VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 30650

Last change on this file since 30650 was 30573, checked in by vboxsync, 14 years ago

Drop PGM_GCPHYS_2_PTR usage

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 221.2 KB
Line 
1/* $Id: PGM.cpp 30573 2010-07-02 12:03:07Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be refered to
30 * as "host paging", and GC refered to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570/*******************************************************************************
571* Header Files *
572*******************************************************************************/
573#define LOG_GROUP LOG_GROUP_PGM
574#include <VBox/dbgf.h>
575#include <VBox/pgm.h>
576#include <VBox/cpum.h>
577#include <VBox/iom.h>
578#include <VBox/sup.h>
579#include <VBox/mm.h>
580#include <VBox/em.h>
581#include <VBox/stam.h>
582#include <VBox/rem.h>
583#include <VBox/selm.h>
584#include <VBox/ssm.h>
585#include <VBox/hwaccm.h>
586#include "PGMInternal.h"
587#include <VBox/vm.h>
588#include "PGMInline.h"
589
590#include <VBox/dbg.h>
591#include <VBox/param.h>
592#include <VBox/err.h>
593
594#include <iprt/asm.h>
595#include <iprt/assert.h>
596#include <iprt/env.h>
597#include <iprt/mem.h>
598#include <iprt/file.h>
599#include <iprt/string.h>
600#include <iprt/thread.h>
601
602
603/*******************************************************************************
604* Defined Constants And Macros *
605*******************************************************************************/
606/** Saved state data unit version for 2.5.x and later. */
607#define PGM_SAVED_STATE_VERSION 9
608/** Saved state data unit version for 2.2.2 and later. */
609#define PGM_SAVED_STATE_VERSION_2_2_2 8
610/** Saved state data unit version for 2.2.0. */
611#define PGM_SAVED_STATE_VERSION_RR_DESC 7
612/** Saved state data unit version. */
613#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
614
615
616/*******************************************************************************
617* Internal Functions *
618*******************************************************************************/
619static int pgmR3InitPaging(PVM pVM);
620static void pgmR3InitStats(PVM pVM);
621static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
622static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
623static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
624static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
625static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
626static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
627#ifdef VBOX_STRICT
628static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
629#endif
630static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
631static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
632static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
633
634#ifdef VBOX_WITH_DEBUGGER
635/** @todo Convert the first two commands to 'info' items. */
636static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
637static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
639static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640# ifdef VBOX_STRICT
641static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642# endif
643# if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
644static DECLCALLBACK(int) pgmR3CmdCheckDuplicatePages(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645# endif
646static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647#endif
648
649
650/*******************************************************************************
651* Global Variables *
652*******************************************************************************/
653#ifdef VBOX_WITH_DEBUGGER
654/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
655static const DBGCVARDESC g_aPgmErrorArgs[] =
656{
657 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
658 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
659};
660
661static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
662{
663 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
664 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
665 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
666};
667
668/** Command descriptors. */
669static const DBGCCMD g_aCmds[] =
670{
671 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
672 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
673 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
674 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
675 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
676#ifdef VBOX_STRICT
677 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
678#endif
679#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
680 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
681#endif
682 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
683 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
684};
685#endif
686
687
688
689
690/*
691 * Shadow - 32-bit mode
692 */
693#define PGM_SHW_TYPE PGM_TYPE_32BIT
694#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
695#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
696#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
697#include "PGMShw.h"
698
699/* Guest - real mode */
700#define PGM_GST_TYPE PGM_TYPE_REAL
701#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
702#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
703#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
704#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
705#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
706#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
707#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
708#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
709#include "PGMBth.h"
710#include "PGMGstDefs.h"
711#include "PGMGst.h"
712#undef BTH_PGMPOOLKIND_PT_FOR_PT
713#undef BTH_PGMPOOLKIND_ROOT
714#undef PGM_BTH_NAME
715#undef PGM_BTH_NAME_RC_STR
716#undef PGM_BTH_NAME_R0_STR
717#undef PGM_GST_TYPE
718#undef PGM_GST_NAME
719#undef PGM_GST_NAME_RC_STR
720#undef PGM_GST_NAME_R0_STR
721
722/* Guest - protected mode */
723#define PGM_GST_TYPE PGM_TYPE_PROT
724#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
725#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
726#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
727#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
728#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
729#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
730#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
731#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
732#include "PGMBth.h"
733#include "PGMGstDefs.h"
734#include "PGMGst.h"
735#undef BTH_PGMPOOLKIND_PT_FOR_PT
736#undef BTH_PGMPOOLKIND_ROOT
737#undef PGM_BTH_NAME
738#undef PGM_BTH_NAME_RC_STR
739#undef PGM_BTH_NAME_R0_STR
740#undef PGM_GST_TYPE
741#undef PGM_GST_NAME
742#undef PGM_GST_NAME_RC_STR
743#undef PGM_GST_NAME_R0_STR
744
745/* Guest - 32-bit mode */
746#define PGM_GST_TYPE PGM_TYPE_32BIT
747#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
748#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
749#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
750#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
751#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
752#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
753#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
754#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
755#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
756#include "PGMBth.h"
757#include "PGMGstDefs.h"
758#include "PGMGst.h"
759#undef BTH_PGMPOOLKIND_PT_FOR_BIG
760#undef BTH_PGMPOOLKIND_PT_FOR_PT
761#undef BTH_PGMPOOLKIND_ROOT
762#undef PGM_BTH_NAME
763#undef PGM_BTH_NAME_RC_STR
764#undef PGM_BTH_NAME_R0_STR
765#undef PGM_GST_TYPE
766#undef PGM_GST_NAME
767#undef PGM_GST_NAME_RC_STR
768#undef PGM_GST_NAME_R0_STR
769
770#undef PGM_SHW_TYPE
771#undef PGM_SHW_NAME
772#undef PGM_SHW_NAME_RC_STR
773#undef PGM_SHW_NAME_R0_STR
774
775
776/*
777 * Shadow - PAE mode
778 */
779#define PGM_SHW_TYPE PGM_TYPE_PAE
780#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
781#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
782#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
783#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
784#include "PGMShw.h"
785
786/* Guest - real mode */
787#define PGM_GST_TYPE PGM_TYPE_REAL
788#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
789#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
790#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
791#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
792#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
793#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
794#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
795#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
796#include "PGMGstDefs.h"
797#include "PGMBth.h"
798#undef BTH_PGMPOOLKIND_PT_FOR_PT
799#undef BTH_PGMPOOLKIND_ROOT
800#undef PGM_BTH_NAME
801#undef PGM_BTH_NAME_RC_STR
802#undef PGM_BTH_NAME_R0_STR
803#undef PGM_GST_TYPE
804#undef PGM_GST_NAME
805#undef PGM_GST_NAME_RC_STR
806#undef PGM_GST_NAME_R0_STR
807
808/* Guest - protected mode */
809#define PGM_GST_TYPE PGM_TYPE_PROT
810#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
811#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
812#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
813#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
814#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
815#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
816#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
817#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
818#include "PGMGstDefs.h"
819#include "PGMBth.h"
820#undef BTH_PGMPOOLKIND_PT_FOR_PT
821#undef BTH_PGMPOOLKIND_ROOT
822#undef PGM_BTH_NAME
823#undef PGM_BTH_NAME_RC_STR
824#undef PGM_BTH_NAME_R0_STR
825#undef PGM_GST_TYPE
826#undef PGM_GST_NAME
827#undef PGM_GST_NAME_RC_STR
828#undef PGM_GST_NAME_R0_STR
829
830/* Guest - 32-bit mode */
831#define PGM_GST_TYPE PGM_TYPE_32BIT
832#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
833#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
834#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
835#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
836#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
837#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
838#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
839#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
840#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
841#include "PGMGstDefs.h"
842#include "PGMBth.h"
843#undef BTH_PGMPOOLKIND_PT_FOR_BIG
844#undef BTH_PGMPOOLKIND_PT_FOR_PT
845#undef BTH_PGMPOOLKIND_ROOT
846#undef PGM_BTH_NAME
847#undef PGM_BTH_NAME_RC_STR
848#undef PGM_BTH_NAME_R0_STR
849#undef PGM_GST_TYPE
850#undef PGM_GST_NAME
851#undef PGM_GST_NAME_RC_STR
852#undef PGM_GST_NAME_R0_STR
853
854/* Guest - PAE mode */
855#define PGM_GST_TYPE PGM_TYPE_PAE
856#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
857#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
858#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
859#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
860#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
861#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
862#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
863#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
864#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
865#include "PGMBth.h"
866#include "PGMGstDefs.h"
867#include "PGMGst.h"
868#undef BTH_PGMPOOLKIND_PT_FOR_BIG
869#undef BTH_PGMPOOLKIND_PT_FOR_PT
870#undef BTH_PGMPOOLKIND_ROOT
871#undef PGM_BTH_NAME
872#undef PGM_BTH_NAME_RC_STR
873#undef PGM_BTH_NAME_R0_STR
874#undef PGM_GST_TYPE
875#undef PGM_GST_NAME
876#undef PGM_GST_NAME_RC_STR
877#undef PGM_GST_NAME_R0_STR
878
879#undef PGM_SHW_TYPE
880#undef PGM_SHW_NAME
881#undef PGM_SHW_NAME_RC_STR
882#undef PGM_SHW_NAME_R0_STR
883
884
885/*
886 * Shadow - AMD64 mode
887 */
888#define PGM_SHW_TYPE PGM_TYPE_AMD64
889#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
890#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
891#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
892#include "PGMShw.h"
893
894#ifdef VBOX_WITH_64_BITS_GUESTS
895/* Guest - AMD64 mode */
896# define PGM_GST_TYPE PGM_TYPE_AMD64
897# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
898# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
899# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
900# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
901# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
902# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
903# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
904# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
905# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
906# include "PGMBth.h"
907# include "PGMGstDefs.h"
908# include "PGMGst.h"
909# undef BTH_PGMPOOLKIND_PT_FOR_BIG
910# undef BTH_PGMPOOLKIND_PT_FOR_PT
911# undef BTH_PGMPOOLKIND_ROOT
912# undef PGM_BTH_NAME
913# undef PGM_BTH_NAME_RC_STR
914# undef PGM_BTH_NAME_R0_STR
915# undef PGM_GST_TYPE
916# undef PGM_GST_NAME
917# undef PGM_GST_NAME_RC_STR
918# undef PGM_GST_NAME_R0_STR
919#endif /* VBOX_WITH_64_BITS_GUESTS */
920
921#undef PGM_SHW_TYPE
922#undef PGM_SHW_NAME
923#undef PGM_SHW_NAME_RC_STR
924#undef PGM_SHW_NAME_R0_STR
925
926
927/*
928 * Shadow - Nested paging mode
929 */
930#define PGM_SHW_TYPE PGM_TYPE_NESTED
931#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
932#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
933#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
934#include "PGMShw.h"
935
936/* Guest - real mode */
937#define PGM_GST_TYPE PGM_TYPE_REAL
938#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
939#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
940#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
941#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
942#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
943#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
944#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
945#include "PGMGstDefs.h"
946#include "PGMBth.h"
947#undef BTH_PGMPOOLKIND_PT_FOR_PT
948#undef PGM_BTH_NAME
949#undef PGM_BTH_NAME_RC_STR
950#undef PGM_BTH_NAME_R0_STR
951#undef PGM_GST_TYPE
952#undef PGM_GST_NAME
953#undef PGM_GST_NAME_RC_STR
954#undef PGM_GST_NAME_R0_STR
955
956/* Guest - protected mode */
957#define PGM_GST_TYPE PGM_TYPE_PROT
958#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
959#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
960#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
961#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
962#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
963#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
964#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
965#include "PGMGstDefs.h"
966#include "PGMBth.h"
967#undef BTH_PGMPOOLKIND_PT_FOR_PT
968#undef PGM_BTH_NAME
969#undef PGM_BTH_NAME_RC_STR
970#undef PGM_BTH_NAME_R0_STR
971#undef PGM_GST_TYPE
972#undef PGM_GST_NAME
973#undef PGM_GST_NAME_RC_STR
974#undef PGM_GST_NAME_R0_STR
975
976/* Guest - 32-bit mode */
977#define PGM_GST_TYPE PGM_TYPE_32BIT
978#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
979#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
980#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
981#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
982#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
983#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
984#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
985#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
986#include "PGMGstDefs.h"
987#include "PGMBth.h"
988#undef BTH_PGMPOOLKIND_PT_FOR_BIG
989#undef BTH_PGMPOOLKIND_PT_FOR_PT
990#undef PGM_BTH_NAME
991#undef PGM_BTH_NAME_RC_STR
992#undef PGM_BTH_NAME_R0_STR
993#undef PGM_GST_TYPE
994#undef PGM_GST_NAME
995#undef PGM_GST_NAME_RC_STR
996#undef PGM_GST_NAME_R0_STR
997
998/* Guest - PAE mode */
999#define PGM_GST_TYPE PGM_TYPE_PAE
1000#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1001#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1002#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1003#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1004#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1005#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1006#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1007#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1008#include "PGMGstDefs.h"
1009#include "PGMBth.h"
1010#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1011#undef BTH_PGMPOOLKIND_PT_FOR_PT
1012#undef PGM_BTH_NAME
1013#undef PGM_BTH_NAME_RC_STR
1014#undef PGM_BTH_NAME_R0_STR
1015#undef PGM_GST_TYPE
1016#undef PGM_GST_NAME
1017#undef PGM_GST_NAME_RC_STR
1018#undef PGM_GST_NAME_R0_STR
1019
1020#ifdef VBOX_WITH_64_BITS_GUESTS
1021/* Guest - AMD64 mode */
1022# define PGM_GST_TYPE PGM_TYPE_AMD64
1023# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1024# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1025# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1026# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1027# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1028# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1029# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1030# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1031# include "PGMGstDefs.h"
1032# include "PGMBth.h"
1033# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1034# undef BTH_PGMPOOLKIND_PT_FOR_PT
1035# undef PGM_BTH_NAME
1036# undef PGM_BTH_NAME_RC_STR
1037# undef PGM_BTH_NAME_R0_STR
1038# undef PGM_GST_TYPE
1039# undef PGM_GST_NAME
1040# undef PGM_GST_NAME_RC_STR
1041# undef PGM_GST_NAME_R0_STR
1042#endif /* VBOX_WITH_64_BITS_GUESTS */
1043
1044#undef PGM_SHW_TYPE
1045#undef PGM_SHW_NAME
1046#undef PGM_SHW_NAME_RC_STR
1047#undef PGM_SHW_NAME_R0_STR
1048
1049
1050/*
1051 * Shadow - EPT
1052 */
1053#define PGM_SHW_TYPE PGM_TYPE_EPT
1054#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1055#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1056#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1057#include "PGMShw.h"
1058
1059/* Guest - real mode */
1060#define PGM_GST_TYPE PGM_TYPE_REAL
1061#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1062#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1063#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1064#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1065#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1066#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1067#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1068#include "PGMGstDefs.h"
1069#include "PGMBth.h"
1070#undef BTH_PGMPOOLKIND_PT_FOR_PT
1071#undef PGM_BTH_NAME
1072#undef PGM_BTH_NAME_RC_STR
1073#undef PGM_BTH_NAME_R0_STR
1074#undef PGM_GST_TYPE
1075#undef PGM_GST_NAME
1076#undef PGM_GST_NAME_RC_STR
1077#undef PGM_GST_NAME_R0_STR
1078
1079/* Guest - protected mode */
1080#define PGM_GST_TYPE PGM_TYPE_PROT
1081#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1082#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1083#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1084#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1085#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1086#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1087#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1088#include "PGMGstDefs.h"
1089#include "PGMBth.h"
1090#undef BTH_PGMPOOLKIND_PT_FOR_PT
1091#undef PGM_BTH_NAME
1092#undef PGM_BTH_NAME_RC_STR
1093#undef PGM_BTH_NAME_R0_STR
1094#undef PGM_GST_TYPE
1095#undef PGM_GST_NAME
1096#undef PGM_GST_NAME_RC_STR
1097#undef PGM_GST_NAME_R0_STR
1098
1099/* Guest - 32-bit mode */
1100#define PGM_GST_TYPE PGM_TYPE_32BIT
1101#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1102#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1103#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1104#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1105#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1106#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1107#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1108#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1109#include "PGMGstDefs.h"
1110#include "PGMBth.h"
1111#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1112#undef BTH_PGMPOOLKIND_PT_FOR_PT
1113#undef PGM_BTH_NAME
1114#undef PGM_BTH_NAME_RC_STR
1115#undef PGM_BTH_NAME_R0_STR
1116#undef PGM_GST_TYPE
1117#undef PGM_GST_NAME
1118#undef PGM_GST_NAME_RC_STR
1119#undef PGM_GST_NAME_R0_STR
1120
1121/* Guest - PAE mode */
1122#define PGM_GST_TYPE PGM_TYPE_PAE
1123#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1124#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1125#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1126#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1127#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1128#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1129#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1130#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1131#include "PGMGstDefs.h"
1132#include "PGMBth.h"
1133#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1134#undef BTH_PGMPOOLKIND_PT_FOR_PT
1135#undef PGM_BTH_NAME
1136#undef PGM_BTH_NAME_RC_STR
1137#undef PGM_BTH_NAME_R0_STR
1138#undef PGM_GST_TYPE
1139#undef PGM_GST_NAME
1140#undef PGM_GST_NAME_RC_STR
1141#undef PGM_GST_NAME_R0_STR
1142
1143#ifdef VBOX_WITH_64_BITS_GUESTS
1144/* Guest - AMD64 mode */
1145# define PGM_GST_TYPE PGM_TYPE_AMD64
1146# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1147# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1148# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1149# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1150# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1151# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1152# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1153# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1154# include "PGMGstDefs.h"
1155# include "PGMBth.h"
1156# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1157# undef BTH_PGMPOOLKIND_PT_FOR_PT
1158# undef PGM_BTH_NAME
1159# undef PGM_BTH_NAME_RC_STR
1160# undef PGM_BTH_NAME_R0_STR
1161# undef PGM_GST_TYPE
1162# undef PGM_GST_NAME
1163# undef PGM_GST_NAME_RC_STR
1164# undef PGM_GST_NAME_R0_STR
1165#endif /* VBOX_WITH_64_BITS_GUESTS */
1166
1167#undef PGM_SHW_TYPE
1168#undef PGM_SHW_NAME
1169#undef PGM_SHW_NAME_RC_STR
1170#undef PGM_SHW_NAME_R0_STR
1171
1172
1173
1174/**
1175 * Initiates the paging of VM.
1176 *
1177 * @returns VBox status code.
1178 * @param pVM Pointer to VM structure.
1179 */
1180VMMR3DECL(int) PGMR3Init(PVM pVM)
1181{
1182 LogFlow(("PGMR3Init:\n"));
1183 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1184 int rc;
1185
1186 /*
1187 * Assert alignment and sizes.
1188 */
1189 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1190 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1191 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1192
1193 /*
1194 * Init the structure.
1195 */
1196#ifdef PGM_WITHOUT_MAPPINGS
1197 pVM->pgm.s.fMappingsDisabled = true;
1198#endif
1199 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1200 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1201
1202 /* Init the per-CPU part. */
1203 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1204 {
1205 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1206 PPGMCPU pPGM = &pVCpu->pgm.s;
1207
1208 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1209 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1210 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1211
1212 pPGM->enmShadowMode = PGMMODE_INVALID;
1213 pPGM->enmGuestMode = PGMMODE_INVALID;
1214
1215 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1216
1217 pPGM->pGstPaePdptR3 = NULL;
1218#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1219 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1220#endif
1221 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1222 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1223 {
1224 pPGM->apGstPaePDsR3[i] = NULL;
1225#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1226 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1227#endif
1228 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1229 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1230 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1231 }
1232
1233 pPGM->fA20Enabled = true;
1234 }
1235
1236 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1237 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1238 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1239
1240 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1241#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1242 true
1243#else
1244 false
1245#endif
1246 );
1247 AssertLogRelRCReturn(rc, rc);
1248
1249#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1250 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1251#else
1252 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1253#endif
1254 AssertLogRelRCReturn(rc, rc);
1255 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1256 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1257
1258 /*
1259 * Get the configured RAM size - to estimate saved state size.
1260 */
1261 uint64_t cbRam;
1262 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1263 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1264 cbRam = 0;
1265 else if (RT_SUCCESS(rc))
1266 {
1267 if (cbRam < PAGE_SIZE)
1268 cbRam = 0;
1269 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1270 }
1271 else
1272 {
1273 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1274 return rc;
1275 }
1276
1277 /*
1278 * Register callbacks, string formatters and the saved state data unit.
1279 */
1280#ifdef VBOX_STRICT
1281 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1282#endif
1283 PGMRegisterStringFormatTypes();
1284
1285 rc = pgmR3InitSavedState(pVM, cbRam);
1286 if (RT_FAILURE(rc))
1287 return rc;
1288
1289 /*
1290 * Initialize the PGM critical section and flush the phys TLBs
1291 */
1292 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1293 AssertRCReturn(rc, rc);
1294
1295 PGMR3PhysChunkInvalidateTLB(pVM);
1296 PGMPhysInvalidatePageMapTLB(pVM);
1297
1298 /*
1299 * For the time being we sport a full set of handy pages in addition to the base
1300 * memory to simplify things.
1301 */
1302 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1303 AssertRCReturn(rc, rc);
1304
1305 /*
1306 * Trees
1307 */
1308 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1309 if (RT_SUCCESS(rc))
1310 {
1311 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1312 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1313
1314 /*
1315 * Alocate the zero page.
1316 */
1317 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1318 }
1319 if (RT_SUCCESS(rc))
1320 {
1321 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1322 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1323 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1324 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1325
1326 /*
1327 * Init the paging.
1328 */
1329 rc = pgmR3InitPaging(pVM);
1330 }
1331 if (RT_SUCCESS(rc))
1332 {
1333 /*
1334 * Init the page pool.
1335 */
1336 rc = pgmR3PoolInit(pVM);
1337 }
1338 if (RT_SUCCESS(rc))
1339 {
1340 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1341 {
1342 PVMCPU pVCpu = &pVM->aCpus[i];
1343 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1344 if (RT_FAILURE(rc))
1345 break;
1346 }
1347 }
1348
1349 if (RT_SUCCESS(rc))
1350 {
1351 /*
1352 * Info & statistics
1353 */
1354 DBGFR3InfoRegisterInternal(pVM, "mode",
1355 "Shows the current paging mode. "
1356 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1357 pgmR3InfoMode);
1358 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1359 "Dumps all the entries in the top level paging table. No arguments.",
1360 pgmR3InfoCr3);
1361 DBGFR3InfoRegisterInternal(pVM, "phys",
1362 "Dumps all the physical address ranges. No arguments.",
1363 pgmR3PhysInfo);
1364 DBGFR3InfoRegisterInternal(pVM, "handlers",
1365 "Dumps physical, virtual and hyper virtual handlers. "
1366 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1367 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1368 pgmR3InfoHandlers);
1369 DBGFR3InfoRegisterInternal(pVM, "mappings",
1370 "Dumps guest mappings.",
1371 pgmR3MapInfo);
1372
1373 pgmR3InitStats(pVM);
1374
1375#ifdef VBOX_WITH_DEBUGGER
1376 /*
1377 * Debugger commands.
1378 */
1379 static bool s_fRegisteredCmds = false;
1380 if (!s_fRegisteredCmds)
1381 {
1382 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1383 if (RT_SUCCESS(rc2))
1384 s_fRegisteredCmds = true;
1385 }
1386#endif
1387 return VINF_SUCCESS;
1388 }
1389
1390 /* Almost no cleanup necessary, MM frees all memory. */
1391 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1392
1393 return rc;
1394}
1395
1396
1397/**
1398 * Initializes the per-VCPU PGM.
1399 *
1400 * @returns VBox status code.
1401 * @param pVM The VM to operate on.
1402 */
1403VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1404{
1405 LogFlow(("PGMR3InitCPU\n"));
1406 return VINF_SUCCESS;
1407}
1408
1409
1410/**
1411 * Init paging.
1412 *
1413 * Since we need to check what mode the host is operating in before we can choose
1414 * the right paging functions for the host we have to delay this until R0 has
1415 * been initialized.
1416 *
1417 * @returns VBox status code.
1418 * @param pVM VM handle.
1419 */
1420static int pgmR3InitPaging(PVM pVM)
1421{
1422 /*
1423 * Force a recalculation of modes and switcher so everyone gets notified.
1424 */
1425 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1426 {
1427 PVMCPU pVCpu = &pVM->aCpus[i];
1428
1429 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1430 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1431 }
1432
1433 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1434
1435 /*
1436 * Allocate static mapping space for whatever the cr3 register
1437 * points to and in the case of PAE mode to the 4 PDs.
1438 */
1439 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1440 if (RT_FAILURE(rc))
1441 {
1442 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1443 return rc;
1444 }
1445 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1446
1447 /*
1448 * Allocate pages for the three possible intermediate contexts
1449 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1450 * for the sake of simplicity. The AMD64 uses the PAE for the
1451 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1452 *
1453 * We assume that two page tables will be enought for the core code
1454 * mappings (HC virtual and identity).
1455 */
1456 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1457 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1458 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1459 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1468
1469 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1470 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1471 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1472 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1473 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1474 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1475
1476 /*
1477 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1478 */
1479 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1480 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1481 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1482
1483 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1484 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1485
1486 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1487 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1488 {
1489 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1490 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1491 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1492 }
1493
1494 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1495 {
1496 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1497 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1498 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1499 }
1500
1501 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1502 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1503 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1504 | HCPhysInterPaePDPT64;
1505
1506 /*
1507 * Initialize paging workers and mode from current host mode
1508 * and the guest running in real mode.
1509 */
1510 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1511 switch (pVM->pgm.s.enmHostMode)
1512 {
1513 case SUPPAGINGMODE_32_BIT:
1514 case SUPPAGINGMODE_32_BIT_GLOBAL:
1515 case SUPPAGINGMODE_PAE:
1516 case SUPPAGINGMODE_PAE_GLOBAL:
1517 case SUPPAGINGMODE_PAE_NX:
1518 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1519 break;
1520
1521 case SUPPAGINGMODE_AMD64:
1522 case SUPPAGINGMODE_AMD64_GLOBAL:
1523 case SUPPAGINGMODE_AMD64_NX:
1524 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1525#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1526 if (ARCH_BITS != 64)
1527 {
1528 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1529 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1530 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1531 }
1532#endif
1533 break;
1534 default:
1535 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1536 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1537 }
1538 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1539 if (RT_SUCCESS(rc))
1540 {
1541 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1542#if HC_ARCH_BITS == 64
1543 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1544 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1545 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1546 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1547 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1548 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1549 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1550#endif
1551
1552 return VINF_SUCCESS;
1553 }
1554
1555 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1556 return rc;
1557}
1558
1559
1560/**
1561 * Init statistics
1562 */
1563static void pgmR3InitStats(PVM pVM)
1564{
1565 PPGM pPGM = &pVM->pgm.s;
1566 int rc;
1567
1568 /* Common - misc variables */
1569 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1570 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1571 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1572 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1573 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1574 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1575 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1576 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1577 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1578 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1579 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1580 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1581 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1582 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1583 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1584
1585 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1586 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1587 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1588 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1589
1590 /* Live save */
1591 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1592 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1593 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1594 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1595 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1596 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1597 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1598 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1599 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1600 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1601 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1602 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1603 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1604 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1605 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1606 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1607 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1608 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1609
1610#ifdef VBOX_WITH_STATISTICS
1611
1612# define PGM_REG_COUNTER(a, b, c) \
1613 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1614 AssertRC(rc);
1615
1616# define PGM_REG_COUNTER_BYTES(a, b, c) \
1617 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1618 AssertRC(rc);
1619
1620# define PGM_REG_PROFILE(a, b, c) \
1621 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1622 AssertRC(rc);
1623
1624 PGM_REG_PROFILE(&pPGM->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1625 PGM_REG_PROFILE(&pPGM->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1626 PGM_REG_PROFILE(&pPGM->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1627 PGM_REG_PROFILE(&pPGM->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1628
1629 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1630 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1631 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1632 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1633 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1634 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1635 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1636 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1637 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1638 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1639
1640 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1641 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1642 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1643 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1644 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1645 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1646 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1647 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1648 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1649 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1650
1651 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1652 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1653 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1654 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1655
1656 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1657 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1658 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1659 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1660
1661 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1662 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1663/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1664 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1665 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1666/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1667
1668 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1669 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1670 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1671 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1672 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1673 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1674 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1675 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1676
1677 /* GC only: */
1678 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1679 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1680 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1681 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1682
1683 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1684 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1685 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1686 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1687 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1688 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1689 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1690 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1691
1692 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1693 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1694 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1695 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1696 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1697 PGM_REG_COUNTER(&pPGM->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1698 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1699
1700# undef PGM_REG_COUNTER
1701# undef PGM_REG_PROFILE
1702#endif
1703
1704 /*
1705 * Note! The layout below matches the member layout exactly!
1706 */
1707
1708 /*
1709 * Common - stats
1710 */
1711 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1712 {
1713 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1714
1715#define PGM_REG_COUNTER(a, b, c) \
1716 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1717 AssertRC(rc);
1718#define PGM_REG_PROFILE(a, b, c) \
1719 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1720 AssertRC(rc);
1721
1722 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1723
1724#ifdef VBOX_WITH_STATISTICS
1725
1726# if 0 /* rarely useful; leave for debugging. */
1727 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1728 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1729 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1730 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPagePD); j++)
1731 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1732 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1733# endif
1734 /* R0 only: */
1735 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1736 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1737 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1738 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1739 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1740 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1741 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1742 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1743 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1744 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1745 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1746 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1747 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1748 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1749 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1750 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1751 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1752 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1753 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1754 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1755 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1756 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1757 //PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1758 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1759 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1760 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1761 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1762 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1763 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1764 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1765 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1766 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1767 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1768 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1769 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1770 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1771
1772 /* RZ only: */
1773 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1774 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%u/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1775 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeSyncPT, "/PGM/CPU%u/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1776 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeMapping, "/PGM/CPU%u/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1777 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1778 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeHandlers, "/PGM/CPU%u/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1779 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1780 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1781 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1782 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1783 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1784 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1785 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1786 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1787 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1788 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1789 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1790 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1791 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1792 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1793 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1794 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1795 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1796 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1797 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1798 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1799 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1800 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1801 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1802 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1803 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1804 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1805 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1806 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1807 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1808 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1809 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1810 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1811 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1812 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFUnh, "/PGM/CPU%u/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1813 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1814 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1815 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1816#if 0 /* rarely useful; leave for debugging. */
1817 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatRZTrap0ePD); j++)
1818 STAMR3RegisterF(pVM, &pPgmCpu->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1819 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1820#endif
1821 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1822 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1823 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1824 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1825 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1826
1827 /* HC only: */
1828
1829 /* RZ & R3: */
1830 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1831 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1832 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1833 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1834 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1835 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1836 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1837 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1838 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1839 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1840 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1841 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1842 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1843 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1844 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1845 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1846 PGM_REG_COUNTER(&pPgmCpu->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1847 PGM_REG_PROFILE(&pPgmCpu->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1848 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1849 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1850 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1851 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1852 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1853 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1854 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1855 PGM_REG_COUNTER(&pPgmCpu->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1856 PGM_REG_PROFILE(&pPgmCpu->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1857 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1858 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1859 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1860 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1861 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1862 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1863 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1864 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1865 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1866 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1867 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1868 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1869 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1870 PGM_REG_PROFILE(&pPgmCpu->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1871 PGM_REG_PROFILE(&pPgmCpu->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1872 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1873 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1874 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1875 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1876 PGM_REG_PROFILE(&pPgmCpu->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1877
1878 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1879 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1880 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1881 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1882 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1883 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1884 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1885 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1886 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1887 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1888 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1889 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1890 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1891 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1892 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1893 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1894 PGM_REG_COUNTER(&pPgmCpu->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1895 PGM_REG_PROFILE(&pPgmCpu->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1896 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1897 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1898 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1899 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1900 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1901 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1902 PGM_REG_COUNTER(&pPgmCpu->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1903 PGM_REG_PROFILE(&pPgmCpu->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1904 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1905 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1906 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1907 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1908 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1909 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1910 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1911 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1912 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1913 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1914 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1915 PGM_REG_PROFILE(&pPgmCpu->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1916 PGM_REG_PROFILE(&pPgmCpu->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1917 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1918 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1919 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1920 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1921 PGM_REG_PROFILE(&pPgmCpu->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1922#endif /* VBOX_WITH_STATISTICS */
1923
1924#undef PGM_REG_PROFILE
1925#undef PGM_REG_COUNTER
1926
1927 }
1928}
1929
1930
1931/**
1932 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1933 *
1934 * The dynamic mapping area will also be allocated and initialized at this
1935 * time. We could allocate it during PGMR3Init of course, but the mapping
1936 * wouldn't be allocated at that time preventing us from setting up the
1937 * page table entries with the dummy page.
1938 *
1939 * @returns VBox status code.
1940 * @param pVM VM handle.
1941 */
1942VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1943{
1944 RTGCPTR GCPtr;
1945 int rc;
1946
1947 /*
1948 * Reserve space for the dynamic mappings.
1949 */
1950 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1951 if (RT_SUCCESS(rc))
1952 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1953
1954 if ( RT_SUCCESS(rc)
1955 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1956 {
1957 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1958 if (RT_SUCCESS(rc))
1959 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1960 }
1961 if (RT_SUCCESS(rc))
1962 {
1963 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1964 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1965 }
1966 return rc;
1967}
1968
1969
1970/**
1971 * Ring-3 init finalizing.
1972 *
1973 * @returns VBox status code.
1974 * @param pVM The VM handle.
1975 */
1976VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1977{
1978 int rc;
1979
1980 /*
1981 * Reserve space for the dynamic mappings.
1982 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1983 */
1984 /* get the pointer to the page table entries. */
1985 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1986 AssertRelease(pMapping);
1987 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1988 const unsigned iPT = off >> X86_PD_SHIFT;
1989 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1990 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1991 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1992
1993 /* init cache */
1994 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1995 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1996 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1997
1998 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1999 {
2000 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
2001 AssertRCReturn(rc, rc);
2002 }
2003
2004 /*
2005 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2006 * Intel only goes up to 36 bits, so we stick to 36 as well.
2007 */
2008 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
2009 uint32_t u32Dummy, u32Features;
2010 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2011
2012 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2013 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
2014 else
2015 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2016
2017 /*
2018 * Allocate memory if we're supposed to do that.
2019 */
2020 if (pVM->pgm.s.fRamPreAlloc)
2021 rc = pgmR3PhysRamPreAllocate(pVM);
2022
2023 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2024 return rc;
2025}
2026
2027
2028/**
2029 * Applies relocations to data and code managed by this component.
2030 *
2031 * This function will be called at init and whenever the VMM need to relocate it
2032 * self inside the GC.
2033 *
2034 * @param pVM The VM.
2035 * @param offDelta Relocation delta relative to old location.
2036 */
2037VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2038{
2039 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2040
2041 /*
2042 * Paging stuff.
2043 */
2044 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2045
2046 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2047
2048 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2049 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2050 {
2051 PVMCPU pVCpu = &pVM->aCpus[i];
2052
2053 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2054
2055 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2056 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2057 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2058 }
2059
2060 /*
2061 * Trees.
2062 */
2063 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2064
2065 /*
2066 * Ram ranges.
2067 */
2068 if (pVM->pgm.s.pRamRangesR3)
2069 {
2070 /* Update the pSelfRC pointers and relink them. */
2071 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2072 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2073 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2074 pgmR3PhysRelinkRamRanges(pVM);
2075 }
2076
2077 /*
2078 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2079 * be mapped and thus not included in the above exercise.
2080 */
2081 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2082 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2083 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2084
2085 /*
2086 * Update the two page directories with all page table mappings.
2087 * (One or more of them have changed, that's why we're here.)
2088 */
2089 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2090 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2091 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2092
2093 /* Relocate GC addresses of Page Tables. */
2094 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2095 {
2096 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2097 {
2098 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2099 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2100 }
2101 }
2102
2103 /*
2104 * Dynamic page mapping area.
2105 */
2106 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2107 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2108 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2109
2110 /*
2111 * The Zero page.
2112 */
2113 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2114#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2115 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2116#else
2117 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2118#endif
2119
2120 /*
2121 * Physical and virtual handlers.
2122 */
2123 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2124 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2125 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2126
2127 /*
2128 * The page pool.
2129 */
2130 pgmR3PoolRelocate(pVM);
2131}
2132
2133
2134/**
2135 * Callback function for relocating a physical access handler.
2136 *
2137 * @returns 0 (continue enum)
2138 * @param pNode Pointer to a PGMPHYSHANDLER node.
2139 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2140 * not certain the delta will fit in a void pointer for all possible configs.
2141 */
2142static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2143{
2144 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2145 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2146 if (pHandler->pfnHandlerRC)
2147 pHandler->pfnHandlerRC += offDelta;
2148 if (pHandler->pvUserRC >= 0x10000)
2149 pHandler->pvUserRC += offDelta;
2150 return 0;
2151}
2152
2153
2154/**
2155 * Callback function for relocating a virtual access handler.
2156 *
2157 * @returns 0 (continue enum)
2158 * @param pNode Pointer to a PGMVIRTHANDLER node.
2159 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2160 * not certain the delta will fit in a void pointer for all possible configs.
2161 */
2162static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2163{
2164 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2165 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2166 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2167 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2168 Assert(pHandler->pfnHandlerRC);
2169 pHandler->pfnHandlerRC += offDelta;
2170 return 0;
2171}
2172
2173
2174/**
2175 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2176 *
2177 * @returns 0 (continue enum)
2178 * @param pNode Pointer to a PGMVIRTHANDLER node.
2179 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2180 * not certain the delta will fit in a void pointer for all possible configs.
2181 */
2182static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2183{
2184 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2185 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2186 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2187 Assert(pHandler->pfnHandlerRC);
2188 pHandler->pfnHandlerRC += offDelta;
2189 return 0;
2190}
2191
2192
2193/**
2194 * Resets a virtual CPU when unplugged.
2195 *
2196 * @param pVM The VM handle.
2197 * @param pVCpu The virtual CPU handle.
2198 */
2199VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2200{
2201 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2202 AssertRC(rc);
2203
2204 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2205 AssertRC(rc);
2206
2207 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2208
2209 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2210
2211 /*
2212 * Re-init other members.
2213 */
2214 pVCpu->pgm.s.fA20Enabled = true;
2215
2216 /*
2217 * Clear the FFs PGM owns.
2218 */
2219 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2220 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2221}
2222
2223
2224/**
2225 * The VM is being reset.
2226 *
2227 * For the PGM component this means that any PD write monitors
2228 * needs to be removed.
2229 *
2230 * @param pVM VM handle.
2231 */
2232VMMR3DECL(void) PGMR3Reset(PVM pVM)
2233{
2234 int rc;
2235
2236 LogFlow(("PGMR3Reset:\n"));
2237 VM_ASSERT_EMT(pVM);
2238
2239 pgmLock(pVM);
2240
2241 /*
2242 * Unfix any fixed mappings and disable CR3 monitoring.
2243 */
2244 pVM->pgm.s.fMappingsFixed = false;
2245 pVM->pgm.s.fMappingsFixedRestored = false;
2246 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2247 pVM->pgm.s.cbMappingFixed = 0;
2248
2249 /*
2250 * Exit the guest paging mode before the pgm pool gets reset.
2251 * Important to clean up the amd64 case.
2252 */
2253 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2254 {
2255 PVMCPU pVCpu = &pVM->aCpus[i];
2256 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2257 AssertRC(rc);
2258 }
2259
2260#ifdef DEBUG
2261 DBGFR3InfoLog(pVM, "mappings", NULL);
2262 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2263#endif
2264
2265 /*
2266 * Switch mode back to real mode. (before resetting the pgm pool!)
2267 */
2268 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2269 {
2270 PVMCPU pVCpu = &pVM->aCpus[i];
2271
2272 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2273 AssertRC(rc);
2274
2275 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2276 }
2277
2278 /*
2279 * Reset the shadow page pool.
2280 */
2281 pgmR3PoolReset(pVM);
2282
2283 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2284 {
2285 PVMCPU pVCpu = &pVM->aCpus[i];
2286
2287 /*
2288 * Re-init other members.
2289 */
2290 pVCpu->pgm.s.fA20Enabled = true;
2291
2292 /*
2293 * Clear the FFs PGM owns.
2294 */
2295 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2296 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2297 }
2298
2299 /*
2300 * Reset (zero) RAM pages.
2301 */
2302 rc = pgmR3PhysRamReset(pVM);
2303 if (RT_SUCCESS(rc))
2304 {
2305 /*
2306 * Reset (zero) shadow ROM pages.
2307 */
2308 rc = pgmR3PhysRomReset(pVM);
2309 }
2310
2311 pgmUnlock(pVM);
2312 AssertReleaseRC(rc);
2313}
2314
2315
2316#ifdef VBOX_STRICT
2317/**
2318 * VM state change callback for clearing fNoMorePhysWrites after
2319 * a snapshot has been created.
2320 */
2321static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2322{
2323 if ( enmState == VMSTATE_RUNNING
2324 || enmState == VMSTATE_RESUMING)
2325 pVM->pgm.s.fNoMorePhysWrites = false;
2326}
2327#endif
2328
2329
2330/**
2331 * Terminates the PGM.
2332 *
2333 * @returns VBox status code.
2334 * @param pVM Pointer to VM structure.
2335 */
2336VMMR3DECL(int) PGMR3Term(PVM pVM)
2337{
2338 /* Must free shared pages here. */
2339 pgmLock(pVM);
2340 pgmR3PhysRamTerm(pVM);
2341 pgmUnlock(pVM);
2342
2343 PGMDeregisterStringFormatTypes();
2344 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2345}
2346
2347
2348/**
2349 * Terminates the per-VCPU PGM.
2350 *
2351 * Termination means cleaning up and freeing all resources,
2352 * the VM it self is at this point powered off or suspended.
2353 *
2354 * @returns VBox status code.
2355 * @param pVM The VM to operate on.
2356 */
2357VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2358{
2359 return 0;
2360}
2361
2362
2363/**
2364 * Show paging mode.
2365 *
2366 * @param pVM VM Handle.
2367 * @param pHlp The info helpers.
2368 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2369 */
2370static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2371{
2372 /* digest argument. */
2373 bool fGuest, fShadow, fHost;
2374 if (pszArgs)
2375 pszArgs = RTStrStripL(pszArgs);
2376 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2377 fShadow = fHost = fGuest = true;
2378 else
2379 {
2380 fShadow = fHost = fGuest = false;
2381 if (strstr(pszArgs, "guest"))
2382 fGuest = true;
2383 if (strstr(pszArgs, "shadow"))
2384 fShadow = true;
2385 if (strstr(pszArgs, "host"))
2386 fHost = true;
2387 }
2388
2389 /** @todo SMP support! */
2390 /* print info. */
2391 if (fGuest)
2392 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2393 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2394 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2395 if (fShadow)
2396 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2397 if (fHost)
2398 {
2399 const char *psz;
2400 switch (pVM->pgm.s.enmHostMode)
2401 {
2402 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2403 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2404 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2405 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2406 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2407 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2408 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2409 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2410 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2411 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2412 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2413 default: psz = "unknown"; break;
2414 }
2415 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2416 }
2417}
2418
2419
2420/**
2421 * Dump registered MMIO ranges to the log.
2422 *
2423 * @param pVM VM Handle.
2424 * @param pHlp The info helpers.
2425 * @param pszArgs Arguments, ignored.
2426 */
2427static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2428{
2429 NOREF(pszArgs);
2430 pHlp->pfnPrintf(pHlp,
2431 "RAM ranges (pVM=%p)\n"
2432 "%.*s %.*s\n",
2433 pVM,
2434 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2435 sizeof(RTHCPTR) * 2, "pvHC ");
2436
2437 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2438 pHlp->pfnPrintf(pHlp,
2439 "%RGp-%RGp %RHv %s\n",
2440 pCur->GCPhys,
2441 pCur->GCPhysLast,
2442 pCur->pvR3,
2443 pCur->pszDesc);
2444}
2445
2446/**
2447 * Dump the page directory to the log.
2448 *
2449 * @param pVM VM Handle.
2450 * @param pHlp The info helpers.
2451 * @param pszArgs Arguments, ignored.
2452 */
2453static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2454{
2455 /** @todo SMP support!! */
2456 PVMCPU pVCpu = &pVM->aCpus[0];
2457
2458/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2459 /* Big pages supported? */
2460 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2461
2462 /* Global pages supported? */
2463 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2464
2465 NOREF(pszArgs);
2466
2467 /*
2468 * Get page directory addresses.
2469 */
2470 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
2471 Assert(pPDSrc);
2472 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2473
2474 /*
2475 * Iterate the page directory.
2476 */
2477 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2478 {
2479 X86PDE PdeSrc = pPDSrc->a[iPD];
2480 if (PdeSrc.n.u1Present)
2481 {
2482 if (PdeSrc.b.u1Size && fPSE)
2483 pHlp->pfnPrintf(pHlp,
2484 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2485 iPD,
2486 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2487 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2488 else
2489 pHlp->pfnPrintf(pHlp,
2490 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2491 iPD,
2492 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2493 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2494 }
2495 }
2496}
2497
2498
2499/**
2500 * Service a VMMCALLRING3_PGM_LOCK call.
2501 *
2502 * @returns VBox status code.
2503 * @param pVM The VM handle.
2504 */
2505VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2506{
2507 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2508 AssertRC(rc);
2509 return rc;
2510}
2511
2512
2513/**
2514 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2515 *
2516 * @returns PGM_TYPE_*.
2517 * @param pgmMode The mode value to convert.
2518 */
2519DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2520{
2521 switch (pgmMode)
2522 {
2523 case PGMMODE_REAL: return PGM_TYPE_REAL;
2524 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2525 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2526 case PGMMODE_PAE:
2527 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2528 case PGMMODE_AMD64:
2529 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2530 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2531 case PGMMODE_EPT: return PGM_TYPE_EPT;
2532 default:
2533 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2534 }
2535}
2536
2537
2538/**
2539 * Gets the index into the paging mode data array of a SHW+GST mode.
2540 *
2541 * @returns PGM::paPagingData index.
2542 * @param uShwType The shadow paging mode type.
2543 * @param uGstType The guest paging mode type.
2544 */
2545DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2546{
2547 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2548 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2549 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2550 + (uGstType - PGM_TYPE_REAL);
2551}
2552
2553
2554/**
2555 * Gets the index into the paging mode data array of a SHW+GST mode.
2556 *
2557 * @returns PGM::paPagingData index.
2558 * @param enmShw The shadow paging mode.
2559 * @param enmGst The guest paging mode.
2560 */
2561DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2562{
2563 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2564 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2565 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2566}
2567
2568
2569/**
2570 * Calculates the max data index.
2571 * @returns The number of entries in the paging data array.
2572 */
2573DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2574{
2575 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2576}
2577
2578
2579/**
2580 * Initializes the paging mode data kept in PGM::paModeData.
2581 *
2582 * @param pVM The VM handle.
2583 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2584 * This is used early in the init process to avoid trouble with PDM
2585 * not being initialized yet.
2586 */
2587static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2588{
2589 PPGMMODEDATA pModeData;
2590 int rc;
2591
2592 /*
2593 * Allocate the array on the first call.
2594 */
2595 if (!pVM->pgm.s.paModeData)
2596 {
2597 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2598 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2599 }
2600
2601 /*
2602 * Initialize the array entries.
2603 */
2604 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2605 pModeData->uShwType = PGM_TYPE_32BIT;
2606 pModeData->uGstType = PGM_TYPE_REAL;
2607 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2608 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2609 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2610
2611 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2612 pModeData->uShwType = PGM_TYPE_32BIT;
2613 pModeData->uGstType = PGM_TYPE_PROT;
2614 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2615 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2616 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2617
2618 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2619 pModeData->uShwType = PGM_TYPE_32BIT;
2620 pModeData->uGstType = PGM_TYPE_32BIT;
2621 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2622 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2623 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2624
2625 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2626 pModeData->uShwType = PGM_TYPE_PAE;
2627 pModeData->uGstType = PGM_TYPE_REAL;
2628 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2629 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2630 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2631
2632 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2633 pModeData->uShwType = PGM_TYPE_PAE;
2634 pModeData->uGstType = PGM_TYPE_PROT;
2635 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2636 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2637 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2638
2639 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2640 pModeData->uShwType = PGM_TYPE_PAE;
2641 pModeData->uGstType = PGM_TYPE_32BIT;
2642 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2643 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2644 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2645
2646 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2647 pModeData->uShwType = PGM_TYPE_PAE;
2648 pModeData->uGstType = PGM_TYPE_PAE;
2649 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2650 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2651 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2652
2653#ifdef VBOX_WITH_64_BITS_GUESTS
2654 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2655 pModeData->uShwType = PGM_TYPE_AMD64;
2656 pModeData->uGstType = PGM_TYPE_AMD64;
2657 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2658 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2659 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2660#endif
2661
2662 /* The nested paging mode. */
2663 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2664 pModeData->uShwType = PGM_TYPE_NESTED;
2665 pModeData->uGstType = PGM_TYPE_REAL;
2666 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2667 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2668
2669 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2670 pModeData->uShwType = PGM_TYPE_NESTED;
2671 pModeData->uGstType = PGM_TYPE_PROT;
2672 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2673 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2674
2675 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2676 pModeData->uShwType = PGM_TYPE_NESTED;
2677 pModeData->uGstType = PGM_TYPE_32BIT;
2678 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2679 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2680
2681 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2682 pModeData->uShwType = PGM_TYPE_NESTED;
2683 pModeData->uGstType = PGM_TYPE_PAE;
2684 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2685 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2686
2687#ifdef VBOX_WITH_64_BITS_GUESTS
2688 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2689 pModeData->uShwType = PGM_TYPE_NESTED;
2690 pModeData->uGstType = PGM_TYPE_AMD64;
2691 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2692 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2693#endif
2694
2695 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2696 switch (pVM->pgm.s.enmHostMode)
2697 {
2698#if HC_ARCH_BITS == 32
2699 case SUPPAGINGMODE_32_BIT:
2700 case SUPPAGINGMODE_32_BIT_GLOBAL:
2701 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2702 {
2703 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2704 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2705 }
2706# ifdef VBOX_WITH_64_BITS_GUESTS
2707 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2708 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2709# endif
2710 break;
2711
2712 case SUPPAGINGMODE_PAE:
2713 case SUPPAGINGMODE_PAE_NX:
2714 case SUPPAGINGMODE_PAE_GLOBAL:
2715 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2716 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2717 {
2718 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2719 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720 }
2721# ifdef VBOX_WITH_64_BITS_GUESTS
2722 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2723 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2724# endif
2725 break;
2726#endif /* HC_ARCH_BITS == 32 */
2727
2728#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2729 case SUPPAGINGMODE_AMD64:
2730 case SUPPAGINGMODE_AMD64_GLOBAL:
2731 case SUPPAGINGMODE_AMD64_NX:
2732 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2733# ifdef VBOX_WITH_64_BITS_GUESTS
2734 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2735# else
2736 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2737# endif
2738 {
2739 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2740 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2741 }
2742 break;
2743#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2744
2745 default:
2746 AssertFailed();
2747 break;
2748 }
2749
2750 /* Extended paging (EPT) / Intel VT-x */
2751 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2752 pModeData->uShwType = PGM_TYPE_EPT;
2753 pModeData->uGstType = PGM_TYPE_REAL;
2754 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757
2758 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2759 pModeData->uShwType = PGM_TYPE_EPT;
2760 pModeData->uGstType = PGM_TYPE_PROT;
2761 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2762 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764
2765 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2766 pModeData->uShwType = PGM_TYPE_EPT;
2767 pModeData->uGstType = PGM_TYPE_32BIT;
2768 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2769 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2770 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771
2772 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2773 pModeData->uShwType = PGM_TYPE_EPT;
2774 pModeData->uGstType = PGM_TYPE_PAE;
2775 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2776 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778
2779#ifdef VBOX_WITH_64_BITS_GUESTS
2780 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2781 pModeData->uShwType = PGM_TYPE_EPT;
2782 pModeData->uGstType = PGM_TYPE_AMD64;
2783 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2786#endif
2787 return VINF_SUCCESS;
2788}
2789
2790
2791/**
2792 * Switch to different (or relocated in the relocate case) mode data.
2793 *
2794 * @param pVM The VM handle.
2795 * @param pVCpu The VMCPU to operate on.
2796 * @param enmShw The the shadow paging mode.
2797 * @param enmGst The the guest paging mode.
2798 */
2799static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2800{
2801 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2802
2803 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2804 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2805
2806 /* shadow */
2807 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2808 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2809 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2810 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2811 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2812
2813 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2814 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2815
2816 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2817 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2818
2819
2820 /* guest */
2821 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2822 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2823 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2824 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2825 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2826 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2827 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2828 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2829 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2830 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2831 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2832 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2833
2834 /* both */
2835 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2836 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2837 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2838 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2839 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2840 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2841 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2842#ifdef VBOX_STRICT
2843 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2844#endif
2845 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2846 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2847
2848 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2849 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2850 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2851 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2852 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2853 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2854#ifdef VBOX_STRICT
2855 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2856#endif
2857 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2858 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2859
2860 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2861 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2862 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2863 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2864 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2865 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2866#ifdef VBOX_STRICT
2867 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2868#endif
2869 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2870 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2871}
2872
2873
2874/**
2875 * Calculates the shadow paging mode.
2876 *
2877 * @returns The shadow paging mode.
2878 * @param pVM VM handle.
2879 * @param enmGuestMode The guest mode.
2880 * @param enmHostMode The host mode.
2881 * @param enmShadowMode The current shadow mode.
2882 * @param penmSwitcher Where to store the switcher to use.
2883 * VMMSWITCHER_INVALID means no change.
2884 */
2885static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2886{
2887 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2888 switch (enmGuestMode)
2889 {
2890 /*
2891 * When switching to real or protected mode we don't change
2892 * anything since it's likely that we'll switch back pretty soon.
2893 *
2894 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2895 * and is supposed to determine which shadow paging and switcher to
2896 * use during init.
2897 */
2898 case PGMMODE_REAL:
2899 case PGMMODE_PROTECTED:
2900 if ( enmShadowMode != PGMMODE_INVALID
2901 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2902 break; /* (no change) */
2903
2904 switch (enmHostMode)
2905 {
2906 case SUPPAGINGMODE_32_BIT:
2907 case SUPPAGINGMODE_32_BIT_GLOBAL:
2908 enmShadowMode = PGMMODE_32_BIT;
2909 enmSwitcher = VMMSWITCHER_32_TO_32;
2910 break;
2911
2912 case SUPPAGINGMODE_PAE:
2913 case SUPPAGINGMODE_PAE_NX:
2914 case SUPPAGINGMODE_PAE_GLOBAL:
2915 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2916 enmShadowMode = PGMMODE_PAE;
2917 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2918#ifdef DEBUG_bird
2919 if (RTEnvExist("VBOX_32BIT"))
2920 {
2921 enmShadowMode = PGMMODE_32_BIT;
2922 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2923 }
2924#endif
2925 break;
2926
2927 case SUPPAGINGMODE_AMD64:
2928 case SUPPAGINGMODE_AMD64_GLOBAL:
2929 case SUPPAGINGMODE_AMD64_NX:
2930 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2931 enmShadowMode = PGMMODE_PAE;
2932 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2933#ifdef DEBUG_bird
2934 if (RTEnvExist("VBOX_32BIT"))
2935 {
2936 enmShadowMode = PGMMODE_32_BIT;
2937 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2938 }
2939#endif
2940 break;
2941
2942 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2943 }
2944 break;
2945
2946 case PGMMODE_32_BIT:
2947 switch (enmHostMode)
2948 {
2949 case SUPPAGINGMODE_32_BIT:
2950 case SUPPAGINGMODE_32_BIT_GLOBAL:
2951 enmShadowMode = PGMMODE_32_BIT;
2952 enmSwitcher = VMMSWITCHER_32_TO_32;
2953 break;
2954
2955 case SUPPAGINGMODE_PAE:
2956 case SUPPAGINGMODE_PAE_NX:
2957 case SUPPAGINGMODE_PAE_GLOBAL:
2958 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2959 enmShadowMode = PGMMODE_PAE;
2960 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2961#ifdef DEBUG_bird
2962 if (RTEnvExist("VBOX_32BIT"))
2963 {
2964 enmShadowMode = PGMMODE_32_BIT;
2965 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2966 }
2967#endif
2968 break;
2969
2970 case SUPPAGINGMODE_AMD64:
2971 case SUPPAGINGMODE_AMD64_GLOBAL:
2972 case SUPPAGINGMODE_AMD64_NX:
2973 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2974 enmShadowMode = PGMMODE_PAE;
2975 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2976#ifdef DEBUG_bird
2977 if (RTEnvExist("VBOX_32BIT"))
2978 {
2979 enmShadowMode = PGMMODE_32_BIT;
2980 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2981 }
2982#endif
2983 break;
2984
2985 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2986 }
2987 break;
2988
2989 case PGMMODE_PAE:
2990 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2991 switch (enmHostMode)
2992 {
2993 case SUPPAGINGMODE_32_BIT:
2994 case SUPPAGINGMODE_32_BIT_GLOBAL:
2995 enmShadowMode = PGMMODE_PAE;
2996 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2997 break;
2998
2999 case SUPPAGINGMODE_PAE:
3000 case SUPPAGINGMODE_PAE_NX:
3001 case SUPPAGINGMODE_PAE_GLOBAL:
3002 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3003 enmShadowMode = PGMMODE_PAE;
3004 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3005 break;
3006
3007 case SUPPAGINGMODE_AMD64:
3008 case SUPPAGINGMODE_AMD64_GLOBAL:
3009 case SUPPAGINGMODE_AMD64_NX:
3010 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3011 enmShadowMode = PGMMODE_PAE;
3012 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3013 break;
3014
3015 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3016 }
3017 break;
3018
3019 case PGMMODE_AMD64:
3020 case PGMMODE_AMD64_NX:
3021 switch (enmHostMode)
3022 {
3023 case SUPPAGINGMODE_32_BIT:
3024 case SUPPAGINGMODE_32_BIT_GLOBAL:
3025 enmShadowMode = PGMMODE_AMD64;
3026 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3027 break;
3028
3029 case SUPPAGINGMODE_PAE:
3030 case SUPPAGINGMODE_PAE_NX:
3031 case SUPPAGINGMODE_PAE_GLOBAL:
3032 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3033 enmShadowMode = PGMMODE_AMD64;
3034 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3035 break;
3036
3037 case SUPPAGINGMODE_AMD64:
3038 case SUPPAGINGMODE_AMD64_GLOBAL:
3039 case SUPPAGINGMODE_AMD64_NX:
3040 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3041 enmShadowMode = PGMMODE_AMD64;
3042 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3043 break;
3044
3045 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3046 }
3047 break;
3048
3049
3050 default:
3051 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3052 *penmSwitcher = VMMSWITCHER_INVALID;
3053 return PGMMODE_INVALID;
3054 }
3055 /* Override the shadow mode is nested paging is active. */
3056 if (HWACCMIsNestedPagingActive(pVM))
3057 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3058
3059 *penmSwitcher = enmSwitcher;
3060 return enmShadowMode;
3061}
3062
3063
3064/**
3065 * Performs the actual mode change.
3066 * This is called by PGMChangeMode and pgmR3InitPaging().
3067 *
3068 * @returns VBox status code. May suspend or power off the VM on error, but this
3069 * will trigger using FFs and not status codes.
3070 *
3071 * @param pVM VM handle.
3072 * @param pVCpu The VMCPU to operate on.
3073 * @param enmGuestMode The new guest mode. This is assumed to be different from
3074 * the current mode.
3075 */
3076VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3077{
3078 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3079 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3080
3081 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3082 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3083
3084 /*
3085 * Calc the shadow mode and switcher.
3086 */
3087 VMMSWITCHER enmSwitcher;
3088 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3089
3090#ifdef VBOX_WITH_RAW_MODE
3091 if (enmSwitcher != VMMSWITCHER_INVALID)
3092 {
3093 /*
3094 * Select new switcher.
3095 */
3096 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3097 if (RT_FAILURE(rc))
3098 {
3099 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3100 return rc;
3101 }
3102 }
3103#endif
3104
3105 /*
3106 * Exit old mode(s).
3107 */
3108#if HC_ARCH_BITS == 32
3109 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3110 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3111 && enmShadowMode == PGMMODE_NESTED);
3112#else
3113 const bool fForceShwEnterExit = false;
3114#endif
3115 /* shadow */
3116 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3117 || fForceShwEnterExit)
3118 {
3119 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3120 if (PGM_SHW_PFN(Exit, pVCpu))
3121 {
3122 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3123 if (RT_FAILURE(rc))
3124 {
3125 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3126 return rc;
3127 }
3128 }
3129
3130 }
3131 else
3132 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3133
3134 /* guest */
3135 if (PGM_GST_PFN(Exit, pVCpu))
3136 {
3137 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3138 if (RT_FAILURE(rc))
3139 {
3140 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3141 return rc;
3142 }
3143 }
3144
3145 /*
3146 * Load new paging mode data.
3147 */
3148 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3149
3150 /*
3151 * Enter new shadow mode (if changed).
3152 */
3153 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3154 || fForceShwEnterExit)
3155 {
3156 int rc;
3157 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3158 switch (enmShadowMode)
3159 {
3160 case PGMMODE_32_BIT:
3161 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3162 break;
3163 case PGMMODE_PAE:
3164 case PGMMODE_PAE_NX:
3165 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3166 break;
3167 case PGMMODE_AMD64:
3168 case PGMMODE_AMD64_NX:
3169 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3170 break;
3171 case PGMMODE_NESTED:
3172 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3173 break;
3174 case PGMMODE_EPT:
3175 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3176 break;
3177 case PGMMODE_REAL:
3178 case PGMMODE_PROTECTED:
3179 default:
3180 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3181 return VERR_INTERNAL_ERROR;
3182 }
3183 if (RT_FAILURE(rc))
3184 {
3185 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3186 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3187 return rc;
3188 }
3189 }
3190
3191 /*
3192 * Always flag the necessary updates
3193 */
3194 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3195
3196 /*
3197 * Enter the new guest and shadow+guest modes.
3198 */
3199 int rc = -1;
3200 int rc2 = -1;
3201 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3202 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3203 switch (enmGuestMode)
3204 {
3205 case PGMMODE_REAL:
3206 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3207 switch (pVCpu->pgm.s.enmShadowMode)
3208 {
3209 case PGMMODE_32_BIT:
3210 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3211 break;
3212 case PGMMODE_PAE:
3213 case PGMMODE_PAE_NX:
3214 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3215 break;
3216 case PGMMODE_NESTED:
3217 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3218 break;
3219 case PGMMODE_EPT:
3220 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3221 break;
3222 case PGMMODE_AMD64:
3223 case PGMMODE_AMD64_NX:
3224 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3225 default: AssertFailed(); break;
3226 }
3227 break;
3228
3229 case PGMMODE_PROTECTED:
3230 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3231 switch (pVCpu->pgm.s.enmShadowMode)
3232 {
3233 case PGMMODE_32_BIT:
3234 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3235 break;
3236 case PGMMODE_PAE:
3237 case PGMMODE_PAE_NX:
3238 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3239 break;
3240 case PGMMODE_NESTED:
3241 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3242 break;
3243 case PGMMODE_EPT:
3244 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3245 break;
3246 case PGMMODE_AMD64:
3247 case PGMMODE_AMD64_NX:
3248 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3249 default: AssertFailed(); break;
3250 }
3251 break;
3252
3253 case PGMMODE_32_BIT:
3254 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3255 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3256 switch (pVCpu->pgm.s.enmShadowMode)
3257 {
3258 case PGMMODE_32_BIT:
3259 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3260 break;
3261 case PGMMODE_PAE:
3262 case PGMMODE_PAE_NX:
3263 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3264 break;
3265 case PGMMODE_NESTED:
3266 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3267 break;
3268 case PGMMODE_EPT:
3269 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3270 break;
3271 case PGMMODE_AMD64:
3272 case PGMMODE_AMD64_NX:
3273 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3274 default: AssertFailed(); break;
3275 }
3276 break;
3277
3278 case PGMMODE_PAE_NX:
3279 case PGMMODE_PAE:
3280 {
3281 uint32_t u32Dummy, u32Features;
3282
3283 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3284 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3285 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3286 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3287
3288 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3289 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3290 switch (pVCpu->pgm.s.enmShadowMode)
3291 {
3292 case PGMMODE_PAE:
3293 case PGMMODE_PAE_NX:
3294 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3295 break;
3296 case PGMMODE_NESTED:
3297 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3298 break;
3299 case PGMMODE_EPT:
3300 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3301 break;
3302 case PGMMODE_32_BIT:
3303 case PGMMODE_AMD64:
3304 case PGMMODE_AMD64_NX:
3305 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3306 default: AssertFailed(); break;
3307 }
3308 break;
3309 }
3310
3311#ifdef VBOX_WITH_64_BITS_GUESTS
3312 case PGMMODE_AMD64_NX:
3313 case PGMMODE_AMD64:
3314 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3315 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3316 switch (pVCpu->pgm.s.enmShadowMode)
3317 {
3318 case PGMMODE_AMD64:
3319 case PGMMODE_AMD64_NX:
3320 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3321 break;
3322 case PGMMODE_NESTED:
3323 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3324 break;
3325 case PGMMODE_EPT:
3326 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3327 break;
3328 case PGMMODE_32_BIT:
3329 case PGMMODE_PAE:
3330 case PGMMODE_PAE_NX:
3331 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3332 default: AssertFailed(); break;
3333 }
3334 break;
3335#endif
3336
3337 default:
3338 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3339 rc = VERR_NOT_IMPLEMENTED;
3340 break;
3341 }
3342
3343 /* status codes. */
3344 AssertRC(rc);
3345 AssertRC(rc2);
3346 if (RT_SUCCESS(rc))
3347 {
3348 rc = rc2;
3349 if (RT_SUCCESS(rc)) /* no informational status codes. */
3350 rc = VINF_SUCCESS;
3351 }
3352
3353 /* Notify HWACCM as well. */
3354 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3355 return rc;
3356}
3357
3358
3359/**
3360 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3361 *
3362 * @returns VBox status code, fully asserted.
3363 * @param pVM The VM handle.
3364 * @param pVCpu The VMCPU to operate on.
3365 */
3366int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3367{
3368 /* Unmap the old CR3 value before flushing everything. */
3369 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3370 AssertRC(rc);
3371
3372 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3373 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3374 AssertRC(rc);
3375 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3376 return rc;
3377}
3378
3379
3380/**
3381 * Called by pgmPoolFlushAllInt after flushing the pool.
3382 *
3383 * @returns VBox status code, fully asserted.
3384 * @param pVM The VM handle.
3385 * @param pVCpu The VMCPU to operate on.
3386 */
3387int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3388{
3389 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3390 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3391 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3392 AssertRCReturn(rc, rc);
3393 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3394
3395 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3396 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3397 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3398 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3399 return rc;
3400}
3401
3402
3403/**
3404 * Dumps a PAE shadow page table.
3405 *
3406 * @returns VBox status code (VINF_SUCCESS).
3407 * @param pVM The VM handle.
3408 * @param pPT Pointer to the page table.
3409 * @param u64Address The virtual address of the page table starts.
3410 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3411 * @param cMaxDepth The maxium depth.
3412 * @param pHlp Pointer to the output functions.
3413 */
3414static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3415{
3416 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3417 {
3418 X86PTEPAE Pte = pPT->a[i];
3419 if (Pte.n.u1Present)
3420 {
3421 pHlp->pfnPrintf(pHlp,
3422 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3423 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3424 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3425 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3426 Pte.n.u1Write ? 'W' : 'R',
3427 Pte.n.u1User ? 'U' : 'S',
3428 Pte.n.u1Accessed ? 'A' : '-',
3429 Pte.n.u1Dirty ? 'D' : '-',
3430 Pte.n.u1Global ? 'G' : '-',
3431 Pte.n.u1WriteThru ? "WT" : "--",
3432 Pte.n.u1CacheDisable? "CD" : "--",
3433 Pte.n.u1PAT ? "AT" : "--",
3434 Pte.n.u1NoExecute ? "NX" : "--",
3435 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3436 Pte.u & RT_BIT(10) ? '1' : '0',
3437 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3438 Pte.u & X86_PTE_PAE_PG_MASK);
3439 }
3440 }
3441 return VINF_SUCCESS;
3442}
3443
3444
3445/**
3446 * Dumps a PAE shadow page directory table.
3447 *
3448 * @returns VBox status code (VINF_SUCCESS).
3449 * @param pVM The VM handle.
3450 * @param HCPhys The physical address of the page directory table.
3451 * @param u64Address The virtual address of the page table starts.
3452 * @param cr4 The CR4, PSE is currently used.
3453 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3454 * @param cMaxDepth The maxium depth.
3455 * @param pHlp Pointer to the output functions.
3456 */
3457static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3458{
3459 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3460 if (!pPD)
3461 {
3462 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3463 fLongMode ? 16 : 8, u64Address, HCPhys);
3464 return VERR_INVALID_PARAMETER;
3465 }
3466 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3467
3468 int rc = VINF_SUCCESS;
3469 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3470 {
3471 X86PDEPAE Pde = pPD->a[i];
3472 if (Pde.n.u1Present)
3473 {
3474 if (fBigPagesSupported && Pde.b.u1Size)
3475 pHlp->pfnPrintf(pHlp,
3476 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3477 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3478 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3479 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3480 Pde.b.u1Write ? 'W' : 'R',
3481 Pde.b.u1User ? 'U' : 'S',
3482 Pde.b.u1Accessed ? 'A' : '-',
3483 Pde.b.u1Dirty ? 'D' : '-',
3484 Pde.b.u1Global ? 'G' : '-',
3485 Pde.b.u1WriteThru ? "WT" : "--",
3486 Pde.b.u1CacheDisable? "CD" : "--",
3487 Pde.b.u1PAT ? "AT" : "--",
3488 Pde.b.u1NoExecute ? "NX" : "--",
3489 Pde.u & RT_BIT_64(9) ? '1' : '0',
3490 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3491 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3492 Pde.u & X86_PDE_PAE_PG_MASK);
3493 else
3494 {
3495 pHlp->pfnPrintf(pHlp,
3496 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3497 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3498 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3499 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3500 Pde.n.u1Write ? 'W' : 'R',
3501 Pde.n.u1User ? 'U' : 'S',
3502 Pde.n.u1Accessed ? 'A' : '-',
3503 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3504 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3505 Pde.n.u1WriteThru ? "WT" : "--",
3506 Pde.n.u1CacheDisable? "CD" : "--",
3507 Pde.n.u1NoExecute ? "NX" : "--",
3508 Pde.u & RT_BIT_64(9) ? '1' : '0',
3509 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3510 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3511 Pde.u & X86_PDE_PAE_PG_MASK);
3512 if (cMaxDepth >= 1)
3513 {
3514 /** @todo what about using the page pool for mapping PTs? */
3515 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3516 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3517 PX86PTPAE pPT = NULL;
3518 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3519 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3520 else
3521 {
3522 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3523 {
3524 uint64_t off = u64AddressPT - pMap->GCPtr;
3525 if (off < pMap->cb)
3526 {
3527 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3528 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3529 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3530 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3531 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3532 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3533 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3534 }
3535 }
3536 }
3537 int rc2 = VERR_INVALID_PARAMETER;
3538 if (pPT)
3539 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3540 else
3541 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3542 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3543 if (rc2 < rc && RT_SUCCESS(rc))
3544 rc = rc2;
3545 }
3546 }
3547 }
3548 }
3549 return rc;
3550}
3551
3552
3553/**
3554 * Dumps a PAE shadow page directory pointer table.
3555 *
3556 * @returns VBox status code (VINF_SUCCESS).
3557 * @param pVM The VM handle.
3558 * @param HCPhys The physical address of the page directory pointer table.
3559 * @param u64Address The virtual address of the page table starts.
3560 * @param cr4 The CR4, PSE is currently used.
3561 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3562 * @param cMaxDepth The maxium depth.
3563 * @param pHlp Pointer to the output functions.
3564 */
3565static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3566{
3567 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3568 if (!pPDPT)
3569 {
3570 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3571 fLongMode ? 16 : 8, u64Address, HCPhys);
3572 return VERR_INVALID_PARAMETER;
3573 }
3574
3575 int rc = VINF_SUCCESS;
3576 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3577 for (unsigned i = 0; i < c; i++)
3578 {
3579 X86PDPE Pdpe = pPDPT->a[i];
3580 if (Pdpe.n.u1Present)
3581 {
3582 if (fLongMode)
3583 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3584 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3585 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3586 Pdpe.lm.u1Write ? 'W' : 'R',
3587 Pdpe.lm.u1User ? 'U' : 'S',
3588 Pdpe.lm.u1Accessed ? 'A' : '-',
3589 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3590 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3591 Pdpe.lm.u1WriteThru ? "WT" : "--",
3592 Pdpe.lm.u1CacheDisable? "CD" : "--",
3593 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3594 Pdpe.lm.u1NoExecute ? "NX" : "--",
3595 Pdpe.u & RT_BIT(9) ? '1' : '0',
3596 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3597 Pdpe.u & RT_BIT(11) ? '1' : '0',
3598 Pdpe.u & X86_PDPE_PG_MASK);
3599 else
3600 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3601 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3602 i << X86_PDPT_SHIFT,
3603 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3604 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3605 Pdpe.n.u1WriteThru ? "WT" : "--",
3606 Pdpe.n.u1CacheDisable? "CD" : "--",
3607 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3608 Pdpe.u & RT_BIT(9) ? '1' : '0',
3609 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3610 Pdpe.u & RT_BIT(11) ? '1' : '0',
3611 Pdpe.u & X86_PDPE_PG_MASK);
3612 if (cMaxDepth >= 1)
3613 {
3614 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3615 cr4, fLongMode, cMaxDepth - 1, pHlp);
3616 if (rc2 < rc && RT_SUCCESS(rc))
3617 rc = rc2;
3618 }
3619 }
3620 }
3621 return rc;
3622}
3623
3624
3625/**
3626 * Dumps a 32-bit shadow page table.
3627 *
3628 * @returns VBox status code (VINF_SUCCESS).
3629 * @param pVM The VM handle.
3630 * @param HCPhys The physical address of the table.
3631 * @param cr4 The CR4, PSE is currently used.
3632 * @param cMaxDepth The maxium depth.
3633 * @param pHlp Pointer to the output functions.
3634 */
3635static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3636{
3637 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3638 if (!pPML4)
3639 {
3640 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3641 return VERR_INVALID_PARAMETER;
3642 }
3643
3644 int rc = VINF_SUCCESS;
3645 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3646 {
3647 X86PML4E Pml4e = pPML4->a[i];
3648 if (Pml4e.n.u1Present)
3649 {
3650 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3651 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3652 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3653 u64Address,
3654 Pml4e.n.u1Write ? 'W' : 'R',
3655 Pml4e.n.u1User ? 'U' : 'S',
3656 Pml4e.n.u1Accessed ? 'A' : '-',
3657 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3658 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3659 Pml4e.n.u1WriteThru ? "WT" : "--",
3660 Pml4e.n.u1CacheDisable? "CD" : "--",
3661 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3662 Pml4e.n.u1NoExecute ? "NX" : "--",
3663 Pml4e.u & RT_BIT(9) ? '1' : '0',
3664 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3665 Pml4e.u & RT_BIT(11) ? '1' : '0',
3666 Pml4e.u & X86_PML4E_PG_MASK);
3667
3668 if (cMaxDepth >= 1)
3669 {
3670 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3671 if (rc2 < rc && RT_SUCCESS(rc))
3672 rc = rc2;
3673 }
3674 }
3675 }
3676 return rc;
3677}
3678
3679
3680/**
3681 * Dumps a 32-bit shadow page table.
3682 *
3683 * @returns VBox status code (VINF_SUCCESS).
3684 * @param pVM The VM handle.
3685 * @param pPT Pointer to the page table.
3686 * @param u32Address The virtual address this table starts at.
3687 * @param pHlp Pointer to the output functions.
3688 */
3689int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3690{
3691 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3692 {
3693 X86PTE Pte = pPT->a[i];
3694 if (Pte.n.u1Present)
3695 {
3696 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3697 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3698 u32Address + (i << X86_PT_SHIFT),
3699 Pte.n.u1Write ? 'W' : 'R',
3700 Pte.n.u1User ? 'U' : 'S',
3701 Pte.n.u1Accessed ? 'A' : '-',
3702 Pte.n.u1Dirty ? 'D' : '-',
3703 Pte.n.u1Global ? 'G' : '-',
3704 Pte.n.u1WriteThru ? "WT" : "--",
3705 Pte.n.u1CacheDisable? "CD" : "--",
3706 Pte.n.u1PAT ? "AT" : "--",
3707 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3708 Pte.u & RT_BIT(10) ? '1' : '0',
3709 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3710 Pte.u & X86_PDE_PG_MASK);
3711 }
3712 }
3713 return VINF_SUCCESS;
3714}
3715
3716
3717/**
3718 * Dumps a 32-bit shadow page directory and page tables.
3719 *
3720 * @returns VBox status code (VINF_SUCCESS).
3721 * @param pVM The VM handle.
3722 * @param cr3 The root of the hierarchy.
3723 * @param cr4 The CR4, PSE is currently used.
3724 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3725 * @param pHlp Pointer to the output functions.
3726 */
3727int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3728{
3729 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3730 if (!pPD)
3731 {
3732 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3733 return VERR_INVALID_PARAMETER;
3734 }
3735
3736 int rc = VINF_SUCCESS;
3737 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3738 {
3739 X86PDE Pde = pPD->a[i];
3740 if (Pde.n.u1Present)
3741 {
3742 const uint32_t u32Address = i << X86_PD_SHIFT;
3743 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3744 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3745 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3746 u32Address,
3747 Pde.b.u1Write ? 'W' : 'R',
3748 Pde.b.u1User ? 'U' : 'S',
3749 Pde.b.u1Accessed ? 'A' : '-',
3750 Pde.b.u1Dirty ? 'D' : '-',
3751 Pde.b.u1Global ? 'G' : '-',
3752 Pde.b.u1WriteThru ? "WT" : "--",
3753 Pde.b.u1CacheDisable? "CD" : "--",
3754 Pde.b.u1PAT ? "AT" : "--",
3755 Pde.u & RT_BIT_64(9) ? '1' : '0',
3756 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3757 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3758 Pde.u & X86_PDE4M_PG_MASK);
3759 else
3760 {
3761 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3762 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3763 u32Address,
3764 Pde.n.u1Write ? 'W' : 'R',
3765 Pde.n.u1User ? 'U' : 'S',
3766 Pde.n.u1Accessed ? 'A' : '-',
3767 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3768 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3769 Pde.n.u1WriteThru ? "WT" : "--",
3770 Pde.n.u1CacheDisable? "CD" : "--",
3771 Pde.u & RT_BIT_64(9) ? '1' : '0',
3772 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3773 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3774 Pde.u & X86_PDE_PG_MASK);
3775 if (cMaxDepth >= 1)
3776 {
3777 /** @todo what about using the page pool for mapping PTs? */
3778 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3779 PX86PT pPT = NULL;
3780 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3781 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3782 else
3783 {
3784 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3785 if (u32Address - pMap->GCPtr < pMap->cb)
3786 {
3787 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3788 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3789 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3790 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3791 pPT = pMap->aPTs[iPDE].pPTR3;
3792 }
3793 }
3794 int rc2 = VERR_INVALID_PARAMETER;
3795 if (pPT)
3796 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3797 else
3798 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3799 if (rc2 < rc && RT_SUCCESS(rc))
3800 rc = rc2;
3801 }
3802 }
3803 }
3804 }
3805
3806 return rc;
3807}
3808
3809
3810/**
3811 * Dumps a 32-bit shadow page table.
3812 *
3813 * @returns VBox status code (VINF_SUCCESS).
3814 * @param pVM The VM handle.
3815 * @param pPT Pointer to the page table.
3816 * @param u32Address The virtual address this table starts at.
3817 * @param PhysSearch Address to search for.
3818 */
3819int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3820{
3821 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3822 {
3823 X86PTE Pte = pPT->a[i];
3824 if (Pte.n.u1Present)
3825 {
3826 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3827 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3828 u32Address + (i << X86_PT_SHIFT),
3829 Pte.n.u1Write ? 'W' : 'R',
3830 Pte.n.u1User ? 'U' : 'S',
3831 Pte.n.u1Accessed ? 'A' : '-',
3832 Pte.n.u1Dirty ? 'D' : '-',
3833 Pte.n.u1Global ? 'G' : '-',
3834 Pte.n.u1WriteThru ? "WT" : "--",
3835 Pte.n.u1CacheDisable? "CD" : "--",
3836 Pte.n.u1PAT ? "AT" : "--",
3837 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3838 Pte.u & RT_BIT(10) ? '1' : '0',
3839 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3840 Pte.u & X86_PDE_PG_MASK));
3841
3842 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3843 {
3844 uint64_t fPageShw = 0;
3845 RTHCPHYS pPhysHC = 0;
3846
3847 /** @todo SMP support!! */
3848 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3849 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3850 }
3851 }
3852 }
3853 return VINF_SUCCESS;
3854}
3855
3856
3857/**
3858 * Dumps a 32-bit guest page directory and page tables.
3859 *
3860 * @returns VBox status code (VINF_SUCCESS).
3861 * @param pVM The VM handle.
3862 * @param cr3 The root of the hierarchy.
3863 * @param cr4 The CR4, PSE is currently used.
3864 * @param PhysSearch Address to search for.
3865 */
3866VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3867{
3868 bool fLongMode = false;
3869 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3870 PX86PD pPD = 0;
3871 PGMPAGEMAPLOCK LockCr3;
3872
3873 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, cr3 & X86_CR3_PAGE_MASK, (const void **)&pPD, &LockCr3);
3874 if ( RT_FAILURE(rc)
3875 || !pPD)
3876 {
3877 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3878 return VERR_INVALID_PARAMETER;
3879 }
3880
3881 Log(("cr3=%08x cr4=%08x%s\n"
3882 "%-*s P - Present\n"
3883 "%-*s | R/W - Read (0) / Write (1)\n"
3884 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3885 "%-*s | | | A - Accessed\n"
3886 "%-*s | | | | D - Dirty\n"
3887 "%-*s | | | | | G - Global\n"
3888 "%-*s | | | | | | WT - Write thru\n"
3889 "%-*s | | | | | | | CD - Cache disable\n"
3890 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3891 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3892 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3893 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3894 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3895 "%-*s Level | | | | | | | | | | | | Page\n"
3896 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3897 - W U - - - -- -- -- -- -- 010 */
3898 , cr3, cr4, fLongMode ? " Long Mode" : "",
3899 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3900 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3901
3902 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3903 {
3904 X86PDE Pde = pPD->a[i];
3905 if (Pde.n.u1Present)
3906 {
3907 const uint32_t u32Address = i << X86_PD_SHIFT;
3908
3909 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3910 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3911 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3912 u32Address,
3913 Pde.b.u1Write ? 'W' : 'R',
3914 Pde.b.u1User ? 'U' : 'S',
3915 Pde.b.u1Accessed ? 'A' : '-',
3916 Pde.b.u1Dirty ? 'D' : '-',
3917 Pde.b.u1Global ? 'G' : '-',
3918 Pde.b.u1WriteThru ? "WT" : "--",
3919 Pde.b.u1CacheDisable? "CD" : "--",
3920 Pde.b.u1PAT ? "AT" : "--",
3921 Pde.u & RT_BIT(9) ? '1' : '0',
3922 Pde.u & RT_BIT(10) ? '1' : '0',
3923 Pde.u & RT_BIT(11) ? '1' : '0',
3924 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3925 /** @todo PhysSearch */
3926 else
3927 {
3928 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3929 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3930 u32Address,
3931 Pde.n.u1Write ? 'W' : 'R',
3932 Pde.n.u1User ? 'U' : 'S',
3933 Pde.n.u1Accessed ? 'A' : '-',
3934 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3935 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3936 Pde.n.u1WriteThru ? "WT" : "--",
3937 Pde.n.u1CacheDisable? "CD" : "--",
3938 Pde.u & RT_BIT(9) ? '1' : '0',
3939 Pde.u & RT_BIT(10) ? '1' : '0',
3940 Pde.u & RT_BIT(11) ? '1' : '0',
3941 Pde.u & X86_PDE_PG_MASK));
3942 ////if (cMaxDepth >= 1)
3943 {
3944 /** @todo what about using the page pool for mapping PTs? */
3945 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3946 PX86PT pPT = NULL;
3947 PGMPAGEMAPLOCK LockPT;
3948
3949 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, (const void **)&pPT, &LockPT);
3950
3951 int rc2 = VERR_INVALID_PARAMETER;
3952 if (pPT)
3953 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3954 else
3955 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3956
3957 if (rc == VINF_SUCCESS)
3958 PGMPhysReleasePageMappingLock(pVM, &LockPT);
3959
3960 if (rc2 < rc && RT_SUCCESS(rc))
3961 rc = rc2;
3962 }
3963 }
3964 }
3965 }
3966 PGMPhysReleasePageMappingLock(pVM, &LockCr3);
3967 return rc;
3968}
3969
3970
3971/**
3972 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3973 *
3974 * @returns VBox status code (VINF_SUCCESS).
3975 * @param pVM The VM handle.
3976 * @param cr3 The root of the hierarchy.
3977 * @param cr4 The cr4, only PAE and PSE is currently used.
3978 * @param fLongMode Set if long mode, false if not long mode.
3979 * @param cMaxDepth Number of levels to dump.
3980 * @param pHlp Pointer to the output functions.
3981 */
3982VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3983{
3984 if (!pHlp)
3985 pHlp = DBGFR3InfoLogHlp();
3986 if (!cMaxDepth)
3987 return VINF_SUCCESS;
3988 const unsigned cch = fLongMode ? 16 : 8;
3989 pHlp->pfnPrintf(pHlp,
3990 "cr3=%08x cr4=%08x%s\n"
3991 "%-*s P - Present\n"
3992 "%-*s | R/W - Read (0) / Write (1)\n"
3993 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3994 "%-*s | | | A - Accessed\n"
3995 "%-*s | | | | D - Dirty\n"
3996 "%-*s | | | | | G - Global\n"
3997 "%-*s | | | | | | WT - Write thru\n"
3998 "%-*s | | | | | | | CD - Cache disable\n"
3999 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4000 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4001 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4002 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4003 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4004 "%-*s Level | | | | | | | | | | | | Page\n"
4005 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4006 - W U - - - -- -- -- -- -- 010 */
4007 , cr3, cr4, fLongMode ? " Long Mode" : "",
4008 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4009 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4010 if (cr4 & X86_CR4_PAE)
4011 {
4012 if (fLongMode)
4013 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4014 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4015 }
4016 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4017}
4018
4019#ifdef VBOX_WITH_DEBUGGER
4020
4021/**
4022 * The '.pgmram' command.
4023 *
4024 * @returns VBox status.
4025 * @param pCmd Pointer to the command descriptor (as registered).
4026 * @param pCmdHlp Pointer to command helper functions.
4027 * @param pVM Pointer to the current VM (if any).
4028 * @param paArgs Pointer to (readonly) array of arguments.
4029 * @param cArgs Number of arguments in the array.
4030 */
4031static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4032{
4033 /*
4034 * Validate input.
4035 */
4036 if (!pVM)
4037 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4038 if (!pVM->pgm.s.pRamRangesRC)
4039 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4040
4041 /*
4042 * Dump the ranges.
4043 */
4044 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4045 PPGMRAMRANGE pRam;
4046 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4047 {
4048 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4049 "%RGp - %RGp %p\n",
4050 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4051 if (RT_FAILURE(rc))
4052 return rc;
4053 }
4054
4055 return VINF_SUCCESS;
4056}
4057
4058
4059/**
4060 * The '.pgmerror' and '.pgmerroroff' commands.
4061 *
4062 * @returns VBox status.
4063 * @param pCmd Pointer to the command descriptor (as registered).
4064 * @param pCmdHlp Pointer to command helper functions.
4065 * @param pVM Pointer to the current VM (if any).
4066 * @param paArgs Pointer to (readonly) array of arguments.
4067 * @param cArgs Number of arguments in the array.
4068 */
4069static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4070{
4071 /*
4072 * Validate input.
4073 */
4074 if (!pVM)
4075 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4076 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4077 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4078
4079 if (!cArgs)
4080 {
4081 /*
4082 * Print the list of error injection locations with status.
4083 */
4084 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4085 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4086 }
4087 else
4088 {
4089
4090 /*
4091 * String switch on where to inject the error.
4092 */
4093 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4094 const char *pszWhere = paArgs[0].u.pszString;
4095 if (!strcmp(pszWhere, "handy"))
4096 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4097 else
4098 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4099 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4100 }
4101 return VINF_SUCCESS;
4102}
4103
4104
4105/**
4106 * The '.pgmsync' command.
4107 *
4108 * @returns VBox status.
4109 * @param pCmd Pointer to the command descriptor (as registered).
4110 * @param pCmdHlp Pointer to command helper functions.
4111 * @param pVM Pointer to the current VM (if any).
4112 * @param paArgs Pointer to (readonly) array of arguments.
4113 * @param cArgs Number of arguments in the array.
4114 */
4115static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4116{
4117 /** @todo SMP support */
4118 PVMCPU pVCpu = &pVM->aCpus[0];
4119
4120 /*
4121 * Validate input.
4122 */
4123 if (!pVM)
4124 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4125
4126 /*
4127 * Force page directory sync.
4128 */
4129 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4130
4131 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4132 if (RT_FAILURE(rc))
4133 return rc;
4134
4135 return VINF_SUCCESS;
4136}
4137
4138
4139#ifdef VBOX_STRICT
4140/**
4141 * The '.pgmassertcr3' command.
4142 *
4143 * @returns VBox status.
4144 * @param pCmd Pointer to the command descriptor (as registered).
4145 * @param pCmdHlp Pointer to command helper functions.
4146 * @param pVM Pointer to the current VM (if any).
4147 * @param paArgs Pointer to (readonly) array of arguments.
4148 * @param cArgs Number of arguments in the array.
4149 */
4150static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4151{
4152 /** @todo SMP support!! */
4153 PVMCPU pVCpu = &pVM->aCpus[0];
4154
4155 /*
4156 * Validate input.
4157 */
4158 if (!pVM)
4159 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4160
4161 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4162 if (RT_FAILURE(rc))
4163 return rc;
4164
4165 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4166
4167 return VINF_SUCCESS;
4168}
4169#endif /* VBOX_STRICT */
4170
4171#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
4172/**
4173 * The '.pgmcheckduppages' command.
4174 *
4175 * @returns VBox status.
4176 * @param pCmd Pointer to the command descriptor (as registered).
4177 * @param pCmdHlp Pointer to command helper functions.
4178 * @param pVM Pointer to the current VM (if any).
4179 * @param paArgs Pointer to (readonly) array of arguments.
4180 * @param cArgs Number of arguments in the array.
4181 */
4182static DECLCALLBACK(int) pgmR3CmdCheckDuplicatePages(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4183{
4184 unsigned cBallooned = 0;
4185 unsigned cShared = 0;
4186 unsigned cZero = 0;
4187 unsigned cUnique = 0;
4188 unsigned cDuplicate = 0;
4189
4190 pgmLock(pVM);
4191
4192 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4193 {
4194 PPGMPAGE pPage = &pRam->aPages[0];
4195 RTGCPHYS GCPhys = pRam->GCPhys;
4196 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
4197 while (cLeft-- > 0)
4198 {
4199 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
4200 {
4201 switch (PGM_PAGE_GET_STATE(pPage))
4202 {
4203 case PGM_PAGE_STATE_ZERO:
4204 cZero++;
4205 break;
4206
4207 case PGM_PAGE_STATE_BALLOONED:
4208 cBallooned++;
4209 break;
4210
4211 case PGM_PAGE_STATE_SHARED:
4212 cShared++;
4213 break;
4214
4215 case PGM_PAGE_STATE_ALLOCATED:
4216 case PGM_PAGE_STATE_WRITE_MONITORED:
4217 if (GMMR3IsDuplicatePage(pVM, PGM_PAGE_GET_PAGEID(pPage)))
4218 cDuplicate++;
4219 else
4220 cUnique++;
4221
4222 break;
4223
4224 default:
4225 AssertFailed();
4226 break;
4227 }
4228 }
4229
4230 /* next */
4231 pPage++;
4232 GCPhys += PAGE_SIZE;
4233 }
4234 }
4235 pgmUnlock(pVM);
4236
4237 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Number of zero pages %x\n", cZero);
4238 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Number of ballooned pages %x\n", cBallooned);
4239 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Number of shared pages %x\n", cShared);
4240 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Number of unique pages %x\n", cUnique);
4241 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Number of duplicate pages %x\n", cDuplicate);
4242 return VINF_SUCCESS;
4243}
4244
4245#endif /* VBOX_STRICT && HC_ARCH_BITS == 64*/
4246
4247
4248/**
4249 * The '.pgmsyncalways' command.
4250 *
4251 * @returns VBox status.
4252 * @param pCmd Pointer to the command descriptor (as registered).
4253 * @param pCmdHlp Pointer to command helper functions.
4254 * @param pVM Pointer to the current VM (if any).
4255 * @param paArgs Pointer to (readonly) array of arguments.
4256 * @param cArgs Number of arguments in the array.
4257 */
4258static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4259{
4260 /** @todo SMP support!! */
4261 PVMCPU pVCpu = &pVM->aCpus[0];
4262
4263 /*
4264 * Validate input.
4265 */
4266 if (!pVM)
4267 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4268
4269 /*
4270 * Force page directory sync.
4271 */
4272 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4273 {
4274 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4275 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4276 }
4277 else
4278 {
4279 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4280 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4281 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4282 }
4283}
4284
4285
4286/**
4287 * The '.pgmsyncalways' command.
4288 *
4289 * @returns VBox status.
4290 * @param pCmd Pointer to the command descriptor (as registered).
4291 * @param pCmdHlp Pointer to command helper functions.
4292 * @param pVM Pointer to the current VM (if any).
4293 * @param paArgs Pointer to (readonly) array of arguments.
4294 * @param cArgs Number of arguments in the array.
4295 */
4296static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4297{
4298 /*
4299 * Validate input.
4300 */
4301 if (!pVM)
4302 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4303 if ( cArgs < 1
4304 || cArgs > 2
4305 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4306 || ( cArgs > 1
4307 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4308 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4309 if ( cArgs >= 2
4310 && strcmp(paArgs[1].u.pszString, "nozero"))
4311 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4312 bool fIncZeroPgs = cArgs < 2;
4313
4314 /*
4315 * Open the output file and get the ram parameters.
4316 */
4317 RTFILE hFile;
4318 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4319 if (RT_FAILURE(rc))
4320 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4321
4322 uint32_t cbRamHole = 0;
4323 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4324 uint64_t cbRam = 0;
4325 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4326 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4327
4328 /*
4329 * Dump the physical memory, page by page.
4330 */
4331 RTGCPHYS GCPhys = 0;
4332 char abZeroPg[PAGE_SIZE];
4333 RT_ZERO(abZeroPg);
4334
4335 pgmLock(pVM);
4336 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4337 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4338 pRam = pRam->pNextR3)
4339 {
4340 /* fill the gap */
4341 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4342 {
4343 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4344 {
4345 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4346 GCPhys += PAGE_SIZE;
4347 }
4348 }
4349
4350 PCPGMPAGE pPage = &pRam->aPages[0];
4351 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4352 {
4353 if ( PGM_PAGE_IS_ZERO(pPage)
4354 || PGM_PAGE_IS_BALLOONED(pPage))
4355 {
4356 if (fIncZeroPgs)
4357 {
4358 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4359 if (RT_FAILURE(rc))
4360 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4361 }
4362 }
4363 else
4364 {
4365 switch (PGM_PAGE_GET_TYPE(pPage))
4366 {
4367 case PGMPAGETYPE_RAM:
4368 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4369 case PGMPAGETYPE_ROM:
4370 case PGMPAGETYPE_MMIO2:
4371 {
4372 void const *pvPage;
4373 PGMPAGEMAPLOCK Lock;
4374 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4375 if (RT_SUCCESS(rc))
4376 {
4377 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4378 PGMPhysReleasePageMappingLock(pVM, &Lock);
4379 if (RT_FAILURE(rc))
4380 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4381 }
4382 else
4383 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4384 break;
4385 }
4386
4387 default:
4388 AssertFailed();
4389 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4390 case PGMPAGETYPE_MMIO:
4391 if (fIncZeroPgs)
4392 {
4393 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4394 if (RT_FAILURE(rc))
4395 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4396 }
4397 break;
4398 }
4399 }
4400
4401
4402 /* advance */
4403 GCPhys += PAGE_SIZE;
4404 pPage++;
4405 }
4406 }
4407 pgmUnlock(pVM);
4408
4409 RTFileClose(hFile);
4410 if (RT_SUCCESS(rc))
4411 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4412 return VINF_SUCCESS;
4413}
4414
4415#endif /* VBOX_WITH_DEBUGGER */
4416
4417/**
4418 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4419 */
4420typedef struct PGMCHECKINTARGS
4421{
4422 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4423 PPGMPHYSHANDLER pPrevPhys;
4424 PPGMVIRTHANDLER pPrevVirt;
4425 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4426 PVM pVM;
4427} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4428
4429/**
4430 * Validate a node in the physical handler tree.
4431 *
4432 * @returns 0 on if ok, other wise 1.
4433 * @param pNode The handler node.
4434 * @param pvUser pVM.
4435 */
4436static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4437{
4438 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4439 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4440 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4441 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4442 AssertReleaseMsg( !pArgs->pPrevPhys
4443 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4444 ("pPrevPhys=%p %RGp-%RGp %s\n"
4445 " pCur=%p %RGp-%RGp %s\n",
4446 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4447 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4448 pArgs->pPrevPhys = pCur;
4449 return 0;
4450}
4451
4452
4453/**
4454 * Validate a node in the virtual handler tree.
4455 *
4456 * @returns 0 on if ok, other wise 1.
4457 * @param pNode The handler node.
4458 * @param pvUser pVM.
4459 */
4460static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4461{
4462 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4463 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4464 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4465 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4466 AssertReleaseMsg( !pArgs->pPrevVirt
4467 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4468 ("pPrevVirt=%p %RGv-%RGv %s\n"
4469 " pCur=%p %RGv-%RGv %s\n",
4470 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4471 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4472 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4473 {
4474 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4475 ("pCur=%p %RGv-%RGv %s\n"
4476 "iPage=%d offVirtHandle=%#x expected %#x\n",
4477 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4478 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4479 }
4480 pArgs->pPrevVirt = pCur;
4481 return 0;
4482}
4483
4484
4485/**
4486 * Validate a node in the virtual handler tree.
4487 *
4488 * @returns 0 on if ok, other wise 1.
4489 * @param pNode The handler node.
4490 * @param pvUser pVM.
4491 */
4492static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4493{
4494 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4495 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4496 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4497 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4498 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4499 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4500 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4501 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4502 " pCur=%p %RGp-%RGp\n",
4503 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4504 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4505 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4506 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4507 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4508 " pCur=%p %RGp-%RGp\n",
4509 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4510 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4511 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4512 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4513 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4514 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4515 {
4516 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4517 for (;;)
4518 {
4519 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4520 AssertReleaseMsg(pCur2 != pCur,
4521 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4522 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4523 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4524 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4525 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4526 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4527 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4528 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4529 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4530 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4531 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4532 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4533 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4534 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4535 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4536 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4537 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4538 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4539 break;
4540 }
4541 }
4542
4543 pArgs->pPrevPhys2Virt = pCur;
4544 return 0;
4545}
4546
4547
4548/**
4549 * Perform an integrity check on the PGM component.
4550 *
4551 * @returns VINF_SUCCESS if everything is fine.
4552 * @returns VBox error status after asserting on integrity breach.
4553 * @param pVM The VM handle.
4554 */
4555VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4556{
4557 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4558
4559 /*
4560 * Check the trees.
4561 */
4562 int cErrors = 0;
4563 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4564 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4565 PGMCHECKINTARGS Args = s_LeftToRight;
4566 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4567 Args = s_RightToLeft;
4568 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4569 Args = s_LeftToRight;
4570 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4571 Args = s_RightToLeft;
4572 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4573 Args = s_LeftToRight;
4574 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4575 Args = s_RightToLeft;
4576 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4577 Args = s_LeftToRight;
4578 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4579 Args = s_RightToLeft;
4580 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4581
4582 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4583}
4584
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette