (!pVM)
4186 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4187
4188 /*
4189 * Force page directory sync.
4190 */
4191 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4192 {
4193 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4194 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4195 }
4196 else
4197 {
4198 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4199 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4200 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4201 }
4202}
4203
4204
4205/**
4206 * The '.pgmsyncalways' command.
4207 *
4208 * @returns VBox status.
4209 * @param pCmd Pointer to the command descriptor (as registered).
4210 * @param pCmdHlp Pointer to command helper functions.
4211 * @param pVM Pointer to the current VM (if any).
4212 * @param paArgs Pointer to (readonly) array of arguments.
4213 * @param cArgs Number of arguments in the array.
4214 */
4215static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4216{
4217 /*
4218 * Validate input.
4219 */
4220 if (!pVM)
4221 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4222 if ( cArgs < 1
4223 || cArgs > 2
4224 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4225 || ( cArgs > 1
4226 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4227 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4228 if ( cArgs >= 2
4229 && strcmp(paArgs[1].u.pszString, "nozero"))
4230 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4231 bool fIncZeroPgs = cArgs < 2;
4232
4233 /*
4234 * Open the output file and get the ram parameters.
4235 */
4236 RTFILE hFile;
4237 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4238 if (RT_FAILURE(rc))
4239 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4240
4241 uint32_t cbRamHole = 0;
4242 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4243 uint64_t cbRam = 0;
4244 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4245 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4246
4247 /*
4248 * Dump the physical memory, page by page.
4249 */
4250 RTGCPHYS GCPhys = 0;
4251 char abZeroPg[PAGE_SIZE];
4252 RT_ZERO(abZeroPg);
4253
4254 pgmLock(pVM);
4255 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4256 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4257 pRam = pRam->pNextR3)
4258 {
4259 /* fill the gap */
4260 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4261 {
4262 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4263 {
4264 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4265 GCPhys += PAGE_SIZE;
4266 }
4267 }
4268
4269 PCPGMPAGE pPage = &pRam->aPages[0];
4270 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4271 {
4272 if ( PGM_PAGE_IS_ZERO(pPage)
4273 || PGM_PAGE_IS_BALLOONED(pPage))
4274 {
4275 if (fIncZeroPgs)
4276 {
4277 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4278 if (RT_FAILURE(rc))
4279 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4280 }
4281 }
4282 else
4283 {
4284 switch (PGM_PAGE_GET_TYPE(pPage))
4285 {
4286 case PGMPAGETYPE_RAM:
4287 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4288 case PGMPAGETYPE_ROM:
4289 case PGMPAGETYPE_MMIO2:
4290 {
4291 void const *pvPage;
4292 PGMPAGEMAPLOCK Lock;
4293 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4294 if (RT_SUCCESS(rc))
4295 {
4296 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4297 PGMPhysReleasePageMappingLock(pVM, &Lock);
4298 if (RT_FAILURE(rc))
4299 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4300 }
4301 else
4302 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4303 break;
4304 }
4305
4306 default:
4307 AssertFailed();
4308 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4309 case PGMPAGETYPE_MMIO:
4310 if (fIncZeroPgs)
4311 {
4312 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4313 if (RT_FAILURE(rc))
4314 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4315 }
4316 break;
4317 }
4318 }
4319
4320
4321 /* advance */
4322 GCPhys += PAGE_SIZE;
4323 pPage++;
4324 }
4325 }
4326 pgmUnlock(pVM);
4327
4328 RTFileClose(hFile);
4329 if (RT_SUCCESS(rc))
4330 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4331 return VINF_SUCCESS;
4332}
4333
4334#endif /* VBOX_WITH_DEBUGGER */
4335
4336/**
4337 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4338 */
4339typedef struct PGMCHECKINTARGS
4340{
4341 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4342 PPGMPHYSHANDLER pPrevPhys;
4343 PPGMVIRTHANDLER pPrevVirt;
4344 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4345 PVM pVM;
4346} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4347
4348/**
4349 * Validate a node in the physical handler tree.
4350 *
4351 * @returns 0 on if ok, other wise 1.
4352 * @param pNode The handler node.
4353 * @param pvUser pVM.
4354 */
4355static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4356{
4357 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4358 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4359 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4360 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4361 AssertReleaseMsg( !pArgs->pPrevPhys
4362 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4363 ("pPrevPhys=%p %RGp-%RGp %s\n"
4364 " pCur=%p %RGp-%RGp %s\n",
4365 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4366 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4367 pArgs->pPrevPhys = pCur;
4368 return 0;
4369}
4370
4371
4372/**
4373 * Validate a node in the virtual handler tree.
4374 *
4375 * @returns 0 on if ok, other wise 1.
4376 * @param pNode The handler node.
4377 * @param pvUser pVM.
4378 */
4379static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4380{
4381 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4382 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4383 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4384 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4385 AssertReleaseMsg( !pArgs->pPrevVirt
4386 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4387 ("pPrevVirt=%p %RGv-%RGv %s\n"
4388 " pCur=%p %RGv-%RGv %s\n",
4389 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4390 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4391 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4392 {
4393 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4394 ("pCur=%p %RGv-%RGv %s\n"
4395 "iPage=%d offVirtHandle=%#x expected %#x\n",
4396 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4397 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4398 }
4399 pArgs->pPrevVirt = pCur;
4400 return 0;
4401}
4402
4403
4404/**
4405 * Validate a node in the virtual handler tree.
4406 *
4407 * @returns 0 on if ok, other wise 1.
4408 * @param pNode The handler node.
4409 * @param pvUser pVM.
4410 */
4411static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4412{
4413 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4414 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4415 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4416 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4417 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4418 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4419 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4420 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4421 " pCur=%p %RGp-%RGp\n",
4422 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4423 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4424 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4425 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4426 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4427 " pCur=%p %RGp-%RGp\n",
4428 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4429 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4430 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4431 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4432 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4433 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4434 {
4435 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4436 for (;;)
4437 {
4438 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4439 AssertReleaseMsg(pCur2 != pCur,
4440 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4441 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4442 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4443 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4444 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4445 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4446 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4447 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4448 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4449 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4450 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4451 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4452 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4453 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4454 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4455 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4456 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4457 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4458 break;
4459 }
4460 }
4461
4462 pArgs->pPrevPhys2Virt = pCur;
4463 return 0;
4464}
4465
4466
4467/**
4468 * Perform an integrity check on the PGM component.
4469 *
4470 * @returns VINF_SUCCESS if everything is fine.
4471 * @returns VBox error status after asserting on integrity breach.
4472 * @param pVM The VM handle.
4473 */
4474VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4475{
4476 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4477
4478 /*
4479 * Check the trees.
4480 */
4481 int cErrors = 0;
4482 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4483 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4484 PGMCHECKINTARGS Args = s_LeftToRight;
4485 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4486 Args = s_RightToLeft;
4487 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4488 Args = s_LeftToRight;
4489 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4490 Args = s_RightToLeft;
4491 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4492 Args = s_LeftToRight;
4493 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4494 Args = s_RightToLeft;
4495 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4496 Args = s_LeftToRight;
4497 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4498 Args = s_RightToLeft;
4499 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4500
4501 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4502}
4503
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette