/* $Id: PGMInternal.h 838 2007-02-12 12:05:52Z vboxsync $ */ /** @file * PGM - Internal header file. */ /* * Copyright (C) 2006 InnoTek Systemberatung GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. * * If you received this file as part of a commercial VirtualBox * distribution, then only the terms of your commercial VirtualBox * license agreement apply instead of the previous paragraph. */ #ifndef __PGMInternal_h__ #define __PGMInternal_h__ #include #include #include #include #include #include #include #include #include #include #include #if !defined(IN_PGM_R3) && !defined(IN_PGM_R0) && !defined(IN_PGM_GC) # error "Not in PGM! This is an internal header!" #endif /** @defgroup grp_pgm_int Internals * @ingroup grp_pgm * @internal * @{ */ /** @name PGM Compile Time Config * @{ */ /** * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp). * Comment it if it will break something. */ #define PGM_OUT_OF_SYNC_IN_GC /** * Virtualize the dirty bit * This also makes a half-hearted attempt at the accessed bit. For full * accessed bit virtualization define PGM_SYNC_ACCESSED_BIT. */ #define PGM_SYNC_DIRTY_BIT /** * Fully virtualize the accessed bit. * @remark This requires SYNC_DIRTY_ACCESSED_BITS to be defined! */ #define PGM_SYNC_ACCESSED_BIT /** * Check and skip global PDEs for non-global flushes */ #define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH /** * Sync N pages instead of a whole page table */ #define PGM_SYNC_N_PAGES /** * Number of pages to sync during a page fault * * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here * causes a lot of unnecessary extents and also is slower than taking more \#PFs. */ #define PGM_SYNC_NR_PAGES 8 /** * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t)) */ #define PGM_MAX_PHYSCACHE_ENTRIES 64 #define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1) /** * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword */ #define PGM_PHYSMEMACCESS_CACHING /* * Assert Sanity. */ #if defined(PGM_SYNC_ACCESSED_BIT) && !defined(PGM_SYNC_DIRTY_BIT) # error "PGM_SYNC_ACCESSED_BIT requires PGM_SYNC_DIRTY_BIT!" #endif /** @def PGMPOOL_WITH_CACHE * Enable agressive caching using the page pool. * * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING. */ #define PGMPOOL_WITH_CACHE /** @def PGMPOOL_WITH_MIXED_PT_CR3 * When defined, we'll deal with 'uncachable' pages. */ #ifdef PGMPOOL_WITH_CACHE # define PGMPOOL_WITH_MIXED_PT_CR3 #endif /** @def PGMPOOL_WITH_MONITORING * Monitor the guest pages which are shadowed. * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must * be enabled as well. * @remark doesn't really work without caching now. (Mixed PT/CR3 change.) */ #ifdef PGMPOOL_WITH_CACHE # define PGMPOOL_WITH_MONITORING #endif /** @def PGMPOOL_WITH_GCPHYS_TRACKING * Tracking the of shadow pages mapping guest physical pages. * * This is very expensive, the current cache prototype is trying to figure out * whether it will be acceptable with an agressive caching policy. */ #if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING) # define PGMPOOL_WITH_GCPHYS_TRACKING #endif /** @def PGMPOOL_WITH_USER_TRACKING * Tracking users of shadow pages. This is required for the linking of shadow page * tables and physical guest addresses. */ #if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING) # define PGMPOOL_WITH_USER_TRACKING #endif /** @def PGMPOOL_CFG_MAX_GROW * The maximum number of pages to add to the pool in one go. */ #define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT) /** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL * Enables some extra assertions for virtual handlers (mainly phys2virt related). */ #ifdef VBOX_STRICT # define VBOX_STRICT_PGM_HANDLER_VIRTUAL #endif /** @} */ /** @name PDPTR and PML4 flags. * These are placed in the three bits available for system programs in * the PDPTR and PML4 entries. * @{ */ /** The entry is a permanent one and it's must always be present. * Never free such an entry. */ #define PGM_PLXFLAGS_PERMANENT BIT64(10) /** @} */ /** @name Page directory flags. * These are placed in the three bits available for system programs in * the page directory entries. * @{ */ /** Mapping (hypervisor allocated pagetable). */ #define PGM_PDFLAGS_MAPPING BIT64(10) /** Made read-only to facilitate dirty bit tracking. */ #define PGM_PDFLAGS_TRACK_DIRTY BIT64(11) /** @} */ /** @name Page flags. * These are placed in the three bits available for system programs in * the page entries. * @{ */ /** Made read-only to facilitate dirty bit tracking. */ #define PGM_PTFLAGS_TRACK_DIRTY BIT64(9) #ifndef PGM_PTFLAGS_CSAM_VALIDATED /** Scanned and approved by CSAM (tm). * NOTE: Must be identical to the one defined in CSAMInternal.h!! * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */ #define PGM_PTFLAGS_CSAM_VALIDATED BIT64(11) #endif /** @} */ /** @name Defines used to indicate the shadow and guest paging in the templates. * @{ */ #define PGM_TYPE_REAL 1 #define PGM_TYPE_PROT 2 #define PGM_TYPE_32BIT 3 #define PGM_TYPE_PAE 4 #define PGM_TYPE_AMD64 5 /** @} */ /** @def PGM_HCPHYS_2_PTR * Maps a HC physical page pool address to a virtual address. * * @returns VBox status code. * @param pVM The VM handle. * @param HCPhys The HC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef IN_GC # define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMGCDynMapHCPage(pVM, HCPhys, (void **)(ppv)) #else # define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv)) #endif /** @def PGM_GCPHYS_2_PTR * Maps a GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The VM handle. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef IN_GC # define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMGCDynMapGCPage(pVM, GCPhys, (void **)(ppv)) #else # define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */ #endif /** @def PGM_GCPHYS_2_PTR_EX * Maps a unaligned GC physical page address to a virtual address. * * @returns VBox status code. * @param pVM The VM handle. * @param GCPhys The GC physical address to map to a virtual one. * @param ppv Where to store the virtual address. No need to cast this. * * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef IN_GC # define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMGCDynMapGCPageEx(pVM, GCPhys, (void **)(ppv)) #else # define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */ #endif /** @def PGM_INVL_PG * Invalidates a page when in GC does nothing in HC. * * @param GCVirt The virtual address of the page to invalidate. */ #ifdef IN_GC # define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt)) #else # define PGM_INVL_PG(GCVirt) ((void)0) #endif /** @def PGM_INVL_BIG_PG * Invalidates a 4MB page directory entry when in GC does nothing in HC. * * @param GCVirt The virtual address within the page directory to invalidate. */ #ifdef IN_GC # define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3() #else # define PGM_INVL_BIG_PG(GCVirt) ((void)0) #endif /** @def PGM_INVL_GUEST_TLBS() * Invalidates all guest TLBs. */ #ifdef IN_GC # define PGM_INVL_GUEST_TLBS() ASMReloadCR3() #else # define PGM_INVL_GUEST_TLBS() ((void)0) #endif /** * Structure for tracking GC Mappings. * * This structure is used by linked list in both GC and HC. */ typedef struct PGMMAPPING { /** Pointer to next entry. */ HCPTRTYPE(struct PGMMAPPING *) pNextHC; /** Pointer to next entry. */ GCPTRTYPE(struct PGMMAPPING *) pNextGC; /** Start Virtual address. */ RTGCUINTPTR GCPtr; /** Last Virtual address (inclusive). */ RTGCUINTPTR GCPtrLast; /** Range size (bytes). */ RTGCUINTPTR cb; /** Pointer to relocation callback function. */ HCPTRTYPE(PFNPGMRELOCATE) pfnRelocate; /** User argument to the callback. */ HCPTRTYPE(void *) pvUser; /** Mapping description / name. For easing debugging. */ HCPTRTYPE(const char *) pszDesc; /** Number of page tables. */ RTUINT cPTs; #if HC_ARCH_BITS != GC_ARCH_BITS RTUINT uPadding0; /**< Alignment padding. */ #endif /** Array of page table mapping data. Each entry * describes one page table. The array can be longer * than the declared length. */ struct { /** The HC physical address of the page table. */ RTHCPHYS HCPhysPT; /** The HC physical address of the first PAE page table. */ RTHCPHYS HCPhysPaePT0; /** The HC physical address of the second PAE page table. */ RTHCPHYS HCPhysPaePT1; /** The HC virtual address of the 32-bit page table. */ HCPTRTYPE(PVBOXPT) pPTHC; /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */ HCPTRTYPE(PX86PTPAE) paPaePTsHC; /** The GC virtual address of the 32-bit page table. */ GCPTRTYPE(PVBOXPT) pPTGC; /** The GC virtual address of the two PAE page table. */ GCPTRTYPE(PX86PTPAE) paPaePTsGC; } aPTs[1]; } PGMMAPPING; /** Pointer to structure for tracking GC Mappings. */ typedef struct PGMMAPPING *PPGMMAPPING; /** * Physical page access handler structure. * * This is used to keep track of physical address ranges * which are being monitored in some kind of way. */ typedef struct PGMPHYSHANDLER { AVLROGCPHYSNODECORE Core; /** Alignment padding. */ uint32_t u32Padding; /** Access type. */ PGMPHYSHANDLERTYPE enmType; /** Number of pages to update. */ uint32_t cPages; /** Pointer to R3 callback function. */ HCPTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3; /** User argument for R3 handlers. */ HCPTRTYPE(void *) pvUserR3; /** Pointer to R0 callback function. */ R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0; /** User argument for R0 handlers. */ HCPTRTYPE(void *) pvUserR0; /** Pointer to GC callback function. */ GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC; /** User argument for GC handlers. */ GCPTRTYPE(void *) pvUserGC; /** Description / Name. For easing debugging. */ HCPTRTYPE(const char *) pszDesc; #ifdef VBOX_WITH_STATISTICS /** Profiling of this handler. */ STAMPROFILE Stat; #endif } PGMPHYSHANDLER; /** Pointer to a physical page access handler structure. */ typedef PGMPHYSHANDLER *PPGMPHYSHANDLER; /** * Cache node for the physical addresses covered by a virtual handler. */ typedef struct PGMPHYS2VIRTHANDLER { /** Core node for the tree based on physical ranges. */ AVLROGCPHYSNODECORE Core; /** Offset from this struct to the PGMVIRTHANDLER structure. */ RTGCINTPTR offVirtHandler; /** Offset of the next alias relativer to this one. * Bit 0 is used for indicating whether we're in the tree. * Bit 1 is used for indicating that we're the head node. */ int32_t offNextAlias; } PGMPHYS2VIRTHANDLER; /** Pointer to a phys to virtual handler structure. */ typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER; /** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the * node is in the tree. */ #define PGMPHYS2VIRTHANDLER_IN_TREE BIT(0) /** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the * node is in the head of an alias chain. * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */ #define PGMPHYS2VIRTHANDLER_IS_HEAD BIT(1) /** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */ #define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3) /** * Virtual page access handler structure. * * This is used to keep track of virtual address ranges * which are being monitored in some kind of way. */ typedef struct PGMVIRTHANDLER { /** Core node for the tree based on virtual ranges. */ AVLROGCPTRNODECORE Core; /** Number of cache pages. */ uint32_t u32Padding; /** Access type. */ PGMVIRTHANDLERTYPE enmType; /** Number of cache pages. */ uint32_t cPages; /** @todo The next two members are redundant. It adds some readability though. */ /** Start of the range. */ RTGCPTR GCPtr; /** End of the range (exclusive). */ RTGCPTR GCPtrLast; /** Size of the range (in bytes). */ RTGCUINTPTR cb; /** Pointer to the GC callback function. */ GCPTRTYPE(PFNPGMGCVIRTHANDLER) pfnHandlerGC; /** Pointer to the HC callback function for invalidation. */ HCPTRTYPE(PFNPGMHCVIRTINVALIDATE) pfnInvalidateHC; /** Pointer to the HC callback function. */ HCPTRTYPE(PFNPGMHCVIRTHANDLER) pfnHandlerHC; /** Description / Name. For easing debugging. */ HCPTRTYPE(const char *) pszDesc; #ifdef VBOX_WITH_STATISTICS /** Profiling of this handler. */ STAMPROFILE Stat; #endif /** Array of cached physical addresses for the monitored ranged. */ PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2]; } PGMVIRTHANDLER; /** Pointer to a virtual page access handler structure. */ typedef PGMVIRTHANDLER *PPGMVIRTHANDLER; /** * Ram range for GC Phys to HC Phys conversion. * * Can be used for HC Virt to GC Phys and HC Virt to HC Phys * conversions too, but we'll let MM handle that for now. * * This structure is used by linked lists in both GC and HC. */ typedef struct PGMRAMRANGE { /** Pointer to the next RAM range - for HC. */ HCPTRTYPE(struct PGMRAMRANGE *) pNextHC; /** Pointer to the next RAM range - for GC. */ GCPTRTYPE(struct PGMRAMRANGE *) pNextGC; /** Start of the range. Page aligned. */ RTGCPHYS GCPhys; /** Last address in the range (inclusive). Page aligned (-1). */ RTGCPHYS GCPhysLast; /** Size of the range. (Page aligned of course). */ RTGCPHYS cb; /** MM_RAM_* flags */ uint32_t fFlags; /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */ GCPTRTYPE(void **) pavHCChunkGC; /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */ HCPTRTYPE(void **) pavHCChunkHC; /** Start of the HC mapping of the range. * For pure MMIO and dynamically allocated ranges this is NULL, while for all ranges this is a valid pointer. */ HCPTRTYPE(void *) pvHC; /** Array of the flags and HC physical addresses corresponding to the range. * The index is the page number in the range. The size is cb >> PAGE_SHIFT. * * The 12 lower bits of the physical address are flags and must be masked * off to get the correct physical address. * * For pure MMIO ranges only the flags are valid. */ RTHCPHYS aHCPhys[1]; } PGMRAMRANGE; /** Pointer to Ram range for GC Phys to HC Phys conversion. */ typedef PGMRAMRANGE *PPGMRAMRANGE; /** Return hc ptr corresponding to the ram range and physical offset */ #define PGMRAMRANGE_GETHCPTR(pRam, off) \ (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[(off >> PGM_DYNAMIC_CHUNK_SHIFT)] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \ : (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off); /** @todo r=bird: fix typename. */ /** * PGMPhysRead/Write cache entry */ typedef struct PGMPHYSCACHE_ENTRY { /** HC pointer to physical page */ HCPTRTYPE(uint8_t *) pbHC; /** GC Physical address for cache entry */ RTGCPHYS GCPhys; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 RTGCPHYS u32Padding0; /**< alignment padding. */ #endif } PGMPHYSCACHE_ENTRY; /** * PGMPhysRead/Write cache to reduce REM memory access overhead */ typedef struct PGMPHYSCACHE { /** Bitmap of valid cache entries */ uint64_t aEntries; /** Cache entries */ PGMPHYSCACHE_ENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES]; } PGMPHYSCACHE; /** @name PGM Pool Indexes. * Aka. the unique shadow page identifier. * @{ */ /** NIL page pool IDX. */ #define NIL_PGMPOOL_IDX 0 /** The first normal index. */ #define PGMPOOL_IDX_FIRST_SPECIAL 1 /** Page directory (32-bit root). */ #define PGMPOOL_IDX_PD 1 /** The extended PAE page directory (2048 entries, works as root currently). */ #define PGMPOOL_IDX_PAE_PD 2 /** Page Directory Pointer Table (PAE root, not currently used). */ #define PGMPOOL_IDX_PDPTR 3 /** Page Map Level-4 (64-bit root). */ #define PGMPOOL_IDX_PML4 4 /** The first normal index. */ #define PGMPOOL_IDX_FIRST 5 /** The last valid index. (inclusive, 14 bits) */ #define PGMPOOL_IDX_LAST 0x3fff /** @} */ /** The NIL index for the parent chain. */ #define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff) /** * Node in the chain linking a shadowed page to it's parent (user). */ #pragma pack(1) typedef struct PGMPOOLUSER { /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */ uint16_t iNext; /** The user page index. */ uint16_t iUser; /** Index into the user table. */ uint16_t iUserTable; } PGMPOOLUSER, *PPGMPOOLUSER; typedef const PGMPOOLUSER *PCPGMPOOLUSER; #pragma pack() /** The NIL index for the phys ext chain. */ #define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff) /** * Node in the chain of physical cross reference extents. */ #pragma pack(1) typedef struct PGMPOOLPHYSEXT { /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */ uint16_t iNext; /** The user page index. */ uint16_t aidx[3]; } PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT; typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT; #pragma pack() /** * The kind of page that's being shadowed. */ typedef enum PGMPOOLKIND { /** The ritual invalid 0 entry. */ PGMPOOLKIND_INVALID = 0, /** The entry is free (=unused). */ PGMPOOLKIND_FREE, /** Shw: 32-bit page table; Gst: 32-bit page table. */ PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT, /** Shw: 32-bit page table; Gst: 4MB page. */ PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB, /** Shw: PAE page table; Gst: 32-bit page table. */ PGMPOOLKIND_PAE_PT_FOR_32BIT_PT, /** Shw: PAE page table; Gst: Half of a 4MB page. */ PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB, /** Shw: PAE page table; Gst: PAE page table. */ PGMPOOLKIND_PAE_PT_FOR_PAE_PT, /** Shw: PAE page table; Gst: 2MB page. */ PGMPOOLKIND_PAE_PT_FOR_PAE_2MB, /** Shw: PAE page directory; Gst: 32-bit page directory. */ PGMPOOLKIND_PAE_PD_FOR_32BIT_PD, /** Shw: PAE page directory; Gst: PAE page directory. */ PGMPOOLKIND_PAE_PD_FOR_PAE_PD, /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */ PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR, /** Shw: Root 32-bit page directory. */ PGMPOOLKIND_ROOT_32BIT_PD, /** Shw: Root PAE page directory */ PGMPOOLKIND_ROOT_PAE_PD, /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */ PGMPOOLKIND_ROOT_PDPTR, /** Shw: Root page map level-4 table. */ PGMPOOLKIND_ROOT_PML4, /** The last valid entry. */ PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_PML4 } PGMPOOLKIND; /** * The tracking data for a page in the pool. */ typedef struct PGMPOOLPAGE { /** AVL node code with the (HC) physical address of this page. */ AVLOHCPHYSNODECORE Core; /** Pointer to the HC mapping of the page. */ HCPTRTYPE(void *) pvPageHC; /** The guest physical address. */ RTGCPHYS GCPhys; /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */ uint8_t enmKind; uint8_t bPadding; /** The index of this page. */ uint16_t idx; /** The next entry in the list this page currently resides in. * It's either in the free list or in the GCPhys hash. */ uint16_t iNext; #ifdef PGMPOOL_WITH_USER_TRACKING /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */ uint16_t iUserHead; /** The number of present entries. */ uint16_t cPresent; /** The first entry in the table which is present. */ uint16_t iFirstPresent; #endif #ifdef PGMPOOL_WITH_MONITORING /** The number of modifications to the monitored page. */ uint16_t cModifications; /** The next modified page. NIL_PGMPOOL_IDX if tail. */ uint16_t iModifiedNext; /** The previous modified page. NIL_PGMPOOL_IDX if head. */ uint16_t iModifiedPrev; /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */ uint16_t iMonitoredNext; /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */ uint16_t iMonitoredPrev; #endif #ifdef PGMPOOL_WITH_CACHE /** The next page in the age list. */ uint16_t iAgeNext; /** The previous page in the age list. */ uint16_t iAgePrev; /** @todo add more from PGMCache.h when merging with it. */ #endif /* PGMPOOL_WITH_CACHE */ /** Used to indicate that the page is zeroed. */ bool fZeroed; /** Used to indicate that a PT has non-global entries. */ bool fSeenNonGlobal; /** Used to indicate that we're monitoring writes to the guest page. */ bool fMonitored; /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash). * (All pages are in the age list.) */ bool fCached; /** This is used by the R3 access handlers when invoked by an async thread. * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */ bool volatile fReusedFlushPending; /** Used to indicate that the guest is mapping the page is also used as a CR3. * In these cases the access handler acts differently and will check * for mapping conflicts like the normal CR3 handler. * @todo When we change the CR3 shadowing to use pool pages, this flag can be * replaced by a list of pages which share access handler. */ bool fCR3Mix; #if HC_ARCH_BITS == 64 || GC_ARCH_BITS == 64 bool Alignment[4]; /**< Align the structure size on a 64-bit boundrary. */ #endif } PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE; #ifdef PGMPOOL_WITH_CACHE /** The hash table size. */ # define PGMPOOL_HASH_SIZE 0x40 /** The hash function. */ # define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) ) #endif /** * The shadow page pool instance data. * * It's all one big allocation made at init time, except for the * pages that is. The user nodes follows immediatly after the * page structures. */ typedef struct PGMPOOL { /** The VM handle - HC Ptr. */ HCPTRTYPE(PVM) pVMHC; /** The VM handle - GC Ptr. */ GCPTRTYPE(PVM) pVMGC; /** The max pool size. This includes the special IDs. */ uint16_t cMaxPages; /** The current pool size. */ uint16_t cCurPages; /** The head of the free page list. */ uint16_t iFreeHead; /* Padding. */ uint16_t u16Padding; #ifdef PGMPOOL_WITH_USER_TRACKING /** Head of the chain of free user nodes. */ uint16_t iUserFreeHead; /** The number of user nodes we've allocated. */ uint16_t cMaxUsers; /** The number of present page table entries in the entire pool. */ uint32_t cPresent; /** Pointer to the array of user nodes - GC pointer. */ GCPTRTYPE(PPGMPOOLUSER) paUsersGC; /** Pointer to the array of user nodes - HC pointer. */ HCPTRTYPE(PPGMPOOLUSER) paUsersHC; #endif /* PGMPOOL_WITH_USER_TRACKING */ #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** Head of the chain of free phys ext nodes. */ uint16_t iPhysExtFreeHead; /** The number of user nodes we've allocated. */ uint16_t cMaxPhysExts; /** Pointer to the array of physical xref extent - GC pointer. */ GCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsGC; /** Pointer to the array of physical xref extent nodes - HC pointer. */ HCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsHC; #endif /* PGMPOOL_WITH_GCPHYS_TRACKING */ #ifdef PGMPOOL_WITH_CACHE /** Hash table for GCPhys addresses. */ uint16_t aiHash[PGMPOOL_HASH_SIZE]; /** The head of the age list. */ uint16_t iAgeHead; /** The tail of the age list. */ uint16_t iAgeTail; /** Set if the cache is enabled. */ bool fCacheEnabled; #endif /* PGMPOOL_WITH_CACHE */ #ifdef PGMPOOL_WITH_MONITORING /** Head of the list of modified pages. */ uint16_t iModifiedHead; /** The current number of modified pages. */ uint16_t cModifiedPages; /** Access handler, GC. */ GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnAccessHandlerGC; /** Access handler, R0. */ R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0; /** Access handler, R3. */ HCPTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3; /** The access handler description (HC ptr). */ HCPTRTYPE(const char *) pszAccessHandler; #endif /* PGMPOOL_WITH_MONITORING */ /** The number of pages currently in use. */ uint16_t cUsedPages; #ifdef VBOX_WITH_STATISTICS /** The high wather mark for cUsedPages. */ uint16_t cUsedPagesHigh; uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */ /** Profiling pgmPoolAlloc(). */ STAMPROFILEADV StatAlloc; /** Profiling pgmPoolClearAll(). */ STAMPROFILE StatClearAll; /** Profiling pgmPoolFlushAllInt(). */ STAMPROFILE StatFlushAllInt; /** Profiling pgmPoolFlushPage(). */ STAMPROFILE StatFlushPage; /** Profiling pgmPoolFree(). */ STAMPROFILE StatFree; /** Profiling time spent zeroing pages. */ STAMPROFILE StatZeroPage; # ifdef PGMPOOL_WITH_USER_TRACKING /** Profiling of pgmPoolTrackDeref. */ STAMPROFILE StatTrackDeref; /** Profiling pgmTrackFlushGCPhysPT. */ STAMPROFILE StatTrackFlushGCPhysPT; /** Profiling pgmTrackFlushGCPhysPTs. */ STAMPROFILE StatTrackFlushGCPhysPTs; /** Profiling pgmTrackFlushGCPhysPTsSlow. */ STAMPROFILE StatTrackFlushGCPhysPTsSlow; /** Number of times we've been out of user records. */ STAMCOUNTER StatTrackFreeUpOneUser; # endif # ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** Profiling deref activity related tracking GC physical pages. */ STAMPROFILE StatTrackDerefGCPhys; /** Number of linear searches for a HCPhys in the ram ranges. */ STAMCOUNTER StatTrackLinearRamSearches; /** The number of failing pgmPoolTrackPhysExtAlloc calls. */ STAMCOUNTER StamTrackPhysExtAllocFailures; # endif # ifdef PGMPOOL_WITH_MONITORING /** Profiling the GC PT access handler. */ STAMPROFILE StatMonitorGC; /** Times we've failed interpreting the instruction. */ STAMCOUNTER StatMonitorGCEmulateInstr; /** Profiling the pgmPoolFlushPage calls made from the GC PT access handler. */ STAMPROFILE StatMonitorGCFlushPage; /** Times we've detected fork(). */ STAMCOUNTER StatMonitorGCFork; /** Profiling the GC access we've handled (except REP STOSD). */ STAMPROFILE StatMonitorGCHandled; /** Times we've failed interpreting a patch code instruction. */ STAMCOUNTER StatMonitorGCIntrFailPatch1; /** Times we've failed interpreting a patch code instruction during flushing. */ STAMCOUNTER StatMonitorGCIntrFailPatch2; /** The number of times we've seen rep prefixes we can't handle. */ STAMCOUNTER StatMonitorGCRepPrefix; /** Profiling the REP STOSD cases we've handled. */ STAMPROFILE StatMonitorGCRepStosd; /** Profiling the HC PT access handler. */ STAMPROFILE StatMonitorHC; /** Times we've failed interpreting the instruction. */ STAMCOUNTER StatMonitorHCEmulateInstr; /** Profiling the pgmPoolFlushPage calls made from the HC PT access handler. */ STAMPROFILE StatMonitorHCFlushPage; /** Times we've detected fork(). */ STAMCOUNTER StatMonitorHCFork; /** Profiling the HC access we've handled (except REP STOSD). */ STAMPROFILE StatMonitorHCHandled; /** The number of times we've seen rep prefixes we can't handle. */ STAMCOUNTER StatMonitorHCRepPrefix; /** Profiling the REP STOSD cases we've handled. */ STAMPROFILE StatMonitorHCRepStosd; /** The number of times we're called in an async thread an need to flush. */ STAMCOUNTER StatMonitorHCAsync; /** The high wather mark for cModifiedPages. */ uint16_t cModifiedPagesHigh; uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */ # endif # ifdef PGMPOOL_WITH_CACHE /** The number of cache hits. */ STAMCOUNTER StatCacheHits; /** The number of cache misses. */ STAMCOUNTER StatCacheMisses; /** The number of times we've got a conflict of 'kind' in the cache. */ STAMCOUNTER StatCacheKindMismatches; /** Number of times we've been out of pages. */ STAMCOUNTER StatCacheFreeUpOne; /** The number of cacheable allocations. */ STAMCOUNTER StatCacheCacheable; /** The number of uncacheable allocations. */ STAMCOUNTER StatCacheUncacheable; # endif #elif HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */ #endif /** The AVL tree for looking up a page by its HC physical address. */ AVLOHCPHYSTREE HCPhysTree; uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */ /** Array of pages. (cMaxPages in length) * The Id is the index into thist array. */ PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST]; } PGMPOOL, *PPGMPOOL, **PPPGMPOOL; /** @def PGMPOOL_PAGE_2_PTR * Maps a pool page pool into the current context. * * @returns VBox status code. * @param pVM The VM handle. * @param pPage The pool page. * * @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the * small page window employeed by that function. Be careful. * @remark There is no need to assert on the result. */ #ifdef IN_GC # define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmGCPoolMapPage((pVM), (pPage)) #else # define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageHC) #endif /** * Trees are using self relative offsets as pointers. * So, all its data, including the root pointer, must be in the heap for HC and GC * to have the same layout. */ typedef struct PGMTREES { /** Physical access handlers (AVL range+offsetptr tree). */ AVLROGCPHYSTREE PhysHandlers; /** Virtual access handlers (AVL range + GC ptr tree). */ AVLROGCPTRTREE VirtHandlers; /** Virtual access handlers (Phys range AVL range + offsetptr tree). */ AVLROGCPHYSTREE PhysToVirtHandlers; uint32_t auPadding[1]; } PGMTREES; /** Pointer to PGM trees. */ typedef PGMTREES *PPGMTREES; /** @name Paging mode macros * @{ */ #ifdef IN_GC # define PGM_CTX(a,b) a##GC##b # define PGM_CTX_STR(a,b) a "GC" b # define PGM_CTX_DECL(type) PGMGCDECL(type) #else # ifdef IN_RING3 # define PGM_CTX(a,b) a##R3##b # define PGM_CTX_STR(a,b) a "R3" b # define PGM_CTX_DECL(type) DECLCALLBACK(type) # else # define PGM_CTX(a,b) a##R0##b # define PGM_CTX_STR(a,b) a "R0" b # define PGM_CTX_DECL(type) PGMDECL(type) # endif #endif #define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name) #define PGM_GST_NAME_GC_REAL_STR(name) "pgmGCGstReal" #name #define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name #define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name) #define PGM_GST_NAME_GC_PROT_STR(name) "pgmGCGstProt" #name #define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name #define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name) #define PGM_GST_NAME_GC_32BIT_STR(name) "pgmGCGst32Bit" #name #define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name #define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name) #define PGM_GST_NAME_GC_PAE_STR(name) "pgmGCGstPAE" #name #define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name #define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name) #define PGM_GST_NAME_GC_AMD64_STR(name) "pgmGCGstAMD64" #name #define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name #define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name)) #define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name) #define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name) #define PGM_SHW_NAME_GC_32BIT_STR(name) "pgmGCShw32Bit" #name #define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name #define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name) #define PGM_SHW_NAME_GC_PAE_STR(name) "pgmGCShwPAE" #name #define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name #define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name) #define PGM_SHW_NAME_GC_AMD64_STR(name) "pgmGCShwAMD64" #name #define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name #define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name) #define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name)) /* Shw_Gst */ #define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name) #define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name) #define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name) #define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name) #define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name) #define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name) #define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name) #define PGM_BTH_NAME_AMD64_REAL(name) PGM_CTX(pgm,BthAMD64Real##name) #define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name) #define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name) #define PGM_BTH_NAME_GC_32BIT_REAL_STR(name) "pgmGCBth32BitReal" #name #define PGM_BTH_NAME_GC_32BIT_PROT_STR(name) "pgmGCBth32BitProt" #name #define PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) "pgmGCBth32Bit32Bit" #name #define PGM_BTH_NAME_GC_PAE_REAL_STR(name) "pgmGCBthPAEReal" #name #define PGM_BTH_NAME_GC_PAE_PROT_STR(name) "pgmGCBthPAEProt" #name #define PGM_BTH_NAME_GC_PAE_32BIT_STR(name) "pgmGCBthPAE32Bit" #name #define PGM_BTH_NAME_GC_PAE_PAE_STR(name) "pgmGCBthPAEPAE" #name #define PGM_BTH_NAME_GC_AMD64_REAL_STR(name) "pgmGCBthAMD64Real" #name #define PGM_BTH_NAME_GC_AMD64_PROT_STR(name) "pgmGCBthAMD64Prot" #name #define PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) "pgmGCBthAMD64AMD64" #name #define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name #define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name #define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name #define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name #define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name #define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name #define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name #define PGM_BTH_NAME_R0_AMD64_REAL_STR(name) "pgmR0BthAMD64Real" #name #define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name #define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name #define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name) #define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name)) /** @} */ /** * Data for each paging mode. */ typedef struct PGMMODEDATA { /** The guest mode type. */ uint32_t uGstType; /** The shadow mode type. */ uint32_t uShwType; /** @name Function pointers for Shadow paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde)); DECLR3CALLBACKMEMBER(int, pfnR3ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask)); DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLGCCALLBACKMEMBER(int, pfnGCShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde)); DECLGCCALLBACKMEMBER(int, pfnGCShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde)); DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde)); DECLR0CALLBACKMEMBER(int, pfnR0ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask)); /** @} */ /** @name Function pointers for Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde)); DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM)); DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM)); HCPTRTYPE(PFNPGMR3PHYSHANDLER) pfnHCGstWriteHandlerCR3; HCPTRTYPE(const char *) pszHCGstWriteHandlerCR3; DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde)); DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM)); DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM)); GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3; DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde)); DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM)); DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM)); R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnR0GstWriteHandlerCR3; /** @} */ /** @name Function pointers for Both Shadow and Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)); #endif DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage)); DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)); DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage)); DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)); #endif DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError)); #ifdef VBOX_STRICT DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)); #endif /** @} */ } PGMMODEDATA, *PPGMMODEDATA; /** * Converts a PGM pointer into a VM pointer. * @returns Pointer to the VM structure the PGM is part of. * @param pPGM Pointer to PGM instance data. */ #define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) ) /** * PGM Data (part of VM) */ typedef struct PGM { /** Offset to the VM structure. */ RTINT offVM; /* * This will be redefined at least two more times before we're done, I'm sure. * The current code is only to get on with the coding. * - 2004-06-10: initial version, bird. * - 2004-07-02: 1st time, bird. * - 2004-10-18: 2nd time, bird. * - 2005-07-xx: 3rd time, bird. */ /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */ GCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC; /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */ GCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC; /** The host paging mode. (This is what SUPLib reports.) */ SUPPAGINGMODE enmHostMode; /** The shadow paging mode. */ PGMMODE enmShadowMode; /** The guest paging mode. */ PGMMODE enmGuestMode; /** The current physical address representing in the guest CR3 register. */ RTGCPHYS GCPhysCR3; /** Pointer to the 5 page CR3 content mapping. * The first page is always the CR3 (in some form) while the 4 other pages * are used of the PDs in PAE mode. */ RTGCPTR GCPtrCR3Mapping; /** The physical address of the currently monitored guest CR3 page. * When this value is NIL_RTGCPHYS no page is being monitored. */ RTGCPHYS GCPhysGstCR3Monitored; #if HC_ARCH_BITS == 64 || GC_ARCH_BITS == 64 RTGCPHYS GCPhysPadding0; /**< alignment padding. */ #endif /** @name 32-bit Guest Paging. * @{ */ /** The guest's page directory, HC pointer. */ HCPTRTYPE(PVBOXPD) pGuestPDHC; /** The guest's page directory, static GC mapping. */ GCPTRTYPE(PVBOXPD) pGuestPDGC; /** @} */ /** @name PAE Guest Paging. * @{ */ /** The guest's page directory pointer table, static GC mapping. */ GCPTRTYPE(PX86PDPTR) pGstPaePDPTRGC; /** The guest's page directory pointer table, HC pointer. */ HCPTRTYPE(PX86PDPTR) pGstPaePDPTRHC; /** The guest's page directories, HC pointers. * These are individual pointers and doesn't have to be adjecent. * These doesn't have to be update to date - use pgmGstGetPaePD() to access them. */ HCPTRTYPE(PX86PDPAE) apGstPaePDsHC[4]; /** The guest's page directories, static GC mapping. * Unlike the HC array the first entry can be accessed as a 2048 entry PD. * These doesn't have to be update to date - use pgmGstGetPaePD() to access them. */ GCPTRTYPE(PX86PDPAE) apGstPaePDsGC[4]; /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */ RTGCPHYS aGCPhysGstPaePDs[4]; /** The physical addresses of the monitored guest page directories (PAE). */ RTGCPHYS aGCPhysGstPaePDsMonitored[4]; /** @} */ /** @name 32-bit Shadow Paging * @{ */ /** The 32-Bit PD - HC Ptr. */ HCPTRTYPE(PX86PD) pHC32BitPD; /** The 32-Bit PD - GC Ptr. */ GCPTRTYPE(PX86PD) pGC32BitPD; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 uint32_t u32Padding1; /**< alignment padding. */ #endif /** The Physical Address (HC) of the 32-Bit PD. */ RTHCPHYS HCPhys32BitPD; /** @} */ /** @name PAE Shadow Paging * @{ */ /** The four PDs for the low 4GB - HC Ptr. * Even though these are 4 pointers, what they point at is a single table. * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */ HCPTRTYPE(PX86PDPAE) apHCPaePDs[4]; /** The four PDs for the low 4GB - GC Ptr. * Same kind of mapping as apHCPaePDs. */ GCPTRTYPE(PX86PDPAE) apGCPaePDs[4]; /** The Physical Address (HC) of the four PDs for the low 4GB. * These are *NOT* 4 contiguous pages. */ RTHCPHYS aHCPhysPaePDs[4]; /** The PAE PDPTR - HC Ptr. */ HCPTRTYPE(PX86PDPTR) pHCPaePDPTR; /** The Physical Address (HC) of the PAE PDPTR. */ RTHCPHYS HCPhysPaePDPTR; /** The PAE PDPTR - GC Ptr. */ GCPTRTYPE(PX86PDPTR) pGCPaePDPTR; /** @} */ /** @name AMD64 Shadow Paging * Extends PAE Paging. * @{ */ /** The Page Map Level 4 table - HC Ptr. */ GCPTRTYPE(PX86PML4) pGCPaePML4; /** The Page Map Level 4 table - GC Ptr. */ HCPTRTYPE(PX86PML4) pHCPaePML4; /** The Physical Address (HC) of the Page Map Level 4 table. */ RTHCPHYS HCPhysPaePML4; /** @}*/ /** @name Function pointers for Shadow paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde)); DECLR3CALLBACKMEMBER(int, pfnR3ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde)); DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask)); DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLGCCALLBACKMEMBER(int, pfnGCShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde)); DECLGCCALLBACKMEMBER(int, pfnGCShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde)); DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask)); #if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64 RTGCPTR alignment0; /**< structure size alignment. */ #endif DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde)); DECLR0CALLBACKMEMBER(int, pfnR0ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde)); DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask)); /** @} */ /** @name Function pointers for Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde)); DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM)); DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM)); HCPTRTYPE(PFNPGMR3PHYSHANDLER) pfnHCGstWriteHandlerCR3; HCPTRTYPE(const char *) pszHCGstWriteHandlerCR3; DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde)); DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM)); DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM)); GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3; DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys)); DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask)); DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde)); DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM)); DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3)); DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM)); R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnR0GstWriteHandlerCR3; /** @} */ /** @name Function pointers for Both Shadow and Guest paging. * @{ */ DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta)); DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)); DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage)); DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)); DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)); DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage)); DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)); DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault)); DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage)); DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal)); DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, VBOXPDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError)); DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage)); DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError)); DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb)); #if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64 RTGCPTR alignment2; /**< structure size alignment. */ #endif /** @} */ /** Pointer to SHW+GST mode data (function pointers). * The index into this table is made up from */ R3PTRTYPE(PPGMMODEDATA) paModeData; /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for HC. * This is sorted by physical address and contains no overlaps. * The memory locks and other conversions are managed by MM at the moment. */ HCPTRTYPE(PPGMRAMRANGE) pRamRangesHC; /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for GC. * This is sorted by physical address and contains no overlaps. * The memory locks and other conversions are managed by MM at the moment. */ GCPTRTYPE(PPGMRAMRANGE) pRamRangesGC; /** The configured RAM size. */ RTUINT cbRamSize; /** PGM offset based trees - HC Ptr. */ HCPTRTYPE(PPGMTREES) pTreesHC; /** PGM offset based trees - GC Ptr. */ GCPTRTYPE(PPGMTREES) pTreesGC; /** Linked list of GC mappings - for GC. * The list is sorted ascending on address. */ GCPTRTYPE(PPGMMAPPING) pMappingsGC; /** Linked list of GC mappings - for HC. * The list is sorted ascending on address. */ HCPTRTYPE(PPGMMAPPING) pMappingsHC; /** If set no conflict checks are required. (boolean) */ bool fMappingsFixed; /** If set, then no mappings are put into the shadow page table. (boolean) */ bool fDisableMappings; /** Size of fixed mapping */ uint32_t cbMappingFixed; /** Base address (GC) of fixed mapping */ RTGCPTR GCPtrMappingFixed; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 uint32_t u32Padding0; /**< alignment padding. */ #endif /** @name Intermediate Context * @{ */ /** Pointer to the intermediate page directory - Normal. */ HCPTRTYPE(PX86PD) pInterPD; /** Pointer to the intermedate page tables - Normal. * There are two page tables, one for the identity mapping and one for * the host context mapping (of the core code). */ HCPTRTYPE(PX86PT) apInterPTs[2]; /** Pointer to the intermedate page tables - PAE. */ HCPTRTYPE(PX86PTPAE) apInterPaePTs[2]; /** Pointer to the intermedate page directory - PAE. */ HCPTRTYPE(PX86PDPAE) apInterPaePDs[4]; /** Pointer to the intermedate page directory - PAE. */ HCPTRTYPE(PX86PDPTR) pInterPaePDPTR; /** Pointer to the intermedate page-map level 4 - AMD64. */ HCPTRTYPE(PX86PML4) pInterPaePML4; /** Pointer to the intermedate page directory - AMD64. */ HCPTRTYPE(PX86PDPTR) pInterPaePDPTR64; /** The Physical Address (HC) of the intermediate Page Directory - Normal. */ RTHCPHYS HCPhysInterPD; /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */ RTHCPHYS HCPhysInterPaePDPTR; /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */ RTHCPHYS HCPhysInterPaePML4; /** @} */ /** Base address of the dynamic page mapping area. * The array is MM_HYPER_DYNAMIC_SIZE bytes big. */ GCPTRTYPE(uint8_t *) pbDynPageMapBaseGC; /** The index of the last entry used in the dynamic page mapping area. */ RTUINT iDynPageMapLast; /** Cache containing the last entries in the dynamic page mapping area. * The cache size is covering half of the mapping area. */ RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)]; /** A20 gate mask. * Our current approach to A20 emulation is to let REM do it and don't bother * anywhere else. The interesting Guests will be operating with it enabled anyway. * But whould need arrise, we'll subject physical addresses to this mask. */ RTGCPHYS GCPhysA20Mask; /** A20 gate state - boolean! */ RTUINT fA20Enabled; /** What needs syncing (PGM_SYNC_*). * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage, * PGMFlushTLB, and PGMR3Load. */ RTUINT fSyncFlags; #if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32 RTUINT uPadding3; /**< alignment padding. */ #endif /** PGM critical section. * This protects the physical & virtual access handlers, ram ranges, * and the page flag updating (some of it anyway). */ PDMCRITSECT CritSect; /** Shadow Page Pool - HC Ptr. */ HCPTRTYPE(PPGMPOOL) pPoolHC; /** Shadow Page Pool - GC Ptr. */ GCPTRTYPE(PPGMPOOL) pPoolGC; /** Flush the cache on the next access. */ bool fPhysCacheFlushPending; /** @todo r=bird: Fix member names!*/ /** PGMPhysRead cache */ PGMPHYSCACHE pgmphysreadcache; /** PGMPhysWrite cache */ PGMPHYSCACHE pgmphyswritecache; /** @name Release Statistics * @{ */ /** The number of times the guest has switched mode since last reset or statistics reset. */ STAMCOUNTER cGuestModeChanges; /** @} */ #ifdef VBOX_WITH_STATISTICS /** GC: Which statistic this \#PF should be attributed to. */ GCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionGC; RTGCPTR padding0; /** HC: Which statistic this \#PF should be attributed to. */ HCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionHC; RTHCPTR padding1; STAMPROFILE StatGCTrap0e; /**< GC: PGMGCTrap0eHandler() profiling. */ STAMPROFILE StatTrap0eCSAM; /**< Profiling of the Trap0eHandler body when the cause is CSAM. */ STAMPROFILE StatTrap0eDirtyAndAccessedBits; /**< Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */ STAMPROFILE StatTrap0eGuestTrap; /**< Profiling of the Trap0eHandler body when the cause is a guest trap. */ STAMPROFILE StatTrap0eHndPhys; /**< Profiling of the Trap0eHandler body when the cause is a physical handler. */ STAMPROFILE StatTrap0eHndVirt; /**< Profiling of the Trap0eHandler body when the cause is a virtual handler. */ STAMPROFILE StatTrap0eHndUnhandled; /**< Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */ STAMPROFILE StatTrap0eMisc; /**< Profiling of the Trap0eHandler body when the cause is not known. */ STAMPROFILE StatTrap0eOutOfSync; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */ STAMPROFILE StatTrap0eOutOfSyncHndPhys; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */ STAMPROFILE StatTrap0eOutOfSyncHndVirt; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */ STAMPROFILE StatTrap0eOutOfSyncObsHnd; /**< Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */ STAMPROFILE StatTrap0eSyncPT; /**< Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */ STAMCOUNTER StatTrap0eMapHandler; /**< Number of traps due to access handlers in mappings. */ STAMCOUNTER StatGCTrap0eConflicts; /**< GC: The number of times \#PF was caused by an undetected conflict. */ STAMCOUNTER StatGCTrap0eUSNotPresentRead; STAMCOUNTER StatGCTrap0eUSNotPresentWrite; STAMCOUNTER StatGCTrap0eUSWrite; STAMCOUNTER StatGCTrap0eUSReserved; STAMCOUNTER StatGCTrap0eUSRead; STAMCOUNTER StatGCTrap0eSVNotPresentRead; STAMCOUNTER StatGCTrap0eSVNotPresentWrite; STAMCOUNTER StatGCTrap0eSVWrite; STAMCOUNTER StatGCTrap0eSVReserved; STAMCOUNTER StatGCTrap0eUnhandled; STAMCOUNTER StatGCTrap0eMap; /** GC: PGMSyncPT() profiling. */ STAMPROFILE StatGCSyncPT; /** GC: The number of times PGMSyncPT() needed to allocate page tables. */ STAMCOUNTER StatGCSyncPTAlloc; /** GC: The number of times PGMSyncPT() detected conflicts. */ STAMCOUNTER StatGCSyncPTConflict; /** GC: The number of times PGMSyncPT() failed. */ STAMCOUNTER StatGCSyncPTFailed; /** GC: PGMGCInvalidatePage() profiling. */ STAMPROFILE StatGCInvalidatePage; /** GC: The number of times PGMGCInvalidatePage() was called for a 4KB page. */ STAMCOUNTER StatGCInvalidatePage4KBPages; /** GC: The number of times PGMGCInvalidatePage() was called for a 4MB page. */ STAMCOUNTER StatGCInvalidatePage4MBPages; /** GC: The number of times PGMGCInvalidatePage() skipped a 4MB page. */ STAMCOUNTER StatGCInvalidatePage4MBPagesSkip; /** GC: The number of times PGMGCInvalidatePage() was called for a not accessed page directory. */ STAMCOUNTER StatGCInvalidatePagePDNAs; /** GC: The number of times PGMGCInvalidatePage() was called for a not present page directory. */ STAMCOUNTER StatGCInvalidatePagePDNPs; /** GC: The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict). */ STAMCOUNTER StatGCInvalidatePagePDMappings; /** GC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */ STAMCOUNTER StatGCInvalidatePagePDOutOfSync; /** HC: The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */ STAMCOUNTER StatGCInvalidatePageSkipped; /** GC: The number of times user page is out of sync was detected in GC. */ STAMCOUNTER StatGCPageOutOfSyncUser; /** GC: The number of times supervisor page is out of sync was detected in GC. */ STAMCOUNTER StatGCPageOutOfSyncSupervisor; /** GC: The number of dynamic page mapping cache hits */ STAMCOUNTER StatDynMapCacheMisses; /** GC: The number of dynamic page mapping cache misses */ STAMCOUNTER StatDynMapCacheHits; /** GC: The number of times pgmGCGuestPDWriteHandler() was successfully called. */ STAMCOUNTER StatGCGuestCR3WriteHandled; /** GC: The number of times pgmGCGuestPDWriteHandler() was called and we had to fall back to the recompiler. */ STAMCOUNTER StatGCGuestCR3WriteUnhandled; /** GC: The number of times pgmGCGuestPDWriteHandler() was called and a conflict was detected. */ STAMCOUNTER StatGCGuestCR3WriteConflict; /** GC: Number of out-of-sync handled pages. */ STAMCOUNTER StatHandlersOutOfSync; /** GC: Number of traps due to physical access handlers. */ STAMCOUNTER StatHandlersPhysical; /** GC: Number of traps due to virtual access handlers. */ STAMCOUNTER StatHandlersVirtual; /** GC: Number of traps due to virtual access handlers found by physical address. */ STAMCOUNTER StatHandlersVirtualByPhys; /** GC: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */ STAMCOUNTER StatHandlersVirtualUnmarked; /** GC: Number of traps due to access outside range of monitored page(s). */ STAMCOUNTER StatHandlersUnhandled; /** GC: The number of times pgmGCGuestROMWriteHandler() was successfully called. */ STAMCOUNTER StatGCGuestROMWriteHandled; /** GC: The number of times pgmGCGuestROMWriteHandler() was called and we had to fall back to the recompiler */ STAMCOUNTER StatGCGuestROMWriteUnhandled; /** HC: PGMR3InvalidatePage() profiling. */ STAMPROFILE StatHCInvalidatePage; /** HC: The number of times PGMR3InvalidatePage() was called for a 4KB page. */ STAMCOUNTER StatHCInvalidatePage4KBPages; /** HC: The number of times PGMR3InvalidatePage() was called for a 4MB page. */ STAMCOUNTER StatHCInvalidatePage4MBPages; /** HC: The number of times PGMR3InvalidatePage() skipped a 4MB page. */ STAMCOUNTER StatHCInvalidatePage4MBPagesSkip; /** HC: The number of times PGMR3InvalidatePage() was called for a not accessed page directory. */ STAMCOUNTER StatHCInvalidatePagePDNAs; /** HC: The number of times PGMR3InvalidatePage() was called for a not present page directory. */ STAMCOUNTER StatHCInvalidatePagePDNPs; /** HC: The number of times PGMR3InvalidatePage() was called for a page directory containing mappings (no conflict). */ STAMCOUNTER StatHCInvalidatePagePDMappings; /** HC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */ STAMCOUNTER StatHCInvalidatePagePDOutOfSync; /** HC: The number of times PGMR3InvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */ STAMCOUNTER StatHCInvalidatePageSkipped; /** HC: PGMR3SyncPT() profiling. */ STAMPROFILE StatHCSyncPT; /** HC: pgmr3SyncPTResolveConflict() profiling (includes the entire relocation). */ STAMPROFILE StatHCResolveConflict; /** HC: Number of times PGMR3CheckMappingConflicts() detected a conflict. */ STAMCOUNTER StatHCDetectedConflicts; /** HC: The total number of times pgmHCGuestPDWriteHandler() was called. */ STAMCOUNTER StatHCGuestPDWrite; /** HC: The number of times pgmHCGuestPDWriteHandler() detected a conflict */ STAMCOUNTER StatHCGuestPDWriteConflict; /** HC: The number of pages marked not present for accessed bit emulation. */ STAMCOUNTER StatHCAccessedPage; /** HC: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatHCDirtyPage; /** HC: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatHCDirtyPageBig; /** HC: The number of traps generated for dirty bit tracking. */ STAMCOUNTER StatHCDirtyPageTrap; /** HC: The number of pages already dirty or readonly. */ STAMCOUNTER StatHCDirtyPageSkipped; /** GC: The number of pages marked not present for accessed bit emulation. */ STAMCOUNTER StatGCAccessedPage; /** GC: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatGCDirtyPage; /** GC: The number of pages marked read-only for dirty bit tracking. */ STAMCOUNTER StatGCDirtyPageBig; /** GC: The number of traps generated for dirty bit tracking. */ STAMCOUNTER StatGCDirtyPageTrap; /** GC: The number of pages already dirty or readonly. */ STAMCOUNTER StatGCDirtyPageSkipped; /** GC: The number of pages marked dirty because of write accesses. */ STAMCOUNTER StatGCDirtiedPage; /** GC: The number of pages already marked dirty because of write accesses. */ STAMCOUNTER StatGCPageAlreadyDirty; /** GC: The number of real pages faults during dirty bit tracking. */ STAMCOUNTER StatGCDirtyTrackRealPF; /** GC: Profiling of the PGMTrackDirtyBit() body */ STAMPROFILE StatGCDirtyBitTracking; /** HC: Profiling of the PGMTrackDirtyBit() body */ STAMPROFILE StatHCDirtyBitTracking; /** GC: Profiling of the PGMGstModifyPage() body */ STAMPROFILE StatGCGstModifyPage; /** HC: Profiling of the PGMGstModifyPage() body */ STAMPROFILE StatHCGstModifyPage; /** GC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */ STAMCOUNTER StatGCSyncPagePDNAs; /** GC: The number of time we've encountered an out-of-sync PD in SyncPage. */ STAMCOUNTER StatGCSyncPagePDOutOfSync; /** HC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */ STAMCOUNTER StatHCSyncPagePDNAs; /** HC: The number of time we've encountered an out-of-sync PD in SyncPage. */ STAMCOUNTER StatHCSyncPagePDOutOfSync; STAMCOUNTER StatSynPT4kGC; STAMCOUNTER StatSynPT4kHC; STAMCOUNTER StatSynPT4MGC; STAMCOUNTER StatSynPT4MHC; /** Profiling of the PGMFlushTLB() body. */ STAMPROFILE StatFlushTLB; /** The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */ STAMCOUNTER StatFlushTLBNewCR3; /** The number of times PGMFlushTLB was called with a new CR3, global. (switch) */ STAMCOUNTER StatFlushTLBNewCR3Global; /** The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */ STAMCOUNTER StatFlushTLBSameCR3; /** The number of times PGMFlushTLB was called with the same CR3, global. (flush) */ STAMCOUNTER StatFlushTLBSameCR3Global; STAMPROFILE StatGCSyncCR3; /**< GC: PGMSyncCR3() profiling. */ STAMPROFILE StatGCSyncCR3Handlers; /**< GC: Profiling of the PGMSyncCR3() update handler section. */ STAMPROFILE StatGCSyncCR3HandlerVirtualReset; /**< GC: Profiling of the virtual handler resets. */ STAMPROFILE StatGCSyncCR3HandlerVirtualUpdate; /**< GC: Profiling of the virtual handler updates. */ STAMCOUNTER StatGCSyncCR3Global; /**< GC: The number of global CR3 syncs. */ STAMCOUNTER StatGCSyncCR3NotGlobal; /**< GC: The number of non-global CR3 syncs. */ STAMCOUNTER StatGCSyncCR3DstFreed; /**< GC: The number of times we've had to free a shadow entry. */ STAMCOUNTER StatGCSyncCR3DstFreedSrcNP; /**< GC: The number of times we've had to free a shadow entry for which the source entry was not present. */ STAMCOUNTER StatGCSyncCR3DstNotPresent; /**< GC: The number of times we've encountered a not present shadow entry for a present guest entry. */ STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPD; /**< GC: The number of times a global page directory wasn't flushed. */ STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPT; /**< GC: The number of times a page table with only global entries wasn't flushed. */ STAMCOUNTER StatGCSyncCR3DstCacheHit; /**< GC: The number of times we got some kind of cache hit on a page table. */ STAMPROFILE StatHCSyncCR3; /**< HC: PGMSyncCR3() profiling. */ STAMPROFILE StatHCSyncCR3Handlers; /**< HC: Profiling of the PGMSyncCR3() update handler section. */ STAMPROFILE StatHCSyncCR3HandlerVirtualReset; /**< HC: Profiling of the virtual handler resets. */ STAMPROFILE StatHCSyncCR3HandlerVirtualUpdate; /**< HC: Profiling of the virtual handler updates. */ STAMCOUNTER StatHCSyncCR3Global; /**< HC: The number of global CR3 syncs. */ STAMCOUNTER StatHCSyncCR3NotGlobal; /**< HC: The number of non-global CR3 syncs. */ STAMCOUNTER StatHCSyncCR3DstFreed; /**< HC: The number of times we've had to free a shadow entry. */ STAMCOUNTER StatHCSyncCR3DstFreedSrcNP; /**< HC: The number of times we've had to free a shadow entry for which the source entry was not present. */ STAMCOUNTER StatHCSyncCR3DstNotPresent; /**< HC: The number of times we've encountered a not present shadow entry for a present guest entry. */ STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPD; /**< HC: The number of times a global page directory wasn't flushed. */ STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPT; /**< HC: The number of times a page table with only global entries wasn't flushed. */ STAMCOUNTER StatHCSyncCR3DstCacheHit; /**< HC: The number of times we got some kind of cache hit on a page table. */ /** GC: Profiling of pgmHandlerVirtualFindByPhysAddr. */ STAMPROFILE StatVirtHandleSearchByPhysGC; /** HC: Profiling of pgmHandlerVirtualFindByPhysAddr. */ STAMPROFILE StatVirtHandleSearchByPhysHC; /** HC: The number of times PGMR3HandlerPhysicalReset is called. */ STAMCOUNTER StatHandlePhysicalReset; STAMPROFILE StatCheckPageFault; STAMPROFILE StatLazySyncPT; STAMPROFILE StatMapping; STAMPROFILE StatOutOfSync; STAMPROFILE StatHandlers; STAMPROFILE StatEIPHandlers; STAMPROFILE StatHCPrefetch; # ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** The number of first time shadowings. */ STAMCOUNTER StatTrackVirgin; /** The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */ STAMCOUNTER StatTrackAliased; /** The number of times we're tracking using cRef2. */ STAMCOUNTER StatTrackAliasedMany; /** The number of times we're hitting pages which has overflowed cRef2. */ STAMCOUNTER StatTrackAliasedLots; /** The number of times the extent list grows to long. */ STAMCOUNTER StatTrackOverflows; /** Profiling of SyncPageWorkerTrackDeref (expensive). */ STAMPROFILE StatTrackDeref; # endif /** Allocated mbs of guest ram */ STAMCOUNTER StatDynRamTotal; /** Nr of pgmr3PhysGrowRange calls. */ STAMCOUNTER StatDynRamGrow; STAMCOUNTER StatGCTrap0ePD[X86_PG_ENTRIES]; STAMCOUNTER StatGCSyncPtPD[X86_PG_ENTRIES]; STAMCOUNTER StatGCSyncPagePD[X86_PG_ENTRIES]; #endif } PGM, *PPGM; /** @name PGM::fSyncFlags Flags * @{ */ /** Updates the MM_RAM_FLAGS_VIRTUAL_HANDLER page bit. */ #define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL BIT(0) /** Always sync CR3. */ #define PGM_SYNC_ALWAYS BIT(1) /** Check monitoring on next CR3 (re)load and invalidate page. */ #define PGM_SYNC_MONITOR_CR3 BIT(2) /** Clear the page pool (a light weight flush). */ #define PGM_SYNC_CLEAR_PGM_POOL BIT(8) /** @} */ __BEGIN_DECLS PGMGCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser); PGMDECL(int) pgmGuestROMWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser); PGMGCDECL(int) pgmCachePTWriteGC(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser); int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PVBOXPD pPDSrc, int iPDOld); PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr); void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, int iPDOld, int iPDNew); int pgmR3ChangeMode(PVM pVM, PGMMODE enmGuestMode); int pgmLock(PVM pVM); void pgmUnlock(PVM pVM); void pgmR3HandlerPhysicalUpdateAll(PVM pVM); int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage); DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser); #ifdef VBOX_STRICT void pgmHandlerVirtualDumpPhysPages(PVM pVM); #else # define pgmHandlerVirtualDumpPhysPages(a) do { } while (0) #endif DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); #ifdef IN_RING3 int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys); int pgmR3PoolInit(PVM pVM); void pgmR3PoolRelocate(PVM pVM); void pgmR3PoolReset(PVM pVM); #endif #ifdef IN_GC void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage); #endif int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage); PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys); void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint16_t iUserTable); void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable); int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolFlushAll(PVM pVM); void pgmPoolClearAll(PVM pVM); void pgmPoolTrackFlushGCPhysPT(PVM pVM, PRTHCPHYS pHCPhys, uint16_t iShw, uint16_t cRefs); void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PRTHCPHYS pHCPhys, uint16_t iPhysExt); int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PRTHCPHYS pHCPhys); PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt); void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt); void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt); uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT); void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PRTHCPHYS pHCPhys); #ifdef PGMPOOL_WITH_MONITORING # ifdef IN_RING3 void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu); # else void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu); # endif int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage); void pgmPoolMonitorModifiedClearAll(PVM pVM); int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3); int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot); #endif __END_DECLS /** * Convert GC Phys to HC Phys. * * @returns VBox status. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param pHCPhys Where to store the corresponding HC physical address. */ DECLINLINE(int) PGMRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } *pHCPhys = (pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK) | (off & PAGE_OFFSET_MASK); return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Convert GC Phys to HC Virt. * * @returns VBox status. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param pHCPtr Where to store the corresponding HC virtual address. */ DECLINLINE(int) PGMRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT); /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!CTXSUFF(pRam->pavHCChunk)[idx])) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)); return VINF_SUCCESS; } if (pRam->pvHC) { *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off); return VINF_SUCCESS; } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Convert GC Phys to HC Virt. * * @returns VBox status. * @param PVM VM handle. * @param pRam Ram range * @param GCPhys The GC physical address. * @param pHCPtr Where to store the corresponding HC virtual address. */ DECLINLINE(int) PGMRamGCPhys2HCPtr(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, PRTHCPTR pHCPtr) { RTGCPHYS off = GCPhys - pRam->GCPhys; Assert(off < pRam->cb); if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT); /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!CTXSUFF(pRam->pavHCChunk)[idx])) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(pVM, GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)); return VINF_SUCCESS; } if (pRam->pvHC) { *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off); return VINF_SUCCESS; } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Convert GC Phys to HC Virt and HC Phys. * * @returns VBox status. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param pHCPtr Where to store the corresponding HC virtual address. * @param pHCPhys Where to store the HC Physical address and its flags. */ DECLINLINE(int) PGMRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } *pHCPhys = pRam->aHCPhys[iPage]; if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) { unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT); *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)); return VINF_SUCCESS; } if (pRam->pvHC) { *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off); return VINF_SUCCESS; } *pHCPtr = 0; return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Convert GC Phys page to a page entry pointer. * * This is used by code which may have to update the flags. * * @returns VBox status. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param ppHCPhys Where to store the pointer to the page entry. */ DECLINLINE(int) PGMRamGCPhys2PagePtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS *ppHCPhys) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } *ppHCPhys = &pRam->aHCPhys[iPage]; return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Convert GC Phys page to HC Phys page and flags. * * @returns VBox status. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param pHCPhys Where to store the corresponding HC physical address of the page * and the page flags. */ DECLINLINE(int) PGMRamGCPhys2HCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } *pHCPhys = pRam->aHCPhys[iPage]; return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Clears flags associated with a RAM address. * * @returns VBox status code. * @param pPGM PGM handle. * @param GCPhys Guest context physical address. * @param fFlags fFlags to clear. (Bits 0-11.) */ DECLINLINE(int) PGMRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } fFlags &= ~X86_PTE_PAE_PG_MASK; pRam->aHCPhys[iPage] &= ~(RTHCPHYS)fFlags; return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Clears flags associated with a RAM address. * * @returns VBox status code. * @param pPGM PGM handle. * @param GCPhys Guest context physical address. * @param fFlags fFlags to clear. (Bits 0-11.) * @param ppRamHint Where to read and store the ram list hint. * The caller initializes this to NULL before the call. */ DECLINLINE(int) PGMRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint) { /* * Check the hint. */ PPGMRAMRANGE pRam = *ppRamHint; if (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } fFlags &= ~X86_PTE_PAE_PG_MASK; pRam->aHCPhys[iPage] &= ~(RTHCPHYS)fFlags; return VINF_SUCCESS; } } /* * Walk range list. */ pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } fFlags &= ~X86_PTE_PAE_PG_MASK; pRam->aHCPhys[iPage] &= ~(RTHCPHYS)fFlags; *ppRamHint = pRam; return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Sets (bitwise OR) flags associated with a RAM address. * * @returns VBox status code. * @param pPGM PGM handle. * @param GCPhys Guest context physical address. * @param fFlags fFlags to set clear. (Bits 0-11.) */ DECLINLINE(int) PGMRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags) { /* * Walk range list. */ PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } fFlags &= ~X86_PTE_PAE_PG_MASK; pRam->aHCPhys[iPage] |= fFlags; return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Sets (bitwise OR) flags associated with a RAM address. * * @returns VBox status code. * @param pPGM PGM handle. * @param GCPhys Guest context physical address. * @param fFlags fFlags to set clear. (Bits 0-11.) * @param ppRamHint Where to read and store the ram list hint. * The caller initializes this to NULL before the call. */ DECLINLINE(int) PGMRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint) { /* * Check the hint. */ PPGMRAMRANGE pRam = *ppRamHint; if (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } fFlags &= ~X86_PTE_PAE_PG_MASK; pRam->aHCPhys[iPage] |= fFlags; return VINF_SUCCESS; } } /* * Walk range list. */ pRam = CTXSUFF(pPGM->pRamRanges); while (pRam) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) { unsigned iPage = off >> PAGE_SHIFT; /* Physical chunk in dynamically allocated range not present? */ if (RT_UNLIKELY(!(pRam->aHCPhys[iPage] & X86_PTE_PAE_PG_MASK))) { #ifdef IN_RING3 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys); #else int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys); #endif if (rc != VINF_SUCCESS) return rc; } fFlags &= ~X86_PTE_PAE_PG_MASK; pRam->aHCPhys[iPage] |= fFlags; *ppRamHint = pRam; return VINF_SUCCESS; } pRam = CTXSUFF(pRam->pNext); } return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS; } /** * Gets the page directory for the specified address. * * @returns Pointer to the page directory in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCUINTPTR GCPtr) { const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT; if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present) { if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr]) return CTXSUFF(pPGM->apGstPaePDs)[iPdPtr]; /* cache is out-of-sync. */ PX86PDPAE pPD; int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD); if (VBOX_SUCCESS(rc)) return pPD; AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u)); /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emualted as all 0s. */ } return NULL; } /** * Gets the page directory entry for the specified address. * * @returns Pointer to the page directory entry in question. * @returns NULL if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCUINTPTR GCPtr) { const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT; if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present) { const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr]) return &CTXSUFF(pPGM->apGstPaePDs)[iPdPtr]->a[iPD]; /* cache is out-of-sync. */ PX86PDPAE pPD; int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD); if (VBOX_SUCCESS(rc)) return &pPD->a[iPD]; AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u)); /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. */ } return NULL; } /** * Gets the page directory entry for the specified address. * * @returns The page directory entry in question. * @returns A non-present entry if the page directory is not present or on an invalid page. * @param pPGM Pointer to the PGM instance data. * @param GCPtr The address. */ DECLINLINE(uint64_t) pgmGstGetPaePDE(PPGM pPGM, RTGCUINTPTR GCPtr) { const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT; if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present) { const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK; if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr]) return CTXSUFF(pPGM->apGstPaePDs)[iPdPtr]->a[iPD].u; /* cache is out-of-sync. */ PX86PDPAE pPD; int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD); if (VBOX_SUCCESS(rc)) return pPD->a[iPD].u; AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u)); } return 0; } /** * Checks if any of the specified page flags are set for the given page. * * @returns true if any of the flags are set. * @returns false if all the flags are clear. * @param pPGM PGM handle. * @param GCPhys The GC physical address. * @param fFlags The flags to check for. */ DECLINLINE(bool) PGMRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags) { /* * Walk range list. */ for (PPGMRAMRANGE pRam = CTXSUFF(pPGM->pRamRanges); pRam; pRam = CTXSUFF(pRam->pNext)) { RTGCPHYS off = GCPhys - pRam->GCPhys; if (off < pRam->cb) return (pRam->aHCPhys[off >> PAGE_SHIFT] & fFlags) != 0; } return false; } /** * Gets the ram flags for a handler. * * @returns The ram flags. * @param pCur The physical handler in question. */ DECLINLINE(unsigned) pgmHandlerPhysicalCalcFlags(PPGMPHYSHANDLER pCur) { switch (pCur->enmType) { case PGMPHYSHANDLERTYPE_PHYSICAL: return MM_RAM_FLAGS_PHYSICAL_HANDLER; case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE: return MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_WRITE; case PGMPHYSHANDLERTYPE_MMIO: case PGMPHYSHANDLERTYPE_PHYSICAL_ALL: return MM_RAM_FLAGS_PHYSICAL_HANDLER | MM_RAM_FLAGS_PHYSICAL_ALL; default: AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType)); } } /** * Clears one physical page of a virtual handler * * @param pPGM Pointer to the PGM instance. * @param pCur Virtual handler structure * @param iPage Physical page index */ DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage) { const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage]; /* * Remove the node from the tree (it's supposed to be in the tree if we get here!). */ #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE, ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias)); #endif if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD) { /* We're the head of the alias chain. */ PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pRemove != NULL, ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias)); AssertReleaseMsg(pRemove == pPhys2Virt, ("wanted: pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n" " got: pRemove=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias)); #endif if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK) { /* Insert the next list in the alias chain into the tree. */ PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE, ("pNext=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n", pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias)); #endif pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD; bool fRc = RTAvlroGCPhysInsert(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, &pNext->Core); AssertRelease(fRc); } } else { /* Locate the previous node in the alias chain. */ PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pPrev != pPhys2Virt, ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev)); #endif for (;;) { PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); if (pNext == pPhys2Virt) { /* unlink. */ LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%VGp-%VGp]\n", pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast)); if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)) pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK; else { PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)); pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev) | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK); } break; } /* next */ if (pNext == pPrev) { #ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL AssertReleaseMsg(pNext != pPrev, ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n", pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev)); #endif break; } pPrev = pNext; } } Log2(("PHYS2VIRT: Removing %VGp-%VGp %#RX32 %s\n", pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, HCSTRING(pCur->pszDesc))); pPhys2Virt->offNextAlias = 0; pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */ /* * Clear the ram flags for this page. */ int rc = PGMRamFlagsClearByGCPhys(pPGM, pPhys2Virt->Core.Key, MM_RAM_FLAGS_VIRTUAL_HANDLER | MM_RAM_FLAGS_VIRTUAL_ALL | MM_RAM_FLAGS_VIRTUAL_WRITE); AssertRC(rc); } /** * Internal worker for finding a 'in-use' shadow page give by it's physical address. * * @returns Pointer to the shadow page structure. * @param pPool The pool. * @param HCPhys The HC physical address of the shadow page. */ DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys) { /* * Look up the page. */ PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK); AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%VHp pPage=%p type=%d\n", HCPhys, pPage, (pPage) ? pPage->enmKind : 0)); return pPage; } /** * Internal worker for finding a 'in-use' shadow page give by it's physical address. * * @returns Pointer to the shadow page structure. * @param pPool The pool. * @param idx The pool page index. */ DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx) { AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx)); return &pPool->aPages[idx]; } #ifdef PGMPOOL_WITH_GCPHYS_TRACKING /** * Clear references to guest physical memory. * * @param pPool The pool. * @param pPage The page. * @param pHCPhys Pointer to the aHCPhys entry in the ram range. */ DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PRTHCPHYS pHCPhys) { /* * Just deal with the simple case here. */ #ifdef LOG_ENABLED const RTHCPHYS HCPhysOrg = *pHCPhys; #endif const unsigned cRefs = *pHCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; if (cRefs == 1) { Assert(pPage->idx == ((*pHCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK)); *pHCPhys = *pHCPhys & MM_RAM_FLAGS_NO_REFS_MASK; } else pgmPoolTrackPhysExtDerefGCPhys(pPool, pPage, pHCPhys); LogFlow(("pgmTrackDerefGCPhys: *pHCPhys=%RHp -> %RHp\n", HCPhysOrg, *pHCPhys)); } #endif #ifdef PGMPOOL_WITH_CACHE /** * Moves the page to the head of the age list. * * This is done when the cached page is used in one way or another. * * @param pPool The pool. * @param pPage The cached page. * @todo inline in PGMInternal.h! */ DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage) { /* * Move to the head of the age list. */ if (pPage->iAgePrev != NIL_PGMPOOL_IDX) { /* unlink */ pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext; if (pPage->iAgeNext != NIL_PGMPOOL_IDX) pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev; else pPool->iAgeTail = pPage->iAgePrev; /* insert at head */ pPage->iAgePrev = NIL_PGMPOOL_IDX; pPage->iAgeNext = pPool->iAgeHead; Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */ pPool->iAgeHead = pPage->idx; pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx; } } #endif /* PGMPOOL_WITH_CACHE */ /** * Tells if mappings are to be put into the shadow page table or not * * @returns boolean result * @param pVM VM handle. */ DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM) { return !pPGM->fDisableMappings; } /** @} */ #endif