VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 9122

Last change on this file since 9122 was 9092, checked in by vboxsync, 17 years ago

We need a real shadow paging backend for PGMHandlerPhysicalPageTempOff (e.g. VGA optimization).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 192.7 KB
Line 
1/* $Id: PGM.cpp 9092 2008-05-23 16:03:14Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635#endif
636
637
638/*******************************************************************************
639* Global Variables *
640*******************************************************************************/
641#ifdef VBOX_WITH_DEBUGGER
642/** Command descriptors. */
643static const DBGCCMD g_aCmds[] =
644{
645 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
646 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
647 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
648 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
649 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
650};
651#endif
652
653
654
655
656/*
657 * Shadow - 32-bit mode
658 */
659#define PGM_SHW_TYPE PGM_TYPE_32BIT
660#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
661#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
662#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
663#include "PGMShw.h"
664
665/* Guest - real mode */
666#define PGM_GST_TYPE PGM_TYPE_REAL
667#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
668#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
669#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
670#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
671#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
672#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
673#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
674#include "PGMGst.h"
675#include "PGMBth.h"
676#undef BTH_PGMPOOLKIND_PT_FOR_PT
677#undef PGM_BTH_NAME
678#undef PGM_BTH_NAME_GC_STR
679#undef PGM_BTH_NAME_R0_STR
680#undef PGM_GST_TYPE
681#undef PGM_GST_NAME
682#undef PGM_GST_NAME_GC_STR
683#undef PGM_GST_NAME_R0_STR
684
685/* Guest - protected mode */
686#define PGM_GST_TYPE PGM_TYPE_PROT
687#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
688#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
689#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
690#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
691#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
692#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
693#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
694#include "PGMGst.h"
695#include "PGMBth.h"
696#undef BTH_PGMPOOLKIND_PT_FOR_PT
697#undef PGM_BTH_NAME
698#undef PGM_BTH_NAME_GC_STR
699#undef PGM_BTH_NAME_R0_STR
700#undef PGM_GST_TYPE
701#undef PGM_GST_NAME
702#undef PGM_GST_NAME_GC_STR
703#undef PGM_GST_NAME_R0_STR
704
705/* Guest - 32-bit mode */
706#define PGM_GST_TYPE PGM_TYPE_32BIT
707#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
708#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
709#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
710#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
711#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
712#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
713#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
714#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
715#include "PGMGst.h"
716#include "PGMBth.h"
717#undef BTH_PGMPOOLKIND_PT_FOR_BIG
718#undef BTH_PGMPOOLKIND_PT_FOR_PT
719#undef PGM_BTH_NAME
720#undef PGM_BTH_NAME_GC_STR
721#undef PGM_BTH_NAME_R0_STR
722#undef PGM_GST_TYPE
723#undef PGM_GST_NAME
724#undef PGM_GST_NAME_GC_STR
725#undef PGM_GST_NAME_R0_STR
726
727#undef PGM_SHW_TYPE
728#undef PGM_SHW_NAME
729#undef PGM_SHW_NAME_GC_STR
730#undef PGM_SHW_NAME_R0_STR
731
732
733/*
734 * Shadow - PAE mode
735 */
736#define PGM_SHW_TYPE PGM_TYPE_PAE
737#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
738#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
739#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
740#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
741#include "PGMShw.h"
742
743/* Guest - real mode */
744#define PGM_GST_TYPE PGM_TYPE_REAL
745#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
746#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
747#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
748#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
749#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
750#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
751#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
752#include "PGMBth.h"
753#undef BTH_PGMPOOLKIND_PT_FOR_PT
754#undef PGM_BTH_NAME
755#undef PGM_BTH_NAME_GC_STR
756#undef PGM_BTH_NAME_R0_STR
757#undef PGM_GST_TYPE
758#undef PGM_GST_NAME
759#undef PGM_GST_NAME_GC_STR
760#undef PGM_GST_NAME_R0_STR
761
762/* Guest - protected mode */
763#define PGM_GST_TYPE PGM_TYPE_PROT
764#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
765#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
766#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
767#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
768#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
769#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
770#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
771#include "PGMBth.h"
772#undef BTH_PGMPOOLKIND_PT_FOR_PT
773#undef PGM_BTH_NAME
774#undef PGM_BTH_NAME_GC_STR
775#undef PGM_BTH_NAME_R0_STR
776#undef PGM_GST_TYPE
777#undef PGM_GST_NAME
778#undef PGM_GST_NAME_GC_STR
779#undef PGM_GST_NAME_R0_STR
780
781/* Guest - 32-bit mode */
782#define PGM_GST_TYPE PGM_TYPE_32BIT
783#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
784#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
785#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
786#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
787#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
788#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
789#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
790#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
791#include "PGMBth.h"
792#undef BTH_PGMPOOLKIND_PT_FOR_BIG
793#undef BTH_PGMPOOLKIND_PT_FOR_PT
794#undef PGM_BTH_NAME
795#undef PGM_BTH_NAME_GC_STR
796#undef PGM_BTH_NAME_R0_STR
797#undef PGM_GST_TYPE
798#undef PGM_GST_NAME
799#undef PGM_GST_NAME_GC_STR
800#undef PGM_GST_NAME_R0_STR
801
802/* Guest - PAE mode */
803#define PGM_GST_TYPE PGM_TYPE_PAE
804#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
805#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
806#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
807#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
808#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
809#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
810#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
811#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
812#include "PGMGst.h"
813#include "PGMBth.h"
814#undef BTH_PGMPOOLKIND_PT_FOR_BIG
815#undef BTH_PGMPOOLKIND_PT_FOR_PT
816#undef PGM_BTH_NAME
817#undef PGM_BTH_NAME_GC_STR
818#undef PGM_BTH_NAME_R0_STR
819#undef PGM_GST_TYPE
820#undef PGM_GST_NAME
821#undef PGM_GST_NAME_GC_STR
822#undef PGM_GST_NAME_R0_STR
823
824#undef PGM_SHW_TYPE
825#undef PGM_SHW_NAME
826#undef PGM_SHW_NAME_GC_STR
827#undef PGM_SHW_NAME_R0_STR
828
829
830/*
831 * Shadow - AMD64 mode
832 */
833#define PGM_SHW_TYPE PGM_TYPE_AMD64
834#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
835#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
836#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
837#include "PGMShw.h"
838
839/* Guest - AMD64 mode */
840#define PGM_GST_TYPE PGM_TYPE_AMD64
841#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
842#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
843#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
844#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
845#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
846#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
847#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
848#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
849#include "PGMGst.h"
850#include "PGMBth.h"
851#undef BTH_PGMPOOLKIND_PT_FOR_BIG
852#undef BTH_PGMPOOLKIND_PT_FOR_PT
853#undef PGM_BTH_NAME
854#undef PGM_BTH_NAME_GC_STR
855#undef PGM_BTH_NAME_R0_STR
856#undef PGM_GST_TYPE
857#undef PGM_GST_NAME
858#undef PGM_GST_NAME_GC_STR
859#undef PGM_GST_NAME_R0_STR
860
861#undef PGM_SHW_TYPE
862#undef PGM_SHW_NAME
863#undef PGM_SHW_NAME_GC_STR
864#undef PGM_SHW_NAME_R0_STR
865
866/*
867 * Shadow - Nested paging mode
868 */
869#define PGM_SHW_TYPE PGM_TYPE_NESTED
870#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
871#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
872#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
873#include "PGMShw.h"
874
875/* Guest - real mode */
876#define PGM_GST_TYPE PGM_TYPE_REAL
877#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
878#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
879#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
880#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
881#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
882#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
883#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
884#include "PGMBth.h"
885#undef BTH_PGMPOOLKIND_PT_FOR_PT
886#undef PGM_BTH_NAME
887#undef PGM_BTH_NAME_GC_STR
888#undef PGM_BTH_NAME_R0_STR
889#undef PGM_GST_TYPE
890#undef PGM_GST_NAME
891#undef PGM_GST_NAME_GC_STR
892#undef PGM_GST_NAME_R0_STR
893
894/* Guest - protected mode */
895#define PGM_GST_TYPE PGM_TYPE_PROT
896#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
897#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
898#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
899#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
900#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
901#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
902#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
903#include "PGMBth.h"
904#undef BTH_PGMPOOLKIND_PT_FOR_PT
905#undef PGM_BTH_NAME
906#undef PGM_BTH_NAME_GC_STR
907#undef PGM_BTH_NAME_R0_STR
908#undef PGM_GST_TYPE
909#undef PGM_GST_NAME
910#undef PGM_GST_NAME_GC_STR
911#undef PGM_GST_NAME_R0_STR
912
913/* Guest - 32-bit mode */
914#define PGM_GST_TYPE PGM_TYPE_32BIT
915#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
916#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
917#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
918#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
919#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
920#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
921#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
922#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
923#include "PGMBth.h"
924#undef BTH_PGMPOOLKIND_PT_FOR_BIG
925#undef BTH_PGMPOOLKIND_PT_FOR_PT
926#undef PGM_BTH_NAME
927#undef PGM_BTH_NAME_GC_STR
928#undef PGM_BTH_NAME_R0_STR
929#undef PGM_GST_TYPE
930#undef PGM_GST_NAME
931#undef PGM_GST_NAME_GC_STR
932#undef PGM_GST_NAME_R0_STR
933
934/* Guest - PAE mode */
935#define PGM_GST_TYPE PGM_TYPE_PAE
936#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
937#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
938#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
939#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
940#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
941#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
942#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
943#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
944#include "PGMBth.h"
945#undef BTH_PGMPOOLKIND_PT_FOR_BIG
946#undef BTH_PGMPOOLKIND_PT_FOR_PT
947#undef PGM_BTH_NAME
948#undef PGM_BTH_NAME_GC_STR
949#undef PGM_BTH_NAME_R0_STR
950#undef PGM_GST_TYPE
951#undef PGM_GST_NAME
952#undef PGM_GST_NAME_GC_STR
953#undef PGM_GST_NAME_R0_STR
954
955/* Guest - AMD64 mode */
956#define PGM_GST_TYPE PGM_TYPE_AMD64
957#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
958#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
959#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
960#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
961#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
962#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
963#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
964#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
965#include "PGMBth.h"
966#undef BTH_PGMPOOLKIND_PT_FOR_BIG
967#undef BTH_PGMPOOLKIND_PT_FOR_PT
968#undef PGM_BTH_NAME
969#undef PGM_BTH_NAME_GC_STR
970#undef PGM_BTH_NAME_R0_STR
971#undef PGM_GST_TYPE
972#undef PGM_GST_NAME
973#undef PGM_GST_NAME_GC_STR
974#undef PGM_GST_NAME_R0_STR
975
976#undef PGM_SHW_TYPE
977#undef PGM_SHW_NAME
978#undef PGM_SHW_NAME_GC_STR
979#undef PGM_SHW_NAME_R0_STR
980
981
982/**
983 * Initiates the paging of VM.
984 *
985 * @returns VBox status code.
986 * @param pVM Pointer to VM structure.
987 */
988PGMR3DECL(int) PGMR3Init(PVM pVM)
989{
990 LogFlow(("PGMR3Init:\n"));
991
992 /*
993 * Assert alignment and sizes.
994 */
995 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
996
997 /*
998 * Init the structure.
999 */
1000 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1001 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1002 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1003 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1004 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1005 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1006 pVM->pgm.s.fA20Enabled = true;
1007 pVM->pgm.s.pGstPaePDPTHC = NULL;
1008 pVM->pgm.s.pGstPaePDPTGC = 0;
1009 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1010 {
1011 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1012 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1013 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1014 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1015 }
1016
1017#ifdef VBOX_STRICT
1018 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1019#endif
1020
1021 /*
1022 * Get the configured RAM size - to estimate saved state size.
1023 */
1024 uint64_t cbRam;
1025 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1026 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1027 cbRam = pVM->pgm.s.cbRamSize = 0;
1028 else if (VBOX_SUCCESS(rc))
1029 {
1030 if (cbRam < PAGE_SIZE)
1031 cbRam = 0;
1032 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1033 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1034 }
1035 else
1036 {
1037 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1038 return rc;
1039 }
1040
1041 /*
1042 * Register saved state data unit.
1043 */
1044 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1045 NULL, pgmR3Save, NULL,
1046 NULL, pgmR3Load, NULL);
1047 if (VBOX_FAILURE(rc))
1048 return rc;
1049
1050 /*
1051 * Initialize the PGM critical section and flush the phys TLBs
1052 */
1053 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1054 AssertRCReturn(rc, rc);
1055
1056 PGMR3PhysChunkInvalidateTLB(pVM);
1057 PGMPhysInvalidatePageR3MapTLB(pVM);
1058 PGMPhysInvalidatePageR0MapTLB(pVM);
1059 PGMPhysInvalidatePageGCMapTLB(pVM);
1060
1061 /*
1062 * Trees
1063 */
1064 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1065 if (VBOX_SUCCESS(rc))
1066 {
1067 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1068
1069 /*
1070 * Alocate the zero page.
1071 */
1072 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1073 }
1074 if (VBOX_SUCCESS(rc))
1075 {
1076 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3);
1077 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1078 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1079 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1080 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1081
1082 /*
1083 * Init the paging.
1084 */
1085 rc = pgmR3InitPaging(pVM);
1086 }
1087 if (VBOX_SUCCESS(rc))
1088 {
1089 /*
1090 * Init the page pool.
1091 */
1092 rc = pgmR3PoolInit(pVM);
1093 }
1094 if (VBOX_SUCCESS(rc))
1095 {
1096 /*
1097 * Info & statistics
1098 */
1099 DBGFR3InfoRegisterInternal(pVM, "mode",
1100 "Shows the current paging mode. "
1101 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1102 pgmR3InfoMode);
1103 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1104 "Dumps all the entries in the top level paging table. No arguments.",
1105 pgmR3InfoCr3);
1106 DBGFR3InfoRegisterInternal(pVM, "phys",
1107 "Dumps all the physical address ranges. No arguments.",
1108 pgmR3PhysInfo);
1109 DBGFR3InfoRegisterInternal(pVM, "handlers",
1110 "Dumps physical, virtual and hyper virtual handlers. "
1111 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1112 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1113 pgmR3InfoHandlers);
1114 DBGFR3InfoRegisterInternal(pVM, "mappings",
1115 "Dumps guest mappings.",
1116 pgmR3MapInfo);
1117
1118 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1119#ifdef VBOX_WITH_STATISTICS
1120 pgmR3InitStats(pVM);
1121#endif
1122#ifdef VBOX_WITH_DEBUGGER
1123 /*
1124 * Debugger commands.
1125 */
1126 static bool fRegisteredCmds = false;
1127 if (!fRegisteredCmds)
1128 {
1129 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1130 if (VBOX_SUCCESS(rc))
1131 fRegisteredCmds = true;
1132 }
1133#endif
1134 return VINF_SUCCESS;
1135 }
1136
1137 /* Almost no cleanup necessary, MM frees all memory. */
1138 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1139
1140 return rc;
1141}
1142
1143
1144/**
1145 * Init paging.
1146 *
1147 * Since we need to check what mode the host is operating in before we can choose
1148 * the right paging functions for the host we have to delay this until R0 has
1149 * been initialized.
1150 *
1151 * @returns VBox status code.
1152 * @param pVM VM handle.
1153 */
1154static int pgmR3InitPaging(PVM pVM)
1155{
1156 /*
1157 * Force a recalculation of modes and switcher so everyone gets notified.
1158 */
1159 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1160 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1161 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1162
1163 /*
1164 * Allocate static mapping space for whatever the cr3 register
1165 * points to and in the case of PAE mode to the 4 PDs.
1166 */
1167 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1168 if (VBOX_FAILURE(rc))
1169 {
1170 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1171 return rc;
1172 }
1173 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1174
1175 /*
1176 * Allocate pages for the three possible intermediate contexts
1177 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1178 * for the sake of simplicity. The AMD64 uses the PAE for the
1179 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1180 *
1181 * We assume that two page tables will be enought for the core code
1182 * mappings (HC virtual and identity).
1183 */
1184 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1185 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1186 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1187 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1188 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1189 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1190 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1191 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1192 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1193 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1194 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1195 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1196 if ( !pVM->pgm.s.pInterPD
1197 || !pVM->pgm.s.apInterPTs[0]
1198 || !pVM->pgm.s.apInterPTs[1]
1199 || !pVM->pgm.s.apInterPaePTs[0]
1200 || !pVM->pgm.s.apInterPaePTs[1]
1201 || !pVM->pgm.s.apInterPaePDs[0]
1202 || !pVM->pgm.s.apInterPaePDs[1]
1203 || !pVM->pgm.s.apInterPaePDs[2]
1204 || !pVM->pgm.s.apInterPaePDs[3]
1205 || !pVM->pgm.s.pInterPaePDPT
1206 || !pVM->pgm.s.pInterPaePDPT64
1207 || !pVM->pgm.s.pInterPaePML4)
1208 {
1209 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1210 return VERR_NO_PAGE_MEMORY;
1211 }
1212
1213 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1214 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1215 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1216 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1217 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1218 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1219
1220 /*
1221 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1222 */
1223 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1224 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1225 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1226
1227 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1228 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1229
1230 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1231 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1232 {
1233 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1234 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1235 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1236 }
1237
1238 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1239 {
1240 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1241 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1242 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1243 }
1244
1245 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1246 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1247 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1248 | HCPhysInterPaePDPT64;
1249
1250 /*
1251 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1252 * We allocate pages for all three posibilities to in order to simplify mappings and
1253 * avoid resource failure during mode switches. So, we need to cover all levels of the
1254 * of the first 4GB down to PD level.
1255 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1256 */
1257 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1258 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1259 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1260 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1261 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1262 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1263 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1264 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1265 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1266 pVM->pgm.s.pHCPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1267 if ( !pVM->pgm.s.pHC32BitPD
1268 || !pVM->pgm.s.apHCPaePDs[0]
1269 || !pVM->pgm.s.apHCPaePDs[1]
1270 || !pVM->pgm.s.apHCPaePDs[2]
1271 || !pVM->pgm.s.apHCPaePDs[3]
1272 || !pVM->pgm.s.pHCPaePDPT
1273 || !pVM->pgm.s.pHCPaePML4)
1274 {
1275 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1276 return VERR_NO_PAGE_MEMORY;
1277 }
1278
1279 /* get physical addresses. */
1280 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1281 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1282 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1283 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1284 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1285 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1286 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1287 pVM->pgm.s.HCPhysPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePML4);
1288
1289 /*
1290 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1291 */
1292 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1293
1294 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1295 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1296 {
1297 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1298 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1299 /* The flags will be corrected when entering and leaving long mode. */
1300 }
1301
1302 ASMMemZero32(pVM->pgm.s.pHCPaePML4, PAGE_SIZE);
1303 pVM->pgm.s.pHCPaePML4->a[0].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_A
1304 | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.HCPhysPaePDPT;
1305
1306 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1307
1308 /*
1309 * Initialize paging workers and mode from current host mode
1310 * and the guest running in real mode.
1311 */
1312 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1313 switch (pVM->pgm.s.enmHostMode)
1314 {
1315 case SUPPAGINGMODE_32_BIT:
1316 case SUPPAGINGMODE_32_BIT_GLOBAL:
1317 case SUPPAGINGMODE_PAE:
1318 case SUPPAGINGMODE_PAE_GLOBAL:
1319 case SUPPAGINGMODE_PAE_NX:
1320 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1321 break;
1322
1323 case SUPPAGINGMODE_AMD64:
1324 case SUPPAGINGMODE_AMD64_GLOBAL:
1325 case SUPPAGINGMODE_AMD64_NX:
1326 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1327#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1328 if (ARCH_BITS != 64)
1329 {
1330 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1331 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1332 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1333 }
1334#endif
1335 break;
1336 default:
1337 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1338 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1339 }
1340 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1341 if (VBOX_SUCCESS(rc))
1342 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1343 if (VBOX_SUCCESS(rc))
1344 {
1345 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1346#if HC_ARCH_BITS == 64
1347LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1348 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1349 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1350LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1351 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1352LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1353 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1354 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1355 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1356 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1357#endif
1358
1359 return VINF_SUCCESS;
1360 }
1361
1362 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1363 return rc;
1364}
1365
1366
1367#ifdef VBOX_WITH_STATISTICS
1368/**
1369 * Init statistics
1370 */
1371static void pgmR3InitStats(PVM pVM)
1372{
1373 PPGM pPGM = &pVM->pgm.s;
1374 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1375 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1376 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1377 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1378 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1379 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1380 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1381 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1382 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1383 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1384 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1385 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1386 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1387 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1388 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1389 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1390 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1391 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1392 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1393 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1394 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1395 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1396
1397 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1398 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1399 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1400 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1401 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1402 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1403 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1404 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1405 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1406 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1407 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1408 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1409 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1410 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1411 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1412 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1413 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1414 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1415 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1416
1417 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1418 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1419 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1420 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1421 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1422 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1423 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1424 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1425
1426 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1427 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1428 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1429 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1430 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1431 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1432 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1433
1434 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1435 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1436 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1437 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1438 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1439 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1440 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1441
1442 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1443 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1444
1445 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1446 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1447 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1448
1449 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1450 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1451
1452 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1453 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1454
1455 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1456 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1457
1458 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1459 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1460 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1461
1462 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1463 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1464 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1465 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1466 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1467 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1468 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1469 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1470 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1471 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1472 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1473
1474 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1475 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1476 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1477 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1478 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1479 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1480 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1481
1482 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1483 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1484 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1485 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1486
1487 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1488 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1489 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1490 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1491 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1492
1493 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1494 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1495 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1496 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1497 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1498 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1499 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1500 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1501 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1502 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1503 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1504 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1505
1506 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1507 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1508 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1509 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1510 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1511 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1512 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1513 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1514 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1515 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1516 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1517 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1518
1519 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1520 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1521 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1522
1523 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1524 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1525
1526 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1527 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1528 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1529 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1530
1531 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1532 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1533
1534 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1535 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1536 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1537 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1538 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1539 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1540 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1541 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1542 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1543 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1544 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1545 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1546 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1547
1548#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1549 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1550 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1551 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1552 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1553 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1554 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1555#endif
1556
1557 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1558 {
1559 /** @todo r=bird: We need a STAMR3RegisterF()! */
1560 char szName[32];
1561
1562 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1563 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1564 AssertRC(rc);
1565
1566 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1567 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1568 AssertRC(rc);
1569
1570 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1571 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1572 AssertRC(rc);
1573 }
1574}
1575#endif /* VBOX_WITH_STATISTICS */
1576
1577/**
1578 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1579 *
1580 * The dynamic mapping area will also be allocated and initialized at this
1581 * time. We could allocate it during PGMR3Init of course, but the mapping
1582 * wouldn't be allocated at that time preventing us from setting up the
1583 * page table entries with the dummy page.
1584 *
1585 * @returns VBox status code.
1586 * @param pVM VM handle.
1587 */
1588PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1589{
1590 /*
1591 * Reserve space for mapping the paging pages into guest context.
1592 */
1593 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &pVM->pgm.s.pGC32BitPD);
1594 AssertRCReturn(rc, rc);
1595 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1596
1597 /*
1598 * Reserve space for the dynamic mappings.
1599 */
1600 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1601 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &pVM->pgm.s.pbDynPageMapBaseGC);
1602 if ( VBOX_SUCCESS(rc)
1603 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1604 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &pVM->pgm.s.pbDynPageMapBaseGC);
1605 if (VBOX_SUCCESS(rc))
1606 {
1607 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1608 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1609 }
1610 return rc;
1611}
1612
1613
1614/**
1615 * Ring-3 init finalizing.
1616 *
1617 * @returns VBox status code.
1618 * @param pVM The VM handle.
1619 */
1620PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1621{
1622 /*
1623 * Map the paging pages into the guest context.
1624 */
1625 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1626 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1627
1628 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1629 AssertRCReturn(rc, rc);
1630 pVM->pgm.s.pGC32BitPD = GCPtr;
1631 GCPtr += PAGE_SIZE;
1632 GCPtr += PAGE_SIZE; /* reserved page */
1633
1634 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1635 {
1636 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1637 AssertRCReturn(rc, rc);
1638 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1639 GCPtr += PAGE_SIZE;
1640 }
1641 /* A bit of paranoia is justified. */
1642 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1643 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1644 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1645 GCPtr += PAGE_SIZE; /* reserved page */
1646
1647 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1648 AssertRCReturn(rc, rc);
1649 pVM->pgm.s.pGCPaePDPT = GCPtr;
1650 GCPtr += PAGE_SIZE;
1651 GCPtr += PAGE_SIZE; /* reserved page */
1652
1653
1654 /*
1655 * Reserve space for the dynamic mappings.
1656 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1657 */
1658 /* get the pointer to the page table entries. */
1659 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1660 AssertRelease(pMapping);
1661 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1662 const unsigned iPT = off >> X86_PD_SHIFT;
1663 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1664 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1665 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1666
1667 /* init cache */
1668 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1669 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1670 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1671
1672 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1673 {
1674 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1675 AssertRCReturn(rc, rc);
1676 }
1677
1678 return rc;
1679}
1680
1681
1682/**
1683 * Applies relocations to data and code managed by this
1684 * component. This function will be called at init and
1685 * whenever the VMM need to relocate it self inside the GC.
1686 *
1687 * @param pVM The VM.
1688 * @param offDelta Relocation delta relative to old location.
1689 */
1690PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1691{
1692 LogFlow(("PGMR3Relocate\n"));
1693
1694 /*
1695 * Paging stuff.
1696 */
1697 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1698 /** @todo move this into shadow and guest specific relocation functions. */
1699 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1700 pVM->pgm.s.pGC32BitPD += offDelta;
1701 pVM->pgm.s.pGuestPDGC += offDelta;
1702 AssertCompile(ELEMENTS(pVM->pgm.s.apGCPaePDs) == ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1703 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1704 {
1705 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1706 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1707 }
1708 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1709 pVM->pgm.s.pGCPaePDPT += offDelta;
1710
1711 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1712 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1713
1714 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1715 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1716 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1717
1718 /*
1719 * Trees.
1720 */
1721 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1722
1723 /*
1724 * Ram ranges.
1725 */
1726 if (pVM->pgm.s.pRamRangesR3)
1727 {
1728 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1729 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1730#ifdef VBOX_WITH_NEW_PHYS_CODE
1731 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1732#else
1733 {
1734 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1735 if (pCur->pavHCChunkGC)
1736 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1737 }
1738#endif
1739 }
1740
1741 /*
1742 * Update the two page directories with all page table mappings.
1743 * (One or more of them have changed, that's why we're here.)
1744 */
1745 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1746 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1747 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1748
1749 /* Relocate GC addresses of Page Tables. */
1750 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1751 {
1752 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1753 {
1754 pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3);
1755 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3);
1756 }
1757 }
1758
1759 /*
1760 * Dynamic page mapping area.
1761 */
1762 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1763 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1764 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1765
1766 /*
1767 * The Zero page.
1768 */
1769 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1770 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1771
1772 /*
1773 * Physical and virtual handlers.
1774 */
1775 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1776 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1777 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1778
1779 /*
1780 * The page pool.
1781 */
1782 pgmR3PoolRelocate(pVM);
1783}
1784
1785
1786/**
1787 * Callback function for relocating a physical access handler.
1788 *
1789 * @returns 0 (continue enum)
1790 * @param pNode Pointer to a PGMPHYSHANDLER node.
1791 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1792 * not certain the delta will fit in a void pointer for all possible configs.
1793 */
1794static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1795{
1796 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1797 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1798 if (pHandler->pfnHandlerGC)
1799 pHandler->pfnHandlerGC += offDelta;
1800 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1801 pHandler->pvUserGC += offDelta;
1802 return 0;
1803}
1804
1805
1806/**
1807 * Callback function for relocating a virtual access handler.
1808 *
1809 * @returns 0 (continue enum)
1810 * @param pNode Pointer to a PGMVIRTHANDLER node.
1811 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1812 * not certain the delta will fit in a void pointer for all possible configs.
1813 */
1814static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1815{
1816 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1817 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1818 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1819 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1820 Assert(pHandler->pfnHandlerGC);
1821 pHandler->pfnHandlerGC += offDelta;
1822 return 0;
1823}
1824
1825
1826/**
1827 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1828 *
1829 * @returns 0 (continue enum)
1830 * @param pNode Pointer to a PGMVIRTHANDLER node.
1831 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1832 * not certain the delta will fit in a void pointer for all possible configs.
1833 */
1834static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1835{
1836 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1837 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1838 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1839 Assert(pHandler->pfnHandlerGC);
1840 pHandler->pfnHandlerGC += offDelta;
1841 return 0;
1842}
1843
1844
1845/**
1846 * The VM is being reset.
1847 *
1848 * For the PGM component this means that any PD write monitors
1849 * needs to be removed.
1850 *
1851 * @param pVM VM handle.
1852 */
1853PGMR3DECL(void) PGMR3Reset(PVM pVM)
1854{
1855 LogFlow(("PGMR3Reset:\n"));
1856 VM_ASSERT_EMT(pVM);
1857
1858 pgmLock(pVM);
1859
1860 /*
1861 * Unfix any fixed mappings and disable CR3 monitoring.
1862 */
1863 pVM->pgm.s.fMappingsFixed = false;
1864 pVM->pgm.s.GCPtrMappingFixed = 0;
1865 pVM->pgm.s.cbMappingFixed = 0;
1866
1867 int rc = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM);
1868 AssertRC(rc);
1869#ifdef DEBUG
1870 DBGFR3InfoLog(pVM, "mappings", NULL);
1871 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1872#endif
1873
1874 /*
1875 * Reset the shadow page pool.
1876 */
1877 pgmR3PoolReset(pVM);
1878
1879 /*
1880 * Re-init other members.
1881 */
1882 pVM->pgm.s.fA20Enabled = true;
1883
1884 /*
1885 * Clear the FFs PGM owns.
1886 */
1887 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1888 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1889
1890 /*
1891 * Reset (zero) RAM pages.
1892 */
1893 rc = pgmR3PhysRamReset(pVM);
1894 if (RT_SUCCESS(rc))
1895 {
1896#ifdef VBOX_WITH_NEW_PHYS_CODE
1897 /*
1898 * Reset (zero) shadow ROM pages.
1899 */
1900 rc = pgmR3PhysRomReset(pVM);
1901#endif
1902 if (RT_SUCCESS(rc))
1903 {
1904 /*
1905 * Switch mode back to real mode.
1906 */
1907 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1908 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
1909 }
1910 }
1911
1912 pgmUnlock(pVM);
1913 //return rc;
1914 AssertReleaseRC(rc);
1915}
1916
1917
1918#ifdef VBOX_STRICT
1919/**
1920 * VM state change callback for clearing fNoMorePhysWrites after
1921 * a snapshot has been created.
1922 */
1923static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
1924{
1925 if (enmState == VMSTATE_RUNNING)
1926 pVM->pgm.s.fNoMorePhysWrites = false;
1927}
1928#endif
1929
1930
1931/**
1932 * Terminates the PGM.
1933 *
1934 * @returns VBox status code.
1935 * @param pVM Pointer to VM structure.
1936 */
1937PGMR3DECL(int) PGMR3Term(PVM pVM)
1938{
1939 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1940}
1941
1942
1943/**
1944 * Execute state save operation.
1945 *
1946 * @returns VBox status code.
1947 * @param pVM VM Handle.
1948 * @param pSSM SSM operation handle.
1949 */
1950static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
1951{
1952 PPGM pPGM = &pVM->pgm.s;
1953
1954 /* No more writes to physical memory after this point! */
1955 pVM->pgm.s.fNoMorePhysWrites = true;
1956
1957 /*
1958 * Save basic data (required / unaffected by relocation).
1959 */
1960#if 1
1961 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
1962#else
1963 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
1964#endif
1965 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
1966 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
1967 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
1968 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
1969 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
1970 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
1971 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
1972 SSMR3PutU32(pSSM, ~0); /* Separator. */
1973
1974 /*
1975 * The guest mappings.
1976 */
1977 uint32_t i = 0;
1978 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1979 {
1980 SSMR3PutU32(pSSM, i);
1981 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1982 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
1983 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1984 /* flags are done by the mapping owners! */
1985 }
1986 SSMR3PutU32(pSSM, ~0); /* terminator. */
1987
1988 /*
1989 * Ram range flags and bits.
1990 */
1991 i = 0;
1992 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
1993 {
1994 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
1995
1996 SSMR3PutU32(pSSM, i);
1997 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
1998 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
1999 SSMR3PutGCPhys(pSSM, pRam->cb);
2000 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
2001
2002 /* Flags. */
2003 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2004 for (unsigned iPage = 0; iPage < cPages; iPage++)
2005 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2006
2007 /* any memory associated with the range. */
2008 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2009 {
2010 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2011 {
2012 if (pRam->pavHCChunkHC[iChunk])
2013 {
2014 SSMR3PutU8(pSSM, 1); /* chunk present */
2015 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2016 }
2017 else
2018 SSMR3PutU8(pSSM, 0); /* no chunk present */
2019 }
2020 }
2021 else if (pRam->pvHC)
2022 {
2023 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
2024 if (VBOX_FAILURE(rc))
2025 {
2026 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2027 return rc;
2028 }
2029 }
2030 }
2031 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2032}
2033
2034
2035/**
2036 * Execute state load operation.
2037 *
2038 * @returns VBox status code.
2039 * @param pVM VM Handle.
2040 * @param pSSM SSM operation handle.
2041 * @param u32Version Data layout version.
2042 */
2043static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2044{
2045 /*
2046 * Validate version.
2047 */
2048 if (u32Version != PGM_SAVED_STATE_VERSION)
2049 {
2050 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2051 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2052 }
2053
2054 /*
2055 * Call the reset function to make sure all the memory is cleared.
2056 */
2057 PGMR3Reset(pVM);
2058
2059 /*
2060 * Load basic data (required / unaffected by relocation).
2061 */
2062 PPGM pPGM = &pVM->pgm.s;
2063#if 1
2064 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2065#else
2066 uint32_t u;
2067 SSMR3GetU32(pSSM, &u);
2068 pPGM->fMappingsFixed = u;
2069#endif
2070 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2071 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2072
2073 RTUINT cbRamSize;
2074 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2075 if (VBOX_FAILURE(rc))
2076 return rc;
2077 if (cbRamSize != pPGM->cbRamSize)
2078 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2079 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2080 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2081 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2082 RTUINT uGuestMode;
2083 SSMR3GetUInt(pSSM, &uGuestMode);
2084 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2085
2086 /* check separator. */
2087 uint32_t u32Sep;
2088 SSMR3GetU32(pSSM, &u32Sep);
2089 if (VBOX_FAILURE(rc))
2090 return rc;
2091 if (u32Sep != (uint32_t)~0)
2092 {
2093 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2094 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2095 }
2096
2097 /*
2098 * The guest mappings.
2099 */
2100 uint32_t i = 0;
2101 for (;; i++)
2102 {
2103 /* Check the seqence number / separator. */
2104 rc = SSMR3GetU32(pSSM, &u32Sep);
2105 if (VBOX_FAILURE(rc))
2106 return rc;
2107 if (u32Sep == ~0U)
2108 break;
2109 if (u32Sep != i)
2110 {
2111 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2112 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2113 }
2114
2115 /* get the mapping details. */
2116 char szDesc[256];
2117 szDesc[0] = '\0';
2118 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2119 if (VBOX_FAILURE(rc))
2120 return rc;
2121 RTGCPTR GCPtr;
2122 SSMR3GetGCPtr(pSSM, &GCPtr);
2123 RTGCUINTPTR cPTs;
2124 rc = SSMR3GetU32(pSSM, &cPTs);
2125 if (VBOX_FAILURE(rc))
2126 return rc;
2127
2128 /* find matching range. */
2129 PPGMMAPPING pMapping;
2130 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2131 if ( pMapping->cPTs == cPTs
2132 && !strcmp(pMapping->pszDesc, szDesc))
2133 break;
2134 if (!pMapping)
2135 {
2136 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2137 cPTs, szDesc, GCPtr));
2138 AssertFailed();
2139 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2140 }
2141
2142 /* relocate it. */
2143 if (pMapping->GCPtr != GCPtr)
2144 {
2145 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2146#if HC_ARCH_BITS == 64
2147LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2148#endif
2149 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2150 }
2151 else
2152 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2153 }
2154
2155 /*
2156 * Ram range flags and bits.
2157 */
2158 i = 0;
2159 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2160 {
2161 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2162 /* Check the seqence number / separator. */
2163 rc = SSMR3GetU32(pSSM, &u32Sep);
2164 if (VBOX_FAILURE(rc))
2165 return rc;
2166 if (u32Sep == ~0U)
2167 break;
2168 if (u32Sep != i)
2169 {
2170 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2171 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2172 }
2173
2174 /* Get the range details. */
2175 RTGCPHYS GCPhys;
2176 SSMR3GetGCPhys(pSSM, &GCPhys);
2177 RTGCPHYS GCPhysLast;
2178 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2179 RTGCPHYS cb;
2180 SSMR3GetGCPhys(pSSM, &cb);
2181 uint8_t fHaveBits;
2182 rc = SSMR3GetU8(pSSM, &fHaveBits);
2183 if (VBOX_FAILURE(rc))
2184 return rc;
2185 if (fHaveBits & ~1)
2186 {
2187 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2188 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2189 }
2190
2191 /* Match it up with the current range. */
2192 if ( GCPhys != pRam->GCPhys
2193 || GCPhysLast != pRam->GCPhysLast
2194 || cb != pRam->cb
2195 || fHaveBits != !!pRam->pvHC)
2196 {
2197 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2198 "State : %VGp-%VGp %VGp bytes %s\n",
2199 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2200 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2201 /*
2202 * If we're loading a state for debugging purpose, don't make a fuss if
2203 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2204 */
2205 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2206 || GCPhys < 8 * _1M)
2207 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2208
2209 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2210 while (cPages-- > 0)
2211 {
2212 uint16_t u16Ignore;
2213 SSMR3GetU16(pSSM, &u16Ignore);
2214 }
2215 continue;
2216 }
2217
2218 /* Flags. */
2219 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2220 for (unsigned iPage = 0; iPage < cPages; iPage++)
2221 {
2222 uint16_t u16 = 0;
2223 SSMR3GetU16(pSSM, &u16);
2224 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2225 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2226 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2227 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2228 }
2229
2230 /* any memory associated with the range. */
2231 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2232 {
2233 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2234 {
2235 uint8_t fValidChunk;
2236
2237 rc = SSMR3GetU8(pSSM, &fValidChunk);
2238 if (VBOX_FAILURE(rc))
2239 return rc;
2240 if (fValidChunk > 1)
2241 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2242
2243 if (fValidChunk)
2244 {
2245 if (!pRam->pavHCChunkHC[iChunk])
2246 {
2247 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2248 if (VBOX_FAILURE(rc))
2249 return rc;
2250 }
2251 Assert(pRam->pavHCChunkHC[iChunk]);
2252
2253 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2254 }
2255 /* else nothing to do */
2256 }
2257 }
2258 else if (pRam->pvHC)
2259 {
2260 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2261 if (VBOX_FAILURE(rc))
2262 {
2263 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2264 return rc;
2265 }
2266 }
2267 }
2268
2269 /*
2270 * We require a full resync now.
2271 */
2272 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2273 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2274 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2275 pPGM->fPhysCacheFlushPending = true;
2276 pgmR3HandlerPhysicalUpdateAll(pVM);
2277
2278 /*
2279 * Change the paging mode.
2280 */
2281 return PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2282}
2283
2284
2285/**
2286 * Show paging mode.
2287 *
2288 * @param pVM VM Handle.
2289 * @param pHlp The info helpers.
2290 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2291 */
2292static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2293{
2294 /* digest argument. */
2295 bool fGuest, fShadow, fHost;
2296 if (pszArgs)
2297 pszArgs = RTStrStripL(pszArgs);
2298 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2299 fShadow = fHost = fGuest = true;
2300 else
2301 {
2302 fShadow = fHost = fGuest = false;
2303 if (strstr(pszArgs, "guest"))
2304 fGuest = true;
2305 if (strstr(pszArgs, "shadow"))
2306 fShadow = true;
2307 if (strstr(pszArgs, "host"))
2308 fHost = true;
2309 }
2310
2311 /* print info. */
2312 if (fGuest)
2313 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2314 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2315 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2316 if (fShadow)
2317 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2318 if (fHost)
2319 {
2320 const char *psz;
2321 switch (pVM->pgm.s.enmHostMode)
2322 {
2323 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2324 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2325 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2326 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2327 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2328 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2329 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2330 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2331 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2332 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2333 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2334 default: psz = "unknown"; break;
2335 }
2336 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2337 }
2338}
2339
2340
2341/**
2342 * Dump registered MMIO ranges to the log.
2343 *
2344 * @param pVM VM Handle.
2345 * @param pHlp The info helpers.
2346 * @param pszArgs Arguments, ignored.
2347 */
2348static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2349{
2350 NOREF(pszArgs);
2351 pHlp->pfnPrintf(pHlp,
2352 "RAM ranges (pVM=%p)\n"
2353 "%.*s %.*s\n",
2354 pVM,
2355 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2356 sizeof(RTHCPTR) * 2, "pvHC ");
2357
2358 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2359 pHlp->pfnPrintf(pHlp,
2360 "%RGp-%RGp %RHv %s\n",
2361 pCur->GCPhys,
2362 pCur->GCPhysLast,
2363 pCur->pvHC,
2364 pCur->pszDesc);
2365}
2366
2367/**
2368 * Dump the page directory to the log.
2369 *
2370 * @param pVM VM Handle.
2371 * @param pHlp The info helpers.
2372 * @param pszArgs Arguments, ignored.
2373 */
2374static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2375{
2376/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2377 /* Big pages supported? */
2378 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2379 /* Global pages supported? */
2380 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2381
2382 NOREF(pszArgs);
2383
2384 /*
2385 * Get page directory addresses.
2386 */
2387 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2388 Assert(pPDSrc);
2389 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2390
2391 /*
2392 * Iterate the page directory.
2393 */
2394 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2395 {
2396 X86PDE PdeSrc = pPDSrc->a[iPD];
2397 if (PdeSrc.n.u1Present)
2398 {
2399 if (PdeSrc.b.u1Size && fPSE)
2400 {
2401 pHlp->pfnPrintf(pHlp,
2402 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2403 iPD,
2404 PdeSrc.u & X86_PDE_PG_MASK,
2405 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2406 }
2407 else
2408 {
2409 pHlp->pfnPrintf(pHlp,
2410 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2411 iPD,
2412 PdeSrc.u & X86_PDE4M_PG_MASK,
2413 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2414 }
2415 }
2416 }
2417}
2418
2419
2420/**
2421 * Serivce a VMMCALLHOST_PGM_LOCK call.
2422 *
2423 * @returns VBox status code.
2424 * @param pVM The VM handle.
2425 */
2426PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2427{
2428 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2429 AssertRC(rc);
2430 return rc;
2431}
2432
2433
2434/**
2435 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2436 *
2437 * @returns PGM_TYPE_*.
2438 * @param pgmMode The mode value to convert.
2439 */
2440DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2441{
2442 switch (pgmMode)
2443 {
2444 case PGMMODE_REAL: return PGM_TYPE_REAL;
2445 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2446 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2447 case PGMMODE_PAE:
2448 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2449 case PGMMODE_AMD64:
2450 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2451 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2452 default:
2453 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2454 }
2455}
2456
2457
2458/**
2459 * Gets the index into the paging mode data array of a SHW+GST mode.
2460 *
2461 * @returns PGM::paPagingData index.
2462 * @param uShwType The shadow paging mode type.
2463 * @param uGstType The guest paging mode type.
2464 */
2465DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2466{
2467 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_NESTED);
2468 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2469 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2470 + (uGstType - PGM_TYPE_REAL);
2471}
2472
2473
2474/**
2475 * Gets the index into the paging mode data array of a SHW+GST mode.
2476 *
2477 * @returns PGM::paPagingData index.
2478 * @param enmShw The shadow paging mode.
2479 * @param enmGst The guest paging mode.
2480 */
2481DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2482{
2483 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2484 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2485 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2486}
2487
2488
2489/**
2490 * Calculates the max data index.
2491 * @returns The number of entries in the paging data array.
2492 */
2493DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2494{
2495 return pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64) + 1;
2496}
2497
2498
2499/**
2500 * Initializes the paging mode data kept in PGM::paModeData.
2501 *
2502 * @param pVM The VM handle.
2503 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2504 * This is used early in the init process to avoid trouble with PDM
2505 * not being initialized yet.
2506 */
2507static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2508{
2509 PPGMMODEDATA pModeData;
2510 int rc;
2511
2512 /*
2513 * Allocate the array on the first call.
2514 */
2515 if (!pVM->pgm.s.paModeData)
2516 {
2517 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2518 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2519 }
2520
2521 /*
2522 * Initialize the array entries.
2523 */
2524 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2525 pModeData->uShwType = PGM_TYPE_32BIT;
2526 pModeData->uGstType = PGM_TYPE_REAL;
2527 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2528 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2529 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2530
2531 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2532 pModeData->uShwType = PGM_TYPE_32BIT;
2533 pModeData->uGstType = PGM_TYPE_PROT;
2534 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2535 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2536 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2537
2538 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2539 pModeData->uShwType = PGM_TYPE_32BIT;
2540 pModeData->uGstType = PGM_TYPE_32BIT;
2541 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2542 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2543 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2544
2545 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2546 pModeData->uShwType = PGM_TYPE_PAE;
2547 pModeData->uGstType = PGM_TYPE_REAL;
2548 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2549 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2550 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2551
2552 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2553 pModeData->uShwType = PGM_TYPE_PAE;
2554 pModeData->uGstType = PGM_TYPE_PROT;
2555 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2556 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2557 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2558
2559 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2560 pModeData->uShwType = PGM_TYPE_PAE;
2561 pModeData->uGstType = PGM_TYPE_32BIT;
2562 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2563 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2564 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2565
2566 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2567 pModeData->uShwType = PGM_TYPE_PAE;
2568 pModeData->uGstType = PGM_TYPE_PAE;
2569 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2570 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2571 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2572
2573 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2574 pModeData->uShwType = PGM_TYPE_AMD64;
2575 pModeData->uGstType = PGM_TYPE_AMD64;
2576 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2577 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2578 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2579
2580 /* The nested paging mode. */
2581 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2582 pModeData->uShwType = PGM_TYPE_NESTED;
2583 pModeData->uGstType = PGM_TYPE_REAL;
2584 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2585 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2586
2587 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2588 pModeData->uShwType = PGM_TYPE_NESTED;
2589 pModeData->uGstType = PGM_TYPE_PROT;
2590 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2591 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2592
2593 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2594 pModeData->uShwType = PGM_TYPE_NESTED;
2595 pModeData->uGstType = PGM_TYPE_32BIT;
2596 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2597 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2598
2599 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2600 pModeData->uShwType = PGM_TYPE_NESTED;
2601 pModeData->uGstType = PGM_TYPE_PAE;
2602 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2603 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2604
2605 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2606 pModeData->uShwType = PGM_TYPE_NESTED;
2607 pModeData->uGstType = PGM_TYPE_AMD64;
2608 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2609 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2610
2611 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2612 switch(pVM->pgm.s.enmHostMode)
2613 {
2614 case SUPPAGINGMODE_32_BIT:
2615 case SUPPAGINGMODE_32_BIT_GLOBAL:
2616 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2617 {
2618 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2619 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2620 }
2621 break;
2622
2623 case SUPPAGINGMODE_PAE:
2624 case SUPPAGINGMODE_PAE_NX:
2625 case SUPPAGINGMODE_PAE_GLOBAL:
2626 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2627 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2628 {
2629 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2630 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2631 }
2632 break;
2633
2634 case SUPPAGINGMODE_AMD64:
2635 case SUPPAGINGMODE_AMD64_GLOBAL:
2636 case SUPPAGINGMODE_AMD64_NX:
2637 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2638 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2639 {
2640 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2641 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2642 }
2643 break;
2644 }
2645 return VINF_SUCCESS;
2646}
2647
2648
2649/**
2650 * Switch to different (or relocated in the relocate case) mode data.
2651 *
2652 * @param pVM The VM handle.
2653 * @param enmShw The the shadow paging mode.
2654 * @param enmGst The the guest paging mode.
2655 */
2656static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2657{
2658 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2659
2660 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2661 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2662
2663 /* shadow */
2664 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2665 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2666 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2667 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2668 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2669
2670 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2671 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2672
2673 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2674 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2675
2676
2677 /* guest */
2678 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2679 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2680 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2681 Assert(pVM->pgm.s.pfnR3GstGetPage);
2682 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2683 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2684 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2685 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2686 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2687 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2688 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2689 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2690 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2691 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2692
2693 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2694 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2695 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2696 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2697 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2698 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2699 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2700 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2701 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2702
2703 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2704 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2705 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2706 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2707 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2708 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2709 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2710 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2711 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2712
2713
2714 /* both */
2715 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2716 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2717 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2718 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2719 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2720 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2721 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2722 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2723#ifdef VBOX_STRICT
2724 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2725#endif
2726
2727 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2728 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2729 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2730 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2731 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2732 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2733#ifdef VBOX_STRICT
2734 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2735#endif
2736
2737 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2738 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2739 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2740 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2741 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2742 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2743#ifdef VBOX_STRICT
2744 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2745#endif
2746}
2747
2748
2749#ifdef DEBUG_bird
2750#include <stdlib.h> /* getenv() remove me! */
2751#endif
2752
2753/**
2754 * Calculates the shadow paging mode.
2755 *
2756 * @returns The shadow paging mode.
2757 * @param pVM VM handle.
2758 * @param enmGuestMode The guest mode.
2759 * @param enmHostMode The host mode.
2760 * @param enmShadowMode The current shadow mode.
2761 * @param penmSwitcher Where to store the switcher to use.
2762 * VMMSWITCHER_INVALID means no change.
2763 */
2764static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2765{
2766 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2767 switch (enmGuestMode)
2768 {
2769 /*
2770 * When switching to real or protected mode we don't change
2771 * anything since it's likely that we'll switch back pretty soon.
2772 *
2773 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2774 * and is supposed to determin which shadow paging and switcher to
2775 * use during init.
2776 */
2777 case PGMMODE_REAL:
2778 case PGMMODE_PROTECTED:
2779 if (enmShadowMode != PGMMODE_INVALID)
2780 break; /* (no change) */
2781 switch (enmHostMode)
2782 {
2783 case SUPPAGINGMODE_32_BIT:
2784 case SUPPAGINGMODE_32_BIT_GLOBAL:
2785 enmShadowMode = PGMMODE_32_BIT;
2786 enmSwitcher = VMMSWITCHER_32_TO_32;
2787 break;
2788
2789 case SUPPAGINGMODE_PAE:
2790 case SUPPAGINGMODE_PAE_NX:
2791 case SUPPAGINGMODE_PAE_GLOBAL:
2792 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2793 enmShadowMode = PGMMODE_PAE;
2794 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2795#ifdef DEBUG_bird
2796if (getenv("VBOX_32BIT"))
2797{
2798 enmShadowMode = PGMMODE_32_BIT;
2799 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2800}
2801#endif
2802 break;
2803
2804 case SUPPAGINGMODE_AMD64:
2805 case SUPPAGINGMODE_AMD64_GLOBAL:
2806 case SUPPAGINGMODE_AMD64_NX:
2807 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2808 enmShadowMode = PGMMODE_PAE;
2809 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2810 break;
2811
2812 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2813 }
2814 break;
2815
2816 case PGMMODE_32_BIT:
2817 switch (enmHostMode)
2818 {
2819 case SUPPAGINGMODE_32_BIT:
2820 case SUPPAGINGMODE_32_BIT_GLOBAL:
2821 enmShadowMode = PGMMODE_32_BIT;
2822 enmSwitcher = VMMSWITCHER_32_TO_32;
2823 break;
2824
2825 case SUPPAGINGMODE_PAE:
2826 case SUPPAGINGMODE_PAE_NX:
2827 case SUPPAGINGMODE_PAE_GLOBAL:
2828 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2829 enmShadowMode = PGMMODE_PAE;
2830 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2831#ifdef DEBUG_bird
2832if (getenv("VBOX_32BIT"))
2833{
2834 enmShadowMode = PGMMODE_32_BIT;
2835 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2836}
2837#endif
2838 break;
2839
2840 case SUPPAGINGMODE_AMD64:
2841 case SUPPAGINGMODE_AMD64_GLOBAL:
2842 case SUPPAGINGMODE_AMD64_NX:
2843 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2844 enmShadowMode = PGMMODE_PAE;
2845 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2846 break;
2847
2848 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2849 }
2850 break;
2851
2852 case PGMMODE_PAE:
2853 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2854 switch (enmHostMode)
2855 {
2856 case SUPPAGINGMODE_32_BIT:
2857 case SUPPAGINGMODE_32_BIT_GLOBAL:
2858 enmShadowMode = PGMMODE_PAE;
2859 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2860 break;
2861
2862 case SUPPAGINGMODE_PAE:
2863 case SUPPAGINGMODE_PAE_NX:
2864 case SUPPAGINGMODE_PAE_GLOBAL:
2865 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2866 enmShadowMode = PGMMODE_PAE;
2867 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2868 break;
2869
2870 case SUPPAGINGMODE_AMD64:
2871 case SUPPAGINGMODE_AMD64_GLOBAL:
2872 case SUPPAGINGMODE_AMD64_NX:
2873 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2874 enmShadowMode = PGMMODE_PAE;
2875 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2876 break;
2877
2878 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2879 }
2880 break;
2881
2882 case PGMMODE_AMD64:
2883 case PGMMODE_AMD64_NX:
2884 switch (enmHostMode)
2885 {
2886 case SUPPAGINGMODE_32_BIT:
2887 case SUPPAGINGMODE_32_BIT_GLOBAL:
2888 enmShadowMode = PGMMODE_PAE;
2889 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
2890 break;
2891
2892 case SUPPAGINGMODE_PAE:
2893 case SUPPAGINGMODE_PAE_NX:
2894 case SUPPAGINGMODE_PAE_GLOBAL:
2895 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2896 enmShadowMode = PGMMODE_PAE;
2897 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
2898 break;
2899
2900 case SUPPAGINGMODE_AMD64:
2901 case SUPPAGINGMODE_AMD64_GLOBAL:
2902 case SUPPAGINGMODE_AMD64_NX:
2903 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2904 enmShadowMode = PGMMODE_AMD64;
2905 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
2906 break;
2907
2908 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2909 }
2910 break;
2911
2912
2913 default:
2914 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2915 return PGMMODE_INVALID;
2916 }
2917 /* Override the shadow mode is nested paging is active. */
2918 if (HWACCMIsNestedPagingActive(pVM))
2919 enmShadowMode = PGMMODE_NESTED;
2920
2921 *penmSwitcher = enmSwitcher;
2922 return enmShadowMode;
2923}
2924
2925
2926/**
2927 * Performs the actual mode change.
2928 * This is called by PGMChangeMode and pgmR3InitPaging().
2929 *
2930 * @returns VBox status code.
2931 * @param pVM VM handle.
2932 * @param enmGuestMode The new guest mode. This is assumed to be different from
2933 * the current mode.
2934 */
2935PGMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
2936{
2937 LogFlow(("PGMR3ChangeMode: Guest mode: %d -> %d\n", pVM->pgm.s.enmGuestMode, enmGuestMode));
2938 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
2939
2940 /*
2941 * Calc the shadow mode and switcher.
2942 */
2943 VMMSWITCHER enmSwitcher;
2944 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
2945 if (enmSwitcher != VMMSWITCHER_INVALID)
2946 {
2947 /*
2948 * Select new switcher.
2949 */
2950 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
2951 if (VBOX_FAILURE(rc))
2952 {
2953 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
2954 return rc;
2955 }
2956 }
2957
2958 /*
2959 * Exit old mode(s).
2960 */
2961 /* shadow */
2962 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2963 {
2964 LogFlow(("PGMR3ChangeMode: Shadow mode: %d -> %d\n", pVM->pgm.s.enmShadowMode, enmShadowMode));
2965 if (PGM_SHW_PFN(Exit, pVM))
2966 {
2967 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
2968 if (VBOX_FAILURE(rc))
2969 {
2970 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
2971 return rc;
2972 }
2973 }
2974
2975 }
2976
2977 /* guest */
2978 if (PGM_GST_PFN(Exit, pVM))
2979 {
2980 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2981 if (VBOX_FAILURE(rc))
2982 {
2983 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
2984 return rc;
2985 }
2986 }
2987
2988 /*
2989 * Load new paging mode data.
2990 */
2991 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
2992
2993 /*
2994 * Enter new shadow mode (if changed).
2995 */
2996 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2997 {
2998 int rc;
2999 pVM->pgm.s.enmShadowMode = enmShadowMode;
3000 switch (enmShadowMode)
3001 {
3002 case PGMMODE_32_BIT:
3003 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3004 break;
3005 case PGMMODE_PAE:
3006 case PGMMODE_PAE_NX:
3007 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3008 break;
3009 case PGMMODE_AMD64:
3010 case PGMMODE_AMD64_NX:
3011 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3012 break;
3013 case PGMMODE_NESTED:
3014 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3015 break;
3016 case PGMMODE_REAL:
3017 case PGMMODE_PROTECTED:
3018 default:
3019 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3020 return VERR_INTERNAL_ERROR;
3021 }
3022 if (VBOX_FAILURE(rc))
3023 {
3024 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3025 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3026 return rc;
3027 }
3028 }
3029
3030 /*
3031 * Enter the new guest and shadow+guest modes.
3032 */
3033 int rc = -1;
3034 int rc2 = -1;
3035 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3036 pVM->pgm.s.enmGuestMode = enmGuestMode;
3037 switch (enmGuestMode)
3038 {
3039 case PGMMODE_REAL:
3040 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3041 switch (pVM->pgm.s.enmShadowMode)
3042 {
3043 case PGMMODE_32_BIT:
3044 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3045 break;
3046 case PGMMODE_PAE:
3047 case PGMMODE_PAE_NX:
3048 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3049 break;
3050 case PGMMODE_NESTED:
3051 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3052 break;
3053 case PGMMODE_AMD64:
3054 case PGMMODE_AMD64_NX:
3055 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3056 default: AssertFailed(); break;
3057 }
3058 break;
3059
3060 case PGMMODE_PROTECTED:
3061 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3062 switch (pVM->pgm.s.enmShadowMode)
3063 {
3064 case PGMMODE_32_BIT:
3065 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3066 break;
3067 case PGMMODE_PAE:
3068 case PGMMODE_PAE_NX:
3069 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3070 break;
3071 case PGMMODE_NESTED:
3072 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3073 break;
3074 case PGMMODE_AMD64:
3075 case PGMMODE_AMD64_NX:
3076 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3077 default: AssertFailed(); break;
3078 }
3079 break;
3080
3081 case PGMMODE_32_BIT:
3082 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3083 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3084 switch (pVM->pgm.s.enmShadowMode)
3085 {
3086 case PGMMODE_32_BIT:
3087 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3088 break;
3089 case PGMMODE_PAE:
3090 case PGMMODE_PAE_NX:
3091 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3092 break;
3093 case PGMMODE_NESTED:
3094 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3095 break;
3096 case PGMMODE_AMD64:
3097 case PGMMODE_AMD64_NX:
3098 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3099 default: AssertFailed(); break;
3100 }
3101 break;
3102
3103 //case PGMMODE_PAE_NX:
3104 case PGMMODE_PAE:
3105 {
3106 uint32_t u32Dummy, u32Features;
3107
3108 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3109 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3110 {
3111 /* Pause first, then inform Main. */
3112 rc = VMR3SuspendNoSave(pVM);
3113 AssertRC(rc);
3114
3115 VMSetRuntimeError(pVM, true, "PAEmode",
3116 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage."));
3117 /* we must return TRUE here otherwise the recompiler will assert */
3118 return VINF_SUCCESS;
3119 }
3120 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3121 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3122 switch (pVM->pgm.s.enmShadowMode)
3123 {
3124 case PGMMODE_PAE:
3125 case PGMMODE_PAE_NX:
3126 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3127 break;
3128 case PGMMODE_NESTED:
3129 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3130 break;
3131 case PGMMODE_32_BIT:
3132 case PGMMODE_AMD64:
3133 case PGMMODE_AMD64_NX:
3134 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3135 default: AssertFailed(); break;
3136 }
3137 break;
3138 }
3139
3140 //case PGMMODE_AMD64_NX:
3141 case PGMMODE_AMD64:
3142 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask and make CR3 64-bit in this case! */
3143 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3144 switch (pVM->pgm.s.enmShadowMode)
3145 {
3146 case PGMMODE_AMD64:
3147 case PGMMODE_AMD64_NX:
3148 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3149 break;
3150 case PGMMODE_NESTED:
3151 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3152 break;
3153 case PGMMODE_32_BIT:
3154 case PGMMODE_PAE:
3155 case PGMMODE_PAE_NX:
3156 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3157 default: AssertFailed(); break;
3158 }
3159 break;
3160
3161 default:
3162 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3163 rc = VERR_NOT_IMPLEMENTED;
3164 break;
3165 }
3166
3167 /* status codes. */
3168 AssertRC(rc);
3169 AssertRC(rc2);
3170 if (VBOX_SUCCESS(rc))
3171 {
3172 rc = rc2;
3173 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3174 rc = VINF_SUCCESS;
3175 }
3176
3177 /*
3178 * Notify SELM so it can update the TSSes with correct CR3s.
3179 */
3180 SELMR3PagingModeChanged(pVM);
3181
3182 /* Notify HWACCM as well. */
3183 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3184 return rc;
3185}
3186
3187
3188/**
3189 * Dumps a PAE shadow page table.
3190 *
3191 * @returns VBox status code (VINF_SUCCESS).
3192 * @param pVM The VM handle.
3193 * @param pPT Pointer to the page table.
3194 * @param u64Address The virtual address of the page table starts.
3195 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3196 * @param cMaxDepth The maxium depth.
3197 * @param pHlp Pointer to the output functions.
3198 */
3199static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3200{
3201 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3202 {
3203 X86PTEPAE Pte = pPT->a[i];
3204 if (Pte.n.u1Present)
3205 {
3206 pHlp->pfnPrintf(pHlp,
3207 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3208 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3209 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3210 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3211 Pte.n.u1Write ? 'W' : 'R',
3212 Pte.n.u1User ? 'U' : 'S',
3213 Pte.n.u1Accessed ? 'A' : '-',
3214 Pte.n.u1Dirty ? 'D' : '-',
3215 Pte.n.u1Global ? 'G' : '-',
3216 Pte.n.u1WriteThru ? "WT" : "--",
3217 Pte.n.u1CacheDisable? "CD" : "--",
3218 Pte.n.u1PAT ? "AT" : "--",
3219 Pte.n.u1NoExecute ? "NX" : "--",
3220 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3221 Pte.u & RT_BIT(10) ? '1' : '0',
3222 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3223 Pte.u & X86_PTE_PAE_PG_MASK);
3224 }
3225 }
3226 return VINF_SUCCESS;
3227}
3228
3229
3230/**
3231 * Dumps a PAE shadow page directory table.
3232 *
3233 * @returns VBox status code (VINF_SUCCESS).
3234 * @param pVM The VM handle.
3235 * @param HCPhys The physical address of the page directory table.
3236 * @param u64Address The virtual address of the page table starts.
3237 * @param cr4 The CR4, PSE is currently used.
3238 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3239 * @param cMaxDepth The maxium depth.
3240 * @param pHlp Pointer to the output functions.
3241 */
3242static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3243{
3244 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3245 if (!pPD)
3246 {
3247 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3248 fLongMode ? 16 : 8, u64Address, HCPhys);
3249 return VERR_INVALID_PARAMETER;
3250 }
3251 int rc = VINF_SUCCESS;
3252 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3253 {
3254 X86PDEPAE Pde = pPD->a[i];
3255 if (Pde.n.u1Present)
3256 {
3257 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3258 pHlp->pfnPrintf(pHlp,
3259 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3260 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3261 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3262 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3263 Pde.b.u1Write ? 'W' : 'R',
3264 Pde.b.u1User ? 'U' : 'S',
3265 Pde.b.u1Accessed ? 'A' : '-',
3266 Pde.b.u1Dirty ? 'D' : '-',
3267 Pde.b.u1Global ? 'G' : '-',
3268 Pde.b.u1WriteThru ? "WT" : "--",
3269 Pde.b.u1CacheDisable? "CD" : "--",
3270 Pde.b.u1PAT ? "AT" : "--",
3271 Pde.b.u1NoExecute ? "NX" : "--",
3272 Pde.u & RT_BIT_64(9) ? '1' : '0',
3273 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3274 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3275 Pde.u & X86_PDE_PAE_PG_MASK);
3276 else
3277 {
3278 pHlp->pfnPrintf(pHlp,
3279 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3280 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3281 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3282 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3283 Pde.n.u1Write ? 'W' : 'R',
3284 Pde.n.u1User ? 'U' : 'S',
3285 Pde.n.u1Accessed ? 'A' : '-',
3286 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3287 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3288 Pde.n.u1WriteThru ? "WT" : "--",
3289 Pde.n.u1CacheDisable? "CD" : "--",
3290 Pde.n.u1NoExecute ? "NX" : "--",
3291 Pde.u & RT_BIT_64(9) ? '1' : '0',
3292 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3293 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3294 Pde.u & X86_PDE_PAE_PG_MASK);
3295 if (cMaxDepth >= 1)
3296 {
3297 /** @todo what about using the page pool for mapping PTs? */
3298 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3299 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3300 PX86PTPAE pPT = NULL;
3301 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3302 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3303 else
3304 {
3305 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3306 {
3307 uint64_t off = u64AddressPT - pMap->GCPtr;
3308 if (off < pMap->cb)
3309 {
3310 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3311 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3312 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3313 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3314 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3315 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3316 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3317 }
3318 }
3319 }
3320 int rc2 = VERR_INVALID_PARAMETER;
3321 if (pPT)
3322 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3323 else
3324 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3325 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3326 if (rc2 < rc && VBOX_SUCCESS(rc))
3327 rc = rc2;
3328 }
3329 }
3330 }
3331 }
3332 return rc;
3333}
3334
3335
3336/**
3337 * Dumps a PAE shadow page directory pointer table.
3338 *
3339 * @returns VBox status code (VINF_SUCCESS).
3340 * @param pVM The VM handle.
3341 * @param HCPhys The physical address of the page directory pointer table.
3342 * @param u64Address The virtual address of the page table starts.
3343 * @param cr4 The CR4, PSE is currently used.
3344 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3345 * @param cMaxDepth The maxium depth.
3346 * @param pHlp Pointer to the output functions.
3347 */
3348static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3349{
3350 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3351 if (!pPDPT)
3352 {
3353 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3354 fLongMode ? 16 : 8, u64Address, HCPhys);
3355 return VERR_INVALID_PARAMETER;
3356 }
3357
3358 int rc = VINF_SUCCESS;
3359 const unsigned c = fLongMode ? ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3360 for (unsigned i = 0; i < c; i++)
3361 {
3362 X86PDPE Pdpe = pPDPT->a[i];
3363 if (Pdpe.n.u1Present)
3364 {
3365 if (fLongMode)
3366 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3367 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3368 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3369 Pdpe.lm.u1Write ? 'W' : 'R',
3370 Pdpe.lm.u1User ? 'U' : 'S',
3371 Pdpe.lm.u1Accessed ? 'A' : '-',
3372 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3373 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3374 Pdpe.lm.u1WriteThru ? "WT" : "--",
3375 Pdpe.lm.u1CacheDisable? "CD" : "--",
3376 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3377 Pdpe.lm.u1NoExecute ? "NX" : "--",
3378 Pdpe.u & RT_BIT(9) ? '1' : '0',
3379 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3380 Pdpe.u & RT_BIT(11) ? '1' : '0',
3381 Pdpe.u & X86_PDPE_PG_MASK);
3382 else
3383 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3384 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3385 i << X86_PDPT_SHIFT,
3386 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3387 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3388 Pdpe.n.u1WriteThru ? "WT" : "--",
3389 Pdpe.n.u1CacheDisable? "CD" : "--",
3390 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3391 Pdpe.u & RT_BIT(9) ? '1' : '0',
3392 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3393 Pdpe.u & RT_BIT(11) ? '1' : '0',
3394 Pdpe.u & X86_PDPE_PG_MASK);
3395 if (cMaxDepth >= 1)
3396 {
3397 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3398 cr4, fLongMode, cMaxDepth - 1, pHlp);
3399 if (rc2 < rc && VBOX_SUCCESS(rc))
3400 rc = rc2;
3401 }
3402 }
3403 }
3404 return rc;
3405}
3406
3407
3408/**
3409 * Dumps a 32-bit shadow page table.
3410 *
3411 * @returns VBox status code (VINF_SUCCESS).
3412 * @param pVM The VM handle.
3413 * @param HCPhys The physical address of the table.
3414 * @param cr4 The CR4, PSE is currently used.
3415 * @param cMaxDepth The maxium depth.
3416 * @param pHlp Pointer to the output functions.
3417 */
3418static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3419{
3420 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3421 if (!pPML4)
3422 {
3423 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3424 return VERR_INVALID_PARAMETER;
3425 }
3426
3427 int rc = VINF_SUCCESS;
3428 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3429 {
3430 X86PML4E Pml4e = pPML4->a[i];
3431 if (Pml4e.n.u1Present)
3432 {
3433 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3434 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3435 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3436 u64Address,
3437 Pml4e.n.u1Write ? 'W' : 'R',
3438 Pml4e.n.u1User ? 'U' : 'S',
3439 Pml4e.n.u1Accessed ? 'A' : '-',
3440 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3441 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3442 Pml4e.n.u1WriteThru ? "WT" : "--",
3443 Pml4e.n.u1CacheDisable? "CD" : "--",
3444 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3445 Pml4e.n.u1NoExecute ? "NX" : "--",
3446 Pml4e.u & RT_BIT(9) ? '1' : '0',
3447 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3448 Pml4e.u & RT_BIT(11) ? '1' : '0',
3449 Pml4e.u & X86_PML4E_PG_MASK);
3450
3451 if (cMaxDepth >= 1)
3452 {
3453 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3454 if (rc2 < rc && VBOX_SUCCESS(rc))
3455 rc = rc2;
3456 }
3457 }
3458 }
3459 return rc;
3460}
3461
3462
3463/**
3464 * Dumps a 32-bit shadow page table.
3465 *
3466 * @returns VBox status code (VINF_SUCCESS).
3467 * @param pVM The VM handle.
3468 * @param pPT Pointer to the page table.
3469 * @param u32Address The virtual address this table starts at.
3470 * @param pHlp Pointer to the output functions.
3471 */
3472int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3473{
3474 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3475 {
3476 X86PTE Pte = pPT->a[i];
3477 if (Pte.n.u1Present)
3478 {
3479 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3480 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3481 u32Address + (i << X86_PT_SHIFT),
3482 Pte.n.u1Write ? 'W' : 'R',
3483 Pte.n.u1User ? 'U' : 'S',
3484 Pte.n.u1Accessed ? 'A' : '-',
3485 Pte.n.u1Dirty ? 'D' : '-',
3486 Pte.n.u1Global ? 'G' : '-',
3487 Pte.n.u1WriteThru ? "WT" : "--",
3488 Pte.n.u1CacheDisable? "CD" : "--",
3489 Pte.n.u1PAT ? "AT" : "--",
3490 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3491 Pte.u & RT_BIT(10) ? '1' : '0',
3492 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3493 Pte.u & X86_PDE_PG_MASK);
3494 }
3495 }
3496 return VINF_SUCCESS;
3497}
3498
3499
3500/**
3501 * Dumps a 32-bit shadow page directory and page tables.
3502 *
3503 * @returns VBox status code (VINF_SUCCESS).
3504 * @param pVM The VM handle.
3505 * @param cr3 The root of the hierarchy.
3506 * @param cr4 The CR4, PSE is currently used.
3507 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3508 * @param pHlp Pointer to the output functions.
3509 */
3510int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3511{
3512 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3513 if (!pPD)
3514 {
3515 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3516 return VERR_INVALID_PARAMETER;
3517 }
3518
3519 int rc = VINF_SUCCESS;
3520 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3521 {
3522 X86PDE Pde = pPD->a[i];
3523 if (Pde.n.u1Present)
3524 {
3525 const uint32_t u32Address = i << X86_PD_SHIFT;
3526 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3527 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3528 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3529 u32Address,
3530 Pde.b.u1Write ? 'W' : 'R',
3531 Pde.b.u1User ? 'U' : 'S',
3532 Pde.b.u1Accessed ? 'A' : '-',
3533 Pde.b.u1Dirty ? 'D' : '-',
3534 Pde.b.u1Global ? 'G' : '-',
3535 Pde.b.u1WriteThru ? "WT" : "--",
3536 Pde.b.u1CacheDisable? "CD" : "--",
3537 Pde.b.u1PAT ? "AT" : "--",
3538 Pde.u & RT_BIT_64(9) ? '1' : '0',
3539 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3540 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3541 Pde.u & X86_PDE4M_PG_MASK);
3542 else
3543 {
3544 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3545 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3546 u32Address,
3547 Pde.n.u1Write ? 'W' : 'R',
3548 Pde.n.u1User ? 'U' : 'S',
3549 Pde.n.u1Accessed ? 'A' : '-',
3550 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3551 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3552 Pde.n.u1WriteThru ? "WT" : "--",
3553 Pde.n.u1CacheDisable? "CD" : "--",
3554 Pde.u & RT_BIT_64(9) ? '1' : '0',
3555 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3556 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3557 Pde.u & X86_PDE_PG_MASK);
3558 if (cMaxDepth >= 1)
3559 {
3560 /** @todo what about using the page pool for mapping PTs? */
3561 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3562 PX86PT pPT = NULL;
3563 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3564 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3565 else
3566 {
3567 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3568 if (u32Address - pMap->GCPtr < pMap->cb)
3569 {
3570 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3571 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3572 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3573 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3574 pPT = pMap->aPTs[iPDE].pPTR3;
3575 }
3576 }
3577 int rc2 = VERR_INVALID_PARAMETER;
3578 if (pPT)
3579 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3580 else
3581 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3582 if (rc2 < rc && VBOX_SUCCESS(rc))
3583 rc = rc2;
3584 }
3585 }
3586 }
3587 }
3588
3589 return rc;
3590}
3591
3592
3593/**
3594 * Dumps a 32-bit shadow page table.
3595 *
3596 * @returns VBox status code (VINF_SUCCESS).
3597 * @param pVM The VM handle.
3598 * @param pPT Pointer to the page table.
3599 * @param u32Address The virtual address this table starts at.
3600 * @param PhysSearch Address to search for.
3601 */
3602int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3603{
3604 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3605 {
3606 X86PTE Pte = pPT->a[i];
3607 if (Pte.n.u1Present)
3608 {
3609 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3610 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3611 u32Address + (i << X86_PT_SHIFT),
3612 Pte.n.u1Write ? 'W' : 'R',
3613 Pte.n.u1User ? 'U' : 'S',
3614 Pte.n.u1Accessed ? 'A' : '-',
3615 Pte.n.u1Dirty ? 'D' : '-',
3616 Pte.n.u1Global ? 'G' : '-',
3617 Pte.n.u1WriteThru ? "WT" : "--",
3618 Pte.n.u1CacheDisable? "CD" : "--",
3619 Pte.n.u1PAT ? "AT" : "--",
3620 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3621 Pte.u & RT_BIT(10) ? '1' : '0',
3622 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3623 Pte.u & X86_PDE_PG_MASK));
3624
3625 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3626 {
3627 uint64_t fPageShw = 0;
3628 RTHCPHYS pPhysHC = 0;
3629
3630 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3631 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3632 }
3633 }
3634 }
3635 return VINF_SUCCESS;
3636}
3637
3638
3639/**
3640 * Dumps a 32-bit guest page directory and page tables.
3641 *
3642 * @returns VBox status code (VINF_SUCCESS).
3643 * @param pVM The VM handle.
3644 * @param cr3 The root of the hierarchy.
3645 * @param cr4 The CR4, PSE is currently used.
3646 * @param PhysSearch Address to search for.
3647 */
3648PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3649{
3650 bool fLongMode = false;
3651 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3652 PX86PD pPD = 0;
3653
3654 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3655 if (VBOX_FAILURE(rc) || !pPD)
3656 {
3657 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3658 return VERR_INVALID_PARAMETER;
3659 }
3660
3661 Log(("cr3=%08x cr4=%08x%s\n"
3662 "%-*s P - Present\n"
3663 "%-*s | R/W - Read (0) / Write (1)\n"
3664 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3665 "%-*s | | | A - Accessed\n"
3666 "%-*s | | | | D - Dirty\n"
3667 "%-*s | | | | | G - Global\n"
3668 "%-*s | | | | | | WT - Write thru\n"
3669 "%-*s | | | | | | | CD - Cache disable\n"
3670 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3671 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3672 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3673 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3674 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3675 "%-*s Level | | | | | | | | | | | | Page\n"
3676 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3677 - W U - - - -- -- -- -- -- 010 */
3678 , cr3, cr4, fLongMode ? " Long Mode" : "",
3679 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3680 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3681
3682 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3683 {
3684 X86PDE Pde = pPD->a[i];
3685 if (Pde.n.u1Present)
3686 {
3687 const uint32_t u32Address = i << X86_PD_SHIFT;
3688
3689 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3690 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3691 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3692 u32Address,
3693 Pde.b.u1Write ? 'W' : 'R',
3694 Pde.b.u1User ? 'U' : 'S',
3695 Pde.b.u1Accessed ? 'A' : '-',
3696 Pde.b.u1Dirty ? 'D' : '-',
3697 Pde.b.u1Global ? 'G' : '-',
3698 Pde.b.u1WriteThru ? "WT" : "--",
3699 Pde.b.u1CacheDisable? "CD" : "--",
3700 Pde.b.u1PAT ? "AT" : "--",
3701 Pde.u & RT_BIT(9) ? '1' : '0',
3702 Pde.u & RT_BIT(10) ? '1' : '0',
3703 Pde.u & RT_BIT(11) ? '1' : '0',
3704 Pde.u & X86_PDE4M_PG_MASK));
3705 /** @todo PhysSearch */
3706 else
3707 {
3708 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3709 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3710 u32Address,
3711 Pde.n.u1Write ? 'W' : 'R',
3712 Pde.n.u1User ? 'U' : 'S',
3713 Pde.n.u1Accessed ? 'A' : '-',
3714 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3715 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3716 Pde.n.u1WriteThru ? "WT" : "--",
3717 Pde.n.u1CacheDisable? "CD" : "--",
3718 Pde.u & RT_BIT(9) ? '1' : '0',
3719 Pde.u & RT_BIT(10) ? '1' : '0',
3720 Pde.u & RT_BIT(11) ? '1' : '0',
3721 Pde.u & X86_PDE_PG_MASK));
3722 ////if (cMaxDepth >= 1)
3723 {
3724 /** @todo what about using the page pool for mapping PTs? */
3725 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3726 PX86PT pPT = NULL;
3727
3728 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3729
3730 int rc2 = VERR_INVALID_PARAMETER;
3731 if (pPT)
3732 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3733 else
3734 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3735 if (rc2 < rc && VBOX_SUCCESS(rc))
3736 rc = rc2;
3737 }
3738 }
3739 }
3740 }
3741
3742 return rc;
3743}
3744
3745
3746/**
3747 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3748 *
3749 * @returns VBox status code (VINF_SUCCESS).
3750 * @param pVM The VM handle.
3751 * @param cr3 The root of the hierarchy.
3752 * @param cr4 The cr4, only PAE and PSE is currently used.
3753 * @param fLongMode Set if long mode, false if not long mode.
3754 * @param cMaxDepth Number of levels to dump.
3755 * @param pHlp Pointer to the output functions.
3756 */
3757PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3758{
3759 if (!pHlp)
3760 pHlp = DBGFR3InfoLogHlp();
3761 if (!cMaxDepth)
3762 return VINF_SUCCESS;
3763 const unsigned cch = fLongMode ? 16 : 8;
3764 pHlp->pfnPrintf(pHlp,
3765 "cr3=%08x cr4=%08x%s\n"
3766 "%-*s P - Present\n"
3767 "%-*s | R/W - Read (0) / Write (1)\n"
3768 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3769 "%-*s | | | A - Accessed\n"
3770 "%-*s | | | | D - Dirty\n"
3771 "%-*s | | | | | G - Global\n"
3772 "%-*s | | | | | | WT - Write thru\n"
3773 "%-*s | | | | | | | CD - Cache disable\n"
3774 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3775 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3776 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3777 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3778 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3779 "%-*s Level | | | | | | | | | | | | Page\n"
3780 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3781 - W U - - - -- -- -- -- -- 010 */
3782 , cr3, cr4, fLongMode ? " Long Mode" : "",
3783 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3784 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3785 if (cr4 & X86_CR4_PAE)
3786 {
3787 if (fLongMode)
3788 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3789 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3790 }
3791 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3792}
3793
3794
3795
3796#ifdef VBOX_WITH_DEBUGGER
3797/**
3798 * The '.pgmram' command.
3799 *
3800 * @returns VBox status.
3801 * @param pCmd Pointer to the command descriptor (as registered).
3802 * @param pCmdHlp Pointer to command helper functions.
3803 * @param pVM Pointer to the current VM (if any).
3804 * @param paArgs Pointer to (readonly) array of arguments.
3805 * @param cArgs Number of arguments in the array.
3806 */
3807static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3808{
3809 /*
3810 * Validate input.
3811 */
3812 if (!pVM)
3813 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3814 if (!pVM->pgm.s.pRamRangesGC)
3815 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3816
3817 /*
3818 * Dump the ranges.
3819 */
3820 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3821 PPGMRAMRANGE pRam;
3822 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3823 {
3824 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3825 "%VGp - %VGp %p\n",
3826 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
3827 if (VBOX_FAILURE(rc))
3828 return rc;
3829 }
3830
3831 return VINF_SUCCESS;
3832}
3833
3834
3835/**
3836 * The '.pgmmap' command.
3837 *
3838 * @returns VBox status.
3839 * @param pCmd Pointer to the command descriptor (as registered).
3840 * @param pCmdHlp Pointer to command helper functions.
3841 * @param pVM Pointer to the current VM (if any).
3842 * @param paArgs Pointer to (readonly) array of arguments.
3843 * @param cArgs Number of arguments in the array.
3844 */
3845static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3846{
3847 /*
3848 * Validate input.
3849 */
3850 if (!pVM)
3851 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3852 if (!pVM->pgm.s.pMappingsR3)
3853 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
3854
3855 /*
3856 * Print message about the fixedness of the mappings.
3857 */
3858 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
3859 if (VBOX_FAILURE(rc))
3860 return rc;
3861
3862 /*
3863 * Dump the ranges.
3864 */
3865 PPGMMAPPING pCur;
3866 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
3867 {
3868 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3869 "%08x - %08x %s\n",
3870 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
3871 if (VBOX_FAILURE(rc))
3872 return rc;
3873 }
3874
3875 return VINF_SUCCESS;
3876}
3877
3878
3879/**
3880 * The '.pgmsync' command.
3881 *
3882 * @returns VBox status.
3883 * @param pCmd Pointer to the command descriptor (as registered).
3884 * @param pCmdHlp Pointer to command helper functions.
3885 * @param pVM Pointer to the current VM (if any).
3886 * @param paArgs Pointer to (readonly) array of arguments.
3887 * @param cArgs Number of arguments in the array.
3888 */
3889static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3890{
3891 /*
3892 * Validate input.
3893 */
3894 if (!pVM)
3895 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3896
3897 /*
3898 * Force page directory sync.
3899 */
3900 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3901
3902 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3903 if (VBOX_FAILURE(rc))
3904 return rc;
3905
3906 return VINF_SUCCESS;
3907}
3908
3909
3910/**
3911 * The '.pgmsyncalways' command.
3912 *
3913 * @returns VBox status.
3914 * @param pCmd Pointer to the command descriptor (as registered).
3915 * @param pCmdHlp Pointer to command helper functions.
3916 * @param pVM Pointer to the current VM (if any).
3917 * @param paArgs Pointer to (readonly) array of arguments.
3918 * @param cArgs Number of arguments in the array.
3919 */
3920static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3921{
3922 /*
3923 * Validate input.
3924 */
3925 if (!pVM)
3926 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3927
3928 /*
3929 * Force page directory sync.
3930 */
3931 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3932 {
3933 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3934 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3935 }
3936 else
3937 {
3938 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3939 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3940 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3941 }
3942}
3943
3944#endif
3945
3946/**
3947 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3948 */
3949typedef struct PGMCHECKINTARGS
3950{
3951 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3952 PPGMPHYSHANDLER pPrevPhys;
3953 PPGMVIRTHANDLER pPrevVirt;
3954 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3955 PVM pVM;
3956} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3957
3958/**
3959 * Validate a node in the physical handler tree.
3960 *
3961 * @returns 0 on if ok, other wise 1.
3962 * @param pNode The handler node.
3963 * @param pvUser pVM.
3964 */
3965static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3966{
3967 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3968 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3969 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3970 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3971 AssertReleaseMsg( !pArgs->pPrevPhys
3972 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3973 ("pPrevPhys=%p %VGp-%VGp %s\n"
3974 " pCur=%p %VGp-%VGp %s\n",
3975 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3976 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3977 pArgs->pPrevPhys = pCur;
3978 return 0;
3979}
3980
3981
3982/**
3983 * Validate a node in the virtual handler tree.
3984 *
3985 * @returns 0 on if ok, other wise 1.
3986 * @param pNode The handler node.
3987 * @param pvUser pVM.
3988 */
3989static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
3990{
3991 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3992 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
3993 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3994 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3995 AssertReleaseMsg( !pArgs->pPrevVirt
3996 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
3997 ("pPrevVirt=%p %VGv-%VGv %s\n"
3998 " pCur=%p %VGv-%VGv %s\n",
3999 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4000 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4001 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4002 {
4003 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4004 ("pCur=%p %VGv-%VGv %s\n"
4005 "iPage=%d offVirtHandle=%#x expected %#x\n",
4006 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4007 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4008 }
4009 pArgs->pPrevVirt = pCur;
4010 return 0;
4011}
4012
4013
4014/**
4015 * Validate a node in the virtual handler tree.
4016 *
4017 * @returns 0 on if ok, other wise 1.
4018 * @param pNode The handler node.
4019 * @param pvUser pVM.
4020 */
4021static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4022{
4023 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4024 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4025 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4026 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4027 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4028 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4029 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4030 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4031 " pCur=%p %VGp-%VGp\n",
4032 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4033 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4034 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4035 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4036 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4037 " pCur=%p %VGp-%VGp\n",
4038 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4039 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4040 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4041 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4042 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4043 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4044 {
4045 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4046 for (;;)
4047 {
4048 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4049 AssertReleaseMsg(pCur2 != pCur,
4050 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4051 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4052 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4053 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4054 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4055 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4056 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4057 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4058 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4059 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4060 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4061 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4062 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4063 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4064 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4065 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4066 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4067 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4068 break;
4069 }
4070 }
4071
4072 pArgs->pPrevPhys2Virt = pCur;
4073 return 0;
4074}
4075
4076
4077/**
4078 * Perform an integrity check on the PGM component.
4079 *
4080 * @returns VINF_SUCCESS if everything is fine.
4081 * @returns VBox error status after asserting on integrity breach.
4082 * @param pVM The VM handle.
4083 */
4084PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4085{
4086 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4087
4088 /*
4089 * Check the trees.
4090 */
4091 int cErrors = 0;
4092 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4093 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4094 PGMCHECKINTARGS Args = s_LeftToRight;
4095 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4096 Args = s_RightToLeft;
4097 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4098 Args = s_LeftToRight;
4099 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4100 Args = s_RightToLeft;
4101 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4102 Args = s_LeftToRight;
4103 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4104 Args = s_RightToLeft;
4105 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4106 Args = s_LeftToRight;
4107 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4108 Args = s_RightToLeft;
4109 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4110
4111 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4112}
4113
4114
4115/**
4116 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4117 *
4118 * @returns VBox status code.
4119 * @param pVM VM handle.
4120 * @param fEnable Enable or disable shadow mappings
4121 */
4122PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4123{
4124 pVM->pgm.s.fDisableMappings = !fEnable;
4125
4126 uint32_t cb;
4127 int rc = PGMR3MappingsSize(pVM, &cb);
4128 AssertRCReturn(rc, rc);
4129
4130 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4131 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4132 AssertRCReturn(rc, rc);
4133
4134 return VINF_SUCCESS;
4135}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette