VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 31650

Last change on this file since 31650 was 31606, checked in by vboxsync, 14 years ago

Timer init changes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 230.1 KB
Line 
1/* $Id: PGM.cpp 31606 2010-08-12 15:22:39Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be refered to
30 * as "host paging", and GC refered to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
484 * however on 32-bit darwin the ring-0 code is running in a different memory
485 * context and therefore needs a separate cache. In raw-mode context we also
486 * need a separate cache. The 32-bit darwin mapping cache and the one for
487 * raw-mode context share a lot of code, see PGMRZDYNMAP.
488 *
489 *
490 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
491 *
492 * We've considered implementing the ring-3 mapping cache page based but found
493 * that this was bother some when one had to take into account TLBs+SMP and
494 * portability (missing the necessary APIs on several platforms). There were
495 * also some performance concerns with this approach which hadn't quite been
496 * worked out.
497 *
498 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
499 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
500 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
501 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
502 * costly than a single page, although how much more costly is uncertain. We'll
503 * try address this by using a very big cache, preferably bigger than the actual
504 * VM RAM size if possible. The current VM RAM sizes should give some idea for
505 * 32-bit boxes, while on 64-bit we can probably get away with employing an
506 * unlimited cache.
507 *
508 * The cache have to parts, as already indicated, the ring-3 side and the
509 * ring-0 side.
510 *
511 * The ring-0 will be tied to the page allocator since it will operate on the
512 * memory objects it contains. It will therefore require the first ring-0 mutex
513 * discussed in @ref subsec_pgmPhys_Serializing. We
514 * some double house keeping wrt to who has mapped what I think, since both
515 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
516 *
517 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
518 * require anyone that desires to do changes to the mapping cache to do that
519 * from within this critsect. Alternatively, we could employ a separate critsect
520 * for serializing changes to the mapping cache as this would reduce potential
521 * contention with other threads accessing mappings unrelated to the changes
522 * that are in process. We can see about this later, contention will show
523 * up in the statistics anyway, so it'll be simple to tell.
524 *
525 * The organization of the ring-3 part will be very much like how the allocation
526 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
527 * having to walk the tree all the time, we'll have a couple of lookaside entries
528 * like in we do for I/O ports and MMIO in IOM.
529 *
530 * The simplified flow of a PGMPhysRead/Write function:
531 * -# Enter the PGM critsect.
532 * -# Lookup GCPhys in the ram ranges and get the Page ID.
533 * -# Calc the Allocation Chunk ID from the Page ID.
534 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
535 * If not found in cache:
536 * -# Call ring-0 and request it to be mapped and supply
537 * a chunk to be unmapped if the cache is maxed out already.
538 * -# Insert the new mapping into the AVL tree (id + R3 address).
539 * -# Update the relevant lookaside entry and return the mapping address.
540 * -# Do the read/write according to monitoring flags and everything.
541 * -# Leave the critsect.
542 *
543 *
544 * @section sec_pgmPhys_Fallback Fallback
545 *
546 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
547 * API and thus require a fallback.
548 *
549 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
550 * will return to the ring-3 caller (and later ring-0) and asking it to seed
551 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
552 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
553 * "SeededAllocPages" call to ring-0.
554 *
555 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
556 * all page sharing (zero page detection will continue). It will also force
557 * all allocations to come from the VM which seeded the page. Both these
558 * measures are taken to make sure that there will never be any need for
559 * mapping anything into ring-3 - everything will be mapped already.
560 *
561 * Whether we'll continue to use the current MM locked memory management
562 * for this I don't quite know (I'd prefer not to and just ditch that all
563 * togther), we'll see what's simplest to do.
564 *
565 *
566 *
567 * @section sec_pgmPhys_Changes Changes
568 *
569 * Breakdown of the changes involved?
570 */
571
572/*******************************************************************************
573* Header Files *
574*******************************************************************************/
575#define LOG_GROUP LOG_GROUP_PGM
576#include <VBox/dbgf.h>
577#include <VBox/pgm.h>
578#include <VBox/cpum.h>
579#include <VBox/iom.h>
580#include <VBox/sup.h>
581#include <VBox/mm.h>
582#include <VBox/em.h>
583#include <VBox/stam.h>
584#include <VBox/rem.h>
585#include <VBox/selm.h>
586#include <VBox/ssm.h>
587#include <VBox/hwaccm.h>
588#include "PGMInternal.h"
589#include <VBox/vm.h>
590#include "PGMInline.h"
591
592#include <VBox/dbg.h>
593#include <VBox/param.h>
594#include <VBox/err.h>
595
596#include <iprt/asm.h>
597#include <iprt/asm-amd64-x86.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static int pgmR3InitStats(PVM pVM);
611static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
617#ifdef VBOX_STRICT
618static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
619#endif
620static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
621static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
622static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
623
624#ifdef VBOX_WITH_DEBUGGER
625/** @todo Convert the first two commands to 'info' items. */
626static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
627static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
629static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630# ifdef VBOX_STRICT
631static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632# endif
633# ifdef DEBUG_sandervl
634static DECLCALLBACK(int) pgmR3CmdCountPhysWrites(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635static DECLCALLBACK(void) pgmR3PhysWriteCountTMCallback(PVM pVM, PTMTIMER pTimer, void *pvUser);
636# endif
637static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
638#endif
639
640
641/*******************************************************************************
642* Global Variables *
643*******************************************************************************/
644#ifdef VBOX_WITH_DEBUGGER
645/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
646static const DBGCVARDESC g_aPgmErrorArgs[] =
647{
648 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
649 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
650};
651
652static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
653{
654 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
655 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
656 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
657};
658
659# ifdef DEBUG_sandervl
660static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
661{
662 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
663 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
664 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
665};
666# endif
667
668/** Command descriptors. */
669static const DBGCCMD g_aCmds[] =
670{
671 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
672 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
673 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
674 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
675 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
676# ifdef VBOX_STRICT
677 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
678# if HC_ARCH_BITS == 64
679 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
680 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
681# endif
682# endif
683# ifdef DEBUG_sandervl
684 { "pgmcountphyswrites", 2, 2, &g_aPgmCountPhysWritesArgs[0], 2, NULL, 0, pgmR3CmdCountPhysWrites, "", "Count physical page writes."},
685# endif
686 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
687 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
688};
689#endif
690
691
692
693
694/*
695 * Shadow - 32-bit mode
696 */
697#define PGM_SHW_TYPE PGM_TYPE_32BIT
698#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
699#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
700#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
701#include "PGMShw.h"
702
703/* Guest - real mode */
704#define PGM_GST_TYPE PGM_TYPE_REAL
705#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
706#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
707#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
708#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
709#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
710#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
711#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
712#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
713#include "PGMBth.h"
714#include "PGMGstDefs.h"
715#include "PGMGst.h"
716#undef BTH_PGMPOOLKIND_PT_FOR_PT
717#undef BTH_PGMPOOLKIND_ROOT
718#undef PGM_BTH_NAME
719#undef PGM_BTH_NAME_RC_STR
720#undef PGM_BTH_NAME_R0_STR
721#undef PGM_GST_TYPE
722#undef PGM_GST_NAME
723#undef PGM_GST_NAME_RC_STR
724#undef PGM_GST_NAME_R0_STR
725
726/* Guest - protected mode */
727#define PGM_GST_TYPE PGM_TYPE_PROT
728#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
729#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
730#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
731#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
732#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
733#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
734#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
735#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
736#include "PGMBth.h"
737#include "PGMGstDefs.h"
738#include "PGMGst.h"
739#undef BTH_PGMPOOLKIND_PT_FOR_PT
740#undef BTH_PGMPOOLKIND_ROOT
741#undef PGM_BTH_NAME
742#undef PGM_BTH_NAME_RC_STR
743#undef PGM_BTH_NAME_R0_STR
744#undef PGM_GST_TYPE
745#undef PGM_GST_NAME
746#undef PGM_GST_NAME_RC_STR
747#undef PGM_GST_NAME_R0_STR
748
749/* Guest - 32-bit mode */
750#define PGM_GST_TYPE PGM_TYPE_32BIT
751#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
752#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
753#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
754#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
755#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
756#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
757#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
758#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
759#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
760#include "PGMBth.h"
761#include "PGMGstDefs.h"
762#include "PGMGst.h"
763#undef BTH_PGMPOOLKIND_PT_FOR_BIG
764#undef BTH_PGMPOOLKIND_PT_FOR_PT
765#undef BTH_PGMPOOLKIND_ROOT
766#undef PGM_BTH_NAME
767#undef PGM_BTH_NAME_RC_STR
768#undef PGM_BTH_NAME_R0_STR
769#undef PGM_GST_TYPE
770#undef PGM_GST_NAME
771#undef PGM_GST_NAME_RC_STR
772#undef PGM_GST_NAME_R0_STR
773
774#undef PGM_SHW_TYPE
775#undef PGM_SHW_NAME
776#undef PGM_SHW_NAME_RC_STR
777#undef PGM_SHW_NAME_R0_STR
778
779
780/*
781 * Shadow - PAE mode
782 */
783#define PGM_SHW_TYPE PGM_TYPE_PAE
784#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
785#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
786#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
787#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
788#include "PGMShw.h"
789
790/* Guest - real mode */
791#define PGM_GST_TYPE PGM_TYPE_REAL
792#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
793#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
794#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
795#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
796#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
797#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
798#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
799#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
800#include "PGMGstDefs.h"
801#include "PGMBth.h"
802#undef BTH_PGMPOOLKIND_PT_FOR_PT
803#undef BTH_PGMPOOLKIND_ROOT
804#undef PGM_BTH_NAME
805#undef PGM_BTH_NAME_RC_STR
806#undef PGM_BTH_NAME_R0_STR
807#undef PGM_GST_TYPE
808#undef PGM_GST_NAME
809#undef PGM_GST_NAME_RC_STR
810#undef PGM_GST_NAME_R0_STR
811
812/* Guest - protected mode */
813#define PGM_GST_TYPE PGM_TYPE_PROT
814#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
815#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
816#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
817#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
818#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
819#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
820#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
821#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
822#include "PGMGstDefs.h"
823#include "PGMBth.h"
824#undef BTH_PGMPOOLKIND_PT_FOR_PT
825#undef BTH_PGMPOOLKIND_ROOT
826#undef PGM_BTH_NAME
827#undef PGM_BTH_NAME_RC_STR
828#undef PGM_BTH_NAME_R0_STR
829#undef PGM_GST_TYPE
830#undef PGM_GST_NAME
831#undef PGM_GST_NAME_RC_STR
832#undef PGM_GST_NAME_R0_STR
833
834/* Guest - 32-bit mode */
835#define PGM_GST_TYPE PGM_TYPE_32BIT
836#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
837#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
838#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
839#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
840#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
841#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
842#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
843#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
844#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
845#include "PGMGstDefs.h"
846#include "PGMBth.h"
847#undef BTH_PGMPOOLKIND_PT_FOR_BIG
848#undef BTH_PGMPOOLKIND_PT_FOR_PT
849#undef BTH_PGMPOOLKIND_ROOT
850#undef PGM_BTH_NAME
851#undef PGM_BTH_NAME_RC_STR
852#undef PGM_BTH_NAME_R0_STR
853#undef PGM_GST_TYPE
854#undef PGM_GST_NAME
855#undef PGM_GST_NAME_RC_STR
856#undef PGM_GST_NAME_R0_STR
857
858/* Guest - PAE mode */
859#define PGM_GST_TYPE PGM_TYPE_PAE
860#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
861#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
862#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
863#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
864#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
865#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
866#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
867#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
868#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
869#include "PGMBth.h"
870#include "PGMGstDefs.h"
871#include "PGMGst.h"
872#undef BTH_PGMPOOLKIND_PT_FOR_BIG
873#undef BTH_PGMPOOLKIND_PT_FOR_PT
874#undef BTH_PGMPOOLKIND_ROOT
875#undef PGM_BTH_NAME
876#undef PGM_BTH_NAME_RC_STR
877#undef PGM_BTH_NAME_R0_STR
878#undef PGM_GST_TYPE
879#undef PGM_GST_NAME
880#undef PGM_GST_NAME_RC_STR
881#undef PGM_GST_NAME_R0_STR
882
883#undef PGM_SHW_TYPE
884#undef PGM_SHW_NAME
885#undef PGM_SHW_NAME_RC_STR
886#undef PGM_SHW_NAME_R0_STR
887
888
889/*
890 * Shadow - AMD64 mode
891 */
892#define PGM_SHW_TYPE PGM_TYPE_AMD64
893#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
894#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
895#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
896#include "PGMShw.h"
897
898#ifdef VBOX_WITH_64_BITS_GUESTS
899/* Guest - AMD64 mode */
900# define PGM_GST_TYPE PGM_TYPE_AMD64
901# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
902# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
903# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
904# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
905# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
906# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
907# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
908# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
909# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
910# include "PGMBth.h"
911# include "PGMGstDefs.h"
912# include "PGMGst.h"
913# undef BTH_PGMPOOLKIND_PT_FOR_BIG
914# undef BTH_PGMPOOLKIND_PT_FOR_PT
915# undef BTH_PGMPOOLKIND_ROOT
916# undef PGM_BTH_NAME
917# undef PGM_BTH_NAME_RC_STR
918# undef PGM_BTH_NAME_R0_STR
919# undef PGM_GST_TYPE
920# undef PGM_GST_NAME
921# undef PGM_GST_NAME_RC_STR
922# undef PGM_GST_NAME_R0_STR
923#endif /* VBOX_WITH_64_BITS_GUESTS */
924
925#undef PGM_SHW_TYPE
926#undef PGM_SHW_NAME
927#undef PGM_SHW_NAME_RC_STR
928#undef PGM_SHW_NAME_R0_STR
929
930
931/*
932 * Shadow - Nested paging mode
933 */
934#define PGM_SHW_TYPE PGM_TYPE_NESTED
935#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
936#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
937#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
938#include "PGMShw.h"
939
940/* Guest - real mode */
941#define PGM_GST_TYPE PGM_TYPE_REAL
942#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
943#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
944#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
945#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
946#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
947#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
948#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
949#include "PGMGstDefs.h"
950#include "PGMBth.h"
951#undef BTH_PGMPOOLKIND_PT_FOR_PT
952#undef PGM_BTH_NAME
953#undef PGM_BTH_NAME_RC_STR
954#undef PGM_BTH_NAME_R0_STR
955#undef PGM_GST_TYPE
956#undef PGM_GST_NAME
957#undef PGM_GST_NAME_RC_STR
958#undef PGM_GST_NAME_R0_STR
959
960/* Guest - protected mode */
961#define PGM_GST_TYPE PGM_TYPE_PROT
962#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
963#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
964#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
965#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
966#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
967#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
968#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
969#include "PGMGstDefs.h"
970#include "PGMBth.h"
971#undef BTH_PGMPOOLKIND_PT_FOR_PT
972#undef PGM_BTH_NAME
973#undef PGM_BTH_NAME_RC_STR
974#undef PGM_BTH_NAME_R0_STR
975#undef PGM_GST_TYPE
976#undef PGM_GST_NAME
977#undef PGM_GST_NAME_RC_STR
978#undef PGM_GST_NAME_R0_STR
979
980/* Guest - 32-bit mode */
981#define PGM_GST_TYPE PGM_TYPE_32BIT
982#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
983#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
984#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
985#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
986#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
987#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
988#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
989#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
990#include "PGMGstDefs.h"
991#include "PGMBth.h"
992#undef BTH_PGMPOOLKIND_PT_FOR_BIG
993#undef BTH_PGMPOOLKIND_PT_FOR_PT
994#undef PGM_BTH_NAME
995#undef PGM_BTH_NAME_RC_STR
996#undef PGM_BTH_NAME_R0_STR
997#undef PGM_GST_TYPE
998#undef PGM_GST_NAME
999#undef PGM_GST_NAME_RC_STR
1000#undef PGM_GST_NAME_R0_STR
1001
1002/* Guest - PAE mode */
1003#define PGM_GST_TYPE PGM_TYPE_PAE
1004#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1005#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1006#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1007#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1008#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1009#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1010#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1011#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1012#include "PGMGstDefs.h"
1013#include "PGMBth.h"
1014#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1015#undef BTH_PGMPOOLKIND_PT_FOR_PT
1016#undef PGM_BTH_NAME
1017#undef PGM_BTH_NAME_RC_STR
1018#undef PGM_BTH_NAME_R0_STR
1019#undef PGM_GST_TYPE
1020#undef PGM_GST_NAME
1021#undef PGM_GST_NAME_RC_STR
1022#undef PGM_GST_NAME_R0_STR
1023
1024#ifdef VBOX_WITH_64_BITS_GUESTS
1025/* Guest - AMD64 mode */
1026# define PGM_GST_TYPE PGM_TYPE_AMD64
1027# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1028# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1029# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1030# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1031# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1032# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1033# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1034# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1035# include "PGMGstDefs.h"
1036# include "PGMBth.h"
1037# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1038# undef BTH_PGMPOOLKIND_PT_FOR_PT
1039# undef PGM_BTH_NAME
1040# undef PGM_BTH_NAME_RC_STR
1041# undef PGM_BTH_NAME_R0_STR
1042# undef PGM_GST_TYPE
1043# undef PGM_GST_NAME
1044# undef PGM_GST_NAME_RC_STR
1045# undef PGM_GST_NAME_R0_STR
1046#endif /* VBOX_WITH_64_BITS_GUESTS */
1047
1048#undef PGM_SHW_TYPE
1049#undef PGM_SHW_NAME
1050#undef PGM_SHW_NAME_RC_STR
1051#undef PGM_SHW_NAME_R0_STR
1052
1053
1054/*
1055 * Shadow - EPT
1056 */
1057#define PGM_SHW_TYPE PGM_TYPE_EPT
1058#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1059#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1060#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1061#include "PGMShw.h"
1062
1063/* Guest - real mode */
1064#define PGM_GST_TYPE PGM_TYPE_REAL
1065#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1066#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1067#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1068#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1069#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1070#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1071#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1072#include "PGMGstDefs.h"
1073#include "PGMBth.h"
1074#undef BTH_PGMPOOLKIND_PT_FOR_PT
1075#undef PGM_BTH_NAME
1076#undef PGM_BTH_NAME_RC_STR
1077#undef PGM_BTH_NAME_R0_STR
1078#undef PGM_GST_TYPE
1079#undef PGM_GST_NAME
1080#undef PGM_GST_NAME_RC_STR
1081#undef PGM_GST_NAME_R0_STR
1082
1083/* Guest - protected mode */
1084#define PGM_GST_TYPE PGM_TYPE_PROT
1085#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1086#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1087#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1088#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1089#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1090#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1091#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1092#include "PGMGstDefs.h"
1093#include "PGMBth.h"
1094#undef BTH_PGMPOOLKIND_PT_FOR_PT
1095#undef PGM_BTH_NAME
1096#undef PGM_BTH_NAME_RC_STR
1097#undef PGM_BTH_NAME_R0_STR
1098#undef PGM_GST_TYPE
1099#undef PGM_GST_NAME
1100#undef PGM_GST_NAME_RC_STR
1101#undef PGM_GST_NAME_R0_STR
1102
1103/* Guest - 32-bit mode */
1104#define PGM_GST_TYPE PGM_TYPE_32BIT
1105#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1106#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1107#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1108#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1109#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1110#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1111#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1112#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1113#include "PGMGstDefs.h"
1114#include "PGMBth.h"
1115#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1116#undef BTH_PGMPOOLKIND_PT_FOR_PT
1117#undef PGM_BTH_NAME
1118#undef PGM_BTH_NAME_RC_STR
1119#undef PGM_BTH_NAME_R0_STR
1120#undef PGM_GST_TYPE
1121#undef PGM_GST_NAME
1122#undef PGM_GST_NAME_RC_STR
1123#undef PGM_GST_NAME_R0_STR
1124
1125/* Guest - PAE mode */
1126#define PGM_GST_TYPE PGM_TYPE_PAE
1127#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1128#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1129#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1130#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1131#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1132#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1133#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1134#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1135#include "PGMGstDefs.h"
1136#include "PGMBth.h"
1137#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1138#undef BTH_PGMPOOLKIND_PT_FOR_PT
1139#undef PGM_BTH_NAME
1140#undef PGM_BTH_NAME_RC_STR
1141#undef PGM_BTH_NAME_R0_STR
1142#undef PGM_GST_TYPE
1143#undef PGM_GST_NAME
1144#undef PGM_GST_NAME_RC_STR
1145#undef PGM_GST_NAME_R0_STR
1146
1147#ifdef VBOX_WITH_64_BITS_GUESTS
1148/* Guest - AMD64 mode */
1149# define PGM_GST_TYPE PGM_TYPE_AMD64
1150# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1151# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1152# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1153# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1154# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1155# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1156# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1157# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1158# include "PGMGstDefs.h"
1159# include "PGMBth.h"
1160# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1161# undef BTH_PGMPOOLKIND_PT_FOR_PT
1162# undef PGM_BTH_NAME
1163# undef PGM_BTH_NAME_RC_STR
1164# undef PGM_BTH_NAME_R0_STR
1165# undef PGM_GST_TYPE
1166# undef PGM_GST_NAME
1167# undef PGM_GST_NAME_RC_STR
1168# undef PGM_GST_NAME_R0_STR
1169#endif /* VBOX_WITH_64_BITS_GUESTS */
1170
1171#undef PGM_SHW_TYPE
1172#undef PGM_SHW_NAME
1173#undef PGM_SHW_NAME_RC_STR
1174#undef PGM_SHW_NAME_R0_STR
1175
1176
1177
1178/**
1179 * Initiates the paging of VM.
1180 *
1181 * @returns VBox status code.
1182 * @param pVM Pointer to VM structure.
1183 */
1184VMMR3DECL(int) PGMR3Init(PVM pVM)
1185{
1186 LogFlow(("PGMR3Init:\n"));
1187 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1188 int rc;
1189
1190 /*
1191 * Assert alignment and sizes.
1192 */
1193 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1194 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1195 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1196
1197 /*
1198 * Init the structure.
1199 */
1200#ifdef PGM_WITHOUT_MAPPINGS
1201 pVM->pgm.s.fMappingsDisabled = true;
1202#endif
1203 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1204 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1205
1206 /* Init the per-CPU part. */
1207 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1208 {
1209 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1210 PPGMCPU pPGM = &pVCpu->pgm.s;
1211
1212 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1213 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1214 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1215
1216 pPGM->enmShadowMode = PGMMODE_INVALID;
1217 pPGM->enmGuestMode = PGMMODE_INVALID;
1218
1219 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1220
1221 pPGM->pGst32BitPdR3 = NULL;
1222 pPGM->pGstPaePdptR3 = NULL;
1223 pPGM->pGstAmd64Pml4R3 = NULL;
1224#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1225 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1226 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1227 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1228#endif
1229 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1230 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1231 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1232 {
1233 pPGM->apGstPaePDsR3[i] = NULL;
1234#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1235 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1236#endif
1237 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1238 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1239 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1240 }
1241
1242 pPGM->fA20Enabled = true;
1243 }
1244
1245 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1246 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1247 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1248
1249 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1250#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1251 true
1252#else
1253 false
1254#endif
1255 );
1256 AssertLogRelRCReturn(rc, rc);
1257
1258#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1259 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1260#else
1261 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1262#endif
1263 AssertLogRelRCReturn(rc, rc);
1264 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1265 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1266
1267 /*
1268 * Get the configured RAM size - to estimate saved state size.
1269 */
1270 uint64_t cbRam;
1271 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1272 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1273 cbRam = 0;
1274 else if (RT_SUCCESS(rc))
1275 {
1276 if (cbRam < PAGE_SIZE)
1277 cbRam = 0;
1278 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1279 }
1280 else
1281 {
1282 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1283 return rc;
1284 }
1285
1286#ifdef VBOX_WITH_STATISTICS
1287 /*
1288 * Allocate memory for the statistics before someone tries to use them.
1289 */
1290 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1291 void *pv;
1292 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1293 AssertRCReturn(rc, rc);
1294
1295 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1296 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1297 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1298 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1299
1300 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1301 {
1302 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1303 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1304 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1305
1306 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1307 }
1308#endif /* VBOX_WITH_STATISTICS */
1309
1310 /*
1311 * Register callbacks, string formatters and the saved state data unit.
1312 */
1313#ifdef VBOX_STRICT
1314 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1315#endif
1316 PGMRegisterStringFormatTypes();
1317
1318 rc = pgmR3InitSavedState(pVM, cbRam);
1319 if (RT_FAILURE(rc))
1320 return rc;
1321
1322 /*
1323 * Initialize the PGM critical section and flush the phys TLBs
1324 */
1325 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1326 AssertRCReturn(rc, rc);
1327
1328 PGMR3PhysChunkInvalidateTLB(pVM);
1329 PGMPhysInvalidatePageMapTLB(pVM);
1330
1331 /*
1332 * For the time being we sport a full set of handy pages in addition to the base
1333 * memory to simplify things.
1334 */
1335 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1336 AssertRCReturn(rc, rc);
1337
1338 /*
1339 * Trees
1340 */
1341 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1342 if (RT_SUCCESS(rc))
1343 {
1344 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1345 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1346
1347 /*
1348 * Allocate the zero page.
1349 */
1350 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1351 }
1352 if (RT_SUCCESS(rc))
1353 {
1354 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1355 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1356 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1357 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1358
1359 /*
1360 * Allocate the invalid MMIO page.
1361 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1362 */
1363 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1364 }
1365 if (RT_SUCCESS(rc))
1366 {
1367 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1368 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1369 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1370 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1371
1372 /*
1373 * Init the paging.
1374 */
1375 rc = pgmR3InitPaging(pVM);
1376 }
1377 if (RT_SUCCESS(rc))
1378 {
1379 /*
1380 * Init the page pool.
1381 */
1382 rc = pgmR3PoolInit(pVM);
1383 }
1384 if (RT_SUCCESS(rc))
1385 {
1386 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1387 {
1388 PVMCPU pVCpu = &pVM->aCpus[i];
1389 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1390 if (RT_FAILURE(rc))
1391 break;
1392 }
1393 }
1394
1395 if (RT_SUCCESS(rc))
1396 {
1397 /*
1398 * Info & statistics
1399 */
1400 DBGFR3InfoRegisterInternal(pVM, "mode",
1401 "Shows the current paging mode. "
1402 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1403 pgmR3InfoMode);
1404 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1405 "Dumps all the entries in the top level paging table. No arguments.",
1406 pgmR3InfoCr3);
1407 DBGFR3InfoRegisterInternal(pVM, "phys",
1408 "Dumps all the physical address ranges. No arguments.",
1409 pgmR3PhysInfo);
1410 DBGFR3InfoRegisterInternal(pVM, "handlers",
1411 "Dumps physical, virtual and hyper virtual handlers. "
1412 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1413 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1414 pgmR3InfoHandlers);
1415 DBGFR3InfoRegisterInternal(pVM, "mappings",
1416 "Dumps guest mappings.",
1417 pgmR3MapInfo);
1418
1419 pgmR3InitStats(pVM);
1420
1421#ifdef VBOX_WITH_DEBUGGER
1422 /*
1423 * Debugger commands.
1424 */
1425 static bool s_fRegisteredCmds = false;
1426 if (!s_fRegisteredCmds)
1427 {
1428 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1429 if (RT_SUCCESS(rc2))
1430 s_fRegisteredCmds = true;
1431 }
1432#endif
1433 return VINF_SUCCESS;
1434 }
1435
1436 /* Almost no cleanup necessary, MM frees all memory. */
1437 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1438
1439 return rc;
1440}
1441
1442
1443/**
1444 * Initializes the per-VCPU PGM.
1445 *
1446 * @returns VBox status code.
1447 * @param pVM The VM to operate on.
1448 */
1449VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1450{
1451 LogFlow(("PGMR3InitCPU\n"));
1452 return VINF_SUCCESS;
1453}
1454
1455
1456/**
1457 * Init paging.
1458 *
1459 * Since we need to check what mode the host is operating in before we can choose
1460 * the right paging functions for the host we have to delay this until R0 has
1461 * been initialized.
1462 *
1463 * @returns VBox status code.
1464 * @param pVM VM handle.
1465 */
1466static int pgmR3InitPaging(PVM pVM)
1467{
1468 /*
1469 * Force a recalculation of modes and switcher so everyone gets notified.
1470 */
1471 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1472 {
1473 PVMCPU pVCpu = &pVM->aCpus[i];
1474
1475 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1476 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1477 }
1478
1479 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1480
1481 /*
1482 * Allocate static mapping space for whatever the cr3 register
1483 * points to and in the case of PAE mode to the 4 PDs.
1484 */
1485 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1486 if (RT_FAILURE(rc))
1487 {
1488 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1489 return rc;
1490 }
1491 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1492
1493 /*
1494 * Allocate pages for the three possible intermediate contexts
1495 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1496 * for the sake of simplicity. The AMD64 uses the PAE for the
1497 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1498 *
1499 * We assume that two page tables will be enought for the core code
1500 * mappings (HC virtual and identity).
1501 */
1502 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1503 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1504 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1505 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1506 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1507 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1508 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1509 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1510 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1511 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1512 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1513 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1514
1515 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1516 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1517 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1518 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1519 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1520 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1521
1522 /*
1523 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1524 */
1525 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1526 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1527 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1528
1529 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1530 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1531
1532 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1533 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1534 {
1535 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1536 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1537 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1538 }
1539
1540 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1541 {
1542 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1543 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1544 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1545 }
1546
1547 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1548 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1549 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1550 | HCPhysInterPaePDPT64;
1551
1552 /*
1553 * Initialize paging workers and mode from current host mode
1554 * and the guest running in real mode.
1555 */
1556 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1557 switch (pVM->pgm.s.enmHostMode)
1558 {
1559 case SUPPAGINGMODE_32_BIT:
1560 case SUPPAGINGMODE_32_BIT_GLOBAL:
1561 case SUPPAGINGMODE_PAE:
1562 case SUPPAGINGMODE_PAE_GLOBAL:
1563 case SUPPAGINGMODE_PAE_NX:
1564 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1565 break;
1566
1567 case SUPPAGINGMODE_AMD64:
1568 case SUPPAGINGMODE_AMD64_GLOBAL:
1569 case SUPPAGINGMODE_AMD64_NX:
1570 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1571#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1572 if (ARCH_BITS != 64)
1573 {
1574 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1575 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1576 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1577 }
1578#endif
1579 break;
1580 default:
1581 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1582 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1583 }
1584 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1585 if (RT_SUCCESS(rc))
1586 {
1587 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1588#if HC_ARCH_BITS == 64
1589 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1590 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1591 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1592 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1593 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1594 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1595 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1596#endif
1597 return VINF_SUCCESS;
1598 }
1599
1600 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1601 return rc;
1602}
1603
1604
1605/**
1606 * Init statistics
1607 * @returns VBox status code.
1608 */
1609static int pgmR3InitStats(PVM pVM)
1610{
1611 PPGM pPGM = &pVM->pgm.s;
1612 int rc;
1613
1614 /*
1615 * Release statistics.
1616 */
1617 /* Common - misc variables */
1618 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1619 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1620 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1621 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1622 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1623 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1624 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1625 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1626 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1627 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1628 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1629 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1630 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1631 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1632 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1633 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1634 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1635
1636 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1637 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1638 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1639 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1640
1641 /* Live save */
1642 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1643 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1644 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1645 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1646 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1647 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1648 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1649 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1650 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1651 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1652 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1653 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1654 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1655 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1656 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1657 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1658 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1659 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1660
1661#ifdef VBOX_WITH_STATISTICS
1662
1663# define PGM_REG_COUNTER(a, b, c) \
1664 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1665 AssertRC(rc);
1666
1667# define PGM_REG_COUNTER_BYTES(a, b, c) \
1668 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1669 AssertRC(rc);
1670
1671# define PGM_REG_PROFILE(a, b, c) \
1672 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1673 AssertRC(rc);
1674
1675#ifdef DEBUG_sandervl
1676 PGM_REG_COUNTER(&pPGM->StatRZFTPhysPageWrite, "/PGM/FT/RZ/PageWrite", "The number of times a physical page was written to (FT stats).");
1677 PGM_REG_COUNTER(&pPGM->StatR3FTPhysPageWrite, "/PGM/FT/R3/PageWrite", "The number of times a physical page was written to (FT stats).");
1678#endif
1679
1680 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1681
1682 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1683 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1684 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1685 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1686
1687 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1688 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1689 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1690 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1691 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1692 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1693 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1694 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1695 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1696 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1697
1698 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1699 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1700 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1701 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1702 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1703 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1704
1705 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1706 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1707 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1708 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1709 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1710 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1711 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1712 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1713
1714 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1715 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1716 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1717 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1718
1719 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1720 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1721 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1722 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1723 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1724 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1725 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1726 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1727
1728 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1729 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1730/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1731 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1732 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1733/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1734
1735 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1736 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1737 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1738 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1739 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1740 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1741 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1742 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1743
1744 /* GC only: */
1745 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1746 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1747
1748 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1749 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1750 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1751 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1752 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1753 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1754 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1755 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1756
1757 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1758 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1759 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1760 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1761 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1762 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1763 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1764
1765# undef PGM_REG_COUNTER
1766# undef PGM_REG_PROFILE
1767#endif
1768
1769 /*
1770 * Note! The layout below matches the member layout exactly!
1771 */
1772
1773 /*
1774 * Common - stats
1775 */
1776 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1777 {
1778 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1779
1780#define PGM_REG_COUNTER(a, b, c) \
1781 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1782 AssertRC(rc);
1783#define PGM_REG_PROFILE(a, b, c) \
1784 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1785 AssertRC(rc);
1786
1787 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1788
1789#ifdef VBOX_WITH_STATISTICS
1790 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1791
1792# if 0 /* rarely useful; leave for debugging. */
1793 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1794 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1795 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1796 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1797 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1798 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1799# endif
1800 /* R0 only: */
1801 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1802 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1803
1804 /* RZ only: */
1805 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1806 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1807 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1808 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1809 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1810 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1811 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1812 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1813 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1814 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1815 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is releated to the guest mappings.");
1816 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1817 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1818 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1819 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1820 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1821 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1822 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1823 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1824 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1825 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1826 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1827 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysicalOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysicalOpt", "Number of the physical access handler traps using the optimization.");
1828 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1829 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1830 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1831 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1832 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1833 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1834 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1835 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1836 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1837 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1838 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1839 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1840 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1841 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1842 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1843 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1844 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1845 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1846 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1847 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1848#if 0 /* rarely useful; leave for debugging. */
1849 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1850 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1851 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1852#endif
1853 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1854 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1855 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1856 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1858
1859 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1860 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1861 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1862 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1863 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1864 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1865 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1866 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1867 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1868 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1869 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1870 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restorting to subset flushes.");
1871 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1872 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1873 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1874 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1875 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1876 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1877 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1878 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1879 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1880 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1881 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1882 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1883 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1884 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1885 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1886 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1887 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1888 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1889 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1890 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1891 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1892 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1893 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1894 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1895
1896 /* HC only: */
1897
1898 /* RZ & R3: */
1899 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1900 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1909 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1916 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1922 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1923 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1924 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1925 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1926 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1929 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1930 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1931 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1932 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1937 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1939 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1940 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1945 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1946
1947 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1948 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1949 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1950 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1951 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1952 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1953 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1954 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1955 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1956 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1957 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1958 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1959 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1960 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1961 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1962 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1963 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1964 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1965 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1966 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1967 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1968 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1969 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1970 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1971 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1972 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1973 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1974 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1975 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1976 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1977 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1978 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1979 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1980 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1981 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1982 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1983 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1984 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1985 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1986 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1987 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1988 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1989 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1990 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1991#endif /* VBOX_WITH_STATISTICS */
1992
1993#undef PGM_REG_PROFILE
1994#undef PGM_REG_COUNTER
1995
1996 }
1997
1998 return VINF_SUCCESS;
1999}
2000
2001
2002/**
2003 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2004 *
2005 * The dynamic mapping area will also be allocated and initialized at this
2006 * time. We could allocate it during PGMR3Init of course, but the mapping
2007 * wouldn't be allocated at that time preventing us from setting up the
2008 * page table entries with the dummy page.
2009 *
2010 * @returns VBox status code.
2011 * @param pVM VM handle.
2012 */
2013VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2014{
2015 RTGCPTR GCPtr;
2016 int rc;
2017
2018 /*
2019 * Reserve space for the dynamic mappings.
2020 */
2021 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2022 if (RT_SUCCESS(rc))
2023 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2024
2025 if ( RT_SUCCESS(rc)
2026 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2027 {
2028 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2029 if (RT_SUCCESS(rc))
2030 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2031 }
2032 if (RT_SUCCESS(rc))
2033 {
2034 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2035 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2036 }
2037 return rc;
2038}
2039
2040
2041/**
2042 * Ring-3 init finalizing.
2043 *
2044 * @returns VBox status code.
2045 * @param pVM The VM handle.
2046 */
2047VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2048{
2049 int rc;
2050
2051 /*
2052 * Reserve space for the dynamic mappings.
2053 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2054 */
2055 /* get the pointer to the page table entries. */
2056 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2057 AssertRelease(pMapping);
2058 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2059 const unsigned iPT = off >> X86_PD_SHIFT;
2060 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2061 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2062 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2063
2064 /* init cache area */
2065 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2066 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2067 {
2068 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2069 AssertRCReturn(rc, rc);
2070 }
2071
2072 /*
2073 * Determin the max physical address width (MAXPHYADDR) and apply it to
2074 * all the mask members and stuff.
2075 */
2076 uint32_t cMaxPhysAddrWidth;
2077 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2078 if ( uMaxExtLeaf >= 0x80000008
2079 && uMaxExtLeaf <= 0x80000fff)
2080 {
2081 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2082 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2083 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2084 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2085 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2086 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2087 }
2088 else
2089 {
2090 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2091 cMaxPhysAddrWidth = 48;
2092 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2093 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2094 }
2095
2096 pVM->pgm.s.GCPhysInvAddrMask = 0;
2097 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2098 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2099
2100 /*
2101 * Initialize the invalid paging entry masks, assuming NX is disabled.
2102 */
2103 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2104 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2105 {
2106 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2107
2108 /** @todo The manuals are not entirely clear whether the physical
2109 * address width is relevant. See table 5-9 in the intel
2110 * manual vs the PDE4M descriptions. Write testcase (NP). */
2111 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2112 | X86_PDE4M_MBZ_MASK;
2113
2114 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2115 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2116 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2117 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2118
2119 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2120 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2121 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2122 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2123 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2124 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2125 }
2126
2127 /*
2128 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2129 * Intel only goes up to 36 bits, so we stick to 36 as well.
2130 * Update: More recent intel manuals specifies 40 bits just like AMD.
2131 */
2132 uint32_t u32Dummy, u32Features;
2133 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2134 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2135 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2136 else
2137 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2138
2139 /*
2140 * Allocate memory if we're supposed to do that.
2141 */
2142 if (pVM->pgm.s.fRamPreAlloc)
2143 rc = pgmR3PhysRamPreAllocate(pVM);
2144
2145#ifdef DEBUG_sandervl
2146 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, pgmR3PhysWriteCountTMCallback, NULL, "Physical page write counting timer", &pVM->pgm.s.pPhysWritesCountTimer);
2147 AssertRC(rc);
2148#endif
2149
2150 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2151 return rc;
2152}
2153
2154
2155/**
2156 * Applies relocations to data and code managed by this component.
2157 *
2158 * This function will be called at init and whenever the VMM need to relocate it
2159 * self inside the GC.
2160 *
2161 * @param pVM The VM.
2162 * @param offDelta Relocation delta relative to old location.
2163 */
2164VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2165{
2166 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2167
2168 /*
2169 * Paging stuff.
2170 */
2171 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2172
2173 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2174
2175 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2176 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2177 {
2178 PVMCPU pVCpu = &pVM->aCpus[i];
2179
2180 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2181
2182 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2183 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2184 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2185 }
2186
2187 /*
2188 * Trees.
2189 */
2190 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2191
2192 /*
2193 * Ram ranges.
2194 */
2195 if (pVM->pgm.s.pRamRangesR3)
2196 {
2197 /* Update the pSelfRC pointers and relink them. */
2198 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2199 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2200 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2201 pgmR3PhysRelinkRamRanges(pVM);
2202 }
2203
2204 /*
2205 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2206 * be mapped and thus not included in the above exercise.
2207 */
2208 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2209 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2210 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2211
2212 /*
2213 * Update the two page directories with all page table mappings.
2214 * (One or more of them have changed, that's why we're here.)
2215 */
2216 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2217 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2218 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2219
2220 /* Relocate GC addresses of Page Tables. */
2221 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2222 {
2223 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2224 {
2225 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2226 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2227 }
2228 }
2229
2230 /*
2231 * Dynamic page mapping area.
2232 */
2233 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2234 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2235 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2236
2237 if (pVM->pgm.s.pRCDynMap)
2238 {
2239 pVM->pgm.s.pRCDynMap += offDelta;
2240 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2241
2242 pDynMap->paPages += offDelta;
2243 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2244
2245 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2246 {
2247 paPages[iPage].pvPage += offDelta;
2248 paPages[iPage].uPte.pv += offDelta;
2249 }
2250 }
2251
2252 /*
2253 * The Zero page.
2254 */
2255 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2256#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2257 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2258#else
2259 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2260#endif
2261
2262 /*
2263 * Physical and virtual handlers.
2264 */
2265 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2266 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2267 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2268 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2269
2270 /*
2271 * The page pool.
2272 */
2273 pgmR3PoolRelocate(pVM);
2274
2275#ifdef VBOX_WITH_STATISTICS
2276 /*
2277 * Statistics.
2278 */
2279 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2280 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2281 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2282#endif
2283}
2284
2285
2286/**
2287 * Callback function for relocating a physical access handler.
2288 *
2289 * @returns 0 (continue enum)
2290 * @param pNode Pointer to a PGMPHYSHANDLER node.
2291 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2292 * not certain the delta will fit in a void pointer for all possible configs.
2293 */
2294static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2295{
2296 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2297 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2298 if (pHandler->pfnHandlerRC)
2299 pHandler->pfnHandlerRC += offDelta;
2300 if (pHandler->pvUserRC >= 0x10000)
2301 pHandler->pvUserRC += offDelta;
2302 return 0;
2303}
2304
2305
2306/**
2307 * Callback function for relocating a virtual access handler.
2308 *
2309 * @returns 0 (continue enum)
2310 * @param pNode Pointer to a PGMVIRTHANDLER node.
2311 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2312 * not certain the delta will fit in a void pointer for all possible configs.
2313 */
2314static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2315{
2316 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2317 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2318 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2319 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2320 Assert(pHandler->pfnHandlerRC);
2321 pHandler->pfnHandlerRC += offDelta;
2322 return 0;
2323}
2324
2325
2326/**
2327 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2328 *
2329 * @returns 0 (continue enum)
2330 * @param pNode Pointer to a PGMVIRTHANDLER node.
2331 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2332 * not certain the delta will fit in a void pointer for all possible configs.
2333 */
2334static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2335{
2336 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2337 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2338 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2339 Assert(pHandler->pfnHandlerRC);
2340 pHandler->pfnHandlerRC += offDelta;
2341 return 0;
2342}
2343
2344
2345/**
2346 * Resets a virtual CPU when unplugged.
2347 *
2348 * @param pVM The VM handle.
2349 * @param pVCpu The virtual CPU handle.
2350 */
2351VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2352{
2353 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2354 AssertRC(rc);
2355
2356 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2357 AssertRC(rc);
2358
2359 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2360
2361 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2362
2363 /*
2364 * Re-init other members.
2365 */
2366 pVCpu->pgm.s.fA20Enabled = true;
2367
2368 /*
2369 * Clear the FFs PGM owns.
2370 */
2371 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2372 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2373}
2374
2375
2376/**
2377 * The VM is being reset.
2378 *
2379 * For the PGM component this means that any PD write monitors
2380 * needs to be removed.
2381 *
2382 * @param pVM VM handle.
2383 */
2384VMMR3DECL(void) PGMR3Reset(PVM pVM)
2385{
2386 int rc;
2387
2388 LogFlow(("PGMR3Reset:\n"));
2389 VM_ASSERT_EMT(pVM);
2390
2391 pgmLock(pVM);
2392
2393 /*
2394 * Unfix any fixed mappings and disable CR3 monitoring.
2395 */
2396 pVM->pgm.s.fMappingsFixed = false;
2397 pVM->pgm.s.fMappingsFixedRestored = false;
2398 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2399 pVM->pgm.s.cbMappingFixed = 0;
2400
2401 /*
2402 * Exit the guest paging mode before the pgm pool gets reset.
2403 * Important to clean up the amd64 case.
2404 */
2405 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2406 {
2407 PVMCPU pVCpu = &pVM->aCpus[i];
2408 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2409 AssertRC(rc);
2410 }
2411
2412#ifdef DEBUG
2413 DBGFR3InfoLog(pVM, "mappings", NULL);
2414 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2415#endif
2416
2417 /*
2418 * Switch mode back to real mode. (before resetting the pgm pool!)
2419 */
2420 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2421 {
2422 PVMCPU pVCpu = &pVM->aCpus[i];
2423
2424 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2425 AssertRC(rc);
2426
2427 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2428 }
2429
2430 /*
2431 * Reset the shadow page pool.
2432 */
2433 pgmR3PoolReset(pVM);
2434
2435 /*
2436 * Re-init various other members and clear the FFs that PGM owns.
2437 */
2438 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2439 {
2440 PVMCPU pVCpu = &pVM->aCpus[i];
2441
2442 pVCpu->pgm.s.fA20Enabled = true;
2443 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2444 PGMNotifyNxeChanged(pVCpu, false);
2445
2446 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2447 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2448 }
2449
2450 /*
2451 * Reset (zero) RAM and shadow ROM pages.
2452 */
2453 rc = pgmR3PhysRamReset(pVM);
2454 if (RT_SUCCESS(rc))
2455 rc = pgmR3PhysRomReset(pVM);
2456
2457
2458 pgmUnlock(pVM);
2459 AssertReleaseRC(rc);
2460}
2461
2462
2463#ifdef VBOX_STRICT
2464/**
2465 * VM state change callback for clearing fNoMorePhysWrites after
2466 * a snapshot has been created.
2467 */
2468static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2469{
2470 if ( enmState == VMSTATE_RUNNING
2471 || enmState == VMSTATE_RESUMING)
2472 pVM->pgm.s.fNoMorePhysWrites = false;
2473}
2474#endif
2475
2476
2477/**
2478 * Terminates the PGM.
2479 *
2480 * @returns VBox status code.
2481 * @param pVM Pointer to VM structure.
2482 */
2483VMMR3DECL(int) PGMR3Term(PVM pVM)
2484{
2485 /* Must free shared pages here. */
2486 pgmLock(pVM);
2487 pgmR3PhysRamTerm(pVM);
2488 pgmR3PhysRomTerm(pVM);
2489 pgmUnlock(pVM);
2490
2491 PGMDeregisterStringFormatTypes();
2492 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2493}
2494
2495
2496/**
2497 * Terminates the per-VCPU PGM.
2498 *
2499 * Termination means cleaning up and freeing all resources,
2500 * the VM it self is at this point powered off or suspended.
2501 *
2502 * @returns VBox status code.
2503 * @param pVM The VM to operate on.
2504 */
2505VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2506{
2507 return 0;
2508}
2509
2510
2511/**
2512 * Show paging mode.
2513 *
2514 * @param pVM VM Handle.
2515 * @param pHlp The info helpers.
2516 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2517 */
2518static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2519{
2520 /* digest argument. */
2521 bool fGuest, fShadow, fHost;
2522 if (pszArgs)
2523 pszArgs = RTStrStripL(pszArgs);
2524 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2525 fShadow = fHost = fGuest = true;
2526 else
2527 {
2528 fShadow = fHost = fGuest = false;
2529 if (strstr(pszArgs, "guest"))
2530 fGuest = true;
2531 if (strstr(pszArgs, "shadow"))
2532 fShadow = true;
2533 if (strstr(pszArgs, "host"))
2534 fHost = true;
2535 }
2536
2537 /** @todo SMP support! */
2538 /* print info. */
2539 if (fGuest)
2540 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2541 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2542 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2543 if (fShadow)
2544 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2545 if (fHost)
2546 {
2547 const char *psz;
2548 switch (pVM->pgm.s.enmHostMode)
2549 {
2550 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2551 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2552 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2553 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2554 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2555 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2556 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2557 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2558 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2559 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2560 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2561 default: psz = "unknown"; break;
2562 }
2563 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2564 }
2565}
2566
2567
2568/**
2569 * Dump registered MMIO ranges to the log.
2570 *
2571 * @param pVM VM Handle.
2572 * @param pHlp The info helpers.
2573 * @param pszArgs Arguments, ignored.
2574 */
2575static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2576{
2577 NOREF(pszArgs);
2578 pHlp->pfnPrintf(pHlp,
2579 "RAM ranges (pVM=%p)\n"
2580 "%.*s %.*s\n",
2581 pVM,
2582 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2583 sizeof(RTHCPTR) * 2, "pvHC ");
2584
2585 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2586 pHlp->pfnPrintf(pHlp,
2587 "%RGp-%RGp %RHv %s\n",
2588 pCur->GCPhys,
2589 pCur->GCPhysLast,
2590 pCur->pvR3,
2591 pCur->pszDesc);
2592}
2593
2594/**
2595 * Dump the page directory to the log.
2596 *
2597 * @param pVM VM Handle.
2598 * @param pHlp The info helpers.
2599 * @param pszArgs Arguments, ignored.
2600 */
2601static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2602{
2603 /** @todo SMP support!! */
2604 PVMCPU pVCpu = &pVM->aCpus[0];
2605
2606/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2607 /* Big pages supported? */
2608 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2609
2610 /* Global pages supported? */
2611 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2612
2613 NOREF(pszArgs);
2614
2615 /*
2616 * Get page directory addresses.
2617 */
2618 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2619 Assert(pPDSrc);
2620 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2621
2622 /*
2623 * Iterate the page directory.
2624 */
2625 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2626 {
2627 X86PDE PdeSrc = pPDSrc->a[iPD];
2628 if (PdeSrc.n.u1Present)
2629 {
2630 if (PdeSrc.b.u1Size && fPSE)
2631 pHlp->pfnPrintf(pHlp,
2632 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2633 iPD,
2634 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2635 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2636 else
2637 pHlp->pfnPrintf(pHlp,
2638 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2639 iPD,
2640 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2641 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2642 }
2643 }
2644}
2645
2646
2647/**
2648 * Service a VMMCALLRING3_PGM_LOCK call.
2649 *
2650 * @returns VBox status code.
2651 * @param pVM The VM handle.
2652 */
2653VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2654{
2655 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2656 AssertRC(rc);
2657 return rc;
2658}
2659
2660
2661/**
2662 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2663 *
2664 * @returns PGM_TYPE_*.
2665 * @param pgmMode The mode value to convert.
2666 */
2667DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2668{
2669 switch (pgmMode)
2670 {
2671 case PGMMODE_REAL: return PGM_TYPE_REAL;
2672 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2673 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2674 case PGMMODE_PAE:
2675 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2676 case PGMMODE_AMD64:
2677 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2678 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2679 case PGMMODE_EPT: return PGM_TYPE_EPT;
2680 default:
2681 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2682 }
2683}
2684
2685
2686/**
2687 * Gets the index into the paging mode data array of a SHW+GST mode.
2688 *
2689 * @returns PGM::paPagingData index.
2690 * @param uShwType The shadow paging mode type.
2691 * @param uGstType The guest paging mode type.
2692 */
2693DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2694{
2695 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2696 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2697 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2698 + (uGstType - PGM_TYPE_REAL);
2699}
2700
2701
2702/**
2703 * Gets the index into the paging mode data array of a SHW+GST mode.
2704 *
2705 * @returns PGM::paPagingData index.
2706 * @param enmShw The shadow paging mode.
2707 * @param enmGst The guest paging mode.
2708 */
2709DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2710{
2711 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2712 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2713 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2714}
2715
2716
2717/**
2718 * Calculates the max data index.
2719 * @returns The number of entries in the paging data array.
2720 */
2721DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2722{
2723 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2724}
2725
2726
2727/**
2728 * Initializes the paging mode data kept in PGM::paModeData.
2729 *
2730 * @param pVM The VM handle.
2731 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2732 * This is used early in the init process to avoid trouble with PDM
2733 * not being initialized yet.
2734 */
2735static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2736{
2737 PPGMMODEDATA pModeData;
2738 int rc;
2739
2740 /*
2741 * Allocate the array on the first call.
2742 */
2743 if (!pVM->pgm.s.paModeData)
2744 {
2745 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2746 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2747 }
2748
2749 /*
2750 * Initialize the array entries.
2751 */
2752 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2753 pModeData->uShwType = PGM_TYPE_32BIT;
2754 pModeData->uGstType = PGM_TYPE_REAL;
2755 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758
2759 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2760 pModeData->uShwType = PGM_TYPE_32BIT;
2761 pModeData->uGstType = PGM_TYPE_PROT;
2762 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765
2766 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2767 pModeData->uShwType = PGM_TYPE_32BIT;
2768 pModeData->uGstType = PGM_TYPE_32BIT;
2769 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2770 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772
2773 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2774 pModeData->uShwType = PGM_TYPE_PAE;
2775 pModeData->uGstType = PGM_TYPE_REAL;
2776 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2777 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779
2780 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2781 pModeData->uShwType = PGM_TYPE_PAE;
2782 pModeData->uGstType = PGM_TYPE_PROT;
2783 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2784 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2785 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2786
2787 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2788 pModeData->uShwType = PGM_TYPE_PAE;
2789 pModeData->uGstType = PGM_TYPE_32BIT;
2790 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2791 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2792 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2793
2794 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2795 pModeData->uShwType = PGM_TYPE_PAE;
2796 pModeData->uGstType = PGM_TYPE_PAE;
2797 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2798 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2799 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2800
2801#ifdef VBOX_WITH_64_BITS_GUESTS
2802 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2803 pModeData->uShwType = PGM_TYPE_AMD64;
2804 pModeData->uGstType = PGM_TYPE_AMD64;
2805 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2806 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2807 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2808#endif
2809
2810 /* The nested paging mode. */
2811 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2812 pModeData->uShwType = PGM_TYPE_NESTED;
2813 pModeData->uGstType = PGM_TYPE_REAL;
2814 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2815 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2816
2817 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2818 pModeData->uShwType = PGM_TYPE_NESTED;
2819 pModeData->uGstType = PGM_TYPE_PROT;
2820 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2821 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2822
2823 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2824 pModeData->uShwType = PGM_TYPE_NESTED;
2825 pModeData->uGstType = PGM_TYPE_32BIT;
2826 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2827 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2828
2829 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2830 pModeData->uShwType = PGM_TYPE_NESTED;
2831 pModeData->uGstType = PGM_TYPE_PAE;
2832 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2833 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2834
2835#ifdef VBOX_WITH_64_BITS_GUESTS
2836 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2837 pModeData->uShwType = PGM_TYPE_NESTED;
2838 pModeData->uGstType = PGM_TYPE_AMD64;
2839 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2841#endif
2842
2843 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2844 switch (pVM->pgm.s.enmHostMode)
2845 {
2846#if HC_ARCH_BITS == 32
2847 case SUPPAGINGMODE_32_BIT:
2848 case SUPPAGINGMODE_32_BIT_GLOBAL:
2849 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2850 {
2851 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2852 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2853 }
2854# ifdef VBOX_WITH_64_BITS_GUESTS
2855 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2856 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2857# endif
2858 break;
2859
2860 case SUPPAGINGMODE_PAE:
2861 case SUPPAGINGMODE_PAE_NX:
2862 case SUPPAGINGMODE_PAE_GLOBAL:
2863 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2864 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2865 {
2866 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2867 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2868 }
2869# ifdef VBOX_WITH_64_BITS_GUESTS
2870 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2871 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2872# endif
2873 break;
2874#endif /* HC_ARCH_BITS == 32 */
2875
2876#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2877 case SUPPAGINGMODE_AMD64:
2878 case SUPPAGINGMODE_AMD64_GLOBAL:
2879 case SUPPAGINGMODE_AMD64_NX:
2880 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2881# ifdef VBOX_WITH_64_BITS_GUESTS
2882 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2883# else
2884 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2885# endif
2886 {
2887 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2888 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889 }
2890 break;
2891#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2892
2893 default:
2894 AssertFailed();
2895 break;
2896 }
2897
2898 /* Extended paging (EPT) / Intel VT-x */
2899 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2900 pModeData->uShwType = PGM_TYPE_EPT;
2901 pModeData->uGstType = PGM_TYPE_REAL;
2902 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2903 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905
2906 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2907 pModeData->uShwType = PGM_TYPE_EPT;
2908 pModeData->uGstType = PGM_TYPE_PROT;
2909 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2910 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2911 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2912
2913 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2914 pModeData->uShwType = PGM_TYPE_EPT;
2915 pModeData->uGstType = PGM_TYPE_32BIT;
2916 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2917 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2918 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2919
2920 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2921 pModeData->uShwType = PGM_TYPE_EPT;
2922 pModeData->uGstType = PGM_TYPE_PAE;
2923 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2924 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2925 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2926
2927#ifdef VBOX_WITH_64_BITS_GUESTS
2928 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2929 pModeData->uShwType = PGM_TYPE_EPT;
2930 pModeData->uGstType = PGM_TYPE_AMD64;
2931 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2932 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2933 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2934#endif
2935 return VINF_SUCCESS;
2936}
2937
2938
2939/**
2940 * Switch to different (or relocated in the relocate case) mode data.
2941 *
2942 * @param pVM The VM handle.
2943 * @param pVCpu The VMCPU to operate on.
2944 * @param enmShw The the shadow paging mode.
2945 * @param enmGst The the guest paging mode.
2946 */
2947static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2948{
2949 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2950
2951 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2952 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2953
2954 /* shadow */
2955 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2956 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2957 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2958 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2959 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2960
2961 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2962 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2963
2964 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2965 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2966
2967
2968 /* guest */
2969 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2970 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2971 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2972 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2973 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2974 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2975 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2976 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2977 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2978 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2979 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2980 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2981
2982 /* both */
2983 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2984 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2985 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2986 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2987 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2988 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2989#ifdef VBOX_STRICT
2990 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2991#endif
2992 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2993 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2994
2995 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2996 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2997 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2998 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2999 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3000#ifdef VBOX_STRICT
3001 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3002#endif
3003 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3004 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3005
3006 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3007 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3008 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3009 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3010 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3011#ifdef VBOX_STRICT
3012 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3013#endif
3014 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3015 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3016}
3017
3018
3019/**
3020 * Calculates the shadow paging mode.
3021 *
3022 * @returns The shadow paging mode.
3023 * @param pVM VM handle.
3024 * @param enmGuestMode The guest mode.
3025 * @param enmHostMode The host mode.
3026 * @param enmShadowMode The current shadow mode.
3027 * @param penmSwitcher Where to store the switcher to use.
3028 * VMMSWITCHER_INVALID means no change.
3029 */
3030static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3031{
3032 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3033 switch (enmGuestMode)
3034 {
3035 /*
3036 * When switching to real or protected mode we don't change
3037 * anything since it's likely that we'll switch back pretty soon.
3038 *
3039 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3040 * and is supposed to determine which shadow paging and switcher to
3041 * use during init.
3042 */
3043 case PGMMODE_REAL:
3044 case PGMMODE_PROTECTED:
3045 if ( enmShadowMode != PGMMODE_INVALID
3046 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3047 break; /* (no change) */
3048
3049 switch (enmHostMode)
3050 {
3051 case SUPPAGINGMODE_32_BIT:
3052 case SUPPAGINGMODE_32_BIT_GLOBAL:
3053 enmShadowMode = PGMMODE_32_BIT;
3054 enmSwitcher = VMMSWITCHER_32_TO_32;
3055 break;
3056
3057 case SUPPAGINGMODE_PAE:
3058 case SUPPAGINGMODE_PAE_NX:
3059 case SUPPAGINGMODE_PAE_GLOBAL:
3060 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3061 enmShadowMode = PGMMODE_PAE;
3062 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3063#ifdef DEBUG_bird
3064 if (RTEnvExist("VBOX_32BIT"))
3065 {
3066 enmShadowMode = PGMMODE_32_BIT;
3067 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3068 }
3069#endif
3070 break;
3071
3072 case SUPPAGINGMODE_AMD64:
3073 case SUPPAGINGMODE_AMD64_GLOBAL:
3074 case SUPPAGINGMODE_AMD64_NX:
3075 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3076 enmShadowMode = PGMMODE_PAE;
3077 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3078#ifdef DEBUG_bird
3079 if (RTEnvExist("VBOX_32BIT"))
3080 {
3081 enmShadowMode = PGMMODE_32_BIT;
3082 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3083 }
3084#endif
3085 break;
3086
3087 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3088 }
3089 break;
3090
3091 case PGMMODE_32_BIT:
3092 switch (enmHostMode)
3093 {
3094 case SUPPAGINGMODE_32_BIT:
3095 case SUPPAGINGMODE_32_BIT_GLOBAL:
3096 enmShadowMode = PGMMODE_32_BIT;
3097 enmSwitcher = VMMSWITCHER_32_TO_32;
3098 break;
3099
3100 case SUPPAGINGMODE_PAE:
3101 case SUPPAGINGMODE_PAE_NX:
3102 case SUPPAGINGMODE_PAE_GLOBAL:
3103 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3104 enmShadowMode = PGMMODE_PAE;
3105 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3106#ifdef DEBUG_bird
3107 if (RTEnvExist("VBOX_32BIT"))
3108 {
3109 enmShadowMode = PGMMODE_32_BIT;
3110 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3111 }
3112#endif
3113 break;
3114
3115 case SUPPAGINGMODE_AMD64:
3116 case SUPPAGINGMODE_AMD64_GLOBAL:
3117 case SUPPAGINGMODE_AMD64_NX:
3118 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3119 enmShadowMode = PGMMODE_PAE;
3120 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3121#ifdef DEBUG_bird
3122 if (RTEnvExist("VBOX_32BIT"))
3123 {
3124 enmShadowMode = PGMMODE_32_BIT;
3125 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3126 }
3127#endif
3128 break;
3129
3130 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3131 }
3132 break;
3133
3134 case PGMMODE_PAE:
3135 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3136 switch (enmHostMode)
3137 {
3138 case SUPPAGINGMODE_32_BIT:
3139 case SUPPAGINGMODE_32_BIT_GLOBAL:
3140 enmShadowMode = PGMMODE_PAE;
3141 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3142 break;
3143
3144 case SUPPAGINGMODE_PAE:
3145 case SUPPAGINGMODE_PAE_NX:
3146 case SUPPAGINGMODE_PAE_GLOBAL:
3147 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3148 enmShadowMode = PGMMODE_PAE;
3149 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3150 break;
3151
3152 case SUPPAGINGMODE_AMD64:
3153 case SUPPAGINGMODE_AMD64_GLOBAL:
3154 case SUPPAGINGMODE_AMD64_NX:
3155 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3156 enmShadowMode = PGMMODE_PAE;
3157 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3158 break;
3159
3160 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3161 }
3162 break;
3163
3164 case PGMMODE_AMD64:
3165 case PGMMODE_AMD64_NX:
3166 switch (enmHostMode)
3167 {
3168 case SUPPAGINGMODE_32_BIT:
3169 case SUPPAGINGMODE_32_BIT_GLOBAL:
3170 enmShadowMode = PGMMODE_AMD64;
3171 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3172 break;
3173
3174 case SUPPAGINGMODE_PAE:
3175 case SUPPAGINGMODE_PAE_NX:
3176 case SUPPAGINGMODE_PAE_GLOBAL:
3177 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3178 enmShadowMode = PGMMODE_AMD64;
3179 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3180 break;
3181
3182 case SUPPAGINGMODE_AMD64:
3183 case SUPPAGINGMODE_AMD64_GLOBAL:
3184 case SUPPAGINGMODE_AMD64_NX:
3185 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3186 enmShadowMode = PGMMODE_AMD64;
3187 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3188 break;
3189
3190 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3191 }
3192 break;
3193
3194
3195 default:
3196 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3197 *penmSwitcher = VMMSWITCHER_INVALID;
3198 return PGMMODE_INVALID;
3199 }
3200 /* Override the shadow mode is nested paging is active. */
3201 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3202 if (pVM->pgm.s.fNestedPaging)
3203 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3204
3205 *penmSwitcher = enmSwitcher;
3206 return enmShadowMode;
3207}
3208
3209
3210/**
3211 * Performs the actual mode change.
3212 * This is called by PGMChangeMode and pgmR3InitPaging().
3213 *
3214 * @returns VBox status code. May suspend or power off the VM on error, but this
3215 * will trigger using FFs and not status codes.
3216 *
3217 * @param pVM VM handle.
3218 * @param pVCpu The VMCPU to operate on.
3219 * @param enmGuestMode The new guest mode. This is assumed to be different from
3220 * the current mode.
3221 */
3222VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3223{
3224 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3225 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3226
3227 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3228 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3229
3230 /*
3231 * Calc the shadow mode and switcher.
3232 */
3233 VMMSWITCHER enmSwitcher;
3234 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3235
3236#ifdef VBOX_WITH_RAW_MODE
3237 if (enmSwitcher != VMMSWITCHER_INVALID)
3238 {
3239 /*
3240 * Select new switcher.
3241 */
3242 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3243 if (RT_FAILURE(rc))
3244 {
3245 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3246 return rc;
3247 }
3248 }
3249#endif
3250
3251 /*
3252 * Exit old mode(s).
3253 */
3254#if HC_ARCH_BITS == 32
3255 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3256 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3257 && enmShadowMode == PGMMODE_NESTED);
3258#else
3259 const bool fForceShwEnterExit = false;
3260#endif
3261 /* shadow */
3262 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3263 || fForceShwEnterExit)
3264 {
3265 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3266 if (PGM_SHW_PFN(Exit, pVCpu))
3267 {
3268 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3269 if (RT_FAILURE(rc))
3270 {
3271 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3272 return rc;
3273 }
3274 }
3275
3276 }
3277 else
3278 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3279
3280 /* guest */
3281 if (PGM_GST_PFN(Exit, pVCpu))
3282 {
3283 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3284 if (RT_FAILURE(rc))
3285 {
3286 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3287 return rc;
3288 }
3289 }
3290
3291 /*
3292 * Load new paging mode data.
3293 */
3294 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3295
3296 /*
3297 * Enter new shadow mode (if changed).
3298 */
3299 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3300 || fForceShwEnterExit)
3301 {
3302 int rc;
3303 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3304 switch (enmShadowMode)
3305 {
3306 case PGMMODE_32_BIT:
3307 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3308 break;
3309 case PGMMODE_PAE:
3310 case PGMMODE_PAE_NX:
3311 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3312 break;
3313 case PGMMODE_AMD64:
3314 case PGMMODE_AMD64_NX:
3315 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3316 break;
3317 case PGMMODE_NESTED:
3318 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3319 break;
3320 case PGMMODE_EPT:
3321 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3322 break;
3323 case PGMMODE_REAL:
3324 case PGMMODE_PROTECTED:
3325 default:
3326 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3327 return VERR_INTERNAL_ERROR;
3328 }
3329 if (RT_FAILURE(rc))
3330 {
3331 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3332 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3333 return rc;
3334 }
3335 }
3336
3337 /*
3338 * Always flag the necessary updates
3339 */
3340 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3341
3342 /*
3343 * Enter the new guest and shadow+guest modes.
3344 */
3345 int rc = -1;
3346 int rc2 = -1;
3347 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3348 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3349 switch (enmGuestMode)
3350 {
3351 case PGMMODE_REAL:
3352 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3353 switch (pVCpu->pgm.s.enmShadowMode)
3354 {
3355 case PGMMODE_32_BIT:
3356 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3357 break;
3358 case PGMMODE_PAE:
3359 case PGMMODE_PAE_NX:
3360 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3361 break;
3362 case PGMMODE_NESTED:
3363 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3364 break;
3365 case PGMMODE_EPT:
3366 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3367 break;
3368 case PGMMODE_AMD64:
3369 case PGMMODE_AMD64_NX:
3370 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3371 default: AssertFailed(); break;
3372 }
3373 break;
3374
3375 case PGMMODE_PROTECTED:
3376 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3377 switch (pVCpu->pgm.s.enmShadowMode)
3378 {
3379 case PGMMODE_32_BIT:
3380 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3381 break;
3382 case PGMMODE_PAE:
3383 case PGMMODE_PAE_NX:
3384 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3385 break;
3386 case PGMMODE_NESTED:
3387 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3388 break;
3389 case PGMMODE_EPT:
3390 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3391 break;
3392 case PGMMODE_AMD64:
3393 case PGMMODE_AMD64_NX:
3394 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3395 default: AssertFailed(); break;
3396 }
3397 break;
3398
3399 case PGMMODE_32_BIT:
3400 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3401 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3402 switch (pVCpu->pgm.s.enmShadowMode)
3403 {
3404 case PGMMODE_32_BIT:
3405 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3406 break;
3407 case PGMMODE_PAE:
3408 case PGMMODE_PAE_NX:
3409 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3410 break;
3411 case PGMMODE_NESTED:
3412 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3413 break;
3414 case PGMMODE_EPT:
3415 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3416 break;
3417 case PGMMODE_AMD64:
3418 case PGMMODE_AMD64_NX:
3419 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3420 default: AssertFailed(); break;
3421 }
3422 break;
3423
3424 case PGMMODE_PAE_NX:
3425 case PGMMODE_PAE:
3426 {
3427 uint32_t u32Dummy, u32Features;
3428
3429 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3430 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3431 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3432 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3433
3434 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3435 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3436 switch (pVCpu->pgm.s.enmShadowMode)
3437 {
3438 case PGMMODE_PAE:
3439 case PGMMODE_PAE_NX:
3440 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3441 break;
3442 case PGMMODE_NESTED:
3443 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3444 break;
3445 case PGMMODE_EPT:
3446 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3447 break;
3448 case PGMMODE_32_BIT:
3449 case PGMMODE_AMD64:
3450 case PGMMODE_AMD64_NX:
3451 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3452 default: AssertFailed(); break;
3453 }
3454 break;
3455 }
3456
3457#ifdef VBOX_WITH_64_BITS_GUESTS
3458 case PGMMODE_AMD64_NX:
3459 case PGMMODE_AMD64:
3460 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3461 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3462 switch (pVCpu->pgm.s.enmShadowMode)
3463 {
3464 case PGMMODE_AMD64:
3465 case PGMMODE_AMD64_NX:
3466 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3467 break;
3468 case PGMMODE_NESTED:
3469 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3470 break;
3471 case PGMMODE_EPT:
3472 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3473 break;
3474 case PGMMODE_32_BIT:
3475 case PGMMODE_PAE:
3476 case PGMMODE_PAE_NX:
3477 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3478 default: AssertFailed(); break;
3479 }
3480 break;
3481#endif
3482
3483 default:
3484 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3485 rc = VERR_NOT_IMPLEMENTED;
3486 break;
3487 }
3488
3489 /* status codes. */
3490 AssertRC(rc);
3491 AssertRC(rc2);
3492 if (RT_SUCCESS(rc))
3493 {
3494 rc = rc2;
3495 if (RT_SUCCESS(rc)) /* no informational status codes. */
3496 rc = VINF_SUCCESS;
3497 }
3498
3499 /* Notify HWACCM as well. */
3500 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3501 return rc;
3502}
3503
3504
3505/**
3506 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3507 *
3508 * @returns VBox status code, fully asserted.
3509 * @param pVM The VM handle.
3510 * @param pVCpu The VMCPU to operate on.
3511 */
3512int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3513{
3514 /* Unmap the old CR3 value before flushing everything. */
3515 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3516 AssertRC(rc);
3517
3518 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3519 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3520 AssertRC(rc);
3521 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3522 return rc;
3523}
3524
3525
3526/**
3527 * Called by pgmPoolFlushAllInt after flushing the pool.
3528 *
3529 * @returns VBox status code, fully asserted.
3530 * @param pVM The VM handle.
3531 * @param pVCpu The VMCPU to operate on.
3532 */
3533int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3534{
3535 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3536 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3537 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3538 AssertRCReturn(rc, rc);
3539 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3540
3541 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3542 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3543 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3544 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3545 return rc;
3546}
3547
3548
3549/**
3550 * Dumps a PAE shadow page table.
3551 *
3552 * @returns VBox status code (VINF_SUCCESS).
3553 * @param pVM The VM handle.
3554 * @param pPT Pointer to the page table.
3555 * @param u64Address The virtual address of the page table starts.
3556 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3557 * @param cMaxDepth The maxium depth.
3558 * @param pHlp Pointer to the output functions.
3559 */
3560static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3561{
3562 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3563 {
3564 X86PTEPAE Pte = pPT->a[i];
3565 if (Pte.n.u1Present)
3566 {
3567 pHlp->pfnPrintf(pHlp,
3568 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3569 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3570 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3571 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3572 Pte.n.u1Write ? 'W' : 'R',
3573 Pte.n.u1User ? 'U' : 'S',
3574 Pte.n.u1Accessed ? 'A' : '-',
3575 Pte.n.u1Dirty ? 'D' : '-',
3576 Pte.n.u1Global ? 'G' : '-',
3577 Pte.n.u1WriteThru ? "WT" : "--",
3578 Pte.n.u1CacheDisable? "CD" : "--",
3579 Pte.n.u1PAT ? "AT" : "--",
3580 Pte.n.u1NoExecute ? "NX" : "--",
3581 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3582 Pte.u & RT_BIT(10) ? '1' : '0',
3583 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3584 Pte.u & X86_PTE_PAE_PG_MASK);
3585 }
3586 }
3587 return VINF_SUCCESS;
3588}
3589
3590
3591/**
3592 * Dumps a PAE shadow page directory table.
3593 *
3594 * @returns VBox status code (VINF_SUCCESS).
3595 * @param pVM The VM handle.
3596 * @param HCPhys The physical address of the page directory table.
3597 * @param u64Address The virtual address of the page table starts.
3598 * @param cr4 The CR4, PSE is currently used.
3599 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3600 * @param cMaxDepth The maxium depth.
3601 * @param pHlp Pointer to the output functions.
3602 */
3603static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3604{
3605 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3606 if (!pPD)
3607 {
3608 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3609 fLongMode ? 16 : 8, u64Address, HCPhys);
3610 return VERR_INVALID_PARAMETER;
3611 }
3612 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3613
3614 int rc = VINF_SUCCESS;
3615 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3616 {
3617 X86PDEPAE Pde = pPD->a[i];
3618 if (Pde.n.u1Present)
3619 {
3620 if (fBigPagesSupported && Pde.b.u1Size)
3621 pHlp->pfnPrintf(pHlp,
3622 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3623 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3624 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3625 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3626 Pde.b.u1Write ? 'W' : 'R',
3627 Pde.b.u1User ? 'U' : 'S',
3628 Pde.b.u1Accessed ? 'A' : '-',
3629 Pde.b.u1Dirty ? 'D' : '-',
3630 Pde.b.u1Global ? 'G' : '-',
3631 Pde.b.u1WriteThru ? "WT" : "--",
3632 Pde.b.u1CacheDisable? "CD" : "--",
3633 Pde.b.u1PAT ? "AT" : "--",
3634 Pde.b.u1NoExecute ? "NX" : "--",
3635 Pde.u & RT_BIT_64(9) ? '1' : '0',
3636 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3637 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3638 Pde.u & X86_PDE_PAE_PG_MASK);
3639 else
3640 {
3641 pHlp->pfnPrintf(pHlp,
3642 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3643 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3644 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3645 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3646 Pde.n.u1Write ? 'W' : 'R',
3647 Pde.n.u1User ? 'U' : 'S',
3648 Pde.n.u1Accessed ? 'A' : '-',
3649 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3650 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3651 Pde.n.u1WriteThru ? "WT" : "--",
3652 Pde.n.u1CacheDisable? "CD" : "--",
3653 Pde.n.u1NoExecute ? "NX" : "--",
3654 Pde.u & RT_BIT_64(9) ? '1' : '0',
3655 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3656 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3657 Pde.u & X86_PDE_PAE_PG_MASK);
3658 if (cMaxDepth >= 1)
3659 {
3660 /** @todo what about using the page pool for mapping PTs? */
3661 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3662 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3663 PX86PTPAE pPT = NULL;
3664 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3665 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3666 else
3667 {
3668 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3669 {
3670 uint64_t off = u64AddressPT - pMap->GCPtr;
3671 if (off < pMap->cb)
3672 {
3673 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3674 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3675 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3676 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3677 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3678 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3679 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3680 }
3681 }
3682 }
3683 int rc2 = VERR_INVALID_PARAMETER;
3684 if (pPT)
3685 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3686 else
3687 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3688 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3689 if (rc2 < rc && RT_SUCCESS(rc))
3690 rc = rc2;
3691 }
3692 }
3693 }
3694 }
3695 return rc;
3696}
3697
3698
3699/**
3700 * Dumps a PAE shadow page directory pointer table.
3701 *
3702 * @returns VBox status code (VINF_SUCCESS).
3703 * @param pVM The VM handle.
3704 * @param HCPhys The physical address of the page directory pointer table.
3705 * @param u64Address The virtual address of the page table starts.
3706 * @param cr4 The CR4, PSE is currently used.
3707 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3708 * @param cMaxDepth The maxium depth.
3709 * @param pHlp Pointer to the output functions.
3710 */
3711static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3712{
3713 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3714 if (!pPDPT)
3715 {
3716 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3717 fLongMode ? 16 : 8, u64Address, HCPhys);
3718 return VERR_INVALID_PARAMETER;
3719 }
3720
3721 int rc = VINF_SUCCESS;
3722 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3723 for (unsigned i = 0; i < c; i++)
3724 {
3725 X86PDPE Pdpe = pPDPT->a[i];
3726 if (Pdpe.n.u1Present)
3727 {
3728 if (fLongMode)
3729 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3730 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3731 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3732 Pdpe.lm.u1Write ? 'W' : 'R',
3733 Pdpe.lm.u1User ? 'U' : 'S',
3734 Pdpe.lm.u1Accessed ? 'A' : '-',
3735 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3736 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3737 Pdpe.lm.u1WriteThru ? "WT" : "--",
3738 Pdpe.lm.u1CacheDisable? "CD" : "--",
3739 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3740 Pdpe.lm.u1NoExecute ? "NX" : "--",
3741 Pdpe.u & RT_BIT(9) ? '1' : '0',
3742 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3743 Pdpe.u & RT_BIT(11) ? '1' : '0',
3744 Pdpe.u & X86_PDPE_PG_MASK);
3745 else
3746 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3747 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3748 i << X86_PDPT_SHIFT,
3749 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3750 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3751 Pdpe.n.u1WriteThru ? "WT" : "--",
3752 Pdpe.n.u1CacheDisable? "CD" : "--",
3753 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3754 Pdpe.u & RT_BIT(9) ? '1' : '0',
3755 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3756 Pdpe.u & RT_BIT(11) ? '1' : '0',
3757 Pdpe.u & X86_PDPE_PG_MASK);
3758 if (cMaxDepth >= 1)
3759 {
3760 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3761 cr4, fLongMode, cMaxDepth - 1, pHlp);
3762 if (rc2 < rc && RT_SUCCESS(rc))
3763 rc = rc2;
3764 }
3765 }
3766 }
3767 return rc;
3768}
3769
3770
3771/**
3772 * Dumps a 32-bit shadow page table.
3773 *
3774 * @returns VBox status code (VINF_SUCCESS).
3775 * @param pVM The VM handle.
3776 * @param HCPhys The physical address of the table.
3777 * @param cr4 The CR4, PSE is currently used.
3778 * @param cMaxDepth The maxium depth.
3779 * @param pHlp Pointer to the output functions.
3780 */
3781static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3782{
3783 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3784 if (!pPML4)
3785 {
3786 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3787 return VERR_INVALID_PARAMETER;
3788 }
3789
3790 int rc = VINF_SUCCESS;
3791 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3792 {
3793 X86PML4E Pml4e = pPML4->a[i];
3794 if (Pml4e.n.u1Present)
3795 {
3796 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3797 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3798 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3799 u64Address,
3800 Pml4e.n.u1Write ? 'W' : 'R',
3801 Pml4e.n.u1User ? 'U' : 'S',
3802 Pml4e.n.u1Accessed ? 'A' : '-',
3803 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3804 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3805 Pml4e.n.u1WriteThru ? "WT" : "--",
3806 Pml4e.n.u1CacheDisable? "CD" : "--",
3807 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3808 Pml4e.n.u1NoExecute ? "NX" : "--",
3809 Pml4e.u & RT_BIT(9) ? '1' : '0',
3810 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3811 Pml4e.u & RT_BIT(11) ? '1' : '0',
3812 Pml4e.u & X86_PML4E_PG_MASK);
3813
3814 if (cMaxDepth >= 1)
3815 {
3816 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3817 if (rc2 < rc && RT_SUCCESS(rc))
3818 rc = rc2;
3819 }
3820 }
3821 }
3822 return rc;
3823}
3824
3825
3826/**
3827 * Dumps a 32-bit shadow page table.
3828 *
3829 * @returns VBox status code (VINF_SUCCESS).
3830 * @param pVM The VM handle.
3831 * @param pPT Pointer to the page table.
3832 * @param u32Address The virtual address this table starts at.
3833 * @param pHlp Pointer to the output functions.
3834 */
3835int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3836{
3837 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3838 {
3839 X86PTE Pte = pPT->a[i];
3840 if (Pte.n.u1Present)
3841 {
3842 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3843 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3844 u32Address + (i << X86_PT_SHIFT),
3845 Pte.n.u1Write ? 'W' : 'R',
3846 Pte.n.u1User ? 'U' : 'S',
3847 Pte.n.u1Accessed ? 'A' : '-',
3848 Pte.n.u1Dirty ? 'D' : '-',
3849 Pte.n.u1Global ? 'G' : '-',
3850 Pte.n.u1WriteThru ? "WT" : "--",
3851 Pte.n.u1CacheDisable? "CD" : "--",
3852 Pte.n.u1PAT ? "AT" : "--",
3853 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3854 Pte.u & RT_BIT(10) ? '1' : '0',
3855 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3856 Pte.u & X86_PDE_PG_MASK);
3857 }
3858 }
3859 return VINF_SUCCESS;
3860}
3861
3862
3863/**
3864 * Dumps a 32-bit shadow page directory and page tables.
3865 *
3866 * @returns VBox status code (VINF_SUCCESS).
3867 * @param pVM The VM handle.
3868 * @param cr3 The root of the hierarchy.
3869 * @param cr4 The CR4, PSE is currently used.
3870 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3871 * @param pHlp Pointer to the output functions.
3872 */
3873int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3874{
3875 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3876 if (!pPD)
3877 {
3878 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3879 return VERR_INVALID_PARAMETER;
3880 }
3881
3882 int rc = VINF_SUCCESS;
3883 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3884 {
3885 X86PDE Pde = pPD->a[i];
3886 if (Pde.n.u1Present)
3887 {
3888 const uint32_t u32Address = i << X86_PD_SHIFT;
3889 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3890 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3891 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3892 u32Address,
3893 Pde.b.u1Write ? 'W' : 'R',
3894 Pde.b.u1User ? 'U' : 'S',
3895 Pde.b.u1Accessed ? 'A' : '-',
3896 Pde.b.u1Dirty ? 'D' : '-',
3897 Pde.b.u1Global ? 'G' : '-',
3898 Pde.b.u1WriteThru ? "WT" : "--",
3899 Pde.b.u1CacheDisable? "CD" : "--",
3900 Pde.b.u1PAT ? "AT" : "--",
3901 Pde.u & RT_BIT_64(9) ? '1' : '0',
3902 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3903 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3904 Pde.u & X86_PDE4M_PG_MASK);
3905 else
3906 {
3907 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3908 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3909 u32Address,
3910 Pde.n.u1Write ? 'W' : 'R',
3911 Pde.n.u1User ? 'U' : 'S',
3912 Pde.n.u1Accessed ? 'A' : '-',
3913 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3914 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3915 Pde.n.u1WriteThru ? "WT" : "--",
3916 Pde.n.u1CacheDisable? "CD" : "--",
3917 Pde.u & RT_BIT_64(9) ? '1' : '0',
3918 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3919 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3920 Pde.u & X86_PDE_PG_MASK);
3921 if (cMaxDepth >= 1)
3922 {
3923 /** @todo what about using the page pool for mapping PTs? */
3924 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3925 PX86PT pPT = NULL;
3926 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3927 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3928 else
3929 {
3930 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3931 if (u32Address - pMap->GCPtr < pMap->cb)
3932 {
3933 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3934 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3935 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3936 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3937 pPT = pMap->aPTs[iPDE].pPTR3;
3938 }
3939 }
3940 int rc2 = VERR_INVALID_PARAMETER;
3941 if (pPT)
3942 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3943 else
3944 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3945 if (rc2 < rc && RT_SUCCESS(rc))
3946 rc = rc2;
3947 }
3948 }
3949 }
3950 }
3951
3952 return rc;
3953}
3954
3955
3956/**
3957 * Dumps a 32-bit shadow page table.
3958 *
3959 * @returns VBox status code (VINF_SUCCESS).
3960 * @param pVM The VM handle.
3961 * @param pPT Pointer to the page table.
3962 * @param u32Address The virtual address this table starts at.
3963 * @param PhysSearch Address to search for.
3964 */
3965int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3966{
3967 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3968 {
3969 X86PTE Pte = pPT->a[i];
3970 if (Pte.n.u1Present)
3971 {
3972 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3973 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3974 u32Address + (i << X86_PT_SHIFT),
3975 Pte.n.u1Write ? 'W' : 'R',
3976 Pte.n.u1User ? 'U' : 'S',
3977 Pte.n.u1Accessed ? 'A' : '-',
3978 Pte.n.u1Dirty ? 'D' : '-',
3979 Pte.n.u1Global ? 'G' : '-',
3980 Pte.n.u1WriteThru ? "WT" : "--",
3981 Pte.n.u1CacheDisable? "CD" : "--",
3982 Pte.n.u1PAT ? "AT" : "--",
3983 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3984 Pte.u & RT_BIT(10) ? '1' : '0',
3985 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3986 Pte.u & X86_PDE_PG_MASK));
3987
3988 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3989 {
3990 uint64_t fPageShw = 0;
3991 RTHCPHYS pPhysHC = 0;
3992
3993 /** @todo SMP support!! */
3994 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3995 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3996 }
3997 }
3998 }
3999 return VINF_SUCCESS;
4000}
4001
4002
4003/**
4004 * Dumps a 32-bit guest page directory and page tables.
4005 *
4006 * @returns VBox status code (VINF_SUCCESS).
4007 * @param pVM The VM handle.
4008 * @param cr3 The root of the hierarchy.
4009 * @param cr4 The CR4, PSE is currently used.
4010 * @param PhysSearch Address to search for.
4011 */
4012VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
4013{
4014 bool fLongMode = false;
4015 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
4016 PX86PD pPD = 0;
4017 PGMPAGEMAPLOCK LockCr3;
4018
4019 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, cr3 & X86_CR3_PAGE_MASK, (const void **)&pPD, &LockCr3);
4020 if ( RT_FAILURE(rc)
4021 || !pPD)
4022 {
4023 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
4024 return VERR_INVALID_PARAMETER;
4025 }
4026
4027 Log(("cr3=%08x cr4=%08x%s\n"
4028 "%-*s P - Present\n"
4029 "%-*s | R/W - Read (0) / Write (1)\n"
4030 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4031 "%-*s | | | A - Accessed\n"
4032 "%-*s | | | | D - Dirty\n"
4033 "%-*s | | | | | G - Global\n"
4034 "%-*s | | | | | | WT - Write thru\n"
4035 "%-*s | | | | | | | CD - Cache disable\n"
4036 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4037 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4038 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4039 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4040 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4041 "%-*s Level | | | | | | | | | | | | Page\n"
4042 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4043 - W U - - - -- -- -- -- -- 010 */
4044 , cr3, cr4, fLongMode ? " Long Mode" : "",
4045 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4046 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
4047
4048 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
4049 {
4050 X86PDE Pde = pPD->a[i];
4051 if (Pde.n.u1Present)
4052 {
4053 const uint32_t u32Address = i << X86_PD_SHIFT;
4054
4055 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
4056 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4057 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
4058 u32Address,
4059 Pde.b.u1Write ? 'W' : 'R',
4060 Pde.b.u1User ? 'U' : 'S',
4061 Pde.b.u1Accessed ? 'A' : '-',
4062 Pde.b.u1Dirty ? 'D' : '-',
4063 Pde.b.u1Global ? 'G' : '-',
4064 Pde.b.u1WriteThru ? "WT" : "--",
4065 Pde.b.u1CacheDisable? "CD" : "--",
4066 Pde.b.u1PAT ? "AT" : "--",
4067 Pde.u & RT_BIT(9) ? '1' : '0',
4068 Pde.u & RT_BIT(10) ? '1' : '0',
4069 Pde.u & RT_BIT(11) ? '1' : '0',
4070 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
4071 /** @todo PhysSearch */
4072 else
4073 {
4074 Log(( /*P R S A D G WT CD AT NX 4M a m d */
4075 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
4076 u32Address,
4077 Pde.n.u1Write ? 'W' : 'R',
4078 Pde.n.u1User ? 'U' : 'S',
4079 Pde.n.u1Accessed ? 'A' : '-',
4080 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
4081 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
4082 Pde.n.u1WriteThru ? "WT" : "--",
4083 Pde.n.u1CacheDisable? "CD" : "--",
4084 Pde.u & RT_BIT(9) ? '1' : '0',
4085 Pde.u & RT_BIT(10) ? '1' : '0',
4086 Pde.u & RT_BIT(11) ? '1' : '0',
4087 Pde.u & X86_PDE_PG_MASK));
4088 ////if (cMaxDepth >= 1)
4089 {
4090 /** @todo what about using the page pool for mapping PTs? */
4091 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
4092 PX86PT pPT = NULL;
4093 PGMPAGEMAPLOCK LockPT;
4094
4095 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, (const void **)&pPT, &LockPT);
4096
4097 int rc2 = VERR_INVALID_PARAMETER;
4098 if (pPT)
4099 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
4100 else
4101 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
4102
4103 if (rc == VINF_SUCCESS)
4104 PGMPhysReleasePageMappingLock(pVM, &LockPT);
4105
4106 if (rc2 < rc && RT_SUCCESS(rc))
4107 rc = rc2;
4108 }
4109 }
4110 }
4111 }
4112 PGMPhysReleasePageMappingLock(pVM, &LockCr3);
4113 return rc;
4114}
4115
4116
4117/**
4118 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
4119 *
4120 * @returns VBox status code (VINF_SUCCESS).
4121 * @param pVM The VM handle.
4122 * @param cr3 The root of the hierarchy.
4123 * @param cr4 The cr4, only PAE and PSE is currently used.
4124 * @param fLongMode Set if long mode, false if not long mode.
4125 * @param cMaxDepth Number of levels to dump.
4126 * @param pHlp Pointer to the output functions.
4127 */
4128VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
4129{
4130 if (!pHlp)
4131 pHlp = DBGFR3InfoLogHlp();
4132 if (!cMaxDepth)
4133 return VINF_SUCCESS;
4134 const unsigned cch = fLongMode ? 16 : 8;
4135 pHlp->pfnPrintf(pHlp,
4136 "cr3=%08x cr4=%08x%s\n"
4137 "%-*s P - Present\n"
4138 "%-*s | R/W - Read (0) / Write (1)\n"
4139 "%-*s | | U/S - User (1) / Supervisor (0)\n"
4140 "%-*s | | | A - Accessed\n"
4141 "%-*s | | | | D - Dirty\n"
4142 "%-*s | | | | | G - Global\n"
4143 "%-*s | | | | | | WT - Write thru\n"
4144 "%-*s | | | | | | | CD - Cache disable\n"
4145 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
4146 "%-*s | | | | | | | | | NX - No execute (K8)\n"
4147 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
4148 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
4149 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
4150 "%-*s Level | | | | | | | | | | | | Page\n"
4151 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
4152 - W U - - - -- -- -- -- -- 010 */
4153 , cr3, cr4, fLongMode ? " Long Mode" : "",
4154 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
4155 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
4156 if (cr4 & X86_CR4_PAE)
4157 {
4158 if (fLongMode)
4159 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4160 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
4161 }
4162 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
4163}
4164
4165#ifdef VBOX_WITH_DEBUGGER
4166
4167/**
4168 * The '.pgmram' command.
4169 *
4170 * @returns VBox status.
4171 * @param pCmd Pointer to the command descriptor (as registered).
4172 * @param pCmdHlp Pointer to command helper functions.
4173 * @param pVM Pointer to the current VM (if any).
4174 * @param paArgs Pointer to (readonly) array of arguments.
4175 * @param cArgs Number of arguments in the array.
4176 */
4177static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4178{
4179 /*
4180 * Validate input.
4181 */
4182 if (!pVM)
4183 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4184 if (!pVM->pgm.s.pRamRangesRC)
4185 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4186
4187 /*
4188 * Dump the ranges.
4189 */
4190 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4191 PPGMRAMRANGE pRam;
4192 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4193 {
4194 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4195 "%RGp - %RGp %p\n",
4196 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4197 if (RT_FAILURE(rc))
4198 return rc;
4199 }
4200
4201 return VINF_SUCCESS;
4202}
4203
4204
4205/**
4206 * The '.pgmerror' and '.pgmerroroff' commands.
4207 *
4208 * @returns VBox status.
4209 * @param pCmd Pointer to the command descriptor (as registered).
4210 * @param pCmdHlp Pointer to command helper functions.
4211 * @param pVM Pointer to the current VM (if any).
4212 * @param paArgs Pointer to (readonly) array of arguments.
4213 * @param cArgs Number of arguments in the array.
4214 */
4215static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4216{
4217 /*
4218 * Validate input.
4219 */
4220 if (!pVM)
4221 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4222 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4223 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4224
4225 if (!cArgs)
4226 {
4227 /*
4228 * Print the list of error injection locations with status.
4229 */
4230 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4231 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4232 }
4233 else
4234 {
4235
4236 /*
4237 * String switch on where to inject the error.
4238 */
4239 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4240 const char *pszWhere = paArgs[0].u.pszString;
4241 if (!strcmp(pszWhere, "handy"))
4242 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4243 else
4244 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4245 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4246 }
4247 return VINF_SUCCESS;
4248}
4249
4250
4251/**
4252 * The '.pgmsync' command.
4253 *
4254 * @returns VBox status.
4255 * @param pCmd Pointer to the command descriptor (as registered).
4256 * @param pCmdHlp Pointer to command helper functions.
4257 * @param pVM Pointer to the current VM (if any).
4258 * @param paArgs Pointer to (readonly) array of arguments.
4259 * @param cArgs Number of arguments in the array.
4260 */
4261static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4262{
4263 /** @todo SMP support */
4264 PVMCPU pVCpu = &pVM->aCpus[0];
4265
4266 /*
4267 * Validate input.
4268 */
4269 if (!pVM)
4270 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4271
4272 /*
4273 * Force page directory sync.
4274 */
4275 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4276
4277 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4278 if (RT_FAILURE(rc))
4279 return rc;
4280
4281 return VINF_SUCCESS;
4282}
4283
4284
4285#ifdef VBOX_STRICT
4286/**
4287 * The '.pgmassertcr3' command.
4288 *
4289 * @returns VBox status.
4290 * @param pCmd Pointer to the command descriptor (as registered).
4291 * @param pCmdHlp Pointer to command helper functions.
4292 * @param pVM Pointer to the current VM (if any).
4293 * @param paArgs Pointer to (readonly) array of arguments.
4294 * @param cArgs Number of arguments in the array.
4295 */
4296static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4297{
4298 /** @todo SMP support!! */
4299 PVMCPU pVCpu = &pVM->aCpus[0];
4300
4301 /*
4302 * Validate input.
4303 */
4304 if (!pVM)
4305 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4306
4307 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4308 if (RT_FAILURE(rc))
4309 return rc;
4310
4311 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4312
4313 return VINF_SUCCESS;
4314}
4315
4316# ifdef DEBUG_sandervl
4317/**
4318 * Internal timer callback function.
4319 *
4320 * @param pVM The VM.
4321 * @param pTimer The timer handle.
4322 * @param pvUser User argument specified upon timer creation.
4323 */
4324static DECLCALLBACK(void) pgmR3PhysWriteCountTMCallback(PVM pVM, PTMTIMER pTimer, void *pvUser)
4325{
4326 if (pVM->pgm.s.fCountingPhysWrites)
4327 {
4328 pgmR3PoolClearAll(pVM, true/* fFlushRemTlb */);
4329
4330 /* Program next invocation. */
4331 int rc = TMTimerSetMillies(pVM->pgm.s.pPhysWritesCountTimer, pVM->pgm.s.u32PhysWriteCountTimerInterval);
4332 AssertRC(rc);
4333 }
4334}
4335
4336/**
4337 * The '.pgmcountphyswrites' command.
4338 *
4339 * @returns VBox status.
4340 * @param pCmd Pointer to the command descriptor (as registered).
4341 * @param pCmdHlp Pointer to command helper functions.
4342 * @param pVM Pointer to the current VM (if any).
4343 * @param paArgs Pointer to (readonly) array of arguments.
4344 * @param cArgs Number of arguments in the array.
4345 */
4346static DECLCALLBACK(int) pgmR3CmdCountPhysWrites(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4347{
4348 /*
4349 * Validate input.
4350 */
4351 if (!pVM)
4352 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4353 if ( cArgs != 2
4354 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4355 || paArgs[1].enmType != DBGCVAR_TYPE_NUMBER)
4356 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4357
4358 if (!strcmp(paArgs[0].u.pszString, "off"))
4359 {
4360 if (!pVM->pgm.s.fCountingPhysWrites)
4361 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: not enabled!\n");
4362
4363 TMTimerStop(pVM->pgm.s.pPhysWritesCountTimer);
4364 pVM->pgm.s.fCountingPhysWrites = false;
4365 return VINF_SUCCESS;
4366 }
4367 else
4368 if (strcmp(paArgs[0].u.pszString, "on"))
4369 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 1st argument '%s', must be 'on' or 'off'.\n", paArgs[0].u.pszString);
4370
4371 if ( paArgs[1].u.u64Number < 10
4372 || paArgs[1].u.u64Number > 1000)
4373 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%d', must be between 10 and 1000 ms.\n", paArgs[1].u.u64Number);
4374
4375 pVM->pgm.s.u32PhysWriteCountTimerInterval = paArgs[1].u.u64Number;
4376 pVM->pgm.s.fCountingPhysWrites = true;
4377 int rc = TMTimerSetMillies(pVM->pgm.s.pPhysWritesCountTimer, paArgs[1].u.u64Number);
4378 AssertRC(rc);
4379 return VINF_SUCCESS;
4380}
4381# endif /* DEBUG_sandervl */
4382
4383#endif /* VBOX_STRICT */
4384
4385
4386/**
4387 * The '.pgmsyncalways' command.
4388 *
4389 * @returns VBox status.
4390 * @param pCmd Pointer to the command descriptor (as registered).
4391 * @param pCmdHlp Pointer to command helper functions.
4392 * @param pVM Pointer to the current VM (if any).
4393 * @param paArgs Pointer to (readonly) array of arguments.
4394 * @param cArgs Number of arguments in the array.
4395 */
4396static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4397{
4398 /** @todo SMP support!! */
4399 PVMCPU pVCpu = &pVM->aCpus[0];
4400
4401 /*
4402 * Validate input.
4403 */
4404 if (!pVM)
4405 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4406
4407 /*
4408 * Force page directory sync.
4409 */
4410 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4411 {
4412 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4413 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4414 }
4415 else
4416 {
4417 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4418 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4419 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4420 }
4421}
4422
4423
4424/**
4425 * The '.pgmsyncalways' command.
4426 *
4427 * @returns VBox status.
4428 * @param pCmd Pointer to the command descriptor (as registered).
4429 * @param pCmdHlp Pointer to command helper functions.
4430 * @param pVM Pointer to the current VM (if any).
4431 * @param paArgs Pointer to (readonly) array of arguments.
4432 * @param cArgs Number of arguments in the array.
4433 */
4434static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4435{
4436 /*
4437 * Validate input.
4438 */
4439 if (!pVM)
4440 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4441 if ( cArgs < 1
4442 || cArgs > 2
4443 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4444 || ( cArgs > 1
4445 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4446 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4447 if ( cArgs >= 2
4448 && strcmp(paArgs[1].u.pszString, "nozero"))
4449 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4450 bool fIncZeroPgs = cArgs < 2;
4451
4452 /*
4453 * Open the output file and get the ram parameters.
4454 */
4455 RTFILE hFile;
4456 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4457 if (RT_FAILURE(rc))
4458 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4459
4460 uint32_t cbRamHole = 0;
4461 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4462 uint64_t cbRam = 0;
4463 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4464 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4465
4466 /*
4467 * Dump the physical memory, page by page.
4468 */
4469 RTGCPHYS GCPhys = 0;
4470 char abZeroPg[PAGE_SIZE];
4471 RT_ZERO(abZeroPg);
4472
4473 pgmLock(pVM);
4474 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4475 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4476 pRam = pRam->pNextR3)
4477 {
4478 /* fill the gap */
4479 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4480 {
4481 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4482 {
4483 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4484 GCPhys += PAGE_SIZE;
4485 }
4486 }
4487
4488 PCPGMPAGE pPage = &pRam->aPages[0];
4489 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4490 {
4491 if ( PGM_PAGE_IS_ZERO(pPage)
4492 || PGM_PAGE_IS_BALLOONED(pPage))
4493 {
4494 if (fIncZeroPgs)
4495 {
4496 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4497 if (RT_FAILURE(rc))
4498 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4499 }
4500 }
4501 else
4502 {
4503 switch (PGM_PAGE_GET_TYPE(pPage))
4504 {
4505 case PGMPAGETYPE_RAM:
4506 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4507 case PGMPAGETYPE_ROM:
4508 case PGMPAGETYPE_MMIO2:
4509 {
4510 void const *pvPage;
4511 PGMPAGEMAPLOCK Lock;
4512 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4513 if (RT_SUCCESS(rc))
4514 {
4515 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4516 PGMPhysReleasePageMappingLock(pVM, &Lock);
4517 if (RT_FAILURE(rc))
4518 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4519 }
4520 else
4521 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4522 break;
4523 }
4524
4525 default:
4526 AssertFailed();
4527 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4528 case PGMPAGETYPE_MMIO:
4529 if (fIncZeroPgs)
4530 {
4531 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4532 if (RT_FAILURE(rc))
4533 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4534 }
4535 break;
4536 }
4537 }
4538
4539
4540 /* advance */
4541 GCPhys += PAGE_SIZE;
4542 pPage++;
4543 }
4544 }
4545 pgmUnlock(pVM);
4546
4547 RTFileClose(hFile);
4548 if (RT_SUCCESS(rc))
4549 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4550 return VINF_SUCCESS;
4551}
4552
4553#endif /* VBOX_WITH_DEBUGGER */
4554
4555/**
4556 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4557 */
4558typedef struct PGMCHECKINTARGS
4559{
4560 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4561 PPGMPHYSHANDLER pPrevPhys;
4562 PPGMVIRTHANDLER pPrevVirt;
4563 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4564 PVM pVM;
4565} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4566
4567/**
4568 * Validate a node in the physical handler tree.
4569 *
4570 * @returns 0 on if ok, other wise 1.
4571 * @param pNode The handler node.
4572 * @param pvUser pVM.
4573 */
4574static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4575{
4576 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4577 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4578 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4579 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4580 AssertReleaseMsg( !pArgs->pPrevPhys
4581 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4582 ("pPrevPhys=%p %RGp-%RGp %s\n"
4583 " pCur=%p %RGp-%RGp %s\n",
4584 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4585 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4586 pArgs->pPrevPhys = pCur;
4587 return 0;
4588}
4589
4590
4591/**
4592 * Validate a node in the virtual handler tree.
4593 *
4594 * @returns 0 on if ok, other wise 1.
4595 * @param pNode The handler node.
4596 * @param pvUser pVM.
4597 */
4598static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4599{
4600 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4601 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4602 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4603 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4604 AssertReleaseMsg( !pArgs->pPrevVirt
4605 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4606 ("pPrevVirt=%p %RGv-%RGv %s\n"
4607 " pCur=%p %RGv-%RGv %s\n",
4608 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4609 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4610 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4611 {
4612 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4613 ("pCur=%p %RGv-%RGv %s\n"
4614 "iPage=%d offVirtHandle=%#x expected %#x\n",
4615 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4616 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4617 }
4618 pArgs->pPrevVirt = pCur;
4619 return 0;
4620}
4621
4622
4623/**
4624 * Validate a node in the virtual handler tree.
4625 *
4626 * @returns 0 on if ok, other wise 1.
4627 * @param pNode The handler node.
4628 * @param pvUser pVM.
4629 */
4630static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4631{
4632 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4633 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4634 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4635 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4636 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4637 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4638 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4639 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4640 " pCur=%p %RGp-%RGp\n",
4641 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4642 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4643 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4644 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4645 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4646 " pCur=%p %RGp-%RGp\n",
4647 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4648 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4649 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4650 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4651 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4652 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4653 {
4654 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4655 for (;;)
4656 {
4657 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4658 AssertReleaseMsg(pCur2 != pCur,
4659 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4660 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4661 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4662 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4663 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4664 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4665 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4666 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4667 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4668 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4669 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4670 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4671 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4672 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4673 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4674 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4675 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4676 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4677 break;
4678 }
4679 }
4680
4681 pArgs->pPrevPhys2Virt = pCur;
4682 return 0;
4683}
4684
4685
4686/**
4687 * Perform an integrity check on the PGM component.
4688 *
4689 * @returns VINF_SUCCESS if everything is fine.
4690 * @returns VBox error status after asserting on integrity breach.
4691 * @param pVM The VM handle.
4692 */
4693VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4694{
4695 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4696
4697 /*
4698 * Check the trees.
4699 */
4700 int cErrors = 0;
4701 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4702 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4703 PGMCHECKINTARGS Args = s_LeftToRight;
4704 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4705 Args = s_RightToLeft;
4706 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4707 Args = s_LeftToRight;
4708 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4709 Args = s_RightToLeft;
4710 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4711 Args = s_LeftToRight;
4712 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4713 Args = s_RightToLeft;
4714 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4715 Args = s_LeftToRight;
4716 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4717 Args = s_RightToLeft;
4718 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4719
4720 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4721}
4722
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette