VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 30908

Last change on this file since 30908 was 30908, checked in by vboxsync, 15 years ago

PGM.cpp: Fixed initialization bug in r63735 affecting 32-bit guests (not PAE).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 222.4 KB
Line 
1/* $Id: PGM.cpp 30908 2010-07-19 13:02:45Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be refered to
30 * as "host paging", and GC refered to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570/*******************************************************************************
571* Header Files *
572*******************************************************************************/
573#define LOG_GROUP LOG_GROUP_PGM
574#include <VBox/dbgf.h>
575#include <VBox/pgm.h>
576#include <VBox/cpum.h>
577#include <VBox/iom.h>
578#include <VBox/sup.h>
579#include <VBox/mm.h>
580#include <VBox/em.h>
581#include <VBox/stam.h>
582#include <VBox/rem.h>
583#include <VBox/selm.h>
584#include <VBox/ssm.h>
585#include <VBox/hwaccm.h>
586#include "PGMInternal.h"
587#include <VBox/vm.h>
588#include "PGMInline.h"
589
590#include <VBox/dbg.h>
591#include <VBox/param.h>
592#include <VBox/err.h>
593
594#include <iprt/asm.h>
595#include <iprt/asm-amd64-x86.h>
596#include <iprt/assert.h>
597#include <iprt/env.h>
598#include <iprt/mem.h>
599#include <iprt/file.h>
600#include <iprt/string.h>
601#include <iprt/thread.h>
602
603
604/*******************************************************************************
605* Internal Functions *
606*******************************************************************************/
607static int pgmR3InitPaging(PVM pVM);
608static void pgmR3InitStats(PVM pVM);
609static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
610static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
613static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615#ifdef VBOX_STRICT
616static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
617#endif
618static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
619static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
620static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
621
622#ifdef VBOX_WITH_DEBUGGER
623/** @todo Convert the first two commands to 'info' items. */
624static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
625static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
626static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
627static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628# ifdef VBOX_STRICT
629static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630# endif
631static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632#endif
633
634
635/*******************************************************************************
636* Global Variables *
637*******************************************************************************/
638#ifdef VBOX_WITH_DEBUGGER
639/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
640static const DBGCVARDESC g_aPgmErrorArgs[] =
641{
642 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
643 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
644};
645
646static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
647{
648 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
649 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
650 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
651};
652
653/** Command descriptors. */
654static const DBGCCMD g_aCmds[] =
655{
656 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
657 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
660 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
661#ifdef VBOX_STRICT
662 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
663#endif
664#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
665 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
666 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
667#endif
668 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
669 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
670};
671#endif
672
673
674
675
676/*
677 * Shadow - 32-bit mode
678 */
679#define PGM_SHW_TYPE PGM_TYPE_32BIT
680#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
681#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
682#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
683#include "PGMShw.h"
684
685/* Guest - real mode */
686#define PGM_GST_TYPE PGM_TYPE_REAL
687#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
688#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
689#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
690#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
691#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
692#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
693#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
694#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
695#include "PGMBth.h"
696#include "PGMGstDefs.h"
697#include "PGMGst.h"
698#undef BTH_PGMPOOLKIND_PT_FOR_PT
699#undef BTH_PGMPOOLKIND_ROOT
700#undef PGM_BTH_NAME
701#undef PGM_BTH_NAME_RC_STR
702#undef PGM_BTH_NAME_R0_STR
703#undef PGM_GST_TYPE
704#undef PGM_GST_NAME
705#undef PGM_GST_NAME_RC_STR
706#undef PGM_GST_NAME_R0_STR
707
708/* Guest - protected mode */
709#define PGM_GST_TYPE PGM_TYPE_PROT
710#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
711#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
712#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
713#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
714#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
715#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
716#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
717#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
718#include "PGMBth.h"
719#include "PGMGstDefs.h"
720#include "PGMGst.h"
721#undef BTH_PGMPOOLKIND_PT_FOR_PT
722#undef BTH_PGMPOOLKIND_ROOT
723#undef PGM_BTH_NAME
724#undef PGM_BTH_NAME_RC_STR
725#undef PGM_BTH_NAME_R0_STR
726#undef PGM_GST_TYPE
727#undef PGM_GST_NAME
728#undef PGM_GST_NAME_RC_STR
729#undef PGM_GST_NAME_R0_STR
730
731/* Guest - 32-bit mode */
732#define PGM_GST_TYPE PGM_TYPE_32BIT
733#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
734#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
735#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
736#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
737#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
738#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
739#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
740#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
741#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
742#include "PGMBth.h"
743#include "PGMGstDefs.h"
744#include "PGMGst.h"
745#undef BTH_PGMPOOLKIND_PT_FOR_BIG
746#undef BTH_PGMPOOLKIND_PT_FOR_PT
747#undef BTH_PGMPOOLKIND_ROOT
748#undef PGM_BTH_NAME
749#undef PGM_BTH_NAME_RC_STR
750#undef PGM_BTH_NAME_R0_STR
751#undef PGM_GST_TYPE
752#undef PGM_GST_NAME
753#undef PGM_GST_NAME_RC_STR
754#undef PGM_GST_NAME_R0_STR
755
756#undef PGM_SHW_TYPE
757#undef PGM_SHW_NAME
758#undef PGM_SHW_NAME_RC_STR
759#undef PGM_SHW_NAME_R0_STR
760
761
762/*
763 * Shadow - PAE mode
764 */
765#define PGM_SHW_TYPE PGM_TYPE_PAE
766#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
767#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
768#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
769#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
770#include "PGMShw.h"
771
772/* Guest - real mode */
773#define PGM_GST_TYPE PGM_TYPE_REAL
774#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
775#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
776#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
777#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
778#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
779#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
780#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
781#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
782#include "PGMGstDefs.h"
783#include "PGMBth.h"
784#undef BTH_PGMPOOLKIND_PT_FOR_PT
785#undef BTH_PGMPOOLKIND_ROOT
786#undef PGM_BTH_NAME
787#undef PGM_BTH_NAME_RC_STR
788#undef PGM_BTH_NAME_R0_STR
789#undef PGM_GST_TYPE
790#undef PGM_GST_NAME
791#undef PGM_GST_NAME_RC_STR
792#undef PGM_GST_NAME_R0_STR
793
794/* Guest - protected mode */
795#define PGM_GST_TYPE PGM_TYPE_PROT
796#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
797#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
798#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
799#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
800#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
801#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
802#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
803#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
804#include "PGMGstDefs.h"
805#include "PGMBth.h"
806#undef BTH_PGMPOOLKIND_PT_FOR_PT
807#undef BTH_PGMPOOLKIND_ROOT
808#undef PGM_BTH_NAME
809#undef PGM_BTH_NAME_RC_STR
810#undef PGM_BTH_NAME_R0_STR
811#undef PGM_GST_TYPE
812#undef PGM_GST_NAME
813#undef PGM_GST_NAME_RC_STR
814#undef PGM_GST_NAME_R0_STR
815
816/* Guest - 32-bit mode */
817#define PGM_GST_TYPE PGM_TYPE_32BIT
818#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
819#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
820#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
821#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
822#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
823#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
824#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
825#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
826#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
827#include "PGMGstDefs.h"
828#include "PGMBth.h"
829#undef BTH_PGMPOOLKIND_PT_FOR_BIG
830#undef BTH_PGMPOOLKIND_PT_FOR_PT
831#undef BTH_PGMPOOLKIND_ROOT
832#undef PGM_BTH_NAME
833#undef PGM_BTH_NAME_RC_STR
834#undef PGM_BTH_NAME_R0_STR
835#undef PGM_GST_TYPE
836#undef PGM_GST_NAME
837#undef PGM_GST_NAME_RC_STR
838#undef PGM_GST_NAME_R0_STR
839
840/* Guest - PAE mode */
841#define PGM_GST_TYPE PGM_TYPE_PAE
842#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
843#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
844#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
845#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
846#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
847#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
848#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
849#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
850#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
851#include "PGMBth.h"
852#include "PGMGstDefs.h"
853#include "PGMGst.h"
854#undef BTH_PGMPOOLKIND_PT_FOR_BIG
855#undef BTH_PGMPOOLKIND_PT_FOR_PT
856#undef BTH_PGMPOOLKIND_ROOT
857#undef PGM_BTH_NAME
858#undef PGM_BTH_NAME_RC_STR
859#undef PGM_BTH_NAME_R0_STR
860#undef PGM_GST_TYPE
861#undef PGM_GST_NAME
862#undef PGM_GST_NAME_RC_STR
863#undef PGM_GST_NAME_R0_STR
864
865#undef PGM_SHW_TYPE
866#undef PGM_SHW_NAME
867#undef PGM_SHW_NAME_RC_STR
868#undef PGM_SHW_NAME_R0_STR
869
870
871/*
872 * Shadow - AMD64 mode
873 */
874#define PGM_SHW_TYPE PGM_TYPE_AMD64
875#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
876#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
877#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
878#include "PGMShw.h"
879
880#ifdef VBOX_WITH_64_BITS_GUESTS
881/* Guest - AMD64 mode */
882# define PGM_GST_TYPE PGM_TYPE_AMD64
883# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
884# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
885# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
886# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
887# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
888# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
889# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
890# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
891# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
892# include "PGMBth.h"
893# include "PGMGstDefs.h"
894# include "PGMGst.h"
895# undef BTH_PGMPOOLKIND_PT_FOR_BIG
896# undef BTH_PGMPOOLKIND_PT_FOR_PT
897# undef BTH_PGMPOOLKIND_ROOT
898# undef PGM_BTH_NAME
899# undef PGM_BTH_NAME_RC_STR
900# undef PGM_BTH_NAME_R0_STR
901# undef PGM_GST_TYPE
902# undef PGM_GST_NAME
903# undef PGM_GST_NAME_RC_STR
904# undef PGM_GST_NAME_R0_STR
905#endif /* VBOX_WITH_64_BITS_GUESTS */
906
907#undef PGM_SHW_TYPE
908#undef PGM_SHW_NAME
909#undef PGM_SHW_NAME_RC_STR
910#undef PGM_SHW_NAME_R0_STR
911
912
913/*
914 * Shadow - Nested paging mode
915 */
916#define PGM_SHW_TYPE PGM_TYPE_NESTED
917#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
918#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
919#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
920#include "PGMShw.h"
921
922/* Guest - real mode */
923#define PGM_GST_TYPE PGM_TYPE_REAL
924#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
925#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
926#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
927#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
928#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
929#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
930#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
931#include "PGMGstDefs.h"
932#include "PGMBth.h"
933#undef BTH_PGMPOOLKIND_PT_FOR_PT
934#undef PGM_BTH_NAME
935#undef PGM_BTH_NAME_RC_STR
936#undef PGM_BTH_NAME_R0_STR
937#undef PGM_GST_TYPE
938#undef PGM_GST_NAME
939#undef PGM_GST_NAME_RC_STR
940#undef PGM_GST_NAME_R0_STR
941
942/* Guest - protected mode */
943#define PGM_GST_TYPE PGM_TYPE_PROT
944#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
945#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
946#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
947#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
948#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
949#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
950#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
951#include "PGMGstDefs.h"
952#include "PGMBth.h"
953#undef BTH_PGMPOOLKIND_PT_FOR_PT
954#undef PGM_BTH_NAME
955#undef PGM_BTH_NAME_RC_STR
956#undef PGM_BTH_NAME_R0_STR
957#undef PGM_GST_TYPE
958#undef PGM_GST_NAME
959#undef PGM_GST_NAME_RC_STR
960#undef PGM_GST_NAME_R0_STR
961
962/* Guest - 32-bit mode */
963#define PGM_GST_TYPE PGM_TYPE_32BIT
964#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
965#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
966#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
967#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
968#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
969#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
970#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
971#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
972#include "PGMGstDefs.h"
973#include "PGMBth.h"
974#undef BTH_PGMPOOLKIND_PT_FOR_BIG
975#undef BTH_PGMPOOLKIND_PT_FOR_PT
976#undef PGM_BTH_NAME
977#undef PGM_BTH_NAME_RC_STR
978#undef PGM_BTH_NAME_R0_STR
979#undef PGM_GST_TYPE
980#undef PGM_GST_NAME
981#undef PGM_GST_NAME_RC_STR
982#undef PGM_GST_NAME_R0_STR
983
984/* Guest - PAE mode */
985#define PGM_GST_TYPE PGM_TYPE_PAE
986#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
987#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
988#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
989#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
990#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
991#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
992#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
993#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
994#include "PGMGstDefs.h"
995#include "PGMBth.h"
996#undef BTH_PGMPOOLKIND_PT_FOR_BIG
997#undef BTH_PGMPOOLKIND_PT_FOR_PT
998#undef PGM_BTH_NAME
999#undef PGM_BTH_NAME_RC_STR
1000#undef PGM_BTH_NAME_R0_STR
1001#undef PGM_GST_TYPE
1002#undef PGM_GST_NAME
1003#undef PGM_GST_NAME_RC_STR
1004#undef PGM_GST_NAME_R0_STR
1005
1006#ifdef VBOX_WITH_64_BITS_GUESTS
1007/* Guest - AMD64 mode */
1008# define PGM_GST_TYPE PGM_TYPE_AMD64
1009# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1010# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1011# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1012# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1013# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1014# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1015# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1016# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1017# include "PGMGstDefs.h"
1018# include "PGMBth.h"
1019# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1020# undef BTH_PGMPOOLKIND_PT_FOR_PT
1021# undef PGM_BTH_NAME
1022# undef PGM_BTH_NAME_RC_STR
1023# undef PGM_BTH_NAME_R0_STR
1024# undef PGM_GST_TYPE
1025# undef PGM_GST_NAME
1026# undef PGM_GST_NAME_RC_STR
1027# undef PGM_GST_NAME_R0_STR
1028#endif /* VBOX_WITH_64_BITS_GUESTS */
1029
1030#undef PGM_SHW_TYPE
1031#undef PGM_SHW_NAME
1032#undef PGM_SHW_NAME_RC_STR
1033#undef PGM_SHW_NAME_R0_STR
1034
1035
1036/*
1037 * Shadow - EPT
1038 */
1039#define PGM_SHW_TYPE PGM_TYPE_EPT
1040#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1041#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1042#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1043#include "PGMShw.h"
1044
1045/* Guest - real mode */
1046#define PGM_GST_TYPE PGM_TYPE_REAL
1047#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1048#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1049#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1050#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1051#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1052#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1053#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1054#include "PGMGstDefs.h"
1055#include "PGMBth.h"
1056#undef BTH_PGMPOOLKIND_PT_FOR_PT
1057#undef PGM_BTH_NAME
1058#undef PGM_BTH_NAME_RC_STR
1059#undef PGM_BTH_NAME_R0_STR
1060#undef PGM_GST_TYPE
1061#undef PGM_GST_NAME
1062#undef PGM_GST_NAME_RC_STR
1063#undef PGM_GST_NAME_R0_STR
1064
1065/* Guest - protected mode */
1066#define PGM_GST_TYPE PGM_TYPE_PROT
1067#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1068#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1069#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1070#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1071#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1072#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1073#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1074#include "PGMGstDefs.h"
1075#include "PGMBth.h"
1076#undef BTH_PGMPOOLKIND_PT_FOR_PT
1077#undef PGM_BTH_NAME
1078#undef PGM_BTH_NAME_RC_STR
1079#undef PGM_BTH_NAME_R0_STR
1080#undef PGM_GST_TYPE
1081#undef PGM_GST_NAME
1082#undef PGM_GST_NAME_RC_STR
1083#undef PGM_GST_NAME_R0_STR
1084
1085/* Guest - 32-bit mode */
1086#define PGM_GST_TYPE PGM_TYPE_32BIT
1087#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1088#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1089#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1090#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1091#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1092#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1093#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1094#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1095#include "PGMGstDefs.h"
1096#include "PGMBth.h"
1097#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1098#undef BTH_PGMPOOLKIND_PT_FOR_PT
1099#undef PGM_BTH_NAME
1100#undef PGM_BTH_NAME_RC_STR
1101#undef PGM_BTH_NAME_R0_STR
1102#undef PGM_GST_TYPE
1103#undef PGM_GST_NAME
1104#undef PGM_GST_NAME_RC_STR
1105#undef PGM_GST_NAME_R0_STR
1106
1107/* Guest - PAE mode */
1108#define PGM_GST_TYPE PGM_TYPE_PAE
1109#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1110#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1111#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1112#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1113#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1114#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1115#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1116#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1117#include "PGMGstDefs.h"
1118#include "PGMBth.h"
1119#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1120#undef BTH_PGMPOOLKIND_PT_FOR_PT
1121#undef PGM_BTH_NAME
1122#undef PGM_BTH_NAME_RC_STR
1123#undef PGM_BTH_NAME_R0_STR
1124#undef PGM_GST_TYPE
1125#undef PGM_GST_NAME
1126#undef PGM_GST_NAME_RC_STR
1127#undef PGM_GST_NAME_R0_STR
1128
1129#ifdef VBOX_WITH_64_BITS_GUESTS
1130/* Guest - AMD64 mode */
1131# define PGM_GST_TYPE PGM_TYPE_AMD64
1132# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1133# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1134# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1135# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1136# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1137# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1138# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1139# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1140# include "PGMGstDefs.h"
1141# include "PGMBth.h"
1142# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1143# undef BTH_PGMPOOLKIND_PT_FOR_PT
1144# undef PGM_BTH_NAME
1145# undef PGM_BTH_NAME_RC_STR
1146# undef PGM_BTH_NAME_R0_STR
1147# undef PGM_GST_TYPE
1148# undef PGM_GST_NAME
1149# undef PGM_GST_NAME_RC_STR
1150# undef PGM_GST_NAME_R0_STR
1151#endif /* VBOX_WITH_64_BITS_GUESTS */
1152
1153#undef PGM_SHW_TYPE
1154#undef PGM_SHW_NAME
1155#undef PGM_SHW_NAME_RC_STR
1156#undef PGM_SHW_NAME_R0_STR
1157
1158
1159
1160/**
1161 * Initiates the paging of VM.
1162 *
1163 * @returns VBox status code.
1164 * @param pVM Pointer to VM structure.
1165 */
1166VMMR3DECL(int) PGMR3Init(PVM pVM)
1167{
1168 LogFlow(("PGMR3Init:\n"));
1169 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1170 int rc;
1171
1172 /*
1173 * Assert alignment and sizes.
1174 */
1175 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1176 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1177 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1178
1179 /*
1180 * Init the structure.
1181 */
1182#ifdef PGM_WITHOUT_MAPPINGS
1183 pVM->pgm.s.fMappingsDisabled = true;
1184#endif
1185 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1186 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1187
1188 /* Init the per-CPU part. */
1189 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1190 {
1191 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1192 PPGMCPU pPGM = &pVCpu->pgm.s;
1193
1194 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1195 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1196 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1197
1198 pPGM->enmShadowMode = PGMMODE_INVALID;
1199 pPGM->enmGuestMode = PGMMODE_INVALID;
1200
1201 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1202
1203 pPGM->pGst32BitPdR3 = NULL;
1204 pPGM->pGstPaePdptR3 = NULL;
1205 pPGM->pGstAmd64Pml4R3 = NULL;
1206#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1207 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1208 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1209 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1210#endif
1211 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1212 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1213 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1214 {
1215 pPGM->apGstPaePDsR3[i] = NULL;
1216#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1217 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1218#endif
1219 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1220 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1221 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1222 }
1223
1224 pPGM->fA20Enabled = true;
1225 }
1226
1227 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1228 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1229 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1230
1231 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1232#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1233 true
1234#else
1235 false
1236#endif
1237 );
1238 AssertLogRelRCReturn(rc, rc);
1239
1240#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1241 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1242#else
1243 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1244#endif
1245 AssertLogRelRCReturn(rc, rc);
1246 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1247 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1248
1249 /*
1250 * Get the configured RAM size - to estimate saved state size.
1251 */
1252 uint64_t cbRam;
1253 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1254 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1255 cbRam = 0;
1256 else if (RT_SUCCESS(rc))
1257 {
1258 if (cbRam < PAGE_SIZE)
1259 cbRam = 0;
1260 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1261 }
1262 else
1263 {
1264 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1265 return rc;
1266 }
1267
1268 /*
1269 * Register callbacks, string formatters and the saved state data unit.
1270 */
1271#ifdef VBOX_STRICT
1272 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1273#endif
1274 PGMRegisterStringFormatTypes();
1275
1276 rc = pgmR3InitSavedState(pVM, cbRam);
1277 if (RT_FAILURE(rc))
1278 return rc;
1279
1280 /*
1281 * Initialize the PGM critical section and flush the phys TLBs
1282 */
1283 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1284 AssertRCReturn(rc, rc);
1285
1286 PGMR3PhysChunkInvalidateTLB(pVM);
1287 PGMPhysInvalidatePageMapTLB(pVM);
1288
1289 /*
1290 * For the time being we sport a full set of handy pages in addition to the base
1291 * memory to simplify things.
1292 */
1293 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1294 AssertRCReturn(rc, rc);
1295
1296 /*
1297 * Trees
1298 */
1299 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1300 if (RT_SUCCESS(rc))
1301 {
1302 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1303 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1304
1305 /*
1306 * Allocate the zero page.
1307 */
1308 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1309 }
1310 if (RT_SUCCESS(rc))
1311 {
1312 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1313 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1314 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1315 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1316
1317 /*
1318 * Allocate the invalid MMIO page.
1319 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1320 */
1321 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1322 }
1323 if (RT_SUCCESS(rc))
1324 {
1325 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1326 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1327 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1328 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1329
1330 /*
1331 * Init the paging.
1332 */
1333 rc = pgmR3InitPaging(pVM);
1334 }
1335 if (RT_SUCCESS(rc))
1336 {
1337 /*
1338 * Init the page pool.
1339 */
1340 rc = pgmR3PoolInit(pVM);
1341 }
1342 if (RT_SUCCESS(rc))
1343 {
1344 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1345 {
1346 PVMCPU pVCpu = &pVM->aCpus[i];
1347 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1348 if (RT_FAILURE(rc))
1349 break;
1350 }
1351 }
1352
1353 if (RT_SUCCESS(rc))
1354 {
1355 /*
1356 * Info & statistics
1357 */
1358 DBGFR3InfoRegisterInternal(pVM, "mode",
1359 "Shows the current paging mode. "
1360 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1361 pgmR3InfoMode);
1362 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1363 "Dumps all the entries in the top level paging table. No arguments.",
1364 pgmR3InfoCr3);
1365 DBGFR3InfoRegisterInternal(pVM, "phys",
1366 "Dumps all the physical address ranges. No arguments.",
1367 pgmR3PhysInfo);
1368 DBGFR3InfoRegisterInternal(pVM, "handlers",
1369 "Dumps physical, virtual and hyper virtual handlers. "
1370 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1371 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1372 pgmR3InfoHandlers);
1373 DBGFR3InfoRegisterInternal(pVM, "mappings",
1374 "Dumps guest mappings.",
1375 pgmR3MapInfo);
1376
1377 pgmR3InitStats(pVM);
1378
1379#ifdef VBOX_WITH_DEBUGGER
1380 /*
1381 * Debugger commands.
1382 */
1383 static bool s_fRegisteredCmds = false;
1384 if (!s_fRegisteredCmds)
1385 {
1386 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1387 if (RT_SUCCESS(rc2))
1388 s_fRegisteredCmds = true;
1389 }
1390#endif
1391 return VINF_SUCCESS;
1392 }
1393
1394 /* Almost no cleanup necessary, MM frees all memory. */
1395 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1396
1397 return rc;
1398}
1399
1400
1401/**
1402 * Initializes the per-VCPU PGM.
1403 *
1404 * @returns VBox status code.
1405 * @param pVM The VM to operate on.
1406 */
1407VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1408{
1409 LogFlow(("PGMR3InitCPU\n"));
1410 return VINF_SUCCESS;
1411}
1412
1413
1414/**
1415 * Init paging.
1416 *
1417 * Since we need to check what mode the host is operating in before we can choose
1418 * the right paging functions for the host we have to delay this until R0 has
1419 * been initialized.
1420 *
1421 * @returns VBox status code.
1422 * @param pVM VM handle.
1423 */
1424static int pgmR3InitPaging(PVM pVM)
1425{
1426 /*
1427 * Force a recalculation of modes and switcher so everyone gets notified.
1428 */
1429 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1430 {
1431 PVMCPU pVCpu = &pVM->aCpus[i];
1432
1433 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1434 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1435 }
1436
1437 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1438
1439 /*
1440 * Allocate static mapping space for whatever the cr3 register
1441 * points to and in the case of PAE mode to the 4 PDs.
1442 */
1443 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1444 if (RT_FAILURE(rc))
1445 {
1446 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1447 return rc;
1448 }
1449 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1450
1451 /*
1452 * Allocate pages for the three possible intermediate contexts
1453 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1454 * for the sake of simplicity. The AMD64 uses the PAE for the
1455 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1456 *
1457 * We assume that two page tables will be enought for the core code
1458 * mappings (HC virtual and identity).
1459 */
1460 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1462 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1463 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1464 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1465 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1466 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1467 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1468 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1469 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1470 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1471 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1472
1473 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1474 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1475 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1476 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1477 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1478 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1479
1480 /*
1481 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1482 */
1483 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1484 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1485 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1486
1487 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1488 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1489
1490 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1491 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1492 {
1493 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1494 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1495 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1496 }
1497
1498 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1499 {
1500 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1501 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1502 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1503 }
1504
1505 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1506 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1507 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1508 | HCPhysInterPaePDPT64;
1509
1510 /*
1511 * Initialize paging workers and mode from current host mode
1512 * and the guest running in real mode.
1513 */
1514 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1515 switch (pVM->pgm.s.enmHostMode)
1516 {
1517 case SUPPAGINGMODE_32_BIT:
1518 case SUPPAGINGMODE_32_BIT_GLOBAL:
1519 case SUPPAGINGMODE_PAE:
1520 case SUPPAGINGMODE_PAE_GLOBAL:
1521 case SUPPAGINGMODE_PAE_NX:
1522 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1523 break;
1524
1525 case SUPPAGINGMODE_AMD64:
1526 case SUPPAGINGMODE_AMD64_GLOBAL:
1527 case SUPPAGINGMODE_AMD64_NX:
1528 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1529#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1530 if (ARCH_BITS != 64)
1531 {
1532 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1533 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1534 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1535 }
1536#endif
1537 break;
1538 default:
1539 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1540 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1541 }
1542 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1543 if (RT_SUCCESS(rc))
1544 {
1545 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1546#if HC_ARCH_BITS == 64
1547 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1548 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1549 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1550 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1551 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1552 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1553 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1554#endif
1555 return VINF_SUCCESS;
1556 }
1557
1558 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1559 return rc;
1560}
1561
1562
1563/**
1564 * Init statistics
1565 */
1566static void pgmR3InitStats(PVM pVM)
1567{
1568 PPGM pPGM = &pVM->pgm.s;
1569 int rc;
1570
1571 /* Common - misc variables */
1572 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1573 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1574 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1575 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1576 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1577 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1578 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1579 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1580 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1581 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1582 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1583 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1584 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1585 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1586 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1587 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1588 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1589
1590 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1591 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1592 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1593 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1594
1595 /* Live save */
1596 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1597 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1598 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1599 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1600 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1601 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1602 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1603 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1604 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1605 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1606 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1607 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1608 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1609 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1610 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1611 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1612 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1613 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1614
1615#ifdef VBOX_WITH_STATISTICS
1616
1617# define PGM_REG_COUNTER(a, b, c) \
1618 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1619 AssertRC(rc);
1620
1621# define PGM_REG_COUNTER_BYTES(a, b, c) \
1622 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1623 AssertRC(rc);
1624
1625# define PGM_REG_PROFILE(a, b, c) \
1626 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1627 AssertRC(rc);
1628
1629 PGM_REG_PROFILE(&pPGM->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1630 PGM_REG_PROFILE(&pPGM->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1631 PGM_REG_PROFILE(&pPGM->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1632 PGM_REG_PROFILE(&pPGM->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1633
1634 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1635 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1636 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1637 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1638 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1639 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1640 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1641 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1642 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1643 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1644
1645 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1646 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1647 PGM_REG_PROFILE(&pPGM->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1648 PGM_REG_PROFILE(&pPGM->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1649 PGM_REG_PROFILE(&pPGM->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1650 PGM_REG_PROFILE(&pPGM->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1651
1652 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1653 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1654 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1655 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1656 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1657 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1658 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1659 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1660
1661 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1662 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1663 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1664 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1665
1666 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1667 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1668 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1669 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1670
1671 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1672 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1673/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1674 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1675 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1676/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1677
1678 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1679 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1680 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1681 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1682 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1683 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1684 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1685 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1686
1687 /* GC only: */
1688 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1689 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1690 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1691 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1692
1693 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1694 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1695 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1696 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1697 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1698 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1699 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1700 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1701
1702 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1703 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1704 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1705 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1706 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1707 PGM_REG_COUNTER(&pPGM->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1708 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1709
1710# undef PGM_REG_COUNTER
1711# undef PGM_REG_PROFILE
1712#endif
1713
1714 /*
1715 * Note! The layout below matches the member layout exactly!
1716 */
1717
1718 /*
1719 * Common - stats
1720 */
1721 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1722 {
1723 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1724
1725#define PGM_REG_COUNTER(a, b, c) \
1726 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1727 AssertRC(rc);
1728#define PGM_REG_PROFILE(a, b, c) \
1729 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1730 AssertRC(rc);
1731
1732 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1733
1734#ifdef VBOX_WITH_STATISTICS
1735
1736# if 0 /* rarely useful; leave for debugging. */
1737 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1738 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1739 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1740 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPagePD); j++)
1741 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1742 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1743# endif
1744 /* R0 only: */
1745 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1746 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1747 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1748 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1749 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1750 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1751 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1752 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1753 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1754 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1755 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1756 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1757 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1758 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1759 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1760 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1761 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1762 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1763 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1764 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1765 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1766 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1767 //PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1768 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1769 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1770 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1771 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1772 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1773 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1774 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1775 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1776 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1777 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1778 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1779 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1780 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1781
1782 /* RZ only: */
1783 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1784 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%u/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1785 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeSyncPT, "/PGM/CPU%u/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1786 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeMapping, "/PGM/CPU%u/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1787 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1788 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeHandlers, "/PGM/CPU%u/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1789 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1790 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1791 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1792 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1793 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1794 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1795 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1796 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1797 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1798 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1799 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1800 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1801 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1802 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1803 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1804 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1805 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1806 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1807 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1808 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1809 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1810 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1811 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1812 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1813 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1814 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1815 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1816 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1817 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1818 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1819 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1820 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1821 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1822 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFUnh, "/PGM/CPU%u/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1823 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1824 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1825 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1826#if 0 /* rarely useful; leave for debugging. */
1827 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatRZTrap0ePD); j++)
1828 STAMR3RegisterF(pVM, &pPgmCpu->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1829 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1830#endif
1831 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1832 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1833 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1834 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1835 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1836
1837 /* HC only: */
1838
1839 /* RZ & R3: */
1840 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1841 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1842 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1843 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1844 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1845 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1846 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1847 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1848 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1849 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1850 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1851 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1852 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1853 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1854 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1855 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1856 PGM_REG_COUNTER(&pPgmCpu->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1857 PGM_REG_PROFILE(&pPgmCpu->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1858 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1859 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1860 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1861 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1862 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1863 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1864 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1865 PGM_REG_COUNTER(&pPgmCpu->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1866 PGM_REG_PROFILE(&pPgmCpu->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1867 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1868 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1869 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1870 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1871 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1872 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1873 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1874 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1875 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1876 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1877 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1878 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1879 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1880 PGM_REG_PROFILE(&pPgmCpu->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1881 PGM_REG_PROFILE(&pPgmCpu->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1882 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1883 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1884 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1885 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1886 PGM_REG_PROFILE(&pPgmCpu->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1887
1888 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1889 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1890 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1891 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1892 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1893 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1894 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1895 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1896 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1897 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1898 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1899 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1900 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1901 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1902 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1903 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1904 PGM_REG_COUNTER(&pPgmCpu->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1905 PGM_REG_PROFILE(&pPgmCpu->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1906 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1907 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1908 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1909 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1910 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1911 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1912 PGM_REG_COUNTER(&pPgmCpu->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1913 PGM_REG_PROFILE(&pPgmCpu->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1914 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1915 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1916 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1917 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1918 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1919 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1920 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1921 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1922 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1923 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1924 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1925 PGM_REG_PROFILE(&pPgmCpu->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1926 PGM_REG_PROFILE(&pPgmCpu->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1927 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1928 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1929 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1930 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1931 PGM_REG_PROFILE(&pPgmCpu->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1932#endif /* VBOX_WITH_STATISTICS */
1933
1934#undef PGM_REG_PROFILE
1935#undef PGM_REG_COUNTER
1936
1937 }
1938}
1939
1940
1941/**
1942 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1943 *
1944 * The dynamic mapping area will also be allocated and initialized at this
1945 * time. We could allocate it during PGMR3Init of course, but the mapping
1946 * wouldn't be allocated at that time preventing us from setting up the
1947 * page table entries with the dummy page.
1948 *
1949 * @returns VBox status code.
1950 * @param pVM VM handle.
1951 */
1952VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1953{
1954 RTGCPTR GCPtr;
1955 int rc;
1956
1957 /*
1958 * Reserve space for the dynamic mappings.
1959 */
1960 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1961 if (RT_SUCCESS(rc))
1962 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1963
1964 if ( RT_SUCCESS(rc)
1965 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1966 {
1967 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1968 if (RT_SUCCESS(rc))
1969 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1970 }
1971 if (RT_SUCCESS(rc))
1972 {
1973 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1974 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1975 }
1976 return rc;
1977}
1978
1979
1980/**
1981 * Ring-3 init finalizing.
1982 *
1983 * @returns VBox status code.
1984 * @param pVM The VM handle.
1985 */
1986VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1987{
1988 int rc;
1989
1990 /*
1991 * Reserve space for the dynamic mappings.
1992 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1993 */
1994 /* get the pointer to the page table entries. */
1995 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1996 AssertRelease(pMapping);
1997 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1998 const unsigned iPT = off >> X86_PD_SHIFT;
1999 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2000 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2001 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2002
2003 /* init cache */
2004 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2005 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
2006 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
2007
2008 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
2009 {
2010 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
2011 AssertRCReturn(rc, rc);
2012 }
2013
2014 /*
2015 * Determin the max physical address width (MAXPHYADDR) and apply it to
2016 * all the mask members and stuff.
2017 */
2018 uint32_t cMaxPhysAddrWidth;
2019 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2020 if ( uMaxExtLeaf >= 0x80000008
2021 && uMaxExtLeaf <= 0x80000fff)
2022 {
2023 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2024 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2025 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2026 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2027 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2028 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2029 }
2030 else
2031 {
2032 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2033 cMaxPhysAddrWidth = 48;
2034 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2035 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2036 }
2037
2038 pVM->pgm.s.GCPhysInvAddrMask = 0;
2039 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2040 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2041
2042 /*
2043 * Initialize the invalid paging entry masks, assuming NX is disabled.
2044 */
2045 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2046 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2047 {
2048 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2049
2050 /** @todo The manuals are not entirely clear whether the physical
2051 * address width is relevant. See table 5-9 in the intel
2052 * manual vs the PDE4M descriptions. Write testcase (NP). */
2053 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2054 | X86_PDE4M_MBZ_MASK;
2055
2056 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2057 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2058 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2059 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2060
2061 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2062 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2063 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2064 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2065 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2066 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2067 }
2068
2069 /*
2070 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2071 * Intel only goes up to 36 bits, so we stick to 36 as well.
2072 * Update: More recent intel manuals specifies 40 bits just like AMD.
2073 */
2074 uint32_t u32Dummy, u32Features;
2075 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2076 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2077 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2078 else
2079 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2080
2081 /*
2082 * Allocate memory if we're supposed to do that.
2083 */
2084 if (pVM->pgm.s.fRamPreAlloc)
2085 rc = pgmR3PhysRamPreAllocate(pVM);
2086
2087 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2088 return rc;
2089}
2090
2091
2092/**
2093 * Applies relocations to data and code managed by this component.
2094 *
2095 * This function will be called at init and whenever the VMM need to relocate it
2096 * self inside the GC.
2097 *
2098 * @param pVM The VM.
2099 * @param offDelta Relocation delta relative to old location.
2100 */
2101VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2102{
2103 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2104
2105 /*
2106 * Paging stuff.
2107 */
2108 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2109
2110 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2111
2112 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2113 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2114 {
2115 PVMCPU pVCpu = &pVM->aCpus[i];
2116
2117 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2118
2119 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2120 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2121 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2122 }
2123
2124 /*
2125 * Trees.
2126 */
2127 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2128
2129 /*
2130 * Ram ranges.
2131 */
2132 if (pVM->pgm.s.pRamRangesR3)
2133 {
2134 /* Update the pSelfRC pointers and relink them. */
2135 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2136 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2137 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2138 pgmR3PhysRelinkRamRanges(pVM);
2139 }
2140
2141 /*
2142 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2143 * be mapped and thus not included in the above exercise.
2144 */
2145 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2146 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2147 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2148
2149 /*
2150 * Update the two page directories with all page table mappings.
2151 * (One or more of them have changed, that's why we're here.)
2152 */
2153 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2154 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2155 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2156
2157 /* Relocate GC addresses of Page Tables. */
2158 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2159 {
2160 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2161 {
2162 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2163 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2164 }
2165 }
2166
2167 /*
2168 * Dynamic page mapping area.
2169 */
2170 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2171 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2172 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2173
2174 /*
2175 * The Zero page.
2176 */
2177 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2178#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2179 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2180#else
2181 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2182#endif
2183
2184 /*
2185 * Physical and virtual handlers.
2186 */
2187 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2188 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2189 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2190
2191 /*
2192 * The page pool.
2193 */
2194 pgmR3PoolRelocate(pVM);
2195}
2196
2197
2198/**
2199 * Callback function for relocating a physical access handler.
2200 *
2201 * @returns 0 (continue enum)
2202 * @param pNode Pointer to a PGMPHYSHANDLER node.
2203 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2204 * not certain the delta will fit in a void pointer for all possible configs.
2205 */
2206static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2207{
2208 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2209 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2210 if (pHandler->pfnHandlerRC)
2211 pHandler->pfnHandlerRC += offDelta;
2212 if (pHandler->pvUserRC >= 0x10000)
2213 pHandler->pvUserRC += offDelta;
2214 return 0;
2215}
2216
2217
2218/**
2219 * Callback function for relocating a virtual access handler.
2220 *
2221 * @returns 0 (continue enum)
2222 * @param pNode Pointer to a PGMVIRTHANDLER node.
2223 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2224 * not certain the delta will fit in a void pointer for all possible configs.
2225 */
2226static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2227{
2228 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2229 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2230 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2231 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2232 Assert(pHandler->pfnHandlerRC);
2233 pHandler->pfnHandlerRC += offDelta;
2234 return 0;
2235}
2236
2237
2238/**
2239 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2240 *
2241 * @returns 0 (continue enum)
2242 * @param pNode Pointer to a PGMVIRTHANDLER node.
2243 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2244 * not certain the delta will fit in a void pointer for all possible configs.
2245 */
2246static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2247{
2248 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2249 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2250 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2251 Assert(pHandler->pfnHandlerRC);
2252 pHandler->pfnHandlerRC += offDelta;
2253 return 0;
2254}
2255
2256
2257/**
2258 * Resets a virtual CPU when unplugged.
2259 *
2260 * @param pVM The VM handle.
2261 * @param pVCpu The virtual CPU handle.
2262 */
2263VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2264{
2265 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2266 AssertRC(rc);
2267
2268 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2269 AssertRC(rc);
2270
2271 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2272
2273 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2274
2275 /*
2276 * Re-init other members.
2277 */
2278 pVCpu->pgm.s.fA20Enabled = true;
2279
2280 /*
2281 * Clear the FFs PGM owns.
2282 */
2283 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2284 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2285}
2286
2287
2288/**
2289 * The VM is being reset.
2290 *
2291 * For the PGM component this means that any PD write monitors
2292 * needs to be removed.
2293 *
2294 * @param pVM VM handle.
2295 */
2296VMMR3DECL(void) PGMR3Reset(PVM pVM)
2297{
2298 int rc;
2299
2300 LogFlow(("PGMR3Reset:\n"));
2301 VM_ASSERT_EMT(pVM);
2302
2303 pgmLock(pVM);
2304
2305 /*
2306 * Unfix any fixed mappings and disable CR3 monitoring.
2307 */
2308 pVM->pgm.s.fMappingsFixed = false;
2309 pVM->pgm.s.fMappingsFixedRestored = false;
2310 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2311 pVM->pgm.s.cbMappingFixed = 0;
2312
2313 /*
2314 * Exit the guest paging mode before the pgm pool gets reset.
2315 * Important to clean up the amd64 case.
2316 */
2317 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2318 {
2319 PVMCPU pVCpu = &pVM->aCpus[i];
2320 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2321 AssertRC(rc);
2322 }
2323
2324#ifdef DEBUG
2325 DBGFR3InfoLog(pVM, "mappings", NULL);
2326 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2327#endif
2328
2329 /*
2330 * Switch mode back to real mode. (before resetting the pgm pool!)
2331 */
2332 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2333 {
2334 PVMCPU pVCpu = &pVM->aCpus[i];
2335
2336 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2337 AssertRC(rc);
2338
2339 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2340 }
2341
2342 /*
2343 * Reset the shadow page pool.
2344 */
2345 pgmR3PoolReset(pVM);
2346
2347 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2348 {
2349 PVMCPU pVCpu = &pVM->aCpus[i];
2350
2351 /*
2352 * Re-init other members.
2353 */
2354 pVCpu->pgm.s.fA20Enabled = true;
2355
2356 /*
2357 * Clear the FFs PGM owns.
2358 */
2359 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2360 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2361 }
2362
2363 /*
2364 * Reset (zero) RAM pages.
2365 */
2366 rc = pgmR3PhysRamReset(pVM);
2367 if (RT_SUCCESS(rc))
2368 {
2369 /*
2370 * Reset (zero) shadow ROM pages.
2371 */
2372 rc = pgmR3PhysRomReset(pVM);
2373 }
2374
2375 pgmUnlock(pVM);
2376 AssertReleaseRC(rc);
2377}
2378
2379
2380#ifdef VBOX_STRICT
2381/**
2382 * VM state change callback for clearing fNoMorePhysWrites after
2383 * a snapshot has been created.
2384 */
2385static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2386{
2387 if ( enmState == VMSTATE_RUNNING
2388 || enmState == VMSTATE_RESUMING)
2389 pVM->pgm.s.fNoMorePhysWrites = false;
2390}
2391#endif
2392
2393
2394/**
2395 * Terminates the PGM.
2396 *
2397 * @returns VBox status code.
2398 * @param pVM Pointer to VM structure.
2399 */
2400VMMR3DECL(int) PGMR3Term(PVM pVM)
2401{
2402 /* Must free shared pages here. */
2403 pgmLock(pVM);
2404 pgmR3PhysRamTerm(pVM);
2405 pgmUnlock(pVM);
2406
2407 PGMDeregisterStringFormatTypes();
2408 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2409}
2410
2411
2412/**
2413 * Terminates the per-VCPU PGM.
2414 *
2415 * Termination means cleaning up and freeing all resources,
2416 * the VM it self is at this point powered off or suspended.
2417 *
2418 * @returns VBox status code.
2419 * @param pVM The VM to operate on.
2420 */
2421VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2422{
2423 return 0;
2424}
2425
2426
2427/**
2428 * Show paging mode.
2429 *
2430 * @param pVM VM Handle.
2431 * @param pHlp The info helpers.
2432 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2433 */
2434static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2435{
2436 /* digest argument. */
2437 bool fGuest, fShadow, fHost;
2438 if (pszArgs)
2439 pszArgs = RTStrStripL(pszArgs);
2440 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2441 fShadow = fHost = fGuest = true;
2442 else
2443 {
2444 fShadow = fHost = fGuest = false;
2445 if (strstr(pszArgs, "guest"))
2446 fGuest = true;
2447 if (strstr(pszArgs, "shadow"))
2448 fShadow = true;
2449 if (strstr(pszArgs, "host"))
2450 fHost = true;
2451 }
2452
2453 /** @todo SMP support! */
2454 /* print info. */
2455 if (fGuest)
2456 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2457 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2458 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2459 if (fShadow)
2460 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2461 if (fHost)
2462 {
2463 const char *psz;
2464 switch (pVM->pgm.s.enmHostMode)
2465 {
2466 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2467 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2468 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2469 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2470 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2471 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2472 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2473 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2474 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2475 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2476 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2477 default: psz = "unknown"; break;
2478 }
2479 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2480 }
2481}
2482
2483
2484/**
2485 * Dump registered MMIO ranges to the log.
2486 *
2487 * @param pVM VM Handle.
2488 * @param pHlp The info helpers.
2489 * @param pszArgs Arguments, ignored.
2490 */
2491static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2492{
2493 NOREF(pszArgs);
2494 pHlp->pfnPrintf(pHlp,
2495 "RAM ranges (pVM=%p)\n"
2496 "%.*s %.*s\n",
2497 pVM,
2498 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2499 sizeof(RTHCPTR) * 2, "pvHC ");
2500
2501 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2502 pHlp->pfnPrintf(pHlp,
2503 "%RGp-%RGp %RHv %s\n",
2504 pCur->GCPhys,
2505 pCur->GCPhysLast,
2506 pCur->pvR3,
2507 pCur->pszDesc);
2508}
2509
2510/**
2511 * Dump the page directory to the log.
2512 *
2513 * @param pVM VM Handle.
2514 * @param pHlp The info helpers.
2515 * @param pszArgs Arguments, ignored.
2516 */
2517static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2518{
2519 /** @todo SMP support!! */
2520 PVMCPU pVCpu = &pVM->aCpus[0];
2521
2522/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2523 /* Big pages supported? */
2524 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2525
2526 /* Global pages supported? */
2527 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2528
2529 NOREF(pszArgs);
2530
2531 /*
2532 * Get page directory addresses.
2533 */
2534 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2535 Assert(pPDSrc);
2536 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2537
2538 /*
2539 * Iterate the page directory.
2540 */
2541 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2542 {
2543 X86PDE PdeSrc = pPDSrc->a[iPD];
2544 if (PdeSrc.n.u1Present)
2545 {
2546 if (PdeSrc.b.u1Size && fPSE)
2547 pHlp->pfnPrintf(pHlp,
2548 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2549 iPD,
2550 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2551 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2552 else
2553 pHlp->pfnPrintf(pHlp,
2554 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2555 iPD,
2556 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2557 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2558 }
2559 }
2560}
2561
2562
2563/**
2564 * Service a VMMCALLRING3_PGM_LOCK call.
2565 *
2566 * @returns VBox status code.
2567 * @param pVM The VM handle.
2568 */
2569VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2570{
2571 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2572 AssertRC(rc);
2573 return rc;
2574}
2575
2576
2577/**
2578 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2579 *
2580 * @returns PGM_TYPE_*.
2581 * @param pgmMode The mode value to convert.
2582 */
2583DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2584{
2585 switch (pgmMode)
2586 {
2587 case PGMMODE_REAL: return PGM_TYPE_REAL;
2588 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2589 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2590 case PGMMODE_PAE:
2591 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2592 case PGMMODE_AMD64:
2593 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2594 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2595 case PGMMODE_EPT: return PGM_TYPE_EPT;
2596 default:
2597 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2598 }
2599}
2600
2601
2602/**
2603 * Gets the index into the paging mode data array of a SHW+GST mode.
2604 *
2605 * @returns PGM::paPagingData index.
2606 * @param uShwType The shadow paging mode type.
2607 * @param uGstType The guest paging mode type.
2608 */
2609DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2610{
2611 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2612 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2613 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2614 + (uGstType - PGM_TYPE_REAL);
2615}
2616
2617
2618/**
2619 * Gets the index into the paging mode data array of a SHW+GST mode.
2620 *
2621 * @returns PGM::paPagingData index.
2622 * @param enmShw The shadow paging mode.
2623 * @param enmGst The guest paging mode.
2624 */
2625DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2626{
2627 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2628 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2629 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2630}
2631
2632
2633/**
2634 * Calculates the max data index.
2635 * @returns The number of entries in the paging data array.
2636 */
2637DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2638{
2639 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2640}
2641
2642
2643/**
2644 * Initializes the paging mode data kept in PGM::paModeData.
2645 *
2646 * @param pVM The VM handle.
2647 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2648 * This is used early in the init process to avoid trouble with PDM
2649 * not being initialized yet.
2650 */
2651static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2652{
2653 PPGMMODEDATA pModeData;
2654 int rc;
2655
2656 /*
2657 * Allocate the array on the first call.
2658 */
2659 if (!pVM->pgm.s.paModeData)
2660 {
2661 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2662 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2663 }
2664
2665 /*
2666 * Initialize the array entries.
2667 */
2668 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2669 pModeData->uShwType = PGM_TYPE_32BIT;
2670 pModeData->uGstType = PGM_TYPE_REAL;
2671 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2672 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2673 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2674
2675 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2676 pModeData->uShwType = PGM_TYPE_32BIT;
2677 pModeData->uGstType = PGM_TYPE_PROT;
2678 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2679 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2680 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2681
2682 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2683 pModeData->uShwType = PGM_TYPE_32BIT;
2684 pModeData->uGstType = PGM_TYPE_32BIT;
2685 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2686 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2687 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2688
2689 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2690 pModeData->uShwType = PGM_TYPE_PAE;
2691 pModeData->uGstType = PGM_TYPE_REAL;
2692 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2693 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2694 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2695
2696 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2697 pModeData->uShwType = PGM_TYPE_PAE;
2698 pModeData->uGstType = PGM_TYPE_PROT;
2699 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2700 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2701 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2702
2703 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2704 pModeData->uShwType = PGM_TYPE_PAE;
2705 pModeData->uGstType = PGM_TYPE_32BIT;
2706 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2707 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2708 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2709
2710 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2711 pModeData->uShwType = PGM_TYPE_PAE;
2712 pModeData->uGstType = PGM_TYPE_PAE;
2713 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2715 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2716
2717#ifdef VBOX_WITH_64_BITS_GUESTS
2718 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2719 pModeData->uShwType = PGM_TYPE_AMD64;
2720 pModeData->uGstType = PGM_TYPE_AMD64;
2721 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2722 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2723 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2724#endif
2725
2726 /* The nested paging mode. */
2727 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2728 pModeData->uShwType = PGM_TYPE_NESTED;
2729 pModeData->uGstType = PGM_TYPE_REAL;
2730 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2731 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732
2733 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2734 pModeData->uShwType = PGM_TYPE_NESTED;
2735 pModeData->uGstType = PGM_TYPE_PROT;
2736 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2737 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2738
2739 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2740 pModeData->uShwType = PGM_TYPE_NESTED;
2741 pModeData->uGstType = PGM_TYPE_32BIT;
2742 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744
2745 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2746 pModeData->uShwType = PGM_TYPE_NESTED;
2747 pModeData->uGstType = PGM_TYPE_PAE;
2748 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750
2751#ifdef VBOX_WITH_64_BITS_GUESTS
2752 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2753 pModeData->uShwType = PGM_TYPE_NESTED;
2754 pModeData->uGstType = PGM_TYPE_AMD64;
2755 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757#endif
2758
2759 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2760 switch (pVM->pgm.s.enmHostMode)
2761 {
2762#if HC_ARCH_BITS == 32
2763 case SUPPAGINGMODE_32_BIT:
2764 case SUPPAGINGMODE_32_BIT_GLOBAL:
2765 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2766 {
2767 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2768 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2769 }
2770# ifdef VBOX_WITH_64_BITS_GUESTS
2771 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2772 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2773# endif
2774 break;
2775
2776 case SUPPAGINGMODE_PAE:
2777 case SUPPAGINGMODE_PAE_NX:
2778 case SUPPAGINGMODE_PAE_GLOBAL:
2779 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2780 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2781 {
2782 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2783 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784 }
2785# ifdef VBOX_WITH_64_BITS_GUESTS
2786 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2787 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788# endif
2789 break;
2790#endif /* HC_ARCH_BITS == 32 */
2791
2792#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2793 case SUPPAGINGMODE_AMD64:
2794 case SUPPAGINGMODE_AMD64_GLOBAL:
2795 case SUPPAGINGMODE_AMD64_NX:
2796 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2797# ifdef VBOX_WITH_64_BITS_GUESTS
2798 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2799# else
2800 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2801# endif
2802 {
2803 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2804 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805 }
2806 break;
2807#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2808
2809 default:
2810 AssertFailed();
2811 break;
2812 }
2813
2814 /* Extended paging (EPT) / Intel VT-x */
2815 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2816 pModeData->uShwType = PGM_TYPE_EPT;
2817 pModeData->uGstType = PGM_TYPE_REAL;
2818 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2819 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2820 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821
2822 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2823 pModeData->uShwType = PGM_TYPE_EPT;
2824 pModeData->uGstType = PGM_TYPE_PROT;
2825 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2826 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2828
2829 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2830 pModeData->uShwType = PGM_TYPE_EPT;
2831 pModeData->uGstType = PGM_TYPE_32BIT;
2832 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2834 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2835
2836 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2837 pModeData->uShwType = PGM_TYPE_EPT;
2838 pModeData->uGstType = PGM_TYPE_PAE;
2839 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2841 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2842
2843#ifdef VBOX_WITH_64_BITS_GUESTS
2844 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2845 pModeData->uShwType = PGM_TYPE_EPT;
2846 pModeData->uGstType = PGM_TYPE_AMD64;
2847 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2848 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2849 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2850#endif
2851 return VINF_SUCCESS;
2852}
2853
2854
2855/**
2856 * Switch to different (or relocated in the relocate case) mode data.
2857 *
2858 * @param pVM The VM handle.
2859 * @param pVCpu The VMCPU to operate on.
2860 * @param enmShw The the shadow paging mode.
2861 * @param enmGst The the guest paging mode.
2862 */
2863static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2864{
2865 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2866
2867 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2868 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2869
2870 /* shadow */
2871 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2872 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2873 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2874 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2875 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2876
2877 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2878 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2879
2880 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2881 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2882
2883
2884 /* guest */
2885 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2886 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2887 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2888 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2889 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2890 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2891 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2892 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2893 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2894 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2895 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2896 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2897
2898 /* both */
2899 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2900 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2901 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2902 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2903 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2904 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2905 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2906#ifdef VBOX_STRICT
2907 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2908#endif
2909 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2910 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2911
2912 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2913 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2914 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2915 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2916 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2917 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2918#ifdef VBOX_STRICT
2919 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2920#endif
2921 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2922 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2923
2924 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2925 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2926 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2927 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2928 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2929 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2930#ifdef VBOX_STRICT
2931 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2932#endif
2933 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2934 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2935}
2936
2937
2938/**
2939 * Calculates the shadow paging mode.
2940 *
2941 * @returns The shadow paging mode.
2942 * @param pVM VM handle.
2943 * @param enmGuestMode The guest mode.
2944 * @param enmHostMode The host mode.
2945 * @param enmShadowMode The current shadow mode.
2946 * @param penmSwitcher Where to store the switcher to use.
2947 * VMMSWITCHER_INVALID means no change.
2948 */
2949static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2950{
2951 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2952 switch (enmGuestMode)
2953 {
2954 /*
2955 * When switching to real or protected mode we don't change
2956 * anything since it's likely that we'll switch back pretty soon.
2957 *
2958 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2959 * and is supposed to determine which shadow paging and switcher to
2960 * use during init.
2961 */
2962 case PGMMODE_REAL:
2963 case PGMMODE_PROTECTED:
2964 if ( enmShadowMode != PGMMODE_INVALID
2965 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2966 break; /* (no change) */
2967
2968 switch (enmHostMode)
2969 {
2970 case SUPPAGINGMODE_32_BIT:
2971 case SUPPAGINGMODE_32_BIT_GLOBAL:
2972 enmShadowMode = PGMMODE_32_BIT;
2973 enmSwitcher = VMMSWITCHER_32_TO_32;
2974 break;
2975
2976 case SUPPAGINGMODE_PAE:
2977 case SUPPAGINGMODE_PAE_NX:
2978 case SUPPAGINGMODE_PAE_GLOBAL:
2979 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2980 enmShadowMode = PGMMODE_PAE;
2981 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2982#ifdef DEBUG_bird
2983 if (RTEnvExist("VBOX_32BIT"))
2984 {
2985 enmShadowMode = PGMMODE_32_BIT;
2986 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2987 }
2988#endif
2989 break;
2990
2991 case SUPPAGINGMODE_AMD64:
2992 case SUPPAGINGMODE_AMD64_GLOBAL:
2993 case SUPPAGINGMODE_AMD64_NX:
2994 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2995 enmShadowMode = PGMMODE_PAE;
2996 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2997#ifdef DEBUG_bird
2998 if (RTEnvExist("VBOX_32BIT"))
2999 {
3000 enmShadowMode = PGMMODE_32_BIT;
3001 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3002 }
3003#endif
3004 break;
3005
3006 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3007 }
3008 break;
3009
3010 case PGMMODE_32_BIT:
3011 switch (enmHostMode)
3012 {
3013 case SUPPAGINGMODE_32_BIT:
3014 case SUPPAGINGMODE_32_BIT_GLOBAL:
3015 enmShadowMode = PGMMODE_32_BIT;
3016 enmSwitcher = VMMSWITCHER_32_TO_32;
3017 break;
3018
3019 case SUPPAGINGMODE_PAE:
3020 case SUPPAGINGMODE_PAE_NX:
3021 case SUPPAGINGMODE_PAE_GLOBAL:
3022 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3023 enmShadowMode = PGMMODE_PAE;
3024 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3025#ifdef DEBUG_bird
3026 if (RTEnvExist("VBOX_32BIT"))
3027 {
3028 enmShadowMode = PGMMODE_32_BIT;
3029 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3030 }
3031#endif
3032 break;
3033
3034 case SUPPAGINGMODE_AMD64:
3035 case SUPPAGINGMODE_AMD64_GLOBAL:
3036 case SUPPAGINGMODE_AMD64_NX:
3037 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3038 enmShadowMode = PGMMODE_PAE;
3039 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3040#ifdef DEBUG_bird
3041 if (RTEnvExist("VBOX_32BIT"))
3042 {
3043 enmShadowMode = PGMMODE_32_BIT;
3044 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3045 }
3046#endif
3047 break;
3048
3049 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3050 }
3051 break;
3052
3053 case PGMMODE_PAE:
3054 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3055 switch (enmHostMode)
3056 {
3057 case SUPPAGINGMODE_32_BIT:
3058 case SUPPAGINGMODE_32_BIT_GLOBAL:
3059 enmShadowMode = PGMMODE_PAE;
3060 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3061 break;
3062
3063 case SUPPAGINGMODE_PAE:
3064 case SUPPAGINGMODE_PAE_NX:
3065 case SUPPAGINGMODE_PAE_GLOBAL:
3066 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3067 enmShadowMode = PGMMODE_PAE;
3068 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3069 break;
3070
3071 case SUPPAGINGMODE_AMD64:
3072 case SUPPAGINGMODE_AMD64_GLOBAL:
3073 case SUPPAGINGMODE_AMD64_NX:
3074 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3075 enmShadowMode = PGMMODE_PAE;
3076 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3077 break;
3078
3079 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3080 }
3081 break;
3082
3083 case PGMMODE_AMD64:
3084 case PGMMODE_AMD64_NX:
3085 switch (enmHostMode)
3086 {
3087 case SUPPAGINGMODE_32_BIT:
3088 case SUPPAGINGMODE_32_BIT_GLOBAL:
3089 enmShadowMode = PGMMODE_AMD64;
3090 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3091 break;
3092
3093 case SUPPAGINGMODE_PAE:
3094 case SUPPAGINGMODE_PAE_NX:
3095 case SUPPAGINGMODE_PAE_GLOBAL:
3096 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3097 enmShadowMode = PGMMODE_AMD64;
3098 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3099 break;
3100
3101 case SUPPAGINGMODE_AMD64:
3102 case SUPPAGINGMODE_AMD64_GLOBAL:
3103 case SUPPAGINGMODE_AMD64_NX:
3104 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3105 enmShadowMode = PGMMODE_AMD64;
3106 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3107 break;
3108
3109 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3110 }
3111 break;
3112
3113
3114 default:
3115 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3116 *penmSwitcher = VMMSWITCHER_INVALID;
3117 return PGMMODE_INVALID;
3118 }
3119 /* Override the shadow mode is nested paging is active. */
3120 if (HWACCMIsNestedPagingActive(pVM))
3121 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3122
3123 *penmSwitcher = enmSwitcher;
3124 return enmShadowMode;
3125}
3126
3127
3128/**
3129 * Performs the actual mode change.
3130 * This is called by PGMChangeMode and pgmR3InitPaging().
3131 *
3132 * @returns VBox status code. May suspend or power off the VM on error, but this
3133 * will trigger using FFs and not status codes.
3134 *
3135 * @param pVM VM handle.
3136 * @param pVCpu The VMCPU to operate on.
3137 * @param enmGuestMode The new guest mode. This is assumed to be different from
3138 * the current mode.
3139 */
3140VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3141{
3142 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3143 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3144
3145 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3146 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3147
3148 /*
3149 * Calc the shadow mode and switcher.
3150 */
3151 VMMSWITCHER enmSwitcher;
3152 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3153
3154#ifdef VBOX_WITH_RAW_MODE
3155 if (enmSwitcher != VMMSWITCHER_INVALID)
3156 {
3157 /*
3158 * Select new switcher.
3159 */
3160 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3161 if (RT_FAILURE(rc))
3162 {
3163 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3164 return rc;
3165 }
3166 }
3167#endif
3168
3169 /*
3170 * Exit old mode(s).
3171 */
3172#if HC_ARCH_BITS == 32
3173 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3174 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3175 && enmShadowMode == PGMMODE_NESTED);
3176#else
3177 const bool fForceShwEnterExit = false;
3178#endif
3179 /* shadow */
3180 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3181 || fForceShwEnterExit)
3182 {
3183 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3184 if (PGM_SHW_PFN(Exit, pVCpu))
3185 {
3186 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3187 if (RT_FAILURE(rc))
3188 {
3189 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3190 return rc;
3191 }
3192 }
3193
3194 }
3195 else
3196 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3197
3198 /* guest */
3199 if (PGM_GST_PFN(Exit, pVCpu))
3200 {
3201 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3202 if (RT_FAILURE(rc))
3203 {
3204 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3205 return rc;
3206 }
3207 }
3208
3209 /*
3210 * Load new paging mode data.
3211 */
3212 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3213
3214 /*
3215 * Enter new shadow mode (if changed).
3216 */
3217 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3218 || fForceShwEnterExit)
3219 {
3220 int rc;
3221 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3222 switch (enmShadowMode)
3223 {
3224 case PGMMODE_32_BIT:
3225 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3226 break;
3227 case PGMMODE_PAE:
3228 case PGMMODE_PAE_NX:
3229 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3230 break;
3231 case PGMMODE_AMD64:
3232 case PGMMODE_AMD64_NX:
3233 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3234 break;
3235 case PGMMODE_NESTED:
3236 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3237 break;
3238 case PGMMODE_EPT:
3239 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3240 break;
3241 case PGMMODE_REAL:
3242 case PGMMODE_PROTECTED:
3243 default:
3244 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3245 return VERR_INTERNAL_ERROR;
3246 }
3247 if (RT_FAILURE(rc))
3248 {
3249 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3250 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3251 return rc;
3252 }
3253 }
3254
3255 /*
3256 * Always flag the necessary updates
3257 */
3258 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3259
3260 /*
3261 * Enter the new guest and shadow+guest modes.
3262 */
3263 int rc = -1;
3264 int rc2 = -1;
3265 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3266 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3267 switch (enmGuestMode)
3268 {
3269 case PGMMODE_REAL:
3270 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3271 switch (pVCpu->pgm.s.enmShadowMode)
3272 {
3273 case PGMMODE_32_BIT:
3274 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3275 break;
3276 case PGMMODE_PAE:
3277 case PGMMODE_PAE_NX:
3278 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3279 break;
3280 case PGMMODE_NESTED:
3281 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3282 break;
3283 case PGMMODE_EPT:
3284 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3285 break;
3286 case PGMMODE_AMD64:
3287 case PGMMODE_AMD64_NX:
3288 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3289 default: AssertFailed(); break;
3290 }
3291 break;
3292
3293 case PGMMODE_PROTECTED:
3294 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3295 switch (pVCpu->pgm.s.enmShadowMode)
3296 {
3297 case PGMMODE_32_BIT:
3298 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3299 break;
3300 case PGMMODE_PAE:
3301 case PGMMODE_PAE_NX:
3302 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3303 break;
3304 case PGMMODE_NESTED:
3305 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3306 break;
3307 case PGMMODE_EPT:
3308 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3309 break;
3310 case PGMMODE_AMD64:
3311 case PGMMODE_AMD64_NX:
3312 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3313 default: AssertFailed(); break;
3314 }
3315 break;
3316
3317 case PGMMODE_32_BIT:
3318 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3319 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3320 switch (pVCpu->pgm.s.enmShadowMode)
3321 {
3322 case PGMMODE_32_BIT:
3323 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3324 break;
3325 case PGMMODE_PAE:
3326 case PGMMODE_PAE_NX:
3327 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3328 break;
3329 case PGMMODE_NESTED:
3330 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3331 break;
3332 case PGMMODE_EPT:
3333 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3334 break;
3335 case PGMMODE_AMD64:
3336 case PGMMODE_AMD64_NX:
3337 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3338 default: AssertFailed(); break;
3339 }
3340 break;
3341
3342 case PGMMODE_PAE_NX:
3343 case PGMMODE_PAE:
3344 {
3345 uint32_t u32Dummy, u32Features;
3346
3347 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3348 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3349 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3350 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3351
3352 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3353 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3354 switch (pVCpu->pgm.s.enmShadowMode)
3355 {
3356 case PGMMODE_PAE:
3357 case PGMMODE_PAE_NX:
3358 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3359 break;
3360 case PGMMODE_NESTED:
3361 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3362 break;
3363 case PGMMODE_EPT:
3364 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3365 break;
3366 case PGMMODE_32_BIT:
3367 case PGMMODE_AMD64:
3368 case PGMMODE_AMD64_NX:
3369 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3370 default: AssertFailed(); break;
3371 }
3372 break;
3373 }
3374
3375#ifdef VBOX_WITH_64_BITS_GUESTS
3376 case PGMMODE_AMD64_NX:
3377 case PGMMODE_AMD64:
3378 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3379 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3380 switch (pVCpu->pgm.s.enmShadowMode)
3381 {
3382 case PGMMODE_AMD64:
3383 case PGMMODE_AMD64_NX:
3384 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3385 break;
3386 case PGMMODE_NESTED:
3387 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3388 break;
3389 case PGMMODE_EPT:
3390 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3391 break;
3392 case PGMMODE_32_BIT:
3393 case PGMMODE_PAE:
3394 case PGMMODE_PAE_NX:
3395 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3396 default: AssertFailed(); break;
3397 }
3398 break;
3399#endif
3400
3401 default:
3402 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3403 rc = VERR_NOT_IMPLEMENTED;
3404 break;
3405 }
3406
3407 /* status codes. */
3408 AssertRC(rc);
3409 AssertRC(rc2);
3410 if (RT_SUCCESS(rc))
3411 {
3412 rc = rc2;
3413 if (RT_SUCCESS(rc)) /* no informational status codes. */
3414 rc = VINF_SUCCESS;
3415 }
3416
3417 /* Notify HWACCM as well. */
3418 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3419 return rc;
3420}
3421
3422
3423/**
3424 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3425 *
3426 * @returns VBox status code, fully asserted.
3427 * @param pVM The VM handle.
3428 * @param pVCpu The VMCPU to operate on.
3429 */
3430int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3431{
3432 /* Unmap the old CR3 value before flushing everything. */
3433 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3434 AssertRC(rc);
3435
3436 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3437 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3438 AssertRC(rc);
3439 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3440 return rc;
3441}
3442
3443
3444/**
3445 * Called by pgmPoolFlushAllInt after flushing the pool.
3446 *
3447 * @returns VBox status code, fully asserted.
3448 * @param pVM The VM handle.
3449 * @param pVCpu The VMCPU to operate on.
3450 */
3451int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3452{
3453 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3454 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3455 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3456 AssertRCReturn(rc, rc);
3457 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3458
3459 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3460 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3461 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3462 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3463 return rc;
3464}
3465
3466
3467/**
3468 * Dumps a PAE shadow page table.
3469 *
3470 * @returns VBox status code (VINF_SUCCESS).
3471 * @param pVM The VM handle.
3472 * @param pPT Pointer to the page table.
3473 * @param u64Address The virtual address of the page table starts.
3474 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3475 * @param cMaxDepth The maxium depth.
3476 * @param pHlp Pointer to the output functions.
3477 */
3478static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3479{
3480 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3481 {
3482 X86PTEPAE Pte = pPT->a[i];
3483 if (Pte.n.u1Present)
3484 {
3485 pHlp->pfnPrintf(pHlp,
3486 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3487 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3488 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3489 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3490 Pte.n.u1Write ? 'W' : 'R',
3491 Pte.n.u1User ? 'U' : 'S',
3492 Pte.n.u1Accessed ? 'A' : '-',
3493 Pte.n.u1Dirty ? 'D' : '-',
3494 Pte.n.u1Global ? 'G' : '-',
3495 Pte.n.u1WriteThru ? "WT" : "--",
3496 Pte.n.u1CacheDisable? "CD" : "--",
3497 Pte.n.u1PAT ? "AT" : "--",
3498 Pte.n.u1NoExecute ? "NX" : "--",
3499 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3500 Pte.u & RT_BIT(10) ? '1' : '0',
3501 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3502 Pte.u & X86_PTE_PAE_PG_MASK);
3503 }
3504 }
3505 return VINF_SUCCESS;
3506}
3507
3508
3509/**
3510 * Dumps a PAE shadow page directory table.
3511 *
3512 * @returns VBox status code (VINF_SUCCESS).
3513 * @param pVM The VM handle.
3514 * @param HCPhys The physical address of the page directory table.
3515 * @param u64Address The virtual address of the page table starts.
3516 * @param cr4 The CR4, PSE is currently used.
3517 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3518 * @param cMaxDepth The maxium depth.
3519 * @param pHlp Pointer to the output functions.
3520 */
3521static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3522{
3523 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3524 if (!pPD)
3525 {
3526 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3527 fLongMode ? 16 : 8, u64Address, HCPhys);
3528 return VERR_INVALID_PARAMETER;
3529 }
3530 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3531
3532 int rc = VINF_SUCCESS;
3533 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3534 {
3535 X86PDEPAE Pde = pPD->a[i];
3536 if (Pde.n.u1Present)
3537 {
3538 if (fBigPagesSupported && Pde.b.u1Size)
3539 pHlp->pfnPrintf(pHlp,
3540 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3541 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3542 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3543 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3544 Pde.b.u1Write ? 'W' : 'R',
3545 Pde.b.u1User ? 'U' : 'S',
3546 Pde.b.u1Accessed ? 'A' : '-',
3547 Pde.b.u1Dirty ? 'D' : '-',
3548 Pde.b.u1Global ? 'G' : '-',
3549 Pde.b.u1WriteThru ? "WT" : "--",
3550 Pde.b.u1CacheDisable? "CD" : "--",
3551 Pde.b.u1PAT ? "AT" : "--",
3552 Pde.b.u1NoExecute ? "NX" : "--",
3553 Pde.u & RT_BIT_64(9) ? '1' : '0',
3554 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3555 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3556 Pde.u & X86_PDE_PAE_PG_MASK);
3557 else
3558 {
3559 pHlp->pfnPrintf(pHlp,
3560 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3561 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3562 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3563 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3564 Pde.n.u1Write ? 'W' : 'R',
3565 Pde.n.u1User ? 'U' : 'S',
3566 Pde.n.u1Accessed ? 'A' : '-',
3567 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3568 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3569 Pde.n.u1WriteThru ? "WT" : "--",
3570 Pde.n.u1CacheDisable? "CD" : "--",
3571 Pde.n.u1NoExecute ? "NX" : "--",
3572 Pde.u & RT_BIT_64(9) ? '1' : '0',
3573 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3574 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3575 Pde.u & X86_PDE_PAE_PG_MASK);
3576 if (cMaxDepth >= 1)
3577 {
3578 /** @todo what about using the page pool for mapping PTs? */
3579 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3580 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3581 PX86PTPAE pPT = NULL;
3582 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3583 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3584 else
3585 {
3586 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3587 {
3588 uint64_t off = u64AddressPT - pMap->GCPtr;
3589 if (off < pMap->cb)
3590 {
3591 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3592 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3593 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3594 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3595 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3596 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3597 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3598 }
3599 }
3600 }
3601 int rc2 = VERR_INVALID_PARAMETER;
3602 if (pPT)
3603 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3604 else
3605 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3606 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3607 if (rc2 < rc && RT_SUCCESS(rc))
3608 rc = rc2;
3609 }
3610 }
3611 }
3612 }
3613 return rc;
3614}
3615
3616
3617/**
3618 * Dumps a PAE shadow page directory pointer table.
3619 *
3620 * @returns VBox status code (VINF_SUCCESS).
3621 * @param pVM The VM handle.
3622 * @param HCPhys The physical address of the page directory pointer table.
3623 * @param u64Address The virtual address of the page table starts.
3624 * @param cr4 The CR4, PSE is currently used.
3625 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3626 * @param cMaxDepth The maxium depth.
3627 * @param pHlp Pointer to the output functions.
3628 */
3629static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3630{
3631 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3632 if (!pPDPT)
3633 {
3634 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3635 fLongMode ? 16 : 8, u64Address, HCPhys);
3636 return VERR_INVALID_PARAMETER;
3637 }
3638
3639 int rc = VINF_SUCCESS;
3640 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3641 for (unsigned i = 0; i < c; i++)
3642 {
3643 X86PDPE Pdpe = pPDPT->a[i];
3644 if (Pdpe.n.u1Present)
3645 {
3646 if (fLongMode)
3647 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3648 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3649 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3650 Pdpe.lm.u1Write ? 'W' : 'R',
3651 Pdpe.lm.u1User ? 'U' : 'S',
3652 Pdpe.lm.u1Accessed ? 'A' : '-',
3653 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3654 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3655 Pdpe.lm.u1WriteThru ? "WT" : "--",
3656 Pdpe.lm.u1CacheDisable? "CD" : "--",
3657 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3658 Pdpe.lm.u1NoExecute ? "NX" : "--",
3659 Pdpe.u & RT_BIT(9) ? '1' : '0',
3660 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3661 Pdpe.u & RT_BIT(11) ? '1' : '0',
3662 Pdpe.u & X86_PDPE_PG_MASK);
3663 else
3664 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3665 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3666 i << X86_PDPT_SHIFT,
3667 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3668 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3669 Pdpe.n.u1WriteThru ? "WT" : "--",
3670 Pdpe.n.u1CacheDisable? "CD" : "--",
3671 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3672 Pdpe.u & RT_BIT(9) ? '1' : '0',
3673 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3674 Pdpe.u & RT_BIT(11) ? '1' : '0',
3675 Pdpe.u & X86_PDPE_PG_MASK);
3676 if (cMaxDepth >= 1)
3677 {
3678 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3679 cr4, fLongMode, cMaxDepth - 1, pHlp);
3680 if (rc2 < rc && RT_SUCCESS(rc))
3681 rc = rc2;
3682 }
3683 }
3684 }
3685 return rc;
3686}
3687
3688
3689/**
3690 * Dumps a 32-bit shadow page table.
3691 *
3692 * @returns VBox status code (VINF_SUCCESS).
3693 * @param pVM The VM handle.
3694 * @param HCPhys The physical address of the table.
3695 * @param cr4 The CR4, PSE is currently used.
3696 * @param cMaxDepth The maxium depth.
3697 * @param pHlp Pointer to the output functions.
3698 */
3699static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3700{
3701 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3702 if (!pPML4)
3703 {
3704 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3705 return VERR_INVALID_PARAMETER;
3706 }
3707
3708 int rc = VINF_SUCCESS;
3709 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3710 {
3711 X86PML4E Pml4e = pPML4->a[i];
3712 if (Pml4e.n.u1Present)
3713 {
3714 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3715 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3716 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3717 u64Address,
3718 Pml4e.n.u1Write ? 'W' : 'R',
3719 Pml4e.n.u1User ? 'U' : 'S',
3720 Pml4e.n.u1Accessed ? 'A' : '-',
3721 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3722 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3723 Pml4e.n.u1WriteThru ? "WT" : "--",
3724 Pml4e.n.u1CacheDisable? "CD" : "--",
3725 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3726 Pml4e.n.u1NoExecute ? "NX" : "--",
3727 Pml4e.u & RT_BIT(9) ? '1' : '0',
3728 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3729 Pml4e.u & RT_BIT(11) ? '1' : '0',
3730 Pml4e.u & X86_PML4E_PG_MASK);
3731
3732 if (cMaxDepth >= 1)
3733 {
3734 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3735 if (rc2 < rc && RT_SUCCESS(rc))
3736 rc = rc2;
3737 }
3738 }
3739 }
3740 return rc;
3741}
3742
3743
3744/**
3745 * Dumps a 32-bit shadow page table.
3746 *
3747 * @returns VBox status code (VINF_SUCCESS).
3748 * @param pVM The VM handle.
3749 * @param pPT Pointer to the page table.
3750 * @param u32Address The virtual address this table starts at.
3751 * @param pHlp Pointer to the output functions.
3752 */
3753int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3754{
3755 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3756 {
3757 X86PTE Pte = pPT->a[i];
3758 if (Pte.n.u1Present)
3759 {
3760 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3761 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3762 u32Address + (i << X86_PT_SHIFT),
3763 Pte.n.u1Write ? 'W' : 'R',
3764 Pte.n.u1User ? 'U' : 'S',
3765 Pte.n.u1Accessed ? 'A' : '-',
3766 Pte.n.u1Dirty ? 'D' : '-',
3767 Pte.n.u1Global ? 'G' : '-',
3768 Pte.n.u1WriteThru ? "WT" : "--",
3769 Pte.n.u1CacheDisable? "CD" : "--",
3770 Pte.n.u1PAT ? "AT" : "--",
3771 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3772 Pte.u & RT_BIT(10) ? '1' : '0',
3773 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3774 Pte.u & X86_PDE_PG_MASK);
3775 }
3776 }
3777 return VINF_SUCCESS;
3778}
3779
3780
3781/**
3782 * Dumps a 32-bit shadow page directory and page tables.
3783 *
3784 * @returns VBox status code (VINF_SUCCESS).
3785 * @param pVM The VM handle.
3786 * @param cr3 The root of the hierarchy.
3787 * @param cr4 The CR4, PSE is currently used.
3788 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3789 * @param pHlp Pointer to the output functions.
3790 */
3791int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3792{
3793 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3794 if (!pPD)
3795 {
3796 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3797 return VERR_INVALID_PARAMETER;
3798 }
3799
3800 int rc = VINF_SUCCESS;
3801 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3802 {
3803 X86PDE Pde = pPD->a[i];
3804 if (Pde.n.u1Present)
3805 {
3806 const uint32_t u32Address = i << X86_PD_SHIFT;
3807 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3808 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3809 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3810 u32Address,
3811 Pde.b.u1Write ? 'W' : 'R',
3812 Pde.b.u1User ? 'U' : 'S',
3813 Pde.b.u1Accessed ? 'A' : '-',
3814 Pde.b.u1Dirty ? 'D' : '-',
3815 Pde.b.u1Global ? 'G' : '-',
3816 Pde.b.u1WriteThru ? "WT" : "--",
3817 Pde.b.u1CacheDisable? "CD" : "--",
3818 Pde.b.u1PAT ? "AT" : "--",
3819 Pde.u & RT_BIT_64(9) ? '1' : '0',
3820 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3821 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3822 Pde.u & X86_PDE4M_PG_MASK);
3823 else
3824 {
3825 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3826 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3827 u32Address,
3828 Pde.n.u1Write ? 'W' : 'R',
3829 Pde.n.u1User ? 'U' : 'S',
3830 Pde.n.u1Accessed ? 'A' : '-',
3831 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3832 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3833 Pde.n.u1WriteThru ? "WT" : "--",
3834 Pde.n.u1CacheDisable? "CD" : "--",
3835 Pde.u & RT_BIT_64(9) ? '1' : '0',
3836 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3837 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3838 Pde.u & X86_PDE_PG_MASK);
3839 if (cMaxDepth >= 1)
3840 {
3841 /** @todo what about using the page pool for mapping PTs? */
3842 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3843 PX86PT pPT = NULL;
3844 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3845 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3846 else
3847 {
3848 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3849 if (u32Address - pMap->GCPtr < pMap->cb)
3850 {
3851 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3852 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3853 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3854 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3855 pPT = pMap->aPTs[iPDE].pPTR3;
3856 }
3857 }
3858 int rc2 = VERR_INVALID_PARAMETER;
3859 if (pPT)
3860 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3861 else
3862 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3863 if (rc2 < rc && RT_SUCCESS(rc))
3864 rc = rc2;
3865 }
3866 }
3867 }
3868 }
3869
3870 return rc;
3871}
3872
3873
3874/**
3875 * Dumps a 32-bit shadow page table.
3876 *
3877 * @returns VBox status code (VINF_SUCCESS).
3878 * @param pVM The VM handle.
3879 * @param pPT Pointer to the page table.
3880 * @param u32Address The virtual address this table starts at.
3881 * @param PhysSearch Address to search for.
3882 */
3883int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3884{
3885 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3886 {
3887 X86PTE Pte = pPT->a[i];
3888 if (Pte.n.u1Present)
3889 {
3890 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3891 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3892 u32Address + (i << X86_PT_SHIFT),
3893 Pte.n.u1Write ? 'W' : 'R',
3894 Pte.n.u1User ? 'U' : 'S',
3895 Pte.n.u1Accessed ? 'A' : '-',
3896 Pte.n.u1Dirty ? 'D' : '-',
3897 Pte.n.u1Global ? 'G' : '-',
3898 Pte.n.u1WriteThru ? "WT" : "--",
3899 Pte.n.u1CacheDisable? "CD" : "--",
3900 Pte.n.u1PAT ? "AT" : "--",
3901 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3902 Pte.u & RT_BIT(10) ? '1' : '0',
3903 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3904 Pte.u & X86_PDE_PG_MASK));
3905
3906 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3907 {
3908 uint64_t fPageShw = 0;
3909 RTHCPHYS pPhysHC = 0;
3910
3911 /** @todo SMP support!! */
3912 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3913 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3914 }
3915 }
3916 }
3917 return VINF_SUCCESS;
3918}
3919
3920
3921/**
3922 * Dumps a 32-bit guest page directory and page tables.
3923 *
3924 * @returns VBox status code (VINF_SUCCESS).
3925 * @param pVM The VM handle.
3926 * @param cr3 The root of the hierarchy.
3927 * @param cr4 The CR4, PSE is currently used.
3928 * @param PhysSearch Address to search for.
3929 */
3930VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3931{
3932 bool fLongMode = false;
3933 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3934 PX86PD pPD = 0;
3935 PGMPAGEMAPLOCK LockCr3;
3936
3937 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, cr3 & X86_CR3_PAGE_MASK, (const void **)&pPD, &LockCr3);
3938 if ( RT_FAILURE(rc)
3939 || !pPD)
3940 {
3941 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3942 return VERR_INVALID_PARAMETER;
3943 }
3944
3945 Log(("cr3=%08x cr4=%08x%s\n"
3946 "%-*s P - Present\n"
3947 "%-*s | R/W - Read (0) / Write (1)\n"
3948 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3949 "%-*s | | | A - Accessed\n"
3950 "%-*s | | | | D - Dirty\n"
3951 "%-*s | | | | | G - Global\n"
3952 "%-*s | | | | | | WT - Write thru\n"
3953 "%-*s | | | | | | | CD - Cache disable\n"
3954 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3955 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3956 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3957 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3958 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3959 "%-*s Level | | | | | | | | | | | | Page\n"
3960 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3961 - W U - - - -- -- -- -- -- 010 */
3962 , cr3, cr4, fLongMode ? " Long Mode" : "",
3963 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3964 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3965
3966 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3967 {
3968 X86PDE Pde = pPD->a[i];
3969 if (Pde.n.u1Present)
3970 {
3971 const uint32_t u32Address = i << X86_PD_SHIFT;
3972
3973 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3974 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3975 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3976 u32Address,
3977 Pde.b.u1Write ? 'W' : 'R',
3978 Pde.b.u1User ? 'U' : 'S',
3979 Pde.b.u1Accessed ? 'A' : '-',
3980 Pde.b.u1Dirty ? 'D' : '-',
3981 Pde.b.u1Global ? 'G' : '-',
3982 Pde.b.u1WriteThru ? "WT" : "--",
3983 Pde.b.u1CacheDisable? "CD" : "--",
3984 Pde.b.u1PAT ? "AT" : "--",
3985 Pde.u & RT_BIT(9) ? '1' : '0',
3986 Pde.u & RT_BIT(10) ? '1' : '0',
3987 Pde.u & RT_BIT(11) ? '1' : '0',
3988 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3989 /** @todo PhysSearch */
3990 else
3991 {
3992 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3993 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3994 u32Address,
3995 Pde.n.u1Write ? 'W' : 'R',
3996 Pde.n.u1User ? 'U' : 'S',
3997 Pde.n.u1Accessed ? 'A' : '-',
3998 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3999 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4000 Pde.n.u1WriteThru ? "WT" : "--",
4001 Pde.n.u1CacheDisable? "CD" : "--",
4002 Pde.u & RT_BIT(9) ? '1' : '0',
4003 Pde.u & RT_BIT(10) ? '1' : '0',
4004 Pde.u & RT_BIT(11) ? '1' : '0',
4005 Pde.u & X86_PDE_PG_MASK));
4006 ////if (cMaxDepth >= 1)
4007 {
4008 /** @todo what about using the page pool for mapping PTs? */
4009 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4010 PX86PT pPT = NULL;
4011 PGMPAGEMAPLOCK LockPT;
4012
4013 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, (const void **)&pPT, &LockPT);
4014
4015 int rc2 = VERR_INVALID_PARAMETER;
4016 if (pPT)
4017 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4018 else
4019 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4020
4021 if (rc == VINF_SUCCESS)
4022 PGMPhysReleasePageMappingLock(pVM, &LockPT);
4023
4024 if (rc2 < rc && RT_SUCCESS(rc))
4025 rc = rc2;
4026 }
4027 }
4028 }
4029 }
4030 PGMPhysReleasePageMappingLock(pVM, &LockCr3);
4031 return rc;
4032}
4033
4034
4035/**
4036 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4037 *
4038 * @returns VBox status code (VINF_SUCCESS).
4039 * @param pVM The VM handle.
4040 * @param cr3 The root of the hierarchy.
4041 * @param cr4 The cr4, only PAE and PSE is currently used.
4042 * @param fLongMode Set if long mode, false if not long mode.
4043 * @param cMaxDepth Number of levels to dump.
4044 * @param pHlp Pointer to the output functions.
4045 */
4046VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4047{
4048 if (!pHlp)
4049 pHlp = DBGFR3InfoLogHlp();
4050 if (!cMaxDepth)
4051 return VINF_SUCCESS;
4052 const unsigned cch = fLongMode ? 16 : 8;
4053 pHlp->pfnPrintf(pHlp,
4054 "cr3=%08x cr4=%08x%s\n"
4055 "%-*s P - Present\n"
4056 "%-*s | R/W - Read (0) / Write (1)\n"
4057 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4058 "%-*s | | | A - Accessed\n"
4059 "%-*s | | | | D - Dirty\n"
4060 "%-*s | | | | | G - Global\n"
4061 "%-*s | | | | | | WT - Write thru\n"
4062 "%-*s | | | | | | | CD - Cache disable\n"
4063 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4064 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4065 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4066 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4067 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4068 "%-*s Level | | | | | | | | | | | | Page\n"
4069 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4070 - W U - - - -- -- -- -- -- 010 */
4071 , cr3, cr4, fLongMode ? " Long Mode" : "",
4072 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4073 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4074 if (cr4 & X86_CR4_PAE)
4075 {
4076 if (fLongMode)
4077 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4078 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4079 }
4080 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4081}
4082
4083#ifdef VBOX_WITH_DEBUGGER
4084
4085/**
4086 * The '.pgmram' command.
4087 *
4088 * @returns VBox status.
4089 * @param pCmd Pointer to the command descriptor (as registered).
4090 * @param pCmdHlp Pointer to command helper functions.
4091 * @param pVM Pointer to the current VM (if any).
4092 * @param paArgs Pointer to (readonly) array of arguments.
4093 * @param cArgs Number of arguments in the array.
4094 */
4095static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4096{
4097 /*
4098 * Validate input.
4099 */
4100 if (!pVM)
4101 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4102 if (!pVM->pgm.s.pRamRangesRC)
4103 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4104
4105 /*
4106 * Dump the ranges.
4107 */
4108 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4109 PPGMRAMRANGE pRam;
4110 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4111 {
4112 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4113 "%RGp - %RGp %p\n",
4114 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4115 if (RT_FAILURE(rc))
4116 return rc;
4117 }
4118
4119 return VINF_SUCCESS;
4120}
4121
4122
4123/**
4124 * The '.pgmerror' and '.pgmerroroff' commands.
4125 *
4126 * @returns VBox status.
4127 * @param pCmd Pointer to the command descriptor (as registered).
4128 * @param pCmdHlp Pointer to command helper functions.
4129 * @param pVM Pointer to the current VM (if any).
4130 * @param paArgs Pointer to (readonly) array of arguments.
4131 * @param cArgs Number of arguments in the array.
4132 */
4133static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4134{
4135 /*
4136 * Validate input.
4137 */
4138 if (!pVM)
4139 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4140 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4141 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4142
4143 if (!cArgs)
4144 {
4145 /*
4146 * Print the list of error injection locations with status.
4147 */
4148 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4149 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4150 }
4151 else
4152 {
4153
4154 /*
4155 * String switch on where to inject the error.
4156 */
4157 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4158 const char *pszWhere = paArgs[0].u.pszString;
4159 if (!strcmp(pszWhere, "handy"))
4160 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4161 else
4162 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4163 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4164 }
4165 return VINF_SUCCESS;
4166}
4167
4168
4169/**
4170 * The '.pgmsync' command.
4171 *
4172 * @returns VBox status.
4173 * @param pCmd Pointer to the command descriptor (as registered).
4174 * @param pCmdHlp Pointer to command helper functions.
4175 * @param pVM Pointer to the current VM (if any).
4176 * @param paArgs Pointer to (readonly) array of arguments.
4177 * @param cArgs Number of arguments in the array.
4178 */
4179static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4180{
4181 /** @todo SMP support */
4182 PVMCPU pVCpu = &pVM->aCpus[0];
4183
4184 /*
4185 * Validate input.
4186 */
4187 if (!pVM)
4188 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4189
4190 /*
4191 * Force page directory sync.
4192 */
4193 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4194
4195 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4196 if (RT_FAILURE(rc))
4197 return rc;
4198
4199 return VINF_SUCCESS;
4200}
4201
4202
4203#ifdef VBOX_STRICT
4204/**
4205 * The '.pgmassertcr3' command.
4206 *
4207 * @returns VBox status.
4208 * @param pCmd Pointer to the command descriptor (as registered).
4209 * @param pCmdHlp Pointer to command helper functions.
4210 * @param pVM Pointer to the current VM (if any).
4211 * @param paArgs Pointer to (readonly) array of arguments.
4212 * @param cArgs Number of arguments in the array.
4213 */
4214static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4215{
4216 /** @todo SMP support!! */
4217 PVMCPU pVCpu = &pVM->aCpus[0];
4218
4219 /*
4220 * Validate input.
4221 */
4222 if (!pVM)
4223 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4224
4225 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4226 if (RT_FAILURE(rc))
4227 return rc;
4228
4229 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4230
4231 return VINF_SUCCESS;
4232}
4233#endif /* VBOX_STRICT */
4234
4235
4236/**
4237 * The '.pgmsyncalways' command.
4238 *
4239 * @returns VBox status.
4240 * @param pCmd Pointer to the command descriptor (as registered).
4241 * @param pCmdHlp Pointer to command helper functions.
4242 * @param pVM Pointer to the current VM (if any).
4243 * @param paArgs Pointer to (readonly) array of arguments.
4244 * @param cArgs Number of arguments in the array.
4245 */
4246static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4247{
4248 /** @todo SMP support!! */
4249 PVMCPU pVCpu = &pVM->aCpus[0];
4250
4251 /*
4252 * Validate input.
4253 */
4254 if (!pVM)
4255 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4256
4257 /*
4258 * Force page directory sync.
4259 */
4260 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4261 {
4262 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4263 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4264 }
4265 else
4266 {
4267 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4268 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4269 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4270 }
4271}
4272
4273
4274/**
4275 * The '.pgmsyncalways' command.
4276 *
4277 * @returns VBox status.
4278 * @param pCmd Pointer to the command descriptor (as registered).
4279 * @param pCmdHlp Pointer to command helper functions.
4280 * @param pVM Pointer to the current VM (if any).
4281 * @param paArgs Pointer to (readonly) array of arguments.
4282 * @param cArgs Number of arguments in the array.
4283 */
4284static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4285{
4286 /*
4287 * Validate input.
4288 */
4289 if (!pVM)
4290 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4291 if ( cArgs < 1
4292 || cArgs > 2
4293 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4294 || ( cArgs > 1
4295 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4296 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4297 if ( cArgs >= 2
4298 && strcmp(paArgs[1].u.pszString, "nozero"))
4299 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4300 bool fIncZeroPgs = cArgs < 2;
4301
4302 /*
4303 * Open the output file and get the ram parameters.
4304 */
4305 RTFILE hFile;
4306 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4307 if (RT_FAILURE(rc))
4308 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4309
4310 uint32_t cbRamHole = 0;
4311 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4312 uint64_t cbRam = 0;
4313 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4314 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4315
4316 /*
4317 * Dump the physical memory, page by page.
4318 */
4319 RTGCPHYS GCPhys = 0;
4320 char abZeroPg[PAGE_SIZE];
4321 RT_ZERO(abZeroPg);
4322
4323 pgmLock(pVM);
4324 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4325 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4326 pRam = pRam->pNextR3)
4327 {
4328 /* fill the gap */
4329 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4330 {
4331 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4332 {
4333 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4334 GCPhys += PAGE_SIZE;
4335 }
4336 }
4337
4338 PCPGMPAGE pPage = &pRam->aPages[0];
4339 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4340 {
4341 if ( PGM_PAGE_IS_ZERO(pPage)
4342 || PGM_PAGE_IS_BALLOONED(pPage))
4343 {
4344 if (fIncZeroPgs)
4345 {
4346 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4347 if (RT_FAILURE(rc))
4348 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4349 }
4350 }
4351 else
4352 {
4353 switch (PGM_PAGE_GET_TYPE(pPage))
4354 {
4355 case PGMPAGETYPE_RAM:
4356 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4357 case PGMPAGETYPE_ROM:
4358 case PGMPAGETYPE_MMIO2:
4359 {
4360 void const *pvPage;
4361 PGMPAGEMAPLOCK Lock;
4362 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4363 if (RT_SUCCESS(rc))
4364 {
4365 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4366 PGMPhysReleasePageMappingLock(pVM, &Lock);
4367 if (RT_FAILURE(rc))
4368 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4369 }
4370 else
4371 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4372 break;
4373 }
4374
4375 default:
4376 AssertFailed();
4377 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4378 case PGMPAGETYPE_MMIO:
4379 if (fIncZeroPgs)
4380 {
4381 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4382 if (RT_FAILURE(rc))
4383 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4384 }
4385 break;
4386 }
4387 }
4388
4389
4390 /* advance */
4391 GCPhys += PAGE_SIZE;
4392 pPage++;
4393 }
4394 }
4395 pgmUnlock(pVM);
4396
4397 RTFileClose(hFile);
4398 if (RT_SUCCESS(rc))
4399 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4400 return VINF_SUCCESS;
4401}
4402
4403#endif /* VBOX_WITH_DEBUGGER */
4404
4405/**
4406 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4407 */
4408typedef struct PGMCHECKINTARGS
4409{
4410 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4411 PPGMPHYSHANDLER pPrevPhys;
4412 PPGMVIRTHANDLER pPrevVirt;
4413 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4414 PVM pVM;
4415} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4416
4417/**
4418 * Validate a node in the physical handler tree.
4419 *
4420 * @returns 0 on if ok, other wise 1.
4421 * @param pNode The handler node.
4422 * @param pvUser pVM.
4423 */
4424static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4425{
4426 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4427 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4428 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4429 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4430 AssertReleaseMsg( !pArgs->pPrevPhys
4431 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4432 ("pPrevPhys=%p %RGp-%RGp %s\n"
4433 " pCur=%p %RGp-%RGp %s\n",
4434 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4435 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4436 pArgs->pPrevPhys = pCur;
4437 return 0;
4438}
4439
4440
4441/**
4442 * Validate a node in the virtual handler tree.
4443 *
4444 * @returns 0 on if ok, other wise 1.
4445 * @param pNode The handler node.
4446 * @param pvUser pVM.
4447 */
4448static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4449{
4450 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4451 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4452 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4453 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4454 AssertReleaseMsg( !pArgs->pPrevVirt
4455 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4456 ("pPrevVirt=%p %RGv-%RGv %s\n"
4457 " pCur=%p %RGv-%RGv %s\n",
4458 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4459 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4460 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4461 {
4462 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4463 ("pCur=%p %RGv-%RGv %s\n"
4464 "iPage=%d offVirtHandle=%#x expected %#x\n",
4465 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4466 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4467 }
4468 pArgs->pPrevVirt = pCur;
4469 return 0;
4470}
4471
4472
4473/**
4474 * Validate a node in the virtual handler tree.
4475 *
4476 * @returns 0 on if ok, other wise 1.
4477 * @param pNode The handler node.
4478 * @param pvUser pVM.
4479 */
4480static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4481{
4482 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4483 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4484 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4485 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4486 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4487 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4488 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4489 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4490 " pCur=%p %RGp-%RGp\n",
4491 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4492 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4493 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4494 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4495 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4496 " pCur=%p %RGp-%RGp\n",
4497 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4498 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4499 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4500 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4501 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4502 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4503 {
4504 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4505 for (;;)
4506 {
4507 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4508 AssertReleaseMsg(pCur2 != pCur,
4509 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4510 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4511 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4512 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4513 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4514 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4515 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4516 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4517 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4518 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4519 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4520 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4521 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4522 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4523 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4524 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4525 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4526 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4527 break;
4528 }
4529 }
4530
4531 pArgs->pPrevPhys2Virt = pCur;
4532 return 0;
4533}
4534
4535
4536/**
4537 * Perform an integrity check on the PGM component.
4538 *
4539 * @returns VINF_SUCCESS if everything is fine.
4540 * @returns VBox error status after asserting on integrity breach.
4541 * @param pVM The VM handle.
4542 */
4543VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4544{
4545 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4546
4547 /*
4548 * Check the trees.
4549 */
4550 int cErrors = 0;
4551 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4552 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4553 PGMCHECKINTARGS Args = s_LeftToRight;
4554 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4555 Args = s_RightToLeft;
4556 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4557 Args = s_LeftToRight;
4558 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4559 Args = s_RightToLeft;
4560 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4561 Args = s_LeftToRight;
4562 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4563 Args = s_RightToLeft;
4564 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4565 Args = s_LeftToRight;
4566 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4567 Args = s_RightToLeft;
4568 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4569
4570 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4571}
4572
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette