VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 9835

Last change on this file since 9835 was 9669, checked in by vboxsync, 17 years ago

warnings

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 192.8 KB
Line 
1/* $Id: PGM.cpp 9669 2008-06-12 19:26:45Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 *
26 *
27 * @section sec_pgm_modes Paging Modes
28 *
29 * There are three memory contexts: Host Context (HC), Guest Context (GC)
30 * and intermediate context. When talking about paging HC can also be refered to
31 * as "host paging", and GC refered to as "shadow paging".
32 *
33 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
34 * is defined by the host operating system. The mode used in the shadow paging mode
35 * depends on the host paging mode and what the mode the guest is currently in. The
36 * following relation between the two is defined:
37 *
38 * @verbatim
39 Host > 32-bit | PAE | AMD64 |
40 Guest | | | |
41 ==v================================
42 32-bit 32-bit PAE PAE
43 -------|--------|--------|--------|
44 PAE PAE PAE PAE
45 -------|--------|--------|--------|
46 AMD64 AMD64 AMD64 AMD64
47 -------|--------|--------|--------| @endverbatim
48 *
49 * All configuration except those in the diagonal (upper left) are expected to
50 * require special effort from the switcher (i.e. a bit slower).
51 *
52 *
53 *
54 *
55 * @section sec_pgm_shw The Shadow Memory Context
56 *
57 *
58 * [..]
59 *
60 * Because of guest context mappings requires PDPT and PML4 entries to allow
61 * writing on AMD64, the two upper levels will have fixed flags whatever the
62 * guest is thinking of using there. So, when shadowing the PD level we will
63 * calculate the effective flags of PD and all the higher levels. In legacy
64 * PAE mode this only applies to the PWT and PCD bits (the rest are
65 * ignored/reserved/MBZ). We will ignore those bits for the present.
66 *
67 *
68 *
69 * @section sec_pgm_int The Intermediate Memory Context
70 *
71 * The world switch goes thru an intermediate memory context which purpose it is
72 * to provide different mappings of the switcher code. All guest mappings are also
73 * present in this context.
74 *
75 * The switcher code is mapped at the same location as on the host, at an
76 * identity mapped location (physical equals virtual address), and at the
77 * hypervisor location.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 *
85 * @subsection subsec_pgm_int_gc Guest Context Mappings
86 *
87 * During assignment and relocation of a guest context mapping the intermediate
88 * memory context is used to verify the new location.
89 *
90 * Guest context mappings are currently restricted to below 4GB, for reasons
91 * of simplicity. This may change when we implement AMD64 support.
92 *
93 *
94 *
95 *
96 * @section sec_pgm_misc Misc
97 *
98 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
99 *
100 * The differences between legacy PAE and long mode PAE are:
101 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
102 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
103 * usual meanings while 6 is ignored (AMD). This means that upon switching to
104 * legacy PAE mode we'll have to clear these bits and when going to long mode
105 * they must be set. This applies to both intermediate and shadow contexts,
106 * however we don't need to do it for the intermediate one since we're
107 * executing with CR0.WP at that time.
108 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
109 * a page aligned one is required.
110 *
111 *
112 * @section sec_pgm_handlers Access Handlers
113 *
114 * Placeholder.
115 *
116 *
117 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
118 *
119 * Placeholder.
120 *
121 *
122 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
123 *
124 * We currently implement three types of virtual access handlers: ALL, WRITE
125 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
126 *
127 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
128 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
129 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
130 * rest of this section is going to be about these handlers.
131 *
132 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
133 * how successfull this is gonna be...
134 *
135 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
136 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
137 * and create a new node that is inserted into the AVL tree (range key). Then
138 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
139 *
140 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
141 *
142 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
143 * via the current guest CR3 and update the physical page -> virtual handler
144 * translation. Needless to say, this doesn't exactly scale very well. If any changes
145 * are detected, it will flag a virtual bit update just like we did on registration.
146 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
147 *
148 * 2b. The virtual bit update process will iterate all the pages covered by all the
149 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
150 * virtual handlers on that page.
151 *
152 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
153 * we don't miss any alias mappings of the monitored pages.
154 *
155 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
156 *
157 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
158 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
159 * will call the handlers like in the next step. If the physical mapping has
160 * changed we will - some time in the future - perform a handler callback
161 * (optional) and update the physical -> virtual handler cache.
162 *
163 * 4. \#PF(,write) on a page in the range. This will cause the handler to
164 * be invoked.
165 *
166 * 5. The guest invalidates the page and changes the physical backing or
167 * unmaps it. This should cause the invalidation callback to be invoked
168 * (it might not yet be 100% perfect). Exactly what happens next... is
169 * this where we mess up and end up out of sync for a while?
170 *
171 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
172 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
173 * this handler to NONE and trigger a full PGM resync (basically the same
174 * as int step 1). Which means 2 is executed again.
175 *
176 *
177 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
178 *
179 * There is a bunch of things that needs to be done to make the virtual handlers
180 * work 100% correctly and work more efficiently.
181 *
182 * The first bit hasn't been implemented yet because it's going to slow the
183 * whole mess down even more, and besides it seems to be working reliably for
184 * our current uses. OTOH, some of the optimizations might end up more or less
185 * implementing the missing bits, so we'll see.
186 *
187 * On the optimization side, the first thing to do is to try avoid unnecessary
188 * cache flushing. Then try team up with the shadowing code to track changes
189 * in mappings by means of access to them (shadow in), updates to shadows pages,
190 * invlpg, and shadow PT discarding (perhaps).
191 *
192 * Some idea that have popped up for optimization for current and new features:
193 * - bitmap indicating where there are virtual handlers installed.
194 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
195 * - Further optimize this by min/max (needs min/max avl getters).
196 * - Shadow page table entry bit (if any left)?
197 *
198 */
199
200
201/** @page pg_pgmPhys PGMPhys - Physical Guest Memory Management.
202 *
203 *
204 * Objectives:
205 * - Guest RAM over-commitment using memory ballooning,
206 * zero pages and general page sharing.
207 * - Moving or mirroring a VM onto a different physical machine.
208 *
209 *
210 * @subsection subsec_pgmPhys_Definitions Definitions
211 *
212 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
213 * machinery assoicated with it.
214 *
215 *
216 *
217 *
218 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
219 *
220 * Initially we map *all* guest memory to the (per VM) zero page, which
221 * means that none of the read functions will cause pages to be allocated.
222 *
223 * Exception, access bit in page tables that have been shared. This must
224 * be handled, but we must also make sure PGMGst*Modify doesn't make
225 * unnecessary modifications.
226 *
227 * Allocation points:
228 * - PGMPhysWriteGCPhys and PGMPhysWrite.
229 * - Replacing a zero page mapping at \#PF.
230 * - Replacing a shared page mapping at \#PF.
231 * - ROM registration (currently MMR3RomRegister).
232 * - VM restore (pgmR3Load).
233 *
234 * For the first three it would make sense to keep a few pages handy
235 * until we've reached the max memory commitment for the VM.
236 *
237 * For the ROM registration, we know exactly how many pages we need
238 * and will request these from ring-0. For restore, we will save
239 * the number of non-zero pages in the saved state and allocate
240 * them up front. This would allow the ring-0 component to refuse
241 * the request if the isn't sufficient memory available for VM use.
242 *
243 * Btw. for both ROM and restore allocations we won't be requiring
244 * zeroed pages as they are going to be filled instantly.
245 *
246 *
247 * @subsection subsec_pgmPhys_FreePage Freeing a page
248 *
249 * There are a few points where a page can be freed:
250 * - After being replaced by the zero page.
251 * - After being replaced by a shared page.
252 * - After being ballooned by the guest additions.
253 * - At reset.
254 * - At restore.
255 *
256 * When freeing one or more pages they will be returned to the ring-0
257 * component and replaced by the zero page.
258 *
259 * The reasoning for clearing out all the pages on reset is that it will
260 * return us to the exact same state as on power on, and may thereby help
261 * us reduce the memory load on the system. Further it might have a
262 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
263 *
264 * On restore, as mention under the allocation topic, pages should be
265 * freed / allocated depending on how many is actually required by the
266 * new VM state. The simplest approach is to do like on reset, and free
267 * all non-ROM pages and then allocate what we need.
268 *
269 * A measure to prevent some fragmentation, would be to let each allocation
270 * chunk have some affinity towards the VM having allocated the most pages
271 * from it. Also, try make sure to allocate from allocation chunks that
272 * are almost full. Admittedly, both these measures might work counter to
273 * our intentions and its probably not worth putting a lot of effort,
274 * cpu time or memory into this.
275 *
276 *
277 * @subsection subsec_pgmPhys_SharePage Sharing a page
278 *
279 * The basic idea is that there there will be a idle priority kernel
280 * thread walking the non-shared VM pages hashing them and looking for
281 * pages with the same checksum. If such pages are found, it will compare
282 * them byte-by-byte to see if they actually are identical. If found to be
283 * identical it will allocate a shared page, copy the content, check that
284 * the page didn't change while doing this, and finally request both the
285 * VMs to use the shared page instead. If the page is all zeros (special
286 * checksum and byte-by-byte check) it will request the VM that owns it
287 * to replace it with the zero page.
288 *
289 * To make this efficient, we will have to make sure not to try share a page
290 * that will change its contents soon. This part requires the most work.
291 * A simple idea would be to request the VM to write monitor the page for
292 * a while to make sure it isn't modified any time soon. Also, it may
293 * make sense to skip pages that are being write monitored since this
294 * information is readily available to the thread if it works on the
295 * per-VM guest memory structures (presently called PGMRAMRANGE).
296 *
297 *
298 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
299 *
300 * The pages are organized in allocation chunks in ring-0, this is a necessity
301 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
302 * could easily work on a page-by-page basis if we liked. Whether this is possible
303 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
304 * become a problem as part of the idea here is that we wish to return memory to
305 * the host system.
306 *
307 * For instance, starting two VMs at the same time, they will both allocate the
308 * guest memory on-demand and if permitted their page allocations will be
309 * intermixed. Shut down one of the two VMs and it will be difficult to return
310 * any memory to the host system because the page allocation for the two VMs are
311 * mixed up in the same allocation chunks.
312 *
313 * To further complicate matters, when pages are freed because they have been
314 * ballooned or become shared/zero the whole idea is that the page is supposed
315 * to be reused by another VM or returned to the host system. This will cause
316 * allocation chunks to contain pages belonging to different VMs and prevent
317 * returning memory to the host when one of those VM shuts down.
318 *
319 * The only way to really deal with this problem is to move pages. This can
320 * either be done at VM shutdown and or by the idle priority worker thread
321 * that will be responsible for finding sharable/zero pages. The mechanisms
322 * involved for coercing a VM to move a page (or to do it for it) will be
323 * the same as when telling it to share/zero a page.
324 *
325 *
326 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
327 *
328 * There's a difficult balance between keeping the per-page tracking structures
329 * (global and guest page) easy to use and keeping them from eating too much
330 * memory. We have limited virtual memory resources available when operating in
331 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
332 * tracking structures will be attemted designed such that we can deal with up
333 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
334 *
335 *
336 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
337 *
338 * @see pg_GMM
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
341 *
342 * Fixed info is the physical address of the page (HCPhys) and the page id
343 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
344 * Today we've restricting ourselves to 40(-12) bits because this is the current
345 * restrictions of all AMD64 implementations (I think Barcelona will up this
346 * to 48(-12) bits, not that it really matters) and I needed the bits for
347 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
348 * decent range for the page id: 2^(28+12) = 1024TB.
349 *
350 * In additions to these, we'll have to keep maintaining the page flags as we
351 * currently do. Although it wouldn't harm to optimize these quite a bit, like
352 * for instance the ROM shouldn't depend on having a write handler installed
353 * in order for it to become read-only. A RO/RW bit should be considered so
354 * that the page syncing code doesn't have to mess about checking multiple
355 * flag combinations (ROM || RW handler || write monitored) in order to
356 * figure out how to setup a shadow PTE. But this of course, is second
357 * priority at present. Current this requires 12 bits, but could probably
358 * be optimized to ~8.
359 *
360 * Then there's the 24 bits used to track which shadow page tables are
361 * currently mapping a page for the purpose of speeding up physical
362 * access handlers, and thereby the page pool cache. More bit for this
363 * purpose wouldn't hurt IIRC.
364 *
365 * Then there is a new bit in which we need to record what kind of page
366 * this is, shared, zero, normal or write-monitored-normal. This'll
367 * require 2 bits. One bit might be needed for indicating whether a
368 * write monitored page has been written to. And yet another one or
369 * two for tracking migration status. 3-4 bits total then.
370 *
371 * Whatever is left will can be used to record the sharabilitiy of a
372 * page. The page checksum will not be stored in the per-VM table as
373 * the idle thread will not be permitted to do modifications to it.
374 * It will instead have to keep its own working set of potentially
375 * shareable pages and their check sums and stuff.
376 *
377 * For the present we'll keep the current packing of the
378 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
379 * we'll have to change it to a struct with a total of 128-bits at
380 * our disposal.
381 *
382 * The initial layout will be like this:
383 * @verbatim
384 RTHCPHYS HCPhys; The current stuff.
385 63:40 Current shadow PT tracking stuff.
386 39:12 The physical page frame number.
387 11:0 The current flags.
388 uint32_t u28PageId : 28; The page id.
389 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
390 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
391 uint32_t u1Reserved : 1; Reserved for later.
392 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
393 @endverbatim
394 *
395 * The final layout will be something like this:
396 * @verbatim
397 RTHCPHYS HCPhys; The current stuff.
398 63:48 High page id (12+).
399 47:12 The physical page frame number.
400 11:0 Low page id.
401 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
402 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
403 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
404 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
405 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
406 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
407 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
408 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
409 @endverbatim
410 *
411 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
412 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
413 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
414 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
415 *
416 * A couple of cost examples for the total cost per-VM + kernel.
417 * 32-bit Windows and 32-bit linux:
418 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
419 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
420 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
421 * 64-bit Windows and 64-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
423 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
424 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
425 *
426 * UPDATE - 2007-09-27:
427 * Will need a ballooned flag/state too because we cannot
428 * trust the guest 100% and reporting the same page as ballooned more
429 * than once will put the GMM off balance.
430 *
431 *
432 * @subsection subsec_pgmPhys_Serializing Serializing Access
433 *
434 * Initially, we'll try a simple scheme:
435 *
436 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
437 * by the EMT thread of that VM while in the pgm critsect.
438 * - Other threads in the VM process that needs to make reliable use of
439 * the per-VM RAM tracking structures will enter the critsect.
440 * - No process external thread or kernel thread will ever try enter
441 * the pgm critical section, as that just won't work.
442 * - The idle thread (and similar threads) doesn't not need 100% reliable
443 * data when performing it tasks as the EMT thread will be the one to
444 * do the actual changes later anyway. So, as long as it only accesses
445 * the main ram range, it can do so by somehow preventing the VM from
446 * being destroyed while it works on it...
447 *
448 * - The over-commitment management, including the allocating/freeing
449 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
450 * more mundane mutex implementation is broken on Linux).
451 * - A separeate mutex is protecting the set of allocation chunks so
452 * that pages can be shared or/and freed up while some other VM is
453 * allocating more chunks. This mutex can be take from under the other
454 * one, but not the otherway around.
455 *
456 *
457 * @subsection subsec_pgmPhys_Request VM Request interface
458 *
459 * When in ring-0 it will become necessary to send requests to a VM so it can
460 * for instance move a page while defragmenting during VM destroy. The idle
461 * thread will make use of this interface to request VMs to setup shared
462 * pages and to perform write monitoring of pages.
463 *
464 * I would propose an interface similar to the current VMReq interface, similar
465 * in that it doesn't require locking and that the one sending the request may
466 * wait for completion if it wishes to. This shouldn't be very difficult to
467 * realize.
468 *
469 * The requests themselves are also pretty simple. They are basically:
470 * -# Check that some precondition is still true.
471 * -# Do the update.
472 * -# Update all shadow page tables involved with the page.
473 *
474 * The 3rd step is identical to what we're already doing when updating a
475 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
476 *
477 *
478 *
479 * @section sec_pgmPhys_MappingCaches Mapping Caches
480 *
481 * In order to be able to map in and out memory and to be able to support
482 * guest with more RAM than we've got virtual address space, we'll employing
483 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
484 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
485 * memory context for the HWACCM execution.
486 *
487 *
488 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
489 *
490 * We've considered implementing the ring-3 mapping cache page based but found
491 * that this was bother some when one had to take into account TLBs+SMP and
492 * portability (missing the necessary APIs on several platforms). There were
493 * also some performance concerns with this approach which hadn't quite been
494 * worked out.
495 *
496 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
497 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
498 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
499 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
500 * costly than a single page, although how much more costly is uncertain. We'll
501 * try address this by using a very big cache, preferably bigger than the actual
502 * VM RAM size if possible. The current VM RAM sizes should give some idea for
503 * 32-bit boxes, while on 64-bit we can probably get away with employing an
504 * unlimited cache.
505 *
506 * The cache have to parts, as already indicated, the ring-3 side and the
507 * ring-0 side.
508 *
509 * The ring-0 will be tied to the page allocator since it will operate on the
510 * memory objects it contains. It will therefore require the first ring-0 mutex
511 * discussed in @ref subsec_pgmPhys_Serializing. We
512 * some double house keeping wrt to who has mapped what I think, since both
513 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
514 *
515 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
516 * require anyone that desires to do changes to the mapping cache to do that
517 * from within this critsect. Alternatively, we could employ a separate critsect
518 * for serializing changes to the mapping cache as this would reduce potential
519 * contention with other threads accessing mappings unrelated to the changes
520 * that are in process. We can see about this later, contention will show
521 * up in the statistics anyway, so it'll be simple to tell.
522 *
523 * The organization of the ring-3 part will be very much like how the allocation
524 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
525 * having to walk the tree all the time, we'll have a couple of lookaside entries
526 * like in we do for I/O ports and MMIO in IOM.
527 *
528 * The simplified flow of a PGMPhysRead/Write function:
529 * -# Enter the PGM critsect.
530 * -# Lookup GCPhys in the ram ranges and get the Page ID.
531 * -# Calc the Allocation Chunk ID from the Page ID.
532 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
533 * If not found in cache:
534 * -# Call ring-0 and request it to be mapped and supply
535 * a chunk to be unmapped if the cache is maxed out already.
536 * -# Insert the new mapping into the AVL tree (id + R3 address).
537 * -# Update the relevant lookaside entry and return the mapping address.
538 * -# Do the read/write according to monitoring flags and everything.
539 * -# Leave the critsect.
540 *
541 *
542 * @section sec_pgmPhys_Fallback Fallback
543 *
544 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
545 * API and thus require a fallback.
546 *
547 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
548 * will return to the ring-3 caller (and later ring-0) and asking it to seed
549 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
550 * then perform an SUPPageAlloc(cbChunk >> PAGE_SHIFT) call and make a
551 * "SeededAllocPages" call to ring-0.
552 *
553 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
554 * all page sharing (zero page detection will continue). It will also force
555 * all allocations to come from the VM which seeded the page. Both these
556 * measures are taken to make sure that there will never be any need for
557 * mapping anything into ring-3 - everything will be mapped already.
558 *
559 * Whether we'll continue to use the current MM locked memory management
560 * for this I don't quite know (I'd prefer not to and just ditch that all
561 * togther), we'll see what's simplest to do.
562 *
563 *
564 *
565 * @section sec_pgmPhys_Changes Changes
566 *
567 * Breakdown of the changes involved?
568 */
569
570
571/** Saved state data unit version. */
572#define PGM_SAVED_STATE_VERSION 6
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/dbgf.h>
588#include <VBox/rem.h>
589#include <VBox/selm.h>
590#include <VBox/ssm.h>
591#include "PGMInternal.h"
592#include <VBox/vm.h>
593#include <VBox/dbg.h>
594#include <VBox/hwaccm.h>
595
596#include <iprt/assert.h>
597#include <iprt/alloc.h>
598#include <iprt/asm.h>
599#include <iprt/thread.h>
600#include <iprt/string.h>
601#include <VBox/param.h>
602#include <VBox/err.h>
603
604
605
606/*******************************************************************************
607* Internal Functions *
608*******************************************************************************/
609static int pgmR3InitPaging(PVM pVM);
610static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
611static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
612static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
613static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
614static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
615static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
616#ifdef VBOX_STRICT
617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
618#endif
619static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM);
620static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
621static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
622static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst);
623static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
624
625#ifdef VBOX_WITH_STATISTICS
626static void pgmR3InitStats(PVM pVM);
627#endif
628
629#ifdef VBOX_WITH_DEBUGGER
630/** @todo all but the two last commands must be converted to 'info'. */
631static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
632static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
633static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
634static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
635#endif
636
637
638/*******************************************************************************
639* Global Variables *
640*******************************************************************************/
641#ifdef VBOX_WITH_DEBUGGER
642/** Command descriptors. */
643static const DBGCCMD g_aCmds[] =
644{
645 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
646 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
647 { "pgmmap", 0, 0, NULL, 0, NULL, 0, pgmR3CmdMap, "", "Display the mapping ranges." },
648 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
649 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
650};
651#endif
652
653
654
655
656/*
657 * Shadow - 32-bit mode
658 */
659#define PGM_SHW_TYPE PGM_TYPE_32BIT
660#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
661#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_32BIT_STR(name)
662#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
663#include "PGMShw.h"
664
665/* Guest - real mode */
666#define PGM_GST_TYPE PGM_TYPE_REAL
667#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
668#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
669#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
670#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
671#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_REAL_STR(name)
672#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
673#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
674#include "PGMGst.h"
675#include "PGMBth.h"
676#undef BTH_PGMPOOLKIND_PT_FOR_PT
677#undef PGM_BTH_NAME
678#undef PGM_BTH_NAME_GC_STR
679#undef PGM_BTH_NAME_R0_STR
680#undef PGM_GST_TYPE
681#undef PGM_GST_NAME
682#undef PGM_GST_NAME_GC_STR
683#undef PGM_GST_NAME_R0_STR
684
685/* Guest - protected mode */
686#define PGM_GST_TYPE PGM_TYPE_PROT
687#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
688#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
689#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
690#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
691#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_PROT_STR(name)
692#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
693#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
694#include "PGMGst.h"
695#include "PGMBth.h"
696#undef BTH_PGMPOOLKIND_PT_FOR_PT
697#undef PGM_BTH_NAME
698#undef PGM_BTH_NAME_GC_STR
699#undef PGM_BTH_NAME_R0_STR
700#undef PGM_GST_TYPE
701#undef PGM_GST_NAME
702#undef PGM_GST_NAME_GC_STR
703#undef PGM_GST_NAME_R0_STR
704
705/* Guest - 32-bit mode */
706#define PGM_GST_TYPE PGM_TYPE_32BIT
707#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
708#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
709#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
710#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
711#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_32BIT_32BIT_STR(name)
712#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
713#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
714#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
715#include "PGMGst.h"
716#include "PGMBth.h"
717#undef BTH_PGMPOOLKIND_PT_FOR_BIG
718#undef BTH_PGMPOOLKIND_PT_FOR_PT
719#undef PGM_BTH_NAME
720#undef PGM_BTH_NAME_GC_STR
721#undef PGM_BTH_NAME_R0_STR
722#undef PGM_GST_TYPE
723#undef PGM_GST_NAME
724#undef PGM_GST_NAME_GC_STR
725#undef PGM_GST_NAME_R0_STR
726
727#undef PGM_SHW_TYPE
728#undef PGM_SHW_NAME
729#undef PGM_SHW_NAME_GC_STR
730#undef PGM_SHW_NAME_R0_STR
731
732
733/*
734 * Shadow - PAE mode
735 */
736#define PGM_SHW_TYPE PGM_TYPE_PAE
737#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
738#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_PAE_STR(name)
739#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
740#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
741#include "PGMShw.h"
742
743/* Guest - real mode */
744#define PGM_GST_TYPE PGM_TYPE_REAL
745#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
746#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
747#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
748#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
749#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_REAL_STR(name)
750#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
751#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
752#include "PGMBth.h"
753#undef BTH_PGMPOOLKIND_PT_FOR_PT
754#undef PGM_BTH_NAME
755#undef PGM_BTH_NAME_GC_STR
756#undef PGM_BTH_NAME_R0_STR
757#undef PGM_GST_TYPE
758#undef PGM_GST_NAME
759#undef PGM_GST_NAME_GC_STR
760#undef PGM_GST_NAME_R0_STR
761
762/* Guest - protected mode */
763#define PGM_GST_TYPE PGM_TYPE_PROT
764#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
765#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
766#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
767#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
768#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PROT_STR(name)
769#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
770#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
771#include "PGMBth.h"
772#undef BTH_PGMPOOLKIND_PT_FOR_PT
773#undef PGM_BTH_NAME
774#undef PGM_BTH_NAME_GC_STR
775#undef PGM_BTH_NAME_R0_STR
776#undef PGM_GST_TYPE
777#undef PGM_GST_NAME
778#undef PGM_GST_NAME_GC_STR
779#undef PGM_GST_NAME_R0_STR
780
781/* Guest - 32-bit mode */
782#define PGM_GST_TYPE PGM_TYPE_32BIT
783#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
784#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
785#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
786#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
787#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_32BIT_STR(name)
788#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
789#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
790#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
791#include "PGMBth.h"
792#undef BTH_PGMPOOLKIND_PT_FOR_BIG
793#undef BTH_PGMPOOLKIND_PT_FOR_PT
794#undef PGM_BTH_NAME
795#undef PGM_BTH_NAME_GC_STR
796#undef PGM_BTH_NAME_R0_STR
797#undef PGM_GST_TYPE
798#undef PGM_GST_NAME
799#undef PGM_GST_NAME_GC_STR
800#undef PGM_GST_NAME_R0_STR
801
802/* Guest - PAE mode */
803#define PGM_GST_TYPE PGM_TYPE_PAE
804#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
805#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
806#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
807#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
808#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_PAE_PAE_STR(name)
809#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
810#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
811#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
812#include "PGMGst.h"
813#include "PGMBth.h"
814#undef BTH_PGMPOOLKIND_PT_FOR_BIG
815#undef BTH_PGMPOOLKIND_PT_FOR_PT
816#undef PGM_BTH_NAME
817#undef PGM_BTH_NAME_GC_STR
818#undef PGM_BTH_NAME_R0_STR
819#undef PGM_GST_TYPE
820#undef PGM_GST_NAME
821#undef PGM_GST_NAME_GC_STR
822#undef PGM_GST_NAME_R0_STR
823
824#undef PGM_SHW_TYPE
825#undef PGM_SHW_NAME
826#undef PGM_SHW_NAME_GC_STR
827#undef PGM_SHW_NAME_R0_STR
828
829
830/*
831 * Shadow - AMD64 mode
832 */
833#define PGM_SHW_TYPE PGM_TYPE_AMD64
834#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
835#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_AMD64_STR(name)
836#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
837#include "PGMShw.h"
838
839/* Guest - AMD64 mode */
840#define PGM_GST_TYPE PGM_TYPE_AMD64
841#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
842#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
843#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
844#define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
845#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_AMD64_AMD64_STR(name)
846#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
847#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
848#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
849#include "PGMGst.h"
850#include "PGMBth.h"
851#undef BTH_PGMPOOLKIND_PT_FOR_BIG
852#undef BTH_PGMPOOLKIND_PT_FOR_PT
853#undef PGM_BTH_NAME
854#undef PGM_BTH_NAME_GC_STR
855#undef PGM_BTH_NAME_R0_STR
856#undef PGM_GST_TYPE
857#undef PGM_GST_NAME
858#undef PGM_GST_NAME_GC_STR
859#undef PGM_GST_NAME_R0_STR
860
861#undef PGM_SHW_TYPE
862#undef PGM_SHW_NAME
863#undef PGM_SHW_NAME_GC_STR
864#undef PGM_SHW_NAME_R0_STR
865
866/*
867 * Shadow - Nested paging mode
868 */
869#define PGM_SHW_TYPE PGM_TYPE_NESTED
870#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
871#define PGM_SHW_NAME_GC_STR(name) PGM_SHW_NAME_GC_NESTED_STR(name)
872#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
873#include "PGMShw.h"
874
875/* Guest - real mode */
876#define PGM_GST_TYPE PGM_TYPE_REAL
877#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
878#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_REAL_STR(name)
879#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
880#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
881#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_REAL_STR(name)
882#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
883#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
884#include "PGMBth.h"
885#undef BTH_PGMPOOLKIND_PT_FOR_PT
886#undef PGM_BTH_NAME
887#undef PGM_BTH_NAME_GC_STR
888#undef PGM_BTH_NAME_R0_STR
889#undef PGM_GST_TYPE
890#undef PGM_GST_NAME
891#undef PGM_GST_NAME_GC_STR
892#undef PGM_GST_NAME_R0_STR
893
894/* Guest - protected mode */
895#define PGM_GST_TYPE PGM_TYPE_PROT
896#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
897#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PROT_STR(name)
898#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
899#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
900#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PROT_STR(name)
901#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
902#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
903#include "PGMBth.h"
904#undef BTH_PGMPOOLKIND_PT_FOR_PT
905#undef PGM_BTH_NAME
906#undef PGM_BTH_NAME_GC_STR
907#undef PGM_BTH_NAME_R0_STR
908#undef PGM_GST_TYPE
909#undef PGM_GST_NAME
910#undef PGM_GST_NAME_GC_STR
911#undef PGM_GST_NAME_R0_STR
912
913/* Guest - 32-bit mode */
914#define PGM_GST_TYPE PGM_TYPE_32BIT
915#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
916#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_32BIT_STR(name)
917#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
918#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
919#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_32BIT_STR(name)
920#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
921#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
922#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
923#include "PGMBth.h"
924#undef BTH_PGMPOOLKIND_PT_FOR_BIG
925#undef BTH_PGMPOOLKIND_PT_FOR_PT
926#undef PGM_BTH_NAME
927#undef PGM_BTH_NAME_GC_STR
928#undef PGM_BTH_NAME_R0_STR
929#undef PGM_GST_TYPE
930#undef PGM_GST_NAME
931#undef PGM_GST_NAME_GC_STR
932#undef PGM_GST_NAME_R0_STR
933
934/* Guest - PAE mode */
935#define PGM_GST_TYPE PGM_TYPE_PAE
936#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
937#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_PAE_STR(name)
938#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
939#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
940#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_PAE_STR(name)
941#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
942#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
943#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
944#include "PGMBth.h"
945#undef BTH_PGMPOOLKIND_PT_FOR_BIG
946#undef BTH_PGMPOOLKIND_PT_FOR_PT
947#undef PGM_BTH_NAME
948#undef PGM_BTH_NAME_GC_STR
949#undef PGM_BTH_NAME_R0_STR
950#undef PGM_GST_TYPE
951#undef PGM_GST_NAME
952#undef PGM_GST_NAME_GC_STR
953#undef PGM_GST_NAME_R0_STR
954
955/* Guest - AMD64 mode */
956#define PGM_GST_TYPE PGM_TYPE_AMD64
957#define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
958#define PGM_GST_NAME_GC_STR(name) PGM_GST_NAME_GC_AMD64_STR(name)
959#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
960#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
961#define PGM_BTH_NAME_GC_STR(name) PGM_BTH_NAME_GC_NESTED_AMD64_STR(name)
962#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
963#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
964#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
965#include "PGMBth.h"
966#undef BTH_PGMPOOLKIND_PT_FOR_BIG
967#undef BTH_PGMPOOLKIND_PT_FOR_PT
968#undef PGM_BTH_NAME
969#undef PGM_BTH_NAME_GC_STR
970#undef PGM_BTH_NAME_R0_STR
971#undef PGM_GST_TYPE
972#undef PGM_GST_NAME
973#undef PGM_GST_NAME_GC_STR
974#undef PGM_GST_NAME_R0_STR
975
976#undef PGM_SHW_TYPE
977#undef PGM_SHW_NAME
978#undef PGM_SHW_NAME_GC_STR
979#undef PGM_SHW_NAME_R0_STR
980
981
982/**
983 * Initiates the paging of VM.
984 *
985 * @returns VBox status code.
986 * @param pVM Pointer to VM structure.
987 */
988PGMR3DECL(int) PGMR3Init(PVM pVM)
989{
990 LogFlow(("PGMR3Init:\n"));
991
992 /*
993 * Assert alignment and sizes.
994 */
995 AssertRelease(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
996
997 /*
998 * Init the structure.
999 */
1000 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1001 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1002 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1003 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1004 pVM->pgm.s.GCPhysCR3 = NIL_RTGCPHYS;
1005 pVM->pgm.s.GCPhysGstCR3Monitored = NIL_RTGCPHYS;
1006 pVM->pgm.s.fA20Enabled = true;
1007 pVM->pgm.s.pGstPaePDPTHC = NULL;
1008 pVM->pgm.s.pGstPaePDPTGC = 0;
1009 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGstPaePDsHC); i++)
1010 {
1011 pVM->pgm.s.apGstPaePDsHC[i] = NULL;
1012 pVM->pgm.s.apGstPaePDsGC[i] = 0;
1013 pVM->pgm.s.aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1014 pVM->pgm.s.aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1015 }
1016
1017#ifdef VBOX_STRICT
1018 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1019#endif
1020
1021 /*
1022 * Get the configured RAM size - to estimate saved state size.
1023 */
1024 uint64_t cbRam;
1025 int rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1026 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1027 cbRam = pVM->pgm.s.cbRamSize = 0;
1028 else if (VBOX_SUCCESS(rc))
1029 {
1030 if (cbRam < PAGE_SIZE)
1031 cbRam = 0;
1032 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1033 pVM->pgm.s.cbRamSize = (RTUINT)cbRam;
1034 }
1035 else
1036 {
1037 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Vrc.\n", rc));
1038 return rc;
1039 }
1040
1041 /*
1042 * Register saved state data unit.
1043 */
1044 rc = SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
1045 NULL, pgmR3Save, NULL,
1046 NULL, pgmR3Load, NULL);
1047 if (VBOX_FAILURE(rc))
1048 return rc;
1049
1050 /*
1051 * Initialize the PGM critical section and flush the phys TLBs
1052 */
1053 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, "PGM");
1054 AssertRCReturn(rc, rc);
1055
1056 PGMR3PhysChunkInvalidateTLB(pVM);
1057 PGMPhysInvalidatePageR3MapTLB(pVM);
1058 PGMPhysInvalidatePageR0MapTLB(pVM);
1059 PGMPhysInvalidatePageGCMapTLB(pVM);
1060
1061 /*
1062 * Trees
1063 */
1064 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesHC);
1065 if (VBOX_SUCCESS(rc))
1066 {
1067 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1068
1069 /*
1070 * Alocate the zero page.
1071 */
1072 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1073 }
1074 if (VBOX_SUCCESS(rc))
1075 {
1076 pVM->pgm.s.pvZeroPgGC = MMHyperR3ToGC(pVM, pVM->pgm.s.pvZeroPgR3);
1077 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1078 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTHCPHYS);
1079 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1080 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1081
1082 /*
1083 * Init the paging.
1084 */
1085 rc = pgmR3InitPaging(pVM);
1086 }
1087 if (VBOX_SUCCESS(rc))
1088 {
1089 /*
1090 * Init the page pool.
1091 */
1092 rc = pgmR3PoolInit(pVM);
1093 }
1094 if (VBOX_SUCCESS(rc))
1095 {
1096 /*
1097 * Info & statistics
1098 */
1099 DBGFR3InfoRegisterInternal(pVM, "mode",
1100 "Shows the current paging mode. "
1101 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1102 pgmR3InfoMode);
1103 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1104 "Dumps all the entries in the top level paging table. No arguments.",
1105 pgmR3InfoCr3);
1106 DBGFR3InfoRegisterInternal(pVM, "phys",
1107 "Dumps all the physical address ranges. No arguments.",
1108 pgmR3PhysInfo);
1109 DBGFR3InfoRegisterInternal(pVM, "handlers",
1110 "Dumps physical, virtual and hyper virtual handlers. "
1111 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1112 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1113 pgmR3InfoHandlers);
1114 DBGFR3InfoRegisterInternal(pVM, "mappings",
1115 "Dumps guest mappings.",
1116 pgmR3MapInfo);
1117
1118 STAM_REL_REG(pVM, &pVM->pgm.s.cGuestModeChanges, STAMTYPE_COUNTER, "/PGM/cGuestModeChanges", STAMUNIT_OCCURENCES, "Number of guest mode changes.");
1119#ifdef VBOX_WITH_STATISTICS
1120 pgmR3InitStats(pVM);
1121#endif
1122#ifdef VBOX_WITH_DEBUGGER
1123 /*
1124 * Debugger commands.
1125 */
1126 static bool fRegisteredCmds = false;
1127 if (!fRegisteredCmds)
1128 {
1129 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
1130 if (VBOX_SUCCESS(rc))
1131 fRegisteredCmds = true;
1132 }
1133#endif
1134 return VINF_SUCCESS;
1135 }
1136
1137 /* Almost no cleanup necessary, MM frees all memory. */
1138 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1139
1140 return rc;
1141}
1142
1143
1144/**
1145 * Init paging.
1146 *
1147 * Since we need to check what mode the host is operating in before we can choose
1148 * the right paging functions for the host we have to delay this until R0 has
1149 * been initialized.
1150 *
1151 * @returns VBox status code.
1152 * @param pVM VM handle.
1153 */
1154static int pgmR3InitPaging(PVM pVM)
1155{
1156 /*
1157 * Force a recalculation of modes and switcher so everyone gets notified.
1158 */
1159 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
1160 pVM->pgm.s.enmGuestMode = PGMMODE_INVALID;
1161 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1162
1163 /*
1164 * Allocate static mapping space for whatever the cr3 register
1165 * points to and in the case of PAE mode to the 4 PDs.
1166 */
1167 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1168 if (VBOX_FAILURE(rc))
1169 {
1170 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Vrc\n", rc));
1171 return rc;
1172 }
1173 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1174
1175 /*
1176 * Allocate pages for the three possible intermediate contexts
1177 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1178 * for the sake of simplicity. The AMD64 uses the PAE for the
1179 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1180 *
1181 * We assume that two page tables will be enought for the core code
1182 * mappings (HC virtual and identity).
1183 */
1184 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM);
1185 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM);
1186 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM);
1187 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM);
1188 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM);
1189 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1190 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1191 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1192 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1193 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1194 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM);
1195 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1196 if ( !pVM->pgm.s.pInterPD
1197 || !pVM->pgm.s.apInterPTs[0]
1198 || !pVM->pgm.s.apInterPTs[1]
1199 || !pVM->pgm.s.apInterPaePTs[0]
1200 || !pVM->pgm.s.apInterPaePTs[1]
1201 || !pVM->pgm.s.apInterPaePDs[0]
1202 || !pVM->pgm.s.apInterPaePDs[1]
1203 || !pVM->pgm.s.apInterPaePDs[2]
1204 || !pVM->pgm.s.apInterPaePDs[3]
1205 || !pVM->pgm.s.pInterPaePDPT
1206 || !pVM->pgm.s.pInterPaePDPT64
1207 || !pVM->pgm.s.pInterPaePML4)
1208 {
1209 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1210 return VERR_NO_PAGE_MEMORY;
1211 }
1212
1213 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1214 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1215 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1216 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1217 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1218 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK));
1219
1220 /*
1221 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1222 */
1223 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1224 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1225 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1226
1227 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1228 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1229
1230 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1231 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1232 {
1233 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1234 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1235 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1236 }
1237
1238 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1239 {
1240 const unsigned iPD = i % ELEMENTS(pVM->pgm.s.apInterPaePDs);
1241 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1242 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1243 }
1244
1245 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1246 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1247 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1248 | HCPhysInterPaePDPT64;
1249
1250 /*
1251 * Allocate pages for the three possible guest contexts (AMD64, PAE and plain 32-Bit).
1252 * We allocate pages for all three posibilities to in order to simplify mappings and
1253 * avoid resource failure during mode switches. So, we need to cover all levels of the
1254 * of the first 4GB down to PD level.
1255 * As with the intermediate context, AMD64 uses the PAE PDPT and PDs.
1256 */
1257 pVM->pgm.s.pHC32BitPD = (PX86PD)MMR3PageAllocLow(pVM);
1258 pVM->pgm.s.apHCPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM);
1259 pVM->pgm.s.apHCPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM);
1260 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[0] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[1]);
1261 pVM->pgm.s.apHCPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM);
1262 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[1] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[2]);
1263 pVM->pgm.s.apHCPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM);
1264 AssertRelease((uintptr_t)pVM->pgm.s.apHCPaePDs[2] + PAGE_SIZE == (uintptr_t)pVM->pgm.s.apHCPaePDs[3]);
1265 pVM->pgm.s.pHCPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM);
1266 pVM->pgm.s.pHCPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM);
1267 if ( !pVM->pgm.s.pHC32BitPD
1268 || !pVM->pgm.s.apHCPaePDs[0]
1269 || !pVM->pgm.s.apHCPaePDs[1]
1270 || !pVM->pgm.s.apHCPaePDs[2]
1271 || !pVM->pgm.s.apHCPaePDs[3]
1272 || !pVM->pgm.s.pHCPaePDPT
1273 || !pVM->pgm.s.pHCPaePML4)
1274 {
1275 AssertMsgFailed(("Failed to allocate pages for the intermediate context!\n"));
1276 return VERR_NO_PAGE_MEMORY;
1277 }
1278
1279 /* get physical addresses. */
1280 pVM->pgm.s.HCPhys32BitPD = MMPage2Phys(pVM, pVM->pgm.s.pHC32BitPD);
1281 Assert(MMPagePhys2Page(pVM, pVM->pgm.s.HCPhys32BitPD) == pVM->pgm.s.pHC32BitPD);
1282 pVM->pgm.s.aHCPhysPaePDs[0] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[0]);
1283 pVM->pgm.s.aHCPhysPaePDs[1] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[1]);
1284 pVM->pgm.s.aHCPhysPaePDs[2] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[2]);
1285 pVM->pgm.s.aHCPhysPaePDs[3] = MMPage2Phys(pVM, pVM->pgm.s.apHCPaePDs[3]);
1286 pVM->pgm.s.HCPhysPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePDPT);
1287 pVM->pgm.s.HCPhysPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pHCPaePML4);
1288
1289 /*
1290 * Initialize the pages, setting up the PML4 and PDPT for action below 4GB.
1291 */
1292 ASMMemZero32(pVM->pgm.s.pHC32BitPD, PAGE_SIZE);
1293
1294 ASMMemZero32(pVM->pgm.s.pHCPaePDPT, PAGE_SIZE);
1295 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1296 {
1297 ASMMemZero32(pVM->pgm.s.apHCPaePDs[i], PAGE_SIZE);
1298 pVM->pgm.s.pHCPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT | pVM->pgm.s.aHCPhysPaePDs[i];
1299 /* The flags will be corrected when entering and leaving long mode. */
1300 }
1301
1302 ASMMemZero32(pVM->pgm.s.pHCPaePML4, PAGE_SIZE);
1303
1304 CPUMSetHyperCR3(pVM, (uint32_t)pVM->pgm.s.HCPhys32BitPD);
1305
1306 /*
1307 * Initialize paging workers and mode from current host mode
1308 * and the guest running in real mode.
1309 */
1310 pVM->pgm.s.enmHostMode = SUPGetPagingMode();
1311 switch (pVM->pgm.s.enmHostMode)
1312 {
1313 case SUPPAGINGMODE_32_BIT:
1314 case SUPPAGINGMODE_32_BIT_GLOBAL:
1315 case SUPPAGINGMODE_PAE:
1316 case SUPPAGINGMODE_PAE_GLOBAL:
1317 case SUPPAGINGMODE_PAE_NX:
1318 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1319 break;
1320
1321 case SUPPAGINGMODE_AMD64:
1322 case SUPPAGINGMODE_AMD64_GLOBAL:
1323 case SUPPAGINGMODE_AMD64_NX:
1324 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1325#ifndef VBOX_WITH_HYBIRD_32BIT_KERNEL
1326 if (ARCH_BITS != 64)
1327 {
1328 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1329 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1330 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1331 }
1332#endif
1333 break;
1334 default:
1335 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1336 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1337 }
1338 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1339 if (VBOX_SUCCESS(rc))
1340 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1341 if (VBOX_SUCCESS(rc))
1342 {
1343 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1344#if HC_ARCH_BITS == 64
1345LogRel(("Debug: HCPhys32BitPD=%VHp aHCPhysPaePDs={%VHp,%VHp,%VHp,%VHp} HCPhysPaePDPT=%VHp HCPhysPaePML4=%VHp\n",
1346 pVM->pgm.s.HCPhys32BitPD, pVM->pgm.s.aHCPhysPaePDs[0], pVM->pgm.s.aHCPhysPaePDs[1], pVM->pgm.s.aHCPhysPaePDs[2], pVM->pgm.s.aHCPhysPaePDs[3],
1347 pVM->pgm.s.HCPhysPaePDPT, pVM->pgm.s.HCPhysPaePML4));
1348LogRel(("Debug: HCPhysInterPD=%VHp HCPhysInterPaePDPT=%VHp HCPhysInterPaePML4=%VHp\n",
1349 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1350LogRel(("Debug: apInterPTs={%VHp,%VHp} apInterPaePTs={%VHp,%VHp} apInterPaePDs={%VHp,%VHp,%VHp,%VHp} pInterPaePDPT64=%VHp\n",
1351 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1352 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1353 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1354 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1355#endif
1356
1357 return VINF_SUCCESS;
1358 }
1359
1360 LogFlow(("pgmR3InitPaging: returns %Vrc\n", rc));
1361 return rc;
1362}
1363
1364
1365#ifdef VBOX_WITH_STATISTICS
1366/**
1367 * Init statistics
1368 */
1369static void pgmR3InitStats(PVM pVM)
1370{
1371 PPGM pPGM = &pVM->pgm.s;
1372 STAM_REG(pVM, &pPGM->StatGCInvalidatePage, STAMTYPE_PROFILE, "/PGM/GC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMGCInvalidatePage() profiling.");
1373 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4KB page.");
1374 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a 4MB page.");
1375 STAM_REG(pVM, &pPGM->StatGCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() skipped a 4MB page.");
1376 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1377 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not accessed page directory.");
1378 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for a not present page directory.");
1379 STAM_REG(pVM, &pPGM->StatGCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1380 STAM_REG(pVM, &pPGM->StatGCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/GC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1381 STAM_REG(pVM, &pPGM->StatGCSyncPT, STAMTYPE_PROFILE, "/PGM/GC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCSyncPT() body.");
1382 STAM_REG(pVM, &pPGM->StatGCAccessedPage, STAMTYPE_COUNTER, "/PGM/GC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1383 STAM_REG(pVM, &pPGM->StatGCDirtyPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1384 STAM_REG(pVM, &pPGM->StatGCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1385 STAM_REG(pVM, &pPGM->StatGCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1386 STAM_REG(pVM, &pPGM->StatGCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1387 STAM_REG(pVM, &pPGM->StatGCDirtiedPage, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/SetDirty", STAMUNIT_OCCURENCES, "The number of pages marked dirty because of write accesses.");
1388 STAM_REG(pVM, &pPGM->StatGCDirtyTrackRealPF, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/RealPF", STAMUNIT_OCCURENCES, "The number of real pages faults during dirty bit tracking.");
1389 STAM_REG(pVM, &pPGM->StatGCPageAlreadyDirty, STAMTYPE_COUNTER, "/PGM/GC/DirtyPage/AlreadySet", STAMUNIT_OCCURENCES, "The number of pages already marked dirty because of write accesses.");
1390 STAM_REG(pVM, &pPGM->StatGCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/GC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1391 STAM_REG(pVM, &pPGM->StatGCSyncPTAlloc, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Alloc", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() needed to allocate page tables.");
1392 STAM_REG(pVM, &pPGM->StatGCSyncPTConflict, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Conflicts", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() detected conflicts.");
1393 STAM_REG(pVM, &pPGM->StatGCSyncPTFailed, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/Failed", STAMUNIT_OCCURENCES, "The number of times PGMGCSyncPT() failed.");
1394
1395 STAM_REG(pVM, &pPGM->StatGCTrap0e, STAMTYPE_PROFILE, "/PGM/GC/Trap0e", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGCTrap0eHandler() body.");
1396 STAM_REG(pVM, &pPGM->StatCheckPageFault, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/CheckPageFault", STAMUNIT_TICKS_PER_CALL, "Profiling of checking for dirty/access emulation faults.");
1397 STAM_REG(pVM, &pPGM->StatLazySyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of lazy page table syncing.");
1398 STAM_REG(pVM, &pPGM->StatMapping, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Mapping", STAMUNIT_TICKS_PER_CALL, "Profiling of checking virtual mappings.");
1399 STAM_REG(pVM, &pPGM->StatOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of out of sync page handling.");
1400 STAM_REG(pVM, &pPGM->StatHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking handlers.");
1401 STAM_REG(pVM, &pPGM->StatEIPHandlers, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time/EIPHandlers", STAMUNIT_TICKS_PER_CALL, "Profiling of checking eip handlers.");
1402 STAM_REG(pVM, &pPGM->StatTrap0eCSAM, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/CSAM", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is CSAM.");
1403 STAM_REG(pVM, &pPGM->StatTrap0eDirtyAndAccessedBits, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/DirtyAndAccessedBits", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1404 STAM_REG(pVM, &pPGM->StatTrap0eGuestTrap, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/GuestTrap", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1405 STAM_REG(pVM, &pPGM->StatTrap0eHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerPhysical", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1406 STAM_REG(pVM, &pPGM->StatTrap0eHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerVirtual",STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1407 STAM_REG(pVM, &pPGM->StatTrap0eHndUnhandled, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/HandlerUnhandled", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1408 STAM_REG(pVM, &pPGM->StatTrap0eMisc, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/Misc", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is not known.");
1409 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSync, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1410 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndPhys, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndPhys", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1411 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncHndVirt, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncHndVirt", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1412 STAM_REG(pVM, &pPGM->StatTrap0eOutOfSyncObsHnd, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/OutOfSyncObsHnd", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1413 STAM_REG(pVM, &pPGM->StatTrap0eSyncPT, STAMTYPE_PROFILE, "/PGM/GC/Trap0e/Time2/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1414
1415 STAM_REG(pVM, &pPGM->StatTrap0eMapHandler, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Mapping", STAMUNIT_OCCURENCES, "Number of traps due to access handlers in mappings.");
1416 STAM_REG(pVM, &pPGM->StatHandlersOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/OutOfSync", STAMUNIT_OCCURENCES, "Number of traps due to out-of-sync handled pages.");
1417 STAM_REG(pVM, &pPGM->StatHandlersPhysical, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Physical", STAMUNIT_OCCURENCES, "Number of traps due to physical access handlers.");
1418 STAM_REG(pVM, &pPGM->StatHandlersVirtual, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Virtual", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers.");
1419 STAM_REG(pVM, &pPGM->StatHandlersVirtualByPhys, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualByPhys", STAMUNIT_OCCURENCES, "Number of traps due to virtual access handlers by physical address.");
1420 STAM_REG(pVM, &pPGM->StatHandlersVirtualUnmarked, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/VirtualUnmarked", STAMUNIT_OCCURENCES,"Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1421 STAM_REG(pVM, &pPGM->StatHandlersUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Unhandled", STAMUNIT_OCCURENCES, "Number of traps due to access outside range of monitored page(s).");
1422 STAM_REG(pVM, &pPGM->StatHandlersInvalid, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Handlers/Invalid", STAMUNIT_OCCURENCES, "Number of traps due to access to invalid physical memory.");
1423
1424 STAM_REG(pVM, &pPGM->StatGCTrap0eConflicts, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Conflicts", STAMUNIT_OCCURENCES, "The number of times #PF was caused by an undetected conflict.");
1425 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPRead", STAMUNIT_OCCURENCES, "Number of user mode not present read page faults.");
1426 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NPWrite", STAMUNIT_OCCURENCES, "Number of user mode not present write page faults.");
1427 STAM_REG(pVM, &pPGM->StatGCTrap0eUSWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Write", STAMUNIT_OCCURENCES, "Number of user mode write page faults.");
1428 STAM_REG(pVM, &pPGM->StatGCTrap0eUSReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Reserved", STAMUNIT_OCCURENCES, "Number of user mode reserved bit page faults.");
1429 STAM_REG(pVM, &pPGM->StatGCTrap0eUSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/NXE", STAMUNIT_OCCURENCES, "Number of user mode NXE page faults.");
1430 STAM_REG(pVM, &pPGM->StatGCTrap0eUSRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/User/Read", STAMUNIT_OCCURENCES, "Number of user mode read page faults.");
1431
1432 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentRead, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPRead", STAMUNIT_OCCURENCES, "Number of supervisor mode not present read page faults.");
1433 STAM_REG(pVM, &pPGM->StatGCTrap0eSVNotPresentWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NPWrite", STAMUNIT_OCCURENCES, "Number of supervisor mode not present write page faults.");
1434 STAM_REG(pVM, &pPGM->StatGCTrap0eSVWrite, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Write", STAMUNIT_OCCURENCES, "Number of supervisor mode write page faults.");
1435 STAM_REG(pVM, &pPGM->StatGCTrap0eSVReserved, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/Reserved", STAMUNIT_OCCURENCES, "Number of supervisor mode reserved bit page faults.");
1436 STAM_REG(pVM, &pPGM->StatGCTrap0eSNXE, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/Supervisor/NXE", STAMUNIT_OCCURENCES, "Number of supervisor mode NXE page faults.");
1437 STAM_REG(pVM, &pPGM->StatGCTrap0eUnhandled, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Unhandled", STAMUNIT_OCCURENCES, "Number of guest real page faults.");
1438 STAM_REG(pVM, &pPGM->StatGCTrap0eMap, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/GuestPF/Map", STAMUNIT_OCCURENCES, "Number of guest page faults due to map accesses.");
1439
1440 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulGC, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/InGC", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation.");
1441 STAM_REG(pVM, &pPGM->StatTrap0eWPEmulR3, STAMTYPE_COUNTER, "/PGM/GC/Trap0e/WP/ToR3", STAMUNIT_OCCURENCES, "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1442
1443 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteHandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was successfully handled.");
1444 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 change was passed back to the recompiler.");
1445 STAM_REG(pVM, &pPGM->StatGCGuestCR3WriteConflict, STAMTYPE_COUNTER, "/PGM/GC/CR3WriteConflict", STAMUNIT_OCCURENCES, "The number of times the Guest CR3 monitoring detected a conflict.");
1446
1447 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncSupervisor, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/SuperVisor", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1448 STAM_REG(pVM, &pPGM->StatGCPageOutOfSyncUser, STAMTYPE_COUNTER, "/PGM/GC/OutOfSync/User", STAMUNIT_OCCURENCES, "Number of traps due to pages out of sync.");
1449
1450 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteHandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteInt", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was successfully handled.");
1451 STAM_REG(pVM, &pPGM->StatGCGuestROMWriteUnhandled, STAMTYPE_COUNTER, "/PGM/GC/ROMWriteEmu", STAMUNIT_OCCURENCES, "The number of times the Guest ROM change was passed back to the recompiler.");
1452
1453 STAM_REG(pVM, &pPGM->StatDynMapCacheHits, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Hits" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache hits.");
1454 STAM_REG(pVM, &pPGM->StatDynMapCacheMisses, STAMTYPE_COUNTER, "/PGM/GC/DynMapCache/Misses" , STAMUNIT_OCCURENCES, "Number of dynamic page mapping cache misses.");
1455
1456 STAM_REG(pVM, &pPGM->StatHCDetectedConflicts, STAMTYPE_COUNTER, "/PGM/HC/DetectedConflicts", STAMUNIT_OCCURENCES, "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1457 STAM_REG(pVM, &pPGM->StatHCGuestPDWrite, STAMTYPE_COUNTER, "/PGM/HC/PDWrite", STAMUNIT_OCCURENCES, "The total number of times pgmHCGuestPDWriteHandler() was called.");
1458 STAM_REG(pVM, &pPGM->StatHCGuestPDWriteConflict, STAMTYPE_COUNTER, "/PGM/HC/PDWriteConflict", STAMUNIT_OCCURENCES, "The number of times pgmHCGuestPDWriteHandler() detected a conflict.");
1459
1460 STAM_REG(pVM, &pPGM->StatHCInvalidatePage, STAMTYPE_PROFILE, "/PGM/HC/InvalidatePage", STAMUNIT_TICKS_PER_CALL, "PGMHCInvalidatePage() profiling.");
1461 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4KBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4KBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4KB page.");
1462 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPages, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPages", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a 4MB page.");
1463 STAM_REG(pVM, &pPGM->StatHCInvalidatePage4MBPagesSkip, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/4MBPagesSkip",STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() skipped a 4MB page.");
1464 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDMappings, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDMappings", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a page directory containing mappings (no conflict).");
1465 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNAs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not accessed page directory.");
1466 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDNPs, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDNPs", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was called for a not present page directory.");
1467 STAM_REG(pVM, &pPGM->StatHCInvalidatePagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/PDOutOfSync", STAMUNIT_OCCURENCES, "The number of times PGMGCInvalidatePage() was called for an out of sync page directory.");
1468 STAM_REG(pVM, &pPGM->StatHCInvalidatePageSkipped, STAMTYPE_COUNTER, "/PGM/HC/InvalidatePage/Skipped", STAMUNIT_OCCURENCES, "The number of times PGMHCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1469 STAM_REG(pVM, &pPGM->StatHCResolveConflict, STAMTYPE_PROFILE, "/PGM/HC/ResolveConflict", STAMUNIT_TICKS_PER_CALL, "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1470 STAM_REG(pVM, &pPGM->StatHCPrefetch, STAMTYPE_PROFILE, "/PGM/HC/Prefetch", STAMUNIT_TICKS_PER_CALL, "PGMR3PrefetchPage profiling.");
1471
1472 STAM_REG(pVM, &pPGM->StatHCSyncPT, STAMTYPE_PROFILE, "/PGM/HC/SyncPT", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMR3SyncPT() body.");
1473 STAM_REG(pVM, &pPGM->StatHCAccessedPage, STAMTYPE_COUNTER, "/PGM/HC/AccessedPage", STAMUNIT_OCCURENCES, "The number of pages marked not present for accessed bit emulation.");
1474 STAM_REG(pVM, &pPGM->StatHCDirtyPage, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Mark", STAMUNIT_OCCURENCES, "The number of pages marked read-only for dirty bit tracking.");
1475 STAM_REG(pVM, &pPGM->StatHCDirtyPageBig, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/MarkBig", STAMUNIT_OCCURENCES, "The number of 4MB pages marked read-only for dirty bit tracking.");
1476 STAM_REG(pVM, &pPGM->StatHCDirtyPageTrap, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Trap", STAMUNIT_OCCURENCES, "The number of traps generated for dirty bit tracking.");
1477 STAM_REG(pVM, &pPGM->StatHCDirtyPageSkipped, STAMTYPE_COUNTER, "/PGM/HC/DirtyPage/Skipped", STAMUNIT_OCCURENCES, "The number of pages already dirty or readonly.");
1478 STAM_REG(pVM, &pPGM->StatHCDirtyBitTracking, STAMTYPE_PROFILE, "/PGM/HC/DirtyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMTrackDirtyBit() body.");
1479
1480 STAM_REG(pVM, &pPGM->StatGCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1481 STAM_REG(pVM, &pPGM->StatGCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/GC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1482 STAM_REG(pVM, &pPGM->StatHCSyncPagePDNAs, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDNAs", STAMUNIT_OCCURENCES, "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1483 STAM_REG(pVM, &pPGM->StatHCSyncPagePDOutOfSync, STAMTYPE_COUNTER, "/PGM/HC/SyncPagePDOutOfSync", STAMUNIT_OCCURENCES, "The number of time we've encountered an out-of-sync PD in SyncPage.");
1484
1485 STAM_REG(pVM, &pPGM->StatFlushTLB, STAMTYPE_PROFILE, "/PGM/FlushTLB", STAMUNIT_OCCURENCES, "Profiling of the PGMFlushTLB() body.");
1486 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1487 STAM_REG(pVM, &pPGM->StatFlushTLBNewCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/NewCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1488 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1489 STAM_REG(pVM, &pPGM->StatFlushTLBSameCR3Global, STAMTYPE_COUNTER, "/PGM/FlushTLB/SameCR3Global", STAMUNIT_OCCURENCES, "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1490
1491 STAM_REG(pVM, &pPGM->StatGCSyncCR3, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1492 STAM_REG(pVM, &pPGM->StatGCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1493 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1494 STAM_REG(pVM, &pPGM->StatGCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/GC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1495 STAM_REG(pVM, &pPGM->StatGCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1496 STAM_REG(pVM, &pPGM->StatGCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1497 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1498 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1499 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1500 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1501 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1502 STAM_REG(pVM, &pPGM->StatGCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/GC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1503
1504 STAM_REG(pVM, &pPGM->StatHCSyncCR3, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() body.");
1505 STAM_REG(pVM, &pPGM->StatHCSyncCR3Handlers, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMSyncCR3() update handler section.");
1506 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualUpdate, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualUpdate",STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler updates.");
1507 STAM_REG(pVM, &pPGM->StatHCSyncCR3HandlerVirtualReset, STAMTYPE_PROFILE, "/PGM/HC/SyncCR3/Handlers/VirtualReset", STAMUNIT_TICKS_PER_CALL, "Profiling of the virtual handler resets.");
1508 STAM_REG(pVM, &pPGM->StatHCSyncCR3Global, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/Global", STAMUNIT_OCCURENCES, "The number of global CR3 syncs.");
1509 STAM_REG(pVM, &pPGM->StatHCSyncCR3NotGlobal, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/NotGlobal", STAMUNIT_OCCURENCES, "The number of non-global CR3 syncs.");
1510 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstCacheHit, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstChacheHit", STAMUNIT_OCCURENCES, "The number of times we got some kind of a cache hit.");
1511 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreed, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreed", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry.");
1512 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstFreedSrcNP, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstFreedSrcNP", STAMUNIT_OCCURENCES, "The number of times we've had to free a shadow entry for which the source entry was not present.");
1513 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstNotPresent, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstNotPresent", STAMUNIT_OCCURENCES, "The number of times we've encountered a not present shadow entry for a present guest entry.");
1514 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPD, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPD", STAMUNIT_OCCURENCES, "The number of times a global page directory wasn't flushed.");
1515 STAM_REG(pVM, &pPGM->StatHCSyncCR3DstSkippedGlobalPT, STAMTYPE_COUNTER, "/PGM/HC/SyncCR3/DstSkippedGlobalPT", STAMUNIT_OCCURENCES, "The number of times a page table with only global entries wasn't flushed.");
1516
1517 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysGC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/GC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in GC.");
1518 STAM_REG(pVM, &pPGM->StatVirtHandleSearchByPhysHC, STAMTYPE_PROFILE, "/PGM/VirtHandler/SearchByPhys/HC", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmHandlerVirtualFindByPhysAddr in HC.");
1519 STAM_REG(pVM, &pPGM->StatHandlePhysicalReset, STAMTYPE_COUNTER, "/PGM/HC/HandlerPhysicalReset", STAMUNIT_OCCURENCES, "The number of times PGMR3HandlerPhysicalReset is called.");
1520
1521 STAM_REG(pVM, &pPGM->StatHCGstModifyPage, STAMTYPE_PROFILE, "/PGM/HC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1522 STAM_REG(pVM, &pPGM->StatGCGstModifyPage, STAMTYPE_PROFILE, "/PGM/GC/GstModifyPage", STAMUNIT_TICKS_PER_CALL, "Profiling of the PGMGstModifyPage() body.");
1523
1524 STAM_REG(pVM, &pPGM->StatSynPT4kGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1525 STAM_REG(pVM, &pPGM->StatSynPT4kHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4k", STAMUNIT_OCCURENCES, "Nr of 4k PT syncs");
1526 STAM_REG(pVM, &pPGM->StatSynPT4MGC, STAMTYPE_COUNTER, "/PGM/GC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1527 STAM_REG(pVM, &pPGM->StatSynPT4MHC, STAMTYPE_COUNTER, "/PGM/HC/SyncPT/4M", STAMUNIT_OCCURENCES, "Nr of 4M PT syncs");
1528
1529 STAM_REG(pVM, &pPGM->StatDynRamTotal, STAMTYPE_COUNTER, "/PGM/RAM/TotalAlloc", STAMUNIT_MEGABYTES, "Allocated mbs of guest ram.");
1530 STAM_REG(pVM, &pPGM->StatDynRamGrow, STAMTYPE_COUNTER, "/PGM/RAM/Grow", STAMUNIT_OCCURENCES, "Nr of pgmr3PhysGrowRange calls.");
1531
1532 STAM_REG(pVM, &pPGM->StatPageHCMapTlbHits, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1533 STAM_REG(pVM, &pPGM->StatPageHCMapTlbMisses, STAMTYPE_COUNTER, "/PGM/PageHCMap/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1534 STAM_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_OCCURENCES, "Number of mapped chunks.");
1535 STAM_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_OCCURENCES, "Maximum number of mapped chunks.");
1536 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbHits, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbHits", STAMUNIT_OCCURENCES, "TLB hits.");
1537 STAM_REG(pVM, &pPGM->StatChunkR3MapTlbMisses, STAMTYPE_COUNTER, "/PGM/ChunkR3Map/TlbMisses", STAMUNIT_OCCURENCES, "TLB misses.");
1538 STAM_REG(pVM, &pPGM->StatPageReplaceShared, STAMTYPE_COUNTER, "/PGM/Page/ReplacedShared", STAMUNIT_OCCURENCES, "Times a shared page was replaced.");
1539 STAM_REG(pVM, &pPGM->StatPageReplaceZero, STAMTYPE_COUNTER, "/PGM/Page/ReplacedZero", STAMUNIT_OCCURENCES, "Times the zero page was replaced.");
1540 STAM_REG(pVM, &pPGM->StatPageHandyAllocs, STAMTYPE_COUNTER, "/PGM/Page/HandyAllocs", STAMUNIT_OCCURENCES, "Number of times we've allocated more handy pages.");
1541 STAM_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_OCCURENCES, "The total number of pages.");
1542 STAM_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_OCCURENCES, "The number of private pages.");
1543 STAM_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_OCCURENCES, "The number of shared pages.");
1544 STAM_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_OCCURENCES, "The number of zero backed pages.");
1545
1546#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1547 STAM_REG(pVM, &pPGM->StatTrackVirgin, STAMTYPE_COUNTER, "/PGM/Track/Virgin", STAMUNIT_OCCURENCES, "The number of first time shadowings");
1548 STAM_REG(pVM, &pPGM->StatTrackAliased, STAMTYPE_COUNTER, "/PGM/Track/Aliased", STAMUNIT_OCCURENCES, "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1549 STAM_REG(pVM, &pPGM->StatTrackAliasedMany, STAMTYPE_COUNTER, "/PGM/Track/AliasedMany", STAMUNIT_OCCURENCES, "The number of times we're tracking using cRef2.");
1550 STAM_REG(pVM, &pPGM->StatTrackAliasedLots, STAMTYPE_COUNTER, "/PGM/Track/AliasedLots", STAMUNIT_OCCURENCES, "The number of times we're hitting pages which has overflowed cRef2");
1551 STAM_REG(pVM, &pPGM->StatTrackOverflows, STAMTYPE_COUNTER, "/PGM/Track/Overflows", STAMUNIT_OCCURENCES, "The number of times the extent list grows to long.");
1552 STAM_REG(pVM, &pPGM->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of SyncPageWorkerTrackDeref (expensive).");
1553#endif
1554
1555 for (unsigned i = 0; i < X86_PG_ENTRIES; i++)
1556 {
1557 /** @todo r=bird: We need a STAMR3RegisterF()! */
1558 char szName[32];
1559
1560 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/Trap0e/%04X", i);
1561 int rc = STAMR3Register(pVM, &pPGM->StatGCTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of traps in page directory n.");
1562 AssertRC(rc);
1563
1564 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPt/%04X", i);
1565 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of syncs per PD n.");
1566 AssertRC(rc);
1567
1568 RTStrPrintf(szName, sizeof(szName), "/PGM/GC/PD/SyncPage/%04X", i);
1569 rc = STAMR3Register(pVM, &pPGM->StatGCSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, szName, STAMUNIT_OCCURENCES, "The number of out of sync pages per page directory n.");
1570 AssertRC(rc);
1571 }
1572}
1573#endif /* VBOX_WITH_STATISTICS */
1574
1575/**
1576 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1577 *
1578 * The dynamic mapping area will also be allocated and initialized at this
1579 * time. We could allocate it during PGMR3Init of course, but the mapping
1580 * wouldn't be allocated at that time preventing us from setting up the
1581 * page table entries with the dummy page.
1582 *
1583 * @returns VBox status code.
1584 * @param pVM VM handle.
1585 */
1586PGMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1587{
1588 RTGCPTR GCPtr;
1589 /*
1590 * Reserve space for mapping the paging pages into guest context.
1591 */
1592 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * (2 + ELEMENTS(pVM->pgm.s.apHCPaePDs) + 1 + 2 + 2), "Paging", &GCPtr);
1593 AssertRCReturn(rc, rc);
1594 pVM->pgm.s.pGC32BitPD = GCPtr;
1595 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1596
1597 /*
1598 * Reserve space for the dynamic mappings.
1599 */
1600 /** @todo r=bird: Need to verify that the checks for crossing PTs are correct here. They seems to be assuming 4MB PTs.. */
1601 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1602 if (VBOX_SUCCESS(rc))
1603 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1604
1605 if ( VBOX_SUCCESS(rc)
1606 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT))
1607 {
1608 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1609 if (VBOX_SUCCESS(rc))
1610 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1611 }
1612 if (VBOX_SUCCESS(rc))
1613 {
1614 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_SHIFT));
1615 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1616 }
1617 return rc;
1618}
1619
1620
1621/**
1622 * Ring-3 init finalizing.
1623 *
1624 * @returns VBox status code.
1625 * @param pVM The VM handle.
1626 */
1627PGMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1628{
1629 /*
1630 * Map the paging pages into the guest context.
1631 */
1632 RTGCPTR GCPtr = pVM->pgm.s.pGC32BitPD;
1633 AssertReleaseReturn(GCPtr, VERR_INTERNAL_ERROR);
1634
1635 int rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhys32BitPD, PAGE_SIZE, 0);
1636 AssertRCReturn(rc, rc);
1637 pVM->pgm.s.pGC32BitPD = GCPtr;
1638 GCPtr += PAGE_SIZE;
1639 GCPtr += PAGE_SIZE; /* reserved page */
1640
1641 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apHCPaePDs); i++)
1642 {
1643 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.aHCPhysPaePDs[i], PAGE_SIZE, 0);
1644 AssertRCReturn(rc, rc);
1645 pVM->pgm.s.apGCPaePDs[i] = GCPtr;
1646 GCPtr += PAGE_SIZE;
1647 }
1648 /* A bit of paranoia is justified. */
1649 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[0] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1]);
1650 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[1] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2]);
1651 AssertRelease((RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[2] + PAGE_SIZE == (RTGCUINTPTR)pVM->pgm.s.apGCPaePDs[3]);
1652 GCPtr += PAGE_SIZE; /* reserved page */
1653
1654 rc = PGMMap(pVM, GCPtr, pVM->pgm.s.HCPhysPaePDPT, PAGE_SIZE, 0);
1655 AssertRCReturn(rc, rc);
1656 pVM->pgm.s.pGCPaePDPT = GCPtr;
1657 GCPtr += PAGE_SIZE;
1658 GCPtr += PAGE_SIZE; /* reserved page */
1659
1660
1661 /*
1662 * Reserve space for the dynamic mappings.
1663 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1664 */
1665 /* get the pointer to the page table entries. */
1666 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1667 AssertRelease(pMapping);
1668 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1669 const unsigned iPT = off >> X86_PD_SHIFT;
1670 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1671 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTGC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1672 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsGC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1673
1674 /* init cache */
1675 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1676 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1677 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1678
1679 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1680 {
1681 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1682 AssertRCReturn(rc, rc);
1683 }
1684
1685 return rc;
1686}
1687
1688
1689/**
1690 * Applies relocations to data and code managed by this
1691 * component. This function will be called at init and
1692 * whenever the VMM need to relocate it self inside the GC.
1693 *
1694 * @param pVM The VM.
1695 * @param offDelta Relocation delta relative to old location.
1696 */
1697PGMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
1698{
1699 LogFlow(("PGMR3Relocate\n"));
1700
1701 /*
1702 * Paging stuff.
1703 */
1704 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
1705 /** @todo move this into shadow and guest specific relocation functions. */
1706 AssertMsg(pVM->pgm.s.pGC32BitPD, ("Init order, no relocation before paging is initialized!\n"));
1707 pVM->pgm.s.pGC32BitPD += offDelta;
1708 pVM->pgm.s.pGuestPDGC += offDelta;
1709 AssertCompile(ELEMENTS(pVM->pgm.s.apGCPaePDs) == ELEMENTS(pVM->pgm.s.apGstPaePDsGC));
1710 for (unsigned i = 0; i < ELEMENTS(pVM->pgm.s.apGCPaePDs); i++)
1711 {
1712 pVM->pgm.s.apGCPaePDs[i] += offDelta;
1713 pVM->pgm.s.apGstPaePDsGC[i] += offDelta;
1714 }
1715 pVM->pgm.s.pGstPaePDPTGC += offDelta;
1716 pVM->pgm.s.pGCPaePDPT += offDelta;
1717
1718 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
1719 pgmR3ModeDataSwitch(pVM, pVM->pgm.s.enmShadowMode, pVM->pgm.s.enmGuestMode);
1720
1721 PGM_SHW_PFN(Relocate, pVM)(pVM, offDelta);
1722 PGM_GST_PFN(Relocate, pVM)(pVM, offDelta);
1723 PGM_BTH_PFN(Relocate, pVM)(pVM, offDelta);
1724
1725 /*
1726 * Trees.
1727 */
1728 pVM->pgm.s.pTreesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pTreesHC);
1729
1730 /*
1731 * Ram ranges.
1732 */
1733 if (pVM->pgm.s.pRamRangesR3)
1734 {
1735 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pVM->pgm.s.pRamRangesR3);
1736 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur->pNextR3; pCur = pCur->pNextR3)
1737#ifdef VBOX_WITH_NEW_PHYS_CODE
1738 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1739#else
1740 {
1741 pCur->pNextGC = MMHyperR3ToGC(pVM, pCur->pNextR3);
1742 if (pCur->pavHCChunkGC)
1743 pCur->pavHCChunkGC = MMHyperHC2GC(pVM, pCur->pavHCChunkHC);
1744 }
1745#endif
1746 }
1747
1748 /*
1749 * Update the two page directories with all page table mappings.
1750 * (One or more of them have changed, that's why we're here.)
1751 */
1752 pVM->pgm.s.pMappingsGC = MMHyperHC2GC(pVM, pVM->pgm.s.pMappingsR3);
1753 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
1754 pCur->pNextGC = MMHyperHC2GC(pVM, pCur->pNextR3);
1755
1756 /* Relocate GC addresses of Page Tables. */
1757 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1758 {
1759 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
1760 {
1761 pCur->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].pPTR3);
1762 pCur->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pCur->aPTs[i].paPaePTsR3);
1763 }
1764 }
1765
1766 /*
1767 * Dynamic page mapping area.
1768 */
1769 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
1770 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
1771 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
1772
1773 /*
1774 * The Zero page.
1775 */
1776 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1777 AssertRelease(pVM->pgm.s.pvZeroPgR0);
1778
1779 /*
1780 * Physical and virtual handlers.
1781 */
1782 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
1783 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
1784 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
1785
1786 /*
1787 * The page pool.
1788 */
1789 pgmR3PoolRelocate(pVM);
1790}
1791
1792
1793/**
1794 * Callback function for relocating a physical access handler.
1795 *
1796 * @returns 0 (continue enum)
1797 * @param pNode Pointer to a PGMPHYSHANDLER node.
1798 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1799 * not certain the delta will fit in a void pointer for all possible configs.
1800 */
1801static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
1802{
1803 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
1804 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1805 if (pHandler->pfnHandlerGC)
1806 pHandler->pfnHandlerGC += offDelta;
1807 if ((RTGCUINTPTR)pHandler->pvUserGC >= 0x10000)
1808 pHandler->pvUserGC += offDelta;
1809 return 0;
1810}
1811
1812
1813/**
1814 * Callback function for relocating a virtual access handler.
1815 *
1816 * @returns 0 (continue enum)
1817 * @param pNode Pointer to a PGMVIRTHANDLER node.
1818 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1819 * not certain the delta will fit in a void pointer for all possible configs.
1820 */
1821static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1822{
1823 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1824 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1825 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
1826 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
1827 Assert(pHandler->pfnHandlerGC);
1828 pHandler->pfnHandlerGC += offDelta;
1829 return 0;
1830}
1831
1832
1833/**
1834 * Callback function for relocating a virtual access handler for the hypervisor mapping.
1835 *
1836 * @returns 0 (continue enum)
1837 * @param pNode Pointer to a PGMVIRTHANDLER node.
1838 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
1839 * not certain the delta will fit in a void pointer for all possible configs.
1840 */
1841static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
1842{
1843 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
1844 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
1845 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
1846 Assert(pHandler->pfnHandlerGC);
1847 pHandler->pfnHandlerGC += offDelta;
1848 return 0;
1849}
1850
1851
1852/**
1853 * The VM is being reset.
1854 *
1855 * For the PGM component this means that any PD write monitors
1856 * needs to be removed.
1857 *
1858 * @param pVM VM handle.
1859 */
1860PGMR3DECL(void) PGMR3Reset(PVM pVM)
1861{
1862 LogFlow(("PGMR3Reset:\n"));
1863 VM_ASSERT_EMT(pVM);
1864
1865 pgmLock(pVM);
1866
1867 /*
1868 * Unfix any fixed mappings and disable CR3 monitoring.
1869 */
1870 pVM->pgm.s.fMappingsFixed = false;
1871 pVM->pgm.s.GCPtrMappingFixed = 0;
1872 pVM->pgm.s.cbMappingFixed = 0;
1873
1874 int rc = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM);
1875 AssertRC(rc);
1876#ifdef DEBUG
1877 DBGFR3InfoLog(pVM, "mappings", NULL);
1878 DBGFR3InfoLog(pVM, "handlers", "all nostat");
1879#endif
1880
1881 /*
1882 * Reset the shadow page pool.
1883 */
1884 pgmR3PoolReset(pVM);
1885
1886 /*
1887 * Re-init other members.
1888 */
1889 pVM->pgm.s.fA20Enabled = true;
1890
1891 /*
1892 * Clear the FFs PGM owns.
1893 */
1894 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3);
1895 VM_FF_CLEAR(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
1896
1897 /*
1898 * Reset (zero) RAM pages.
1899 */
1900 rc = pgmR3PhysRamReset(pVM);
1901 if (RT_SUCCESS(rc))
1902 {
1903#ifdef VBOX_WITH_NEW_PHYS_CODE
1904 /*
1905 * Reset (zero) shadow ROM pages.
1906 */
1907 rc = pgmR3PhysRomReset(pVM);
1908#endif
1909 if (RT_SUCCESS(rc))
1910 {
1911 /*
1912 * Switch mode back to real mode.
1913 */
1914 rc = PGMR3ChangeMode(pVM, PGMMODE_REAL);
1915 STAM_REL_COUNTER_RESET(&pVM->pgm.s.cGuestModeChanges);
1916 }
1917 }
1918
1919 pgmUnlock(pVM);
1920 //return rc;
1921 AssertReleaseRC(rc);
1922}
1923
1924
1925#ifdef VBOX_STRICT
1926/**
1927 * VM state change callback for clearing fNoMorePhysWrites after
1928 * a snapshot has been created.
1929 */
1930static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
1931{
1932 if (enmState == VMSTATE_RUNNING)
1933 pVM->pgm.s.fNoMorePhysWrites = false;
1934}
1935#endif
1936
1937
1938/**
1939 * Terminates the PGM.
1940 *
1941 * @returns VBox status code.
1942 * @param pVM Pointer to VM structure.
1943 */
1944PGMR3DECL(int) PGMR3Term(PVM pVM)
1945{
1946 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1947}
1948
1949
1950/**
1951 * Execute state save operation.
1952 *
1953 * @returns VBox status code.
1954 * @param pVM VM Handle.
1955 * @param pSSM SSM operation handle.
1956 */
1957static DECLCALLBACK(int) pgmR3Save(PVM pVM, PSSMHANDLE pSSM)
1958{
1959 PPGM pPGM = &pVM->pgm.s;
1960
1961 /* No more writes to physical memory after this point! */
1962 pVM->pgm.s.fNoMorePhysWrites = true;
1963
1964 /*
1965 * Save basic data (required / unaffected by relocation).
1966 */
1967#if 1
1968 SSMR3PutBool(pSSM, pPGM->fMappingsFixed);
1969#else
1970 SSMR3PutUInt(pSSM, pPGM->fMappingsFixed);
1971#endif
1972 SSMR3PutGCPtr(pSSM, pPGM->GCPtrMappingFixed);
1973 SSMR3PutU32(pSSM, pPGM->cbMappingFixed);
1974 SSMR3PutUInt(pSSM, pPGM->cbRamSize);
1975 SSMR3PutGCPhys(pSSM, pPGM->GCPhysA20Mask);
1976 SSMR3PutUInt(pSSM, pPGM->fA20Enabled);
1977 SSMR3PutUInt(pSSM, pPGM->fSyncFlags);
1978 SSMR3PutUInt(pSSM, pPGM->enmGuestMode);
1979 SSMR3PutU32(pSSM, ~0); /* Separator. */
1980
1981 /*
1982 * The guest mappings.
1983 */
1984 uint32_t i = 0;
1985 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1986 {
1987 SSMR3PutU32(pSSM, i);
1988 SSMR3PutStrZ(pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1989 SSMR3PutGCPtr(pSSM, pMapping->GCPtr);
1990 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1991 /* flags are done by the mapping owners! */
1992 }
1993 SSMR3PutU32(pSSM, ~0); /* terminator. */
1994
1995 /*
1996 * Ram range flags and bits.
1997 */
1998 i = 0;
1999 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2000 {
2001 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2002
2003 SSMR3PutU32(pSSM, i);
2004 SSMR3PutGCPhys(pSSM, pRam->GCPhys);
2005 SSMR3PutGCPhys(pSSM, pRam->GCPhysLast);
2006 SSMR3PutGCPhys(pSSM, pRam->cb);
2007 SSMR3PutU8(pSSM, !!pRam->pvHC); /* boolean indicating memory or not. */
2008
2009 /* Flags. */
2010 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2011 for (unsigned iPage = 0; iPage < cPages; iPage++)
2012 SSMR3PutU16(pSSM, (uint16_t)(pRam->aPages[iPage].HCPhys & ~X86_PTE_PAE_PG_MASK)); /** @todo PAGE FLAGS */
2013
2014 /* any memory associated with the range. */
2015 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2016 {
2017 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2018 {
2019 if (pRam->pavHCChunkHC[iChunk])
2020 {
2021 SSMR3PutU8(pSSM, 1); /* chunk present */
2022 SSMR3PutMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2023 }
2024 else
2025 SSMR3PutU8(pSSM, 0); /* no chunk present */
2026 }
2027 }
2028 else if (pRam->pvHC)
2029 {
2030 int rc = SSMR3PutMem(pSSM, pRam->pvHC, pRam->cb);
2031 if (VBOX_FAILURE(rc))
2032 {
2033 Log(("pgmR3Save: SSMR3PutMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2034 return rc;
2035 }
2036 }
2037 }
2038 return SSMR3PutU32(pSSM, ~0); /* terminator. */
2039}
2040
2041
2042/**
2043 * Execute state load operation.
2044 *
2045 * @returns VBox status code.
2046 * @param pVM VM Handle.
2047 * @param pSSM SSM operation handle.
2048 * @param u32Version Data layout version.
2049 */
2050static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
2051{
2052 /*
2053 * Validate version.
2054 */
2055 if (u32Version != PGM_SAVED_STATE_VERSION)
2056 {
2057 Log(("pgmR3Load: Invalid version u32Version=%d (current %d)!\n", u32Version, PGM_SAVED_STATE_VERSION));
2058 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2059 }
2060
2061 /*
2062 * Call the reset function to make sure all the memory is cleared.
2063 */
2064 PGMR3Reset(pVM);
2065
2066 /*
2067 * Load basic data (required / unaffected by relocation).
2068 */
2069 PPGM pPGM = &pVM->pgm.s;
2070#if 1
2071 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2072#else
2073 uint32_t u;
2074 SSMR3GetU32(pSSM, &u);
2075 pPGM->fMappingsFixed = u;
2076#endif
2077 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2078 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2079
2080 RTUINT cbRamSize;
2081 int rc = SSMR3GetU32(pSSM, &cbRamSize);
2082 if (VBOX_FAILURE(rc))
2083 return rc;
2084 if (cbRamSize != pPGM->cbRamSize)
2085 return VERR_SSM_LOAD_MEMORY_SIZE_MISMATCH;
2086 SSMR3GetGCPhys(pSSM, &pPGM->GCPhysA20Mask);
2087 SSMR3GetUInt(pSSM, &pPGM->fA20Enabled);
2088 SSMR3GetUInt(pSSM, &pPGM->fSyncFlags);
2089 RTUINT uGuestMode;
2090 SSMR3GetUInt(pSSM, &uGuestMode);
2091 pPGM->enmGuestMode = (PGMMODE)uGuestMode;
2092
2093 /* check separator. */
2094 uint32_t u32Sep;
2095 SSMR3GetU32(pSSM, &u32Sep);
2096 if (VBOX_FAILURE(rc))
2097 return rc;
2098 if (u32Sep != (uint32_t)~0)
2099 {
2100 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2101 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2102 }
2103
2104 /*
2105 * The guest mappings.
2106 */
2107 uint32_t i = 0;
2108 for (;; i++)
2109 {
2110 /* Check the seqence number / separator. */
2111 rc = SSMR3GetU32(pSSM, &u32Sep);
2112 if (VBOX_FAILURE(rc))
2113 return rc;
2114 if (u32Sep == ~0U)
2115 break;
2116 if (u32Sep != i)
2117 {
2118 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2119 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2120 }
2121
2122 /* get the mapping details. */
2123 char szDesc[256];
2124 szDesc[0] = '\0';
2125 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2126 if (VBOX_FAILURE(rc))
2127 return rc;
2128 RTGCPTR GCPtr;
2129 SSMR3GetGCPtr(pSSM, &GCPtr);
2130 RTGCUINTPTR cPTs;
2131 rc = SSMR3GetGCUIntPtr(pSSM, &cPTs);
2132 if (VBOX_FAILURE(rc))
2133 return rc;
2134
2135 /* find matching range. */
2136 PPGMMAPPING pMapping;
2137 for (pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3)
2138 if ( pMapping->cPTs == cPTs
2139 && !strcmp(pMapping->pszDesc, szDesc))
2140 break;
2141 if (!pMapping)
2142 {
2143 LogRel(("Couldn't find mapping: cPTs=%#x szDesc=%s (GCPtr=%VGv)\n",
2144 cPTs, szDesc, GCPtr));
2145 AssertFailed();
2146 return VERR_SSM_LOAD_CONFIG_MISMATCH;
2147 }
2148
2149 /* relocate it. */
2150 if (pMapping->GCPtr != GCPtr)
2151 {
2152 AssertMsg((GCPtr >> X86_PD_SHIFT << X86_PD_SHIFT) == GCPtr, ("GCPtr=%VGv\n", GCPtr));
2153#if HC_ARCH_BITS == 64
2154LogRel(("Mapping: %VGv -> %VGv %s\n", pMapping->GCPtr, GCPtr, pMapping->pszDesc));
2155#endif
2156 pgmR3MapRelocate(pVM, pMapping, pMapping->GCPtr, GCPtr);
2157 }
2158 else
2159 Log(("pgmR3Load: '%s' needed no relocation (%VGv)\n", szDesc, GCPtr));
2160 }
2161
2162 /*
2163 * Ram range flags and bits.
2164 */
2165 i = 0;
2166 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; pRam; pRam = pRam->pNextR3, i++)
2167 {
2168 /** @todo MMIO ranges may move (PCI reconfig), we currently assume they don't. */
2169 /* Check the seqence number / separator. */
2170 rc = SSMR3GetU32(pSSM, &u32Sep);
2171 if (VBOX_FAILURE(rc))
2172 return rc;
2173 if (u32Sep == ~0U)
2174 break;
2175 if (u32Sep != i)
2176 {
2177 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2178 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2179 }
2180
2181 /* Get the range details. */
2182 RTGCPHYS GCPhys;
2183 SSMR3GetGCPhys(pSSM, &GCPhys);
2184 RTGCPHYS GCPhysLast;
2185 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2186 RTGCPHYS cb;
2187 SSMR3GetGCPhys(pSSM, &cb);
2188 uint8_t fHaveBits;
2189 rc = SSMR3GetU8(pSSM, &fHaveBits);
2190 if (VBOX_FAILURE(rc))
2191 return rc;
2192 if (fHaveBits & ~1)
2193 {
2194 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2195 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2196 }
2197
2198 /* Match it up with the current range. */
2199 if ( GCPhys != pRam->GCPhys
2200 || GCPhysLast != pRam->GCPhysLast
2201 || cb != pRam->cb
2202 || fHaveBits != !!pRam->pvHC)
2203 {
2204 LogRel(("Ram range: %VGp-%VGp %VGp bytes %s\n"
2205 "State : %VGp-%VGp %VGp bytes %s\n",
2206 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvHC ? "bits" : "nobits",
2207 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits"));
2208 /*
2209 * If we're loading a state for debugging purpose, don't make a fuss if
2210 * the MMIO[2] and ROM stuff isn't 100% right, just skip the mismatches.
2211 */
2212 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2213 || GCPhys < 8 * _1M)
2214 AssertFailedReturn(VERR_SSM_LOAD_CONFIG_MISMATCH);
2215
2216 RTGCPHYS cPages = ((GCPhysLast - GCPhys) + 1) >> PAGE_SHIFT;
2217 while (cPages-- > 0)
2218 {
2219 uint16_t u16Ignore;
2220 SSMR3GetU16(pSSM, &u16Ignore);
2221 }
2222 continue;
2223 }
2224
2225 /* Flags. */
2226 const unsigned cPages = pRam->cb >> PAGE_SHIFT;
2227 for (unsigned iPage = 0; iPage < cPages; iPage++)
2228 {
2229 uint16_t u16 = 0;
2230 SSMR3GetU16(pSSM, &u16);
2231 u16 &= PAGE_OFFSET_MASK & ~( RT_BIT(4) | RT_BIT(5) | RT_BIT(6)
2232 | RT_BIT(7) | RT_BIT(8) | RT_BIT(9) | RT_BIT(10) );
2233 // &= MM_RAM_FLAGS_DYNAMIC_ALLOC | MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2
2234 pRam->aPages[iPage].HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) | (RTHCPHYS)u16; /** @todo PAGE FLAGS */
2235 }
2236
2237 /* any memory associated with the range. */
2238 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2239 {
2240 for (unsigned iChunk = 0; iChunk < (pRam->cb >> PGM_DYNAMIC_CHUNK_SHIFT); iChunk++)
2241 {
2242 uint8_t fValidChunk;
2243
2244 rc = SSMR3GetU8(pSSM, &fValidChunk);
2245 if (VBOX_FAILURE(rc))
2246 return rc;
2247 if (fValidChunk > 1)
2248 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2249
2250 if (fValidChunk)
2251 {
2252 if (!pRam->pavHCChunkHC[iChunk])
2253 {
2254 rc = pgmr3PhysGrowRange(pVM, pRam->GCPhys + iChunk * PGM_DYNAMIC_CHUNK_SIZE);
2255 if (VBOX_FAILURE(rc))
2256 return rc;
2257 }
2258 Assert(pRam->pavHCChunkHC[iChunk]);
2259
2260 SSMR3GetMem(pSSM, pRam->pavHCChunkHC[iChunk], PGM_DYNAMIC_CHUNK_SIZE);
2261 }
2262 /* else nothing to do */
2263 }
2264 }
2265 else if (pRam->pvHC)
2266 {
2267 int rc = SSMR3GetMem(pSSM, pRam->pvHC, pRam->cb);
2268 if (VBOX_FAILURE(rc))
2269 {
2270 Log(("pgmR3Save: SSMR3GetMem(, %p, %#x) -> %Vrc\n", pRam->pvHC, pRam->cb, rc));
2271 return rc;
2272 }
2273 }
2274 }
2275
2276 /*
2277 * We require a full resync now.
2278 */
2279 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2280 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
2281 pPGM->fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2282 pPGM->fPhysCacheFlushPending = true;
2283 pgmR3HandlerPhysicalUpdateAll(pVM);
2284
2285 /*
2286 * Change the paging mode.
2287 */
2288 return PGMR3ChangeMode(pVM, pPGM->enmGuestMode);
2289}
2290
2291
2292/**
2293 * Show paging mode.
2294 *
2295 * @param pVM VM Handle.
2296 * @param pHlp The info helpers.
2297 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2298 */
2299static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2300{
2301 /* digest argument. */
2302 bool fGuest, fShadow, fHost;
2303 if (pszArgs)
2304 pszArgs = RTStrStripL(pszArgs);
2305 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2306 fShadow = fHost = fGuest = true;
2307 else
2308 {
2309 fShadow = fHost = fGuest = false;
2310 if (strstr(pszArgs, "guest"))
2311 fGuest = true;
2312 if (strstr(pszArgs, "shadow"))
2313 fShadow = true;
2314 if (strstr(pszArgs, "host"))
2315 fHost = true;
2316 }
2317
2318 /* print info. */
2319 if (fGuest)
2320 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2321 PGMGetModeName(pVM->pgm.s.enmGuestMode), pVM->pgm.s.cGuestModeChanges.c,
2322 pVM->pgm.s.fA20Enabled ? "enabled" : "disabled");
2323 if (fShadow)
2324 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->pgm.s.enmShadowMode));
2325 if (fHost)
2326 {
2327 const char *psz;
2328 switch (pVM->pgm.s.enmHostMode)
2329 {
2330 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2331 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2332 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2333 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2334 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2335 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2336 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2337 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2338 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2339 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2340 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2341 default: psz = "unknown"; break;
2342 }
2343 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2344 }
2345}
2346
2347
2348/**
2349 * Dump registered MMIO ranges to the log.
2350 *
2351 * @param pVM VM Handle.
2352 * @param pHlp The info helpers.
2353 * @param pszArgs Arguments, ignored.
2354 */
2355static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2356{
2357 NOREF(pszArgs);
2358 pHlp->pfnPrintf(pHlp,
2359 "RAM ranges (pVM=%p)\n"
2360 "%.*s %.*s\n",
2361 pVM,
2362 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2363 sizeof(RTHCPTR) * 2, "pvHC ");
2364
2365 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2366 pHlp->pfnPrintf(pHlp,
2367 "%RGp-%RGp %RHv %s\n",
2368 pCur->GCPhys,
2369 pCur->GCPhysLast,
2370 pCur->pvHC,
2371 pCur->pszDesc);
2372}
2373
2374/**
2375 * Dump the page directory to the log.
2376 *
2377 * @param pVM VM Handle.
2378 * @param pHlp The info helpers.
2379 * @param pszArgs Arguments, ignored.
2380 */
2381static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2382{
2383/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2384 /* Big pages supported? */
2385 const bool fPSE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PSE);
2386
2387 /* Global pages supported? */
2388 const bool fPGE = !!(CPUMGetGuestCR4(pVM) & X86_CR4_PGE);
2389
2390 NOREF(pszArgs);
2391
2392 /*
2393 * Get page directory addresses.
2394 */
2395 PX86PD pPDSrc = pVM->pgm.s.pGuestPDHC;
2396 Assert(pPDSrc);
2397 Assert(MMPhysGCPhys2HCVirt(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2398
2399 /*
2400 * Iterate the page directory.
2401 */
2402 for (unsigned iPD = 0; iPD < ELEMENTS(pPDSrc->a); iPD++)
2403 {
2404 X86PDE PdeSrc = pPDSrc->a[iPD];
2405 if (PdeSrc.n.u1Present)
2406 {
2407 if (PdeSrc.b.u1Size && fPSE)
2408 {
2409 pHlp->pfnPrintf(pHlp,
2410 "%04X - %VGp P=%d U=%d RW=%d G=%d - BIG\n",
2411 iPD,
2412 PdeSrc.u & X86_PDE_PG_MASK,
2413 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2414 }
2415 else
2416 {
2417 pHlp->pfnPrintf(pHlp,
2418 "%04X - %VGp P=%d U=%d RW=%d [G=%d]\n",
2419 iPD,
2420 PdeSrc.u & X86_PDE4M_PG_MASK,
2421 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2422 }
2423 }
2424 }
2425}
2426
2427
2428/**
2429 * Serivce a VMMCALLHOST_PGM_LOCK call.
2430 *
2431 * @returns VBox status code.
2432 * @param pVM The VM handle.
2433 */
2434PDMR3DECL(int) PGMR3LockCall(PVM pVM)
2435{
2436 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2437 AssertRC(rc);
2438 return rc;
2439}
2440
2441
2442/**
2443 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2444 *
2445 * @returns PGM_TYPE_*.
2446 * @param pgmMode The mode value to convert.
2447 */
2448DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2449{
2450 switch (pgmMode)
2451 {
2452 case PGMMODE_REAL: return PGM_TYPE_REAL;
2453 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2454 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2455 case PGMMODE_PAE:
2456 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2457 case PGMMODE_AMD64:
2458 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2459 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2460 default:
2461 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2462 }
2463}
2464
2465
2466/**
2467 * Gets the index into the paging mode data array of a SHW+GST mode.
2468 *
2469 * @returns PGM::paPagingData index.
2470 * @param uShwType The shadow paging mode type.
2471 * @param uGstType The guest paging mode type.
2472 */
2473DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2474{
2475 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_NESTED);
2476 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2477 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2478 + (uGstType - PGM_TYPE_REAL);
2479}
2480
2481
2482/**
2483 * Gets the index into the paging mode data array of a SHW+GST mode.
2484 *
2485 * @returns PGM::paPagingData index.
2486 * @param enmShw The shadow paging mode.
2487 * @param enmGst The guest paging mode.
2488 */
2489DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2490{
2491 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2492 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2493 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2494}
2495
2496
2497/**
2498 * Calculates the max data index.
2499 * @returns The number of entries in the paging data array.
2500 */
2501DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2502{
2503 return pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64) + 1;
2504}
2505
2506
2507/**
2508 * Initializes the paging mode data kept in PGM::paModeData.
2509 *
2510 * @param pVM The VM handle.
2511 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2512 * This is used early in the init process to avoid trouble with PDM
2513 * not being initialized yet.
2514 */
2515static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2516{
2517 PPGMMODEDATA pModeData;
2518 int rc;
2519
2520 /*
2521 * Allocate the array on the first call.
2522 */
2523 if (!pVM->pgm.s.paModeData)
2524 {
2525 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2526 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2527 }
2528
2529 /*
2530 * Initialize the array entries.
2531 */
2532 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2533 pModeData->uShwType = PGM_TYPE_32BIT;
2534 pModeData->uGstType = PGM_TYPE_REAL;
2535 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2536 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2537 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2538
2539 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2540 pModeData->uShwType = PGM_TYPE_32BIT;
2541 pModeData->uGstType = PGM_TYPE_PROT;
2542 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2543 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2544 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2545
2546 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2547 pModeData->uShwType = PGM_TYPE_32BIT;
2548 pModeData->uGstType = PGM_TYPE_32BIT;
2549 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2550 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2551 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2552
2553 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2554 pModeData->uShwType = PGM_TYPE_PAE;
2555 pModeData->uGstType = PGM_TYPE_REAL;
2556 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2557 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2558 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2559
2560 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2561 pModeData->uShwType = PGM_TYPE_PAE;
2562 pModeData->uGstType = PGM_TYPE_PROT;
2563 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2564 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2565 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2566
2567 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2568 pModeData->uShwType = PGM_TYPE_PAE;
2569 pModeData->uGstType = PGM_TYPE_32BIT;
2570 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2571 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2572 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2573
2574 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2575 pModeData->uShwType = PGM_TYPE_PAE;
2576 pModeData->uGstType = PGM_TYPE_PAE;
2577 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2578 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2579 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2580
2581 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2582 pModeData->uShwType = PGM_TYPE_AMD64;
2583 pModeData->uGstType = PGM_TYPE_AMD64;
2584 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2585 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2586 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2587
2588 /* The nested paging mode. */
2589 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2590 pModeData->uShwType = PGM_TYPE_NESTED;
2591 pModeData->uGstType = PGM_TYPE_REAL;
2592 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2593 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2594
2595 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2596 pModeData->uShwType = PGM_TYPE_NESTED;
2597 pModeData->uGstType = PGM_TYPE_PROT;
2598 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2599 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2600
2601 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2602 pModeData->uShwType = PGM_TYPE_NESTED;
2603 pModeData->uGstType = PGM_TYPE_32BIT;
2604 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2605 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2606
2607 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2608 pModeData->uShwType = PGM_TYPE_NESTED;
2609 pModeData->uGstType = PGM_TYPE_PAE;
2610 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2611 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2612
2613 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2614 pModeData->uShwType = PGM_TYPE_NESTED;
2615 pModeData->uGstType = PGM_TYPE_AMD64;
2616 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2617 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2618
2619 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2620 switch(pVM->pgm.s.enmHostMode)
2621 {
2622 case SUPPAGINGMODE_32_BIT:
2623 case SUPPAGINGMODE_32_BIT_GLOBAL:
2624 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2625 {
2626 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2627 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2628 }
2629 break;
2630
2631 case SUPPAGINGMODE_PAE:
2632 case SUPPAGINGMODE_PAE_NX:
2633 case SUPPAGINGMODE_PAE_GLOBAL:
2634 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2635 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2636 {
2637 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2638 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2639 }
2640 break;
2641
2642 case SUPPAGINGMODE_AMD64:
2643 case SUPPAGINGMODE_AMD64_GLOBAL:
2644 case SUPPAGINGMODE_AMD64_NX:
2645 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2646 for (unsigned i=PGM_TYPE_REAL;i<=PGM_TYPE_AMD64;i++)
2647 {
2648 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2649 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2650 }
2651 break;
2652 default:
2653 AssertFailed();
2654 break;
2655 }
2656 return VINF_SUCCESS;
2657}
2658
2659
2660/**
2661 * Switch to different (or relocated in the relocate case) mode data.
2662 *
2663 * @param pVM The VM handle.
2664 * @param enmShw The the shadow paging mode.
2665 * @param enmGst The the guest paging mode.
2666 */
2667static void pgmR3ModeDataSwitch(PVM pVM, PGMMODE enmShw, PGMMODE enmGst)
2668{
2669 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2670
2671 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2672 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2673
2674 /* shadow */
2675 pVM->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2676 pVM->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2677 pVM->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2678 Assert(pVM->pgm.s.pfnR3ShwGetPage);
2679 pVM->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2680
2681 pVM->pgm.s.pfnGCShwGetPage = pModeData->pfnGCShwGetPage;
2682 pVM->pgm.s.pfnGCShwModifyPage = pModeData->pfnGCShwModifyPage;
2683
2684 pVM->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2685 pVM->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2686
2687
2688 /* guest */
2689 pVM->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2690 pVM->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2691 pVM->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2692 Assert(pVM->pgm.s.pfnR3GstGetPage);
2693 pVM->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2694 pVM->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2695 pVM->pgm.s.pfnR3GstMonitorCR3 = pModeData->pfnR3GstMonitorCR3;
2696 pVM->pgm.s.pfnR3GstUnmonitorCR3 = pModeData->pfnR3GstUnmonitorCR3;
2697 pVM->pgm.s.pfnR3GstMapCR3 = pModeData->pfnR3GstMapCR3;
2698 pVM->pgm.s.pfnR3GstUnmapCR3 = pModeData->pfnR3GstUnmapCR3;
2699 pVM->pgm.s.pfnR3GstWriteHandlerCR3 = pModeData->pfnR3GstWriteHandlerCR3;
2700 pVM->pgm.s.pszR3GstWriteHandlerCR3 = pModeData->pszR3GstWriteHandlerCR3;
2701 pVM->pgm.s.pfnR3GstPAEWriteHandlerCR3 = pModeData->pfnR3GstPAEWriteHandlerCR3;
2702 pVM->pgm.s.pszR3GstPAEWriteHandlerCR3 = pModeData->pszR3GstPAEWriteHandlerCR3;
2703
2704 pVM->pgm.s.pfnGCGstGetPage = pModeData->pfnGCGstGetPage;
2705 pVM->pgm.s.pfnGCGstModifyPage = pModeData->pfnGCGstModifyPage;
2706 pVM->pgm.s.pfnGCGstGetPDE = pModeData->pfnGCGstGetPDE;
2707 pVM->pgm.s.pfnGCGstMonitorCR3 = pModeData->pfnGCGstMonitorCR3;
2708 pVM->pgm.s.pfnGCGstUnmonitorCR3 = pModeData->pfnGCGstUnmonitorCR3;
2709 pVM->pgm.s.pfnGCGstMapCR3 = pModeData->pfnGCGstMapCR3;
2710 pVM->pgm.s.pfnGCGstUnmapCR3 = pModeData->pfnGCGstUnmapCR3;
2711 pVM->pgm.s.pfnGCGstWriteHandlerCR3 = pModeData->pfnGCGstWriteHandlerCR3;
2712 pVM->pgm.s.pfnGCGstPAEWriteHandlerCR3 = pModeData->pfnGCGstPAEWriteHandlerCR3;
2713
2714 pVM->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2715 pVM->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2716 pVM->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2717 pVM->pgm.s.pfnR0GstMonitorCR3 = pModeData->pfnR0GstMonitorCR3;
2718 pVM->pgm.s.pfnR0GstUnmonitorCR3 = pModeData->pfnR0GstUnmonitorCR3;
2719 pVM->pgm.s.pfnR0GstMapCR3 = pModeData->pfnR0GstMapCR3;
2720 pVM->pgm.s.pfnR0GstUnmapCR3 = pModeData->pfnR0GstUnmapCR3;
2721 pVM->pgm.s.pfnR0GstWriteHandlerCR3 = pModeData->pfnR0GstWriteHandlerCR3;
2722 pVM->pgm.s.pfnR0GstPAEWriteHandlerCR3 = pModeData->pfnR0GstPAEWriteHandlerCR3;
2723
2724
2725 /* both */
2726 pVM->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2727 pVM->pgm.s.pfnR3BthTrap0eHandler = pModeData->pfnR3BthTrap0eHandler;
2728 pVM->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2729 pVM->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2730 Assert(pVM->pgm.s.pfnR3BthSyncCR3);
2731 pVM->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2732 pVM->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2733 pVM->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2734#ifdef VBOX_STRICT
2735 pVM->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2736#endif
2737
2738 pVM->pgm.s.pfnGCBthTrap0eHandler = pModeData->pfnGCBthTrap0eHandler;
2739 pVM->pgm.s.pfnGCBthInvalidatePage = pModeData->pfnGCBthInvalidatePage;
2740 pVM->pgm.s.pfnGCBthSyncCR3 = pModeData->pfnGCBthSyncCR3;
2741 pVM->pgm.s.pfnGCBthSyncPage = pModeData->pfnGCBthSyncPage;
2742 pVM->pgm.s.pfnGCBthPrefetchPage = pModeData->pfnGCBthPrefetchPage;
2743 pVM->pgm.s.pfnGCBthVerifyAccessSyncPage = pModeData->pfnGCBthVerifyAccessSyncPage;
2744#ifdef VBOX_STRICT
2745 pVM->pgm.s.pfnGCBthAssertCR3 = pModeData->pfnGCBthAssertCR3;
2746#endif
2747
2748 pVM->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2749 pVM->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2750 pVM->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2751 pVM->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2752 pVM->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2753 pVM->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2754#ifdef VBOX_STRICT
2755 pVM->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2756#endif
2757}
2758
2759
2760#ifdef DEBUG_bird
2761#include <stdlib.h> /* getenv() remove me! */
2762#endif
2763
2764/**
2765 * Calculates the shadow paging mode.
2766 *
2767 * @returns The shadow paging mode.
2768 * @param pVM VM handle.
2769 * @param enmGuestMode The guest mode.
2770 * @param enmHostMode The host mode.
2771 * @param enmShadowMode The current shadow mode.
2772 * @param penmSwitcher Where to store the switcher to use.
2773 * VMMSWITCHER_INVALID means no change.
2774 */
2775static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2776{
2777 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2778 switch (enmGuestMode)
2779 {
2780 /*
2781 * When switching to real or protected mode we don't change
2782 * anything since it's likely that we'll switch back pretty soon.
2783 *
2784 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2785 * and is supposed to determin which shadow paging and switcher to
2786 * use during init.
2787 */
2788 case PGMMODE_REAL:
2789 case PGMMODE_PROTECTED:
2790 if (enmShadowMode != PGMMODE_INVALID)
2791 break; /* (no change) */
2792 switch (enmHostMode)
2793 {
2794 case SUPPAGINGMODE_32_BIT:
2795 case SUPPAGINGMODE_32_BIT_GLOBAL:
2796 enmShadowMode = PGMMODE_32_BIT;
2797 enmSwitcher = VMMSWITCHER_32_TO_32;
2798 break;
2799
2800 case SUPPAGINGMODE_PAE:
2801 case SUPPAGINGMODE_PAE_NX:
2802 case SUPPAGINGMODE_PAE_GLOBAL:
2803 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2804 enmShadowMode = PGMMODE_PAE;
2805 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2806#ifdef DEBUG_bird
2807if (getenv("VBOX_32BIT"))
2808{
2809 enmShadowMode = PGMMODE_32_BIT;
2810 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2811}
2812#endif
2813 break;
2814
2815 case SUPPAGINGMODE_AMD64:
2816 case SUPPAGINGMODE_AMD64_GLOBAL:
2817 case SUPPAGINGMODE_AMD64_NX:
2818 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2819 enmShadowMode = PGMMODE_PAE;
2820 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2821 break;
2822
2823 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2824 }
2825 break;
2826
2827 case PGMMODE_32_BIT:
2828 switch (enmHostMode)
2829 {
2830 case SUPPAGINGMODE_32_BIT:
2831 case SUPPAGINGMODE_32_BIT_GLOBAL:
2832 enmShadowMode = PGMMODE_32_BIT;
2833 enmSwitcher = VMMSWITCHER_32_TO_32;
2834 break;
2835
2836 case SUPPAGINGMODE_PAE:
2837 case SUPPAGINGMODE_PAE_NX:
2838 case SUPPAGINGMODE_PAE_GLOBAL:
2839 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2840 enmShadowMode = PGMMODE_PAE;
2841 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2842#ifdef DEBUG_bird
2843if (getenv("VBOX_32BIT"))
2844{
2845 enmShadowMode = PGMMODE_32_BIT;
2846 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2847}
2848#endif
2849 break;
2850
2851 case SUPPAGINGMODE_AMD64:
2852 case SUPPAGINGMODE_AMD64_GLOBAL:
2853 case SUPPAGINGMODE_AMD64_NX:
2854 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2855 enmShadowMode = PGMMODE_PAE;
2856 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2857 break;
2858
2859 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2860 }
2861 break;
2862
2863 case PGMMODE_PAE:
2864 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2865 switch (enmHostMode)
2866 {
2867 case SUPPAGINGMODE_32_BIT:
2868 case SUPPAGINGMODE_32_BIT_GLOBAL:
2869 enmShadowMode = PGMMODE_PAE;
2870 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2871 break;
2872
2873 case SUPPAGINGMODE_PAE:
2874 case SUPPAGINGMODE_PAE_NX:
2875 case SUPPAGINGMODE_PAE_GLOBAL:
2876 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2877 enmShadowMode = PGMMODE_PAE;
2878 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2879 break;
2880
2881 case SUPPAGINGMODE_AMD64:
2882 case SUPPAGINGMODE_AMD64_GLOBAL:
2883 case SUPPAGINGMODE_AMD64_NX:
2884 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2885 enmShadowMode = PGMMODE_PAE;
2886 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2887 break;
2888
2889 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2890 }
2891 break;
2892
2893 case PGMMODE_AMD64:
2894 case PGMMODE_AMD64_NX:
2895 switch (enmHostMode)
2896 {
2897 case SUPPAGINGMODE_32_BIT:
2898 case SUPPAGINGMODE_32_BIT_GLOBAL:
2899 enmShadowMode = PGMMODE_PAE;
2900 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
2901 break;
2902
2903 case SUPPAGINGMODE_PAE:
2904 case SUPPAGINGMODE_PAE_NX:
2905 case SUPPAGINGMODE_PAE_GLOBAL:
2906 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2907 enmShadowMode = PGMMODE_PAE;
2908 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
2909 break;
2910
2911 case SUPPAGINGMODE_AMD64:
2912 case SUPPAGINGMODE_AMD64_GLOBAL:
2913 case SUPPAGINGMODE_AMD64_NX:
2914 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2915 enmShadowMode = PGMMODE_AMD64;
2916 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
2917 break;
2918
2919 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2920 }
2921 break;
2922
2923
2924 default:
2925 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
2926 return PGMMODE_INVALID;
2927 }
2928 /* Override the shadow mode is nested paging is active. */
2929 if (HWACCMIsNestedPagingActive(pVM))
2930 enmShadowMode = PGMMODE_NESTED;
2931
2932 *penmSwitcher = enmSwitcher;
2933 return enmShadowMode;
2934}
2935
2936
2937/**
2938 * Performs the actual mode change.
2939 * This is called by PGMChangeMode and pgmR3InitPaging().
2940 *
2941 * @returns VBox status code.
2942 * @param pVM VM handle.
2943 * @param enmGuestMode The new guest mode. This is assumed to be different from
2944 * the current mode.
2945 */
2946PGMR3DECL(int) PGMR3ChangeMode(PVM pVM, PGMMODE enmGuestMode)
2947{
2948 LogFlow(("PGMR3ChangeMode: Guest mode: %d -> %d\n", pVM->pgm.s.enmGuestMode, enmGuestMode));
2949 STAM_REL_COUNTER_INC(&pVM->pgm.s.cGuestModeChanges);
2950
2951 /*
2952 * Calc the shadow mode and switcher.
2953 */
2954 VMMSWITCHER enmSwitcher;
2955 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVM->pgm.s.enmShadowMode, &enmSwitcher);
2956 if (enmSwitcher != VMMSWITCHER_INVALID)
2957 {
2958 /*
2959 * Select new switcher.
2960 */
2961 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
2962 if (VBOX_FAILURE(rc))
2963 {
2964 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Vrc\n", enmSwitcher, rc));
2965 return rc;
2966 }
2967 }
2968
2969 /*
2970 * Exit old mode(s).
2971 */
2972 /* shadow */
2973 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
2974 {
2975 LogFlow(("PGMR3ChangeMode: Shadow mode: %d -> %d\n", pVM->pgm.s.enmShadowMode, enmShadowMode));
2976 if (PGM_SHW_PFN(Exit, pVM))
2977 {
2978 int rc = PGM_SHW_PFN(Exit, pVM)(pVM);
2979 if (VBOX_FAILURE(rc))
2980 {
2981 AssertMsgFailed(("Exit failed for shadow mode %d: %Vrc\n", pVM->pgm.s.enmShadowMode, rc));
2982 return rc;
2983 }
2984 }
2985
2986 }
2987
2988 /* guest */
2989 if (PGM_GST_PFN(Exit, pVM))
2990 {
2991 int rc = PGM_GST_PFN(Exit, pVM)(pVM);
2992 if (VBOX_FAILURE(rc))
2993 {
2994 AssertMsgFailed(("Exit failed for guest mode %d: %Vrc\n", pVM->pgm.s.enmGuestMode, rc));
2995 return rc;
2996 }
2997 }
2998
2999 /*
3000 * Load new paging mode data.
3001 */
3002 pgmR3ModeDataSwitch(pVM, enmShadowMode, enmGuestMode);
3003
3004 /*
3005 * Enter new shadow mode (if changed).
3006 */
3007 if (enmShadowMode != pVM->pgm.s.enmShadowMode)
3008 {
3009 int rc;
3010 pVM->pgm.s.enmShadowMode = enmShadowMode;
3011 switch (enmShadowMode)
3012 {
3013 case PGMMODE_32_BIT:
3014 rc = PGM_SHW_NAME_32BIT(Enter)(pVM);
3015 break;
3016 case PGMMODE_PAE:
3017 case PGMMODE_PAE_NX:
3018 rc = PGM_SHW_NAME_PAE(Enter)(pVM);
3019 break;
3020 case PGMMODE_AMD64:
3021 case PGMMODE_AMD64_NX:
3022 rc = PGM_SHW_NAME_AMD64(Enter)(pVM);
3023 break;
3024 case PGMMODE_NESTED:
3025 rc = PGM_SHW_NAME_NESTED(Enter)(pVM);
3026 break;
3027 case PGMMODE_REAL:
3028 case PGMMODE_PROTECTED:
3029 default:
3030 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3031 return VERR_INTERNAL_ERROR;
3032 }
3033 if (VBOX_FAILURE(rc))
3034 {
3035 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Vrc\n", enmShadowMode, rc));
3036 pVM->pgm.s.enmShadowMode = PGMMODE_INVALID;
3037 return rc;
3038 }
3039 }
3040
3041 /*
3042 * Enter the new guest and shadow+guest modes.
3043 */
3044 int rc = -1;
3045 int rc2 = -1;
3046 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3047 pVM->pgm.s.enmGuestMode = enmGuestMode;
3048 switch (enmGuestMode)
3049 {
3050 case PGMMODE_REAL:
3051 rc = PGM_GST_NAME_REAL(Enter)(pVM, NIL_RTGCPHYS);
3052 switch (pVM->pgm.s.enmShadowMode)
3053 {
3054 case PGMMODE_32_BIT:
3055 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVM, NIL_RTGCPHYS);
3056 break;
3057 case PGMMODE_PAE:
3058 case PGMMODE_PAE_NX:
3059 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVM, NIL_RTGCPHYS);
3060 break;
3061 case PGMMODE_NESTED:
3062 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVM, NIL_RTGCPHYS);
3063 break;
3064 case PGMMODE_AMD64:
3065 case PGMMODE_AMD64_NX:
3066 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3067 default: AssertFailed(); break;
3068 }
3069 break;
3070
3071 case PGMMODE_PROTECTED:
3072 rc = PGM_GST_NAME_PROT(Enter)(pVM, NIL_RTGCPHYS);
3073 switch (pVM->pgm.s.enmShadowMode)
3074 {
3075 case PGMMODE_32_BIT:
3076 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVM, NIL_RTGCPHYS);
3077 break;
3078 case PGMMODE_PAE:
3079 case PGMMODE_PAE_NX:
3080 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVM, NIL_RTGCPHYS);
3081 break;
3082 case PGMMODE_NESTED:
3083 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVM, NIL_RTGCPHYS);
3084 break;
3085 case PGMMODE_AMD64:
3086 case PGMMODE_AMD64_NX:
3087 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3088 default: AssertFailed(); break;
3089 }
3090 break;
3091
3092 case PGMMODE_32_BIT:
3093 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAGE_MASK;
3094 rc = PGM_GST_NAME_32BIT(Enter)(pVM, GCPhysCR3);
3095 switch (pVM->pgm.s.enmShadowMode)
3096 {
3097 case PGMMODE_32_BIT:
3098 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVM, GCPhysCR3);
3099 break;
3100 case PGMMODE_PAE:
3101 case PGMMODE_PAE_NX:
3102 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVM, GCPhysCR3);
3103 break;
3104 case PGMMODE_NESTED:
3105 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVM, GCPhysCR3);
3106 break;
3107 case PGMMODE_AMD64:
3108 case PGMMODE_AMD64_NX:
3109 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3110 default: AssertFailed(); break;
3111 }
3112 break;
3113
3114 //case PGMMODE_PAE_NX:
3115 case PGMMODE_PAE:
3116 {
3117 uint32_t u32Dummy, u32Features;
3118
3119 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3120 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3121 {
3122 /* Pause first, then inform Main. */
3123 rc = VMR3SuspendNoSave(pVM);
3124 AssertRC(rc);
3125
3126 VMSetRuntimeError(pVM, true, "PAEmode",
3127 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. Experimental PAE support can be enabled using the -pae option with VBoxManage."));
3128 /* we must return TRUE here otherwise the recompiler will assert */
3129 return VINF_SUCCESS;
3130 }
3131 GCPhysCR3 = CPUMGetGuestCR3(pVM) & X86_CR3_PAE_PAGE_MASK;
3132 rc = PGM_GST_NAME_PAE(Enter)(pVM, GCPhysCR3);
3133 switch (pVM->pgm.s.enmShadowMode)
3134 {
3135 case PGMMODE_PAE:
3136 case PGMMODE_PAE_NX:
3137 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVM, GCPhysCR3);
3138 break;
3139 case PGMMODE_NESTED:
3140 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVM, GCPhysCR3);
3141 break;
3142 case PGMMODE_32_BIT:
3143 case PGMMODE_AMD64:
3144 case PGMMODE_AMD64_NX:
3145 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3146 default: AssertFailed(); break;
3147 }
3148 break;
3149 }
3150
3151 case PGMMODE_AMD64_NX:
3152 case PGMMODE_AMD64:
3153 GCPhysCR3 = CPUMGetGuestCR3(pVM) & 0xfffffffffffff000ULL; /** @todo define this mask! */
3154 rc = PGM_GST_NAME_AMD64(Enter)(pVM, GCPhysCR3);
3155 switch (pVM->pgm.s.enmShadowMode)
3156 {
3157 case PGMMODE_AMD64:
3158 case PGMMODE_AMD64_NX:
3159 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVM, GCPhysCR3);
3160 break;
3161 case PGMMODE_NESTED:
3162 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVM, GCPhysCR3);
3163 break;
3164 case PGMMODE_32_BIT:
3165 case PGMMODE_PAE:
3166 case PGMMODE_PAE_NX:
3167 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3168 default: AssertFailed(); break;
3169 }
3170 break;
3171
3172 default:
3173 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3174 rc = VERR_NOT_IMPLEMENTED;
3175 break;
3176 }
3177
3178 /* status codes. */
3179 AssertRC(rc);
3180 AssertRC(rc2);
3181 if (VBOX_SUCCESS(rc))
3182 {
3183 rc = rc2;
3184 if (VBOX_SUCCESS(rc)) /* no informational status codes. */
3185 rc = VINF_SUCCESS;
3186 }
3187
3188 /*
3189 * Notify SELM so it can update the TSSes with correct CR3s.
3190 */
3191 SELMR3PagingModeChanged(pVM);
3192
3193 /* Notify HWACCM as well. */
3194 HWACCMR3PagingModeChanged(pVM, pVM->pgm.s.enmShadowMode);
3195 return rc;
3196}
3197
3198
3199/**
3200 * Dumps a PAE shadow page table.
3201 *
3202 * @returns VBox status code (VINF_SUCCESS).
3203 * @param pVM The VM handle.
3204 * @param pPT Pointer to the page table.
3205 * @param u64Address The virtual address of the page table starts.
3206 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3207 * @param cMaxDepth The maxium depth.
3208 * @param pHlp Pointer to the output functions.
3209 */
3210static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3211{
3212 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3213 {
3214 X86PTEPAE Pte = pPT->a[i];
3215 if (Pte.n.u1Present)
3216 {
3217 pHlp->pfnPrintf(pHlp,
3218 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3219 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3220 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3221 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3222 Pte.n.u1Write ? 'W' : 'R',
3223 Pte.n.u1User ? 'U' : 'S',
3224 Pte.n.u1Accessed ? 'A' : '-',
3225 Pte.n.u1Dirty ? 'D' : '-',
3226 Pte.n.u1Global ? 'G' : '-',
3227 Pte.n.u1WriteThru ? "WT" : "--",
3228 Pte.n.u1CacheDisable? "CD" : "--",
3229 Pte.n.u1PAT ? "AT" : "--",
3230 Pte.n.u1NoExecute ? "NX" : "--",
3231 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3232 Pte.u & RT_BIT(10) ? '1' : '0',
3233 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3234 Pte.u & X86_PTE_PAE_PG_MASK);
3235 }
3236 }
3237 return VINF_SUCCESS;
3238}
3239
3240
3241/**
3242 * Dumps a PAE shadow page directory table.
3243 *
3244 * @returns VBox status code (VINF_SUCCESS).
3245 * @param pVM The VM handle.
3246 * @param HCPhys The physical address of the page directory table.
3247 * @param u64Address The virtual address of the page table starts.
3248 * @param cr4 The CR4, PSE is currently used.
3249 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3250 * @param cMaxDepth The maxium depth.
3251 * @param pHlp Pointer to the output functions.
3252 */
3253static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3254{
3255 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3256 if (!pPD)
3257 {
3258 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%#VHp was not found in the page pool!\n",
3259 fLongMode ? 16 : 8, u64Address, HCPhys);
3260 return VERR_INVALID_PARAMETER;
3261 }
3262 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3263
3264 int rc = VINF_SUCCESS;
3265 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3266 {
3267 X86PDEPAE Pde = pPD->a[i];
3268 if (Pde.n.u1Present)
3269 {
3270 if (fBigPagesSupported && Pde.b.u1Size)
3271 pHlp->pfnPrintf(pHlp,
3272 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3273 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3274 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3275 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3276 Pde.b.u1Write ? 'W' : 'R',
3277 Pde.b.u1User ? 'U' : 'S',
3278 Pde.b.u1Accessed ? 'A' : '-',
3279 Pde.b.u1Dirty ? 'D' : '-',
3280 Pde.b.u1Global ? 'G' : '-',
3281 Pde.b.u1WriteThru ? "WT" : "--",
3282 Pde.b.u1CacheDisable? "CD" : "--",
3283 Pde.b.u1PAT ? "AT" : "--",
3284 Pde.b.u1NoExecute ? "NX" : "--",
3285 Pde.u & RT_BIT_64(9) ? '1' : '0',
3286 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3287 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3288 Pde.u & X86_PDE_PAE_PG_MASK);
3289 else
3290 {
3291 pHlp->pfnPrintf(pHlp,
3292 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3293 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3294 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3295 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3296 Pde.n.u1Write ? 'W' : 'R',
3297 Pde.n.u1User ? 'U' : 'S',
3298 Pde.n.u1Accessed ? 'A' : '-',
3299 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3300 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3301 Pde.n.u1WriteThru ? "WT" : "--",
3302 Pde.n.u1CacheDisable? "CD" : "--",
3303 Pde.n.u1NoExecute ? "NX" : "--",
3304 Pde.u & RT_BIT_64(9) ? '1' : '0',
3305 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3306 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3307 Pde.u & X86_PDE_PAE_PG_MASK);
3308 if (cMaxDepth >= 1)
3309 {
3310 /** @todo what about using the page pool for mapping PTs? */
3311 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3312 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3313 PX86PTPAE pPT = NULL;
3314 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3315 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3316 else
3317 {
3318 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3319 {
3320 uint64_t off = u64AddressPT - pMap->GCPtr;
3321 if (off < pMap->cb)
3322 {
3323 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3324 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3325 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3326 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3327 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3328 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3329 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3330 }
3331 }
3332 }
3333 int rc2 = VERR_INVALID_PARAMETER;
3334 if (pPT)
3335 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3336 else
3337 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%#VHp was not found in the page pool!\n",
3338 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3339 if (rc2 < rc && VBOX_SUCCESS(rc))
3340 rc = rc2;
3341 }
3342 }
3343 }
3344 }
3345 return rc;
3346}
3347
3348
3349/**
3350 * Dumps a PAE shadow page directory pointer table.
3351 *
3352 * @returns VBox status code (VINF_SUCCESS).
3353 * @param pVM The VM handle.
3354 * @param HCPhys The physical address of the page directory pointer table.
3355 * @param u64Address The virtual address of the page table starts.
3356 * @param cr4 The CR4, PSE is currently used.
3357 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3358 * @param cMaxDepth The maxium depth.
3359 * @param pHlp Pointer to the output functions.
3360 */
3361static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3362{
3363 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3364 if (!pPDPT)
3365 {
3366 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%#VHp was not found in the page pool!\n",
3367 fLongMode ? 16 : 8, u64Address, HCPhys);
3368 return VERR_INVALID_PARAMETER;
3369 }
3370
3371 int rc = VINF_SUCCESS;
3372 const unsigned c = fLongMode ? ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3373 for (unsigned i = 0; i < c; i++)
3374 {
3375 X86PDPE Pdpe = pPDPT->a[i];
3376 if (Pdpe.n.u1Present)
3377 {
3378 if (fLongMode)
3379 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3380 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3381 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3382 Pdpe.lm.u1Write ? 'W' : 'R',
3383 Pdpe.lm.u1User ? 'U' : 'S',
3384 Pdpe.lm.u1Accessed ? 'A' : '-',
3385 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3386 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3387 Pdpe.lm.u1WriteThru ? "WT" : "--",
3388 Pdpe.lm.u1CacheDisable? "CD" : "--",
3389 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3390 Pdpe.lm.u1NoExecute ? "NX" : "--",
3391 Pdpe.u & RT_BIT(9) ? '1' : '0',
3392 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3393 Pdpe.u & RT_BIT(11) ? '1' : '0',
3394 Pdpe.u & X86_PDPE_PG_MASK);
3395 else
3396 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3397 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3398 i << X86_PDPT_SHIFT,
3399 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3400 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3401 Pdpe.n.u1WriteThru ? "WT" : "--",
3402 Pdpe.n.u1CacheDisable? "CD" : "--",
3403 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3404 Pdpe.u & RT_BIT(9) ? '1' : '0',
3405 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3406 Pdpe.u & RT_BIT(11) ? '1' : '0',
3407 Pdpe.u & X86_PDPE_PG_MASK);
3408 if (cMaxDepth >= 1)
3409 {
3410 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3411 cr4, fLongMode, cMaxDepth - 1, pHlp);
3412 if (rc2 < rc && VBOX_SUCCESS(rc))
3413 rc = rc2;
3414 }
3415 }
3416 }
3417 return rc;
3418}
3419
3420
3421/**
3422 * Dumps a 32-bit shadow page table.
3423 *
3424 * @returns VBox status code (VINF_SUCCESS).
3425 * @param pVM The VM handle.
3426 * @param HCPhys The physical address of the table.
3427 * @param cr4 The CR4, PSE is currently used.
3428 * @param cMaxDepth The maxium depth.
3429 * @param pHlp Pointer to the output functions.
3430 */
3431static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3432{
3433 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3434 if (!pPML4)
3435 {
3436 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%#VHp was not found in the page pool!\n", HCPhys);
3437 return VERR_INVALID_PARAMETER;
3438 }
3439
3440 int rc = VINF_SUCCESS;
3441 for (unsigned i = 0; i < ELEMENTS(pPML4->a); i++)
3442 {
3443 X86PML4E Pml4e = pPML4->a[i];
3444 if (Pml4e.n.u1Present)
3445 {
3446 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3447 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3448 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3449 u64Address,
3450 Pml4e.n.u1Write ? 'W' : 'R',
3451 Pml4e.n.u1User ? 'U' : 'S',
3452 Pml4e.n.u1Accessed ? 'A' : '-',
3453 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3454 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3455 Pml4e.n.u1WriteThru ? "WT" : "--",
3456 Pml4e.n.u1CacheDisable? "CD" : "--",
3457 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3458 Pml4e.n.u1NoExecute ? "NX" : "--",
3459 Pml4e.u & RT_BIT(9) ? '1' : '0',
3460 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3461 Pml4e.u & RT_BIT(11) ? '1' : '0',
3462 Pml4e.u & X86_PML4E_PG_MASK);
3463
3464 if (cMaxDepth >= 1)
3465 {
3466 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3467 if (rc2 < rc && VBOX_SUCCESS(rc))
3468 rc = rc2;
3469 }
3470 }
3471 }
3472 return rc;
3473}
3474
3475
3476/**
3477 * Dumps a 32-bit shadow page table.
3478 *
3479 * @returns VBox status code (VINF_SUCCESS).
3480 * @param pVM The VM handle.
3481 * @param pPT Pointer to the page table.
3482 * @param u32Address The virtual address this table starts at.
3483 * @param pHlp Pointer to the output functions.
3484 */
3485int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3486{
3487 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3488 {
3489 X86PTE Pte = pPT->a[i];
3490 if (Pte.n.u1Present)
3491 {
3492 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3493 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3494 u32Address + (i << X86_PT_SHIFT),
3495 Pte.n.u1Write ? 'W' : 'R',
3496 Pte.n.u1User ? 'U' : 'S',
3497 Pte.n.u1Accessed ? 'A' : '-',
3498 Pte.n.u1Dirty ? 'D' : '-',
3499 Pte.n.u1Global ? 'G' : '-',
3500 Pte.n.u1WriteThru ? "WT" : "--",
3501 Pte.n.u1CacheDisable? "CD" : "--",
3502 Pte.n.u1PAT ? "AT" : "--",
3503 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3504 Pte.u & RT_BIT(10) ? '1' : '0',
3505 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3506 Pte.u & X86_PDE_PG_MASK);
3507 }
3508 }
3509 return VINF_SUCCESS;
3510}
3511
3512
3513/**
3514 * Dumps a 32-bit shadow page directory and page tables.
3515 *
3516 * @returns VBox status code (VINF_SUCCESS).
3517 * @param pVM The VM handle.
3518 * @param cr3 The root of the hierarchy.
3519 * @param cr4 The CR4, PSE is currently used.
3520 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3521 * @param pHlp Pointer to the output functions.
3522 */
3523int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3524{
3525 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3526 if (!pPD)
3527 {
3528 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3529 return VERR_INVALID_PARAMETER;
3530 }
3531
3532 int rc = VINF_SUCCESS;
3533 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3534 {
3535 X86PDE Pde = pPD->a[i];
3536 if (Pde.n.u1Present)
3537 {
3538 const uint32_t u32Address = i << X86_PD_SHIFT;
3539 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3540 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3541 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3542 u32Address,
3543 Pde.b.u1Write ? 'W' : 'R',
3544 Pde.b.u1User ? 'U' : 'S',
3545 Pde.b.u1Accessed ? 'A' : '-',
3546 Pde.b.u1Dirty ? 'D' : '-',
3547 Pde.b.u1Global ? 'G' : '-',
3548 Pde.b.u1WriteThru ? "WT" : "--",
3549 Pde.b.u1CacheDisable? "CD" : "--",
3550 Pde.b.u1PAT ? "AT" : "--",
3551 Pde.u & RT_BIT_64(9) ? '1' : '0',
3552 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3553 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3554 Pde.u & X86_PDE4M_PG_MASK);
3555 else
3556 {
3557 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3558 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3559 u32Address,
3560 Pde.n.u1Write ? 'W' : 'R',
3561 Pde.n.u1User ? 'U' : 'S',
3562 Pde.n.u1Accessed ? 'A' : '-',
3563 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3564 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3565 Pde.n.u1WriteThru ? "WT" : "--",
3566 Pde.n.u1CacheDisable? "CD" : "--",
3567 Pde.u & RT_BIT_64(9) ? '1' : '0',
3568 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3569 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3570 Pde.u & X86_PDE_PG_MASK);
3571 if (cMaxDepth >= 1)
3572 {
3573 /** @todo what about using the page pool for mapping PTs? */
3574 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3575 PX86PT pPT = NULL;
3576 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3577 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3578 else
3579 {
3580 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3581 if (u32Address - pMap->GCPtr < pMap->cb)
3582 {
3583 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3584 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3585 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%VHp not %VHp is in the PD.\n",
3586 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3587 pPT = pMap->aPTs[iPDE].pPTR3;
3588 }
3589 }
3590 int rc2 = VERR_INVALID_PARAMETER;
3591 if (pPT)
3592 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3593 else
3594 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3595 if (rc2 < rc && VBOX_SUCCESS(rc))
3596 rc = rc2;
3597 }
3598 }
3599 }
3600 }
3601
3602 return rc;
3603}
3604
3605
3606/**
3607 * Dumps a 32-bit shadow page table.
3608 *
3609 * @returns VBox status code (VINF_SUCCESS).
3610 * @param pVM The VM handle.
3611 * @param pPT Pointer to the page table.
3612 * @param u32Address The virtual address this table starts at.
3613 * @param PhysSearch Address to search for.
3614 */
3615int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3616{
3617 for (unsigned i = 0; i < ELEMENTS(pPT->a); i++)
3618 {
3619 X86PTE Pte = pPT->a[i];
3620 if (Pte.n.u1Present)
3621 {
3622 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3623 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3624 u32Address + (i << X86_PT_SHIFT),
3625 Pte.n.u1Write ? 'W' : 'R',
3626 Pte.n.u1User ? 'U' : 'S',
3627 Pte.n.u1Accessed ? 'A' : '-',
3628 Pte.n.u1Dirty ? 'D' : '-',
3629 Pte.n.u1Global ? 'G' : '-',
3630 Pte.n.u1WriteThru ? "WT" : "--",
3631 Pte.n.u1CacheDisable? "CD" : "--",
3632 Pte.n.u1PAT ? "AT" : "--",
3633 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3634 Pte.u & RT_BIT(10) ? '1' : '0',
3635 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3636 Pte.u & X86_PDE_PG_MASK));
3637
3638 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3639 {
3640 uint64_t fPageShw = 0;
3641 RTHCPHYS pPhysHC = 0;
3642
3643 PGMShwGetPage(pVM, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3644 Log(("Found %VGp at %VGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3645 }
3646 }
3647 }
3648 return VINF_SUCCESS;
3649}
3650
3651
3652/**
3653 * Dumps a 32-bit guest page directory and page tables.
3654 *
3655 * @returns VBox status code (VINF_SUCCESS).
3656 * @param pVM The VM handle.
3657 * @param cr3 The root of the hierarchy.
3658 * @param cr4 The CR4, PSE is currently used.
3659 * @param PhysSearch Address to search for.
3660 */
3661PGMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3662{
3663 bool fLongMode = false;
3664 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3665 PX86PD pPD = 0;
3666
3667 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3668 if (VBOX_FAILURE(rc) || !pPD)
3669 {
3670 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3671 return VERR_INVALID_PARAMETER;
3672 }
3673
3674 Log(("cr3=%08x cr4=%08x%s\n"
3675 "%-*s P - Present\n"
3676 "%-*s | R/W - Read (0) / Write (1)\n"
3677 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3678 "%-*s | | | A - Accessed\n"
3679 "%-*s | | | | D - Dirty\n"
3680 "%-*s | | | | | G - Global\n"
3681 "%-*s | | | | | | WT - Write thru\n"
3682 "%-*s | | | | | | | CD - Cache disable\n"
3683 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3684 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3685 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3686 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3687 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3688 "%-*s Level | | | | | | | | | | | | Page\n"
3689 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3690 - W U - - - -- -- -- -- -- 010 */
3691 , cr3, cr4, fLongMode ? " Long Mode" : "",
3692 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3693 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3694
3695 for (unsigned i = 0; i < ELEMENTS(pPD->a); i++)
3696 {
3697 X86PDE Pde = pPD->a[i];
3698 if (Pde.n.u1Present)
3699 {
3700 const uint32_t u32Address = i << X86_PD_SHIFT;
3701
3702 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3703 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3704 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3705 u32Address,
3706 Pde.b.u1Write ? 'W' : 'R',
3707 Pde.b.u1User ? 'U' : 'S',
3708 Pde.b.u1Accessed ? 'A' : '-',
3709 Pde.b.u1Dirty ? 'D' : '-',
3710 Pde.b.u1Global ? 'G' : '-',
3711 Pde.b.u1WriteThru ? "WT" : "--",
3712 Pde.b.u1CacheDisable? "CD" : "--",
3713 Pde.b.u1PAT ? "AT" : "--",
3714 Pde.u & RT_BIT(9) ? '1' : '0',
3715 Pde.u & RT_BIT(10) ? '1' : '0',
3716 Pde.u & RT_BIT(11) ? '1' : '0',
3717 Pde.u & X86_PDE4M_PG_MASK));
3718 /** @todo PhysSearch */
3719 else
3720 {
3721 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3722 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3723 u32Address,
3724 Pde.n.u1Write ? 'W' : 'R',
3725 Pde.n.u1User ? 'U' : 'S',
3726 Pde.n.u1Accessed ? 'A' : '-',
3727 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3728 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3729 Pde.n.u1WriteThru ? "WT" : "--",
3730 Pde.n.u1CacheDisable? "CD" : "--",
3731 Pde.u & RT_BIT(9) ? '1' : '0',
3732 Pde.u & RT_BIT(10) ? '1' : '0',
3733 Pde.u & RT_BIT(11) ? '1' : '0',
3734 Pde.u & X86_PDE_PG_MASK));
3735 ////if (cMaxDepth >= 1)
3736 {
3737 /** @todo what about using the page pool for mapping PTs? */
3738 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3739 PX86PT pPT = NULL;
3740
3741 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3742
3743 int rc2 = VERR_INVALID_PARAMETER;
3744 if (pPT)
3745 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3746 else
3747 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3748 if (rc2 < rc && VBOX_SUCCESS(rc))
3749 rc = rc2;
3750 }
3751 }
3752 }
3753 }
3754
3755 return rc;
3756}
3757
3758
3759/**
3760 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3761 *
3762 * @returns VBox status code (VINF_SUCCESS).
3763 * @param pVM The VM handle.
3764 * @param cr3 The root of the hierarchy.
3765 * @param cr4 The cr4, only PAE and PSE is currently used.
3766 * @param fLongMode Set if long mode, false if not long mode.
3767 * @param cMaxDepth Number of levels to dump.
3768 * @param pHlp Pointer to the output functions.
3769 */
3770PGMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3771{
3772 if (!pHlp)
3773 pHlp = DBGFR3InfoLogHlp();
3774 if (!cMaxDepth)
3775 return VINF_SUCCESS;
3776 const unsigned cch = fLongMode ? 16 : 8;
3777 pHlp->pfnPrintf(pHlp,
3778 "cr3=%08x cr4=%08x%s\n"
3779 "%-*s P - Present\n"
3780 "%-*s | R/W - Read (0) / Write (1)\n"
3781 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3782 "%-*s | | | A - Accessed\n"
3783 "%-*s | | | | D - Dirty\n"
3784 "%-*s | | | | | G - Global\n"
3785 "%-*s | | | | | | WT - Write thru\n"
3786 "%-*s | | | | | | | CD - Cache disable\n"
3787 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3788 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3789 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3790 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3791 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3792 "%-*s Level | | | | | | | | | | | | Page\n"
3793 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3794 - W U - - - -- -- -- -- -- 010 */
3795 , cr3, cr4, fLongMode ? " Long Mode" : "",
3796 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3797 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3798 if (cr4 & X86_CR4_PAE)
3799 {
3800 if (fLongMode)
3801 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3802 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3803 }
3804 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3805}
3806
3807
3808
3809#ifdef VBOX_WITH_DEBUGGER
3810/**
3811 * The '.pgmram' command.
3812 *
3813 * @returns VBox status.
3814 * @param pCmd Pointer to the command descriptor (as registered).
3815 * @param pCmdHlp Pointer to command helper functions.
3816 * @param pVM Pointer to the current VM (if any).
3817 * @param paArgs Pointer to (readonly) array of arguments.
3818 * @param cArgs Number of arguments in the array.
3819 */
3820static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3821{
3822 /*
3823 * Validate input.
3824 */
3825 if (!pVM)
3826 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3827 if (!pVM->pgm.s.pRamRangesGC)
3828 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
3829
3830 /*
3831 * Dump the ranges.
3832 */
3833 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
3834 PPGMRAMRANGE pRam;
3835 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
3836 {
3837 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3838 "%VGp - %VGp %p\n",
3839 pRam->GCPhys, pRam->GCPhysLast, pRam->pvHC);
3840 if (VBOX_FAILURE(rc))
3841 return rc;
3842 }
3843
3844 return VINF_SUCCESS;
3845}
3846
3847
3848/**
3849 * The '.pgmmap' command.
3850 *
3851 * @returns VBox status.
3852 * @param pCmd Pointer to the command descriptor (as registered).
3853 * @param pCmdHlp Pointer to command helper functions.
3854 * @param pVM Pointer to the current VM (if any).
3855 * @param paArgs Pointer to (readonly) array of arguments.
3856 * @param cArgs Number of arguments in the array.
3857 */
3858static DECLCALLBACK(int) pgmR3CmdMap(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3859{
3860 /*
3861 * Validate input.
3862 */
3863 if (!pVM)
3864 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3865 if (!pVM->pgm.s.pMappingsR3)
3866 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no mappings are registered.\n");
3867
3868 /*
3869 * Print message about the fixedness of the mappings.
3870 */
3871 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, pVM->pgm.s.fMappingsFixed ? "The mappings are FIXED.\n" : "The mappings are FLOATING.\n");
3872 if (VBOX_FAILURE(rc))
3873 return rc;
3874
3875 /*
3876 * Dump the ranges.
3877 */
3878 PPGMMAPPING pCur;
3879 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
3880 {
3881 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
3882 "%08x - %08x %s\n",
3883 pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
3884 if (VBOX_FAILURE(rc))
3885 return rc;
3886 }
3887
3888 return VINF_SUCCESS;
3889}
3890
3891
3892/**
3893 * The '.pgmsync' command.
3894 *
3895 * @returns VBox status.
3896 * @param pCmd Pointer to the command descriptor (as registered).
3897 * @param pCmdHlp Pointer to command helper functions.
3898 * @param pVM Pointer to the current VM (if any).
3899 * @param paArgs Pointer to (readonly) array of arguments.
3900 * @param cArgs Number of arguments in the array.
3901 */
3902static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3903{
3904 /*
3905 * Validate input.
3906 */
3907 if (!pVM)
3908 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3909
3910 /*
3911 * Force page directory sync.
3912 */
3913 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3914
3915 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
3916 if (VBOX_FAILURE(rc))
3917 return rc;
3918
3919 return VINF_SUCCESS;
3920}
3921
3922
3923/**
3924 * The '.pgmsyncalways' command.
3925 *
3926 * @returns VBox status.
3927 * @param pCmd Pointer to the command descriptor (as registered).
3928 * @param pCmdHlp Pointer to command helper functions.
3929 * @param pVM Pointer to the current VM (if any).
3930 * @param paArgs Pointer to (readonly) array of arguments.
3931 * @param cArgs Number of arguments in the array.
3932 */
3933static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3934{
3935 /*
3936 * Validate input.
3937 */
3938 if (!pVM)
3939 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires VM to be selected.\n");
3940
3941 /*
3942 * Force page directory sync.
3943 */
3944 if (pVM->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3945 {
3946 ASMAtomicAndU32(&pVM->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3947 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
3948 }
3949 else
3950 {
3951 ASMAtomicOrU32(&pVM->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3952 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
3953 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
3954 }
3955}
3956
3957#endif
3958
3959/**
3960 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3961 */
3962typedef struct PGMCHECKINTARGS
3963{
3964 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3965 PPGMPHYSHANDLER pPrevPhys;
3966 PPGMVIRTHANDLER pPrevVirt;
3967 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3968 PVM pVM;
3969} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3970
3971/**
3972 * Validate a node in the physical handler tree.
3973 *
3974 * @returns 0 on if ok, other wise 1.
3975 * @param pNode The handler node.
3976 * @param pvUser pVM.
3977 */
3978static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
3979{
3980 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
3981 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
3982 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
3983 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3984 AssertReleaseMsg( !pArgs->pPrevPhys
3985 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
3986 ("pPrevPhys=%p %VGp-%VGp %s\n"
3987 " pCur=%p %VGp-%VGp %s\n",
3988 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
3989 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
3990 pArgs->pPrevPhys = pCur;
3991 return 0;
3992}
3993
3994
3995/**
3996 * Validate a node in the virtual handler tree.
3997 *
3998 * @returns 0 on if ok, other wise 1.
3999 * @param pNode The handler node.
4000 * @param pvUser pVM.
4001 */
4002static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4003{
4004 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4005 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4006 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4007 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGv-%VGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4008 AssertReleaseMsg( !pArgs->pPrevVirt
4009 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4010 ("pPrevVirt=%p %VGv-%VGv %s\n"
4011 " pCur=%p %VGv-%VGv %s\n",
4012 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4013 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4014 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4015 {
4016 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4017 ("pCur=%p %VGv-%VGv %s\n"
4018 "iPage=%d offVirtHandle=%#x expected %#x\n",
4019 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4020 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4021 }
4022 pArgs->pPrevVirt = pCur;
4023 return 0;
4024}
4025
4026
4027/**
4028 * Validate a node in the virtual handler tree.
4029 *
4030 * @returns 0 on if ok, other wise 1.
4031 * @param pNode The handler node.
4032 * @param pvUser pVM.
4033 */
4034static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4035{
4036 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4037 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4038 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4039 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4040 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %VGp-%VGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4041 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4042 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4043 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4044 " pCur=%p %VGp-%VGp\n",
4045 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4046 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4047 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4048 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4049 ("pPrevPhys2Virt=%p %VGp-%VGp\n"
4050 " pCur=%p %VGp-%VGp\n",
4051 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4052 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4053 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4054 ("pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4055 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4056 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4057 {
4058 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4059 for (;;)
4060 {
4061 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4062 AssertReleaseMsg(pCur2 != pCur,
4063 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4064 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4065 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4066 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4067 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4068 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4069 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4070 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4071 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4072 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4073 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4074 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4075 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4076 (" pCur=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4077 "pCur2=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4078 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4079 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4080 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4081 break;
4082 }
4083 }
4084
4085 pArgs->pPrevPhys2Virt = pCur;
4086 return 0;
4087}
4088
4089
4090/**
4091 * Perform an integrity check on the PGM component.
4092 *
4093 * @returns VINF_SUCCESS if everything is fine.
4094 * @returns VBox error status after asserting on integrity breach.
4095 * @param pVM The VM handle.
4096 */
4097PDMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4098{
4099 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4100
4101 /*
4102 * Check the trees.
4103 */
4104 int cErrors = 0;
4105 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4106 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4107 PGMCHECKINTARGS Args = s_LeftToRight;
4108 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4109 Args = s_RightToLeft;
4110 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4111 Args = s_LeftToRight;
4112 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4113 Args = s_RightToLeft;
4114 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4115 Args = s_LeftToRight;
4116 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4117 Args = s_RightToLeft;
4118 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesHC->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4119 Args = s_LeftToRight;
4120 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4121 Args = s_RightToLeft;
4122 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesHC->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4123
4124 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4125}
4126
4127
4128/**
4129 * Inform PGM if we want all mappings to be put into the shadow page table. (necessary for e.g. VMX)
4130 *
4131 * @returns VBox status code.
4132 * @param pVM VM handle.
4133 * @param fEnable Enable or disable shadow mappings
4134 */
4135PGMR3DECL(int) PGMR3ChangeShwPDMappings(PVM pVM, bool fEnable)
4136{
4137 pVM->pgm.s.fDisableMappings = !fEnable;
4138
4139 uint32_t cb;
4140 int rc = PGMR3MappingsSize(pVM, &cb);
4141 AssertRCReturn(rc, rc);
4142
4143 /* Pretend the mappings are now fixed; to force a refresh of the reserved PDEs. */
4144 rc = PGMR3MappingsFix(pVM, MM_HYPER_AREA_ADDRESS, cb);
4145 AssertRCReturn(rc, rc);
4146
4147 return VINF_SUCCESS;
4148}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette