VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 31178

Last change on this file since 31178 was 31141, checked in by vboxsync, 15 years ago

PGM: If we get to the end of Trap0eHandler it doesn't mean it is a guest fault, but that RT_FAILURE(rc). ASSUMING this always means that it is time for a guru meditation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 224.9 KB
Line 
1/* $Id: PGM.cpp 31141 2010-07-27 13:39:34Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be refered to
30 * as "host paging", and GC refered to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570/*******************************************************************************
571* Header Files *
572*******************************************************************************/
573#define LOG_GROUP LOG_GROUP_PGM
574#include <VBox/dbgf.h>
575#include <VBox/pgm.h>
576#include <VBox/cpum.h>
577#include <VBox/iom.h>
578#include <VBox/sup.h>
579#include <VBox/mm.h>
580#include <VBox/em.h>
581#include <VBox/stam.h>
582#include <VBox/rem.h>
583#include <VBox/selm.h>
584#include <VBox/ssm.h>
585#include <VBox/hwaccm.h>
586#include "PGMInternal.h"
587#include <VBox/vm.h>
588#include "PGMInline.h"
589
590#include <VBox/dbg.h>
591#include <VBox/param.h>
592#include <VBox/err.h>
593
594#include <iprt/asm.h>
595#include <iprt/asm-amd64-x86.h>
596#include <iprt/assert.h>
597#include <iprt/env.h>
598#include <iprt/mem.h>
599#include <iprt/file.h>
600#include <iprt/string.h>
601#include <iprt/thread.h>
602
603
604/*******************************************************************************
605* Internal Functions *
606*******************************************************************************/
607static int pgmR3InitPaging(PVM pVM);
608static int pgmR3InitStats(PVM pVM);
609static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
610static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
613static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615#ifdef VBOX_STRICT
616static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
617#endif
618static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
619static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
620static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
621
622#ifdef VBOX_WITH_DEBUGGER
623/** @todo Convert the first two commands to 'info' items. */
624static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
625static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
626static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
627static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628# ifdef VBOX_STRICT
629static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630# endif
631static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632#endif
633
634
635/*******************************************************************************
636* Global Variables *
637*******************************************************************************/
638#ifdef VBOX_WITH_DEBUGGER
639/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
640static const DBGCVARDESC g_aPgmErrorArgs[] =
641{
642 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
643 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
644};
645
646static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
647{
648 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
649 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
650 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
651};
652
653/** Command descriptors. */
654static const DBGCCMD g_aCmds[] =
655{
656 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
657 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
658 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
659 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
660 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
661#ifdef VBOX_STRICT
662 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
663#endif
664#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
665 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
666 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
667#endif
668 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
669 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
670};
671#endif
672
673
674
675
676/*
677 * Shadow - 32-bit mode
678 */
679#define PGM_SHW_TYPE PGM_TYPE_32BIT
680#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
681#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
682#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
683#include "PGMShw.h"
684
685/* Guest - real mode */
686#define PGM_GST_TYPE PGM_TYPE_REAL
687#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
688#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
689#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
690#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
691#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
692#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
693#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
694#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
695#include "PGMBth.h"
696#include "PGMGstDefs.h"
697#include "PGMGst.h"
698#undef BTH_PGMPOOLKIND_PT_FOR_PT
699#undef BTH_PGMPOOLKIND_ROOT
700#undef PGM_BTH_NAME
701#undef PGM_BTH_NAME_RC_STR
702#undef PGM_BTH_NAME_R0_STR
703#undef PGM_GST_TYPE
704#undef PGM_GST_NAME
705#undef PGM_GST_NAME_RC_STR
706#undef PGM_GST_NAME_R0_STR
707
708/* Guest - protected mode */
709#define PGM_GST_TYPE PGM_TYPE_PROT
710#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
711#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
712#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
713#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
714#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
715#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
716#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
717#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
718#include "PGMBth.h"
719#include "PGMGstDefs.h"
720#include "PGMGst.h"
721#undef BTH_PGMPOOLKIND_PT_FOR_PT
722#undef BTH_PGMPOOLKIND_ROOT
723#undef PGM_BTH_NAME
724#undef PGM_BTH_NAME_RC_STR
725#undef PGM_BTH_NAME_R0_STR
726#undef PGM_GST_TYPE
727#undef PGM_GST_NAME
728#undef PGM_GST_NAME_RC_STR
729#undef PGM_GST_NAME_R0_STR
730
731/* Guest - 32-bit mode */
732#define PGM_GST_TYPE PGM_TYPE_32BIT
733#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
734#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
735#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
736#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
737#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
738#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
739#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
740#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
741#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
742#include "PGMBth.h"
743#include "PGMGstDefs.h"
744#include "PGMGst.h"
745#undef BTH_PGMPOOLKIND_PT_FOR_BIG
746#undef BTH_PGMPOOLKIND_PT_FOR_PT
747#undef BTH_PGMPOOLKIND_ROOT
748#undef PGM_BTH_NAME
749#undef PGM_BTH_NAME_RC_STR
750#undef PGM_BTH_NAME_R0_STR
751#undef PGM_GST_TYPE
752#undef PGM_GST_NAME
753#undef PGM_GST_NAME_RC_STR
754#undef PGM_GST_NAME_R0_STR
755
756#undef PGM_SHW_TYPE
757#undef PGM_SHW_NAME
758#undef PGM_SHW_NAME_RC_STR
759#undef PGM_SHW_NAME_R0_STR
760
761
762/*
763 * Shadow - PAE mode
764 */
765#define PGM_SHW_TYPE PGM_TYPE_PAE
766#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
767#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
768#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
769#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
770#include "PGMShw.h"
771
772/* Guest - real mode */
773#define PGM_GST_TYPE PGM_TYPE_REAL
774#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
775#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
776#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
777#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
778#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
779#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
780#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
781#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
782#include "PGMGstDefs.h"
783#include "PGMBth.h"
784#undef BTH_PGMPOOLKIND_PT_FOR_PT
785#undef BTH_PGMPOOLKIND_ROOT
786#undef PGM_BTH_NAME
787#undef PGM_BTH_NAME_RC_STR
788#undef PGM_BTH_NAME_R0_STR
789#undef PGM_GST_TYPE
790#undef PGM_GST_NAME
791#undef PGM_GST_NAME_RC_STR
792#undef PGM_GST_NAME_R0_STR
793
794/* Guest - protected mode */
795#define PGM_GST_TYPE PGM_TYPE_PROT
796#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
797#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
798#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
799#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
800#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
801#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
802#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
803#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
804#include "PGMGstDefs.h"
805#include "PGMBth.h"
806#undef BTH_PGMPOOLKIND_PT_FOR_PT
807#undef BTH_PGMPOOLKIND_ROOT
808#undef PGM_BTH_NAME
809#undef PGM_BTH_NAME_RC_STR
810#undef PGM_BTH_NAME_R0_STR
811#undef PGM_GST_TYPE
812#undef PGM_GST_NAME
813#undef PGM_GST_NAME_RC_STR
814#undef PGM_GST_NAME_R0_STR
815
816/* Guest - 32-bit mode */
817#define PGM_GST_TYPE PGM_TYPE_32BIT
818#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
819#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
820#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
821#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
822#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
823#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
824#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
825#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
826#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
827#include "PGMGstDefs.h"
828#include "PGMBth.h"
829#undef BTH_PGMPOOLKIND_PT_FOR_BIG
830#undef BTH_PGMPOOLKIND_PT_FOR_PT
831#undef BTH_PGMPOOLKIND_ROOT
832#undef PGM_BTH_NAME
833#undef PGM_BTH_NAME_RC_STR
834#undef PGM_BTH_NAME_R0_STR
835#undef PGM_GST_TYPE
836#undef PGM_GST_NAME
837#undef PGM_GST_NAME_RC_STR
838#undef PGM_GST_NAME_R0_STR
839
840/* Guest - PAE mode */
841#define PGM_GST_TYPE PGM_TYPE_PAE
842#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
843#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
844#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
845#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
846#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
847#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
848#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
849#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
850#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
851#include "PGMBth.h"
852#include "PGMGstDefs.h"
853#include "PGMGst.h"
854#undef BTH_PGMPOOLKIND_PT_FOR_BIG
855#undef BTH_PGMPOOLKIND_PT_FOR_PT
856#undef BTH_PGMPOOLKIND_ROOT
857#undef PGM_BTH_NAME
858#undef PGM_BTH_NAME_RC_STR
859#undef PGM_BTH_NAME_R0_STR
860#undef PGM_GST_TYPE
861#undef PGM_GST_NAME
862#undef PGM_GST_NAME_RC_STR
863#undef PGM_GST_NAME_R0_STR
864
865#undef PGM_SHW_TYPE
866#undef PGM_SHW_NAME
867#undef PGM_SHW_NAME_RC_STR
868#undef PGM_SHW_NAME_R0_STR
869
870
871/*
872 * Shadow - AMD64 mode
873 */
874#define PGM_SHW_TYPE PGM_TYPE_AMD64
875#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
876#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
877#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
878#include "PGMShw.h"
879
880#ifdef VBOX_WITH_64_BITS_GUESTS
881/* Guest - AMD64 mode */
882# define PGM_GST_TYPE PGM_TYPE_AMD64
883# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
884# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
885# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
886# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
887# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
888# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
889# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
890# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
891# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
892# include "PGMBth.h"
893# include "PGMGstDefs.h"
894# include "PGMGst.h"
895# undef BTH_PGMPOOLKIND_PT_FOR_BIG
896# undef BTH_PGMPOOLKIND_PT_FOR_PT
897# undef BTH_PGMPOOLKIND_ROOT
898# undef PGM_BTH_NAME
899# undef PGM_BTH_NAME_RC_STR
900# undef PGM_BTH_NAME_R0_STR
901# undef PGM_GST_TYPE
902# undef PGM_GST_NAME
903# undef PGM_GST_NAME_RC_STR
904# undef PGM_GST_NAME_R0_STR
905#endif /* VBOX_WITH_64_BITS_GUESTS */
906
907#undef PGM_SHW_TYPE
908#undef PGM_SHW_NAME
909#undef PGM_SHW_NAME_RC_STR
910#undef PGM_SHW_NAME_R0_STR
911
912
913/*
914 * Shadow - Nested paging mode
915 */
916#define PGM_SHW_TYPE PGM_TYPE_NESTED
917#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
918#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
919#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
920#include "PGMShw.h"
921
922/* Guest - real mode */
923#define PGM_GST_TYPE PGM_TYPE_REAL
924#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
925#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
926#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
927#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
928#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
929#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
930#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
931#include "PGMGstDefs.h"
932#include "PGMBth.h"
933#undef BTH_PGMPOOLKIND_PT_FOR_PT
934#undef PGM_BTH_NAME
935#undef PGM_BTH_NAME_RC_STR
936#undef PGM_BTH_NAME_R0_STR
937#undef PGM_GST_TYPE
938#undef PGM_GST_NAME
939#undef PGM_GST_NAME_RC_STR
940#undef PGM_GST_NAME_R0_STR
941
942/* Guest - protected mode */
943#define PGM_GST_TYPE PGM_TYPE_PROT
944#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
945#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
946#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
947#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
948#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
949#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
950#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
951#include "PGMGstDefs.h"
952#include "PGMBth.h"
953#undef BTH_PGMPOOLKIND_PT_FOR_PT
954#undef PGM_BTH_NAME
955#undef PGM_BTH_NAME_RC_STR
956#undef PGM_BTH_NAME_R0_STR
957#undef PGM_GST_TYPE
958#undef PGM_GST_NAME
959#undef PGM_GST_NAME_RC_STR
960#undef PGM_GST_NAME_R0_STR
961
962/* Guest - 32-bit mode */
963#define PGM_GST_TYPE PGM_TYPE_32BIT
964#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
965#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
966#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
967#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
968#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
969#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
970#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
971#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
972#include "PGMGstDefs.h"
973#include "PGMBth.h"
974#undef BTH_PGMPOOLKIND_PT_FOR_BIG
975#undef BTH_PGMPOOLKIND_PT_FOR_PT
976#undef PGM_BTH_NAME
977#undef PGM_BTH_NAME_RC_STR
978#undef PGM_BTH_NAME_R0_STR
979#undef PGM_GST_TYPE
980#undef PGM_GST_NAME
981#undef PGM_GST_NAME_RC_STR
982#undef PGM_GST_NAME_R0_STR
983
984/* Guest - PAE mode */
985#define PGM_GST_TYPE PGM_TYPE_PAE
986#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
987#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
988#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
989#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
990#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
991#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
992#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
993#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
994#include "PGMGstDefs.h"
995#include "PGMBth.h"
996#undef BTH_PGMPOOLKIND_PT_FOR_BIG
997#undef BTH_PGMPOOLKIND_PT_FOR_PT
998#undef PGM_BTH_NAME
999#undef PGM_BTH_NAME_RC_STR
1000#undef PGM_BTH_NAME_R0_STR
1001#undef PGM_GST_TYPE
1002#undef PGM_GST_NAME
1003#undef PGM_GST_NAME_RC_STR
1004#undef PGM_GST_NAME_R0_STR
1005
1006#ifdef VBOX_WITH_64_BITS_GUESTS
1007/* Guest - AMD64 mode */
1008# define PGM_GST_TYPE PGM_TYPE_AMD64
1009# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1010# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1011# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1012# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1013# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1014# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1015# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1016# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1017# include "PGMGstDefs.h"
1018# include "PGMBth.h"
1019# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1020# undef BTH_PGMPOOLKIND_PT_FOR_PT
1021# undef PGM_BTH_NAME
1022# undef PGM_BTH_NAME_RC_STR
1023# undef PGM_BTH_NAME_R0_STR
1024# undef PGM_GST_TYPE
1025# undef PGM_GST_NAME
1026# undef PGM_GST_NAME_RC_STR
1027# undef PGM_GST_NAME_R0_STR
1028#endif /* VBOX_WITH_64_BITS_GUESTS */
1029
1030#undef PGM_SHW_TYPE
1031#undef PGM_SHW_NAME
1032#undef PGM_SHW_NAME_RC_STR
1033#undef PGM_SHW_NAME_R0_STR
1034
1035
1036/*
1037 * Shadow - EPT
1038 */
1039#define PGM_SHW_TYPE PGM_TYPE_EPT
1040#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1041#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1042#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1043#include "PGMShw.h"
1044
1045/* Guest - real mode */
1046#define PGM_GST_TYPE PGM_TYPE_REAL
1047#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1048#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1049#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1050#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1051#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1052#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1053#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1054#include "PGMGstDefs.h"
1055#include "PGMBth.h"
1056#undef BTH_PGMPOOLKIND_PT_FOR_PT
1057#undef PGM_BTH_NAME
1058#undef PGM_BTH_NAME_RC_STR
1059#undef PGM_BTH_NAME_R0_STR
1060#undef PGM_GST_TYPE
1061#undef PGM_GST_NAME
1062#undef PGM_GST_NAME_RC_STR
1063#undef PGM_GST_NAME_R0_STR
1064
1065/* Guest - protected mode */
1066#define PGM_GST_TYPE PGM_TYPE_PROT
1067#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1068#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1069#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1070#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1071#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1072#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1073#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1074#include "PGMGstDefs.h"
1075#include "PGMBth.h"
1076#undef BTH_PGMPOOLKIND_PT_FOR_PT
1077#undef PGM_BTH_NAME
1078#undef PGM_BTH_NAME_RC_STR
1079#undef PGM_BTH_NAME_R0_STR
1080#undef PGM_GST_TYPE
1081#undef PGM_GST_NAME
1082#undef PGM_GST_NAME_RC_STR
1083#undef PGM_GST_NAME_R0_STR
1084
1085/* Guest - 32-bit mode */
1086#define PGM_GST_TYPE PGM_TYPE_32BIT
1087#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1088#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1089#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1090#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1091#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1092#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1093#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1094#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1095#include "PGMGstDefs.h"
1096#include "PGMBth.h"
1097#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1098#undef BTH_PGMPOOLKIND_PT_FOR_PT
1099#undef PGM_BTH_NAME
1100#undef PGM_BTH_NAME_RC_STR
1101#undef PGM_BTH_NAME_R0_STR
1102#undef PGM_GST_TYPE
1103#undef PGM_GST_NAME
1104#undef PGM_GST_NAME_RC_STR
1105#undef PGM_GST_NAME_R0_STR
1106
1107/* Guest - PAE mode */
1108#define PGM_GST_TYPE PGM_TYPE_PAE
1109#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1110#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1111#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1112#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1113#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1114#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1115#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1116#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1117#include "PGMGstDefs.h"
1118#include "PGMBth.h"
1119#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1120#undef BTH_PGMPOOLKIND_PT_FOR_PT
1121#undef PGM_BTH_NAME
1122#undef PGM_BTH_NAME_RC_STR
1123#undef PGM_BTH_NAME_R0_STR
1124#undef PGM_GST_TYPE
1125#undef PGM_GST_NAME
1126#undef PGM_GST_NAME_RC_STR
1127#undef PGM_GST_NAME_R0_STR
1128
1129#ifdef VBOX_WITH_64_BITS_GUESTS
1130/* Guest - AMD64 mode */
1131# define PGM_GST_TYPE PGM_TYPE_AMD64
1132# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1133# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1134# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1135# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1136# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1137# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1138# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1139# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1140# include "PGMGstDefs.h"
1141# include "PGMBth.h"
1142# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1143# undef BTH_PGMPOOLKIND_PT_FOR_PT
1144# undef PGM_BTH_NAME
1145# undef PGM_BTH_NAME_RC_STR
1146# undef PGM_BTH_NAME_R0_STR
1147# undef PGM_GST_TYPE
1148# undef PGM_GST_NAME
1149# undef PGM_GST_NAME_RC_STR
1150# undef PGM_GST_NAME_R0_STR
1151#endif /* VBOX_WITH_64_BITS_GUESTS */
1152
1153#undef PGM_SHW_TYPE
1154#undef PGM_SHW_NAME
1155#undef PGM_SHW_NAME_RC_STR
1156#undef PGM_SHW_NAME_R0_STR
1157
1158
1159
1160/**
1161 * Initiates the paging of VM.
1162 *
1163 * @returns VBox status code.
1164 * @param pVM Pointer to VM structure.
1165 */
1166VMMR3DECL(int) PGMR3Init(PVM pVM)
1167{
1168 LogFlow(("PGMR3Init:\n"));
1169 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1170 int rc;
1171
1172 /*
1173 * Assert alignment and sizes.
1174 */
1175 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1176 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1177 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1178
1179 /*
1180 * Init the structure.
1181 */
1182#ifdef PGM_WITHOUT_MAPPINGS
1183 pVM->pgm.s.fMappingsDisabled = true;
1184#endif
1185 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1186 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1187
1188 /* Init the per-CPU part. */
1189 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1190 {
1191 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1192 PPGMCPU pPGM = &pVCpu->pgm.s;
1193
1194 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1195 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1196 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1197
1198 pPGM->enmShadowMode = PGMMODE_INVALID;
1199 pPGM->enmGuestMode = PGMMODE_INVALID;
1200
1201 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1202
1203 pPGM->pGst32BitPdR3 = NULL;
1204 pPGM->pGstPaePdptR3 = NULL;
1205 pPGM->pGstAmd64Pml4R3 = NULL;
1206#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1207 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1208 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1209 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1210#endif
1211 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1212 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1213 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1214 {
1215 pPGM->apGstPaePDsR3[i] = NULL;
1216#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1217 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1218#endif
1219 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1220 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1221 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1222 }
1223
1224 pPGM->fA20Enabled = true;
1225 }
1226
1227 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1228 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1229 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1230
1231 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1232#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1233 true
1234#else
1235 false
1236#endif
1237 );
1238 AssertLogRelRCReturn(rc, rc);
1239
1240#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1241 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1242#else
1243 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1244#endif
1245 AssertLogRelRCReturn(rc, rc);
1246 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1247 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1248
1249 /*
1250 * Get the configured RAM size - to estimate saved state size.
1251 */
1252 uint64_t cbRam;
1253 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1254 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1255 cbRam = 0;
1256 else if (RT_SUCCESS(rc))
1257 {
1258 if (cbRam < PAGE_SIZE)
1259 cbRam = 0;
1260 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1261 }
1262 else
1263 {
1264 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1265 return rc;
1266 }
1267
1268#ifdef VBOX_WITH_STATISTICS
1269 /*
1270 * Allocate memory for the statistics before someone tries to use them.
1271 */
1272 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1273 void *pv;
1274 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1275 AssertRCReturn(rc, rc);
1276
1277 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1278 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1279 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1280 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1281
1282 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1283 {
1284 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1285 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1286 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1287
1288 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1289 }
1290#endif /* VBOX_WITH_STATISTICS */
1291
1292 /*
1293 * Register callbacks, string formatters and the saved state data unit.
1294 */
1295#ifdef VBOX_STRICT
1296 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1297#endif
1298 PGMRegisterStringFormatTypes();
1299
1300 rc = pgmR3InitSavedState(pVM, cbRam);
1301 if (RT_FAILURE(rc))
1302 return rc;
1303
1304 /*
1305 * Initialize the PGM critical section and flush the phys TLBs
1306 */
1307 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1308 AssertRCReturn(rc, rc);
1309
1310 PGMR3PhysChunkInvalidateTLB(pVM);
1311 PGMPhysInvalidatePageMapTLB(pVM);
1312
1313 /*
1314 * For the time being we sport a full set of handy pages in addition to the base
1315 * memory to simplify things.
1316 */
1317 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1318 AssertRCReturn(rc, rc);
1319
1320 /*
1321 * Trees
1322 */
1323 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1324 if (RT_SUCCESS(rc))
1325 {
1326 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1327 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1328
1329 /*
1330 * Allocate the zero page.
1331 */
1332 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1333 }
1334 if (RT_SUCCESS(rc))
1335 {
1336 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1337 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1338 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1339 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1340
1341 /*
1342 * Allocate the invalid MMIO page.
1343 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1344 */
1345 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1346 }
1347 if (RT_SUCCESS(rc))
1348 {
1349 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1350 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1351 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1352 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1353
1354 /*
1355 * Init the paging.
1356 */
1357 rc = pgmR3InitPaging(pVM);
1358 }
1359 if (RT_SUCCESS(rc))
1360 {
1361 /*
1362 * Init the page pool.
1363 */
1364 rc = pgmR3PoolInit(pVM);
1365 }
1366 if (RT_SUCCESS(rc))
1367 {
1368 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1369 {
1370 PVMCPU pVCpu = &pVM->aCpus[i];
1371 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1372 if (RT_FAILURE(rc))
1373 break;
1374 }
1375 }
1376
1377 if (RT_SUCCESS(rc))
1378 {
1379 /*
1380 * Info & statistics
1381 */
1382 DBGFR3InfoRegisterInternal(pVM, "mode",
1383 "Shows the current paging mode. "
1384 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1385 pgmR3InfoMode);
1386 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1387 "Dumps all the entries in the top level paging table. No arguments.",
1388 pgmR3InfoCr3);
1389 DBGFR3InfoRegisterInternal(pVM, "phys",
1390 "Dumps all the physical address ranges. No arguments.",
1391 pgmR3PhysInfo);
1392 DBGFR3InfoRegisterInternal(pVM, "handlers",
1393 "Dumps physical, virtual and hyper virtual handlers. "
1394 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1395 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1396 pgmR3InfoHandlers);
1397 DBGFR3InfoRegisterInternal(pVM, "mappings",
1398 "Dumps guest mappings.",
1399 pgmR3MapInfo);
1400
1401 pgmR3InitStats(pVM);
1402
1403#ifdef VBOX_WITH_DEBUGGER
1404 /*
1405 * Debugger commands.
1406 */
1407 static bool s_fRegisteredCmds = false;
1408 if (!s_fRegisteredCmds)
1409 {
1410 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1411 if (RT_SUCCESS(rc2))
1412 s_fRegisteredCmds = true;
1413 }
1414#endif
1415 return VINF_SUCCESS;
1416 }
1417
1418 /* Almost no cleanup necessary, MM frees all memory. */
1419 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1420
1421 return rc;
1422}
1423
1424
1425/**
1426 * Initializes the per-VCPU PGM.
1427 *
1428 * @returns VBox status code.
1429 * @param pVM The VM to operate on.
1430 */
1431VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1432{
1433 LogFlow(("PGMR3InitCPU\n"));
1434 return VINF_SUCCESS;
1435}
1436
1437
1438/**
1439 * Init paging.
1440 *
1441 * Since we need to check what mode the host is operating in before we can choose
1442 * the right paging functions for the host we have to delay this until R0 has
1443 * been initialized.
1444 *
1445 * @returns VBox status code.
1446 * @param pVM VM handle.
1447 */
1448static int pgmR3InitPaging(PVM pVM)
1449{
1450 /*
1451 * Force a recalculation of modes and switcher so everyone gets notified.
1452 */
1453 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1454 {
1455 PVMCPU pVCpu = &pVM->aCpus[i];
1456
1457 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1458 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1459 }
1460
1461 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1462
1463 /*
1464 * Allocate static mapping space for whatever the cr3 register
1465 * points to and in the case of PAE mode to the 4 PDs.
1466 */
1467 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1468 if (RT_FAILURE(rc))
1469 {
1470 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1471 return rc;
1472 }
1473 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1474
1475 /*
1476 * Allocate pages for the three possible intermediate contexts
1477 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1478 * for the sake of simplicity. The AMD64 uses the PAE for the
1479 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1480 *
1481 * We assume that two page tables will be enought for the core code
1482 * mappings (HC virtual and identity).
1483 */
1484 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1485 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1486 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1487 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1488 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1489 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1490 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1491 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1492 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1493 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1494 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1495 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1496
1497 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1498 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1499 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1500 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1501 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1502 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1503
1504 /*
1505 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1506 */
1507 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1508 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1509 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1510
1511 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1512 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1513
1514 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1515 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1516 {
1517 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1518 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1519 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1520 }
1521
1522 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1523 {
1524 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1525 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1526 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1527 }
1528
1529 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1530 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1531 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1532 | HCPhysInterPaePDPT64;
1533
1534 /*
1535 * Initialize paging workers and mode from current host mode
1536 * and the guest running in real mode.
1537 */
1538 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1539 switch (pVM->pgm.s.enmHostMode)
1540 {
1541 case SUPPAGINGMODE_32_BIT:
1542 case SUPPAGINGMODE_32_BIT_GLOBAL:
1543 case SUPPAGINGMODE_PAE:
1544 case SUPPAGINGMODE_PAE_GLOBAL:
1545 case SUPPAGINGMODE_PAE_NX:
1546 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1547 break;
1548
1549 case SUPPAGINGMODE_AMD64:
1550 case SUPPAGINGMODE_AMD64_GLOBAL:
1551 case SUPPAGINGMODE_AMD64_NX:
1552 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1553#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1554 if (ARCH_BITS != 64)
1555 {
1556 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1557 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1558 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1559 }
1560#endif
1561 break;
1562 default:
1563 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1564 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1565 }
1566 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1567 if (RT_SUCCESS(rc))
1568 {
1569 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1570#if HC_ARCH_BITS == 64
1571 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1572 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1573 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1574 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1575 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1576 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1577 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1578#endif
1579 return VINF_SUCCESS;
1580 }
1581
1582 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1583 return rc;
1584}
1585
1586
1587/**
1588 * Init statistics
1589 * @returns VBox status code.
1590 */
1591static int pgmR3InitStats(PVM pVM)
1592{
1593 PPGM pPGM = &pVM->pgm.s;
1594 int rc;
1595
1596 /*
1597 * Release statistics.
1598 */
1599 /* Common - misc variables */
1600 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1601 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1602 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1603 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1604 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1605 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1606 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1607 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1608 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1609 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1610 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1611 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1612 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1613 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1614 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1615 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1616 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1617
1618 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1619 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1620 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1621 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1622
1623 /* Live save */
1624 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1625 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1626 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1627 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1628 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1629 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1630 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1631 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1632 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1633 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1634 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1635 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1636 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1637 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1638 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1639 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1640 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1641 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1642
1643#ifdef VBOX_WITH_STATISTICS
1644
1645# define PGM_REG_COUNTER(a, b, c) \
1646 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1647 AssertRC(rc);
1648
1649# define PGM_REG_COUNTER_BYTES(a, b, c) \
1650 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1651 AssertRC(rc);
1652
1653# define PGM_REG_PROFILE(a, b, c) \
1654 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1655 AssertRC(rc);
1656
1657 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1658
1659 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1660 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1661 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1662 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1663
1664 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1665 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1666 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1667 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1668 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1669 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1670 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1671 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1672 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1673 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1674
1675 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1676 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1677 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1678 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1679 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1680 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1681
1682 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1683 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1684 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1685 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1686 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1687 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1688 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1689 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1690
1691 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1692 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1693 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1694 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1695
1696 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1697 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1698 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1699 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1700 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1701 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1702 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1703 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1704
1705 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1706 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1707/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1708 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1709 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1710/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1711
1712 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1713 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1714 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1715 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1716 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1717 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1718 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1719 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1720
1721 /* GC only: */
1722 PGM_REG_COUNTER(&pStats->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1723 PGM_REG_COUNTER(&pStats->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1724 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1725 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1726
1727 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1728 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1729 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1730 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1731 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1732 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1733 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1734 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1735
1736 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1737 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1738 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1739 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1740 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1741 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1742 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1743
1744# undef PGM_REG_COUNTER
1745# undef PGM_REG_PROFILE
1746#endif
1747
1748 /*
1749 * Note! The layout below matches the member layout exactly!
1750 */
1751
1752 /*
1753 * Common - stats
1754 */
1755 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1756 {
1757 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1758
1759#define PGM_REG_COUNTER(a, b, c) \
1760 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1761 AssertRC(rc);
1762#define PGM_REG_PROFILE(a, b, c) \
1763 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1764 AssertRC(rc);
1765
1766 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1767
1768#ifdef VBOX_WITH_STATISTICS
1769 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1770
1771# if 0 /* rarely useful; leave for debugging. */
1772 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1773 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1774 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1775 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1776 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1777 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1778# endif
1779 /* R0 only: */
1780 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1781 PGM_REG_PROFILE(&pCpuStats->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1782 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1783 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1784 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1785 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1786 PGM_REG_PROFILE(&pCpuStats->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1787 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1788 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1789 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1790 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1791 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1792 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1793 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1794 PGM_REG_PROFILE(&pCpuStats->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1795 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1796 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1797 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1798 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1799 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1800 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1801 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1802 //PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1803 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1804 PGM_REG_COUNTER(&pCpuStats->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1805 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1806 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1807 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1808 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1809 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1810 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1811 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1812 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1813 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1814 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1815 PGM_REG_COUNTER(&pCpuStats->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1816
1817 /* RZ only: */
1818 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1819 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1820 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1821 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1822 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1823 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1824 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1825 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1826 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1827 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1828 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is releated to the guest mappings.");
1829 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1830 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1831 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1832 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1833 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1834 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1835 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1836 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1837 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1838 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1839 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1840 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1841 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1842 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1843 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1844 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1845 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1846 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1847 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1848 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1849 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1850 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1851 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1852 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1853 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1854 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1855 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1856 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1858 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1859 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1860#if 0 /* rarely useful; leave for debugging. */
1861 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1862 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1863 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1864#endif
1865 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1866 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1867 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1868 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1869 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1870
1871 /* HC only: */
1872
1873 /* RZ & R3: */
1874 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1875 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1876 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1877 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1878 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1879 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1880 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1881 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1882 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1883 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1884 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1885 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1886 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1887 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1888 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1890 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1891 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1893 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1900 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1914 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1915 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1920 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1921
1922 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1923 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1924 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1925 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1926 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1927 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1928 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1929 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1930 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1931 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1932 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1933 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1934 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1935 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1936 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1937 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1938 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1939 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1940 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1941 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1942 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1943 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1944 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1945 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1946 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1947 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1948 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1949 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1950 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1951 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1952 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1953 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1954 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1955 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1956 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1957 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1958 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1959 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1960 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1961 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1962 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1963 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1964 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1965 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1966#endif /* VBOX_WITH_STATISTICS */
1967
1968#undef PGM_REG_PROFILE
1969#undef PGM_REG_COUNTER
1970
1971 }
1972
1973 return VINF_SUCCESS;
1974}
1975
1976
1977/**
1978 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1979 *
1980 * The dynamic mapping area will also be allocated and initialized at this
1981 * time. We could allocate it during PGMR3Init of course, but the mapping
1982 * wouldn't be allocated at that time preventing us from setting up the
1983 * page table entries with the dummy page.
1984 *
1985 * @returns VBox status code.
1986 * @param pVM VM handle.
1987 */
1988VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1989{
1990 RTGCPTR GCPtr;
1991 int rc;
1992
1993 /*
1994 * Reserve space for the dynamic mappings.
1995 */
1996 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1997 if (RT_SUCCESS(rc))
1998 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1999
2000 if ( RT_SUCCESS(rc)
2001 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2002 {
2003 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2004 if (RT_SUCCESS(rc))
2005 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2006 }
2007 if (RT_SUCCESS(rc))
2008 {
2009 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2010 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2011 }
2012 return rc;
2013}
2014
2015
2016/**
2017 * Ring-3 init finalizing.
2018 *
2019 * @returns VBox status code.
2020 * @param pVM The VM handle.
2021 */
2022VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2023{
2024 int rc;
2025
2026 /*
2027 * Reserve space for the dynamic mappings.
2028 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2029 */
2030 /* get the pointer to the page table entries. */
2031 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2032 AssertRelease(pMapping);
2033 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2034 const unsigned iPT = off >> X86_PD_SHIFT;
2035 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2036 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2037 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2038
2039 /* init cache */
2040 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2041 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
2042 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
2043
2044 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
2045 {
2046 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
2047 AssertRCReturn(rc, rc);
2048 }
2049
2050 /*
2051 * Determin the max physical address width (MAXPHYADDR) and apply it to
2052 * all the mask members and stuff.
2053 */
2054 uint32_t cMaxPhysAddrWidth;
2055 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2056 if ( uMaxExtLeaf >= 0x80000008
2057 && uMaxExtLeaf <= 0x80000fff)
2058 {
2059 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2060 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2061 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2062 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2063 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2064 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2065 }
2066 else
2067 {
2068 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2069 cMaxPhysAddrWidth = 48;
2070 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2071 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2072 }
2073
2074 pVM->pgm.s.GCPhysInvAddrMask = 0;
2075 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2076 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2077
2078 /*
2079 * Initialize the invalid paging entry masks, assuming NX is disabled.
2080 */
2081 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2082 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2083 {
2084 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2085
2086 /** @todo The manuals are not entirely clear whether the physical
2087 * address width is relevant. See table 5-9 in the intel
2088 * manual vs the PDE4M descriptions. Write testcase (NP). */
2089 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2090 | X86_PDE4M_MBZ_MASK;
2091
2092 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2093 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2094 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2095 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2096
2097 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2098 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2099 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2100 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2101 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2102 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2103 }
2104
2105 /*
2106 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2107 * Intel only goes up to 36 bits, so we stick to 36 as well.
2108 * Update: More recent intel manuals specifies 40 bits just like AMD.
2109 */
2110 uint32_t u32Dummy, u32Features;
2111 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2112 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2113 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2114 else
2115 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2116
2117 /*
2118 * Allocate memory if we're supposed to do that.
2119 */
2120 if (pVM->pgm.s.fRamPreAlloc)
2121 rc = pgmR3PhysRamPreAllocate(pVM);
2122
2123 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2124 return rc;
2125}
2126
2127
2128/**
2129 * Applies relocations to data and code managed by this component.
2130 *
2131 * This function will be called at init and whenever the VMM need to relocate it
2132 * self inside the GC.
2133 *
2134 * @param pVM The VM.
2135 * @param offDelta Relocation delta relative to old location.
2136 */
2137VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2138{
2139 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2140
2141 /*
2142 * Paging stuff.
2143 */
2144 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2145
2146 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2147
2148 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2149 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2150 {
2151 PVMCPU pVCpu = &pVM->aCpus[i];
2152
2153 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2154
2155 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2156 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2157 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2158 }
2159
2160 /*
2161 * Trees.
2162 */
2163 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2164
2165 /*
2166 * Ram ranges.
2167 */
2168 if (pVM->pgm.s.pRamRangesR3)
2169 {
2170 /* Update the pSelfRC pointers and relink them. */
2171 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2172 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2173 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2174 pgmR3PhysRelinkRamRanges(pVM);
2175 }
2176
2177 /*
2178 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2179 * be mapped and thus not included in the above exercise.
2180 */
2181 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2182 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2183 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2184
2185 /*
2186 * Update the two page directories with all page table mappings.
2187 * (One or more of them have changed, that's why we're here.)
2188 */
2189 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2190 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2191 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2192
2193 /* Relocate GC addresses of Page Tables. */
2194 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2195 {
2196 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2197 {
2198 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2199 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2200 }
2201 }
2202
2203 /*
2204 * Dynamic page mapping area.
2205 */
2206 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2207 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2208 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2209
2210 /*
2211 * The Zero page.
2212 */
2213 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2214#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2215 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2216#else
2217 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2218#endif
2219
2220 /*
2221 * Physical and virtual handlers.
2222 */
2223 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2224 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2225 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2226 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2227
2228 /*
2229 * The page pool.
2230 */
2231 pgmR3PoolRelocate(pVM);
2232
2233#ifdef VBOX_WITH_STATISTICS
2234 /*
2235 * Statistics.
2236 */
2237 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2238 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2239 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2240#endif
2241}
2242
2243
2244/**
2245 * Callback function for relocating a physical access handler.
2246 *
2247 * @returns 0 (continue enum)
2248 * @param pNode Pointer to a PGMPHYSHANDLER node.
2249 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2250 * not certain the delta will fit in a void pointer for all possible configs.
2251 */
2252static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2253{
2254 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2255 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2256 if (pHandler->pfnHandlerRC)
2257 pHandler->pfnHandlerRC += offDelta;
2258 if (pHandler->pvUserRC >= 0x10000)
2259 pHandler->pvUserRC += offDelta;
2260 return 0;
2261}
2262
2263
2264/**
2265 * Callback function for relocating a virtual access handler.
2266 *
2267 * @returns 0 (continue enum)
2268 * @param pNode Pointer to a PGMVIRTHANDLER node.
2269 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2270 * not certain the delta will fit in a void pointer for all possible configs.
2271 */
2272static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2273{
2274 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2275 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2276 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2277 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2278 Assert(pHandler->pfnHandlerRC);
2279 pHandler->pfnHandlerRC += offDelta;
2280 return 0;
2281}
2282
2283
2284/**
2285 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2286 *
2287 * @returns 0 (continue enum)
2288 * @param pNode Pointer to a PGMVIRTHANDLER node.
2289 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2290 * not certain the delta will fit in a void pointer for all possible configs.
2291 */
2292static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2293{
2294 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2295 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2296 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2297 Assert(pHandler->pfnHandlerRC);
2298 pHandler->pfnHandlerRC += offDelta;
2299 return 0;
2300}
2301
2302
2303/**
2304 * Resets a virtual CPU when unplugged.
2305 *
2306 * @param pVM The VM handle.
2307 * @param pVCpu The virtual CPU handle.
2308 */
2309VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2310{
2311 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2312 AssertRC(rc);
2313
2314 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2315 AssertRC(rc);
2316
2317 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2318
2319 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2320
2321 /*
2322 * Re-init other members.
2323 */
2324 pVCpu->pgm.s.fA20Enabled = true;
2325
2326 /*
2327 * Clear the FFs PGM owns.
2328 */
2329 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2330 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2331}
2332
2333
2334/**
2335 * The VM is being reset.
2336 *
2337 * For the PGM component this means that any PD write monitors
2338 * needs to be removed.
2339 *
2340 * @param pVM VM handle.
2341 */
2342VMMR3DECL(void) PGMR3Reset(PVM pVM)
2343{
2344 int rc;
2345
2346 LogFlow(("PGMR3Reset:\n"));
2347 VM_ASSERT_EMT(pVM);
2348
2349 pgmLock(pVM);
2350
2351 /*
2352 * Unfix any fixed mappings and disable CR3 monitoring.
2353 */
2354 pVM->pgm.s.fMappingsFixed = false;
2355 pVM->pgm.s.fMappingsFixedRestored = false;
2356 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2357 pVM->pgm.s.cbMappingFixed = 0;
2358
2359 /*
2360 * Exit the guest paging mode before the pgm pool gets reset.
2361 * Important to clean up the amd64 case.
2362 */
2363 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2364 {
2365 PVMCPU pVCpu = &pVM->aCpus[i];
2366 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2367 AssertRC(rc);
2368 }
2369
2370#ifdef DEBUG
2371 DBGFR3InfoLog(pVM, "mappings", NULL);
2372 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2373#endif
2374
2375 /*
2376 * Switch mode back to real mode. (before resetting the pgm pool!)
2377 */
2378 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2379 {
2380 PVMCPU pVCpu = &pVM->aCpus[i];
2381
2382 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2383 AssertRC(rc);
2384
2385 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2386 }
2387
2388 /*
2389 * Reset the shadow page pool.
2390 */
2391 pgmR3PoolReset(pVM);
2392
2393 /*
2394 * Re-init various other members and clear the FFs that PGM owns.
2395 */
2396 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2397 {
2398 PVMCPU pVCpu = &pVM->aCpus[i];
2399
2400 pVCpu->pgm.s.fA20Enabled = true;
2401 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2402 PGMNotifyNxeChanged(pVCpu, false);
2403
2404 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2405 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2406 }
2407
2408 /*
2409 * Reset (zero) RAM and shadow ROM pages.
2410 */
2411 rc = pgmR3PhysRamReset(pVM);
2412 if (RT_SUCCESS(rc))
2413 rc = pgmR3PhysRomReset(pVM);
2414
2415
2416 pgmUnlock(pVM);
2417 AssertReleaseRC(rc);
2418}
2419
2420
2421#ifdef VBOX_STRICT
2422/**
2423 * VM state change callback for clearing fNoMorePhysWrites after
2424 * a snapshot has been created.
2425 */
2426static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2427{
2428 if ( enmState == VMSTATE_RUNNING
2429 || enmState == VMSTATE_RESUMING)
2430 pVM->pgm.s.fNoMorePhysWrites = false;
2431}
2432#endif
2433
2434
2435/**
2436 * Terminates the PGM.
2437 *
2438 * @returns VBox status code.
2439 * @param pVM Pointer to VM structure.
2440 */
2441VMMR3DECL(int) PGMR3Term(PVM pVM)
2442{
2443 /* Must free shared pages here. */
2444 pgmLock(pVM);
2445 pgmR3PhysRamTerm(pVM);
2446 pgmUnlock(pVM);
2447
2448 PGMDeregisterStringFormatTypes();
2449 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2450}
2451
2452
2453/**
2454 * Terminates the per-VCPU PGM.
2455 *
2456 * Termination means cleaning up and freeing all resources,
2457 * the VM it self is at this point powered off or suspended.
2458 *
2459 * @returns VBox status code.
2460 * @param pVM The VM to operate on.
2461 */
2462VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2463{
2464 return 0;
2465}
2466
2467
2468/**
2469 * Show paging mode.
2470 *
2471 * @param pVM VM Handle.
2472 * @param pHlp The info helpers.
2473 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2474 */
2475static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2476{
2477 /* digest argument. */
2478 bool fGuest, fShadow, fHost;
2479 if (pszArgs)
2480 pszArgs = RTStrStripL(pszArgs);
2481 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2482 fShadow = fHost = fGuest = true;
2483 else
2484 {
2485 fShadow = fHost = fGuest = false;
2486 if (strstr(pszArgs, "guest"))
2487 fGuest = true;
2488 if (strstr(pszArgs, "shadow"))
2489 fShadow = true;
2490 if (strstr(pszArgs, "host"))
2491 fHost = true;
2492 }
2493
2494 /** @todo SMP support! */
2495 /* print info. */
2496 if (fGuest)
2497 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2498 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2499 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2500 if (fShadow)
2501 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2502 if (fHost)
2503 {
2504 const char *psz;
2505 switch (pVM->pgm.s.enmHostMode)
2506 {
2507 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2508 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2509 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2510 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2511 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2512 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2513 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2514 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2515 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2516 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2517 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2518 default: psz = "unknown"; break;
2519 }
2520 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2521 }
2522}
2523
2524
2525/**
2526 * Dump registered MMIO ranges to the log.
2527 *
2528 * @param pVM VM Handle.
2529 * @param pHlp The info helpers.
2530 * @param pszArgs Arguments, ignored.
2531 */
2532static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2533{
2534 NOREF(pszArgs);
2535 pHlp->pfnPrintf(pHlp,
2536 "RAM ranges (pVM=%p)\n"
2537 "%.*s %.*s\n",
2538 pVM,
2539 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2540 sizeof(RTHCPTR) * 2, "pvHC ");
2541
2542 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2543 pHlp->pfnPrintf(pHlp,
2544 "%RGp-%RGp %RHv %s\n",
2545 pCur->GCPhys,
2546 pCur->GCPhysLast,
2547 pCur->pvR3,
2548 pCur->pszDesc);
2549}
2550
2551/**
2552 * Dump the page directory to the log.
2553 *
2554 * @param pVM VM Handle.
2555 * @param pHlp The info helpers.
2556 * @param pszArgs Arguments, ignored.
2557 */
2558static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2559{
2560 /** @todo SMP support!! */
2561 PVMCPU pVCpu = &pVM->aCpus[0];
2562
2563/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2564 /* Big pages supported? */
2565 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2566
2567 /* Global pages supported? */
2568 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2569
2570 NOREF(pszArgs);
2571
2572 /*
2573 * Get page directory addresses.
2574 */
2575 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2576 Assert(pPDSrc);
2577 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2578
2579 /*
2580 * Iterate the page directory.
2581 */
2582 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2583 {
2584 X86PDE PdeSrc = pPDSrc->a[iPD];
2585 if (PdeSrc.n.u1Present)
2586 {
2587 if (PdeSrc.b.u1Size && fPSE)
2588 pHlp->pfnPrintf(pHlp,
2589 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2590 iPD,
2591 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2592 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2593 else
2594 pHlp->pfnPrintf(pHlp,
2595 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2596 iPD,
2597 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2598 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2599 }
2600 }
2601}
2602
2603
2604/**
2605 * Service a VMMCALLRING3_PGM_LOCK call.
2606 *
2607 * @returns VBox status code.
2608 * @param pVM The VM handle.
2609 */
2610VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2611{
2612 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2613 AssertRC(rc);
2614 return rc;
2615}
2616
2617
2618/**
2619 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2620 *
2621 * @returns PGM_TYPE_*.
2622 * @param pgmMode The mode value to convert.
2623 */
2624DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2625{
2626 switch (pgmMode)
2627 {
2628 case PGMMODE_REAL: return PGM_TYPE_REAL;
2629 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2630 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2631 case PGMMODE_PAE:
2632 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2633 case PGMMODE_AMD64:
2634 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2635 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2636 case PGMMODE_EPT: return PGM_TYPE_EPT;
2637 default:
2638 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2639 }
2640}
2641
2642
2643/**
2644 * Gets the index into the paging mode data array of a SHW+GST mode.
2645 *
2646 * @returns PGM::paPagingData index.
2647 * @param uShwType The shadow paging mode type.
2648 * @param uGstType The guest paging mode type.
2649 */
2650DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2651{
2652 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2653 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2654 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2655 + (uGstType - PGM_TYPE_REAL);
2656}
2657
2658
2659/**
2660 * Gets the index into the paging mode data array of a SHW+GST mode.
2661 *
2662 * @returns PGM::paPagingData index.
2663 * @param enmShw The shadow paging mode.
2664 * @param enmGst The guest paging mode.
2665 */
2666DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2667{
2668 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2669 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2670 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2671}
2672
2673
2674/**
2675 * Calculates the max data index.
2676 * @returns The number of entries in the paging data array.
2677 */
2678DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2679{
2680 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2681}
2682
2683
2684/**
2685 * Initializes the paging mode data kept in PGM::paModeData.
2686 *
2687 * @param pVM The VM handle.
2688 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2689 * This is used early in the init process to avoid trouble with PDM
2690 * not being initialized yet.
2691 */
2692static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2693{
2694 PPGMMODEDATA pModeData;
2695 int rc;
2696
2697 /*
2698 * Allocate the array on the first call.
2699 */
2700 if (!pVM->pgm.s.paModeData)
2701 {
2702 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2703 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2704 }
2705
2706 /*
2707 * Initialize the array entries.
2708 */
2709 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2710 pModeData->uShwType = PGM_TYPE_32BIT;
2711 pModeData->uGstType = PGM_TYPE_REAL;
2712 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2713 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2714 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2715
2716 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2717 pModeData->uShwType = PGM_TYPE_32BIT;
2718 pModeData->uGstType = PGM_TYPE_PROT;
2719 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2720 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2721 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2722
2723 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2724 pModeData->uShwType = PGM_TYPE_32BIT;
2725 pModeData->uGstType = PGM_TYPE_32BIT;
2726 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2727 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2728 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2729
2730 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2731 pModeData->uShwType = PGM_TYPE_PAE;
2732 pModeData->uGstType = PGM_TYPE_REAL;
2733 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2736
2737 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2738 pModeData->uShwType = PGM_TYPE_PAE;
2739 pModeData->uGstType = PGM_TYPE_PROT;
2740 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2741 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2742 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743
2744 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2745 pModeData->uShwType = PGM_TYPE_PAE;
2746 pModeData->uGstType = PGM_TYPE_32BIT;
2747 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2748 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750
2751 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2752 pModeData->uShwType = PGM_TYPE_PAE;
2753 pModeData->uGstType = PGM_TYPE_PAE;
2754 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757
2758#ifdef VBOX_WITH_64_BITS_GUESTS
2759 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2760 pModeData->uShwType = PGM_TYPE_AMD64;
2761 pModeData->uGstType = PGM_TYPE_AMD64;
2762 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765#endif
2766
2767 /* The nested paging mode. */
2768 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2769 pModeData->uShwType = PGM_TYPE_NESTED;
2770 pModeData->uGstType = PGM_TYPE_REAL;
2771 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2773
2774 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2775 pModeData->uShwType = PGM_TYPE_NESTED;
2776 pModeData->uGstType = PGM_TYPE_PROT;
2777 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779
2780 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2781 pModeData->uShwType = PGM_TYPE_NESTED;
2782 pModeData->uGstType = PGM_TYPE_32BIT;
2783 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785
2786 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2787 pModeData->uShwType = PGM_TYPE_NESTED;
2788 pModeData->uGstType = PGM_TYPE_PAE;
2789 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2790 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2791
2792#ifdef VBOX_WITH_64_BITS_GUESTS
2793 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2794 pModeData->uShwType = PGM_TYPE_NESTED;
2795 pModeData->uGstType = PGM_TYPE_AMD64;
2796 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2797 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798#endif
2799
2800 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2801 switch (pVM->pgm.s.enmHostMode)
2802 {
2803#if HC_ARCH_BITS == 32
2804 case SUPPAGINGMODE_32_BIT:
2805 case SUPPAGINGMODE_32_BIT_GLOBAL:
2806 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2807 {
2808 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2809 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2810 }
2811# ifdef VBOX_WITH_64_BITS_GUESTS
2812 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2813 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2814# endif
2815 break;
2816
2817 case SUPPAGINGMODE_PAE:
2818 case SUPPAGINGMODE_PAE_NX:
2819 case SUPPAGINGMODE_PAE_GLOBAL:
2820 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2821 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2822 {
2823 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2824 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 }
2826# ifdef VBOX_WITH_64_BITS_GUESTS
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2828 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2829# endif
2830 break;
2831#endif /* HC_ARCH_BITS == 32 */
2832
2833#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2834 case SUPPAGINGMODE_AMD64:
2835 case SUPPAGINGMODE_AMD64_GLOBAL:
2836 case SUPPAGINGMODE_AMD64_NX:
2837 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2838# ifdef VBOX_WITH_64_BITS_GUESTS
2839 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2840# else
2841 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2842# endif
2843 {
2844 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2845 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2846 }
2847 break;
2848#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2849
2850 default:
2851 AssertFailed();
2852 break;
2853 }
2854
2855 /* Extended paging (EPT) / Intel VT-x */
2856 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2857 pModeData->uShwType = PGM_TYPE_EPT;
2858 pModeData->uGstType = PGM_TYPE_REAL;
2859 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2860 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2861 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2862
2863 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2864 pModeData->uShwType = PGM_TYPE_EPT;
2865 pModeData->uGstType = PGM_TYPE_PROT;
2866 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2867 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2868 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2869
2870 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2871 pModeData->uShwType = PGM_TYPE_EPT;
2872 pModeData->uGstType = PGM_TYPE_32BIT;
2873 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2874 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2876
2877 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2878 pModeData->uShwType = PGM_TYPE_EPT;
2879 pModeData->uGstType = PGM_TYPE_PAE;
2880 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2881 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2882 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2883
2884#ifdef VBOX_WITH_64_BITS_GUESTS
2885 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2886 pModeData->uShwType = PGM_TYPE_EPT;
2887 pModeData->uGstType = PGM_TYPE_AMD64;
2888 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2890 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2891#endif
2892 return VINF_SUCCESS;
2893}
2894
2895
2896/**
2897 * Switch to different (or relocated in the relocate case) mode data.
2898 *
2899 * @param pVM The VM handle.
2900 * @param pVCpu The VMCPU to operate on.
2901 * @param enmShw The the shadow paging mode.
2902 * @param enmGst The the guest paging mode.
2903 */
2904static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2905{
2906 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2907
2908 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2909 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2910
2911 /* shadow */
2912 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2913 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2914 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2915 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2916 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2917
2918 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2919 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2920
2921 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2922 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2923
2924
2925 /* guest */
2926 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2927 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2928 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2929 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2930 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2931 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2932 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2933 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2934 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2935 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2936 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2937 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2938
2939 /* both */
2940 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2941 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2942 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2943 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2944 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2945 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2946#ifdef VBOX_STRICT
2947 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2948#endif
2949 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2950 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2951
2952 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2953 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2954 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2955 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2956 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2957#ifdef VBOX_STRICT
2958 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2959#endif
2960 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2961 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2962
2963 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2964 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2965 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2966 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2967 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2968#ifdef VBOX_STRICT
2969 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2970#endif
2971 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2972 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2973}
2974
2975
2976/**
2977 * Calculates the shadow paging mode.
2978 *
2979 * @returns The shadow paging mode.
2980 * @param pVM VM handle.
2981 * @param enmGuestMode The guest mode.
2982 * @param enmHostMode The host mode.
2983 * @param enmShadowMode The current shadow mode.
2984 * @param penmSwitcher Where to store the switcher to use.
2985 * VMMSWITCHER_INVALID means no change.
2986 */
2987static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2988{
2989 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2990 switch (enmGuestMode)
2991 {
2992 /*
2993 * When switching to real or protected mode we don't change
2994 * anything since it's likely that we'll switch back pretty soon.
2995 *
2996 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2997 * and is supposed to determine which shadow paging and switcher to
2998 * use during init.
2999 */
3000 case PGMMODE_REAL:
3001 case PGMMODE_PROTECTED:
3002 if ( enmShadowMode != PGMMODE_INVALID
3003 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3004 break; /* (no change) */
3005
3006 switch (enmHostMode)
3007 {
3008 case SUPPAGINGMODE_32_BIT:
3009 case SUPPAGINGMODE_32_BIT_GLOBAL:
3010 enmShadowMode = PGMMODE_32_BIT;
3011 enmSwitcher = VMMSWITCHER_32_TO_32;
3012 break;
3013
3014 case SUPPAGINGMODE_PAE:
3015 case SUPPAGINGMODE_PAE_NX:
3016 case SUPPAGINGMODE_PAE_GLOBAL:
3017 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3018 enmShadowMode = PGMMODE_PAE;
3019 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3020#ifdef DEBUG_bird
3021 if (RTEnvExist("VBOX_32BIT"))
3022 {
3023 enmShadowMode = PGMMODE_32_BIT;
3024 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3025 }
3026#endif
3027 break;
3028
3029 case SUPPAGINGMODE_AMD64:
3030 case SUPPAGINGMODE_AMD64_GLOBAL:
3031 case SUPPAGINGMODE_AMD64_NX:
3032 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3033 enmShadowMode = PGMMODE_PAE;
3034 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3035#ifdef DEBUG_bird
3036 if (RTEnvExist("VBOX_32BIT"))
3037 {
3038 enmShadowMode = PGMMODE_32_BIT;
3039 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3040 }
3041#endif
3042 break;
3043
3044 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3045 }
3046 break;
3047
3048 case PGMMODE_32_BIT:
3049 switch (enmHostMode)
3050 {
3051 case SUPPAGINGMODE_32_BIT:
3052 case SUPPAGINGMODE_32_BIT_GLOBAL:
3053 enmShadowMode = PGMMODE_32_BIT;
3054 enmSwitcher = VMMSWITCHER_32_TO_32;
3055 break;
3056
3057 case SUPPAGINGMODE_PAE:
3058 case SUPPAGINGMODE_PAE_NX:
3059 case SUPPAGINGMODE_PAE_GLOBAL:
3060 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3061 enmShadowMode = PGMMODE_PAE;
3062 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3063#ifdef DEBUG_bird
3064 if (RTEnvExist("VBOX_32BIT"))
3065 {
3066 enmShadowMode = PGMMODE_32_BIT;
3067 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3068 }
3069#endif
3070 break;
3071
3072 case SUPPAGINGMODE_AMD64:
3073 case SUPPAGINGMODE_AMD64_GLOBAL:
3074 case SUPPAGINGMODE_AMD64_NX:
3075 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3076 enmShadowMode = PGMMODE_PAE;
3077 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3078#ifdef DEBUG_bird
3079 if (RTEnvExist("VBOX_32BIT"))
3080 {
3081 enmShadowMode = PGMMODE_32_BIT;
3082 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3083 }
3084#endif
3085 break;
3086
3087 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3088 }
3089 break;
3090
3091 case PGMMODE_PAE:
3092 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3093 switch (enmHostMode)
3094 {
3095 case SUPPAGINGMODE_32_BIT:
3096 case SUPPAGINGMODE_32_BIT_GLOBAL:
3097 enmShadowMode = PGMMODE_PAE;
3098 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3099 break;
3100
3101 case SUPPAGINGMODE_PAE:
3102 case SUPPAGINGMODE_PAE_NX:
3103 case SUPPAGINGMODE_PAE_GLOBAL:
3104 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3105 enmShadowMode = PGMMODE_PAE;
3106 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3107 break;
3108
3109 case SUPPAGINGMODE_AMD64:
3110 case SUPPAGINGMODE_AMD64_GLOBAL:
3111 case SUPPAGINGMODE_AMD64_NX:
3112 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3113 enmShadowMode = PGMMODE_PAE;
3114 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3115 break;
3116
3117 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3118 }
3119 break;
3120
3121 case PGMMODE_AMD64:
3122 case PGMMODE_AMD64_NX:
3123 switch (enmHostMode)
3124 {
3125 case SUPPAGINGMODE_32_BIT:
3126 case SUPPAGINGMODE_32_BIT_GLOBAL:
3127 enmShadowMode = PGMMODE_AMD64;
3128 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3129 break;
3130
3131 case SUPPAGINGMODE_PAE:
3132 case SUPPAGINGMODE_PAE_NX:
3133 case SUPPAGINGMODE_PAE_GLOBAL:
3134 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3135 enmShadowMode = PGMMODE_AMD64;
3136 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3137 break;
3138
3139 case SUPPAGINGMODE_AMD64:
3140 case SUPPAGINGMODE_AMD64_GLOBAL:
3141 case SUPPAGINGMODE_AMD64_NX:
3142 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3143 enmShadowMode = PGMMODE_AMD64;
3144 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3145 break;
3146
3147 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3148 }
3149 break;
3150
3151
3152 default:
3153 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3154 *penmSwitcher = VMMSWITCHER_INVALID;
3155 return PGMMODE_INVALID;
3156 }
3157 /* Override the shadow mode is nested paging is active. */
3158 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3159 if (pVM->pgm.s.fNestedPaging)
3160 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3161
3162 *penmSwitcher = enmSwitcher;
3163 return enmShadowMode;
3164}
3165
3166
3167/**
3168 * Performs the actual mode change.
3169 * This is called by PGMChangeMode and pgmR3InitPaging().
3170 *
3171 * @returns VBox status code. May suspend or power off the VM on error, but this
3172 * will trigger using FFs and not status codes.
3173 *
3174 * @param pVM VM handle.
3175 * @param pVCpu The VMCPU to operate on.
3176 * @param enmGuestMode The new guest mode. This is assumed to be different from
3177 * the current mode.
3178 */
3179VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3180{
3181 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3182 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3183
3184 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3185 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3186
3187 /*
3188 * Calc the shadow mode and switcher.
3189 */
3190 VMMSWITCHER enmSwitcher;
3191 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3192
3193#ifdef VBOX_WITH_RAW_MODE
3194 if (enmSwitcher != VMMSWITCHER_INVALID)
3195 {
3196 /*
3197 * Select new switcher.
3198 */
3199 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3200 if (RT_FAILURE(rc))
3201 {
3202 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3203 return rc;
3204 }
3205 }
3206#endif
3207
3208 /*
3209 * Exit old mode(s).
3210 */
3211#if HC_ARCH_BITS == 32
3212 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3213 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3214 && enmShadowMode == PGMMODE_NESTED);
3215#else
3216 const bool fForceShwEnterExit = false;
3217#endif
3218 /* shadow */
3219 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3220 || fForceShwEnterExit)
3221 {
3222 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3223 if (PGM_SHW_PFN(Exit, pVCpu))
3224 {
3225 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3226 if (RT_FAILURE(rc))
3227 {
3228 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3229 return rc;
3230 }
3231 }
3232
3233 }
3234 else
3235 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3236
3237 /* guest */
3238 if (PGM_GST_PFN(Exit, pVCpu))
3239 {
3240 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3241 if (RT_FAILURE(rc))
3242 {
3243 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3244 return rc;
3245 }
3246 }
3247
3248 /*
3249 * Load new paging mode data.
3250 */
3251 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3252
3253 /*
3254 * Enter new shadow mode (if changed).
3255 */
3256 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3257 || fForceShwEnterExit)
3258 {
3259 int rc;
3260 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3261 switch (enmShadowMode)
3262 {
3263 case PGMMODE_32_BIT:
3264 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3265 break;
3266 case PGMMODE_PAE:
3267 case PGMMODE_PAE_NX:
3268 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3269 break;
3270 case PGMMODE_AMD64:
3271 case PGMMODE_AMD64_NX:
3272 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3273 break;
3274 case PGMMODE_NESTED:
3275 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3276 break;
3277 case PGMMODE_EPT:
3278 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3279 break;
3280 case PGMMODE_REAL:
3281 case PGMMODE_PROTECTED:
3282 default:
3283 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3284 return VERR_INTERNAL_ERROR;
3285 }
3286 if (RT_FAILURE(rc))
3287 {
3288 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3289 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3290 return rc;
3291 }
3292 }
3293
3294 /*
3295 * Always flag the necessary updates
3296 */
3297 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3298
3299 /*
3300 * Enter the new guest and shadow+guest modes.
3301 */
3302 int rc = -1;
3303 int rc2 = -1;
3304 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3305 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3306 switch (enmGuestMode)
3307 {
3308 case PGMMODE_REAL:
3309 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3310 switch (pVCpu->pgm.s.enmShadowMode)
3311 {
3312 case PGMMODE_32_BIT:
3313 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3314 break;
3315 case PGMMODE_PAE:
3316 case PGMMODE_PAE_NX:
3317 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3318 break;
3319 case PGMMODE_NESTED:
3320 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3321 break;
3322 case PGMMODE_EPT:
3323 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3324 break;
3325 case PGMMODE_AMD64:
3326 case PGMMODE_AMD64_NX:
3327 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3328 default: AssertFailed(); break;
3329 }
3330 break;
3331
3332 case PGMMODE_PROTECTED:
3333 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3334 switch (pVCpu->pgm.s.enmShadowMode)
3335 {
3336 case PGMMODE_32_BIT:
3337 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3338 break;
3339 case PGMMODE_PAE:
3340 case PGMMODE_PAE_NX:
3341 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3342 break;
3343 case PGMMODE_NESTED:
3344 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3345 break;
3346 case PGMMODE_EPT:
3347 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3348 break;
3349 case PGMMODE_AMD64:
3350 case PGMMODE_AMD64_NX:
3351 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3352 default: AssertFailed(); break;
3353 }
3354 break;
3355
3356 case PGMMODE_32_BIT:
3357 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3358 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3359 switch (pVCpu->pgm.s.enmShadowMode)
3360 {
3361 case PGMMODE_32_BIT:
3362 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3363 break;
3364 case PGMMODE_PAE:
3365 case PGMMODE_PAE_NX:
3366 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3367 break;
3368 case PGMMODE_NESTED:
3369 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3370 break;
3371 case PGMMODE_EPT:
3372 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3373 break;
3374 case PGMMODE_AMD64:
3375 case PGMMODE_AMD64_NX:
3376 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3377 default: AssertFailed(); break;
3378 }
3379 break;
3380
3381 case PGMMODE_PAE_NX:
3382 case PGMMODE_PAE:
3383 {
3384 uint32_t u32Dummy, u32Features;
3385
3386 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3387 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3388 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3389 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3390
3391 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3392 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3393 switch (pVCpu->pgm.s.enmShadowMode)
3394 {
3395 case PGMMODE_PAE:
3396 case PGMMODE_PAE_NX:
3397 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3398 break;
3399 case PGMMODE_NESTED:
3400 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3401 break;
3402 case PGMMODE_EPT:
3403 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3404 break;
3405 case PGMMODE_32_BIT:
3406 case PGMMODE_AMD64:
3407 case PGMMODE_AMD64_NX:
3408 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3409 default: AssertFailed(); break;
3410 }
3411 break;
3412 }
3413
3414#ifdef VBOX_WITH_64_BITS_GUESTS
3415 case PGMMODE_AMD64_NX:
3416 case PGMMODE_AMD64:
3417 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3418 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3419 switch (pVCpu->pgm.s.enmShadowMode)
3420 {
3421 case PGMMODE_AMD64:
3422 case PGMMODE_AMD64_NX:
3423 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3424 break;
3425 case PGMMODE_NESTED:
3426 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3427 break;
3428 case PGMMODE_EPT:
3429 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3430 break;
3431 case PGMMODE_32_BIT:
3432 case PGMMODE_PAE:
3433 case PGMMODE_PAE_NX:
3434 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3435 default: AssertFailed(); break;
3436 }
3437 break;
3438#endif
3439
3440 default:
3441 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3442 rc = VERR_NOT_IMPLEMENTED;
3443 break;
3444 }
3445
3446 /* status codes. */
3447 AssertRC(rc);
3448 AssertRC(rc2);
3449 if (RT_SUCCESS(rc))
3450 {
3451 rc = rc2;
3452 if (RT_SUCCESS(rc)) /* no informational status codes. */
3453 rc = VINF_SUCCESS;
3454 }
3455
3456 /* Notify HWACCM as well. */
3457 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3458 return rc;
3459}
3460
3461
3462/**
3463 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3464 *
3465 * @returns VBox status code, fully asserted.
3466 * @param pVM The VM handle.
3467 * @param pVCpu The VMCPU to operate on.
3468 */
3469int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3470{
3471 /* Unmap the old CR3 value before flushing everything. */
3472 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3473 AssertRC(rc);
3474
3475 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3476 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3477 AssertRC(rc);
3478 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3479 return rc;
3480}
3481
3482
3483/**
3484 * Called by pgmPoolFlushAllInt after flushing the pool.
3485 *
3486 * @returns VBox status code, fully asserted.
3487 * @param pVM The VM handle.
3488 * @param pVCpu The VMCPU to operate on.
3489 */
3490int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3491{
3492 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3493 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3494 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3495 AssertRCReturn(rc, rc);
3496 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3497
3498 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3499 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3500 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3501 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3502 return rc;
3503}
3504
3505
3506/**
3507 * Dumps a PAE shadow page table.
3508 *
3509 * @returns VBox status code (VINF_SUCCESS).
3510 * @param pVM The VM handle.
3511 * @param pPT Pointer to the page table.
3512 * @param u64Address The virtual address of the page table starts.
3513 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3514 * @param cMaxDepth The maxium depth.
3515 * @param pHlp Pointer to the output functions.
3516 */
3517static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3518{
3519 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3520 {
3521 X86PTEPAE Pte = pPT->a[i];
3522 if (Pte.n.u1Present)
3523 {
3524 pHlp->pfnPrintf(pHlp,
3525 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3526 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3527 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3528 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3529 Pte.n.u1Write ? 'W' : 'R',
3530 Pte.n.u1User ? 'U' : 'S',
3531 Pte.n.u1Accessed ? 'A' : '-',
3532 Pte.n.u1Dirty ? 'D' : '-',
3533 Pte.n.u1Global ? 'G' : '-',
3534 Pte.n.u1WriteThru ? "WT" : "--",
3535 Pte.n.u1CacheDisable? "CD" : "--",
3536 Pte.n.u1PAT ? "AT" : "--",
3537 Pte.n.u1NoExecute ? "NX" : "--",
3538 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3539 Pte.u & RT_BIT(10) ? '1' : '0',
3540 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3541 Pte.u & X86_PTE_PAE_PG_MASK);
3542 }
3543 }
3544 return VINF_SUCCESS;
3545}
3546
3547
3548/**
3549 * Dumps a PAE shadow page directory table.
3550 *
3551 * @returns VBox status code (VINF_SUCCESS).
3552 * @param pVM The VM handle.
3553 * @param HCPhys The physical address of the page directory table.
3554 * @param u64Address The virtual address of the page table starts.
3555 * @param cr4 The CR4, PSE is currently used.
3556 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3557 * @param cMaxDepth The maxium depth.
3558 * @param pHlp Pointer to the output functions.
3559 */
3560static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3561{
3562 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3563 if (!pPD)
3564 {
3565 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3566 fLongMode ? 16 : 8, u64Address, HCPhys);
3567 return VERR_INVALID_PARAMETER;
3568 }
3569 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3570
3571 int rc = VINF_SUCCESS;
3572 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3573 {
3574 X86PDEPAE Pde = pPD->a[i];
3575 if (Pde.n.u1Present)
3576 {
3577 if (fBigPagesSupported && Pde.b.u1Size)
3578 pHlp->pfnPrintf(pHlp,
3579 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3580 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3581 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3582 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3583 Pde.b.u1Write ? 'W' : 'R',
3584 Pde.b.u1User ? 'U' : 'S',
3585 Pde.b.u1Accessed ? 'A' : '-',
3586 Pde.b.u1Dirty ? 'D' : '-',
3587 Pde.b.u1Global ? 'G' : '-',
3588 Pde.b.u1WriteThru ? "WT" : "--",
3589 Pde.b.u1CacheDisable? "CD" : "--",
3590 Pde.b.u1PAT ? "AT" : "--",
3591 Pde.b.u1NoExecute ? "NX" : "--",
3592 Pde.u & RT_BIT_64(9) ? '1' : '0',
3593 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3594 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3595 Pde.u & X86_PDE_PAE_PG_MASK);
3596 else
3597 {
3598 pHlp->pfnPrintf(pHlp,
3599 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3600 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3601 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3602 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3603 Pde.n.u1Write ? 'W' : 'R',
3604 Pde.n.u1User ? 'U' : 'S',
3605 Pde.n.u1Accessed ? 'A' : '-',
3606 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3607 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3608 Pde.n.u1WriteThru ? "WT" : "--",
3609 Pde.n.u1CacheDisable? "CD" : "--",
3610 Pde.n.u1NoExecute ? "NX" : "--",
3611 Pde.u & RT_BIT_64(9) ? '1' : '0',
3612 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3613 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3614 Pde.u & X86_PDE_PAE_PG_MASK);
3615 if (cMaxDepth >= 1)
3616 {
3617 /** @todo what about using the page pool for mapping PTs? */
3618 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3619 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3620 PX86PTPAE pPT = NULL;
3621 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3622 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3623 else
3624 {
3625 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3626 {
3627 uint64_t off = u64AddressPT - pMap->GCPtr;
3628 if (off < pMap->cb)
3629 {
3630 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3631 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3632 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3633 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3634 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3635 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3636 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3637 }
3638 }
3639 }
3640 int rc2 = VERR_INVALID_PARAMETER;
3641 if (pPT)
3642 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3643 else
3644 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3645 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3646 if (rc2 < rc && RT_SUCCESS(rc))
3647 rc = rc2;
3648 }
3649 }
3650 }
3651 }
3652 return rc;
3653}
3654
3655
3656/**
3657 * Dumps a PAE shadow page directory pointer table.
3658 *
3659 * @returns VBox status code (VINF_SUCCESS).
3660 * @param pVM The VM handle.
3661 * @param HCPhys The physical address of the page directory pointer table.
3662 * @param u64Address The virtual address of the page table starts.
3663 * @param cr4 The CR4, PSE is currently used.
3664 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3665 * @param cMaxDepth The maxium depth.
3666 * @param pHlp Pointer to the output functions.
3667 */
3668static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3669{
3670 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3671 if (!pPDPT)
3672 {
3673 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3674 fLongMode ? 16 : 8, u64Address, HCPhys);
3675 return VERR_INVALID_PARAMETER;
3676 }
3677
3678 int rc = VINF_SUCCESS;
3679 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3680 for (unsigned i = 0; i < c; i++)
3681 {
3682 X86PDPE Pdpe = pPDPT->a[i];
3683 if (Pdpe.n.u1Present)
3684 {
3685 if (fLongMode)
3686 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3687 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3688 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3689 Pdpe.lm.u1Write ? 'W' : 'R',
3690 Pdpe.lm.u1User ? 'U' : 'S',
3691 Pdpe.lm.u1Accessed ? 'A' : '-',
3692 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3693 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3694 Pdpe.lm.u1WriteThru ? "WT" : "--",
3695 Pdpe.lm.u1CacheDisable? "CD" : "--",
3696 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3697 Pdpe.lm.u1NoExecute ? "NX" : "--",
3698 Pdpe.u & RT_BIT(9) ? '1' : '0',
3699 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3700 Pdpe.u & RT_BIT(11) ? '1' : '0',
3701 Pdpe.u & X86_PDPE_PG_MASK);
3702 else
3703 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3704 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3705 i << X86_PDPT_SHIFT,
3706 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3707 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3708 Pdpe.n.u1WriteThru ? "WT" : "--",
3709 Pdpe.n.u1CacheDisable? "CD" : "--",
3710 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3711 Pdpe.u & RT_BIT(9) ? '1' : '0',
3712 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3713 Pdpe.u & RT_BIT(11) ? '1' : '0',
3714 Pdpe.u & X86_PDPE_PG_MASK);
3715 if (cMaxDepth >= 1)
3716 {
3717 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3718 cr4, fLongMode, cMaxDepth - 1, pHlp);
3719 if (rc2 < rc && RT_SUCCESS(rc))
3720 rc = rc2;
3721 }
3722 }
3723 }
3724 return rc;
3725}
3726
3727
3728/**
3729 * Dumps a 32-bit shadow page table.
3730 *
3731 * @returns VBox status code (VINF_SUCCESS).
3732 * @param pVM The VM handle.
3733 * @param HCPhys The physical address of the table.
3734 * @param cr4 The CR4, PSE is currently used.
3735 * @param cMaxDepth The maxium depth.
3736 * @param pHlp Pointer to the output functions.
3737 */
3738static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3739{
3740 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3741 if (!pPML4)
3742 {
3743 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3744 return VERR_INVALID_PARAMETER;
3745 }
3746
3747 int rc = VINF_SUCCESS;
3748 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3749 {
3750 X86PML4E Pml4e = pPML4->a[i];
3751 if (Pml4e.n.u1Present)
3752 {
3753 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3754 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3755 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3756 u64Address,
3757 Pml4e.n.u1Write ? 'W' : 'R',
3758 Pml4e.n.u1User ? 'U' : 'S',
3759 Pml4e.n.u1Accessed ? 'A' : '-',
3760 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3761 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3762 Pml4e.n.u1WriteThru ? "WT" : "--",
3763 Pml4e.n.u1CacheDisable? "CD" : "--",
3764 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3765 Pml4e.n.u1NoExecute ? "NX" : "--",
3766 Pml4e.u & RT_BIT(9) ? '1' : '0',
3767 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3768 Pml4e.u & RT_BIT(11) ? '1' : '0',
3769 Pml4e.u & X86_PML4E_PG_MASK);
3770
3771 if (cMaxDepth >= 1)
3772 {
3773 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3774 if (rc2 < rc && RT_SUCCESS(rc))
3775 rc = rc2;
3776 }
3777 }
3778 }
3779 return rc;
3780}
3781
3782
3783/**
3784 * Dumps a 32-bit shadow page table.
3785 *
3786 * @returns VBox status code (VINF_SUCCESS).
3787 * @param pVM The VM handle.
3788 * @param pPT Pointer to the page table.
3789 * @param u32Address The virtual address this table starts at.
3790 * @param pHlp Pointer to the output functions.
3791 */
3792int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3793{
3794 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3795 {
3796 X86PTE Pte = pPT->a[i];
3797 if (Pte.n.u1Present)
3798 {
3799 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3800 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3801 u32Address + (i << X86_PT_SHIFT),
3802 Pte.n.u1Write ? 'W' : 'R',
3803 Pte.n.u1User ? 'U' : 'S',
3804 Pte.n.u1Accessed ? 'A' : '-',
3805 Pte.n.u1Dirty ? 'D' : '-',
3806 Pte.n.u1Global ? 'G' : '-',
3807 Pte.n.u1WriteThru ? "WT" : "--",
3808 Pte.n.u1CacheDisable? "CD" : "--",
3809 Pte.n.u1PAT ? "AT" : "--",
3810 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3811 Pte.u & RT_BIT(10) ? '1' : '0',
3812 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3813 Pte.u & X86_PDE_PG_MASK);
3814 }
3815 }
3816 return VINF_SUCCESS;
3817}
3818
3819
3820/**
3821 * Dumps a 32-bit shadow page directory and page tables.
3822 *
3823 * @returns VBox status code (VINF_SUCCESS).
3824 * @param pVM The VM handle.
3825 * @param cr3 The root of the hierarchy.
3826 * @param cr4 The CR4, PSE is currently used.
3827 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3828 * @param pHlp Pointer to the output functions.
3829 */
3830int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3831{
3832 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3833 if (!pPD)
3834 {
3835 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3836 return VERR_INVALID_PARAMETER;
3837 }
3838
3839 int rc = VINF_SUCCESS;
3840 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3841 {
3842 X86PDE Pde = pPD->a[i];
3843 if (Pde.n.u1Present)
3844 {
3845 const uint32_t u32Address = i << X86_PD_SHIFT;
3846 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3847 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3848 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3849 u32Address,
3850 Pde.b.u1Write ? 'W' : 'R',
3851 Pde.b.u1User ? 'U' : 'S',
3852 Pde.b.u1Accessed ? 'A' : '-',
3853 Pde.b.u1Dirty ? 'D' : '-',
3854 Pde.b.u1Global ? 'G' : '-',
3855 Pde.b.u1WriteThru ? "WT" : "--",
3856 Pde.b.u1CacheDisable? "CD" : "--",
3857 Pde.b.u1PAT ? "AT" : "--",
3858 Pde.u & RT_BIT_64(9) ? '1' : '0',
3859 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3860 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3861 Pde.u & X86_PDE4M_PG_MASK);
3862 else
3863 {
3864 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3865 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3866 u32Address,
3867 Pde.n.u1Write ? 'W' : 'R',
3868 Pde.n.u1User ? 'U' : 'S',
3869 Pde.n.u1Accessed ? 'A' : '-',
3870 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3871 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3872 Pde.n.u1WriteThru ? "WT" : "--",
3873 Pde.n.u1CacheDisable? "CD" : "--",
3874 Pde.u & RT_BIT_64(9) ? '1' : '0',
3875 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3876 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3877 Pde.u & X86_PDE_PG_MASK);
3878 if (cMaxDepth >= 1)
3879 {
3880 /** @todo what about using the page pool for mapping PTs? */
3881 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3882 PX86PT pPT = NULL;
3883 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3884 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3885 else
3886 {
3887 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3888 if (u32Address - pMap->GCPtr < pMap->cb)
3889 {
3890 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3891 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3892 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3893 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3894 pPT = pMap->aPTs[iPDE].pPTR3;
3895 }
3896 }
3897 int rc2 = VERR_INVALID_PARAMETER;
3898 if (pPT)
3899 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3900 else
3901 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3902 if (rc2 < rc && RT_SUCCESS(rc))
3903 rc = rc2;
3904 }
3905 }
3906 }
3907 }
3908
3909 return rc;
3910}
3911
3912
3913/**
3914 * Dumps a 32-bit shadow page table.
3915 *
3916 * @returns VBox status code (VINF_SUCCESS).
3917 * @param pVM The VM handle.
3918 * @param pPT Pointer to the page table.
3919 * @param u32Address The virtual address this table starts at.
3920 * @param PhysSearch Address to search for.
3921 */
3922int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3923{
3924 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3925 {
3926 X86PTE Pte = pPT->a[i];
3927 if (Pte.n.u1Present)
3928 {
3929 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3930 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3931 u32Address + (i << X86_PT_SHIFT),
3932 Pte.n.u1Write ? 'W' : 'R',
3933 Pte.n.u1User ? 'U' : 'S',
3934 Pte.n.u1Accessed ? 'A' : '-',
3935 Pte.n.u1Dirty ? 'D' : '-',
3936 Pte.n.u1Global ? 'G' : '-',
3937 Pte.n.u1WriteThru ? "WT" : "--",
3938 Pte.n.u1CacheDisable? "CD" : "--",
3939 Pte.n.u1PAT ? "AT" : "--",
3940 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3941 Pte.u & RT_BIT(10) ? '1' : '0',
3942 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3943 Pte.u & X86_PDE_PG_MASK));
3944
3945 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3946 {
3947 uint64_t fPageShw = 0;
3948 RTHCPHYS pPhysHC = 0;
3949
3950 /** @todo SMP support!! */
3951 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3952 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3953 }
3954 }
3955 }
3956 return VINF_SUCCESS;
3957}
3958
3959
3960/**
3961 * Dumps a 32-bit guest page directory and page tables.
3962 *
3963 * @returns VBox status code (VINF_SUCCESS).
3964 * @param pVM The VM handle.
3965 * @param cr3 The root of the hierarchy.
3966 * @param cr4 The CR4, PSE is currently used.
3967 * @param PhysSearch Address to search for.
3968 */
3969VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3970{
3971 bool fLongMode = false;
3972 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3973 PX86PD pPD = 0;
3974 PGMPAGEMAPLOCK LockCr3;
3975
3976 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, cr3 & X86_CR3_PAGE_MASK, (const void **)&pPD, &LockCr3);
3977 if ( RT_FAILURE(rc)
3978 || !pPD)
3979 {
3980 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3981 return VERR_INVALID_PARAMETER;
3982 }
3983
3984 Log(("cr3=%08x cr4=%08x%s\n"
3985 "%-*s P - Present\n"
3986 "%-*s | R/W - Read (0) / Write (1)\n"
3987 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3988 "%-*s | | | A - Accessed\n"
3989 "%-*s | | | | D - Dirty\n"
3990 "%-*s | | | | | G - Global\n"
3991 "%-*s | | | | | | WT - Write thru\n"
3992 "%-*s | | | | | | | CD - Cache disable\n"
3993 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3994 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3995 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3996 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3997 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3998 "%-*s Level | | | | | | | | | | | | Page\n"
3999 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4000 - W U - - - -- -- -- -- -- 010 */
4001 , cr3, cr4, fLongMode ? " Long Mode" : "",
4002 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4003 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4004
4005 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4006 {
4007 X86PDE Pde = pPD->a[i];
4008 if (Pde.n.u1Present)
4009 {
4010 const uint32_t u32Address = i << X86_PD_SHIFT;
4011
4012 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4013 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4014 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4015 u32Address,
4016 Pde.b.u1Write ? 'W' : 'R',
4017 Pde.b.u1User ? 'U' : 'S',
4018 Pde.b.u1Accessed ? 'A' : '-',
4019 Pde.b.u1Dirty ? 'D' : '-',
4020 Pde.b.u1Global ? 'G' : '-',
4021 Pde.b.u1WriteThru ? "WT" : "--",
4022 Pde.b.u1CacheDisable? "CD" : "--",
4023 Pde.b.u1PAT ? "AT" : "--",
4024 Pde.u & RT_BIT(9) ? '1' : '0',
4025 Pde.u & RT_BIT(10) ? '1' : '0',
4026 Pde.u & RT_BIT(11) ? '1' : '0',
4027 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4028 /** @todo PhysSearch */
4029 else
4030 {
4031 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4032 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4033 u32Address,
4034 Pde.n.u1Write ? 'W' : 'R',
4035 Pde.n.u1User ? 'U' : 'S',
4036 Pde.n.u1Accessed ? 'A' : '-',
4037 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4038 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4039 Pde.n.u1WriteThru ? "WT" : "--",
4040 Pde.n.u1CacheDisable? "CD" : "--",
4041 Pde.u & RT_BIT(9) ? '1' : '0',
4042 Pde.u & RT_BIT(10) ? '1' : '0',
4043 Pde.u & RT_BIT(11) ? '1' : '0',
4044 Pde.u & X86_PDE_PG_MASK));
4045 ////if (cMaxDepth >= 1)
4046 {
4047 /** @todo what about using the page pool for mapping PTs? */
4048 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4049 PX86PT pPT = NULL;
4050 PGMPAGEMAPLOCK LockPT;
4051
4052 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, (const void **)&pPT, &LockPT);
4053
4054 int rc2 = VERR_INVALID_PARAMETER;
4055 if (pPT)
4056 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4057 else
4058 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4059
4060 if (rc == VINF_SUCCESS)
4061 PGMPhysReleasePageMappingLock(pVM, &LockPT);
4062
4063 if (rc2 < rc && RT_SUCCESS(rc))
4064 rc = rc2;
4065 }
4066 }
4067 }
4068 }
4069 PGMPhysReleasePageMappingLock(pVM, &LockCr3);
4070 return rc;
4071}
4072
4073
4074/**
4075 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4076 *
4077 * @returns VBox status code (VINF_SUCCESS).
4078 * @param pVM The VM handle.
4079 * @param cr3 The root of the hierarchy.
4080 * @param cr4 The cr4, only PAE and PSE is currently used.
4081 * @param fLongMode Set if long mode, false if not long mode.
4082 * @param cMaxDepth Number of levels to dump.
4083 * @param pHlp Pointer to the output functions.
4084 */
4085VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4086{
4087 if (!pHlp)
4088 pHlp = DBGFR3InfoLogHlp();
4089 if (!cMaxDepth)
4090 return VINF_SUCCESS;
4091 const unsigned cch = fLongMode ? 16 : 8;
4092 pHlp->pfnPrintf(pHlp,
4093 "cr3=%08x cr4=%08x%s\n"
4094 "%-*s P - Present\n"
4095 "%-*s | R/W - Read (0) / Write (1)\n"
4096 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4097 "%-*s | | | A - Accessed\n"
4098 "%-*s | | | | D - Dirty\n"
4099 "%-*s | | | | | G - Global\n"
4100 "%-*s | | | | | | WT - Write thru\n"
4101 "%-*s | | | | | | | CD - Cache disable\n"
4102 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4103 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4104 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4105 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4106 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4107 "%-*s Level | | | | | | | | | | | | Page\n"
4108 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4109 - W U - - - -- -- -- -- -- 010 */
4110 , cr3, cr4, fLongMode ? " Long Mode" : "",
4111 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4112 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4113 if (cr4 & X86_CR4_PAE)
4114 {
4115 if (fLongMode)
4116 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4117 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4118 }
4119 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4120}
4121
4122#ifdef VBOX_WITH_DEBUGGER
4123
4124/**
4125 * The '.pgmram' command.
4126 *
4127 * @returns VBox status.
4128 * @param pCmd Pointer to the command descriptor (as registered).
4129 * @param pCmdHlp Pointer to command helper functions.
4130 * @param pVM Pointer to the current VM (if any).
4131 * @param paArgs Pointer to (readonly) array of arguments.
4132 * @param cArgs Number of arguments in the array.
4133 */
4134static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4135{
4136 /*
4137 * Validate input.
4138 */
4139 if (!pVM)
4140 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4141 if (!pVM->pgm.s.pRamRangesRC)
4142 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4143
4144 /*
4145 * Dump the ranges.
4146 */
4147 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4148 PPGMRAMRANGE pRam;
4149 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4150 {
4151 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4152 "%RGp - %RGp %p\n",
4153 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4154 if (RT_FAILURE(rc))
4155 return rc;
4156 }
4157
4158 return VINF_SUCCESS;
4159}
4160
4161
4162/**
4163 * The '.pgmerror' and '.pgmerroroff' commands.
4164 *
4165 * @returns VBox status.
4166 * @param pCmd Pointer to the command descriptor (as registered).
4167 * @param pCmdHlp Pointer to command helper functions.
4168 * @param pVM Pointer to the current VM (if any).
4169 * @param paArgs Pointer to (readonly) array of arguments.
4170 * @param cArgs Number of arguments in the array.
4171 */
4172static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4173{
4174 /*
4175 * Validate input.
4176 */
4177 if (!pVM)
4178 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4179 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4180 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4181
4182 if (!cArgs)
4183 {
4184 /*
4185 * Print the list of error injection locations with status.
4186 */
4187 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4188 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4189 }
4190 else
4191 {
4192
4193 /*
4194 * String switch on where to inject the error.
4195 */
4196 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4197 const char *pszWhere = paArgs[0].u.pszString;
4198 if (!strcmp(pszWhere, "handy"))
4199 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4200 else
4201 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4202 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4203 }
4204 return VINF_SUCCESS;
4205}
4206
4207
4208/**
4209 * The '.pgmsync' command.
4210 *
4211 * @returns VBox status.
4212 * @param pCmd Pointer to the command descriptor (as registered).
4213 * @param pCmdHlp Pointer to command helper functions.
4214 * @param pVM Pointer to the current VM (if any).
4215 * @param paArgs Pointer to (readonly) array of arguments.
4216 * @param cArgs Number of arguments in the array.
4217 */
4218static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4219{
4220 /** @todo SMP support */
4221 PVMCPU pVCpu = &pVM->aCpus[0];
4222
4223 /*
4224 * Validate input.
4225 */
4226 if (!pVM)
4227 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4228
4229 /*
4230 * Force page directory sync.
4231 */
4232 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4233
4234 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4235 if (RT_FAILURE(rc))
4236 return rc;
4237
4238 return VINF_SUCCESS;
4239}
4240
4241
4242#ifdef VBOX_STRICT
4243/**
4244 * The '.pgmassertcr3' command.
4245 *
4246 * @returns VBox status.
4247 * @param pCmd Pointer to the command descriptor (as registered).
4248 * @param pCmdHlp Pointer to command helper functions.
4249 * @param pVM Pointer to the current VM (if any).
4250 * @param paArgs Pointer to (readonly) array of arguments.
4251 * @param cArgs Number of arguments in the array.
4252 */
4253static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4254{
4255 /** @todo SMP support!! */
4256 PVMCPU pVCpu = &pVM->aCpus[0];
4257
4258 /*
4259 * Validate input.
4260 */
4261 if (!pVM)
4262 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4263
4264 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4265 if (RT_FAILURE(rc))
4266 return rc;
4267
4268 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4269
4270 return VINF_SUCCESS;
4271}
4272#endif /* VBOX_STRICT */
4273
4274
4275/**
4276 * The '.pgmsyncalways' command.
4277 *
4278 * @returns VBox status.
4279 * @param pCmd Pointer to the command descriptor (as registered).
4280 * @param pCmdHlp Pointer to command helper functions.
4281 * @param pVM Pointer to the current VM (if any).
4282 * @param paArgs Pointer to (readonly) array of arguments.
4283 * @param cArgs Number of arguments in the array.
4284 */
4285static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4286{
4287 /** @todo SMP support!! */
4288 PVMCPU pVCpu = &pVM->aCpus[0];
4289
4290 /*
4291 * Validate input.
4292 */
4293 if (!pVM)
4294 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4295
4296 /*
4297 * Force page directory sync.
4298 */
4299 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4300 {
4301 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4302 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4303 }
4304 else
4305 {
4306 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4307 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4308 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4309 }
4310}
4311
4312
4313/**
4314 * The '.pgmsyncalways' command.
4315 *
4316 * @returns VBox status.
4317 * @param pCmd Pointer to the command descriptor (as registered).
4318 * @param pCmdHlp Pointer to command helper functions.
4319 * @param pVM Pointer to the current VM (if any).
4320 * @param paArgs Pointer to (readonly) array of arguments.
4321 * @param cArgs Number of arguments in the array.
4322 */
4323static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4324{
4325 /*
4326 * Validate input.
4327 */
4328 if (!pVM)
4329 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4330 if ( cArgs < 1
4331 || cArgs > 2
4332 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4333 || ( cArgs > 1
4334 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4335 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4336 if ( cArgs >= 2
4337 && strcmp(paArgs[1].u.pszString, "nozero"))
4338 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4339 bool fIncZeroPgs = cArgs < 2;
4340
4341 /*
4342 * Open the output file and get the ram parameters.
4343 */
4344 RTFILE hFile;
4345 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4346 if (RT_FAILURE(rc))
4347 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4348
4349 uint32_t cbRamHole = 0;
4350 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4351 uint64_t cbRam = 0;
4352 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4353 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4354
4355 /*
4356 * Dump the physical memory, page by page.
4357 */
4358 RTGCPHYS GCPhys = 0;
4359 char abZeroPg[PAGE_SIZE];
4360 RT_ZERO(abZeroPg);
4361
4362 pgmLock(pVM);
4363 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4364 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4365 pRam = pRam->pNextR3)
4366 {
4367 /* fill the gap */
4368 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4369 {
4370 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4371 {
4372 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4373 GCPhys += PAGE_SIZE;
4374 }
4375 }
4376
4377 PCPGMPAGE pPage = &pRam->aPages[0];
4378 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4379 {
4380 if ( PGM_PAGE_IS_ZERO(pPage)
4381 || PGM_PAGE_IS_BALLOONED(pPage))
4382 {
4383 if (fIncZeroPgs)
4384 {
4385 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4386 if (RT_FAILURE(rc))
4387 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4388 }
4389 }
4390 else
4391 {
4392 switch (PGM_PAGE_GET_TYPE(pPage))
4393 {
4394 case PGMPAGETYPE_RAM:
4395 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4396 case PGMPAGETYPE_ROM:
4397 case PGMPAGETYPE_MMIO2:
4398 {
4399 void const *pvPage;
4400 PGMPAGEMAPLOCK Lock;
4401 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4402 if (RT_SUCCESS(rc))
4403 {
4404 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4405 PGMPhysReleasePageMappingLock(pVM, &Lock);
4406 if (RT_FAILURE(rc))
4407 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4408 }
4409 else
4410 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4411 break;
4412 }
4413
4414 default:
4415 AssertFailed();
4416 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4417 case PGMPAGETYPE_MMIO:
4418 if (fIncZeroPgs)
4419 {
4420 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4421 if (RT_FAILURE(rc))
4422 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4423 }
4424 break;
4425 }
4426 }
4427
4428
4429 /* advance */
4430 GCPhys += PAGE_SIZE;
4431 pPage++;
4432 }
4433 }
4434 pgmUnlock(pVM);
4435
4436 RTFileClose(hFile);
4437 if (RT_SUCCESS(rc))
4438 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4439 return VINF_SUCCESS;
4440}
4441
4442#endif /* VBOX_WITH_DEBUGGER */
4443
4444/**
4445 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4446 */
4447typedef struct PGMCHECKINTARGS
4448{
4449 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4450 PPGMPHYSHANDLER pPrevPhys;
4451 PPGMVIRTHANDLER pPrevVirt;
4452 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4453 PVM pVM;
4454} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4455
4456/**
4457 * Validate a node in the physical handler tree.
4458 *
4459 * @returns 0 on if ok, other wise 1.
4460 * @param pNode The handler node.
4461 * @param pvUser pVM.
4462 */
4463static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4464{
4465 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4466 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4467 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4468 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4469 AssertReleaseMsg( !pArgs->pPrevPhys
4470 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4471 ("pPrevPhys=%p %RGp-%RGp %s\n"
4472 " pCur=%p %RGp-%RGp %s\n",
4473 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4474 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4475 pArgs->pPrevPhys = pCur;
4476 return 0;
4477}
4478
4479
4480/**
4481 * Validate a node in the virtual handler tree.
4482 *
4483 * @returns 0 on if ok, other wise 1.
4484 * @param pNode The handler node.
4485 * @param pvUser pVM.
4486 */
4487static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4488{
4489 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4490 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4491 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4492 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4493 AssertReleaseMsg( !pArgs->pPrevVirt
4494 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4495 ("pPrevVirt=%p %RGv-%RGv %s\n"
4496 " pCur=%p %RGv-%RGv %s\n",
4497 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4498 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4499 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4500 {
4501 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4502 ("pCur=%p %RGv-%RGv %s\n"
4503 "iPage=%d offVirtHandle=%#x expected %#x\n",
4504 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4505 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4506 }
4507 pArgs->pPrevVirt = pCur;
4508 return 0;
4509}
4510
4511
4512/**
4513 * Validate a node in the virtual handler tree.
4514 *
4515 * @returns 0 on if ok, other wise 1.
4516 * @param pNode The handler node.
4517 * @param pvUser pVM.
4518 */
4519static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4520{
4521 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4522 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4523 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4524 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4525 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4526 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4527 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4528 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4529 " pCur=%p %RGp-%RGp\n",
4530 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4531 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4532 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4533 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4534 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4535 " pCur=%p %RGp-%RGp\n",
4536 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4537 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4538 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4539 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4540 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4541 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4542 {
4543 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4544 for (;;)
4545 {
4546 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4547 AssertReleaseMsg(pCur2 != pCur,
4548 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4549 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4550 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4551 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4552 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4553 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4554 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4555 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4556 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4557 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4558 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4559 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4560 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4561 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4562 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4563 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4564 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4565 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4566 break;
4567 }
4568 }
4569
4570 pArgs->pPrevPhys2Virt = pCur;
4571 return 0;
4572}
4573
4574
4575/**
4576 * Perform an integrity check on the PGM component.
4577 *
4578 * @returns VINF_SUCCESS if everything is fine.
4579 * @returns VBox error status after asserting on integrity breach.
4580 * @param pVM The VM handle.
4581 */
4582VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4583{
4584 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4585
4586 /*
4587 * Check the trees.
4588 */
4589 int cErrors = 0;
4590 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4591 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4592 PGMCHECKINTARGS Args = s_LeftToRight;
4593 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4594 Args = s_RightToLeft;
4595 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4596 Args = s_LeftToRight;
4597 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4598 Args = s_RightToLeft;
4599 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4600 Args = s_LeftToRight;
4601 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4602 Args = s_RightToLeft;
4603 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4604 Args = s_LeftToRight;
4605 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4606 Args = s_RightToLeft;
4607 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4608
4609 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4610}
4611
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette