VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 34465

Last change on this file since 34465 was 34326, checked in by vboxsync, 14 years ago

VMM: Removed the XXXInitCPU and XXXTermCPU methods since all but the HWACCM ones where stubs and the XXXTermCPU bits was not called in all expected paths. The HWACCMR3InitCPU was hooked up as a VMINITCOMPLETED_RING3 hook, essentially leaving it's position in the order of things unchanged, while the HWACCMR3TermCPU call was made static without changing its position at the end of HWACCMR3Term.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 197.8 KB
Line 
1/* $Id: PGM.cpp 34326 2010-11-24 14:03:55Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred to
30 * as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successful this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgm_phys PGM Physical Guest Memory Management
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery associated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attempted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the other way around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
484 * however on 32-bit darwin the ring-0 code is running in a different memory
485 * context and therefore needs a separate cache. In raw-mode context we also
486 * need a separate cache. The 32-bit darwin mapping cache and the one for
487 * raw-mode context share a lot of code, see PGMRZDYNMAP.
488 *
489 *
490 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
491 *
492 * We've considered implementing the ring-3 mapping cache page based but found
493 * that this was bother some when one had to take into account TLBs+SMP and
494 * portability (missing the necessary APIs on several platforms). There were
495 * also some performance concerns with this approach which hadn't quite been
496 * worked out.
497 *
498 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
499 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
500 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
501 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
502 * costly than a single page, although how much more costly is uncertain. We'll
503 * try address this by using a very big cache, preferably bigger than the actual
504 * VM RAM size if possible. The current VM RAM sizes should give some idea for
505 * 32-bit boxes, while on 64-bit we can probably get away with employing an
506 * unlimited cache.
507 *
508 * The cache have to parts, as already indicated, the ring-3 side and the
509 * ring-0 side.
510 *
511 * The ring-0 will be tied to the page allocator since it will operate on the
512 * memory objects it contains. It will therefore require the first ring-0 mutex
513 * discussed in @ref subsec_pgmPhys_Serializing. We
514 * some double house keeping wrt to who has mapped what I think, since both
515 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
516 *
517 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
518 * require anyone that desires to do changes to the mapping cache to do that
519 * from within this critsect. Alternatively, we could employ a separate critsect
520 * for serializing changes to the mapping cache as this would reduce potential
521 * contention with other threads accessing mappings unrelated to the changes
522 * that are in process. We can see about this later, contention will show
523 * up in the statistics anyway, so it'll be simple to tell.
524 *
525 * The organization of the ring-3 part will be very much like how the allocation
526 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
527 * having to walk the tree all the time, we'll have a couple of lookaside entries
528 * like in we do for I/O ports and MMIO in IOM.
529 *
530 * The simplified flow of a PGMPhysRead/Write function:
531 * -# Enter the PGM critsect.
532 * -# Lookup GCPhys in the ram ranges and get the Page ID.
533 * -# Calc the Allocation Chunk ID from the Page ID.
534 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
535 * If not found in cache:
536 * -# Call ring-0 and request it to be mapped and supply
537 * a chunk to be unmapped if the cache is maxed out already.
538 * -# Insert the new mapping into the AVL tree (id + R3 address).
539 * -# Update the relevant lookaside entry and return the mapping address.
540 * -# Do the read/write according to monitoring flags and everything.
541 * -# Leave the critsect.
542 *
543 *
544 * @section sec_pgmPhys_Fallback Fallback
545 *
546 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
547 * API and thus require a fallback.
548 *
549 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
550 * will return to the ring-3 caller (and later ring-0) and asking it to seed
551 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
552 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
553 * "SeededAllocPages" call to ring-0.
554 *
555 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
556 * all page sharing (zero page detection will continue). It will also force
557 * all allocations to come from the VM which seeded the page. Both these
558 * measures are taken to make sure that there will never be any need for
559 * mapping anything into ring-3 - everything will be mapped already.
560 *
561 * Whether we'll continue to use the current MM locked memory management
562 * for this I don't quite know (I'd prefer not to and just ditch that all
563 * together), we'll see what's simplest to do.
564 *
565 *
566 *
567 * @section sec_pgmPhys_Changes Changes
568 *
569 * Breakdown of the changes involved?
570 */
571
572/*******************************************************************************
573* Header Files *
574*******************************************************************************/
575#define LOG_GROUP LOG_GROUP_PGM
576#include <VBox/dbgf.h>
577#include <VBox/pgm.h>
578#include <VBox/cpum.h>
579#include <VBox/iom.h>
580#include <VBox/sup.h>
581#include <VBox/mm.h>
582#include <VBox/em.h>
583#include <VBox/stam.h>
584#include <VBox/rem.h>
585#include <VBox/selm.h>
586#include <VBox/ssm.h>
587#include <VBox/hwaccm.h>
588#include "PGMInternal.h"
589#include <VBox/vm.h>
590#include "PGMInline.h"
591
592#include <VBox/dbg.h>
593#include <VBox/param.h>
594#include <VBox/err.h>
595
596#include <iprt/asm.h>
597#include <iprt/asm-amd64-x86.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static int pgmR3InitStats(PVM pVM);
611static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
614static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
617#ifdef VBOX_STRICT
618static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
619#endif
620static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
621static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
622static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
623
624#ifdef VBOX_WITH_DEBUGGER
625/** @todo Convert the first two commands to 'info' items. */
626static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
627static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
628static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
629static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
630# ifdef VBOX_STRICT
631static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632# endif
633static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634#endif
635
636
637/*******************************************************************************
638* Global Variables *
639*******************************************************************************/
640#ifdef VBOX_WITH_DEBUGGER
641/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
642static const DBGCVARDESC g_aPgmErrorArgs[] =
643{
644 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
645 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
646};
647
648static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
649{
650 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
651 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
652 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
653};
654
655# ifdef DEBUG_sandervl
656static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
657{
658 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
659 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
660 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
661};
662# endif
663
664/** Command descriptors. */
665static const DBGCCMD g_aCmds[] =
666{
667 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
668 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
669 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
670 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
671 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
672# ifdef VBOX_STRICT
673 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
674# if HC_ARCH_BITS == 64
675 { "pgmcheckduppages", 0, 0, NULL, 0, NULL, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
676 { "pgmsharedmodules", 0, 0, NULL, 0, NULL, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
677# endif
678# endif
679 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
680 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
681};
682#endif
683
684
685
686
687/*
688 * Shadow - 32-bit mode
689 */
690#define PGM_SHW_TYPE PGM_TYPE_32BIT
691#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
692#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
693#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
694#include "PGMShw.h"
695
696/* Guest - real mode */
697#define PGM_GST_TYPE PGM_TYPE_REAL
698#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
699#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
700#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
701#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
702#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
703#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
704#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
705#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
706#include "PGMBth.h"
707#include "PGMGstDefs.h"
708#include "PGMGst.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef BTH_PGMPOOLKIND_ROOT
711#undef PGM_BTH_NAME
712#undef PGM_BTH_NAME_RC_STR
713#undef PGM_BTH_NAME_R0_STR
714#undef PGM_GST_TYPE
715#undef PGM_GST_NAME
716#undef PGM_GST_NAME_RC_STR
717#undef PGM_GST_NAME_R0_STR
718
719/* Guest - protected mode */
720#define PGM_GST_TYPE PGM_TYPE_PROT
721#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
722#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
723#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
724#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
725#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
726#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
727#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
728#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
729#include "PGMBth.h"
730#include "PGMGstDefs.h"
731#include "PGMGst.h"
732#undef BTH_PGMPOOLKIND_PT_FOR_PT
733#undef BTH_PGMPOOLKIND_ROOT
734#undef PGM_BTH_NAME
735#undef PGM_BTH_NAME_RC_STR
736#undef PGM_BTH_NAME_R0_STR
737#undef PGM_GST_TYPE
738#undef PGM_GST_NAME
739#undef PGM_GST_NAME_RC_STR
740#undef PGM_GST_NAME_R0_STR
741
742/* Guest - 32-bit mode */
743#define PGM_GST_TYPE PGM_TYPE_32BIT
744#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
745#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
746#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
747#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
748#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
749#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
750#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
751#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
752#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
753#include "PGMBth.h"
754#include "PGMGstDefs.h"
755#include "PGMGst.h"
756#undef BTH_PGMPOOLKIND_PT_FOR_BIG
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef BTH_PGMPOOLKIND_ROOT
759#undef PGM_BTH_NAME
760#undef PGM_BTH_NAME_RC_STR
761#undef PGM_BTH_NAME_R0_STR
762#undef PGM_GST_TYPE
763#undef PGM_GST_NAME
764#undef PGM_GST_NAME_RC_STR
765#undef PGM_GST_NAME_R0_STR
766
767#undef PGM_SHW_TYPE
768#undef PGM_SHW_NAME
769#undef PGM_SHW_NAME_RC_STR
770#undef PGM_SHW_NAME_R0_STR
771
772
773/*
774 * Shadow - PAE mode
775 */
776#define PGM_SHW_TYPE PGM_TYPE_PAE
777#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
778#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
779#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
781#include "PGMShw.h"
782
783/* Guest - real mode */
784#define PGM_GST_TYPE PGM_TYPE_REAL
785#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
792#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
793#include "PGMGstDefs.h"
794#include "PGMBth.h"
795#undef BTH_PGMPOOLKIND_PT_FOR_PT
796#undef BTH_PGMPOOLKIND_ROOT
797#undef PGM_BTH_NAME
798#undef PGM_BTH_NAME_RC_STR
799#undef PGM_BTH_NAME_R0_STR
800#undef PGM_GST_TYPE
801#undef PGM_GST_NAME
802#undef PGM_GST_NAME_RC_STR
803#undef PGM_GST_NAME_R0_STR
804
805/* Guest - protected mode */
806#define PGM_GST_TYPE PGM_TYPE_PROT
807#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
808#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
809#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
810#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
811#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
812#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
813#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
814#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
815#include "PGMGstDefs.h"
816#include "PGMBth.h"
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827/* Guest - 32-bit mode */
828#define PGM_GST_TYPE PGM_TYPE_32BIT
829#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
830#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
831#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
832#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
833#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
834#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
835#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
836#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
837#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
838#include "PGMGstDefs.h"
839#include "PGMBth.h"
840#undef BTH_PGMPOOLKIND_PT_FOR_BIG
841#undef BTH_PGMPOOLKIND_PT_FOR_PT
842#undef BTH_PGMPOOLKIND_ROOT
843#undef PGM_BTH_NAME
844#undef PGM_BTH_NAME_RC_STR
845#undef PGM_BTH_NAME_R0_STR
846#undef PGM_GST_TYPE
847#undef PGM_GST_NAME
848#undef PGM_GST_NAME_RC_STR
849#undef PGM_GST_NAME_R0_STR
850
851/* Guest - PAE mode */
852#define PGM_GST_TYPE PGM_TYPE_PAE
853#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
854#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
855#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
856#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
857#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
858#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
859#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
860#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
861#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
862#include "PGMBth.h"
863#include "PGMGstDefs.h"
864#include "PGMGst.h"
865#undef BTH_PGMPOOLKIND_PT_FOR_BIG
866#undef BTH_PGMPOOLKIND_PT_FOR_PT
867#undef BTH_PGMPOOLKIND_ROOT
868#undef PGM_BTH_NAME
869#undef PGM_BTH_NAME_RC_STR
870#undef PGM_BTH_NAME_R0_STR
871#undef PGM_GST_TYPE
872#undef PGM_GST_NAME
873#undef PGM_GST_NAME_RC_STR
874#undef PGM_GST_NAME_R0_STR
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - AMD64 mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_AMD64
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
889#include "PGMShw.h"
890
891#ifdef VBOX_WITH_64_BITS_GUESTS
892/* Guest - AMD64 mode */
893# define PGM_GST_TYPE PGM_TYPE_AMD64
894# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
895# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
896# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
897# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
898# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
899# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
900# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
903# include "PGMBth.h"
904# include "PGMGstDefs.h"
905# include "PGMGst.h"
906# undef BTH_PGMPOOLKIND_PT_FOR_BIG
907# undef BTH_PGMPOOLKIND_PT_FOR_PT
908# undef BTH_PGMPOOLKIND_ROOT
909# undef PGM_BTH_NAME
910# undef PGM_BTH_NAME_RC_STR
911# undef PGM_BTH_NAME_R0_STR
912# undef PGM_GST_TYPE
913# undef PGM_GST_NAME
914# undef PGM_GST_NAME_RC_STR
915# undef PGM_GST_NAME_R0_STR
916#endif /* VBOX_WITH_64_BITS_GUESTS */
917
918#undef PGM_SHW_TYPE
919#undef PGM_SHW_NAME
920#undef PGM_SHW_NAME_RC_STR
921#undef PGM_SHW_NAME_R0_STR
922
923
924/*
925 * Shadow - Nested paging mode
926 */
927#define PGM_SHW_TYPE PGM_TYPE_NESTED
928#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
929#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
930#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
931#include "PGMShw.h"
932
933/* Guest - real mode */
934#define PGM_GST_TYPE PGM_TYPE_REAL
935#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
936#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
937#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
938#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
939#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
940#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
941#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
942#include "PGMGstDefs.h"
943#include "PGMBth.h"
944#undef BTH_PGMPOOLKIND_PT_FOR_PT
945#undef PGM_BTH_NAME
946#undef PGM_BTH_NAME_RC_STR
947#undef PGM_BTH_NAME_R0_STR
948#undef PGM_GST_TYPE
949#undef PGM_GST_NAME
950#undef PGM_GST_NAME_RC_STR
951#undef PGM_GST_NAME_R0_STR
952
953/* Guest - protected mode */
954#define PGM_GST_TYPE PGM_TYPE_PROT
955#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
956#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
957#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
958#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
959#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
960#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
961#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
962#include "PGMGstDefs.h"
963#include "PGMBth.h"
964#undef BTH_PGMPOOLKIND_PT_FOR_PT
965#undef PGM_BTH_NAME
966#undef PGM_BTH_NAME_RC_STR
967#undef PGM_BTH_NAME_R0_STR
968#undef PGM_GST_TYPE
969#undef PGM_GST_NAME
970#undef PGM_GST_NAME_RC_STR
971#undef PGM_GST_NAME_R0_STR
972
973/* Guest - 32-bit mode */
974#define PGM_GST_TYPE PGM_TYPE_32BIT
975#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
976#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
977#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
978#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
979#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
980#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
981#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
982#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_BIG
986#undef BTH_PGMPOOLKIND_PT_FOR_PT
987#undef PGM_BTH_NAME
988#undef PGM_BTH_NAME_RC_STR
989#undef PGM_BTH_NAME_R0_STR
990#undef PGM_GST_TYPE
991#undef PGM_GST_NAME
992#undef PGM_GST_NAME_RC_STR
993#undef PGM_GST_NAME_R0_STR
994
995/* Guest - PAE mode */
996#define PGM_GST_TYPE PGM_TYPE_PAE
997#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
998#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
999#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1000#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1001#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1002#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1003#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1004#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1005#include "PGMGstDefs.h"
1006#include "PGMBth.h"
1007#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1008#undef BTH_PGMPOOLKIND_PT_FOR_PT
1009#undef PGM_BTH_NAME
1010#undef PGM_BTH_NAME_RC_STR
1011#undef PGM_BTH_NAME_R0_STR
1012#undef PGM_GST_TYPE
1013#undef PGM_GST_NAME
1014#undef PGM_GST_NAME_RC_STR
1015#undef PGM_GST_NAME_R0_STR
1016
1017#ifdef VBOX_WITH_64_BITS_GUESTS
1018/* Guest - AMD64 mode */
1019# define PGM_GST_TYPE PGM_TYPE_AMD64
1020# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1021# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1022# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1023# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1024# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1025# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1026# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1027# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1028# include "PGMGstDefs.h"
1029# include "PGMBth.h"
1030# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1031# undef BTH_PGMPOOLKIND_PT_FOR_PT
1032# undef PGM_BTH_NAME
1033# undef PGM_BTH_NAME_RC_STR
1034# undef PGM_BTH_NAME_R0_STR
1035# undef PGM_GST_TYPE
1036# undef PGM_GST_NAME
1037# undef PGM_GST_NAME_RC_STR
1038# undef PGM_GST_NAME_R0_STR
1039#endif /* VBOX_WITH_64_BITS_GUESTS */
1040
1041#undef PGM_SHW_TYPE
1042#undef PGM_SHW_NAME
1043#undef PGM_SHW_NAME_RC_STR
1044#undef PGM_SHW_NAME_R0_STR
1045
1046
1047/*
1048 * Shadow - EPT
1049 */
1050#define PGM_SHW_TYPE PGM_TYPE_EPT
1051#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1052#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1053#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1054#include "PGMShw.h"
1055
1056/* Guest - real mode */
1057#define PGM_GST_TYPE PGM_TYPE_REAL
1058#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1059#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1060#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1061#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1062#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1063#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1064#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1065#include "PGMGstDefs.h"
1066#include "PGMBth.h"
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_RC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_RC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076/* Guest - protected mode */
1077#define PGM_GST_TYPE PGM_TYPE_PROT
1078#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1079#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1080#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1081#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1082#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1083#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1084#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1085#include "PGMGstDefs.h"
1086#include "PGMBth.h"
1087#undef BTH_PGMPOOLKIND_PT_FOR_PT
1088#undef PGM_BTH_NAME
1089#undef PGM_BTH_NAME_RC_STR
1090#undef PGM_BTH_NAME_R0_STR
1091#undef PGM_GST_TYPE
1092#undef PGM_GST_NAME
1093#undef PGM_GST_NAME_RC_STR
1094#undef PGM_GST_NAME_R0_STR
1095
1096/* Guest - 32-bit mode */
1097#define PGM_GST_TYPE PGM_TYPE_32BIT
1098#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1099#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1100#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1101#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1102#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1103#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1104#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1105#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1109#undef BTH_PGMPOOLKIND_PT_FOR_PT
1110#undef PGM_BTH_NAME
1111#undef PGM_BTH_NAME_RC_STR
1112#undef PGM_BTH_NAME_R0_STR
1113#undef PGM_GST_TYPE
1114#undef PGM_GST_NAME
1115#undef PGM_GST_NAME_RC_STR
1116#undef PGM_GST_NAME_R0_STR
1117
1118/* Guest - PAE mode */
1119#define PGM_GST_TYPE PGM_TYPE_PAE
1120#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1121#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1122#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1123#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1124#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1125#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1126#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1127#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1128#include "PGMGstDefs.h"
1129#include "PGMBth.h"
1130#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1131#undef BTH_PGMPOOLKIND_PT_FOR_PT
1132#undef PGM_BTH_NAME
1133#undef PGM_BTH_NAME_RC_STR
1134#undef PGM_BTH_NAME_R0_STR
1135#undef PGM_GST_TYPE
1136#undef PGM_GST_NAME
1137#undef PGM_GST_NAME_RC_STR
1138#undef PGM_GST_NAME_R0_STR
1139
1140#ifdef VBOX_WITH_64_BITS_GUESTS
1141/* Guest - AMD64 mode */
1142# define PGM_GST_TYPE PGM_TYPE_AMD64
1143# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1144# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1145# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1146# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1147# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1148# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1149# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1150# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1151# include "PGMGstDefs.h"
1152# include "PGMBth.h"
1153# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1154# undef BTH_PGMPOOLKIND_PT_FOR_PT
1155# undef PGM_BTH_NAME
1156# undef PGM_BTH_NAME_RC_STR
1157# undef PGM_BTH_NAME_R0_STR
1158# undef PGM_GST_TYPE
1159# undef PGM_GST_NAME
1160# undef PGM_GST_NAME_RC_STR
1161# undef PGM_GST_NAME_R0_STR
1162#endif /* VBOX_WITH_64_BITS_GUESTS */
1163
1164#undef PGM_SHW_TYPE
1165#undef PGM_SHW_NAME
1166#undef PGM_SHW_NAME_RC_STR
1167#undef PGM_SHW_NAME_R0_STR
1168
1169
1170
1171/**
1172 * Initiates the paging of VM.
1173 *
1174 * @returns VBox status code.
1175 * @param pVM Pointer to VM structure.
1176 */
1177VMMR3DECL(int) PGMR3Init(PVM pVM)
1178{
1179 LogFlow(("PGMR3Init:\n"));
1180 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1181 int rc;
1182
1183 /*
1184 * Assert alignment and sizes.
1185 */
1186 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1187 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1188 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1189
1190 /*
1191 * Init the structure.
1192 */
1193#ifdef PGM_WITHOUT_MAPPINGS
1194 pVM->pgm.s.fMappingsDisabled = true;
1195#endif
1196 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1197 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1198
1199 /* Init the per-CPU part. */
1200 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1201 {
1202 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1203 PPGMCPU pPGM = &pVCpu->pgm.s;
1204
1205 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1206 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1207 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1208
1209 pPGM->enmShadowMode = PGMMODE_INVALID;
1210 pPGM->enmGuestMode = PGMMODE_INVALID;
1211
1212 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1213
1214 pPGM->pGst32BitPdR3 = NULL;
1215 pPGM->pGstPaePdptR3 = NULL;
1216 pPGM->pGstAmd64Pml4R3 = NULL;
1217#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1218 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1219 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1220 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1221#endif
1222 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1223 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1224 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1225 {
1226 pPGM->apGstPaePDsR3[i] = NULL;
1227#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1228 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1229#endif
1230 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1231 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1232 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1233 }
1234
1235 pPGM->fA20Enabled = true;
1236 }
1237
1238 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1239 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1240 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1241
1242 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1243#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1244 true
1245#else
1246 false
1247#endif
1248 );
1249 AssertLogRelRCReturn(rc, rc);
1250
1251#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
1252 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1253#else
1254 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1255#endif
1256 AssertLogRelRCReturn(rc, rc);
1257 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1258 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1259
1260 /*
1261 * Get the configured RAM size - to estimate saved state size.
1262 */
1263 uint64_t cbRam;
1264 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1265 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1266 cbRam = 0;
1267 else if (RT_SUCCESS(rc))
1268 {
1269 if (cbRam < PAGE_SIZE)
1270 cbRam = 0;
1271 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1272 }
1273 else
1274 {
1275 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1276 return rc;
1277 }
1278
1279#ifdef VBOX_WITH_STATISTICS
1280 /*
1281 * Allocate memory for the statistics before someone tries to use them.
1282 */
1283 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1284 void *pv;
1285 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1286 AssertRCReturn(rc, rc);
1287
1288 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1289 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1290 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1291 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1292
1293 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1294 {
1295 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1296 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1297 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1298
1299 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1300 }
1301#endif /* VBOX_WITH_STATISTICS */
1302
1303 /*
1304 * Register callbacks, string formatters and the saved state data unit.
1305 */
1306#ifdef VBOX_STRICT
1307 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1308#endif
1309 PGMRegisterStringFormatTypes();
1310
1311 rc = pgmR3InitSavedState(pVM, cbRam);
1312 if (RT_FAILURE(rc))
1313 return rc;
1314
1315 /*
1316 * Initialize the PGM critical section and flush the phys TLBs
1317 */
1318 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1319 AssertRCReturn(rc, rc);
1320
1321 PGMR3PhysChunkInvalidateTLB(pVM);
1322 PGMPhysInvalidatePageMapTLB(pVM);
1323
1324 /*
1325 * For the time being we sport a full set of handy pages in addition to the base
1326 * memory to simplify things.
1327 */
1328 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1329 AssertRCReturn(rc, rc);
1330
1331 /*
1332 * Trees
1333 */
1334 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1335 if (RT_SUCCESS(rc))
1336 {
1337 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1338 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1339
1340 /*
1341 * Allocate the zero page.
1342 */
1343 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1344 }
1345 if (RT_SUCCESS(rc))
1346 {
1347 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1348 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1349 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1350 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1351
1352 /*
1353 * Allocate the invalid MMIO page.
1354 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1355 */
1356 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1357 }
1358 if (RT_SUCCESS(rc))
1359 {
1360 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1361 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1362 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1363 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1364
1365 /*
1366 * Init the paging.
1367 */
1368 rc = pgmR3InitPaging(pVM);
1369 }
1370 if (RT_SUCCESS(rc))
1371 {
1372 /*
1373 * Init the page pool.
1374 */
1375 rc = pgmR3PoolInit(pVM);
1376 }
1377 if (RT_SUCCESS(rc))
1378 {
1379 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1380 {
1381 PVMCPU pVCpu = &pVM->aCpus[i];
1382 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1383 if (RT_FAILURE(rc))
1384 break;
1385 }
1386 }
1387
1388 if (RT_SUCCESS(rc))
1389 {
1390 /*
1391 * Info & statistics
1392 */
1393 DBGFR3InfoRegisterInternal(pVM, "mode",
1394 "Shows the current paging mode. "
1395 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1396 pgmR3InfoMode);
1397 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1398 "Dumps all the entries in the top level paging table. No arguments.",
1399 pgmR3InfoCr3);
1400 DBGFR3InfoRegisterInternal(pVM, "phys",
1401 "Dumps all the physical address ranges. No arguments.",
1402 pgmR3PhysInfo);
1403 DBGFR3InfoRegisterInternal(pVM, "handlers",
1404 "Dumps physical, virtual and hyper virtual handlers. "
1405 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1406 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1407 pgmR3InfoHandlers);
1408 DBGFR3InfoRegisterInternal(pVM, "mappings",
1409 "Dumps guest mappings.",
1410 pgmR3MapInfo);
1411
1412 pgmR3InitStats(pVM);
1413
1414#ifdef VBOX_WITH_DEBUGGER
1415 /*
1416 * Debugger commands.
1417 */
1418 static bool s_fRegisteredCmds = false;
1419 if (!s_fRegisteredCmds)
1420 {
1421 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1422 if (RT_SUCCESS(rc2))
1423 s_fRegisteredCmds = true;
1424 }
1425#endif
1426 return VINF_SUCCESS;
1427 }
1428
1429 /* Almost no cleanup necessary, MM frees all memory. */
1430 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1431
1432 return rc;
1433}
1434
1435
1436/**
1437 * Init paging.
1438 *
1439 * Since we need to check what mode the host is operating in before we can choose
1440 * the right paging functions for the host we have to delay this until R0 has
1441 * been initialized.
1442 *
1443 * @returns VBox status code.
1444 * @param pVM VM handle.
1445 */
1446static int pgmR3InitPaging(PVM pVM)
1447{
1448 /*
1449 * Force a recalculation of modes and switcher so everyone gets notified.
1450 */
1451 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1452 {
1453 PVMCPU pVCpu = &pVM->aCpus[i];
1454
1455 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1456 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1457 }
1458
1459 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1460
1461 /*
1462 * Allocate static mapping space for whatever the cr3 register
1463 * points to and in the case of PAE mode to the 4 PDs.
1464 */
1465 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1466 if (RT_FAILURE(rc))
1467 {
1468 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1469 return rc;
1470 }
1471 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1472
1473 /*
1474 * Allocate pages for the three possible intermediate contexts
1475 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1476 * for the sake of simplicity. The AMD64 uses the PAE for the
1477 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1478 *
1479 * We assume that two page tables will be enought for the core code
1480 * mappings (HC virtual and identity).
1481 */
1482 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1483 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1484 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1485 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1486 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1487 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1488 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1489 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1490 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1491 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1492 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1493 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1494
1495 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1496 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1497 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1498 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1499 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1500 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1501
1502 /*
1503 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1504 */
1505 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1506 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1507 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1508
1509 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1510 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1511
1512 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1513 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1514 {
1515 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1516 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1517 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1518 }
1519
1520 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1521 {
1522 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1523 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1524 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1525 }
1526
1527 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1528 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1529 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1530 | HCPhysInterPaePDPT64;
1531
1532 /*
1533 * Initialize paging workers and mode from current host mode
1534 * and the guest running in real mode.
1535 */
1536 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1537 switch (pVM->pgm.s.enmHostMode)
1538 {
1539 case SUPPAGINGMODE_32_BIT:
1540 case SUPPAGINGMODE_32_BIT_GLOBAL:
1541 case SUPPAGINGMODE_PAE:
1542 case SUPPAGINGMODE_PAE_GLOBAL:
1543 case SUPPAGINGMODE_PAE_NX:
1544 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1545 break;
1546
1547 case SUPPAGINGMODE_AMD64:
1548 case SUPPAGINGMODE_AMD64_GLOBAL:
1549 case SUPPAGINGMODE_AMD64_NX:
1550 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1551#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1552 if (ARCH_BITS != 64)
1553 {
1554 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1555 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1556 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1557 }
1558#endif
1559 break;
1560 default:
1561 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1562 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1563 }
1564 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1565 if (RT_SUCCESS(rc))
1566 {
1567 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1568#if HC_ARCH_BITS == 64
1569 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1570 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1571 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1572 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1573 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1574 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1575 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1576#endif
1577 return VINF_SUCCESS;
1578 }
1579
1580 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1581 return rc;
1582}
1583
1584
1585/**
1586 * Init statistics
1587 * @returns VBox status code.
1588 */
1589static int pgmR3InitStats(PVM pVM)
1590{
1591 PPGM pPGM = &pVM->pgm.s;
1592 int rc;
1593
1594 /*
1595 * Release statistics.
1596 */
1597 /* Common - misc variables */
1598 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1599 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1600 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1601 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1602 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1603 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1604 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1605 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1606 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1607 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1608 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1609 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1610 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1611 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1612 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1613 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1614 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1615
1616 STAM_REL_REG(pVM, &pPGM->StatLargePageAlloc, STAMTYPE_COUNTER, "/PGM/LargePage/Alloc", STAMUNIT_OCCURENCES, "The number of large pages we've used.");
1617 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1618 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1619 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1620
1621 /* Live save */
1622 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1623 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1624 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1625 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1626 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1627 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1628 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1629 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1630 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1631 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1632 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1633 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1634 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1635 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1636 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1637 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1638 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1639 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1640
1641#ifdef VBOX_WITH_STATISTICS
1642
1643# define PGM_REG_COUNTER(a, b, c) \
1644 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1645 AssertRC(rc);
1646
1647# define PGM_REG_COUNTER_BYTES(a, b, c) \
1648 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1649 AssertRC(rc);
1650
1651# define PGM_REG_PROFILE(a, b, c) \
1652 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1653 AssertRC(rc);
1654
1655 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1656
1657 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1658 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1659 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1660 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1661 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1662
1663 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1664 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1665 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1666 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1667 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1668 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1669 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1670 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1671 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1672 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1673
1674 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1675 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1676 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1677 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1678 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1679 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1680
1681 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1682 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1683 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1684 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1685 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1686 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1687 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1688 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1689
1690 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1691 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1692 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1693 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1694
1695 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1696 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1697 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1698 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1699 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1700 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1701 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1702 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1703
1704 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1705 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1706/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1707 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1708 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1709/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1710
1711 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1712 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1713 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1714 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1715 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1716 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1717 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1718 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1719
1720 /* GC only: */
1721 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1722 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1723
1724 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1725 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1726 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1727 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1728 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1729 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1730 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1731 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1732
1733 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1734 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1735 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1736 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1737 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1738 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1739 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1740
1741# undef PGM_REG_COUNTER
1742# undef PGM_REG_PROFILE
1743#endif
1744
1745 /*
1746 * Note! The layout below matches the member layout exactly!
1747 */
1748
1749 /*
1750 * Common - stats
1751 */
1752 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1753 {
1754 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1755
1756#define PGM_REG_COUNTER(a, b, c) \
1757 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1758 AssertRC(rc);
1759#define PGM_REG_PROFILE(a, b, c) \
1760 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1761 AssertRC(rc);
1762
1763 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1764
1765#ifdef VBOX_WITH_STATISTICS
1766 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1767
1768# if 0 /* rarely useful; leave for debugging. */
1769 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1770 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1771 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1772 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1773 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1774 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1775# endif
1776 /* R0 only: */
1777 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1778 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1779
1780 /* RZ only: */
1781 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1782 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1783 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1784 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1785 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1786 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1787 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1788 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1789 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1790 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1791 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1792 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1793 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1794 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1795 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1796 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1797 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1798 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1799 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1800 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1801 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1802 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1803 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1804 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1805 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1806 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1807 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1808 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1809 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1810 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1811 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1812 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1813 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1814 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1815 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1816 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1817 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1818 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1819 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1820 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1821 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1822 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1823 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1824 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1825#if 0 /* rarely useful; leave for debugging. */
1826 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1827 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1828 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1829#endif
1830 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1831 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1832 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1833 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1834 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1835
1836 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1837 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1838 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1839 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1840 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1841 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1842 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1843 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1844 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1845 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1846 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1847 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1848 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1849 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1850 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1851 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1852 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1853 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1854 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1855 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1856 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1857 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1858 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1859 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1860 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1861 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1862 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1863 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1864 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1865 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1866 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1867 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1868 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1869 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1870 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1871 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1872
1873 /* HC only: */
1874
1875 /* RZ & R3: */
1876 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1877 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1878 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1879 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1880 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1881 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1882 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1883 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1884 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1885 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1886 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1887 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1888 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1889 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1890 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1891 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1892 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1893 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1902 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1916 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1917 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1920 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1921 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1922 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1923
1924 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1925 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1926 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1927 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1928 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1929 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1930 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1931 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1932 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1933 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1934 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1935 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1936 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1937 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1938 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1939 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1940 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1941 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1942 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1943 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1944 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1945 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1946 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1947 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1948 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1949 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1950 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1951 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1952 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1953 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1954 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1955 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1956 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1957 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1958 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1959 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1960 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
1961 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1962 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1963 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1964 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1965 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1966 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1967 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1968#endif /* VBOX_WITH_STATISTICS */
1969
1970#undef PGM_REG_PROFILE
1971#undef PGM_REG_COUNTER
1972
1973 }
1974
1975 return VINF_SUCCESS;
1976}
1977
1978
1979/**
1980 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1981 *
1982 * The dynamic mapping area will also be allocated and initialized at this
1983 * time. We could allocate it during PGMR3Init of course, but the mapping
1984 * wouldn't be allocated at that time preventing us from setting up the
1985 * page table entries with the dummy page.
1986 *
1987 * @returns VBox status code.
1988 * @param pVM VM handle.
1989 */
1990VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1991{
1992 RTGCPTR GCPtr;
1993 int rc;
1994
1995 /*
1996 * Reserve space for the dynamic mappings.
1997 */
1998 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1999 if (RT_SUCCESS(rc))
2000 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2001
2002 if ( RT_SUCCESS(rc)
2003 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2004 {
2005 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2006 if (RT_SUCCESS(rc))
2007 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2008 }
2009 if (RT_SUCCESS(rc))
2010 {
2011 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2012 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2013 }
2014 return rc;
2015}
2016
2017
2018/**
2019 * Ring-3 init finalizing.
2020 *
2021 * @returns VBox status code.
2022 * @param pVM The VM handle.
2023 */
2024VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2025{
2026 int rc;
2027
2028 /*
2029 * Reserve space for the dynamic mappings.
2030 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2031 */
2032 /* get the pointer to the page table entries. */
2033 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2034 AssertRelease(pMapping);
2035 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2036 const unsigned iPT = off >> X86_PD_SHIFT;
2037 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2038 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2039 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2040
2041 /* init cache area */
2042 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2043 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2044 {
2045 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2046 AssertRCReturn(rc, rc);
2047 }
2048
2049 /*
2050 * Determine the max physical address width (MAXPHYADDR) and apply it to
2051 * all the mask members and stuff.
2052 */
2053 uint32_t cMaxPhysAddrWidth;
2054 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2055 if ( uMaxExtLeaf >= 0x80000008
2056 && uMaxExtLeaf <= 0x80000fff)
2057 {
2058 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2059 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2060 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2061 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2062 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2063 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2064 }
2065 else
2066 {
2067 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2068 cMaxPhysAddrWidth = 48;
2069 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2070 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2071 }
2072
2073 pVM->pgm.s.GCPhysInvAddrMask = 0;
2074 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2075 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2076
2077 /*
2078 * Initialize the invalid paging entry masks, assuming NX is disabled.
2079 */
2080 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2081 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2082 {
2083 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2084
2085 /** @todo The manuals are not entirely clear whether the physical
2086 * address width is relevant. See table 5-9 in the intel
2087 * manual vs the PDE4M descriptions. Write testcase (NP). */
2088 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2089 | X86_PDE4M_MBZ_MASK;
2090
2091 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2092 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2093 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2094 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2095
2096 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2097 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2098 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2099 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2100 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2101 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2102
2103 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2104 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2105 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2106 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2107 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2108 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2109 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2110 }
2111
2112 /*
2113 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2114 * Intel only goes up to 36 bits, so we stick to 36 as well.
2115 * Update: More recent intel manuals specifies 40 bits just like AMD.
2116 */
2117 uint32_t u32Dummy, u32Features;
2118 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2119 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2120 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2121 else
2122 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2123
2124 /*
2125 * Allocate memory if we're supposed to do that.
2126 */
2127 if (pVM->pgm.s.fRamPreAlloc)
2128 rc = pgmR3PhysRamPreAllocate(pVM);
2129
2130 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2131 return rc;
2132}
2133
2134
2135/**
2136 * Applies relocations to data and code managed by this component.
2137 *
2138 * This function will be called at init and whenever the VMM need to relocate it
2139 * self inside the GC.
2140 *
2141 * @param pVM The VM.
2142 * @param offDelta Relocation delta relative to old location.
2143 */
2144VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2145{
2146 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2147
2148 /*
2149 * Paging stuff.
2150 */
2151 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2152
2153 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2154
2155 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2156 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2157 {
2158 PVMCPU pVCpu = &pVM->aCpus[i];
2159
2160 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2161
2162 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2163 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2164 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2165 }
2166
2167 /*
2168 * Trees.
2169 */
2170 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2171
2172 /*
2173 * Ram ranges.
2174 */
2175 if (pVM->pgm.s.pRamRangesR3)
2176 {
2177 /* Update the pSelfRC pointers and relink them. */
2178 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2179 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2180 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2181 pgmR3PhysRelinkRamRanges(pVM);
2182 }
2183
2184 /*
2185 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2186 * be mapped and thus not included in the above exercise.
2187 */
2188 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2189 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2190 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2191
2192 /*
2193 * Update the two page directories with all page table mappings.
2194 * (One or more of them have changed, that's why we're here.)
2195 */
2196 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2197 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2198 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2199
2200 /* Relocate GC addresses of Page Tables. */
2201 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2202 {
2203 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2204 {
2205 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2206 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2207 }
2208 }
2209
2210 /*
2211 * Dynamic page mapping area.
2212 */
2213 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2214 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2215 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2216
2217 if (pVM->pgm.s.pRCDynMap)
2218 {
2219 pVM->pgm.s.pRCDynMap += offDelta;
2220 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2221
2222 pDynMap->paPages += offDelta;
2223 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2224
2225 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2226 {
2227 paPages[iPage].pvPage += offDelta;
2228 paPages[iPage].uPte.pv += offDelta;
2229 }
2230 }
2231
2232 /*
2233 * The Zero page.
2234 */
2235 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2236#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2237 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2238#else
2239 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2240#endif
2241
2242 /*
2243 * Physical and virtual handlers.
2244 */
2245 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2246 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2247 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2248 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2249
2250 /*
2251 * The page pool.
2252 */
2253 pgmR3PoolRelocate(pVM);
2254
2255#ifdef VBOX_WITH_STATISTICS
2256 /*
2257 * Statistics.
2258 */
2259 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2260 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2261 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2262#endif
2263}
2264
2265
2266/**
2267 * Callback function for relocating a physical access handler.
2268 *
2269 * @returns 0 (continue enum)
2270 * @param pNode Pointer to a PGMPHYSHANDLER node.
2271 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2272 * not certain the delta will fit in a void pointer for all possible configs.
2273 */
2274static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2275{
2276 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2277 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2278 if (pHandler->pfnHandlerRC)
2279 pHandler->pfnHandlerRC += offDelta;
2280 if (pHandler->pvUserRC >= 0x10000)
2281 pHandler->pvUserRC += offDelta;
2282 return 0;
2283}
2284
2285
2286/**
2287 * Callback function for relocating a virtual access handler.
2288 *
2289 * @returns 0 (continue enum)
2290 * @param pNode Pointer to a PGMVIRTHANDLER node.
2291 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2292 * not certain the delta will fit in a void pointer for all possible configs.
2293 */
2294static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2295{
2296 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2297 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2298 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2299 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2300 Assert(pHandler->pfnHandlerRC);
2301 pHandler->pfnHandlerRC += offDelta;
2302 return 0;
2303}
2304
2305
2306/**
2307 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2308 *
2309 * @returns 0 (continue enum)
2310 * @param pNode Pointer to a PGMVIRTHANDLER node.
2311 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2312 * not certain the delta will fit in a void pointer for all possible configs.
2313 */
2314static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2315{
2316 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2317 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2318 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2319 Assert(pHandler->pfnHandlerRC);
2320 pHandler->pfnHandlerRC += offDelta;
2321 return 0;
2322}
2323
2324
2325/**
2326 * Resets a virtual CPU when unplugged.
2327 *
2328 * @param pVM The VM handle.
2329 * @param pVCpu The virtual CPU handle.
2330 */
2331VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2332{
2333 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2334 AssertRC(rc);
2335
2336 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2337 AssertRC(rc);
2338
2339 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2340
2341 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2342
2343 /*
2344 * Re-init other members.
2345 */
2346 pVCpu->pgm.s.fA20Enabled = true;
2347
2348 /*
2349 * Clear the FFs PGM owns.
2350 */
2351 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2352 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2353}
2354
2355
2356/**
2357 * The VM is being reset.
2358 *
2359 * For the PGM component this means that any PD write monitors
2360 * needs to be removed.
2361 *
2362 * @param pVM VM handle.
2363 */
2364VMMR3DECL(void) PGMR3Reset(PVM pVM)
2365{
2366 int rc;
2367
2368 LogFlow(("PGMR3Reset:\n"));
2369 VM_ASSERT_EMT(pVM);
2370
2371 pgmLock(pVM);
2372
2373 /*
2374 * Unfix any fixed mappings and disable CR3 monitoring.
2375 */
2376 pVM->pgm.s.fMappingsFixed = false;
2377 pVM->pgm.s.fMappingsFixedRestored = false;
2378 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2379 pVM->pgm.s.cbMappingFixed = 0;
2380
2381 /*
2382 * Exit the guest paging mode before the pgm pool gets reset.
2383 * Important to clean up the amd64 case.
2384 */
2385 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2386 {
2387 PVMCPU pVCpu = &pVM->aCpus[i];
2388 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2389 AssertRC(rc);
2390 }
2391
2392#ifdef DEBUG
2393 DBGFR3InfoLog(pVM, "mappings", NULL);
2394 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2395#endif
2396
2397 /*
2398 * Switch mode back to real mode. (before resetting the pgm pool!)
2399 */
2400 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2401 {
2402 PVMCPU pVCpu = &pVM->aCpus[i];
2403
2404 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2405 AssertRC(rc);
2406
2407 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2408 }
2409
2410 /*
2411 * Reset the shadow page pool.
2412 */
2413 pgmR3PoolReset(pVM);
2414
2415 /*
2416 * Re-init various other members and clear the FFs that PGM owns.
2417 */
2418 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2419 {
2420 PVMCPU pVCpu = &pVM->aCpus[i];
2421
2422 pVCpu->pgm.s.fA20Enabled = true;
2423 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2424 PGMNotifyNxeChanged(pVCpu, false);
2425
2426 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2427 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2428 }
2429
2430 /*
2431 * Reset (zero) RAM and shadow ROM pages.
2432 */
2433 rc = pgmR3PhysRamReset(pVM);
2434 if (RT_SUCCESS(rc))
2435 rc = pgmR3PhysRomReset(pVM);
2436
2437
2438 pgmUnlock(pVM);
2439 AssertReleaseRC(rc);
2440}
2441
2442
2443#ifdef VBOX_STRICT
2444/**
2445 * VM state change callback for clearing fNoMorePhysWrites after
2446 * a snapshot has been created.
2447 */
2448static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2449{
2450 if ( enmState == VMSTATE_RUNNING
2451 || enmState == VMSTATE_RESUMING)
2452 pVM->pgm.s.fNoMorePhysWrites = false;
2453}
2454#endif
2455
2456/**
2457 * Private API to reset fNoMorePhysWrites.
2458 */
2459VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2460{
2461 pVM->pgm.s.fNoMorePhysWrites = false;
2462}
2463
2464/**
2465 * Terminates the PGM.
2466 *
2467 * @returns VBox status code.
2468 * @param pVM Pointer to VM structure.
2469 */
2470VMMR3DECL(int) PGMR3Term(PVM pVM)
2471{
2472 /* Must free shared pages here. */
2473 pgmLock(pVM);
2474 pgmR3PhysRamTerm(pVM);
2475 pgmR3PhysRomTerm(pVM);
2476 pgmUnlock(pVM);
2477
2478 PGMDeregisterStringFormatTypes();
2479 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2480}
2481
2482
2483/**
2484 * Show paging mode.
2485 *
2486 * @param pVM VM Handle.
2487 * @param pHlp The info helpers.
2488 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2489 */
2490static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2491{
2492 /* digest argument. */
2493 bool fGuest, fShadow, fHost;
2494 if (pszArgs)
2495 pszArgs = RTStrStripL(pszArgs);
2496 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2497 fShadow = fHost = fGuest = true;
2498 else
2499 {
2500 fShadow = fHost = fGuest = false;
2501 if (strstr(pszArgs, "guest"))
2502 fGuest = true;
2503 if (strstr(pszArgs, "shadow"))
2504 fShadow = true;
2505 if (strstr(pszArgs, "host"))
2506 fHost = true;
2507 }
2508
2509 /** @todo SMP support! */
2510 /* print info. */
2511 if (fGuest)
2512 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2513 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2514 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2515 if (fShadow)
2516 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2517 if (fHost)
2518 {
2519 const char *psz;
2520 switch (pVM->pgm.s.enmHostMode)
2521 {
2522 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2523 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2524 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2525 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2526 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2527 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2528 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2529 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2530 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2531 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2532 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2533 default: psz = "unknown"; break;
2534 }
2535 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2536 }
2537}
2538
2539
2540/**
2541 * Dump registered MMIO ranges to the log.
2542 *
2543 * @param pVM VM Handle.
2544 * @param pHlp The info helpers.
2545 * @param pszArgs Arguments, ignored.
2546 */
2547static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2548{
2549 NOREF(pszArgs);
2550 pHlp->pfnPrintf(pHlp,
2551 "RAM ranges (pVM=%p)\n"
2552 "%.*s %.*s\n",
2553 pVM,
2554 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2555 sizeof(RTHCPTR) * 2, "pvHC ");
2556
2557 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2558 pHlp->pfnPrintf(pHlp,
2559 "%RGp-%RGp %RHv %s\n",
2560 pCur->GCPhys,
2561 pCur->GCPhysLast,
2562 pCur->pvR3,
2563 pCur->pszDesc);
2564}
2565
2566/**
2567 * Dump the page directory to the log.
2568 *
2569 * @param pVM VM Handle.
2570 * @param pHlp The info helpers.
2571 * @param pszArgs Arguments, ignored.
2572 */
2573static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2574{
2575 /** @todo SMP support!! */
2576 PVMCPU pVCpu = &pVM->aCpus[0];
2577
2578/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2579 /* Big pages supported? */
2580 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2581
2582 /* Global pages supported? */
2583 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2584
2585 NOREF(pszArgs);
2586
2587 /*
2588 * Get page directory addresses.
2589 */
2590 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2591 Assert(pPDSrc);
2592 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2593
2594 /*
2595 * Iterate the page directory.
2596 */
2597 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2598 {
2599 X86PDE PdeSrc = pPDSrc->a[iPD];
2600 if (PdeSrc.n.u1Present)
2601 {
2602 if (PdeSrc.b.u1Size && fPSE)
2603 pHlp->pfnPrintf(pHlp,
2604 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2605 iPD,
2606 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2607 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2608 else
2609 pHlp->pfnPrintf(pHlp,
2610 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2611 iPD,
2612 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2613 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2614 }
2615 }
2616}
2617
2618
2619/**
2620 * Service a VMMCALLRING3_PGM_LOCK call.
2621 *
2622 * @returns VBox status code.
2623 * @param pVM The VM handle.
2624 */
2625VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2626{
2627 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2628 AssertRC(rc);
2629 return rc;
2630}
2631
2632
2633/**
2634 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2635 *
2636 * @returns PGM_TYPE_*.
2637 * @param pgmMode The mode value to convert.
2638 */
2639DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2640{
2641 switch (pgmMode)
2642 {
2643 case PGMMODE_REAL: return PGM_TYPE_REAL;
2644 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2645 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2646 case PGMMODE_PAE:
2647 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2648 case PGMMODE_AMD64:
2649 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2650 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2651 case PGMMODE_EPT: return PGM_TYPE_EPT;
2652 default:
2653 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2654 }
2655}
2656
2657
2658/**
2659 * Gets the index into the paging mode data array of a SHW+GST mode.
2660 *
2661 * @returns PGM::paPagingData index.
2662 * @param uShwType The shadow paging mode type.
2663 * @param uGstType The guest paging mode type.
2664 */
2665DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2666{
2667 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2668 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2669 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2670 + (uGstType - PGM_TYPE_REAL);
2671}
2672
2673
2674/**
2675 * Gets the index into the paging mode data array of a SHW+GST mode.
2676 *
2677 * @returns PGM::paPagingData index.
2678 * @param enmShw The shadow paging mode.
2679 * @param enmGst The guest paging mode.
2680 */
2681DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2682{
2683 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2684 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2685 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2686}
2687
2688
2689/**
2690 * Calculates the max data index.
2691 * @returns The number of entries in the paging data array.
2692 */
2693DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2694{
2695 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2696}
2697
2698
2699/**
2700 * Initializes the paging mode data kept in PGM::paModeData.
2701 *
2702 * @param pVM The VM handle.
2703 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2704 * This is used early in the init process to avoid trouble with PDM
2705 * not being initialized yet.
2706 */
2707static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2708{
2709 PPGMMODEDATA pModeData;
2710 int rc;
2711
2712 /*
2713 * Allocate the array on the first call.
2714 */
2715 if (!pVM->pgm.s.paModeData)
2716 {
2717 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2718 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2719 }
2720
2721 /*
2722 * Initialize the array entries.
2723 */
2724 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2725 pModeData->uShwType = PGM_TYPE_32BIT;
2726 pModeData->uGstType = PGM_TYPE_REAL;
2727 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2728 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2729 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2730
2731 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2732 pModeData->uShwType = PGM_TYPE_32BIT;
2733 pModeData->uGstType = PGM_TYPE_PROT;
2734 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2735 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2736 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2737
2738 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2739 pModeData->uShwType = PGM_TYPE_32BIT;
2740 pModeData->uGstType = PGM_TYPE_32BIT;
2741 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2742 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2743 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2744
2745 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2746 pModeData->uShwType = PGM_TYPE_PAE;
2747 pModeData->uGstType = PGM_TYPE_REAL;
2748 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2749 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2750 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2751
2752 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2753 pModeData->uShwType = PGM_TYPE_PAE;
2754 pModeData->uGstType = PGM_TYPE_PROT;
2755 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2756 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2757 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2758
2759 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2760 pModeData->uShwType = PGM_TYPE_PAE;
2761 pModeData->uGstType = PGM_TYPE_32BIT;
2762 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2764 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2765
2766 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2767 pModeData->uShwType = PGM_TYPE_PAE;
2768 pModeData->uGstType = PGM_TYPE_PAE;
2769 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2770 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2771 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2772
2773#ifdef VBOX_WITH_64_BITS_GUESTS
2774 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2775 pModeData->uShwType = PGM_TYPE_AMD64;
2776 pModeData->uGstType = PGM_TYPE_AMD64;
2777 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2778 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2779 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2780#endif
2781
2782 /* The nested paging mode. */
2783 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2784 pModeData->uShwType = PGM_TYPE_NESTED;
2785 pModeData->uGstType = PGM_TYPE_REAL;
2786 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2787 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2788
2789 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2790 pModeData->uShwType = PGM_TYPE_NESTED;
2791 pModeData->uGstType = PGM_TYPE_PROT;
2792 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2793 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2794
2795 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2796 pModeData->uShwType = PGM_TYPE_NESTED;
2797 pModeData->uGstType = PGM_TYPE_32BIT;
2798 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2799 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2800
2801 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2802 pModeData->uShwType = PGM_TYPE_NESTED;
2803 pModeData->uGstType = PGM_TYPE_PAE;
2804 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2805 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2806
2807#ifdef VBOX_WITH_64_BITS_GUESTS
2808 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2809 pModeData->uShwType = PGM_TYPE_NESTED;
2810 pModeData->uGstType = PGM_TYPE_AMD64;
2811 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2812 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2813#endif
2814
2815 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2816 switch (pVM->pgm.s.enmHostMode)
2817 {
2818#if HC_ARCH_BITS == 32
2819 case SUPPAGINGMODE_32_BIT:
2820 case SUPPAGINGMODE_32_BIT_GLOBAL:
2821 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2822 {
2823 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2824 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2825 }
2826# ifdef VBOX_WITH_64_BITS_GUESTS
2827 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2828 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2829# endif
2830 break;
2831
2832 case SUPPAGINGMODE_PAE:
2833 case SUPPAGINGMODE_PAE_NX:
2834 case SUPPAGINGMODE_PAE_GLOBAL:
2835 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2836 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2837 {
2838 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2839 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2840 }
2841# ifdef VBOX_WITH_64_BITS_GUESTS
2842 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2843 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2844# endif
2845 break;
2846#endif /* HC_ARCH_BITS == 32 */
2847
2848#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2849 case SUPPAGINGMODE_AMD64:
2850 case SUPPAGINGMODE_AMD64_GLOBAL:
2851 case SUPPAGINGMODE_AMD64_NX:
2852 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2853# ifdef VBOX_WITH_64_BITS_GUESTS
2854 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2855# else
2856 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2857# endif
2858 {
2859 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2860 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2861 }
2862 break;
2863#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2864
2865 default:
2866 AssertFailed();
2867 break;
2868 }
2869
2870 /* Extended paging (EPT) / Intel VT-x */
2871 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2872 pModeData->uShwType = PGM_TYPE_EPT;
2873 pModeData->uGstType = PGM_TYPE_REAL;
2874 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2875 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2876 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2877
2878 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2879 pModeData->uShwType = PGM_TYPE_EPT;
2880 pModeData->uGstType = PGM_TYPE_PROT;
2881 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2882 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2883 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2884
2885 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2886 pModeData->uShwType = PGM_TYPE_EPT;
2887 pModeData->uGstType = PGM_TYPE_32BIT;
2888 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2889 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2890 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2891
2892 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2893 pModeData->uShwType = PGM_TYPE_EPT;
2894 pModeData->uGstType = PGM_TYPE_PAE;
2895 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2896 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2897 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2898
2899#ifdef VBOX_WITH_64_BITS_GUESTS
2900 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2901 pModeData->uShwType = PGM_TYPE_EPT;
2902 pModeData->uGstType = PGM_TYPE_AMD64;
2903 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2904 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2905 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2906#endif
2907 return VINF_SUCCESS;
2908}
2909
2910
2911/**
2912 * Switch to different (or relocated in the relocate case) mode data.
2913 *
2914 * @param pVM The VM handle.
2915 * @param pVCpu The VMCPU to operate on.
2916 * @param enmShw The the shadow paging mode.
2917 * @param enmGst The the guest paging mode.
2918 */
2919static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2920{
2921 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2922
2923 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2924 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2925
2926 /* shadow */
2927 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2928 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2929 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2930 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2931 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2932
2933 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2934 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2935
2936 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2937 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2938
2939
2940 /* guest */
2941 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2942 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2943 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2944 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2945 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2946 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2947 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2948 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2949 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2950 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2951 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2952 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2953
2954 /* both */
2955 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2956 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2957 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2958 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2959 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2960 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2961#ifdef VBOX_STRICT
2962 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2963#endif
2964 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2965 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2966
2967 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2968 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2969 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2970 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2971 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2972#ifdef VBOX_STRICT
2973 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2974#endif
2975 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2976 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2977
2978 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2979 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2980 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2981 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2982 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2983#ifdef VBOX_STRICT
2984 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2985#endif
2986 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2987 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2988}
2989
2990
2991/**
2992 * Calculates the shadow paging mode.
2993 *
2994 * @returns The shadow paging mode.
2995 * @param pVM VM handle.
2996 * @param enmGuestMode The guest mode.
2997 * @param enmHostMode The host mode.
2998 * @param enmShadowMode The current shadow mode.
2999 * @param penmSwitcher Where to store the switcher to use.
3000 * VMMSWITCHER_INVALID means no change.
3001 */
3002static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3003{
3004 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3005 switch (enmGuestMode)
3006 {
3007 /*
3008 * When switching to real or protected mode we don't change
3009 * anything since it's likely that we'll switch back pretty soon.
3010 *
3011 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3012 * and is supposed to determine which shadow paging and switcher to
3013 * use during init.
3014 */
3015 case PGMMODE_REAL:
3016 case PGMMODE_PROTECTED:
3017 if ( enmShadowMode != PGMMODE_INVALID
3018 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
3019 break; /* (no change) */
3020
3021 switch (enmHostMode)
3022 {
3023 case SUPPAGINGMODE_32_BIT:
3024 case SUPPAGINGMODE_32_BIT_GLOBAL:
3025 enmShadowMode = PGMMODE_32_BIT;
3026 enmSwitcher = VMMSWITCHER_32_TO_32;
3027 break;
3028
3029 case SUPPAGINGMODE_PAE:
3030 case SUPPAGINGMODE_PAE_NX:
3031 case SUPPAGINGMODE_PAE_GLOBAL:
3032 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3033 enmShadowMode = PGMMODE_PAE;
3034 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3035#ifdef DEBUG_bird
3036 if (RTEnvExist("VBOX_32BIT"))
3037 {
3038 enmShadowMode = PGMMODE_32_BIT;
3039 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3040 }
3041#endif
3042 break;
3043
3044 case SUPPAGINGMODE_AMD64:
3045 case SUPPAGINGMODE_AMD64_GLOBAL:
3046 case SUPPAGINGMODE_AMD64_NX:
3047 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3048 enmShadowMode = PGMMODE_PAE;
3049 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3050#ifdef DEBUG_bird
3051 if (RTEnvExist("VBOX_32BIT"))
3052 {
3053 enmShadowMode = PGMMODE_32_BIT;
3054 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3055 }
3056#endif
3057 break;
3058
3059 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3060 }
3061 break;
3062
3063 case PGMMODE_32_BIT:
3064 switch (enmHostMode)
3065 {
3066 case SUPPAGINGMODE_32_BIT:
3067 case SUPPAGINGMODE_32_BIT_GLOBAL:
3068 enmShadowMode = PGMMODE_32_BIT;
3069 enmSwitcher = VMMSWITCHER_32_TO_32;
3070 break;
3071
3072 case SUPPAGINGMODE_PAE:
3073 case SUPPAGINGMODE_PAE_NX:
3074 case SUPPAGINGMODE_PAE_GLOBAL:
3075 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3076 enmShadowMode = PGMMODE_PAE;
3077 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3078#ifdef DEBUG_bird
3079 if (RTEnvExist("VBOX_32BIT"))
3080 {
3081 enmShadowMode = PGMMODE_32_BIT;
3082 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3083 }
3084#endif
3085 break;
3086
3087 case SUPPAGINGMODE_AMD64:
3088 case SUPPAGINGMODE_AMD64_GLOBAL:
3089 case SUPPAGINGMODE_AMD64_NX:
3090 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3091 enmShadowMode = PGMMODE_PAE;
3092 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3093#ifdef DEBUG_bird
3094 if (RTEnvExist("VBOX_32BIT"))
3095 {
3096 enmShadowMode = PGMMODE_32_BIT;
3097 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3098 }
3099#endif
3100 break;
3101
3102 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3103 }
3104 break;
3105
3106 case PGMMODE_PAE:
3107 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3108 switch (enmHostMode)
3109 {
3110 case SUPPAGINGMODE_32_BIT:
3111 case SUPPAGINGMODE_32_BIT_GLOBAL:
3112 enmShadowMode = PGMMODE_PAE;
3113 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3114 break;
3115
3116 case SUPPAGINGMODE_PAE:
3117 case SUPPAGINGMODE_PAE_NX:
3118 case SUPPAGINGMODE_PAE_GLOBAL:
3119 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3120 enmShadowMode = PGMMODE_PAE;
3121 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3122 break;
3123
3124 case SUPPAGINGMODE_AMD64:
3125 case SUPPAGINGMODE_AMD64_GLOBAL:
3126 case SUPPAGINGMODE_AMD64_NX:
3127 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3128 enmShadowMode = PGMMODE_PAE;
3129 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3130 break;
3131
3132 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3133 }
3134 break;
3135
3136 case PGMMODE_AMD64:
3137 case PGMMODE_AMD64_NX:
3138 switch (enmHostMode)
3139 {
3140 case SUPPAGINGMODE_32_BIT:
3141 case SUPPAGINGMODE_32_BIT_GLOBAL:
3142 enmShadowMode = PGMMODE_AMD64;
3143 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3144 break;
3145
3146 case SUPPAGINGMODE_PAE:
3147 case SUPPAGINGMODE_PAE_NX:
3148 case SUPPAGINGMODE_PAE_GLOBAL:
3149 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3150 enmShadowMode = PGMMODE_AMD64;
3151 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3152 break;
3153
3154 case SUPPAGINGMODE_AMD64:
3155 case SUPPAGINGMODE_AMD64_GLOBAL:
3156 case SUPPAGINGMODE_AMD64_NX:
3157 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3158 enmShadowMode = PGMMODE_AMD64;
3159 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3160 break;
3161
3162 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3163 }
3164 break;
3165
3166
3167 default:
3168 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3169 *penmSwitcher = VMMSWITCHER_INVALID;
3170 return PGMMODE_INVALID;
3171 }
3172 /* Override the shadow mode is nested paging is active. */
3173 pVM->pgm.s.fNestedPaging = HWACCMIsNestedPagingActive(pVM);
3174 if (pVM->pgm.s.fNestedPaging)
3175 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3176
3177 *penmSwitcher = enmSwitcher;
3178 return enmShadowMode;
3179}
3180
3181
3182/**
3183 * Performs the actual mode change.
3184 * This is called by PGMChangeMode and pgmR3InitPaging().
3185 *
3186 * @returns VBox status code. May suspend or power off the VM on error, but this
3187 * will trigger using FFs and not status codes.
3188 *
3189 * @param pVM VM handle.
3190 * @param pVCpu The VMCPU to operate on.
3191 * @param enmGuestMode The new guest mode. This is assumed to be different from
3192 * the current mode.
3193 */
3194VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3195{
3196 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3197 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3198
3199 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3200 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3201
3202 /*
3203 * Calc the shadow mode and switcher.
3204 */
3205 VMMSWITCHER enmSwitcher;
3206 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3207
3208#ifdef VBOX_WITH_RAW_MODE
3209 if (enmSwitcher != VMMSWITCHER_INVALID)
3210 {
3211 /*
3212 * Select new switcher.
3213 */
3214 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3215 if (RT_FAILURE(rc))
3216 {
3217 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3218 return rc;
3219 }
3220 }
3221#endif
3222
3223 /*
3224 * Exit old mode(s).
3225 */
3226#if HC_ARCH_BITS == 32
3227 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3228 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3229 && enmShadowMode == PGMMODE_NESTED);
3230#else
3231 const bool fForceShwEnterExit = false;
3232#endif
3233 /* shadow */
3234 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3235 || fForceShwEnterExit)
3236 {
3237 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3238 if (PGM_SHW_PFN(Exit, pVCpu))
3239 {
3240 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3241 if (RT_FAILURE(rc))
3242 {
3243 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3244 return rc;
3245 }
3246 }
3247
3248 }
3249 else
3250 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3251
3252 /* guest */
3253 if (PGM_GST_PFN(Exit, pVCpu))
3254 {
3255 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3256 if (RT_FAILURE(rc))
3257 {
3258 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3259 return rc;
3260 }
3261 }
3262
3263 /*
3264 * Load new paging mode data.
3265 */
3266 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3267
3268 /*
3269 * Enter new shadow mode (if changed).
3270 */
3271 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3272 || fForceShwEnterExit)
3273 {
3274 int rc;
3275 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3276 switch (enmShadowMode)
3277 {
3278 case PGMMODE_32_BIT:
3279 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3280 break;
3281 case PGMMODE_PAE:
3282 case PGMMODE_PAE_NX:
3283 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3284 break;
3285 case PGMMODE_AMD64:
3286 case PGMMODE_AMD64_NX:
3287 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3288 break;
3289 case PGMMODE_NESTED:
3290 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3291 break;
3292 case PGMMODE_EPT:
3293 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3294 break;
3295 case PGMMODE_REAL:
3296 case PGMMODE_PROTECTED:
3297 default:
3298 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3299 return VERR_INTERNAL_ERROR;
3300 }
3301 if (RT_FAILURE(rc))
3302 {
3303 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3304 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3305 return rc;
3306 }
3307 }
3308
3309 /*
3310 * Always flag the necessary updates
3311 */
3312 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3313
3314 /*
3315 * Enter the new guest and shadow+guest modes.
3316 */
3317 int rc = -1;
3318 int rc2 = -1;
3319 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3320 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3321 switch (enmGuestMode)
3322 {
3323 case PGMMODE_REAL:
3324 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3325 switch (pVCpu->pgm.s.enmShadowMode)
3326 {
3327 case PGMMODE_32_BIT:
3328 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3329 break;
3330 case PGMMODE_PAE:
3331 case PGMMODE_PAE_NX:
3332 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3333 break;
3334 case PGMMODE_NESTED:
3335 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3336 break;
3337 case PGMMODE_EPT:
3338 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3339 break;
3340 case PGMMODE_AMD64:
3341 case PGMMODE_AMD64_NX:
3342 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3343 default: AssertFailed(); break;
3344 }
3345 break;
3346
3347 case PGMMODE_PROTECTED:
3348 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3349 switch (pVCpu->pgm.s.enmShadowMode)
3350 {
3351 case PGMMODE_32_BIT:
3352 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3353 break;
3354 case PGMMODE_PAE:
3355 case PGMMODE_PAE_NX:
3356 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3357 break;
3358 case PGMMODE_NESTED:
3359 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3360 break;
3361 case PGMMODE_EPT:
3362 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3363 break;
3364 case PGMMODE_AMD64:
3365 case PGMMODE_AMD64_NX:
3366 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3367 default: AssertFailed(); break;
3368 }
3369 break;
3370
3371 case PGMMODE_32_BIT:
3372 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3373 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3374 switch (pVCpu->pgm.s.enmShadowMode)
3375 {
3376 case PGMMODE_32_BIT:
3377 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3378 break;
3379 case PGMMODE_PAE:
3380 case PGMMODE_PAE_NX:
3381 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3382 break;
3383 case PGMMODE_NESTED:
3384 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3385 break;
3386 case PGMMODE_EPT:
3387 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3388 break;
3389 case PGMMODE_AMD64:
3390 case PGMMODE_AMD64_NX:
3391 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3392 default: AssertFailed(); break;
3393 }
3394 break;
3395
3396 case PGMMODE_PAE_NX:
3397 case PGMMODE_PAE:
3398 {
3399 uint32_t u32Dummy, u32Features;
3400
3401 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3402 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3403 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3404 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3405
3406 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3407 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3408 switch (pVCpu->pgm.s.enmShadowMode)
3409 {
3410 case PGMMODE_PAE:
3411 case PGMMODE_PAE_NX:
3412 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3413 break;
3414 case PGMMODE_NESTED:
3415 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3416 break;
3417 case PGMMODE_EPT:
3418 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3419 break;
3420 case PGMMODE_32_BIT:
3421 case PGMMODE_AMD64:
3422 case PGMMODE_AMD64_NX:
3423 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3424 default: AssertFailed(); break;
3425 }
3426 break;
3427 }
3428
3429#ifdef VBOX_WITH_64_BITS_GUESTS
3430 case PGMMODE_AMD64_NX:
3431 case PGMMODE_AMD64:
3432 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3433 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3434 switch (pVCpu->pgm.s.enmShadowMode)
3435 {
3436 case PGMMODE_AMD64:
3437 case PGMMODE_AMD64_NX:
3438 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3439 break;
3440 case PGMMODE_NESTED:
3441 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3442 break;
3443 case PGMMODE_EPT:
3444 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3445 break;
3446 case PGMMODE_32_BIT:
3447 case PGMMODE_PAE:
3448 case PGMMODE_PAE_NX:
3449 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3450 default: AssertFailed(); break;
3451 }
3452 break;
3453#endif
3454
3455 default:
3456 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3457 rc = VERR_NOT_IMPLEMENTED;
3458 break;
3459 }
3460
3461 /* status codes. */
3462 AssertRC(rc);
3463 AssertRC(rc2);
3464 if (RT_SUCCESS(rc))
3465 {
3466 rc = rc2;
3467 if (RT_SUCCESS(rc)) /* no informational status codes. */
3468 rc = VINF_SUCCESS;
3469 }
3470
3471 /* Notify HWACCM as well. */
3472 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3473 return rc;
3474}
3475
3476
3477/**
3478 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3479 *
3480 * @returns VBox status code, fully asserted.
3481 * @param pVM The VM handle.
3482 * @param pVCpu The VMCPU to operate on.
3483 */
3484int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3485{
3486 /* Unmap the old CR3 value before flushing everything. */
3487 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3488 AssertRC(rc);
3489
3490 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3491 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3492 AssertRC(rc);
3493 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3494 return rc;
3495}
3496
3497
3498/**
3499 * Called by pgmPoolFlushAllInt after flushing the pool.
3500 *
3501 * @returns VBox status code, fully asserted.
3502 * @param pVM The VM handle.
3503 * @param pVCpu The VMCPU to operate on.
3504 */
3505int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3506{
3507 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3508 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3509 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3510 AssertRCReturn(rc, rc);
3511 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3512
3513 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3514 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3515 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3516 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3517 return rc;
3518}
3519
3520#ifdef VBOX_WITH_DEBUGGER
3521
3522/**
3523 * The '.pgmram' command.
3524 *
3525 * @returns VBox status.
3526 * @param pCmd Pointer to the command descriptor (as registered).
3527 * @param pCmdHlp Pointer to command helper functions.
3528 * @param pVM Pointer to the current VM (if any).
3529 * @param paArgs Pointer to (readonly) array of arguments.
3530 * @param cArgs Number of arguments in the array.
3531 */
3532static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3533{
3534 /*
3535 * Validate input.
3536 */
3537 if (!pVM)
3538 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3539 if (!pVM->pgm.s.pRamRangesRC)
3540 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3541
3542 /*
3543 * Dump the ranges.
3544 */
3545 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3546 PPGMRAMRANGE pRam;
3547 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3548 {
3549 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3550 "%RGp - %RGp %p\n",
3551 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
3552 if (RT_FAILURE(rc))
3553 return rc;
3554 }
3555
3556 return VINF_SUCCESS;
3557}
3558
3559
3560/**
3561 * The '.pgmerror' and '.pgmerroroff' commands.
3562 *
3563 * @returns VBox status.
3564 * @param pCmd Pointer to the command descriptor (as registered).
3565 * @param pCmdHlp Pointer to command helper functions.
3566 * @param pVM Pointer to the current VM (if any).
3567 * @param paArgs Pointer to (readonly) array of arguments.
3568 * @param cArgs Number of arguments in the array.
3569 */
3570static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3571{
3572 /*
3573 * Validate input.
3574 */
3575 if (!pVM)
3576 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3577 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
3578 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
3579
3580 if (!cArgs)
3581 {
3582 /*
3583 * Print the list of error injection locations with status.
3584 */
3585 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
3586 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3587 }
3588 else
3589 {
3590
3591 /*
3592 * String switch on where to inject the error.
3593 */
3594 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3595 const char *pszWhere = paArgs[0].u.pszString;
3596 if (!strcmp(pszWhere, "handy"))
3597 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3598 else
3599 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
3600 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
3601 }
3602 return VINF_SUCCESS;
3603}
3604
3605
3606/**
3607 * The '.pgmsync' command.
3608 *
3609 * @returns VBox status.
3610 * @param pCmd Pointer to the command descriptor (as registered).
3611 * @param pCmdHlp Pointer to command helper functions.
3612 * @param pVM Pointer to the current VM (if any).
3613 * @param paArgs Pointer to (readonly) array of arguments.
3614 * @param cArgs Number of arguments in the array.
3615 */
3616static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3617{
3618 /** @todo SMP support */
3619
3620 /*
3621 * Validate input.
3622 */
3623 if (!pVM)
3624 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3625
3626 PVMCPU pVCpu = &pVM->aCpus[0];
3627
3628 /*
3629 * Force page directory sync.
3630 */
3631 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3632
3633 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3634 if (RT_FAILURE(rc))
3635 return rc;
3636
3637 return VINF_SUCCESS;
3638}
3639
3640
3641#ifdef VBOX_STRICT
3642/**
3643 * The '.pgmassertcr3' command.
3644 *
3645 * @returns VBox status.
3646 * @param pCmd Pointer to the command descriptor (as registered).
3647 * @param pCmdHlp Pointer to command helper functions.
3648 * @param pVM Pointer to the current VM (if any).
3649 * @param paArgs Pointer to (readonly) array of arguments.
3650 * @param cArgs Number of arguments in the array.
3651 */
3652static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3653{
3654 /** @todo SMP support!! */
3655
3656 /*
3657 * Validate input.
3658 */
3659 if (!pVM)
3660 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3661
3662 PVMCPU pVCpu = &pVM->aCpus[0];
3663
3664 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
3665 if (RT_FAILURE(rc))
3666 return rc;
3667
3668 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3669
3670 return VINF_SUCCESS;
3671}
3672#endif /* VBOX_STRICT */
3673
3674
3675/**
3676 * The '.pgmsyncalways' command.
3677 *
3678 * @returns VBox status.
3679 * @param pCmd Pointer to the command descriptor (as registered).
3680 * @param pCmdHlp Pointer to command helper functions.
3681 * @param pVM Pointer to the current VM (if any).
3682 * @param paArgs Pointer to (readonly) array of arguments.
3683 * @param cArgs Number of arguments in the array.
3684 */
3685static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3686{
3687 /** @todo SMP support!! */
3688 PVMCPU pVCpu = &pVM->aCpus[0];
3689
3690 /*
3691 * Validate input.
3692 */
3693 if (!pVM)
3694 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3695
3696 /*
3697 * Force page directory sync.
3698 */
3699 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3700 {
3701 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3702 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3703 }
3704 else
3705 {
3706 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3707 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3708 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3709 }
3710}
3711
3712
3713/**
3714 * The '.pgmphystofile' command.
3715 *
3716 * @returns VBox status.
3717 * @param pCmd Pointer to the command descriptor (as registered).
3718 * @param pCmdHlp Pointer to command helper functions.
3719 * @param pVM Pointer to the current VM (if any).
3720 * @param paArgs Pointer to (readonly) array of arguments.
3721 * @param cArgs Number of arguments in the array.
3722 */
3723static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3724{
3725 /*
3726 * Validate input.
3727 */
3728 if (!pVM)
3729 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
3730 if ( cArgs < 1
3731 || cArgs > 2
3732 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
3733 || ( cArgs > 1
3734 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
3735 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
3736 if ( cArgs >= 2
3737 && strcmp(paArgs[1].u.pszString, "nozero"))
3738 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3739 bool fIncZeroPgs = cArgs < 2;
3740
3741 /*
3742 * Open the output file and get the ram parameters.
3743 */
3744 RTFILE hFile;
3745 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3746 if (RT_FAILURE(rc))
3747 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3748
3749 uint32_t cbRamHole = 0;
3750 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3751 uint64_t cbRam = 0;
3752 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
3753 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3754
3755 /*
3756 * Dump the physical memory, page by page.
3757 */
3758 RTGCPHYS GCPhys = 0;
3759 char abZeroPg[PAGE_SIZE];
3760 RT_ZERO(abZeroPg);
3761
3762 pgmLock(pVM);
3763 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3764 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3765 pRam = pRam->pNextR3)
3766 {
3767 /* fill the gap */
3768 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3769 {
3770 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3771 {
3772 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3773 GCPhys += PAGE_SIZE;
3774 }
3775 }
3776
3777 PCPGMPAGE pPage = &pRam->aPages[0];
3778 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3779 {
3780 if ( PGM_PAGE_IS_ZERO(pPage)
3781 || PGM_PAGE_IS_BALLOONED(pPage))
3782 {
3783 if (fIncZeroPgs)
3784 {
3785 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3786 if (RT_FAILURE(rc))
3787 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3788 }
3789 }
3790 else
3791 {
3792 switch (PGM_PAGE_GET_TYPE(pPage))
3793 {
3794 case PGMPAGETYPE_RAM:
3795 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3796 case PGMPAGETYPE_ROM:
3797 case PGMPAGETYPE_MMIO2:
3798 {
3799 void const *pvPage;
3800 PGMPAGEMAPLOCK Lock;
3801 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3802 if (RT_SUCCESS(rc))
3803 {
3804 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3805 PGMPhysReleasePageMappingLock(pVM, &Lock);
3806 if (RT_FAILURE(rc))
3807 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3808 }
3809 else
3810 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3811 break;
3812 }
3813
3814 default:
3815 AssertFailed();
3816 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3817 case PGMPAGETYPE_MMIO:
3818 if (fIncZeroPgs)
3819 {
3820 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3821 if (RT_FAILURE(rc))
3822 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3823 }
3824 break;
3825 }
3826 }
3827
3828
3829 /* advance */
3830 GCPhys += PAGE_SIZE;
3831 pPage++;
3832 }
3833 }
3834 pgmUnlock(pVM);
3835
3836 RTFileClose(hFile);
3837 if (RT_SUCCESS(rc))
3838 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3839 return VINF_SUCCESS;
3840}
3841
3842#endif /* VBOX_WITH_DEBUGGER */
3843
3844/**
3845 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3846 */
3847typedef struct PGMCHECKINTARGS
3848{
3849 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3850 PPGMPHYSHANDLER pPrevPhys;
3851 PPGMVIRTHANDLER pPrevVirt;
3852 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3853 PVM pVM;
3854} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3855
3856/**
3857 * Validate a node in the physical handler tree.
3858 *
3859 * @returns 0 on if ok, other wise 1.
3860 * @param pNode The handler node.
3861 * @param pvUser pVM.
3862 */
3863static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3864{
3865 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3866 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3867 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3868 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3869 AssertReleaseMsg( !pArgs->pPrevPhys
3870 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3871 ("pPrevPhys=%p %RGp-%RGp %s\n"
3872 " pCur=%p %RGp-%RGp %s\n",
3873 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3874 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3875 pArgs->pPrevPhys = pCur;
3876 return 0;
3877}
3878
3879
3880/**
3881 * Validate a node in the virtual handler tree.
3882 *
3883 * @returns 0 on if ok, other wise 1.
3884 * @param pNode The handler node.
3885 * @param pvUser pVM.
3886 */
3887static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
3888{
3889 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3890 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
3891 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3892 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3893 AssertReleaseMsg( !pArgs->pPrevVirt
3894 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
3895 ("pPrevVirt=%p %RGv-%RGv %s\n"
3896 " pCur=%p %RGv-%RGv %s\n",
3897 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
3898 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3899 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
3900 {
3901 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
3902 ("pCur=%p %RGv-%RGv %s\n"
3903 "iPage=%d offVirtHandle=%#x expected %#x\n",
3904 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
3905 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
3906 }
3907 pArgs->pPrevVirt = pCur;
3908 return 0;
3909}
3910
3911
3912/**
3913 * Validate a node in the virtual handler tree.
3914 *
3915 * @returns 0 on if ok, other wise 1.
3916 * @param pNode The handler node.
3917 * @param pvUser pVM.
3918 */
3919static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3920{
3921 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3922 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
3923 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
3924 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
3925 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
3926 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3927 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3928 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
3929 " pCur=%p %RGp-%RGp\n",
3930 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3931 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3932 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3933 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3934 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
3935 " pCur=%p %RGp-%RGp\n",
3936 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3937 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3938 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
3939 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3940 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3941 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3942 {
3943 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
3944 for (;;)
3945 {
3946 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3947 AssertReleaseMsg(pCur2 != pCur,
3948 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3949 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3950 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
3951 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3952 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3953 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3954 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3955 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
3956 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3957 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3958 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3959 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3960 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
3961 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3962 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3963 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3964 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3965 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3966 break;
3967 }
3968 }
3969
3970 pArgs->pPrevPhys2Virt = pCur;
3971 return 0;
3972}
3973
3974
3975/**
3976 * Perform an integrity check on the PGM component.
3977 *
3978 * @returns VINF_SUCCESS if everything is fine.
3979 * @returns VBox error status after asserting on integrity breach.
3980 * @param pVM The VM handle.
3981 */
3982VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
3983{
3984 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
3985
3986 /*
3987 * Check the trees.
3988 */
3989 int cErrors = 0;
3990 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
3991 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
3992 PGMCHECKINTARGS Args = s_LeftToRight;
3993 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3994 Args = s_RightToLeft;
3995 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3996 Args = s_LeftToRight;
3997 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3998 Args = s_RightToLeft;
3999 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4000 Args = s_LeftToRight;
4001 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4002 Args = s_RightToLeft;
4003 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4004 Args = s_LeftToRight;
4005 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4006 Args = s_RightToLeft;
4007 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4008
4009 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4010}
4011
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette