VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 8851

Last change on this file since 8851 was 8677, checked in by vboxsync, 17 years ago

Fixed lock accounting for locks aquired via VMM[GC|R0]CallHost.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 183.9 KB
Line 
1/* $Id: PGM.cpp 8677 2008-05-07 18:13:32Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635#endif
636
637
638/*******************************************************************************
639* Global Variables *
640*******************************************************************************/
641#ifdef VBOX_WITH_DEBUGGER
642/** Command descriptors. */
643static const DBGCCMD g_aCmds[] =
644{
645 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
646 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
647 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
648 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
649 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
650};
651#endif
652
653
654
655
656#if 1/// @todo ndef RT_ARCH_AMD64
657/*
658 * Shadow - 32-bit mode
659 */
660#define PGM_SHW_TYPE PGM_TYPE_32BIT
661#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
662#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
663#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
664#include "PGMShw.h"
665
666/* Guest - real mode */
667#define PGM_GST_TYPE PGM_TYPE_REAL
668#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
669#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
670#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
671#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
672#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
673#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
674#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
675#include "PGMGst.h"
676#include "PGMBth.h"
677#undef BTH_PGMPOOLKIND_PT_FOR_PT
678#undef PGM_BTH_NAME
679#undef PGM_BTH_NAME_GC_STR
680#undef PGM_BTH_NAME_R0_STR
681#undef PGM_GST_TYPE
682#undef PGM_GST_NAME
683#undef PGM_GST_NAME_GC_STR
684#undef PGM_GST_NAME_R0_STR
685
686/* Guest - protected mode */
687#define PGM_GST_TYPE PGM_TYPE_PROT
688#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
689#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
690#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
691#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
692#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
693#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
694#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
695#include "PGMGst.h"
696#include "PGMBth.h"
697#undef BTH_PGMPOOLKIND_PT_FOR_PT
698#undef PGM_BTH_NAME
699#undef PGM_BTH_NAME_GC_STR
700#undef PGM_BTH_NAME_R0_STR
701#undef PGM_GST_TYPE
702#undef PGM_GST_NAME
703#undef PGM_GST_NAME_GC_STR
704#undef PGM_GST_NAME_R0_STR
705
706/* Guest - 32-bit mode */
707#define PGM_GST_TYPE PGM_TYPE_32BIT
708#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
709#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
710#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
711#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
712#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
713#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
714#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
715#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
716#include "PGMGst.h"
717#include "PGMBth.h"
718#undef BTH_PGMPOOLKIND_PT_FOR_BIG
719#undef BTH_PGMPOOLKIND_PT_FOR_PT
720#undef PGM_BTH_NAME
721#undef PGM_BTH_NAME_GC_STR
722#undef PGM_BTH_NAME_R0_STR
723#undef PGM_GST_TYPE
724#undef PGM_GST_NAME
725#undef PGM_GST_NAME_GC_STR
726#undef PGM_GST_NAME_R0_STR
727
728#undef PGM_SHW_TYPE
729#undef PGM_SHW_NAME
730#undef PGM_SHW_NAME_GC_STR
731#undef PGM_SHW_NAME_R0_STR
732#endif /* !RT_ARCH_AMD64 */
733
734
735/*
736 * Shadow - PAE mode
737 */
738#define PGM_SHW_TYPE PGM_TYPE_PAE
739#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
740#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
741#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
743#include "PGMShw.h"
744
745/* Guest - real mode */
746#define PGM_GST_TYPE PGM_TYPE_REAL
747#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
748#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
749#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
750#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
751#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
752#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
753#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
754#include "PGMBth.h"
755#undef BTH_PGMPOOLKIND_PT_FOR_PT
756#undef PGM_BTH_NAME
757#undef PGM_BTH_NAME_GC_STR
758#undef PGM_BTH_NAME_R0_STR
759#undef PGM_GST_TYPE
760#undef PGM_GST_NAME
761#undef PGM_GST_NAME_GC_STR
762#undef PGM_GST_NAME_R0_STR
763
764/* Guest - protected mode */
765#define PGM_GST_TYPE PGM_TYPE_PROT
766#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
767#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
768#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
769#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
770#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
771#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
772#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
773#include "PGMBth.h"
774#undef BTH_PGMPOOLKIND_PT_FOR_PT
775#undef PGM_BTH_NAME
776#undef PGM_BTH_NAME_GC_STR
777#undef PGM_BTH_NAME_R0_STR
778#undef PGM_GST_TYPE
779#undef PGM_GST_NAME
780#undef PGM_GST_NAME_GC_STR
781#undef PGM_GST_NAME_R0_STR
782
783/* Guest - 32-bit mode */
784#define PGM_GST_TYPE PGM_TYPE_32BIT
785#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
786#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
789#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
792#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
793#include "PGMBth.h"
794#undef BTH_PGMPOOLKIND_PT_FOR_BIG
795#undef BTH_PGMPOOLKIND_PT_FOR_PT
796#undef PGM_BTH_NAME
797#undef PGM_BTH_NAME_GC_STR
798#undef PGM_BTH_NAME_R0_STR
799#undef PGM_GST_TYPE
800#undef PGM_GST_NAME
801#undef PGM_GST_NAME_GC_STR
802#undef PGM_GST_NAME_R0_STR
803
804/* Guest - PAE mode */
805#define PGM_GST_TYPE PGM_TYPE_PAE
806#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
807#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
808#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
809#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
810#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
811#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
812#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
813#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
814#include "PGMGst.h"
815#include "PGMBth.h"
816#undef BTH_PGMPOOLKIND_PT_FOR_BIG
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef PGM_BTH_NAME
819#undef PGM_BTH_NAME_GC_STR
820#undef PGM_BTH_NAME_R0_STR
821#undef PGM_GST_TYPE
822#undef PGM_GST_NAME
823#undef PGM_GST_NAME_GC_STR
824#undef PGM_GST_NAME_R0_STR
825
826#undef PGM_SHW_TYPE
827#undef PGM_SHW_NAME
828#undef PGM_SHW_NAME_GC_STR
829#undef PGM_SHW_NAME_R0_STR
830
831
832/*
833 * Shadow - AMD64 mode
834 */
835#define PGM_SHW_TYPE PGM_TYPE_AMD64
836#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
837#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
838#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
839#include "PGMShw.h"
840
841/* Guest - AMD64 mode */
842#define PGM_GST_TYPE PGM_TYPE_AMD64
843#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
844#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
845#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
846#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
847#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
848#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
849#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
850#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
851#include "PGMGst.h"
852#include "PGMBth.h"
853#undef BTH_PGMPOOLKIND_PT_FOR_BIG
854#undef BTH_PGMPOOLKIND_PT_FOR_PT
855#undef PGM_BTH_NAME
856#undef PGM_BTH_NAME_GC_STR
857#undef PGM_BTH_NAME_R0_STR
858#undef PGM_GST_TYPE
859#undef PGM_GST_NAME
860#undef PGM_GST_NAME_GC_STR
861#undef PGM_GST_NAME_R0_STR
862
863#undef PGM_SHW_TYPE
864#undef PGM_SHW_NAME
865#undef PGM_SHW_NAME_GC_STR
866#undef PGM_SHW_NAME_R0_STR
867
868
869/**
870 * Initiates the paging of VM.
871 *
872 * @returns VBox status code.
873 * @param pVM Pointer to VM structure.
874 */
875PGMR3DECL(int) PGMR3Init(PVM pVM)
876{
877 LogFlow(("PGMR3Init:\n"));
878
879 /*
880 * Assert alignment and sizes.
881 */
882 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
883
884 /*
885 * Init the structure.
886 */
887 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
888 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
889 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
890 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
891 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
892 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
893 pVM->pgm.s.fA20Enabled = true;
894 pVM->pgm.s.pGstPaePDPTHC = NULL;
895 pVM->pgm.s.pGstPaePDPTGC = 0;
896 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
897 {
898 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
899 pVM->pgm.s.apGstPaePDsGC[i] = 0;
900 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
901 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
902 }
903
904#ifdef VBOX_STRICT
905 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
906#endif
907
908 /*
909 * Get the configured RAM size - to estimate saved state size.
910 */
911 uint64_t cbRam;
912 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
913 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
914 cbRam = pVM->pgm.s.cbRamSize = 0;
915 else if (VBOX_SUCCESS(rc))
916 {
917 if (cbRam < PAGE_SIZE)
918 cbRam = 0;
919 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
920 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
921 }
922 else
923 {
924 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
925 return rc;
926 }
927
928 /*
929 * Register saved state data unit.
930 */
931 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
932 NULL, pgmR3Save, NULL,
933 NULL, pgmR3Load, NULL);
934 if (VBOX_FAILURE(rc))
935 return rc;
936
937 /*
938 * Initialize the PGM critical section and flush the phys TLBs
939 */
940 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
941 AssertRCReturn(rc, rc);
942
943 PGMR3PhysChunkInvalidateTLB(pVM);
944 PGMPhysInvalidatePageR3MapTLB(pVM);
945 PGMPhysInvalidatePageR0MapTLB(pVM);
946 PGMPhysInvalidatePageGCMapTLB(pVM);
947
948 /*
949 * Trees
950 */
951 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
952 if (VBOX_SUCCESS(rc))
953 {
954 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
955
956 /*
957 * Alocate the zero page.
958 */
959 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
960 }
961 if (VBOX_SUCCESS(rc))
962 {
963 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3);
964 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
965 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
966 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
967 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
968
969 /*
970 * Init the paging.
971 */
972 rc = pgmR3InitPaging(pVM);
973 }
974 if (VBOX_SUCCESS(rc))
975 {
976 /*
977 * Init the page pool.
978 */
979 rc = pgmR3PoolInit(pVM);
980 }
981 if (VBOX_SUCCESS(rc))
982 {
983 /*
984 * Info & statistics
985 */
986 DBGFR3InfoRegisterInternal(pVM, "mode",
987 "Shows the current paging mode. "
988 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
989 pgmR3InfoMode);
990 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
991 "Dumps all the entries in the top level paging table. No arguments.",
992 pgmR3InfoCr3);
993 DBGFR3InfoRegisterInternal(pVM, "phys",
994 "Dumps all the physical address ranges. No arguments.",
995 pgmR3PhysInfo);
996 DBGFR3InfoRegisterInternal(pVM, "handlers",
997 "Dumps physical, virtual and hyper virtual handlers. "
998 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
999 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1000 pgmR3InfoHandlers);
1001 DBGFR3InfoRegisterInternal(pVM, "mappings",
1002 "Dumps guest mappings.",
1003 pgmR3MapInfo);
1004
1005 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1006#ifdef VBOX_WITH_STATISTICS
1007 pgmR3InitStats(pVM);
1008#endif
1009#ifdef VBOX_WITH_DEBUGGER
1010 /*
1011 * Debugger commands.
1012 */
1013 static bool fRegisteredCmds = false;
1014 if (!fRegisteredCmds)
1015 {
1016 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1017 if (VBOX_SUCCESS(rc))
1018 fRegisteredCmds = true;
1019 }
1020#endif
1021 return VINF_SUCCESS;
1022 }
1023
1024 /* Almost no cleanup necessary, MM frees all memory. */
1025 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1026
1027 return rc;
1028}
1029
1030
1031/**
1032 * Init paging.
1033 *
1034 * Since we need to check what mode the host is operating in before we can choose
1035 * the right paging functions for the host we have to delay this until R0 has
1036 * been initialized.
1037 *
1038 * @returns VBox status code.
1039 * @param pVM VM handle.
1040 */
1041static int pgmR3InitPaging(PVM pVM)
1042{
1043 /*
1044 * Force a recalculation of modes and switcher so everyone gets notified.
1045 */
1046 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1047 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1048 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1049
1050 /*
1051 * Allocate static mapping space for whatever the cr3 register
1052 * points to and in the case of PAE mode to the 4 PDs.
1053 */
1054 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1055 if (VBOX_FAILURE(rc))
1056 {
1057 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1058 return rc;
1059 }
1060 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1061
1062 /*
1063 * Allocate pages for the three possible intermediate contexts
1064 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1065 * for the sake of simplicity. The AMD64 uses the PAE for the
1066 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1067 *
1068 * We assume that two page tables will be enought for the core code
1069 * mappings (HC virtual and identity).
1070 */
1071 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1072 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1073 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1074 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1075 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1076 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1077 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1078 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1079 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1080 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1081 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1082 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1083 if ( !pVM->pgm.s.pInterPD
1084 || !pVM->pgm.s.apInterPTs[0]
1085 || !pVM->pgm.s.apInterPTs[1]
1086 || !pVM->pgm.s.apInterPaePTs[0]
1087 || !pVM->pgm.s.apInterPaePTs[1]
1088 || !pVM->pgm.s.apInterPaePDs[0]
1089 || !pVM->pgm.s.apInterPaePDs[1]
1090 || !pVM->pgm.s.apInterPaePDs[2]
1091 || !pVM->pgm.s.apInterPaePDs[3]
1092 || !pVM->pgm.s.pInterPaePDPT
1093 || !pVM->pgm.s.pInterPaePDPT64
1094 || !pVM->pgm.s.pInterPaePML4)
1095 {
1096 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1097 return VERR_NO_PAGE_MEMORY;
1098 }
1099
1100 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1101 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1102 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1103 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1104 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1105 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1106
1107 /*
1108 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1109 */
1110 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1111 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1112 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1113
1114 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1115 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1116
1117 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1118 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1119 {
1120 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1121 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1122 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1123 }
1124
1125 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1126 {
1127 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1128 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1129 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1130 }
1131
1132 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1133 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1134 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1135 | HCPhysInterPaePDPT64;
1136
1137 /*
1138 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1139 * We allocate pages for all three posibilities to in order to simplify mappings and
1140 * avoid resource failure during mode switches. So, we need to cover all levels of the
1141 * of the first 4GB down to PD level.
1142 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1143 */
1144 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1145 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1146 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1147 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1148 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1149 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1150 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1151 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1152 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1153 pVM->pgm.s.pHCPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1154 if ( !pVM->pgm.s.pHC32BitPD
1155 || !pVM->pgm.s.apHCPaePDs[0]
1156 || !pVM->pgm.s.apHCPaePDs[1]
1157 || !pVM->pgm.s.apHCPaePDs[2]
1158 || !pVM->pgm.s.apHCPaePDs[3]
1159 || !pVM->pgm.s.pHCPaePDPT
1160 || !pVM->pgm.s.pHCPaePML4)
1161 {
1162 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1163 return VERR_NO_PAGE_MEMORY;
1164 }
1165
1166 /* get physical addresses. */
1167 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1168 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1169 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1170 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1171 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1172 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1173 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1174 pVM->pgm.s.HCPhysPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePML4);
1175
1176 /*
1177 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1178 */
1179 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1180
1181 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1182 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1183 {
1184 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1185 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1186 /* The flags will be corrected when entering and leaving long mode. */
1187 }
1188
1189 ASMMemZero32(pVM->pgm.s.pHCPaePML4, PAGE_SIZE);
1190 pVM->pgm.s.pHCPaePML4->a[0].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_A
1191 | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.HCPhysPaePDPT;
1192
1193 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1194
1195 /*
1196 * Initialize paging workers and mode from current host mode
1197 * and the guest running in real mode.
1198 */
1199 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1200 switch (pVM->pgm.s.enmHostMode)
1201 {
1202 case SUPPAGINGMODE_32_BIT:
1203 case SUPPAGINGMODE_32_BIT_GLOBAL:
1204 case SUPPAGINGMODE_PAE:
1205 case SUPPAGINGMODE_PAE_GLOBAL:
1206 case SUPPAGINGMODE_PAE_NX:
1207 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1208 break;
1209
1210 case SUPPAGINGMODE_AMD64:
1211 case SUPPAGINGMODE_AMD64_GLOBAL:
1212 case SUPPAGINGMODE_AMD64_NX:
1213 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1214#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1215 if (ARCH_BITS != 64)
1216 {
1217 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1218 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1219 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1220 }
1221#endif
1222 break;
1223 default:
1224 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1225 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1226 }
1227 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1228 if (VBOX_SUCCESS(rc))
1229 rc = pgmR3ChangeMode(pVM, PGMMODE_REAL);
1230 if (VBOX_SUCCESS(rc))
1231 {
1232 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1233#if HC_ARCH_BITS == 64
1234LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1235 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1236 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1237LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1238 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1239LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1240 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1241 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1242 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1243 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1244#endif
1245
1246 return VINF_SUCCESS;
1247 }
1248
1249 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1250 return rc;
1251}
1252
1253
1254#ifdef VBOX_WITH_STATISTICS
1255/**
1256 * Init statistics
1257 */
1258static void pgmR3InitStats(PVM pVM)
1259{
1260 PPGM pPGM = &pVM->pgm.s;
1261 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1262 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1263 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1264 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1265 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1266 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1267 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1268 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1269 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1270 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1271 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1272 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1273 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1274 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1275 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1276 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1277 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1278 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1279 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1280 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1281 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1282 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1283
1284 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1285 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1286 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1287 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1288 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1289 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1290 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1291 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1292 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1293 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1294 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1295 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1296 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1297 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1298 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1299 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1300 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1301 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1302 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1303
1304 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1305 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1306 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1307 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1308 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1309 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1310 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1311 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1312
1313 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1314 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1315 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1316 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1317 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1318 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1319 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1320
1321 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1322 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1323 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1324 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1325 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1326 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1327 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1328
1329 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1330 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1331
1332 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1333 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1334 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1335
1336 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1337 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1338
1339 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1340 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1341
1342 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1343 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1344
1345 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1346 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1347 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1348
1349 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1350 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1351 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1352 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1353 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1354 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1355 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1356 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1357 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1358 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1359 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1360
1361 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1362 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1363 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1364 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1365 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1366 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1367 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1368
1369 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1370 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1371 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1372 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1373
1374 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1375 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1376 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1377 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1378 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1379
1380 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1381 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1382 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1383 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1384 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1385 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1386 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1387 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1388 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1389 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1390 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1391 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1392
1393 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1394 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1395 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1396 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1397 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1398 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1399 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1400 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1401 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1402 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1403 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1404 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1405
1406 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1407 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1408 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1409
1410 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1411 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1412
1413 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1414 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1415 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1416 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1417
1418 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1419 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1420
1421 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1422 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1423 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1424 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1425 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1426 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1427 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1428 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1429 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1430 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1431 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1432 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1433 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1434
1435#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1436 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1437 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1438 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1439 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1440 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1441 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1442#endif
1443
1444 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1445 {
1446 /** @todo r=bird: We need a STAMR3RegisterF()! */
1447 char szName[32];
1448
1449 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1450 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1451 AssertRC(rc);
1452
1453 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1454 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1455 AssertRC(rc);
1456
1457 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1458 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1459 AssertRC(rc);
1460 }
1461}
1462#endif /* VBOX_WITH_STATISTICS */
1463
1464/**
1465 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1466 *
1467 * The dynamic mapping area will also be allocated and initialized at this
1468 * time. We could allocate it during PGMR3Init of course, but the mapping
1469 * wouldn't be allocated at that time preventing us from setting up the
1470 * page table entries with the dummy page.
1471 *
1472 * @returns VBox status code.
1473 * @param pVM VM handle.
1474 */
1475PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1476{
1477 /*
1478 * Reserve space for mapping the paging pages into guest context.
1479 */
1480 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &pVM->pgm.s.pGC32BitPD);
1481 AssertRCReturn(rc, rc);
1482 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1483
1484 /*
1485 * Reserve space for the dynamic mappings.
1486 */
1487 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1488 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &pVM->pgm.s.pbDynPageMapBaseGC);
1489 if ( VBOX_SUCCESS(rc)
1490 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1491 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &pVM->pgm.s.pbDynPageMapBaseGC);
1492 if (VBOX_SUCCESS(rc))
1493 {
1494 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1495 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1496 }
1497 return rc;
1498}
1499
1500
1501/**
1502 * Ring-3 init finalizing.
1503 *
1504 * @returns VBox status code.
1505 * @param pVM The VM handle.
1506 */
1507PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1508{
1509 /*
1510 * Map the paging pages into the guest context.
1511 */
1512 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1513 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1514
1515 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1516 AssertRCReturn(rc, rc);
1517 pVM->pgm.s.pGC32BitPD = GCPtr;
1518 GCPtr += PAGE_SIZE;
1519 GCPtr += PAGE_SIZE; /* reserved page */
1520
1521 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1522 {
1523 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1524 AssertRCReturn(rc, rc);
1525 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1526 GCPtr += PAGE_SIZE;
1527 }
1528 /* A bit of paranoia is justified. */
1529 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1530 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1531 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1532 GCPtr += PAGE_SIZE; /* reserved page */
1533
1534 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1535 AssertRCReturn(rc, rc);
1536 pVM->pgm.s.pGCPaePDPT = GCPtr;
1537 GCPtr += PAGE_SIZE;
1538 GCPtr += PAGE_SIZE; /* reserved page */
1539
1540
1541 /*
1542 * Reserve space for the dynamic mappings.
1543 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1544 */
1545 /* get the pointer to the page table entries. */
1546 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1547 AssertRelease(pMapping);
1548 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1549 const unsigned iPT = off >> X86_PD_SHIFT;
1550 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1551 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1552 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1553
1554 /* init cache */
1555 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1556 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1557 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1558
1559 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1560 {
1561 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1562 AssertRCReturn(rc, rc);
1563 }
1564
1565 return rc;
1566}
1567
1568
1569/**
1570 * Applies relocations to data and code managed by this
1571 * component. This function will be called at init and
1572 * whenever the VMM need to relocate it self inside the GC.
1573 *
1574 * @param pVM The VM.
1575 * @param offDelta Relocation delta relative to old location.
1576 */
1577PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1578{
1579 LogFlow(("PGMR3Relocate\n"));
1580
1581 /*
1582 * Paging stuff.
1583 */
1584 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1585 /** @todo move this into shadow and guest specific relocation functions. */
1586 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1587 pVM->pgm.s.pGC32BitPD += offDelta;
1588 pVM->pgm.s.pGuestPDGC += offDelta;
1589 AssertCompile(ELEMENTS(pVM->pgm.s.apGCPaePDs) == ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1590 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1591 {
1592 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1593 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1594 }
1595 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1596 pVM->pgm.s.pGCPaePDPT += offDelta;
1597
1598 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1599 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1600
1601 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1602 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1603 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1604
1605 /*
1606 * Trees.
1607 */
1608 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1609
1610 /*
1611 * Ram ranges.
1612 */
1613 if (pVM->pgm.s.pRamRangesR3)
1614 {
1615 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1616 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1617#ifdef VBOX_WITH_NEW_PHYS_CODE
1618 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1619#else
1620 {
1621 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1622 if (pCur->pavHCChunkGC)
1623 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1624 }
1625#endif
1626 }
1627
1628 /*
1629 * Update the two page directories with all page table mappings.
1630 * (One or more of them have changed, that's why we're here.)
1631 */
1632 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1633 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1634 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1635
1636 /* Relocate GC addresses of Page Tables. */
1637 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1638 {
1639 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1640 {
1641 pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3);
1642 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3);
1643 }
1644 }
1645
1646 /*
1647 * Dynamic page mapping area.
1648 */
1649 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1650 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1651 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1652
1653 /*
1654 * The Zero page.
1655 */
1656 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1657 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1658
1659 /*
1660 * Physical and virtual handlers.
1661 */
1662 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1663 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1664 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1665
1666 /*
1667 * The page pool.
1668 */
1669 pgmR3PoolRelocate(pVM);
1670}
1671
1672
1673/**
1674 * Callback function for relocating a physical access handler.
1675 *
1676 * @returns 0 (continue enum)
1677 * @param pNode Pointer to a PGMPHYSHANDLER node.
1678 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1679 * not certain the delta will fit in a void pointer for all possible configs.
1680 */
1681static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1682{
1683 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1684 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1685 if (pHandler->pfnHandlerGC)
1686 pHandler->pfnHandlerGC += offDelta;
1687 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1688 pHandler->pvUserGC += offDelta;
1689 return 0;
1690}
1691
1692
1693/**
1694 * Callback function for relocating a virtual access handler.
1695 *
1696 * @returns 0 (continue enum)
1697 * @param pNode Pointer to a PGMVIRTHANDLER node.
1698 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1699 * not certain the delta will fit in a void pointer for all possible configs.
1700 */
1701static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1702{
1703 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1704 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1705 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1706 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1707 Assert(pHandler->pfnHandlerGC);
1708 pHandler->pfnHandlerGC += offDelta;
1709 return 0;
1710}
1711
1712
1713/**
1714 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1715 *
1716 * @returns 0 (continue enum)
1717 * @param pNode Pointer to a PGMVIRTHANDLER node.
1718 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1719 * not certain the delta will fit in a void pointer for all possible configs.
1720 */
1721static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1722{
1723 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1724 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1725 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1726 Assert(pHandler->pfnHandlerGC);
1727 pHandler->pfnHandlerGC += offDelta;
1728 return 0;
1729}
1730
1731
1732/**
1733 * The VM is being reset.
1734 *
1735 * For the PGM component this means that any PD write monitors
1736 * needs to be removed.
1737 *
1738 * @param pVM VM handle.
1739 */
1740PGMR3DECL(void) PGMR3Reset(PVM pVM)
1741{
1742 LogFlow(("PGMR3Reset:\n"));
1743 VM_ASSERT_EMT(pVM);
1744
1745 pgmLock(pVM);
1746
1747 /*
1748 * Unfix any fixed mappings and disable CR3 monitoring.
1749 */
1750 pVM->pgm.s.fMappingsFixed = false;
1751 pVM->pgm.s.GCPtrMappingFixed = 0;
1752 pVM->pgm.s.cbMappingFixed = 0;
1753
1754 int rc = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM);
1755 AssertRC(rc);
1756#ifdef DEBUG
1757 DBGFR3InfoLog(pVM, "mappings", NULL);
1758 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1759#endif
1760
1761 /*
1762 * Reset the shadow page pool.
1763 */
1764 pgmR3PoolReset(pVM);
1765
1766 /*
1767 * Re-init other members.
1768 */
1769 pVM->pgm.s.fA20Enabled = true;
1770
1771 /*
1772 * Clear the FFs PGM owns.
1773 */
1774 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1775 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1776
1777 /*
1778 * Reset (zero) RAM pages.
1779 */
1780 rc = pgmR3PhysRamReset(pVM);
1781 if (RT_SUCCESS(rc))
1782 {
1783#ifdef VBOX_WITH_NEW_PHYS_CODE
1784 /*
1785 * Reset (zero) shadow ROM pages.
1786 */
1787 rc = pgmR3PhysRomReset(pVM);
1788#endif
1789 if (RT_SUCCESS(rc))
1790 {
1791 /*
1792 * Switch mode back to real mode.
1793 */
1794 rc = pgmR3ChangeMode(pVM, PGMMODE_REAL);
1795 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
1796 }
1797 }
1798
1799 pgmUnlock(pVM);
1800 //return rc;
1801 AssertReleaseRC(rc);
1802}
1803
1804
1805#ifdef VBOX_STRICT
1806/**
1807 * VM state change callback for clearing fNoMorePhysWrites after
1808 * a snapshot has been created.
1809 */
1810static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
1811{
1812 if (enmState == VMSTATE_RUNNING)
1813 pVM->pgm.s.fNoMorePhysWrites = false;
1814}
1815#endif
1816
1817
1818/**
1819 * Terminates the PGM.
1820 *
1821 * @returns VBox status code.
1822 * @param pVM Pointer to VM structure.
1823 */
1824PGMR3DECL(int) PGMR3Term(PVM pVM)
1825{
1826 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1827}
1828
1829
1830/**
1831 * Execute state save operation.
1832 *
1833 * @returns VBox status code.
1834 * @param pVM VM Handle.
1835 * @param pSSM SSM operation handle.
1836 */
1837static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
1838{
1839 PPGM pPGM = &pVM->pgm.s;
1840
1841 /* No more writes to physical memory after this point! */
1842 pVM->pgm.s.fNoMorePhysWrites = true;
1843
1844 /*
1845 * Save basic data (required / unaffected by relocation).
1846 */
1847#if 1
1848 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
1849#else
1850 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
1851#endif
1852 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
1853 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
1854 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
1855 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
1856 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
1857 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
1858 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
1859 SSMR3PutU32(pSSM, ~0); /* Separator. */
1860
1861 /*
1862 * The guest mappings.
1863 */
1864 uint32_t i = 0;
1865 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1866 {
1867 SSMR3PutU32(pSSM, i);
1868 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1869 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
1870 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1871 /* flags are done by the mapping owners! */
1872 }
1873 SSMR3PutU32(pSSM, ~0); /* terminator. */
1874
1875 /*
1876 * Ram range flags and bits.
1877 */
1878 i = 0;
1879 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
1880 {
1881 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
1882
1883 SSMR3PutU32(pSSM, i);
1884 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
1885 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
1886 SSMR3PutGCPhys(pSSM, pRam->cb);
1887 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
1888
1889 /* Flags. */
1890 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
1891 for (unsigned iPage = 0; iPage < cPages; iPage++)
1892 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
1893
1894 /* any memory associated with the range. */
1895 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
1896 {
1897 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
1898 {
1899 if (pRam->pavHCChunkHC[iChunk])
1900 {
1901 SSMR3PutU8(pSSM, 1); /* chunk present */
1902 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
1903 }
1904 else
1905 SSMR3PutU8(pSSM, 0); /* no chunk present */
1906 }
1907 }
1908 else if (pRam->pvHC)
1909 {
1910 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
1911 if (VBOX_FAILURE(rc))
1912 {
1913 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
1914 return rc;
1915 }
1916 }
1917 }
1918 return SSMR3PutU32(pSSM, ~0); /* terminator. */
1919}
1920
1921
1922/**
1923 * Execute state load operation.
1924 *
1925 * @returns VBox status code.
1926 * @param pVM VM Handle.
1927 * @param pSSM SSM operation handle.
1928 * @param u32Version Data layout version.
1929 */
1930static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1931{
1932 /*
1933 * Validate version.
1934 */
1935 if (u32Version != PGM_SAVED_STATE_VERSION)
1936 {
1937 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
1938 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1939 }
1940
1941 /*
1942 * Call the reset function to make sure all the memory is cleared.
1943 */
1944 PGMR3Reset(pVM);
1945
1946 /*
1947 * Load basic data (required / unaffected by relocation).
1948 */
1949 PPGM pPGM = &pVM->pgm.s;
1950#if 1
1951 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
1952#else
1953 uint32_t u;
1954 SSMR3GetU32(pSSM, &u);
1955 pPGM->fMappingsFixed = u;
1956#endif
1957 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
1958 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
1959
1960 RTUINT cbRamSize;
1961 int rc = SSMR3GetU32(pSSM, &cbRamSize);
1962 if (VBOX_FAILURE(rc))
1963 return rc;
1964 if (cbRamSize != pPGM->cbRamSize)
1965 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
1966 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
1967 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
1968 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
1969 RTUINT uGuestMode;
1970 SSMR3GetUInt(pSSM, &uGuestMode);
1971 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
1972
1973 /* check separator. */
1974 uint32_t u32Sep;
1975 SSMR3GetU32(pSSM, &u32Sep);
1976 if (VBOX_FAILURE(rc))
1977 return rc;
1978 if (u32Sep != (uint32_t)~0)
1979 {
1980 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
1981 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1982 }
1983
1984 /*
1985 * The guest mappings.
1986 */
1987 uint32_t i = 0;
1988 for (;; i++)
1989 {
1990 /* Check the seqence number / separator. */
1991 rc = SSMR3GetU32(pSSM, &u32Sep);
1992 if (VBOX_FAILURE(rc))
1993 return rc;
1994 if (u32Sep == ~0U)
1995 break;
1996 if (u32Sep != i)
1997 {
1998 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
1999 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2000 }
2001
2002 /* get the mapping details. */
2003 char szDesc[256];
2004 szDesc[0] = '\0';
2005 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2006 if (VBOX_FAILURE(rc))
2007 return rc;
2008 RTGCPTR GCPtr;
2009 SSMR3GetGCPtr(pSSM, &GCPtr);
2010 RTGCUINTPTR cPTs;
2011 rc = SSMR3GetU32(pSSM, &cPTs);
2012 if (VBOX_FAILURE(rc))
2013 return rc;
2014
2015 /* find matching range. */
2016 PPGMMAPPING pMapping;
2017 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2018 if ( pMapping->cPTs == cPTs
2019 && !strcmp(pMapping->pszDesc, szDesc))
2020 break;
2021 if (!pMapping)
2022 {
2023 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2024 cPTs, szDesc, GCPtr));
2025 AssertFailed();
2026 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2027 }
2028
2029 /* relocate it. */
2030 if (pMapping->GCPtr != GCPtr)
2031 {
2032 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2033#if HC_ARCH_BITS == 64
2034LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2035#endif
2036 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2037 }
2038 else
2039 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2040 }
2041
2042 /*
2043 * Ram range flags and bits.
2044 */
2045 i = 0;
2046 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2047 {
2048 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2049 /* Check the seqence number / separator. */
2050 rc = SSMR3GetU32(pSSM, &u32Sep);
2051 if (VBOX_FAILURE(rc))
2052 return rc;
2053 if (u32Sep == ~0U)
2054 break;
2055 if (u32Sep != i)
2056 {
2057 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2058 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2059 }
2060
2061 /* Get the range details. */
2062 RTGCPHYS GCPhys;
2063 SSMR3GetGCPhys(pSSM, &GCPhys);
2064 RTGCPHYS GCPhysLast;
2065 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2066 RTGCPHYS cb;
2067 SSMR3GetGCPhys(pSSM, &cb);
2068 uint8_t fHaveBits;
2069 rc = SSMR3GetU8(pSSM, &fHaveBits);
2070 if (VBOX_FAILURE(rc))
2071 return rc;
2072 if (fHaveBits & ~1)
2073 {
2074 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2075 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2076 }
2077
2078 /* Match it up with the current range. */
2079 if ( GCPhys != pRam->GCPhys
2080 || GCPhysLast != pRam->GCPhysLast
2081 || cb != pRam->cb
2082 || fHaveBits != !!pRam->pvHC)
2083 {
2084 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2085 "State : %VGp-%VGp %VGp bytes %s\n",
2086 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2087 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2088 /*
2089 * If we're loading a state for debugging purpose, don't make a fuss if
2090 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2091 */
2092 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2093 || GCPhys < 8 * _1M)
2094 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2095
2096 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2097 while (cPages-- > 0)
2098 {
2099 uint16_t u16Ignore;
2100 SSMR3GetU16(pSSM, &u16Ignore);
2101 }
2102 continue;
2103 }
2104
2105 /* Flags. */
2106 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2107 for (unsigned iPage = 0; iPage < cPages; iPage++)
2108 {
2109 uint16_t u16 = 0;
2110 SSMR3GetU16(pSSM, &u16);
2111 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2112 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2113 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2114 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2115 }
2116
2117 /* any memory associated with the range. */
2118 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2119 {
2120 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2121 {
2122 uint8_t fValidChunk;
2123
2124 rc = SSMR3GetU8(pSSM, &fValidChunk);
2125 if (VBOX_FAILURE(rc))
2126 return rc;
2127 if (fValidChunk > 1)
2128 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2129
2130 if (fValidChunk)
2131 {
2132 if (!pRam->pavHCChunkHC[iChunk])
2133 {
2134 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2135 if (VBOX_FAILURE(rc))
2136 return rc;
2137 }
2138 Assert(pRam->pavHCChunkHC[iChunk]);
2139
2140 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2141 }
2142 /* else nothing to do */
2143 }
2144 }
2145 else if (pRam->pvHC)
2146 {
2147 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2148 if (VBOX_FAILURE(rc))
2149 {
2150 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2151 return rc;
2152 }
2153 }
2154 }
2155
2156 /*
2157 * We require a full resync now.
2158 */
2159 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2160 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2161 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2162 pPGM->fPhysCacheFlushPending = true;
2163 pgmR3HandlerPhysicalUpdateAll(pVM);
2164
2165 /*
2166 * Change the paging mode.
2167 */
2168 return pgmR3ChangeMode(pVM, pPGM->enmGuestMode);
2169}
2170
2171
2172/**
2173 * Show paging mode.
2174 *
2175 * @param pVM VM Handle.
2176 * @param pHlp The info helpers.
2177 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2178 */
2179static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2180{
2181 /* digest argument. */
2182 bool fGuest, fShadow, fHost;
2183 if (pszArgs)
2184 pszArgs = RTStrStripL(pszArgs);
2185 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2186 fShadow = fHost = fGuest = true;
2187 else
2188 {
2189 fShadow = fHost = fGuest = false;
2190 if (strstr(pszArgs, "guest"))
2191 fGuest = true;
2192 if (strstr(pszArgs, "shadow"))
2193 fShadow = true;
2194 if (strstr(pszArgs, "host"))
2195 fHost = true;
2196 }
2197
2198 /* print info. */
2199 if (fGuest)
2200 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2201 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2202 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2203 if (fShadow)
2204 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2205 if (fHost)
2206 {
2207 const char *psz;
2208 switch (pVM->pgm.s.enmHostMode)
2209 {
2210 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2211 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2212 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2213 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2214 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2215 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2216 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2217 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2218 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2219 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2220 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2221 default: psz = "unknown"; break;
2222 }
2223 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2224 }
2225}
2226
2227
2228/**
2229 * Dump registered MMIO ranges to the log.
2230 *
2231 * @param pVM VM Handle.
2232 * @param pHlp The info helpers.
2233 * @param pszArgs Arguments, ignored.
2234 */
2235static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2236{
2237 NOREF(pszArgs);
2238 pHlp->pfnPrintf(pHlp,
2239 "RAM ranges (pVM=%p)\n"
2240 "%.*s %.*s\n",
2241 pVM,
2242 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2243 sizeof(RTHCPTR) * 2, "pvHC ");
2244
2245 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2246 pHlp->pfnPrintf(pHlp,
2247 "%RGp-%RGp %RHv %s\n",
2248 pCur->GCPhys,
2249 pCur->GCPhysLast,
2250 pCur->pvHC,
2251 pCur->pszDesc);
2252}
2253
2254/**
2255 * Dump the page directory to the log.
2256 *
2257 * @param pVM VM Handle.
2258 * @param pHlp The info helpers.
2259 * @param pszArgs Arguments, ignored.
2260 */
2261static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2262{
2263/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2264 /* Big pages supported? */
2265 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2266 /* Global pages supported? */
2267 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2268
2269 NOREF(pszArgs);
2270
2271 /*
2272 * Get page directory addresses.
2273 */
2274 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2275 Assert(pPDSrc);
2276 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2277
2278 /*
2279 * Iterate the page directory.
2280 */
2281 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2282 {
2283 X86PDE PdeSrc = pPDSrc->a[iPD];
2284 if (PdeSrc.n.u1Present)
2285 {
2286 if (PdeSrc.b.u1Size && fPSE)
2287 {
2288 pHlp->pfnPrintf(pHlp,
2289 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2290 iPD,
2291 PdeSrc.u & X86_PDE_PG_MASK,
2292 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2293 }
2294 else
2295 {
2296 pHlp->pfnPrintf(pHlp,
2297 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2298 iPD,
2299 PdeSrc.u & X86_PDE4M_PG_MASK,
2300 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2301 }
2302 }
2303 }
2304}
2305
2306
2307/**
2308 * Serivce a VMMCALLHOST_PGM_LOCK call.
2309 *
2310 * @returns VBox status code.
2311 * @param pVM The VM handle.
2312 */
2313PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2314{
2315 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2316 AssertRC(rc);
2317 return rc;
2318}
2319
2320
2321/**
2322 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2323 *
2324 * @returns PGM_TYPE_*.
2325 * @param pgmMode The mode value to convert.
2326 */
2327DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2328{
2329 switch (pgmMode)
2330 {
2331 case PGMMODE_REAL: return PGM_TYPE_REAL;
2332 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2333 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2334 case PGMMODE_PAE:
2335 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2336 case PGMMODE_AMD64:
2337 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2338 default:
2339 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2340 }
2341}
2342
2343
2344/**
2345 * Gets the index into the paging mode data array of a SHW+GST mode.
2346 *
2347 * @returns PGM::paPagingData index.
2348 * @param uShwType The shadow paging mode type.
2349 * @param uGstType The guest paging mode type.
2350 */
2351DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2352{
2353 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_AMD64);
2354 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2355 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_32BIT + 1)
2356 + (uGstType - PGM_TYPE_REAL);
2357}
2358
2359
2360/**
2361 * Gets the index into the paging mode data array of a SHW+GST mode.
2362 *
2363 * @returns PGM::paPagingData index.
2364 * @param enmShw The shadow paging mode.
2365 * @param enmGst The guest paging mode.
2366 */
2367DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2368{
2369 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2370 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2371 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2372}
2373
2374
2375/**
2376 * Calculates the max data index.
2377 * @returns The number of entries in the pagaing data array.
2378 */
2379DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2380{
2381 return pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64) + 1;
2382}
2383
2384
2385/**
2386 * Initializes the paging mode data kept in PGM::paModeData.
2387 *
2388 * @param pVM The VM handle.
2389 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2390 * This is used early in the init process to avoid trouble with PDM
2391 * not being initialized yet.
2392 */
2393static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2394{
2395 PPGMMODEDATA pModeData;
2396 int rc;
2397
2398 /*
2399 * Allocate the array on the first call.
2400 */
2401 if (!pVM->pgm.s.paModeData)
2402 {
2403 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2404 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2405 }
2406
2407 /*
2408 * Initialize the array entries.
2409 */
2410 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2411 pModeData->uShwType = PGM_TYPE_32BIT;
2412 pModeData->uGstType = PGM_TYPE_REAL;
2413 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2414 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2415 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2416
2417 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2418 pModeData->uShwType = PGM_TYPE_32BIT;
2419 pModeData->uGstType = PGM_TYPE_PROT;
2420 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2421 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2422 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2423
2424 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2425 pModeData->uShwType = PGM_TYPE_32BIT;
2426 pModeData->uGstType = PGM_TYPE_32BIT;
2427 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2428 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2429 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2430
2431 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2432 pModeData->uShwType = PGM_TYPE_PAE;
2433 pModeData->uGstType = PGM_TYPE_REAL;
2434 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2435 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2436 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2437
2438 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2439 pModeData->uShwType = PGM_TYPE_PAE;
2440 pModeData->uGstType = PGM_TYPE_PROT;
2441 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2442 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2443 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2444
2445 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2446 pModeData->uShwType = PGM_TYPE_PAE;
2447 pModeData->uGstType = PGM_TYPE_32BIT;
2448 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2449 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2450 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2451
2452 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2453 pModeData->uShwType = PGM_TYPE_PAE;
2454 pModeData->uGstType = PGM_TYPE_PAE;
2455 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2456 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2457 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2458
2459 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2460 pModeData->uShwType = PGM_TYPE_AMD64;
2461 pModeData->uGstType = PGM_TYPE_AMD64;
2462 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2463 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2464
2465 return VINF_SUCCESS;
2466}
2467
2468
2469/**
2470 * Swtich to different (or relocated in the relocate case) mode data.
2471 *
2472 * @param pVM The VM handle.
2473 * @param enmShw The the shadow paging mode.
2474 * @param enmGst The the guest paging mode.
2475 */
2476static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2477{
2478 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(enmShw, enmGst)];
2479
2480 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2481 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2482
2483 /* shadow */
2484 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2485 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2486 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2487 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2488 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2489
2490 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2491 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2492
2493 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2494 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2495
2496
2497 /* guest */
2498 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2499 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2500 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2501 Assert(pVM->pgm.s.pfnR3GstGetPage);
2502 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2503 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2504 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2505 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2506 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2507 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2508 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2509 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2510 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2511 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2512
2513 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2514 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2515 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2516 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2517 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2518 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2519 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2520 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2521 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2522
2523 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2524 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2525 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2526 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2527 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2528 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2529 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2530 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2531 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2532
2533
2534 /* both */
2535 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2536 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2537 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2538 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2539 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2540 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2541 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2542 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2543#ifdef VBOX_STRICT
2544 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2545#endif
2546
2547 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2548 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2549 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2550 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2551 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2552 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2553#ifdef VBOX_STRICT
2554 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2555#endif
2556
2557 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2558 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2559 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2560 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2561 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2562 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2563#ifdef VBOX_STRICT
2564 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2565#endif
2566}
2567
2568
2569#ifdef DEBUG_bird
2570#include <stdlib.h> /* getenv() remove me! */
2571#endif
2572
2573/**
2574 * Calculates the shadow paging mode.
2575 *
2576 * @returns The shadow paging mode.
2577 * @param enmGuestMode The guest mode.
2578 * @param enmHostMode The host mode.
2579 * @param enmShadowMode The current shadow mode.
2580 * @param penmSwitcher Where to store the switcher to use.
2581 * VMMSWITCHER_INVALID means no change.
2582 */
2583static PGMMODE pgmR3CalcShadowMode(PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2584{
2585 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2586 switch (enmGuestMode)
2587 {
2588 /*
2589 * When switching to real or protected mode we don't change
2590 * anything since it's likely that we'll switch back pretty soon.
2591 *
2592 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2593 * and is supposed to determin which shadow paging and switcher to
2594 * use during init.
2595 */
2596 case PGMMODE_REAL:
2597 case PGMMODE_PROTECTED:
2598 if (enmShadowMode != PGMMODE_INVALID)
2599 break; /* (no change) */
2600 switch (enmHostMode)
2601 {
2602 case SUPPAGINGMODE_32_BIT:
2603 case SUPPAGINGMODE_32_BIT_GLOBAL:
2604 enmShadowMode = PGMMODE_32_BIT;
2605 enmSwitcher = VMMSWITCHER_32_TO_32;
2606 break;
2607
2608 case SUPPAGINGMODE_PAE:
2609 case SUPPAGINGMODE_PAE_NX:
2610 case SUPPAGINGMODE_PAE_GLOBAL:
2611 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2612 enmShadowMode = PGMMODE_PAE;
2613 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2614#ifdef DEBUG_bird
2615if (getenv("VBOX_32BIT"))
2616{
2617 enmShadowMode = PGMMODE_32_BIT;
2618 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2619}
2620#endif
2621 break;
2622
2623 case SUPPAGINGMODE_AMD64:
2624 case SUPPAGINGMODE_AMD64_GLOBAL:
2625 case SUPPAGINGMODE_AMD64_NX:
2626 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2627 enmShadowMode = PGMMODE_PAE;
2628 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2629 break;
2630
2631 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2632 }
2633 break;
2634
2635 case PGMMODE_32_BIT:
2636 switch (enmHostMode)
2637 {
2638 case SUPPAGINGMODE_32_BIT:
2639 case SUPPAGINGMODE_32_BIT_GLOBAL:
2640 enmShadowMode = PGMMODE_32_BIT;
2641 enmSwitcher = VMMSWITCHER_32_TO_32;
2642 break;
2643
2644 case SUPPAGINGMODE_PAE:
2645 case SUPPAGINGMODE_PAE_NX:
2646 case SUPPAGINGMODE_PAE_GLOBAL:
2647 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2648 enmShadowMode = PGMMODE_PAE;
2649 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2650#ifdef DEBUG_bird
2651if (getenv("VBOX_32BIT"))
2652{
2653 enmShadowMode = PGMMODE_32_BIT;
2654 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2655}
2656#endif
2657 break;
2658
2659 case SUPPAGINGMODE_AMD64:
2660 case SUPPAGINGMODE_AMD64_GLOBAL:
2661 case SUPPAGINGMODE_AMD64_NX:
2662 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2663 enmShadowMode = PGMMODE_PAE;
2664 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2665 break;
2666
2667 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2668 }
2669 break;
2670
2671 case PGMMODE_PAE:
2672 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2673 switch (enmHostMode)
2674 {
2675 case SUPPAGINGMODE_32_BIT:
2676 case SUPPAGINGMODE_32_BIT_GLOBAL:
2677 enmShadowMode = PGMMODE_PAE;
2678 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2679 break;
2680
2681 case SUPPAGINGMODE_PAE:
2682 case SUPPAGINGMODE_PAE_NX:
2683 case SUPPAGINGMODE_PAE_GLOBAL:
2684 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2685 enmShadowMode = PGMMODE_PAE;
2686 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2687 break;
2688
2689 case SUPPAGINGMODE_AMD64:
2690 case SUPPAGINGMODE_AMD64_GLOBAL:
2691 case SUPPAGINGMODE_AMD64_NX:
2692 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2693 enmShadowMode = PGMMODE_PAE;
2694 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2695 break;
2696
2697 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2698 }
2699 break;
2700
2701 case PGMMODE_AMD64:
2702 case PGMMODE_AMD64_NX:
2703 switch (enmHostMode)
2704 {
2705 case SUPPAGINGMODE_32_BIT:
2706 case SUPPAGINGMODE_32_BIT_GLOBAL:
2707 enmShadowMode = PGMMODE_PAE;
2708 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
2709 break;
2710
2711 case SUPPAGINGMODE_PAE:
2712 case SUPPAGINGMODE_PAE_NX:
2713 case SUPPAGINGMODE_PAE_GLOBAL:
2714 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2715 enmShadowMode = PGMMODE_PAE;
2716 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
2717 break;
2718
2719 case SUPPAGINGMODE_AMD64:
2720 case SUPPAGINGMODE_AMD64_GLOBAL:
2721 case SUPPAGINGMODE_AMD64_NX:
2722 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2723 enmShadowMode = PGMMODE_AMD64;
2724 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
2725 break;
2726
2727 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2728 }
2729 break;
2730
2731
2732 default:
2733 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2734 return PGMMODE_INVALID;
2735 }
2736
2737 *penmSwitcher = enmSwitcher;
2738 return enmShadowMode;
2739}
2740
2741
2742/**
2743 * Performs the actual mode change.
2744 * This is called by PGMChangeMode and pgmR3InitPaging().
2745 *
2746 * @returns VBox status code.
2747 * @param pVM VM handle.
2748 * @param enmGuestMode The new guest mode. This is assumed to be different from
2749 * the current mode.
2750 */
2751int pgmR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
2752{
2753 LogFlow(("pgmR3ChangeMode: Guest mode: %d -> %d\n", pVM->pgm.s.enmGuestMode, enmGuestMode));
2754 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
2755
2756 /*
2757 * Calc the shadow mode and switcher.
2758 */
2759 VMMSWITCHER enmSwitcher;
2760 PGMMODE enmShadowMode = pgmR3CalcShadowMode(enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
2761 if (enmSwitcher != VMMSWITCHER_INVALID)
2762 {
2763 /*
2764 * Select new switcher.
2765 */
2766 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
2767 if (VBOX_FAILURE(rc))
2768 {
2769 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
2770 return rc;
2771 }
2772 }
2773
2774 /*
2775 * Exit old mode(s).
2776 */
2777 /* shadow */
2778 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2779 {
2780 LogFlow(("pgmR3ChangeMode: Shadow mode: %d -> %d\n", pVM->pgm.s.enmShadowMode, enmShadowMode));
2781 if (PGM_SHW_PFN(Exit, pVM))
2782 {
2783 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
2784 if (VBOX_FAILURE(rc))
2785 {
2786 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
2787 return rc;
2788 }
2789 }
2790
2791 }
2792
2793 /* guest */
2794 if (PGM_GST_PFN(Exit, pVM))
2795 {
2796 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2797 if (VBOX_FAILURE(rc))
2798 {
2799 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
2800 return rc;
2801 }
2802 }
2803
2804 /*
2805 * Load new paging mode data.
2806 */
2807 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
2808
2809 /*
2810 * Enter new shadow mode (if changed).
2811 */
2812 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2813 {
2814 int rc;
2815 pVM->pgm.s.enmShadowMode = enmShadowMode;
2816 switch (enmShadowMode)
2817 {
2818 case PGMMODE_32_BIT:
2819 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
2820 break;
2821 case PGMMODE_PAE:
2822 case PGMMODE_PAE_NX:
2823 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
2824 break;
2825 case PGMMODE_AMD64:
2826 case PGMMODE_AMD64_NX:
2827 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
2828 break;
2829 case PGMMODE_REAL:
2830 case PGMMODE_PROTECTED:
2831 default:
2832 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
2833 return VERR_INTERNAL_ERROR;
2834 }
2835 if (VBOX_FAILURE(rc))
2836 {
2837 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
2838 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
2839 return rc;
2840 }
2841 }
2842
2843 /*
2844 * Enter the new guest and shadow+guest modes.
2845 */
2846 int rc = -1;
2847 int rc2 = -1;
2848 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
2849 pVM->pgm.s.enmGuestMode = enmGuestMode;
2850 switch (enmGuestMode)
2851 {
2852 case PGMMODE_REAL:
2853 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
2854 switch (pVM->pgm.s.enmShadowMode)
2855 {
2856 case PGMMODE_32_BIT:
2857 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
2858 break;
2859 case PGMMODE_PAE:
2860 case PGMMODE_PAE_NX:
2861 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
2862 break;
2863 case PGMMODE_AMD64:
2864 case PGMMODE_AMD64_NX:
2865 AssertMsgFailed(("Should use PAE shadow mode!\n"));
2866 default: AssertFailed(); break;
2867 }
2868 break;
2869
2870 case PGMMODE_PROTECTED:
2871 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
2872 switch (pVM->pgm.s.enmShadowMode)
2873 {
2874 case PGMMODE_32_BIT:
2875 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
2876 break;
2877 case PGMMODE_PAE:
2878 case PGMMODE_PAE_NX:
2879 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
2880 break;
2881 case PGMMODE_AMD64:
2882 case PGMMODE_AMD64_NX:
2883 AssertMsgFailed(("Should use PAE shadow mode!\n"));
2884 default: AssertFailed(); break;
2885 }
2886 break;
2887
2888 case PGMMODE_32_BIT:
2889 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
2890 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
2891 switch (pVM->pgm.s.enmShadowMode)
2892 {
2893 case PGMMODE_32_BIT:
2894 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
2895 break;
2896 case PGMMODE_PAE:
2897 case PGMMODE_PAE_NX:
2898 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
2899 break;
2900 case PGMMODE_AMD64:
2901 case PGMMODE_AMD64_NX:
2902 AssertMsgFailed(("Should use PAE shadow mode!\n"));
2903 default: AssertFailed(); break;
2904 }
2905 break;
2906
2907 //case PGMMODE_PAE_NX:
2908 case PGMMODE_PAE:
2909 {
2910 uint32_t u32Dummy, u32Features;
2911
2912 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2913 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
2914 {
2915 /* Pause first, then inform Main. */
2916 rc = VMR3SuspendNoSave(pVM);
2917 AssertRC(rc);
2918
2919 VMSetRuntimeError(pVM, true, "PAEmode",
2920 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage."));
2921 /* we must return TRUE here otherwise the recompiler will assert */
2922 return VINF_SUCCESS;
2923 }
2924 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
2925 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
2926 switch (pVM->pgm.s.enmShadowMode)
2927 {
2928 case PGMMODE_PAE:
2929 case PGMMODE_PAE_NX:
2930 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
2931 break;
2932 case PGMMODE_32_BIT:
2933 case PGMMODE_AMD64:
2934 case PGMMODE_AMD64_NX:
2935 AssertMsgFailed(("Should use PAE shadow mode!\n"));
2936 default: AssertFailed(); break;
2937 }
2938 break;
2939 }
2940
2941 //case PGMMODE_AMD64_NX:
2942 case PGMMODE_AMD64:
2943 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask and make CR3 64-bit in this case! */
2944 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
2945 switch (pVM->pgm.s.enmShadowMode)
2946 {
2947 case PGMMODE_AMD64:
2948 case PGMMODE_AMD64_NX:
2949 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
2950 break;
2951 case PGMMODE_32_BIT:
2952 case PGMMODE_PAE:
2953 case PGMMODE_PAE_NX:
2954 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
2955 default: AssertFailed(); break;
2956 }
2957 break;
2958
2959 default:
2960 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2961 rc = VERR_NOT_IMPLEMENTED;
2962 break;
2963 }
2964
2965 /* status codes. */
2966 AssertRC(rc);
2967 AssertRC(rc2);
2968 if (VBOX_SUCCESS(rc))
2969 {
2970 rc = rc2;
2971 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
2972 rc = VINF_SUCCESS;
2973 }
2974
2975 /*
2976 * Notify SELM so it can update the TSSes with correct CR3s.
2977 */
2978 SELMR3PagingModeChanged(pVM);
2979
2980 /* Notify HWACCM as well. */
2981 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
2982 return rc;
2983}
2984
2985
2986/**
2987 * Dumps a PAE shadow page table.
2988 *
2989 * @returns VBox status code (VINF_SUCCESS).
2990 * @param pVM The VM handle.
2991 * @param pPT Pointer to the page table.
2992 * @param u64Address The virtual address of the page table starts.
2993 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
2994 * @param cMaxDepth The maxium depth.
2995 * @param pHlp Pointer to the output functions.
2996 */
2997static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
2998{
2999 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3000 {
3001 X86PTEPAE Pte = pPT->a[i];
3002 if (Pte.n.u1Present)
3003 {
3004 pHlp->pfnPrintf(pHlp,
3005 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3006 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3007 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3008 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3009 Pte.n.u1Write ? 'W' : 'R',
3010 Pte.n.u1User ? 'U' : 'S',
3011 Pte.n.u1Accessed ? 'A' : '-',
3012 Pte.n.u1Dirty ? 'D' : '-',
3013 Pte.n.u1Global ? 'G' : '-',
3014 Pte.n.u1WriteThru ? "WT" : "--",
3015 Pte.n.u1CacheDisable? "CD" : "--",
3016 Pte.n.u1PAT ? "AT" : "--",
3017 Pte.n.u1NoExecute ? "NX" : "--",
3018 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3019 Pte.u & RT_BIT(10) ? '1' : '0',
3020 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3021 Pte.u & X86_PTE_PAE_PG_MASK);
3022 }
3023 }
3024 return VINF_SUCCESS;
3025}
3026
3027
3028/**
3029 * Dumps a PAE shadow page directory table.
3030 *
3031 * @returns VBox status code (VINF_SUCCESS).
3032 * @param pVM The VM handle.
3033 * @param HCPhys The physical address of the page directory table.
3034 * @param u64Address The virtual address of the page table starts.
3035 * @param cr4 The CR4, PSE is currently used.
3036 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3037 * @param cMaxDepth The maxium depth.
3038 * @param pHlp Pointer to the output functions.
3039 */
3040static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3041{
3042 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3043 if (!pPD)
3044 {
3045 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3046 fLongMode ? 16 : 8, u64Address, HCPhys);
3047 return VERR_INVALID_PARAMETER;
3048 }
3049 int rc = VINF_SUCCESS;
3050 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3051 {
3052 X86PDEPAE Pde = pPD->a[i];
3053 if (Pde.n.u1Present)
3054 {
3055 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3056 pHlp->pfnPrintf(pHlp,
3057 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3058 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3059 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3060 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3061 Pde.b.u1Write ? 'W' : 'R',
3062 Pde.b.u1User ? 'U' : 'S',
3063 Pde.b.u1Accessed ? 'A' : '-',
3064 Pde.b.u1Dirty ? 'D' : '-',
3065 Pde.b.u1Global ? 'G' : '-',
3066 Pde.b.u1WriteThru ? "WT" : "--",
3067 Pde.b.u1CacheDisable? "CD" : "--",
3068 Pde.b.u1PAT ? "AT" : "--",
3069 Pde.b.u1NoExecute ? "NX" : "--",
3070 Pde.u & RT_BIT_64(9) ? '1' : '0',
3071 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3072 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3073 Pde.u & X86_PDE_PAE_PG_MASK);
3074 else
3075 {
3076 pHlp->pfnPrintf(pHlp,
3077 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3078 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3079 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3080 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3081 Pde.n.u1Write ? 'W' : 'R',
3082 Pde.n.u1User ? 'U' : 'S',
3083 Pde.n.u1Accessed ? 'A' : '-',
3084 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3085 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3086 Pde.n.u1WriteThru ? "WT" : "--",
3087 Pde.n.u1CacheDisable? "CD" : "--",
3088 Pde.n.u1NoExecute ? "NX" : "--",
3089 Pde.u & RT_BIT_64(9) ? '1' : '0',
3090 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3091 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3092 Pde.u & X86_PDE_PAE_PG_MASK);
3093 if (cMaxDepth >= 1)
3094 {
3095 /** @todo what about using the page pool for mapping PTs? */
3096 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3097 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3098 PX86PTPAE pPT = NULL;
3099 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3100 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3101 else
3102 {
3103 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3104 {
3105 uint64_t off = u64AddressPT - pMap->GCPtr;
3106 if (off < pMap->cb)
3107 {
3108 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3109 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3110 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3111 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3112 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3113 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3114 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3115 }
3116 }
3117 }
3118 int rc2 = VERR_INVALID_PARAMETER;
3119 if (pPT)
3120 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3121 else
3122 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3123 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3124 if (rc2 < rc && VBOX_SUCCESS(rc))
3125 rc = rc2;
3126 }
3127 }
3128 }
3129 }
3130 return rc;
3131}
3132
3133
3134/**
3135 * Dumps a PAE shadow page directory pointer table.
3136 *
3137 * @returns VBox status code (VINF_SUCCESS).
3138 * @param pVM The VM handle.
3139 * @param HCPhys The physical address of the page directory pointer table.
3140 * @param u64Address The virtual address of the page table starts.
3141 * @param cr4 The CR4, PSE is currently used.
3142 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3143 * @param cMaxDepth The maxium depth.
3144 * @param pHlp Pointer to the output functions.
3145 */
3146static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3147{
3148 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3149 if (!pPDPT)
3150 {
3151 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3152 fLongMode ? 16 : 8, u64Address, HCPhys);
3153 return VERR_INVALID_PARAMETER;
3154 }
3155
3156 int rc = VINF_SUCCESS;
3157 const unsigned c = fLongMode ? ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3158 for (unsigned i = 0; i < c; i++)
3159 {
3160 X86PDPE Pdpe = pPDPT->a[i];
3161 if (Pdpe.n.u1Present)
3162 {
3163 if (fLongMode)
3164 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3165 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3166 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3167 Pdpe.lm.u1Write ? 'W' : 'R',
3168 Pdpe.lm.u1User ? 'U' : 'S',
3169 Pdpe.lm.u1Accessed ? 'A' : '-',
3170 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3171 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3172 Pdpe.lm.u1WriteThru ? "WT" : "--",
3173 Pdpe.lm.u1CacheDisable? "CD" : "--",
3174 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3175 Pdpe.lm.u1NoExecute ? "NX" : "--",
3176 Pdpe.u & RT_BIT(9) ? '1' : '0',
3177 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3178 Pdpe.u & RT_BIT(11) ? '1' : '0',
3179 Pdpe.u & X86_PDPE_PG_MASK);
3180 else
3181 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3182 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3183 i << X86_PDPT_SHIFT,
3184 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3185 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3186 Pdpe.n.u1WriteThru ? "WT" : "--",
3187 Pdpe.n.u1CacheDisable? "CD" : "--",
3188 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3189 Pdpe.u & RT_BIT(9) ? '1' : '0',
3190 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3191 Pdpe.u & RT_BIT(11) ? '1' : '0',
3192 Pdpe.u & X86_PDPE_PG_MASK);
3193 if (cMaxDepth >= 1)
3194 {
3195 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3196 cr4, fLongMode, cMaxDepth - 1, pHlp);
3197 if (rc2 < rc && VBOX_SUCCESS(rc))
3198 rc = rc2;
3199 }
3200 }
3201 }
3202 return rc;
3203}
3204
3205
3206/**
3207 * Dumps a 32-bit shadow page table.
3208 *
3209 * @returns VBox status code (VINF_SUCCESS).
3210 * @param pVM The VM handle.
3211 * @param HCPhys The physical address of the table.
3212 * @param cr4 The CR4, PSE is currently used.
3213 * @param cMaxDepth The maxium depth.
3214 * @param pHlp Pointer to the output functions.
3215 */
3216static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3217{
3218 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3219 if (!pPML4)
3220 {
3221 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3222 return VERR_INVALID_PARAMETER;
3223 }
3224
3225 int rc = VINF_SUCCESS;
3226 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3227 {
3228 X86PML4E Pml4e = pPML4->a[i];
3229 if (Pml4e.n.u1Present)
3230 {
3231 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3232 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3233 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3234 u64Address,
3235 Pml4e.n.u1Write ? 'W' : 'R',
3236 Pml4e.n.u1User ? 'U' : 'S',
3237 Pml4e.n.u1Accessed ? 'A' : '-',
3238 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3239 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3240 Pml4e.n.u1WriteThru ? "WT" : "--",
3241 Pml4e.n.u1CacheDisable? "CD" : "--",
3242 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3243 Pml4e.n.u1NoExecute ? "NX" : "--",
3244 Pml4e.u & RT_BIT(9) ? '1' : '0',
3245 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3246 Pml4e.u & RT_BIT(11) ? '1' : '0',
3247 Pml4e.u & X86_PML4E_PG_MASK);
3248
3249 if (cMaxDepth >= 1)
3250 {
3251 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3252 if (rc2 < rc && VBOX_SUCCESS(rc))
3253 rc = rc2;
3254 }
3255 }
3256 }
3257 return rc;
3258}
3259
3260
3261/**
3262 * Dumps a 32-bit shadow page table.
3263 *
3264 * @returns VBox status code (VINF_SUCCESS).
3265 * @param pVM The VM handle.
3266 * @param pPT Pointer to the page table.
3267 * @param u32Address The virtual address this table starts at.
3268 * @param pHlp Pointer to the output functions.
3269 */
3270int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3271{
3272 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3273 {
3274 X86PTE Pte = pPT->a[i];
3275 if (Pte.n.u1Present)
3276 {
3277 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3278 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3279 u32Address + (i << X86_PT_SHIFT),
3280 Pte.n.u1Write ? 'W' : 'R',
3281 Pte.n.u1User ? 'U' : 'S',
3282 Pte.n.u1Accessed ? 'A' : '-',
3283 Pte.n.u1Dirty ? 'D' : '-',
3284 Pte.n.u1Global ? 'G' : '-',
3285 Pte.n.u1WriteThru ? "WT" : "--",
3286 Pte.n.u1CacheDisable? "CD" : "--",
3287 Pte.n.u1PAT ? "AT" : "--",
3288 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3289 Pte.u & RT_BIT(10) ? '1' : '0',
3290 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3291 Pte.u & X86_PDE_PG_MASK);
3292 }
3293 }
3294 return VINF_SUCCESS;
3295}
3296
3297
3298/**
3299 * Dumps a 32-bit shadow page directory and page tables.
3300 *
3301 * @returns VBox status code (VINF_SUCCESS).
3302 * @param pVM The VM handle.
3303 * @param cr3 The root of the hierarchy.
3304 * @param cr4 The CR4, PSE is currently used.
3305 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3306 * @param pHlp Pointer to the output functions.
3307 */
3308int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3309{
3310 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3311 if (!pPD)
3312 {
3313 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3314 return VERR_INVALID_PARAMETER;
3315 }
3316
3317 int rc = VINF_SUCCESS;
3318 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3319 {
3320 X86PDE Pde = pPD->a[i];
3321 if (Pde.n.u1Present)
3322 {
3323 const uint32_t u32Address = i << X86_PD_SHIFT;
3324 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3325 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3326 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3327 u32Address,
3328 Pde.b.u1Write ? 'W' : 'R',
3329 Pde.b.u1User ? 'U' : 'S',
3330 Pde.b.u1Accessed ? 'A' : '-',
3331 Pde.b.u1Dirty ? 'D' : '-',
3332 Pde.b.u1Global ? 'G' : '-',
3333 Pde.b.u1WriteThru ? "WT" : "--",
3334 Pde.b.u1CacheDisable? "CD" : "--",
3335 Pde.b.u1PAT ? "AT" : "--",
3336 Pde.u & RT_BIT_64(9) ? '1' : '0',
3337 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3338 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3339 Pde.u & X86_PDE4M_PG_MASK);
3340 else
3341 {
3342 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3343 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3344 u32Address,
3345 Pde.n.u1Write ? 'W' : 'R',
3346 Pde.n.u1User ? 'U' : 'S',
3347 Pde.n.u1Accessed ? 'A' : '-',
3348 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3349 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3350 Pde.n.u1WriteThru ? "WT" : "--",
3351 Pde.n.u1CacheDisable? "CD" : "--",
3352 Pde.u & RT_BIT_64(9) ? '1' : '0',
3353 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3354 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3355 Pde.u & X86_PDE_PG_MASK);
3356 if (cMaxDepth >= 1)
3357 {
3358 /** @todo what about using the page pool for mapping PTs? */
3359 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3360 PX86PT pPT = NULL;
3361 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3362 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3363 else
3364 {
3365 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3366 if (u32Address - pMap->GCPtr < pMap->cb)
3367 {
3368 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3369 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3370 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3371 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3372 pPT = pMap->aPTs[iPDE].pPTR3;
3373 }
3374 }
3375 int rc2 = VERR_INVALID_PARAMETER;
3376 if (pPT)
3377 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3378 else
3379 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3380 if (rc2 < rc && VBOX_SUCCESS(rc))
3381 rc = rc2;
3382 }
3383 }
3384 }
3385 }
3386
3387 return rc;
3388}
3389
3390
3391/**
3392 * Dumps a 32-bit shadow page table.
3393 *
3394 * @returns VBox status code (VINF_SUCCESS).
3395 * @param pVM The VM handle.
3396 * @param pPT Pointer to the page table.
3397 * @param u32Address The virtual address this table starts at.
3398 * @param PhysSearch Address to search for.
3399 */
3400int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3401{
3402 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3403 {
3404 X86PTE Pte = pPT->a[i];
3405 if (Pte.n.u1Present)
3406 {
3407 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3408 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3409 u32Address + (i << X86_PT_SHIFT),
3410 Pte.n.u1Write ? 'W' : 'R',
3411 Pte.n.u1User ? 'U' : 'S',
3412 Pte.n.u1Accessed ? 'A' : '-',
3413 Pte.n.u1Dirty ? 'D' : '-',
3414 Pte.n.u1Global ? 'G' : '-',
3415 Pte.n.u1WriteThru ? "WT" : "--",
3416 Pte.n.u1CacheDisable? "CD" : "--",
3417 Pte.n.u1PAT ? "AT" : "--",
3418 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3419 Pte.u & RT_BIT(10) ? '1' : '0',
3420 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3421 Pte.u & X86_PDE_PG_MASK));
3422
3423 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3424 {
3425 uint64_t fPageShw = 0;
3426 RTHCPHYS pPhysHC = 0;
3427
3428 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3429 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3430 }
3431 }
3432 }
3433 return VINF_SUCCESS;
3434}
3435
3436
3437/**
3438 * Dumps a 32-bit guest page directory and page tables.
3439 *
3440 * @returns VBox status code (VINF_SUCCESS).
3441 * @param pVM The VM handle.
3442 * @param cr3 The root of the hierarchy.
3443 * @param cr4 The CR4, PSE is currently used.
3444 * @param PhysSearch Address to search for.
3445 */
3446PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3447{
3448 bool fLongMode = false;
3449 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3450 PX86PD pPD = 0;
3451
3452 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3453 if (VBOX_FAILURE(rc) || !pPD)
3454 {
3455 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3456 return VERR_INVALID_PARAMETER;
3457 }
3458
3459 Log(("cr3=%08x cr4=%08x%s\n"
3460 "%-*s P - Present\n"
3461 "%-*s | R/W - Read (0) / Write (1)\n"
3462 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3463 "%-*s | | | A - Accessed\n"
3464 "%-*s | | | | D - Dirty\n"
3465 "%-*s | | | | | G - Global\n"
3466 "%-*s | | | | | | WT - Write thru\n"
3467 "%-*s | | | | | | | CD - Cache disable\n"
3468 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3469 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3470 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3471 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3472 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3473 "%-*s Level | | | | | | | | | | | | Page\n"
3474 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3475 - W U - - - -- -- -- -- -- 010 */
3476 , cr3, cr4, fLongMode ? " Long Mode" : "",
3477 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3478 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3479
3480 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3481 {
3482 X86PDE Pde = pPD->a[i];
3483 if (Pde.n.u1Present)
3484 {
3485 const uint32_t u32Address = i << X86_PD_SHIFT;
3486
3487 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3488 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3489 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3490 u32Address,
3491 Pde.b.u1Write ? 'W' : 'R',
3492 Pde.b.u1User ? 'U' : 'S',
3493 Pde.b.u1Accessed ? 'A' : '-',
3494 Pde.b.u1Dirty ? 'D' : '-',
3495 Pde.b.u1Global ? 'G' : '-',
3496 Pde.b.u1WriteThru ? "WT" : "--",
3497 Pde.b.u1CacheDisable? "CD" : "--",
3498 Pde.b.u1PAT ? "AT" : "--",
3499 Pde.u & RT_BIT(9) ? '1' : '0',
3500 Pde.u & RT_BIT(10) ? '1' : '0',
3501 Pde.u & RT_BIT(11) ? '1' : '0',
3502 Pde.u & X86_PDE4M_PG_MASK));
3503 /** @todo PhysSearch */
3504 else
3505 {
3506 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3507 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3508 u32Address,
3509 Pde.n.u1Write ? 'W' : 'R',
3510 Pde.n.u1User ? 'U' : 'S',
3511 Pde.n.u1Accessed ? 'A' : '-',
3512 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3513 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3514 Pde.n.u1WriteThru ? "WT" : "--",
3515 Pde.n.u1CacheDisable? "CD" : "--",
3516 Pde.u & RT_BIT(9) ? '1' : '0',
3517 Pde.u & RT_BIT(10) ? '1' : '0',
3518 Pde.u & RT_BIT(11) ? '1' : '0',
3519 Pde.u & X86_PDE_PG_MASK));
3520 ////if (cMaxDepth >= 1)
3521 {
3522 /** @todo what about using the page pool for mapping PTs? */
3523 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3524 PX86PT pPT = NULL;
3525
3526 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3527
3528 int rc2 = VERR_INVALID_PARAMETER;
3529 if (pPT)
3530 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3531 else
3532 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3533 if (rc2 < rc && VBOX_SUCCESS(rc))
3534 rc = rc2;
3535 }
3536 }
3537 }
3538 }
3539
3540 return rc;
3541}
3542
3543
3544/**
3545 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3546 *
3547 * @returns VBox status code (VINF_SUCCESS).
3548 * @param pVM The VM handle.
3549 * @param cr3 The root of the hierarchy.
3550 * @param cr4 The cr4, only PAE and PSE is currently used.
3551 * @param fLongMode Set if long mode, false if not long mode.
3552 * @param cMaxDepth Number of levels to dump.
3553 * @param pHlp Pointer to the output functions.
3554 */
3555PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3556{
3557 if (!pHlp)
3558 pHlp = DBGFR3InfoLogHlp();
3559 if (!cMaxDepth)
3560 return VINF_SUCCESS;
3561 const unsigned cch = fLongMode ? 16 : 8;
3562 pHlp->pfnPrintf(pHlp,
3563 "cr3=%08x cr4=%08x%s\n"
3564 "%-*s P - Present\n"
3565 "%-*s | R/W - Read (0) / Write (1)\n"
3566 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3567 "%-*s | | | A - Accessed\n"
3568 "%-*s | | | | D - Dirty\n"
3569 "%-*s | | | | | G - Global\n"
3570 "%-*s | | | | | | WT - Write thru\n"
3571 "%-*s | | | | | | | CD - Cache disable\n"
3572 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3573 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3574 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3575 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3576 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3577 "%-*s Level | | | | | | | | | | | | Page\n"
3578 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3579 - W U - - - -- -- -- -- -- 010 */
3580 , cr3, cr4, fLongMode ? " Long Mode" : "",
3581 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3582 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3583 if (cr4 & X86_CR4_PAE)
3584 {
3585 if (fLongMode)
3586 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3587 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3588 }
3589 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3590}
3591
3592
3593
3594#ifdef VBOX_WITH_DEBUGGER
3595/**
3596 * The '.pgmram' command.
3597 *
3598 * @returns VBox status.
3599 * @param pCmd Pointer to the command descriptor (as registered).
3600 * @param pCmdHlp Pointer to command helper functions.
3601 * @param pVM Pointer to the current VM (if any).
3602 * @param paArgs Pointer to (readonly) array of arguments.
3603 * @param cArgs Number of arguments in the array.
3604 */
3605static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3606{
3607 /*
3608 * Validate input.
3609 */
3610 if (!pVM)
3611 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3612 if (!pVM->pgm.s.pRamRangesGC)
3613 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3614
3615 /*
3616 * Dump the ranges.
3617 */
3618 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3619 PPGMRAMRANGE pRam;
3620 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3621 {
3622 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3623 "%VGp - %VGp %p\n",
3624 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
3625 if (VBOX_FAILURE(rc))
3626 return rc;
3627 }
3628
3629 return VINF_SUCCESS;
3630}
3631
3632
3633/**
3634 * The '.pgmmap' command.
3635 *
3636 * @returns VBox status.
3637 * @param pCmd Pointer to the command descriptor (as registered).
3638 * @param pCmdHlp Pointer to command helper functions.
3639 * @param pVM Pointer to the current VM (if any).
3640 * @param paArgs Pointer to (readonly) array of arguments.
3641 * @param cArgs Number of arguments in the array.
3642 */
3643static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3644{
3645 /*
3646 * Validate input.
3647 */
3648 if (!pVM)
3649 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3650 if (!pVM->pgm.s.pMappingsR3)
3651 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
3652
3653 /*
3654 * Print message about the fixedness of the mappings.
3655 */
3656 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
3657 if (VBOX_FAILURE(rc))
3658 return rc;
3659
3660 /*
3661 * Dump the ranges.
3662 */
3663 PPGMMAPPING pCur;
3664 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
3665 {
3666 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3667 "%08x - %08x %s\n",
3668 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
3669 if (VBOX_FAILURE(rc))
3670 return rc;
3671 }
3672
3673 return VINF_SUCCESS;
3674}
3675
3676
3677/**
3678 * The '.pgmsync' command.
3679 *
3680 * @returns VBox status.
3681 * @param pCmd Pointer to the command descriptor (as registered).
3682 * @param pCmdHlp Pointer to command helper functions.
3683 * @param pVM Pointer to the current VM (if any).
3684 * @param paArgs Pointer to (readonly) array of arguments.
3685 * @param cArgs Number of arguments in the array.
3686 */
3687static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3688{
3689 /*
3690 * Validate input.
3691 */
3692 if (!pVM)
3693 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3694
3695 /*
3696 * Force page directory sync.
3697 */
3698 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3699
3700 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3701 if (VBOX_FAILURE(rc))
3702 return rc;
3703
3704 return VINF_SUCCESS;
3705}
3706
3707
3708/**
3709 * The '.pgmsyncalways' command.
3710 *
3711 * @returns VBox status.
3712 * @param pCmd Pointer to the command descriptor (as registered).
3713 * @param pCmdHlp Pointer to command helper functions.
3714 * @param pVM Pointer to the current VM (if any).
3715 * @param paArgs Pointer to (readonly) array of arguments.
3716 * @param cArgs Number of arguments in the array.
3717 */
3718static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3719{
3720 /*
3721 * Validate input.
3722 */
3723 if (!pVM)
3724 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3725
3726 /*
3727 * Force page directory sync.
3728 */
3729 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3730 {
3731 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3732 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3733 }
3734 else
3735 {
3736 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3737 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3738 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3739 }
3740}
3741
3742#endif
3743
3744/**
3745 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3746 */
3747typedef struct PGMCHECKINTARGS
3748{
3749 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3750 PPGMPHYSHANDLER pPrevPhys;
3751 PPGMVIRTHANDLER pPrevVirt;
3752 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3753 PVM pVM;
3754} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3755
3756/**
3757 * Validate a node in the physical handler tree.
3758 *
3759 * @returns 0 on if ok, other wise 1.
3760 * @param pNode The handler node.
3761 * @param pvUser pVM.
3762 */
3763static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3764{
3765 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3766 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3767 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3768 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3769 AssertReleaseMsg( !pArgs->pPrevPhys
3770 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3771 ("pPrevPhys=%p %VGp-%VGp %s\n"
3772 " pCur=%p %VGp-%VGp %s\n",
3773 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3774 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3775 pArgs->pPrevPhys = pCur;
3776 return 0;
3777}
3778
3779
3780/**
3781 * Validate a node in the virtual handler tree.
3782 *
3783 * @returns 0 on if ok, other wise 1.
3784 * @param pNode The handler node.
3785 * @param pvUser pVM.
3786 */
3787static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
3788{
3789 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3790 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
3791 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3792 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3793 AssertReleaseMsg( !pArgs->pPrevVirt
3794 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
3795 ("pPrevVirt=%p %VGv-%VGv %s\n"
3796 " pCur=%p %VGv-%VGv %s\n",
3797 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
3798 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3799 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
3800 {
3801 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
3802 ("pCur=%p %VGv-%VGv %s\n"
3803 "iPage=%d offVirtHandle=%#x expected %#x\n",
3804 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
3805 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
3806 }
3807 pArgs->pPrevVirt = pCur;
3808 return 0;
3809}
3810
3811
3812/**
3813 * Validate a node in the virtual handler tree.
3814 *
3815 * @returns 0 on if ok, other wise 1.
3816 * @param pNode The handler node.
3817 * @param pvUser pVM.
3818 */
3819static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3820{
3821 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3822 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
3823 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
3824 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
3825 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
3826 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3827 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3828 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
3829 " pCur=%p %VGp-%VGp\n",
3830 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3831 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3832 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
3833 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
3834 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
3835 " pCur=%p %VGp-%VGp\n",
3836 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
3837 pCur, pCur->Core.Key, pCur->Core.KeyLast));
3838 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
3839 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3840 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3841 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3842 {
3843 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
3844 for (;;)
3845 {
3846 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3847 AssertReleaseMsg(pCur2 != pCur,
3848 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3849 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
3850 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
3851 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3852 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3853 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3854 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3855 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
3856 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3857 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3858 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3859 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3860 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
3861 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3862 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3863 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
3864 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
3865 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3866 break;
3867 }
3868 }
3869
3870 pArgs->pPrevPhys2Virt = pCur;
3871 return 0;
3872}
3873
3874
3875/**
3876 * Perform an integrity check on the PGM component.
3877 *
3878 * @returns VINF_SUCCESS if everything is fine.
3879 * @returns VBox error status after asserting on integrity breach.
3880 * @param pVM The VM handle.
3881 */
3882PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
3883{
3884 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
3885
3886 /*
3887 * Check the trees.
3888 */
3889 int cErrors = 0;
3890 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
3891 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
3892 PGMCHECKINTARGS Args = s_LeftToRight;
3893 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3894 Args = s_RightToLeft;
3895 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
3896 Args = s_LeftToRight;
3897 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3898 Args = s_RightToLeft;
3899 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3900 Args = s_LeftToRight;
3901 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3902 Args = s_RightToLeft;
3903 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
3904 Args = s_LeftToRight;
3905 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
3906 Args = s_RightToLeft;
3907 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
3908
3909 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
3910}
3911
3912
3913/**
3914 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
3915 *
3916 * @returns VBox status code.
3917 * @param pVM VM handle.
3918 * @param fEnable Enable or disable shadow mappings
3919 */
3920PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
3921{
3922 pVM->pgm.s.fDisableMappings = !fEnable;
3923
3924 uint32_t cb;
3925 int rc = PGMR3MappingsSize(pVM, &cb);
3926 AssertRCReturn(rc, rc);
3927
3928 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
3929 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
3930 AssertRCReturn(rc, rc);
3931
3932 return VINF_SUCCESS;
3933}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette