VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 10645

Last change on this file since 10645 was 10320, checked in by vboxsync, 17 years ago

Rearranged code to deal with pgm pool tasks during SyncCR3.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 154.2 KB
Line 
1/* $Id: PGMInternal.h 10320 2008-07-07 13:27:57Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43#if !defined(IN_PGM_R3) && !defined(IN_PGM_R0) && !defined(IN_PGM_GC)
44# error "Not in PGM! This is an internal header!"
45#endif
46
47
48/** @defgroup grp_pgm_int Internals
49 * @ingroup grp_pgm
50 * @internal
51 * @{
52 */
53
54
55/** @name PGM Compile Time Config
56 * @{
57 */
58
59/**
60 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
61 * Comment it if it will break something.
62 */
63#define PGM_OUT_OF_SYNC_IN_GC
64
65/**
66 * Check and skip global PDEs for non-global flushes
67 */
68#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
69
70/**
71 * Sync N pages instead of a whole page table
72 */
73#define PGM_SYNC_N_PAGES
74
75/**
76 * Number of pages to sync during a page fault
77 *
78 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
79 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
80 */
81#define PGM_SYNC_NR_PAGES 8
82
83/**
84 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
85 */
86#define PGM_MAX_PHYSCACHE_ENTRIES 64
87#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
88
89/**
90 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
91 */
92#define PGM_PHYSMEMACCESS_CACHING
93
94/** @def PGMPOOL_WITH_CACHE
95 * Enable agressive caching using the page pool.
96 *
97 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
98 */
99#define PGMPOOL_WITH_CACHE
100
101/** @def PGMPOOL_WITH_MIXED_PT_CR3
102 * When defined, we'll deal with 'uncachable' pages.
103 */
104#ifdef PGMPOOL_WITH_CACHE
105# define PGMPOOL_WITH_MIXED_PT_CR3
106#endif
107
108/** @def PGMPOOL_WITH_MONITORING
109 * Monitor the guest pages which are shadowed.
110 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
111 * be enabled as well.
112 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
113 */
114#ifdef PGMPOOL_WITH_CACHE
115# define PGMPOOL_WITH_MONITORING
116#endif
117
118/** @def PGMPOOL_WITH_GCPHYS_TRACKING
119 * Tracking the of shadow pages mapping guest physical pages.
120 *
121 * This is very expensive, the current cache prototype is trying to figure out
122 * whether it will be acceptable with an agressive caching policy.
123 */
124#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
125# define PGMPOOL_WITH_GCPHYS_TRACKING
126#endif
127
128/** @def PGMPOOL_WITH_USER_TRACKNG
129 * Tracking users of shadow pages. This is required for the linking of shadow page
130 * tables and physical guest addresses.
131 */
132#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
133# define PGMPOOL_WITH_USER_TRACKING
134#endif
135
136/** @def PGMPOOL_CFG_MAX_GROW
137 * The maximum number of pages to add to the pool in one go.
138 */
139#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
140
141/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
142 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
143 */
144#ifdef VBOX_STRICT
145# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
146#endif
147/** @} */
148
149
150/** @name PDPT and PML4 flags.
151 * These are placed in the three bits available for system programs in
152 * the PDPT and PML4 entries.
153 * @{ */
154/** The entry is a permanent one and it's must always be present.
155 * Never free such an entry. */
156#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
157/** Mapping (hypervisor allocated pagetable). */
158#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
159/** @} */
160
161/** @name Page directory flags.
162 * These are placed in the three bits available for system programs in
163 * the page directory entries.
164 * @{ */
165/** Mapping (hypervisor allocated pagetable). */
166#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
167/** Made read-only to facilitate dirty bit tracking. */
168#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
169/** @} */
170
171/** @name Page flags.
172 * These are placed in the three bits available for system programs in
173 * the page entries.
174 * @{ */
175/** Made read-only to facilitate dirty bit tracking. */
176#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
177
178#ifndef PGM_PTFLAGS_CSAM_VALIDATED
179/** Scanned and approved by CSAM (tm).
180 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
181 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
182#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
183#endif
184/** @} */
185
186/** @name Defines used to indicate the shadow and guest paging in the templates.
187 * @{ */
188#define PGM_TYPE_REAL 1
189#define PGM_TYPE_PROT 2
190#define PGM_TYPE_32BIT 3
191#define PGM_TYPE_PAE 4
192#define PGM_TYPE_AMD64 5
193#define PGM_TYPE_NESTED 6
194/** @} */
195
196/** Macro for checking if the guest is using paging.
197 * @param uType PGM_TYPE_*
198 * @remark ASSUMES certain order of the PGM_TYPE_* values.
199 */
200#define PGM_WITH_PAGING(uType) ((uType) >= PGM_TYPE_32BIT && (uType) != PGM_TYPE_NESTED)
201
202/** Macro for checking if the guest supports the NX bit.
203 * @param uType PGM_TYPE_*
204 * @remark ASSUMES certain order of the PGM_TYPE_* values.
205 */
206#define PGM_WITH_NX(uType) ((uType) >= PGM_TYPE_PAE && (uType) != PGM_TYPE_NESTED)
207
208
209/** @def PGM_HCPHYS_2_PTR
210 * Maps a HC physical page pool address to a virtual address.
211 *
212 * @returns VBox status code.
213 * @param pVM The VM handle.
214 * @param HCPhys The HC physical address to map to a virtual one.
215 * @param ppv Where to store the virtual address. No need to cast this.
216 *
217 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
218 * small page window employeed by that function. Be careful.
219 * @remark There is no need to assert on the result.
220 */
221#ifdef IN_GC
222# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMGCDynMapHCPage(pVM, HCPhys, (void **)(ppv))
223#else
224# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
225#endif
226
227/** @def PGM_GCPHYS_2_PTR
228 * Maps a GC physical page address to a virtual address.
229 *
230 * @returns VBox status code.
231 * @param pVM The VM handle.
232 * @param GCPhys The GC physical address to map to a virtual one.
233 * @param ppv Where to store the virtual address. No need to cast this.
234 *
235 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
236 * small page window employeed by that function. Be careful.
237 * @remark There is no need to assert on the result.
238 */
239#ifdef IN_GC
240# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMGCDynMapGCPage(pVM, GCPhys, (void **)(ppv))
241#else
242# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
243#endif
244
245/** @def PGM_GCPHYS_2_PTR_EX
246 * Maps a unaligned GC physical page address to a virtual address.
247 *
248 * @returns VBox status code.
249 * @param pVM The VM handle.
250 * @param GCPhys The GC physical address to map to a virtual one.
251 * @param ppv Where to store the virtual address. No need to cast this.
252 *
253 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
254 * small page window employeed by that function. Be careful.
255 * @remark There is no need to assert on the result.
256 */
257#ifdef IN_GC
258# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMGCDynMapGCPageEx(pVM, GCPhys, (void **)(ppv))
259#else
260# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
261#endif
262
263/** @def PGM_INVL_PG
264 * Invalidates a page when in GC does nothing in HC.
265 *
266 * @param GCVirt The virtual address of the page to invalidate.
267 */
268#ifdef IN_GC
269# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
270#elif defined(IN_RING0)
271# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
272#else
273# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
274#endif
275
276/** @def PGM_INVL_BIG_PG
277 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
278 *
279 * @param GCVirt The virtual address within the page directory to invalidate.
280 */
281#ifdef IN_GC
282# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
283#elif defined(IN_RING0)
284# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
285#else
286# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
287#endif
288
289/** @def PGM_INVL_GUEST_TLBS()
290 * Invalidates all guest TLBs.
291 */
292#ifdef IN_GC
293# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
294#elif defined(IN_RING0)
295# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
296#else
297# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
298#endif
299
300
301/**
302 * Structure for tracking GC Mappings.
303 *
304 * This structure is used by linked list in both GC and HC.
305 */
306typedef struct PGMMAPPING
307{
308 /** Pointer to next entry. */
309 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
310 /** Pointer to next entry. */
311 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
312 /** Pointer to next entry. */
313 RCPTRTYPE(struct PGMMAPPING *) pNextGC;
314#if GC_ARCH_BITS == 64
315 RTRCPTR padding0;
316#endif
317 /** Start Virtual address. */
318 RTGCUINTPTR GCPtr;
319 /** Last Virtual address (inclusive). */
320 RTGCUINTPTR GCPtrLast;
321 /** Range size (bytes). */
322 RTGCUINTPTR cb;
323 /** Pointer to relocation callback function. */
324 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
325 /** User argument to the callback. */
326 R3PTRTYPE(void *) pvUser;
327 /** Mapping description / name. For easing debugging. */
328 R3PTRTYPE(const char *) pszDesc;
329 /** Number of page tables. */
330 RTUINT cPTs;
331#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
332 RTUINT uPadding1; /**< Alignment padding. */
333#endif
334 /** Array of page table mapping data. Each entry
335 * describes one page table. The array can be longer
336 * than the declared length.
337 */
338 struct
339 {
340 /** The HC physical address of the page table. */
341 RTHCPHYS HCPhysPT;
342 /** The HC physical address of the first PAE page table. */
343 RTHCPHYS HCPhysPaePT0;
344 /** The HC physical address of the second PAE page table. */
345 RTHCPHYS HCPhysPaePT1;
346 /** The HC virtual address of the 32-bit page table. */
347 R3PTRTYPE(PX86PT) pPTR3;
348 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
349 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
350 /** The GC virtual address of the 32-bit page table. */
351 RCPTRTYPE(PX86PT) pPTGC;
352 /** The GC virtual address of the two PAE page table. */
353 RCPTRTYPE(PX86PTPAE) paPaePTsGC;
354 /** The GC virtual address of the 32-bit page table. */
355 R0PTRTYPE(PX86PT) pPTR0;
356 /** The GC virtual address of the two PAE page table. */
357 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
358 } aPTs[1];
359} PGMMAPPING;
360/** Pointer to structure for tracking GC Mappings. */
361typedef struct PGMMAPPING *PPGMMAPPING;
362
363
364/**
365 * Physical page access handler structure.
366 *
367 * This is used to keep track of physical address ranges
368 * which are being monitored in some kind of way.
369 */
370typedef struct PGMPHYSHANDLER
371{
372 AVLROGCPHYSNODECORE Core;
373 /** Access type. */
374 PGMPHYSHANDLERTYPE enmType;
375 /** Number of pages to update. */
376 uint32_t cPages;
377 /** Pointer to R3 callback function. */
378 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
379 /** User argument for R3 handlers. */
380 R3PTRTYPE(void *) pvUserR3;
381 /** Pointer to R0 callback function. */
382 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
383 /** User argument for R0 handlers. */
384 R0PTRTYPE(void *) pvUserR0;
385 /** Pointer to GC callback function. */
386 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC;
387 /** User argument for GC handlers. */
388 RCPTRTYPE(void *) pvUserGC;
389 /** Description / Name. For easing debugging. */
390 R3PTRTYPE(const char *) pszDesc;
391#ifdef VBOX_WITH_STATISTICS
392 /** Profiling of this handler. */
393 STAMPROFILE Stat;
394#endif
395} PGMPHYSHANDLER;
396/** Pointer to a physical page access handler structure. */
397typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
398
399
400/**
401 * Cache node for the physical addresses covered by a virtual handler.
402 */
403typedef struct PGMPHYS2VIRTHANDLER
404{
405 /** Core node for the tree based on physical ranges. */
406 AVLROGCPHYSNODECORE Core;
407 /** Offset from this struct to the PGMVIRTHANDLER structure. */
408 int32_t offVirtHandler;
409 /** Offset of the next alias relative to this one.
410 * Bit 0 is used for indicating whether we're in the tree.
411 * Bit 1 is used for indicating that we're the head node.
412 */
413 int32_t offNextAlias;
414} PGMPHYS2VIRTHANDLER;
415/** Pointer to a phys to virtual handler structure. */
416typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
417
418/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
419 * node is in the tree. */
420#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
421/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
422 * node is in the head of an alias chain.
423 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
424#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
425/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
426#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
427
428
429/**
430 * Virtual page access handler structure.
431 *
432 * This is used to keep track of virtual address ranges
433 * which are being monitored in some kind of way.
434 */
435typedef struct PGMVIRTHANDLER
436{
437 /** Core node for the tree based on virtual ranges. */
438 AVLROGCPTRNODECORE Core;
439 /** Number of cache pages. */
440 uint32_t u32Padding;
441 /** Access type. */
442 PGMVIRTHANDLERTYPE enmType;
443 /** Number of cache pages. */
444 uint32_t cPages;
445#if GC_ARCH_BITS == 64
446 uint32_t padding0;
447#endif
448/** @todo The next two members are redundant. It adds some readability though. */
449 /** Start of the range. */
450 RTGCPTR GCPtr;
451 /** End of the range (exclusive). */
452 RTGCPTR GCPtrLast;
453 /** Size of the range (in bytes). */
454 RTGCUINTPTR cb;
455 /** Pointer to the GC callback function. */
456 RCPTRTYPE(PFNPGMGCVIRTHANDLER) pfnHandlerGC;
457#if GC_ARCH_BITS == 64
458 RTRCPTR padding1;
459#endif
460 /** Pointer to the HC callback function for invalidation. */
461 R3PTRTYPE(PFNPGMHCVIRTINVALIDATE) pfnInvalidateHC;
462 /** Pointer to the HC callback function. */
463 R3PTRTYPE(PFNPGMHCVIRTHANDLER) pfnHandlerHC;
464 /** Description / Name. For easing debugging. */
465 R3PTRTYPE(const char *) pszDesc;
466#ifdef VBOX_WITH_STATISTICS
467 /** Profiling of this handler. */
468 STAMPROFILE Stat;
469#endif
470 /** Array of cached physical addresses for the monitored ranged. */
471 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
472} PGMVIRTHANDLER;
473/** Pointer to a virtual page access handler structure. */
474typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
475
476
477/**
478 * Page type.
479 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
480 * @todo convert to \#defines.
481 */
482typedef enum PGMPAGETYPE
483{
484 /** The usual invalid zero entry. */
485 PGMPAGETYPE_INVALID = 0,
486 /** RAM page. (RWX) */
487 PGMPAGETYPE_RAM,
488 /** MMIO2 page. (RWX) */
489 PGMPAGETYPE_MMIO2,
490 /** Shadowed ROM. (RWX) */
491 PGMPAGETYPE_ROM_SHADOW,
492 /** ROM page. (R-X) */
493 PGMPAGETYPE_ROM,
494 /** MMIO page. (---) */
495 PGMPAGETYPE_MMIO,
496 /** End of valid entries. */
497 PGMPAGETYPE_END
498} PGMPAGETYPE;
499AssertCompile(PGMPAGETYPE_END < 7);
500
501/** @name Page type predicates.
502 * @{ */
503#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
504#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
505#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
506#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
507#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
508/** @} */
509
510
511/**
512 * A Physical Guest Page tracking structure.
513 *
514 * The format of this structure is complicated because we have to fit a lot
515 * of information into as few bits as possible. The format is also subject
516 * to change (there is one comming up soon). Which means that for we'll be
517 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
518 * accessess to the structure.
519 */
520typedef struct PGMPAGE
521{
522 /** The physical address and a whole lot of other stuff. All bits are used! */
523 RTHCPHYS HCPhys;
524 /** The page state. */
525 uint32_t u2StateX : 2;
526 /** Flag indicating that a write monitored page was written to when set. */
527 uint32_t fWrittenToX : 1;
528 /** For later. */
529 uint32_t fSomethingElse : 1;
530 /** The Page ID.
531 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
532 * The HCPhys will be 100% static. */
533 uint32_t idPageX : 28;
534 /** The page type (PGMPAGETYPE). */
535 uint32_t u3Type : 3;
536 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
537 uint32_t u2HandlerPhysStateX : 2;
538 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
539 uint32_t u2HandlerVirtStateX : 2;
540 uint32_t u29B : 25;
541} PGMPAGE;
542AssertCompileSize(PGMPAGE, 16);
543/** Pointer to a physical guest page. */
544typedef PGMPAGE *PPGMPAGE;
545/** Pointer to a const physical guest page. */
546typedef const PGMPAGE *PCPGMPAGE;
547/** Pointer to a physical guest page pointer. */
548typedef PPGMPAGE *PPPGMPAGE;
549
550
551/**
552 * Clears the page structure.
553 * @param pPage Pointer to the physical guest page tracking structure.
554 */
555#define PGM_PAGE_CLEAR(pPage) \
556 do { \
557 (pPage)->HCPhys = 0; \
558 (pPage)->u2StateX = 0; \
559 (pPage)->fWrittenToX = 0; \
560 (pPage)->fSomethingElse = 0; \
561 (pPage)->idPageX = 0; \
562 (pPage)->u3Type = 0; \
563 (pPage)->u29B = 0; \
564 } while (0)
565
566/**
567 * Initializes the page structure.
568 * @param pPage Pointer to the physical guest page tracking structure.
569 */
570#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
571 do { \
572 (pPage)->HCPhys = (_HCPhys); \
573 (pPage)->u2StateX = (_uState); \
574 (pPage)->fWrittenToX = 0; \
575 (pPage)->fSomethingElse = 0; \
576 (pPage)->idPageX = (_idPage); \
577 /*(pPage)->u3Type = (_uType); - later */ \
578 PGM_PAGE_SET_TYPE(pPage, _uType); \
579 (pPage)->u29B = 0; \
580 } while (0)
581
582/**
583 * Initializes the page structure of a ZERO page.
584 * @param pPage Pointer to the physical guest page tracking structure.
585 */
586#ifdef VBOX_WITH_NEW_PHYS_CODE
587# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
588 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
589#else
590# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
591 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
592#endif
593/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
594# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
595 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
596
597
598/** @name The Page state, PGMPAGE::u2StateX.
599 * @{ */
600/** The zero page.
601 * This is a per-VM page that's never ever mapped writable. */
602#define PGM_PAGE_STATE_ZERO 0
603/** A allocated page.
604 * This is a per-VM page allocated from the page pool (or wherever
605 * we get MMIO2 pages from if the type is MMIO2).
606 */
607#define PGM_PAGE_STATE_ALLOCATED 1
608/** A allocated page that's being monitored for writes.
609 * The shadow page table mappings are read-only. When a write occurs, the
610 * fWrittenTo member is set, the page remapped as read-write and the state
611 * moved back to allocated. */
612#define PGM_PAGE_STATE_WRITE_MONITORED 2
613/** The page is shared, aka. copy-on-write.
614 * This is a page that's shared with other VMs. */
615#define PGM_PAGE_STATE_SHARED 3
616/** @} */
617
618
619/**
620 * Gets the page state.
621 * @returns page state (PGM_PAGE_STATE_*).
622 * @param pPage Pointer to the physical guest page tracking structure.
623 */
624#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
625
626/**
627 * Sets the page state.
628 * @param pPage Pointer to the physical guest page tracking structure.
629 * @param _uState The new page state.
630 */
631#define PGM_PAGE_SET_STATE(pPage, _uState) \
632 do { (pPage)->u2StateX = (_uState); } while (0)
633
634
635/**
636 * Gets the host physical address of the guest page.
637 * @returns host physical address (RTHCPHYS).
638 * @param pPage Pointer to the physical guest page tracking structure.
639 */
640#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
641
642/**
643 * Sets the host physical address of the guest page.
644 * @param pPage Pointer to the physical guest page tracking structure.
645 * @param _HCPhys The new host physical address.
646 */
647#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
648 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
649 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
650
651/**
652 * Get the Page ID.
653 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
654 * @param pPage Pointer to the physical guest page tracking structure.
655 */
656#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
657/* later:
658#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
659 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
660*/
661/**
662 * Sets the Page ID.
663 * @param pPage Pointer to the physical guest page tracking structure.
664 */
665#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
666/* later:
667#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
668 | ((_idPage) & 0xfff) \
669 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
670*/
671
672/**
673 * Get the Chunk ID.
674 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
675 * @param pPage Pointer to the physical guest page tracking structure.
676 */
677#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
678/* later:
679#if GMM_CHUNKID_SHIFT == 12
680# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
681#elif GMM_CHUNKID_SHIFT > 12
682# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
683#elif GMM_CHUNKID_SHIFT < 12
684# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
685 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
686#else
687# error "GMM_CHUNKID_SHIFT isn't defined or something."
688#endif
689*/
690
691/**
692 * Get the index of the page within the allocaiton chunk.
693 * @returns The page index.
694 * @param pPage Pointer to the physical guest page tracking structure.
695 */
696#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
697/* later:
698#if GMM_CHUNKID_SHIFT <= 12
699# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
700#else
701# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
702 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
703#endif
704*/
705
706
707/**
708 * Gets the page type.
709 * @returns The page type.
710 * @param pPage Pointer to the physical guest page tracking structure.
711 */
712#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
713
714/**
715 * Sets the page type.
716 * @param pPage Pointer to the physical guest page tracking structure.
717 * @param _enmType The new page type (PGMPAGETYPE).
718 */
719#ifdef VBOX_WITH_NEW_PHYS_CODE
720#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
721 do { (pPage)->u3Type = (_enmType); } while (0)
722#else
723#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
724 do { \
725 (pPage)->u3Type = (_enmType); \
726 if ((_enmType) == PGMPAGETYPE_ROM) \
727 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
728 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
729 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
730 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
731 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
732 } while (0)
733#endif
734
735
736/**
737 * Checks if the page is 'reserved'.
738 * @returns true/false.
739 * @param pPage Pointer to the physical guest page tracking structure.
740 */
741#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
742
743/**
744 * Checks if the page is marked for MMIO.
745 * @returns true/false.
746 * @param pPage Pointer to the physical guest page tracking structure.
747 */
748#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
749
750/**
751 * Checks if the page is backed by the ZERO page.
752 * @returns true/false.
753 * @param pPage Pointer to the physical guest page tracking structure.
754 */
755#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
756
757/**
758 * Checks if the page is backed by a SHARED page.
759 * @returns true/false.
760 * @param pPage Pointer to the physical guest page tracking structure.
761 */
762#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
763
764
765/**
766 * Marks the paget as written to (for GMM change monitoring).
767 * @param pPage Pointer to the physical guest page tracking structure.
768 */
769#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
770
771/**
772 * Clears the written-to indicator.
773 * @param pPage Pointer to the physical guest page tracking structure.
774 */
775#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
776
777/**
778 * Checks if the page was marked as written-to.
779 * @returns true/false.
780 * @param pPage Pointer to the physical guest page tracking structure.
781 */
782#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
783
784
785/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
786 *
787 * @remarks The values are assigned in order of priority, so we can calculate
788 * the correct state for a page with different handlers installed.
789 * @{ */
790/** No handler installed. */
791#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
792/** Monitoring is temporarily disabled. */
793#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
794/** Write access is monitored. */
795#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
796/** All access is monitored. */
797#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
798/** @} */
799
800/**
801 * Gets the physical access handler state of a page.
802 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
803 * @param pPage Pointer to the physical guest page tracking structure.
804 */
805#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
806
807/**
808 * Sets the physical access handler state of a page.
809 * @param pPage Pointer to the physical guest page tracking structure.
810 * @param _uState The new state value.
811 */
812#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
813 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
814
815/**
816 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
817 * @returns true/false
818 * @param pPage Pointer to the physical guest page tracking structure.
819 */
820#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
821
822/**
823 * Checks if the page has any active physical access handlers.
824 * @returns true/false
825 * @param pPage Pointer to the physical guest page tracking structure.
826 */
827#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
828
829
830/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
831 *
832 * @remarks The values are assigned in order of priority, so we can calculate
833 * the correct state for a page with different handlers installed.
834 * @{ */
835/** No handler installed. */
836#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
837/* 1 is reserved so the lineup is identical with the physical ones. */
838/** Write access is monitored. */
839#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
840/** All access is monitored. */
841#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
842/** @} */
843
844/**
845 * Gets the virtual access handler state of a page.
846 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
847 * @param pPage Pointer to the physical guest page tracking structure.
848 */
849#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
850
851/**
852 * Sets the virtual access handler state of a page.
853 * @param pPage Pointer to the physical guest page tracking structure.
854 * @param _uState The new state value.
855 */
856#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
857 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
858
859/**
860 * Checks if the page has any virtual access handlers.
861 * @returns true/false
862 * @param pPage Pointer to the physical guest page tracking structure.
863 */
864#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
865
866/**
867 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
868 * virtual handlers.
869 * @returns true/false
870 * @param pPage Pointer to the physical guest page tracking structure.
871 */
872#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
873
874
875
876/**
877 * Checks if the page has any access handlers, including temporarily disabled ones.
878 * @returns true/false
879 * @param pPage Pointer to the physical guest page tracking structure.
880 */
881#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
882 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
883 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
884
885/**
886 * Checks if the page has any active access handlers.
887 * @returns true/false
888 * @param pPage Pointer to the physical guest page tracking structure.
889 */
890#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
891 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
892 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
893
894/**
895 * Checks if the page has any active access handlers catching all accesses.
896 * @returns true/false
897 * @param pPage Pointer to the physical guest page tracking structure.
898 */
899#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
900 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
901 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
902
903
904/**
905 * Ram range for GC Phys to HC Phys conversion.
906 *
907 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
908 * conversions too, but we'll let MM handle that for now.
909 *
910 * This structure is used by linked lists in both GC and HC.
911 */
912typedef struct PGMRAMRANGE
913{
914 /** Pointer to the next RAM range - for R3. */
915 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
916 /** Pointer to the next RAM range - for R0. */
917 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
918 /** Pointer to the next RAM range - for GC. */
919 RCPTRTYPE(struct PGMRAMRANGE *) pNextGC;
920 /** Pointer alignment. */
921 RTRCPTR GCPtrAlignment;
922 /** Start of the range. Page aligned. */
923 RTGCPHYS GCPhys;
924 /** Last address in the range (inclusive). Page aligned (-1). */
925 RTGCPHYS GCPhysLast;
926 /** Size of the range. (Page aligned of course). */
927 RTGCPHYS cb;
928 /** MM_RAM_* flags */
929 uint32_t fFlags;
930#ifdef VBOX_WITH_NEW_PHYS_CODE
931 uint32_t u32Alignment; /**< alignment. */
932#else
933 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
934 RCPTRTYPE(PRTHCPTR) pavHCChunkGC;
935 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
936 R3R0PTRTYPE(PRTHCPTR) pavHCChunkHC;
937#endif
938 /** Start of the HC mapping of the range. This is only used for MMIO2. */
939 R3PTRTYPE(void *) pvHC;
940 /** The range description. */
941 R3PTRTYPE(const char *) pszDesc;
942
943 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
944#ifdef VBOX_WITH_NEW_PHYS_CODE
945 uint32_t au32Reserved[2];
946#elif HC_ARCH_BITS == 32
947 uint32_t au32Reserved[1];
948#endif
949
950 /** Array of physical guest page tracking structures. */
951 PGMPAGE aPages[1];
952} PGMRAMRANGE;
953/** Pointer to Ram range for GC Phys to HC Phys conversion. */
954typedef PGMRAMRANGE *PPGMRAMRANGE;
955
956/** Return hc ptr corresponding to the ram range and physical offset */
957#define PGMRAMRANGE_GETHCPTR(pRam, off) \
958 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[(off >> PGM_DYNAMIC_CHUNK_SHIFT)] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
959 : (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
960
961/**
962 * Per page tracking structure for ROM image.
963 *
964 * A ROM image may have a shadow page, in which case we may have
965 * two pages backing it. This structure contains the PGMPAGE for
966 * both while PGMRAMRANGE have a copy of the active one. It is
967 * important that these aren't out of sync in any regard other
968 * than page pool tracking data.
969 */
970typedef struct PGMROMPAGE
971{
972 /** The page structure for the virgin ROM page. */
973 PGMPAGE Virgin;
974 /** The page structure for the shadow RAM page. */
975 PGMPAGE Shadow;
976 /** The current protection setting. */
977 PGMROMPROT enmProt;
978 /** Pad the structure size to a multiple of 8. */
979 uint32_t u32Padding;
980} PGMROMPAGE;
981/** Pointer to a ROM page tracking structure. */
982typedef PGMROMPAGE *PPGMROMPAGE;
983
984
985/**
986 * A registered ROM image.
987 *
988 * This is needed to keep track of ROM image since they generally
989 * intrude into a PGMRAMRANGE. It also keeps track of additional
990 * info like the two page sets (read-only virgin and read-write shadow),
991 * the current state of each page.
992 *
993 * Because access handlers cannot easily be executed in a different
994 * context, the ROM ranges needs to be accessible and in all contexts.
995 */
996typedef struct PGMROMRANGE
997{
998 /** Pointer to the next range - R3. */
999 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1000 /** Pointer to the next range - R0. */
1001 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1002 /** Pointer to the next range - GC. */
1003 RCPTRTYPE(struct PGMROMRANGE *) pNextGC;
1004 /** Pointer alignment */
1005 RTRCPTR GCPtrAlignment;
1006 /** Address of the range. */
1007 RTGCPHYS GCPhys;
1008 /** Address of the last byte in the range. */
1009 RTGCPHYS GCPhysLast;
1010 /** Size of the range. */
1011 RTGCPHYS cb;
1012 /** The flags (PGMPHYS_ROM_FLAG_*). */
1013 uint32_t fFlags;
1014 /**< Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1015 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1016 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1017 * This is used for strictness checks. */
1018 R3PTRTYPE(const void *) pvOriginal;
1019 /** The ROM description. */
1020 R3PTRTYPE(const char *) pszDesc;
1021 /** The per page tracking structures. */
1022 PGMROMPAGE aPages[1];
1023} PGMROMRANGE;
1024/** Pointer to a ROM range. */
1025typedef PGMROMRANGE *PPGMROMRANGE;
1026
1027
1028/**
1029 * A registered MMIO2 (= Device RAM) range.
1030 *
1031 * There are a few reason why we need to keep track of these
1032 * registrations. One of them is the deregistration & cleanup
1033 * stuff, while another is that the PGMRAMRANGE associated with
1034 * such a region may have to be removed from the ram range list.
1035 *
1036 * Overlapping with a RAM range has to be 100% or none at all. The
1037 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1038 * meditation will be raised if a partial overlap or an overlap of
1039 * ROM pages is encountered. On an overlap we will free all the
1040 * existing RAM pages and put in the ram range pages instead.
1041 */
1042typedef struct PGMMMIO2RANGE
1043{
1044 /** The owner of the range. (a device) */
1045 PPDMDEVINSR3 pDevInsR3;
1046 /** Pointer to the ring-3 mapping of the allocation. */
1047 RTR3PTR pvR3;
1048 /** Pointer to the next range - R3. */
1049 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1050 /** Whether it's mapped or not. */
1051 bool fMapped;
1052 /** Whether it's overlapping or not. */
1053 bool fOverlapping;
1054 /** The PCI region number.
1055 * @remarks This ASSUMES that nobody will ever really need to have multiple
1056 * PCI devices with matching MMIO region numbers on a single device. */
1057 uint8_t iRegion;
1058 /**< Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1059 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1060 /** The associated RAM range. */
1061 PGMRAMRANGE RamRange;
1062} PGMMMIO2RANGE;
1063/** Pointer to a MMIO2 range. */
1064typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1065
1066
1067
1068
1069/** @todo r=bird: fix typename. */
1070/**
1071 * PGMPhysRead/Write cache entry
1072 */
1073typedef struct PGMPHYSCACHE_ENTRY
1074{
1075 /** HC pointer to physical page */
1076 R3PTRTYPE(uint8_t *) pbHC;
1077 /** GC Physical address for cache entry */
1078 RTGCPHYS GCPhys;
1079#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1080 RTGCPHYS u32Padding0; /**< alignment padding. */
1081#endif
1082} PGMPHYSCACHE_ENTRY;
1083
1084/**
1085 * PGMPhysRead/Write cache to reduce REM memory access overhead
1086 */
1087typedef struct PGMPHYSCACHE
1088{
1089 /** Bitmap of valid cache entries */
1090 uint64_t aEntries;
1091 /** Cache entries */
1092 PGMPHYSCACHE_ENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1093} PGMPHYSCACHE;
1094
1095
1096/** Pointer to an allocation chunk ring-3 mapping. */
1097typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1098/** Pointer to an allocation chunk ring-3 mapping pointer. */
1099typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1100
1101/**
1102 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1103 *
1104 * The primary tree (Core) uses the chunk id as key.
1105 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1106 */
1107typedef struct PGMCHUNKR3MAP
1108{
1109 /** The key is the chunk id. */
1110 AVLU32NODECORE Core;
1111 /** The key is the ageing sequence number. */
1112 AVLLU32NODECORE AgeCore;
1113 /** The current age thingy. */
1114 uint32_t iAge;
1115 /** The current reference count. */
1116 uint32_t volatile cRefs;
1117 /** The current permanent reference count. */
1118 uint32_t volatile cPermRefs;
1119 /** The mapping address. */
1120 void *pv;
1121} PGMCHUNKR3MAP;
1122
1123/**
1124 * Allocation chunk ring-3 mapping TLB entry.
1125 */
1126typedef struct PGMCHUNKR3MAPTLBE
1127{
1128 /** The chunk id. */
1129 uint32_t volatile idChunk;
1130#if HC_ARCH_BITS == 64
1131 uint32_t u32Padding; /**< alignment padding. */
1132#endif
1133 /** The chunk map. */
1134 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1135} PGMCHUNKR3MAPTLBE;
1136/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1137typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1138
1139/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1140 * @remark Must be a power of two value. */
1141#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1142
1143/**
1144 * Allocation chunk ring-3 mapping TLB.
1145 *
1146 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1147 * At first glance this might look kinda odd since AVL trees are
1148 * supposed to give the most optimial lookup times of all trees
1149 * due to their balancing. However, take a tree with 1023 nodes
1150 * in it, that's 10 levels, meaning that most searches has to go
1151 * down 9 levels before they find what they want. This isn't fast
1152 * compared to a TLB hit. There is the factor of cache misses,
1153 * and of course the problem with trees and branch prediction.
1154 * This is why we use TLBs in front of most of the trees.
1155 *
1156 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1157 * difficult when we switch to inlined AVL trees (from kStuff).
1158 */
1159typedef struct PGMCHUNKR3MAPTLB
1160{
1161 /** The TLB entries. */
1162 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1163} PGMCHUNKR3MAPTLB;
1164
1165/**
1166 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1167 * @returns Chunk TLB index.
1168 * @param idChunk The Chunk ID.
1169 */
1170#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1171
1172
1173/**
1174 * Ring-3 guest page mapping TLB entry.
1175 * @remarks used in ring-0 as well at the moment.
1176 */
1177typedef struct PGMPAGER3MAPTLBE
1178{
1179 /** Address of the page. */
1180 RTGCPHYS volatile GCPhys;
1181 /** The guest page. */
1182 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1183 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1184 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1185 /** The address */
1186 R3R0PTRTYPE(void *) volatile pv;
1187#if HC_ARCH_BITS == 32
1188 uint32_t u32Padding; /**< alignment padding. */
1189#endif
1190} PGMPAGER3MAPTLBE;
1191/** Pointer to an entry in the HC physical TLB. */
1192typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1193
1194
1195/** The number of entries in the ring-3 guest page mapping TLB.
1196 * @remarks The value must be a power of two. */
1197#define PGM_PAGER3MAPTLB_ENTRIES 64
1198
1199/**
1200 * Ring-3 guest page mapping TLB.
1201 * @remarks used in ring-0 as well at the moment.
1202 */
1203typedef struct PGMPAGER3MAPTLB
1204{
1205 /** The TLB entries. */
1206 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1207} PGMPAGER3MAPTLB;
1208/** Pointer to the ring-3 guest page mapping TLB. */
1209typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1210
1211/**
1212 * Calculates the index of the TLB entry for the specified guest page.
1213 * @returns Physical TLB index.
1214 * @param GCPhys The guest physical address.
1215 */
1216#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1217
1218
1219/** @name Context neutrual page mapper TLB.
1220 *
1221 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1222 * code is writting in a kind of context neutrual way. Time will show whether
1223 * this actually makes sense or not...
1224 *
1225 * @{ */
1226/** @typedef PPGMPAGEMAPTLB
1227 * The page mapper TLB pointer type for the current context. */
1228/** @typedef PPGMPAGEMAPTLB
1229 * The page mapper TLB entry pointer type for the current context. */
1230/** @typedef PPGMPAGEMAPTLB
1231 * The page mapper TLB entry pointer pointer type for the current context. */
1232/** @def PGMPAGEMAPTLB_ENTRIES
1233 * The number of TLB entries in the page mapper TLB for the current context. */
1234/** @def PGM_PAGEMAPTLB_IDX
1235 * Calculate the TLB index for a guest physical address.
1236 * @returns The TLB index.
1237 * @param GCPhys The guest physical address. */
1238/** @typedef PPGMPAGEMAP
1239 * Pointer to a page mapper unit for current context. */
1240/** @typedef PPPGMPAGEMAP
1241 * Pointer to a page mapper unit pointer for current context. */
1242#ifdef IN_GC
1243// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1244// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1245// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1246# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1247# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1248 typedef void * PPGMPAGEMAP;
1249 typedef void ** PPPGMPAGEMAP;
1250//#elif IN_RING0
1251// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1252// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1253// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1254//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1255//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1256// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1257// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1258#else
1259 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1260 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1261 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1262# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1263# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1264 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1265 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1266#endif
1267/** @} */
1268
1269
1270/** @name PGM Pool Indexes.
1271 * Aka. the unique shadow page identifier.
1272 * @{ */
1273/** NIL page pool IDX. */
1274#define NIL_PGMPOOL_IDX 0
1275/** The first normal index. */
1276#define PGMPOOL_IDX_FIRST_SPECIAL 1
1277/** Page directory (32-bit root). */
1278#define PGMPOOL_IDX_PD 1
1279/** The extended PAE page directory (2048 entries, works as root currently). */
1280#define PGMPOOL_IDX_PAE_PD 2
1281/** PAE Page Directory Table 0. */
1282#define PGMPOOL_IDX_PAE_PD_0 3
1283/** PAE Page Directory Table 1. */
1284#define PGMPOOL_IDX_PAE_PD_1 4
1285/** PAE Page Directory Table 2. */
1286#define PGMPOOL_IDX_PAE_PD_2 5
1287/** PAE Page Directory Table 3. */
1288#define PGMPOOL_IDX_PAE_PD_3 6
1289/** Page Directory Pointer Table (PAE root, not currently used). */
1290#define PGMPOOL_IDX_PDPT 7
1291/** AMD64 CR3 level index.*/
1292#define PGMPOOL_IDX_AMD64_CR3 8
1293/** Nested paging root.*/
1294#define PGMPOOL_IDX_NESTED_ROOT 9
1295/** The first normal index. */
1296#define PGMPOOL_IDX_FIRST 10
1297/** The last valid index. (inclusive, 14 bits) */
1298#define PGMPOOL_IDX_LAST 0x3fff
1299/** @} */
1300
1301/** The NIL index for the parent chain. */
1302#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1303
1304/**
1305 * Node in the chain linking a shadowed page to it's parent (user).
1306 */
1307#pragma pack(1)
1308typedef struct PGMPOOLUSER
1309{
1310 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1311 uint16_t iNext;
1312 /** The user page index. */
1313 uint16_t iUser;
1314 /** Index into the user table. */
1315 uint32_t iUserTable;
1316} PGMPOOLUSER, *PPGMPOOLUSER;
1317typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1318#pragma pack()
1319
1320
1321/** The NIL index for the phys ext chain. */
1322#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1323
1324/**
1325 * Node in the chain of physical cross reference extents.
1326 */
1327#pragma pack(1)
1328typedef struct PGMPOOLPHYSEXT
1329{
1330 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1331 uint16_t iNext;
1332 /** The user page index. */
1333 uint16_t aidx[3];
1334} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1335typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1336#pragma pack()
1337
1338
1339/**
1340 * The kind of page that's being shadowed.
1341 */
1342typedef enum PGMPOOLKIND
1343{
1344 /** The virtual invalid 0 entry. */
1345 PGMPOOLKIND_INVALID = 0,
1346 /** The entry is free (=unused). */
1347 PGMPOOLKIND_FREE,
1348
1349 /** Shw: 32-bit page table; Gst: no paging */
1350 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1351 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1352 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1353 /** Shw: 32-bit page table; Gst: 4MB page. */
1354 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1355 /** Shw: PAE page table; Gst: no paging */
1356 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1357 /** Shw: PAE page table; Gst: 32-bit page table. */
1358 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1359 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1360 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1361 /** Shw: PAE page table; Gst: PAE page table. */
1362 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1363 /** Shw: PAE page table; Gst: 2MB page. */
1364 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1365
1366 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1367 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1368 /** Shw: PAE page directory; Gst: PAE page directory. */
1369 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1370
1371 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1372 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1373 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1374 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1375 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1376 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1377 /** Shw: 64-bit page directory table; Gst: no paging */
1378 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1379
1380 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1381 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1382
1383 /** Shw: Root 32-bit page directory. */
1384 PGMPOOLKIND_ROOT_32BIT_PD,
1385 /** Shw: Root PAE page directory */
1386 PGMPOOLKIND_ROOT_PAE_PD,
1387 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1388 PGMPOOLKIND_ROOT_PDPT,
1389 /** Shw: Root Nested paging table. */
1390 PGMPOOLKIND_ROOT_NESTED,
1391
1392 /** The last valid entry. */
1393 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1394} PGMPOOLKIND;
1395
1396
1397/**
1398 * The tracking data for a page in the pool.
1399 */
1400typedef struct PGMPOOLPAGE
1401{
1402 /** AVL node code with the (HC) physical address of this page. */
1403 AVLOHCPHYSNODECORE Core;
1404 /** Pointer to the HC mapping of the page. */
1405 R3R0PTRTYPE(void *) pvPageHC;
1406 /** The guest physical address. */
1407#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1408 uint32_t Alignment0;
1409#endif
1410 RTGCPHYS GCPhys;
1411 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1412 uint8_t enmKind;
1413 uint8_t bPadding;
1414 /** The index of this page. */
1415 uint16_t idx;
1416 /** The next entry in the list this page currently resides in.
1417 * It's either in the free list or in the GCPhys hash. */
1418 uint16_t iNext;
1419#ifdef PGMPOOL_WITH_USER_TRACKING
1420 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1421 uint16_t iUserHead;
1422 /** The number of present entries. */
1423 uint16_t cPresent;
1424 /** The first entry in the table which is present. */
1425 uint16_t iFirstPresent;
1426#endif
1427#ifdef PGMPOOL_WITH_MONITORING
1428 /** The number of modifications to the monitored page. */
1429 uint16_t cModifications;
1430 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1431 uint16_t iModifiedNext;
1432 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1433 uint16_t iModifiedPrev;
1434 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1435 uint16_t iMonitoredNext;
1436 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1437 uint16_t iMonitoredPrev;
1438#endif
1439#ifdef PGMPOOL_WITH_CACHE
1440 /** The next page in the age list. */
1441 uint16_t iAgeNext;
1442 /** The previous page in the age list. */
1443 uint16_t iAgePrev;
1444#endif /* PGMPOOL_WITH_CACHE */
1445 /** Used to indicate that the page is zeroed. */
1446 bool fZeroed;
1447 /** Used to indicate that a PT has non-global entries. */
1448 bool fSeenNonGlobal;
1449 /** Used to indicate that we're monitoring writes to the guest page. */
1450 bool fMonitored;
1451 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1452 * (All pages are in the age list.) */
1453 bool fCached;
1454 /** This is used by the R3 access handlers when invoked by an async thread.
1455 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1456 bool volatile fReusedFlushPending;
1457 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1458 * In these cases the access handler acts differently and will check
1459 * for mapping conflicts like the normal CR3 handler.
1460 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1461 * replaced by a list of pages which share access handler.
1462 */
1463 bool fCR3Mix;
1464} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1465
1466
1467#ifdef PGMPOOL_WITH_CACHE
1468/** The hash table size. */
1469# define PGMPOOL_HASH_SIZE 0x40
1470/** The hash function. */
1471# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1472#endif
1473
1474
1475/**
1476 * The shadow page pool instance data.
1477 *
1478 * It's all one big allocation made at init time, except for the
1479 * pages that is. The user nodes follows immediatly after the
1480 * page structures.
1481 */
1482typedef struct PGMPOOL
1483{
1484 /** The VM handle - HC Ptr. */
1485 R3R0PTRTYPE(PVM) pVMHC;
1486 /** The VM handle - GC Ptr. */
1487 RCPTRTYPE(PVM) pVMGC;
1488 /** The max pool size. This includes the special IDs. */
1489 uint16_t cMaxPages;
1490 /** The current pool size. */
1491 uint16_t cCurPages;
1492 /** The head of the free page list. */
1493 uint16_t iFreeHead;
1494 /* Padding. */
1495 uint16_t u16Padding;
1496#ifdef PGMPOOL_WITH_USER_TRACKING
1497 /** Head of the chain of free user nodes. */
1498 uint16_t iUserFreeHead;
1499 /** The number of user nodes we've allocated. */
1500 uint16_t cMaxUsers;
1501 /** The number of present page table entries in the entire pool. */
1502 uint32_t cPresent;
1503 /** Pointer to the array of user nodes - GC pointer. */
1504 RCPTRTYPE(PPGMPOOLUSER) paUsersGC;
1505 /** Pointer to the array of user nodes - HC pointer. */
1506 R3R0PTRTYPE(PPGMPOOLUSER) paUsersHC;
1507#endif /* PGMPOOL_WITH_USER_TRACKING */
1508#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1509 /** Head of the chain of free phys ext nodes. */
1510 uint16_t iPhysExtFreeHead;
1511 /** The number of user nodes we've allocated. */
1512 uint16_t cMaxPhysExts;
1513 /** Pointer to the array of physical xref extent - GC pointer. */
1514 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsGC;
1515 /** Pointer to the array of physical xref extent nodes - HC pointer. */
1516 R3R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsHC;
1517#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1518#ifdef PGMPOOL_WITH_CACHE
1519 /** Hash table for GCPhys addresses. */
1520 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1521 /** The head of the age list. */
1522 uint16_t iAgeHead;
1523 /** The tail of the age list. */
1524 uint16_t iAgeTail;
1525 /** Set if the cache is enabled. */
1526 bool fCacheEnabled;
1527#endif /* PGMPOOL_WITH_CACHE */
1528#ifdef PGMPOOL_WITH_MONITORING
1529 /** Head of the list of modified pages. */
1530 uint16_t iModifiedHead;
1531 /** The current number of modified pages. */
1532 uint16_t cModifiedPages;
1533 /** Access handler, GC. */
1534 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnAccessHandlerGC;
1535 /** Access handler, R0. */
1536 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1537 /** Access handler, R3. */
1538 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1539 /** The access handler description (HC ptr). */
1540 R3PTRTYPE(const char *) pszAccessHandler;
1541#endif /* PGMPOOL_WITH_MONITORING */
1542 /** The number of pages currently in use. */
1543 uint16_t cUsedPages;
1544#ifdef VBOX_WITH_STATISTICS
1545 /** The high wather mark for cUsedPages. */
1546 uint16_t cUsedPagesHigh;
1547 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1548 /** Profiling pgmPoolAlloc(). */
1549 STAMPROFILEADV StatAlloc;
1550 /** Profiling pgmPoolClearAll(). */
1551 STAMPROFILE StatClearAll;
1552 /** Profiling pgmPoolFlushAllInt(). */
1553 STAMPROFILE StatFlushAllInt;
1554 /** Profiling pgmPoolFlushPage(). */
1555 STAMPROFILE StatFlushPage;
1556 /** Profiling pgmPoolFree(). */
1557 STAMPROFILE StatFree;
1558 /** Profiling time spent zeroing pages. */
1559 STAMPROFILE StatZeroPage;
1560# ifdef PGMPOOL_WITH_USER_TRACKING
1561 /** Profiling of pgmPoolTrackDeref. */
1562 STAMPROFILE StatTrackDeref;
1563 /** Profiling pgmTrackFlushGCPhysPT. */
1564 STAMPROFILE StatTrackFlushGCPhysPT;
1565 /** Profiling pgmTrackFlushGCPhysPTs. */
1566 STAMPROFILE StatTrackFlushGCPhysPTs;
1567 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1568 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1569 /** Number of times we've been out of user records. */
1570 STAMCOUNTER StatTrackFreeUpOneUser;
1571# endif
1572# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1573 /** Profiling deref activity related tracking GC physical pages. */
1574 STAMPROFILE StatTrackDerefGCPhys;
1575 /** Number of linear searches for a HCPhys in the ram ranges. */
1576 STAMCOUNTER StatTrackLinearRamSearches;
1577 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1578 STAMCOUNTER StamTrackPhysExtAllocFailures;
1579# endif
1580# ifdef PGMPOOL_WITH_MONITORING
1581 /** Profiling the GC PT access handler. */
1582 STAMPROFILE StatMonitorGC;
1583 /** Times we've failed interpreting the instruction. */
1584 STAMCOUNTER StatMonitorGCEmulateInstr;
1585 /** Profiling the pgmPoolFlushPage calls made from the GC PT access handler. */
1586 STAMPROFILE StatMonitorGCFlushPage;
1587 /** Times we've detected fork(). */
1588 STAMCOUNTER StatMonitorGCFork;
1589 /** Profiling the GC access we've handled (except REP STOSD). */
1590 STAMPROFILE StatMonitorGCHandled;
1591 /** Times we've failed interpreting a patch code instruction. */
1592 STAMCOUNTER StatMonitorGCIntrFailPatch1;
1593 /** Times we've failed interpreting a patch code instruction during flushing. */
1594 STAMCOUNTER StatMonitorGCIntrFailPatch2;
1595 /** The number of times we've seen rep prefixes we can't handle. */
1596 STAMCOUNTER StatMonitorGCRepPrefix;
1597 /** Profiling the REP STOSD cases we've handled. */
1598 STAMPROFILE StatMonitorGCRepStosd;
1599
1600 /** Profiling the HC PT access handler. */
1601 STAMPROFILE StatMonitorHC;
1602 /** Times we've failed interpreting the instruction. */
1603 STAMCOUNTER StatMonitorHCEmulateInstr;
1604 /** Profiling the pgmPoolFlushPage calls made from the HC PT access handler. */
1605 STAMPROFILE StatMonitorHCFlushPage;
1606 /** Times we've detected fork(). */
1607 STAMCOUNTER StatMonitorHCFork;
1608 /** Profiling the HC access we've handled (except REP STOSD). */
1609 STAMPROFILE StatMonitorHCHandled;
1610 /** The number of times we've seen rep prefixes we can't handle. */
1611 STAMCOUNTER StatMonitorHCRepPrefix;
1612 /** Profiling the REP STOSD cases we've handled. */
1613 STAMPROFILE StatMonitorHCRepStosd;
1614 /** The number of times we're called in an async thread an need to flush. */
1615 STAMCOUNTER StatMonitorHCAsync;
1616 /** The high wather mark for cModifiedPages. */
1617 uint16_t cModifiedPagesHigh;
1618 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1619# endif
1620# ifdef PGMPOOL_WITH_CACHE
1621 /** The number of cache hits. */
1622 STAMCOUNTER StatCacheHits;
1623 /** The number of cache misses. */
1624 STAMCOUNTER StatCacheMisses;
1625 /** The number of times we've got a conflict of 'kind' in the cache. */
1626 STAMCOUNTER StatCacheKindMismatches;
1627 /** Number of times we've been out of pages. */
1628 STAMCOUNTER StatCacheFreeUpOne;
1629 /** The number of cacheable allocations. */
1630 STAMCOUNTER StatCacheCacheable;
1631 /** The number of uncacheable allocations. */
1632 STAMCOUNTER StatCacheUncacheable;
1633# endif
1634#elif HC_ARCH_BITS == 64
1635 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1636#endif
1637 /** The AVL tree for looking up a page by its HC physical address. */
1638 AVLOHCPHYSTREE HCPhysTree;
1639 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1640 /** Array of pages. (cMaxPages in length)
1641 * The Id is the index into thist array.
1642 */
1643 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1644} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1645
1646
1647/** @def PGMPOOL_PAGE_2_PTR
1648 * Maps a pool page pool into the current context.
1649 *
1650 * @returns VBox status code.
1651 * @param pVM The VM handle.
1652 * @param pPage The pool page.
1653 *
1654 * @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the
1655 * small page window employeed by that function. Be careful.
1656 * @remark There is no need to assert on the result.
1657 */
1658#ifdef IN_GC
1659# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmGCPoolMapPage((pVM), (pPage))
1660#else
1661# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageHC)
1662#endif
1663
1664
1665/**
1666 * Trees are using self relative offsets as pointers.
1667 * So, all its data, including the root pointer, must be in the heap for HC and GC
1668 * to have the same layout.
1669 */
1670typedef struct PGMTREES
1671{
1672 /** Physical access handlers (AVL range+offsetptr tree). */
1673 AVLROGCPHYSTREE PhysHandlers;
1674 /** Virtual access handlers (AVL range + GC ptr tree). */
1675 AVLROGCPTRTREE VirtHandlers;
1676 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1677 AVLROGCPHYSTREE PhysToVirtHandlers;
1678 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1679 AVLROGCPTRTREE HyperVirtHandlers;
1680} PGMTREES;
1681/** Pointer to PGM trees. */
1682typedef PGMTREES *PPGMTREES;
1683
1684
1685/** @name Paging mode macros
1686 * @{ */
1687#ifdef IN_GC
1688# define PGM_CTX(a,b) a##GC##b
1689# define PGM_CTX_STR(a,b) a "GC" b
1690# define PGM_CTX_DECL(type) PGMGCDECL(type)
1691#else
1692# ifdef IN_RING3
1693# define PGM_CTX(a,b) a##R3##b
1694# define PGM_CTX_STR(a,b) a "R3" b
1695# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1696# else
1697# define PGM_CTX(a,b) a##R0##b
1698# define PGM_CTX_STR(a,b) a "R0" b
1699# define PGM_CTX_DECL(type) PGMDECL(type)
1700# endif
1701#endif
1702
1703#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1704#define PGM_GST_NAME_GC_REAL_STR(name) "pgmGCGstReal" #name
1705#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1706#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1707#define PGM_GST_NAME_GC_PROT_STR(name) "pgmGCGstProt" #name
1708#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1709#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1710#define PGM_GST_NAME_GC_32BIT_STR(name) "pgmGCGst32Bit" #name
1711#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1712#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1713#define PGM_GST_NAME_GC_PAE_STR(name) "pgmGCGstPAE" #name
1714#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1715#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1716#define PGM_GST_NAME_GC_AMD64_STR(name) "pgmGCGstAMD64" #name
1717#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1718#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1719#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1720
1721#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1722#define PGM_SHW_NAME_GC_32BIT_STR(name) "pgmGCShw32Bit" #name
1723#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1724#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1725#define PGM_SHW_NAME_GC_PAE_STR(name) "pgmGCShwPAE" #name
1726#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1727#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1728#define PGM_SHW_NAME_GC_AMD64_STR(name) "pgmGCShwAMD64" #name
1729#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1730#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1731#define PGM_SHW_NAME_GC_NESTED_STR(name) "pgmGCShwNested" #name
1732#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1733#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1734#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1735
1736/* Shw_Gst */
1737#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1738#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1739#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1740#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1741#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1742#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1743#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1744#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1745#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1746#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1747#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1748#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1749#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1750#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1751
1752#define PGM_BTH_NAME_GC_32BIT_REAL_STR(name) "pgmGCBth32BitReal" #name
1753#define PGM_BTH_NAME_GC_32BIT_PROT_STR(name) "pgmGCBth32BitProt" #name
1754#define PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) "pgmGCBth32Bit32Bit" #name
1755#define PGM_BTH_NAME_GC_PAE_REAL_STR(name) "pgmGCBthPAEReal" #name
1756#define PGM_BTH_NAME_GC_PAE_PROT_STR(name) "pgmGCBthPAEProt" #name
1757#define PGM_BTH_NAME_GC_PAE_32BIT_STR(name) "pgmGCBthPAE32Bit" #name
1758#define PGM_BTH_NAME_GC_PAE_PAE_STR(name) "pgmGCBthPAEPAE" #name
1759#define PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) "pgmGCBthAMD64AMD64" #name
1760#define PGM_BTH_NAME_GC_NESTED_REAL_STR(name) "pgmGCBthNestedReal" #name
1761#define PGM_BTH_NAME_GC_NESTED_PROT_STR(name) "pgmGCBthNestedProt" #name
1762#define PGM_BTH_NAME_GC_NESTED_32BIT_STR(name) "pgmGCBthNested32Bit" #name
1763#define PGM_BTH_NAME_GC_NESTED_PAE_STR(name) "pgmGCBthNestedPAE" #name
1764#define PGM_BTH_NAME_GC_NESTED_AMD64_STR(name) "pgmGCBthNestedAMD64" #name
1765#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1766#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1767#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1768#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1769#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1770#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1771#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1772#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1773#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1774#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1775#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
1776#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
1777#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
1778#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
1779
1780#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
1781#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
1782/** @} */
1783
1784/**
1785 * Data for each paging mode.
1786 */
1787typedef struct PGMMODEDATA
1788{
1789 /** The guest mode type. */
1790 uint32_t uGstType;
1791 /** The shadow mode type. */
1792 uint32_t uShwType;
1793
1794 /** @name Function pointers for Shadow paging.
1795 * @{
1796 */
1797 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1798 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
1799 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1800 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1801
1802 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1803 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1804
1805 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1806 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1807 /** @} */
1808
1809 /** @name Function pointers for Guest paging.
1810 * @{
1811 */
1812 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1813 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
1814 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1815 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1816 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1817 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1818 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
1819 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1820 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
1821 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
1822 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
1823 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
1824 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
1825
1826 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1827 DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1828 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1829 DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1830 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
1831 DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1832 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
1833 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
1834 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
1835
1836 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1837 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1838 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1839 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1840 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
1841 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1842 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
1843 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
1844 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
1845 /** @} */
1846
1847 /** @name Function pointers for Both Shadow and Guest paging.
1848 * @{
1849 */
1850 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1851 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1852 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1853 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1854 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1855 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1856 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1857#ifdef VBOX_STRICT
1858 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1859#endif
1860
1861 DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1862 DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1863 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1864 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1865 DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1866 DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1867#ifdef VBOX_STRICT
1868 DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1869#endif
1870
1871 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1872 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1873 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1874 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1875 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1876 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1877#ifdef VBOX_STRICT
1878 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1879#endif
1880 /** @} */
1881} PGMMODEDATA, *PPGMMODEDATA;
1882
1883
1884
1885/**
1886 * Converts a PGM pointer into a VM pointer.
1887 * @returns Pointer to the VM structure the PGM is part of.
1888 * @param pPGM Pointer to PGM instance data.
1889 */
1890#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
1891
1892/**
1893 * PGM Data (part of VM)
1894 */
1895typedef struct PGM
1896{
1897 /** Offset to the VM structure. */
1898 RTINT offVM;
1899
1900 /*
1901 * This will be redefined at least two more times before we're done, I'm sure.
1902 * The current code is only to get on with the coding.
1903 * - 2004-06-10: initial version, bird.
1904 * - 2004-07-02: 1st time, bird.
1905 * - 2004-10-18: 2nd time, bird.
1906 * - 2005-07-xx: 3rd time, bird.
1907 */
1908
1909 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1910 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
1911 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1912 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
1913
1914 /** The host paging mode. (This is what SUPLib reports.) */
1915 SUPPAGINGMODE enmHostMode;
1916 /** The shadow paging mode. */
1917 PGMMODE enmShadowMode;
1918 /** The guest paging mode. */
1919 PGMMODE enmGuestMode;
1920
1921 /** The current physical address representing in the guest CR3 register. */
1922 RTGCPHYS GCPhysCR3;
1923 /** Pointer to the 5 page CR3 content mapping.
1924 * The first page is always the CR3 (in some form) while the 4 other pages
1925 * are used of the PDs in PAE mode. */
1926 RTGCPTR GCPtrCR3Mapping;
1927#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1928 uint32_t u32Alignment;
1929#endif
1930 /** The physical address of the currently monitored guest CR3 page.
1931 * When this value is NIL_RTGCPHYS no page is being monitored. */
1932 RTGCPHYS GCPhysGstCR3Monitored;
1933
1934 /** @name 32-bit Guest Paging.
1935 * @{ */
1936 /** The guest's page directory, HC pointer. */
1937 R3R0PTRTYPE(PX86PD) pGuestPDHC;
1938 /** The guest's page directory, static GC mapping. */
1939 RCPTRTYPE(PX86PD) pGuestPDGC;
1940 /** @} */
1941
1942 /** @name PAE Guest Paging.
1943 * @{ */
1944 /** The guest's page directory pointer table, static GC mapping. */
1945 RCPTRTYPE(PX86PDPT) pGstPaePDPTGC;
1946 /** The guest's page directory pointer table, HC pointer. */
1947 R3R0PTRTYPE(PX86PDPT) pGstPaePDPTHC;
1948 /** The guest's page directories, HC pointers.
1949 * These are individual pointers and don't have to be adjecent.
1950 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
1951 R3R0PTRTYPE(PX86PDPAE) apGstPaePDsHC[4];
1952 /** The guest's page directories, static GC mapping.
1953 * Unlike the HC array the first entry can be accessed as a 2048 entry PD.
1954 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
1955 RCPTRTYPE(PX86PDPAE) apGstPaePDsGC[4];
1956 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
1957 RTGCPHYS aGCPhysGstPaePDs[4];
1958 /** The physical addresses of the monitored guest page directories (PAE). */
1959 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
1960 /** @} */
1961
1962 /** @name AMD64 Guest Paging.
1963 * @{ */
1964 /** The guest's page directory pointer table, HC pointer. */
1965 R3R0PTRTYPE(PX86PML4) pGstPaePML4HC;
1966 /** @} */
1967
1968 /** @name 32-bit Shadow Paging
1969 * @{ */
1970 /** The 32-Bit PD - HC Ptr. */
1971 R3R0PTRTYPE(PX86PD) pHC32BitPD;
1972 /** The 32-Bit PD - GC Ptr. */
1973 RCPTRTYPE(PX86PD) pGC32BitPD;
1974#if HC_ARCH_BITS == 64
1975 uint32_t u32Padding1; /**< alignment padding. */
1976#endif
1977 /** The Physical Address (HC) of the 32-Bit PD. */
1978 RTHCPHYS HCPhys32BitPD;
1979 /** @} */
1980
1981 /** @name PAE Shadow Paging
1982 * @{ */
1983 /** The four PDs for the low 4GB - HC Ptr.
1984 * Even though these are 4 pointers, what they point at is a single table.
1985 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
1986 R3R0PTRTYPE(PX86PDPAE) apHCPaePDs[4];
1987 /** The four PDs for the low 4GB - GC Ptr.
1988 * Same kind of mapping as apHCPaePDs. */
1989 RCPTRTYPE(PX86PDPAE) apGCPaePDs[4];
1990 /** The Physical Address (HC) of the four PDs for the low 4GB.
1991 * These are *NOT* 4 contiguous pages. */
1992 RTHCPHYS aHCPhysPaePDs[4];
1993 /** The PAE PDP - HC Ptr. */
1994 R3R0PTRTYPE(PX86PDPT) pHCPaePDPT;
1995 /** The Physical Address (HC) of the PAE PDPT. */
1996 RTHCPHYS HCPhysPaePDPT;
1997 /** The PAE PDPT - GC Ptr. */
1998 RCPTRTYPE(PX86PDPT) pGCPaePDPT;
1999 /** @} */
2000
2001 /** @name AMD64 Shadow Paging
2002 * Extends PAE Paging.
2003 * @{ */
2004#if HC_ARCH_BITS == 64
2005 RTRCPTR alignment5; /**< structure size alignment. */
2006#endif
2007 /** The Page Map Level 4 table - HC Ptr. */
2008 R3R0PTRTYPE(PX86PML4) pHCPaePML4;
2009 /** The Physical Address (HC) of the Page Map Level 4 table. */
2010 RTHCPHYS HCPhysPaePML4;
2011 /** The pgm pool page descriptor for the current active CR3. */
2012 R3R0PTRTYPE(PPGMPOOLPAGE) pHCShwAmd64CR3;
2013
2014 /** @}*/
2015
2016 /** @name Nested Shadow Paging
2017 * @{ */
2018 /** Root table; format depends on the host paging mode (AMD-V) or EPT */
2019 R3R0PTRTYPE(void *) pHCNestedRoot;
2020 /** The Physical Address (HC) of the nested paging root. */
2021 RTHCPHYS HCPhysNestedRoot;
2022
2023 /** @name Function pointers for Shadow paging.
2024 * @{
2025 */
2026 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2027 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2028 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2029 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2030
2031 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2032 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2033
2034 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2035 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2036
2037 /** @} */
2038
2039 /** @name Function pointers for Guest paging.
2040 * @{
2041 */
2042 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2043 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2044 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2045 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2046 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2047 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2048 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2049 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2050 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2051 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2052 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2053 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2054 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2055
2056 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2057 DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2058 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2059 DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2060 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
2061 DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2062 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
2063 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
2064 RCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
2065#if HC_ARCH_BITS == 64
2066 RTRCPTR alignment3; /**< structure size alignment. */
2067#endif
2068
2069 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2070 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2071 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2072 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2073 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2074 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2075 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2076 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2077 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2078 /** @} */
2079
2080 /** @name Function pointers for Both Shadow and Guest paging.
2081 * @{
2082 */
2083 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2084 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2085 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2086 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2087 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2088 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2089 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2090 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2091
2092 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2093 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2094 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2095 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2096 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2097 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2098 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2099
2100 DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2101 DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2102 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2103 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2104 DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2105 DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2106 DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2107#if HC_ARCH_BITS == 64
2108 RTRCPTR alignment2; /**< structure size alignment. */
2109#endif
2110 /** @} */
2111
2112 /** Pointer to SHW+GST mode data (function pointers).
2113 * The index into this table is made up from */
2114 R3PTRTYPE(PPGMMODEDATA) paModeData;
2115
2116 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2117 * This is sorted by physical address and contains no overlapping ranges. */
2118 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2119 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2120 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2121 /** GC pointer corresponding to PGM::pRamRangesR3. */
2122 RCPTRTYPE(PPGMRAMRANGE) pRamRangesGC;
2123 /** The configured RAM size. */
2124 RTUINT cbRamSize;
2125
2126 /** Pointer to the list of ROM ranges - for R3.
2127 * This is sorted by physical address and contains no overlapping ranges. */
2128 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2129 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2130 R0PTRTYPE(PPGMRAMRANGE) pRomRangesR0;
2131 /** GC pointer corresponding to PGM::pRomRangesR3. */
2132 RCPTRTYPE(PPGMRAMRANGE) pRomRangesGC;
2133 /** Alignment padding. */
2134 RTRCPTR GCPtrPadding2;
2135
2136 /** Pointer to the list of MMIO2 ranges - for R3.
2137 * Registration order. */
2138 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2139
2140 /** PGM offset based trees - HC Ptr. */
2141 R3R0PTRTYPE(PPGMTREES) pTreesHC;
2142 /** PGM offset based trees - GC Ptr. */
2143 RCPTRTYPE(PPGMTREES) pTreesGC;
2144
2145 /** Linked list of GC mappings - for GC.
2146 * The list is sorted ascending on address.
2147 */
2148 RCPTRTYPE(PPGMMAPPING) pMappingsGC;
2149 /** Linked list of GC mappings - for HC.
2150 * The list is sorted ascending on address.
2151 */
2152 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2153 /** Linked list of GC mappings - for R0.
2154 * The list is sorted ascending on address.
2155 */
2156 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2157
2158 /** If set no conflict checks are required. (boolean) */
2159 bool fMappingsFixed;
2160 /** If set, then no mappings are put into the shadow page table. (boolean) */
2161 bool fDisableMappings;
2162 /** Size of fixed mapping */
2163 uint32_t cbMappingFixed;
2164 /** Base address (GC) of fixed mapping */
2165 RTGCPTR GCPtrMappingFixed;
2166#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2167 uint32_t u32Padding0; /**< alignment padding. */
2168#endif
2169
2170
2171 /** @name Intermediate Context
2172 * @{ */
2173 /** Pointer to the intermediate page directory - Normal. */
2174 R3PTRTYPE(PX86PD) pInterPD;
2175 /** Pointer to the intermedate page tables - Normal.
2176 * There are two page tables, one for the identity mapping and one for
2177 * the host context mapping (of the core code). */
2178 R3PTRTYPE(PX86PT) apInterPTs[2];
2179 /** Pointer to the intermedate page tables - PAE. */
2180 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2181 /** Pointer to the intermedate page directory - PAE. */
2182 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2183 /** Pointer to the intermedate page directory - PAE. */
2184 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2185 /** Pointer to the intermedate page-map level 4 - AMD64. */
2186 R3PTRTYPE(PX86PML4) pInterPaePML4;
2187 /** Pointer to the intermedate page directory - AMD64. */
2188 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2189 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2190 RTHCPHYS HCPhysInterPD;
2191 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2192 RTHCPHYS HCPhysInterPaePDPT;
2193 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2194 RTHCPHYS HCPhysInterPaePML4;
2195 /** @} */
2196
2197 /** Base address of the dynamic page mapping area.
2198 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2199 */
2200 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2201 /** The index of the last entry used in the dynamic page mapping area. */
2202 RTUINT iDynPageMapLast;
2203 /** Cache containing the last entries in the dynamic page mapping area.
2204 * The cache size is covering half of the mapping area. */
2205 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2206
2207 /** A20 gate mask.
2208 * Our current approach to A20 emulation is to let REM do it and don't bother
2209 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2210 * But whould need arrise, we'll subject physical addresses to this mask. */
2211 RTGCPHYS GCPhysA20Mask;
2212 /** A20 gate state - boolean! */
2213 RTUINT fA20Enabled;
2214
2215 /** What needs syncing (PGM_SYNC_*).
2216 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2217 * PGMFlushTLB, and PGMR3Load. */
2218 RTUINT fSyncFlags;
2219
2220 /** PGM critical section.
2221 * This protects the physical & virtual access handlers, ram ranges,
2222 * and the page flag updating (some of it anyway).
2223 */
2224 PDMCRITSECT CritSect;
2225
2226 /** Shadow Page Pool - HC Ptr. */
2227 R3R0PTRTYPE(PPGMPOOL) pPoolHC;
2228 /** Shadow Page Pool - GC Ptr. */
2229 RCPTRTYPE(PPGMPOOL) pPoolGC;
2230
2231 /** We're not in a state which permits writes to guest memory.
2232 * (Only used in strict builds.) */
2233 bool fNoMorePhysWrites;
2234
2235 /** Flush the cache on the next access. */
2236 bool fPhysCacheFlushPending;
2237/** @todo r=bird: Fix member names!*/
2238 /** PGMPhysRead cache */
2239 PGMPHYSCACHE pgmphysreadcache;
2240 /** PGMPhysWrite cache */
2241 PGMPHYSCACHE pgmphyswritecache;
2242
2243 /**
2244 * Data associated with managing the ring-3 mappings of the allocation chunks.
2245 */
2246 struct
2247 {
2248 /** The chunk tree, ordered by chunk id. */
2249 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2250 /** The chunk mapping TLB. */
2251 PGMCHUNKR3MAPTLB Tlb;
2252 /** The number of mapped chunks. */
2253 uint32_t c;
2254 /** The maximum number of mapped chunks.
2255 * @cfgm PGM/MaxRing3Chunks */
2256 uint32_t cMax;
2257 /** The chunk age tree, ordered by ageing sequence number. */
2258 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2259 /** The current time. */
2260 uint32_t iNow;
2261 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2262 uint32_t AgeingCountdown;
2263 } ChunkR3Map;
2264
2265 /**
2266 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2267 */
2268 PGMPAGER3MAPTLB PhysTlbHC;
2269
2270 /** @name The zero page.
2271 * @{ */
2272 /** The host physical address of the zero page. */
2273 RTHCPHYS HCPhysZeroPg;
2274 /** The ring-3 mapping of the zero page. */
2275 RTR3PTR pvZeroPgR3;
2276 /** The ring-0 mapping of the zero page. */
2277 RTR0PTR pvZeroPgR0;
2278 /** The GC mapping of the zero page. */
2279 RTGCPTR pvZeroPgGC;
2280#if GC_ARCH_BITS != 32
2281 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2282#endif
2283 /** @}*/
2284
2285 /** The number of handy pages. */
2286 uint32_t cHandyPages;
2287 /**
2288 * Array of handy pages.
2289 *
2290 * This array is used in a two way communication between pgmPhysAllocPage
2291 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2292 * an intermediary.
2293 *
2294 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2295 * (The current size of 32 pages, means 128 KB of handy memory.)
2296 */
2297 GMMPAGEDESC aHandyPages[32];
2298
2299 /** @name Release Statistics
2300 * @{ */
2301 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2302 uint32_t cPrivatePages; /**< The number of private pages. */
2303 uint32_t cSharedPages; /**< The number of shared pages. */
2304 uint32_t cZeroPages; /**< The number of zero backed pages. */
2305 /** The number of times the guest has switched mode since last reset or statistics reset. */
2306 STAMCOUNTER cGuestModeChanges;
2307 /** @} */
2308
2309#ifdef VBOX_WITH_STATISTICS
2310 /** GC: Which statistic this \#PF should be attributed to. */
2311 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionGC;
2312 RTRCPTR padding0;
2313 /** HC: Which statistic this \#PF should be attributed to. */
2314 R3R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionHC;
2315 RTHCPTR padding1;
2316 STAMPROFILE StatGCTrap0e; /**< GC: PGMGCTrap0eHandler() profiling. */
2317 STAMPROFILE StatTrap0eCSAM; /**< Profiling of the Trap0eHandler body when the cause is CSAM. */
2318 STAMPROFILE StatTrap0eDirtyAndAccessedBits; /**< Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2319 STAMPROFILE StatTrap0eGuestTrap; /**< Profiling of the Trap0eHandler body when the cause is a guest trap. */
2320 STAMPROFILE StatTrap0eHndPhys; /**< Profiling of the Trap0eHandler body when the cause is a physical handler. */
2321 STAMPROFILE StatTrap0eHndVirt; /**< Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2322 STAMPROFILE StatTrap0eHndUnhandled; /**< Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2323 STAMPROFILE StatTrap0eMisc; /**< Profiling of the Trap0eHandler body when the cause is not known. */
2324 STAMPROFILE StatTrap0eOutOfSync; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2325 STAMPROFILE StatTrap0eOutOfSyncHndPhys; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2326 STAMPROFILE StatTrap0eOutOfSyncHndVirt; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2327 STAMPROFILE StatTrap0eOutOfSyncObsHnd; /**< Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2328 STAMPROFILE StatTrap0eSyncPT; /**< Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2329
2330 STAMCOUNTER StatTrap0eMapHandler; /**< Number of traps due to access handlers in mappings. */
2331 STAMCOUNTER StatGCTrap0eConflicts; /**< GC: The number of times \#PF was caused by an undetected conflict. */
2332
2333 STAMCOUNTER StatGCTrap0eUSNotPresentRead;
2334 STAMCOUNTER StatGCTrap0eUSNotPresentWrite;
2335 STAMCOUNTER StatGCTrap0eUSWrite;
2336 STAMCOUNTER StatGCTrap0eUSReserved;
2337 STAMCOUNTER StatGCTrap0eUSNXE;
2338 STAMCOUNTER StatGCTrap0eUSRead;
2339
2340 STAMCOUNTER StatGCTrap0eSVNotPresentRead;
2341 STAMCOUNTER StatGCTrap0eSVNotPresentWrite;
2342 STAMCOUNTER StatGCTrap0eSVWrite;
2343 STAMCOUNTER StatGCTrap0eSVReserved;
2344 STAMCOUNTER StatGCTrap0eSNXE;
2345
2346 STAMCOUNTER StatTrap0eWPEmulGC;
2347 STAMCOUNTER StatTrap0eWPEmulR3;
2348
2349 STAMCOUNTER StatGCTrap0eUnhandled;
2350 STAMCOUNTER StatGCTrap0eMap;
2351
2352 /** GC: PGMSyncPT() profiling. */
2353 STAMPROFILE StatGCSyncPT;
2354 /** GC: The number of times PGMSyncPT() needed to allocate page tables. */
2355 STAMCOUNTER StatGCSyncPTAlloc;
2356 /** GC: The number of times PGMSyncPT() detected conflicts. */
2357 STAMCOUNTER StatGCSyncPTConflict;
2358 /** GC: The number of times PGMSyncPT() failed. */
2359 STAMCOUNTER StatGCSyncPTFailed;
2360 /** GC: PGMGCInvalidatePage() profiling. */
2361 STAMPROFILE StatGCInvalidatePage;
2362 /** GC: The number of times PGMGCInvalidatePage() was called for a 4KB page. */
2363 STAMCOUNTER StatGCInvalidatePage4KBPages;
2364 /** GC: The number of times PGMGCInvalidatePage() was called for a 4MB page. */
2365 STAMCOUNTER StatGCInvalidatePage4MBPages;
2366 /** GC: The number of times PGMGCInvalidatePage() skipped a 4MB page. */
2367 STAMCOUNTER StatGCInvalidatePage4MBPagesSkip;
2368 /** GC: The number of times PGMGCInvalidatePage() was called for a not accessed page directory. */
2369 STAMCOUNTER StatGCInvalidatePagePDNAs;
2370 /** GC: The number of times PGMGCInvalidatePage() was called for a not present page directory. */
2371 STAMCOUNTER StatGCInvalidatePagePDNPs;
2372 /** GC: The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict). */
2373 STAMCOUNTER StatGCInvalidatePagePDMappings;
2374 /** GC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2375 STAMCOUNTER StatGCInvalidatePagePDOutOfSync;
2376 /** HC: The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2377 STAMCOUNTER StatGCInvalidatePageSkipped;
2378 /** GC: The number of times user page is out of sync was detected in GC. */
2379 STAMCOUNTER StatGCPageOutOfSyncUser;
2380 /** GC: The number of times supervisor page is out of sync was detected in GC. */
2381 STAMCOUNTER StatGCPageOutOfSyncSupervisor;
2382 /** GC: The number of dynamic page mapping cache hits */
2383 STAMCOUNTER StatDynMapCacheMisses;
2384 /** GC: The number of dynamic page mapping cache misses */
2385 STAMCOUNTER StatDynMapCacheHits;
2386 /** GC: The number of times pgmGCGuestPDWriteHandler() was successfully called. */
2387 STAMCOUNTER StatGCGuestCR3WriteHandled;
2388 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and we had to fall back to the recompiler. */
2389 STAMCOUNTER StatGCGuestCR3WriteUnhandled;
2390 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and a conflict was detected. */
2391 STAMCOUNTER StatGCGuestCR3WriteConflict;
2392 /** GC: Number of out-of-sync handled pages. */
2393 STAMCOUNTER StatHandlersOutOfSync;
2394 /** GC: Number of traps due to physical access handlers. */
2395 STAMCOUNTER StatHandlersPhysical;
2396 /** GC: Number of traps due to virtual access handlers. */
2397 STAMCOUNTER StatHandlersVirtual;
2398 /** GC: Number of traps due to virtual access handlers found by physical address. */
2399 STAMCOUNTER StatHandlersVirtualByPhys;
2400 /** GC: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2401 STAMCOUNTER StatHandlersVirtualUnmarked;
2402 /** GC: Number of traps due to access outside range of monitored page(s). */
2403 STAMCOUNTER StatHandlersUnhandled;
2404 /** GC: Number of traps due to access to invalid physical memory. */
2405 STAMCOUNTER StatHandlersInvalid;
2406
2407 /** GC: The number of times pgmGCGuestROMWriteHandler() was successfully called. */
2408 STAMCOUNTER StatGCGuestROMWriteHandled;
2409 /** GC: The number of times pgmGCGuestROMWriteHandler() was called and we had to fall back to the recompiler */
2410 STAMCOUNTER StatGCGuestROMWriteUnhandled;
2411
2412 /** HC: PGMR3InvalidatePage() profiling. */
2413 STAMPROFILE StatHCInvalidatePage;
2414 /** HC: The number of times PGMR3InvalidatePage() was called for a 4KB page. */
2415 STAMCOUNTER StatHCInvalidatePage4KBPages;
2416 /** HC: The number of times PGMR3InvalidatePage() was called for a 4MB page. */
2417 STAMCOUNTER StatHCInvalidatePage4MBPages;
2418 /** HC: The number of times PGMR3InvalidatePage() skipped a 4MB page. */
2419 STAMCOUNTER StatHCInvalidatePage4MBPagesSkip;
2420 /** HC: The number of times PGMR3InvalidatePage() was called for a not accessed page directory. */
2421 STAMCOUNTER StatHCInvalidatePagePDNAs;
2422 /** HC: The number of times PGMR3InvalidatePage() was called for a not present page directory. */
2423 STAMCOUNTER StatHCInvalidatePagePDNPs;
2424 /** HC: The number of times PGMR3InvalidatePage() was called for a page directory containing mappings (no conflict). */
2425 STAMCOUNTER StatHCInvalidatePagePDMappings;
2426 /** HC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2427 STAMCOUNTER StatHCInvalidatePagePDOutOfSync;
2428 /** HC: The number of times PGMR3InvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2429 STAMCOUNTER StatHCInvalidatePageSkipped;
2430 /** HC: PGMR3SyncPT() profiling. */
2431 STAMPROFILE StatHCSyncPT;
2432 /** HC: pgmr3SyncPTResolveConflict() profiling (includes the entire relocation). */
2433 STAMPROFILE StatHCResolveConflict;
2434 /** HC: Number of times PGMR3CheckMappingConflicts() detected a conflict. */
2435 STAMCOUNTER StatHCDetectedConflicts;
2436 /** HC: The total number of times pgmHCGuestPDWriteHandler() was called. */
2437 STAMCOUNTER StatHCGuestPDWrite;
2438 /** HC: The number of times pgmHCGuestPDWriteHandler() detected a conflict */
2439 STAMCOUNTER StatHCGuestPDWriteConflict;
2440
2441 /** HC: The number of pages marked not present for accessed bit emulation. */
2442 STAMCOUNTER StatHCAccessedPage;
2443 /** HC: The number of pages marked read-only for dirty bit tracking. */
2444 STAMCOUNTER StatHCDirtyPage;
2445 /** HC: The number of pages marked read-only for dirty bit tracking. */
2446 STAMCOUNTER StatHCDirtyPageBig;
2447 /** HC: The number of traps generated for dirty bit tracking. */
2448 STAMCOUNTER StatHCDirtyPageTrap;
2449 /** HC: The number of pages already dirty or readonly. */
2450 STAMCOUNTER StatHCDirtyPageSkipped;
2451
2452 /** GC: The number of pages marked not present for accessed bit emulation. */
2453 STAMCOUNTER StatGCAccessedPage;
2454 /** GC: The number of pages marked read-only for dirty bit tracking. */
2455 STAMCOUNTER StatGCDirtyPage;
2456 /** GC: The number of pages marked read-only for dirty bit tracking. */
2457 STAMCOUNTER StatGCDirtyPageBig;
2458 /** GC: The number of traps generated for dirty bit tracking. */
2459 STAMCOUNTER StatGCDirtyPageTrap;
2460 /** GC: The number of pages already dirty or readonly. */
2461 STAMCOUNTER StatGCDirtyPageSkipped;
2462 /** GC: The number of pages marked dirty because of write accesses. */
2463 STAMCOUNTER StatGCDirtiedPage;
2464 /** GC: The number of pages already marked dirty because of write accesses. */
2465 STAMCOUNTER StatGCPageAlreadyDirty;
2466 /** GC: The number of real pages faults during dirty bit tracking. */
2467 STAMCOUNTER StatGCDirtyTrackRealPF;
2468
2469 /** GC: Profiling of the PGMTrackDirtyBit() body */
2470 STAMPROFILE StatGCDirtyBitTracking;
2471 /** HC: Profiling of the PGMTrackDirtyBit() body */
2472 STAMPROFILE StatHCDirtyBitTracking;
2473
2474 /** GC: Profiling of the PGMGstModifyPage() body */
2475 STAMPROFILE StatGCGstModifyPage;
2476 /** HC: Profiling of the PGMGstModifyPage() body */
2477 STAMPROFILE StatHCGstModifyPage;
2478
2479 /** GC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2480 STAMCOUNTER StatGCSyncPagePDNAs;
2481 /** GC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2482 STAMCOUNTER StatGCSyncPagePDOutOfSync;
2483 /** HC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2484 STAMCOUNTER StatHCSyncPagePDNAs;
2485 /** HC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2486 STAMCOUNTER StatHCSyncPagePDOutOfSync;
2487
2488 STAMCOUNTER StatSynPT4kGC;
2489 STAMCOUNTER StatSynPT4kHC;
2490 STAMCOUNTER StatSynPT4MGC;
2491 STAMCOUNTER StatSynPT4MHC;
2492
2493 /** Profiling of the PGMFlushTLB() body. */
2494 STAMPROFILE StatFlushTLB;
2495 /** The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2496 STAMCOUNTER StatFlushTLBNewCR3;
2497 /** The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2498 STAMCOUNTER StatFlushTLBNewCR3Global;
2499 /** The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2500 STAMCOUNTER StatFlushTLBSameCR3;
2501 /** The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2502 STAMCOUNTER StatFlushTLBSameCR3Global;
2503
2504 STAMPROFILE StatGCSyncCR3; /**< GC: PGMSyncCR3() profiling. */
2505 STAMPROFILE StatGCSyncCR3Handlers; /**< GC: Profiling of the PGMSyncCR3() update handler section. */
2506 STAMPROFILE StatGCSyncCR3HandlerVirtualReset; /**< GC: Profiling of the virtual handler resets. */
2507 STAMPROFILE StatGCSyncCR3HandlerVirtualUpdate; /**< GC: Profiling of the virtual handler updates. */
2508 STAMCOUNTER StatGCSyncCR3Global; /**< GC: The number of global CR3 syncs. */
2509 STAMCOUNTER StatGCSyncCR3NotGlobal; /**< GC: The number of non-global CR3 syncs. */
2510 STAMCOUNTER StatGCSyncCR3DstFreed; /**< GC: The number of times we've had to free a shadow entry. */
2511 STAMCOUNTER StatGCSyncCR3DstFreedSrcNP; /**< GC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2512 STAMCOUNTER StatGCSyncCR3DstNotPresent; /**< GC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2513 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPD; /**< GC: The number of times a global page directory wasn't flushed. */
2514 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPT; /**< GC: The number of times a page table with only global entries wasn't flushed. */
2515 STAMCOUNTER StatGCSyncCR3DstCacheHit; /**< GC: The number of times we got some kind of cache hit on a page table. */
2516
2517 STAMPROFILE StatHCSyncCR3; /**< HC: PGMSyncCR3() profiling. */
2518 STAMPROFILE StatHCSyncCR3Handlers; /**< HC: Profiling of the PGMSyncCR3() update handler section. */
2519 STAMPROFILE StatHCSyncCR3HandlerVirtualReset; /**< HC: Profiling of the virtual handler resets. */
2520 STAMPROFILE StatHCSyncCR3HandlerVirtualUpdate; /**< HC: Profiling of the virtual handler updates. */
2521 STAMCOUNTER StatHCSyncCR3Global; /**< HC: The number of global CR3 syncs. */
2522 STAMCOUNTER StatHCSyncCR3NotGlobal; /**< HC: The number of non-global CR3 syncs. */
2523 STAMCOUNTER StatHCSyncCR3DstFreed; /**< HC: The number of times we've had to free a shadow entry. */
2524 STAMCOUNTER StatHCSyncCR3DstFreedSrcNP; /**< HC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2525 STAMCOUNTER StatHCSyncCR3DstNotPresent; /**< HC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2526 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPD; /**< HC: The number of times a global page directory wasn't flushed. */
2527 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPT; /**< HC: The number of times a page table with only global entries wasn't flushed. */
2528 STAMCOUNTER StatHCSyncCR3DstCacheHit; /**< HC: The number of times we got some kind of cache hit on a page table. */
2529
2530 /** GC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2531 STAMPROFILE StatVirtHandleSearchByPhysGC;
2532 /** HC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2533 STAMPROFILE StatVirtHandleSearchByPhysHC;
2534 /** HC: The number of times PGMR3HandlerPhysicalReset is called. */
2535 STAMCOUNTER StatHandlePhysicalReset;
2536
2537 STAMPROFILE StatCheckPageFault;
2538 STAMPROFILE StatLazySyncPT;
2539 STAMPROFILE StatMapping;
2540 STAMPROFILE StatOutOfSync;
2541 STAMPROFILE StatHandlers;
2542 STAMPROFILE StatEIPHandlers;
2543 STAMPROFILE StatHCPrefetch;
2544
2545# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2546 /** The number of first time shadowings. */
2547 STAMCOUNTER StatTrackVirgin;
2548 /** The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2549 STAMCOUNTER StatTrackAliased;
2550 /** The number of times we're tracking using cRef2. */
2551 STAMCOUNTER StatTrackAliasedMany;
2552 /** The number of times we're hitting pages which has overflowed cRef2. */
2553 STAMCOUNTER StatTrackAliasedLots;
2554 /** The number of times the extent list grows to long. */
2555 STAMCOUNTER StatTrackOverflows;
2556 /** Profiling of SyncPageWorkerTrackDeref (expensive). */
2557 STAMPROFILE StatTrackDeref;
2558# endif
2559
2560 /** Ring-3/0 page mapper TLB hits. */
2561 STAMCOUNTER StatPageHCMapTlbHits;
2562 /** Ring-3/0 page mapper TLB misses. */
2563 STAMCOUNTER StatPageHCMapTlbMisses;
2564 /** Ring-3/0 chunk mapper TLB hits. */
2565 STAMCOUNTER StatChunkR3MapTlbHits;
2566 /** Ring-3/0 chunk mapper TLB misses. */
2567 STAMCOUNTER StatChunkR3MapTlbMisses;
2568 /** Times a shared page has been replaced by a private one. */
2569 STAMCOUNTER StatPageReplaceShared;
2570 /** Times the zero page has been replaced by a private one. */
2571 STAMCOUNTER StatPageReplaceZero;
2572 /** The number of times we've executed GMMR3AllocateHandyPages. */
2573 STAMCOUNTER StatPageHandyAllocs;
2574
2575 /** Allocated mbs of guest ram */
2576 STAMCOUNTER StatDynRamTotal;
2577 /** Nr of pgmr3PhysGrowRange calls. */
2578 STAMCOUNTER StatDynRamGrow;
2579
2580 STAMCOUNTER StatGCTrap0ePD[X86_PG_ENTRIES];
2581 STAMCOUNTER StatGCSyncPtPD[X86_PG_ENTRIES];
2582 STAMCOUNTER StatGCSyncPagePD[X86_PG_ENTRIES];
2583#endif
2584} PGM, *PPGM;
2585
2586
2587/** @name PGM::fSyncFlags Flags
2588 * @{
2589 */
2590/** Updates the virtual access handler state bit in PGMPAGE. */
2591#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2592/** Always sync CR3. */
2593#define PGM_SYNC_ALWAYS RT_BIT(1)
2594/** Check monitoring on next CR3 (re)load and invalidate page. */
2595#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2596/** Clear the page pool (a light weight flush). */
2597#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2598/** @} */
2599
2600
2601__BEGIN_DECLS
2602
2603int pgmLock(PVM pVM);
2604void pgmUnlock(PVM pVM);
2605
2606PGMGCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2607PGMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2608
2609int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2610int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2611PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2612void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2613DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2614
2615void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2616int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2617DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2618#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2619void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2620#else
2621# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2622#endif
2623DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2624
2625
2626void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2627int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2628int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2629int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2630#ifdef IN_RING3
2631int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2632int pgmR3PhysRamReset(PVM pVM);
2633int pgmR3PhysRomReset(PVM pVM);
2634#ifndef VBOX_WITH_NEW_PHYS_CODE
2635int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2636#endif
2637
2638int pgmR3PoolInit(PVM pVM);
2639void pgmR3PoolRelocate(PVM pVM);
2640void pgmR3PoolReset(PVM pVM);
2641
2642#endif /* IN_RING3 */
2643#ifdef IN_GC
2644void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage);
2645#endif
2646int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2647PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2648void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2649void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2650int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2651void pgmPoolFlushAll(PVM pVM);
2652void pgmPoolClearAll(PVM pVM);
2653int pgmPoolSyncCR3(PVM pVM);
2654void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2655void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2656int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2657PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2658void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2659void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2660uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2661void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2662#ifdef PGMPOOL_WITH_MONITORING
2663# ifdef IN_RING3
2664void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2665# else
2666void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2667# endif
2668int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2669void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2670void pgmPoolMonitorModifiedClearAll(PVM pVM);
2671int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2672int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2673#endif
2674
2675__END_DECLS
2676
2677
2678/**
2679 * Gets the PGMRAMRANGE structure for a guest page.
2680 *
2681 * @returns Pointer to the RAM range on success.
2682 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2683 *
2684 * @param pPGM PGM handle.
2685 * @param GCPhys The GC physical address.
2686 */
2687DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2688{
2689 /*
2690 * Optimize for the first range.
2691 */
2692 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2693 RTGCPHYS off = GCPhys - pRam->GCPhys;
2694 if (RT_UNLIKELY(off >= pRam->cb))
2695 {
2696 do
2697 {
2698 pRam = CTXALLSUFF(pRam->pNext);
2699 if (RT_UNLIKELY(!pRam))
2700 break;
2701 off = GCPhys - pRam->GCPhys;
2702 } while (off >= pRam->cb);
2703 }
2704 return pRam;
2705}
2706
2707
2708/**
2709 * Gets the PGMPAGE structure for a guest page.
2710 *
2711 * @returns Pointer to the page on success.
2712 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2713 *
2714 * @param pPGM PGM handle.
2715 * @param GCPhys The GC physical address.
2716 */
2717DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
2718{
2719 /*
2720 * Optimize for the first range.
2721 */
2722 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2723 RTGCPHYS off = GCPhys - pRam->GCPhys;
2724 if (RT_UNLIKELY(off >= pRam->cb))
2725 {
2726 do
2727 {
2728 pRam = CTXALLSUFF(pRam->pNext);
2729 if (RT_UNLIKELY(!pRam))
2730 return NULL;
2731 off = GCPhys - pRam->GCPhys;
2732 } while (off >= pRam->cb);
2733 }
2734 return &pRam->aPages[off >> PAGE_SHIFT];
2735}
2736
2737
2738/**
2739 * Gets the PGMPAGE structure for a guest page.
2740 *
2741 * Old Phys code: Will make sure the page is present.
2742 *
2743 * @returns VBox status code.
2744 * @retval VINF_SUCCESS and a valid *ppPage on success.
2745 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2746 *
2747 * @param pPGM PGM handle.
2748 * @param GCPhys The GC physical address.
2749 * @param ppPage Where to store the page poitner on success.
2750 */
2751DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
2752{
2753 /*
2754 * Optimize for the first range.
2755 */
2756 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2757 RTGCPHYS off = GCPhys - pRam->GCPhys;
2758 if (RT_UNLIKELY(off >= pRam->cb))
2759 {
2760 do
2761 {
2762 pRam = CTXALLSUFF(pRam->pNext);
2763 if (RT_UNLIKELY(!pRam))
2764 {
2765 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2766 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2767 }
2768 off = GCPhys - pRam->GCPhys;
2769 } while (off >= pRam->cb);
2770 }
2771 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2772#ifndef VBOX_WITH_NEW_PHYS_CODE
2773
2774 /*
2775 * Make sure it's present.
2776 */
2777 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2778 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2779 {
2780#ifdef IN_RING3
2781 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2782#else
2783 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2784#endif
2785 if (VBOX_FAILURE(rc))
2786 {
2787 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2788 return rc;
2789 }
2790 Assert(rc == VINF_SUCCESS);
2791 }
2792#endif
2793 return VINF_SUCCESS;
2794}
2795
2796
2797
2798
2799/**
2800 * Gets the PGMPAGE structure for a guest page.
2801 *
2802 * Old Phys code: Will make sure the page is present.
2803 *
2804 * @returns VBox status code.
2805 * @retval VINF_SUCCESS and a valid *ppPage on success.
2806 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2807 *
2808 * @param pPGM PGM handle.
2809 * @param GCPhys The GC physical address.
2810 * @param ppPage Where to store the page poitner on success.
2811 * @param ppRamHint Where to read and store the ram list hint.
2812 * The caller initializes this to NULL before the call.
2813 */
2814DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
2815{
2816 RTGCPHYS off;
2817 PPGMRAMRANGE pRam = *ppRamHint;
2818 if ( !pRam
2819 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
2820 {
2821 pRam = CTXALLSUFF(pPGM->pRamRanges);
2822 off = GCPhys - pRam->GCPhys;
2823 if (RT_UNLIKELY(off >= pRam->cb))
2824 {
2825 do
2826 {
2827 pRam = CTXALLSUFF(pRam->pNext);
2828 if (RT_UNLIKELY(!pRam))
2829 {
2830 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
2831 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2832 }
2833 off = GCPhys - pRam->GCPhys;
2834 } while (off >= pRam->cb);
2835 }
2836 *ppRamHint = pRam;
2837 }
2838 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2839#ifndef VBOX_WITH_NEW_PHYS_CODE
2840
2841 /*
2842 * Make sure it's present.
2843 */
2844 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2845 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2846 {
2847#ifdef IN_RING3
2848 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2849#else
2850 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2851#endif
2852 if (VBOX_FAILURE(rc))
2853 {
2854 *ppPage = NULL; /* Shut up annoying smart ass. */
2855 return rc;
2856 }
2857 Assert(rc == VINF_SUCCESS);
2858 }
2859#endif
2860 return VINF_SUCCESS;
2861}
2862
2863
2864/**
2865 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2866 *
2867 * @returns Pointer to the page on success.
2868 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2869 *
2870 * @param pPGM PGM handle.
2871 * @param GCPhys The GC physical address.
2872 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
2873 */
2874DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
2875{
2876 /*
2877 * Optimize for the first range.
2878 */
2879 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2880 RTGCPHYS off = GCPhys - pRam->GCPhys;
2881 if (RT_UNLIKELY(off >= pRam->cb))
2882 {
2883 do
2884 {
2885 pRam = CTXALLSUFF(pRam->pNext);
2886 if (RT_UNLIKELY(!pRam))
2887 return NULL;
2888 off = GCPhys - pRam->GCPhys;
2889 } while (off >= pRam->cb);
2890 }
2891 *ppRam = pRam;
2892 return &pRam->aPages[off >> PAGE_SHIFT];
2893}
2894
2895
2896
2897
2898/**
2899 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2900 *
2901 * @returns Pointer to the page on success.
2902 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2903 *
2904 * @param pPGM PGM handle.
2905 * @param GCPhys The GC physical address.
2906 * @param ppPage Where to store the pointer to the PGMPAGE structure.
2907 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
2908 */
2909DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
2910{
2911 /*
2912 * Optimize for the first range.
2913 */
2914 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2915 RTGCPHYS off = GCPhys - pRam->GCPhys;
2916 if (RT_UNLIKELY(off >= pRam->cb))
2917 {
2918 do
2919 {
2920 pRam = CTXALLSUFF(pRam->pNext);
2921 if (RT_UNLIKELY(!pRam))
2922 {
2923 *ppRam = NULL; /* Shut up silly GCC warnings. */
2924 *ppPage = NULL; /* ditto */
2925 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2926 }
2927 off = GCPhys - pRam->GCPhys;
2928 } while (off >= pRam->cb);
2929 }
2930 *ppRam = pRam;
2931 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2932#ifndef VBOX_WITH_NEW_PHYS_CODE
2933
2934 /*
2935 * Make sure it's present.
2936 */
2937 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2938 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2939 {
2940#ifdef IN_RING3
2941 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2942#else
2943 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2944#endif
2945 if (VBOX_FAILURE(rc))
2946 {
2947 *ppPage = NULL; /* Shut up silly GCC warnings. */
2948 *ppPage = NULL; /* ditto */
2949 return rc;
2950 }
2951 Assert(rc == VINF_SUCCESS);
2952
2953 }
2954#endif
2955 return VINF_SUCCESS;
2956}
2957
2958
2959/**
2960 * Convert GC Phys to HC Phys.
2961 *
2962 * @returns VBox status.
2963 * @param pPGM PGM handle.
2964 * @param GCPhys The GC physical address.
2965 * @param pHCPhys Where to store the corresponding HC physical address.
2966 *
2967 * @deprecated Doesn't deal with zero, shared or write monitored pages.
2968 * Avoid when writing new code!
2969 */
2970DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
2971{
2972 PPGMPAGE pPage;
2973 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
2974 if (VBOX_FAILURE(rc))
2975 return rc;
2976 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
2977 return VINF_SUCCESS;
2978}
2979
2980
2981#ifndef IN_GC
2982/**
2983 * Queries the Physical TLB entry for a physical guest page,
2984 * attemting to load the TLB entry if necessary.
2985 *
2986 * @returns VBox status code.
2987 * @retval VINF_SUCCESS on success
2988 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
2989 * @param pPGM The PGM instance handle.
2990 * @param GCPhys The address of the guest page.
2991 * @param ppTlbe Where to store the pointer to the TLB entry.
2992 */
2993
2994DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
2995{
2996 int rc;
2997 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
2998 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
2999 {
3000 STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbHits));
3001 rc = VINF_SUCCESS;
3002 }
3003 else
3004 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3005 *ppTlbe = pTlbe;
3006 return rc;
3007}
3008#endif /* !IN_GC */
3009
3010
3011#ifndef VBOX_WITH_NEW_PHYS_CODE
3012/**
3013 * Convert GC Phys to HC Virt.
3014 *
3015 * @returns VBox status.
3016 * @param pPGM PGM handle.
3017 * @param GCPhys The GC physical address.
3018 * @param pHCPtr Where to store the corresponding HC virtual address.
3019 *
3020 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr.
3021 */
3022DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3023{
3024 PPGMRAMRANGE pRam;
3025 PPGMPAGE pPage;
3026 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3027 if (VBOX_FAILURE(rc))
3028 {
3029 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3030 return rc;
3031 }
3032 RTGCPHYS off = GCPhys - pRam->GCPhys;
3033
3034 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3035 {
3036 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3037 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3038 return VINF_SUCCESS;
3039 }
3040 if (pRam->pvHC)
3041 {
3042 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3043 return VINF_SUCCESS;
3044 }
3045 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3046 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3047}
3048#endif /* !VBOX_WITH_NEW_PHYS_CODE */
3049
3050
3051/**
3052 * Convert GC Phys to HC Virt.
3053 *
3054 * @returns VBox status.
3055 * @param PVM VM handle.
3056 * @param pRam Ram range
3057 * @param GCPhys The GC physical address.
3058 * @param pHCPtr Where to store the corresponding HC virtual address.
3059 *
3060 * @deprecated This will be eliminated. Don't use it.
3061 */
3062DECLINLINE(int) pgmRamGCPhys2HCPtrWithRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3063{
3064 RTGCPHYS off = GCPhys - pRam->GCPhys;
3065 Assert(off < pRam->cb);
3066
3067 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3068 {
3069 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3070 /* Physical chunk in dynamically allocated range not present? */
3071 if (RT_UNLIKELY(!CTXSUFF(pRam->pavHCChunk)[idx]))
3072 {
3073#ifdef IN_RING3
3074 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
3075#else
3076 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3077#endif
3078 if (rc != VINF_SUCCESS)
3079 {
3080 *pHCPtr = 0; /* GCC crap */
3081 return rc;
3082 }
3083 }
3084 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3085 return VINF_SUCCESS;
3086 }
3087 if (pRam->pvHC)
3088 {
3089 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3090 return VINF_SUCCESS;
3091 }
3092 *pHCPtr = 0; /* GCC crap */
3093 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3094}
3095
3096
3097/**
3098 * Convert GC Phys to HC Virt and HC Phys.
3099 *
3100 * @returns VBox status.
3101 * @param pPGM PGM handle.
3102 * @param GCPhys The GC physical address.
3103 * @param pHCPtr Where to store the corresponding HC virtual address.
3104 * @param pHCPhys Where to store the HC Physical address and its flags.
3105 *
3106 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3107 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3108 */
3109DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3110{
3111 PPGMRAMRANGE pRam;
3112 PPGMPAGE pPage;
3113 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3114 if (VBOX_FAILURE(rc))
3115 {
3116 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3117 *pHCPhys = 0; /* ditto */
3118 return rc;
3119 }
3120 RTGCPHYS off = GCPhys - pRam->GCPhys;
3121
3122 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3123 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3124 {
3125 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3126 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3127 return VINF_SUCCESS;
3128 }
3129 if (pRam->pvHC)
3130 {
3131 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3132 return VINF_SUCCESS;
3133 }
3134 *pHCPtr = 0;
3135 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3136}
3137
3138
3139/**
3140 * Clears flags associated with a RAM address.
3141 *
3142 * @returns VBox status code.
3143 * @param pPGM PGM handle.
3144 * @param GCPhys Guest context physical address.
3145 * @param fFlags fFlags to clear. (Bits 0-11.)
3146 */
3147DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3148{
3149 PPGMPAGE pPage;
3150 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3151 if (VBOX_FAILURE(rc))
3152 return rc;
3153
3154 fFlags &= ~X86_PTE_PAE_PG_MASK;
3155 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3156 return VINF_SUCCESS;
3157}
3158
3159
3160/**
3161 * Clears flags associated with a RAM address.
3162 *
3163 * @returns VBox status code.
3164 * @param pPGM PGM handle.
3165 * @param GCPhys Guest context physical address.
3166 * @param fFlags fFlags to clear. (Bits 0-11.)
3167 * @param ppRamHint Where to read and store the ram list hint.
3168 * The caller initializes this to NULL before the call.
3169 */
3170DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3171{
3172 PPGMPAGE pPage;
3173 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3174 if (VBOX_FAILURE(rc))
3175 return rc;
3176
3177 fFlags &= ~X86_PTE_PAE_PG_MASK;
3178 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3179 return VINF_SUCCESS;
3180}
3181
3182/**
3183 * Sets (bitwise OR) flags associated with a RAM address.
3184 *
3185 * @returns VBox status code.
3186 * @param pPGM PGM handle.
3187 * @param GCPhys Guest context physical address.
3188 * @param fFlags fFlags to set clear. (Bits 0-11.)
3189 */
3190DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3191{
3192 PPGMPAGE pPage;
3193 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3194 if (VBOX_FAILURE(rc))
3195 return rc;
3196
3197 fFlags &= ~X86_PTE_PAE_PG_MASK;
3198 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3199 return VINF_SUCCESS;
3200}
3201
3202
3203/**
3204 * Sets (bitwise OR) flags associated with a RAM address.
3205 *
3206 * @returns VBox status code.
3207 * @param pPGM PGM handle.
3208 * @param GCPhys Guest context physical address.
3209 * @param fFlags fFlags to set clear. (Bits 0-11.)
3210 * @param ppRamHint Where to read and store the ram list hint.
3211 * The caller initializes this to NULL before the call.
3212 */
3213DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3214{
3215 PPGMPAGE pPage;
3216 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3217 if (VBOX_FAILURE(rc))
3218 return rc;
3219
3220 fFlags &= ~X86_PTE_PAE_PG_MASK;
3221 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3222 return VINF_SUCCESS;
3223}
3224
3225
3226/**
3227 * Gets the page directory for the specified address.
3228 *
3229 * @returns Pointer to the page directory in question.
3230 * @returns NULL if the page directory is not present or on an invalid page.
3231 * @param pPGM Pointer to the PGM instance data.
3232 * @param GCPtr The address.
3233 */
3234DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCUINTPTR GCPtr)
3235{
3236 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3237 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3238 {
3239 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3240 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
3241
3242 /* cache is out-of-sync. */
3243 PX86PDPAE pPD;
3244 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3245 if (VBOX_SUCCESS(rc))
3246 return pPD;
3247 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3248 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3249 }
3250 return NULL;
3251}
3252
3253
3254/**
3255 * Gets the page directory entry for the specified address.
3256 *
3257 * @returns Pointer to the page directory entry in question.
3258 * @returns NULL if the page directory is not present or on an invalid page.
3259 * @param pPGM Pointer to the PGM instance data.
3260 * @param GCPtr The address.
3261 */
3262DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCUINTPTR GCPtr)
3263{
3264 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3265 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3266 {
3267 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3268 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3269 return &CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD];
3270
3271 /* The cache is out-of-sync. */
3272 PX86PDPAE pPD;
3273 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3274 if (VBOX_SUCCESS(rc))
3275 return &pPD->a[iPD];
3276 AssertMsgFailed(("Impossible! rc=%Vrc PDPE=%RX64\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3277 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. */
3278 }
3279 return NULL;
3280}
3281
3282
3283/**
3284 * Gets the page directory entry for the specified address.
3285 *
3286 * @returns The page directory entry in question.
3287 * @returns A non-present entry if the page directory is not present or on an invalid page.
3288 * @param pPGM Pointer to the PGM instance data.
3289 * @param GCPtr The address.
3290 */
3291DECLINLINE(uint64_t) pgmGstGetPaePDE(PPGM pPGM, RTGCUINTPTR GCPtr)
3292{
3293 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3294 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3295 {
3296 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3297 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3298 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD].u;
3299
3300 /* cache is out-of-sync. */
3301 PX86PDPAE pPD;
3302 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3303 if (VBOX_SUCCESS(rc))
3304 return pPD->a[iPD].u;
3305 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3306 }
3307 return 0ULL;
3308}
3309
3310
3311/**
3312 * Gets the page directory pointer table entry for the specified address
3313 * and returns the index into the page directory
3314 *
3315 * @returns Pointer to the page directory in question.
3316 * @returns NULL if the page directory is not present or on an invalid page.
3317 * @param pPGM Pointer to the PGM instance data.
3318 * @param GCPtr The address.
3319 * @param piPD Receives the index into the returned page directory
3320 */
3321DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCUINTPTR GCPtr, unsigned *piPD)
3322{
3323 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3324 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3325 {
3326 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3327 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3328 {
3329 *piPD = iPD;
3330 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
3331 }
3332
3333 /* cache is out-of-sync. */
3334 PX86PDPAE pPD;
3335 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3336 if (VBOX_SUCCESS(rc))
3337 {
3338 *piPD = iPD;
3339 return pPD;
3340 }
3341 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3342 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3343 }
3344 return NULL;
3345}
3346
3347#ifndef IN_GC
3348/**
3349 * Gets the page directory pointer entry for the specified address.
3350 *
3351 * @returns Pointer to the page directory pointer entry in question.
3352 * @returns NULL if the page directory is not present or on an invalid page.
3353 * @param pPGM Pointer to the PGM instance data.
3354 * @param GCPtr The address.
3355 * @param ppPml4e Page Map Level-4 Entry (out)
3356 */
3357DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e)
3358{
3359 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3360
3361 Assert(pPGM->pGstPaePML4HC);
3362 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3363 if ((*ppPml4e)->n.u1Present)
3364 {
3365 PX86PDPT pPdpt;
3366 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdpt);
3367 if (VBOX_FAILURE(rc))
3368 {
3369 AssertFailed();
3370 return NULL;
3371 }
3372 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3373 return &pPdpt->a[iPdPt];
3374 }
3375 return NULL;
3376}
3377
3378/**
3379 * Gets the page directory entry for the specified address.
3380 *
3381 * @returns The page directory entry in question.
3382 * @returns A non-present entry if the page directory is not present or on an invalid page.
3383 * @param pPGM Pointer to the PGM instance data.
3384 * @param GCPtr The address.
3385 * @param ppPml4e Page Map Level-4 Entry (out)
3386 * @param pPdpe Page directory pointer table entry (out)
3387 */
3388DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3389{
3390 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3391
3392 Assert(pPGM->pGstPaePML4HC);
3393 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3394 if ((*ppPml4e)->n.u1Present)
3395 {
3396 PX86PDPT pPdptTemp;
3397 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
3398 if (VBOX_FAILURE(rc))
3399 {
3400 AssertFailed();
3401 return 0ULL;
3402 }
3403
3404 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3405 *pPdpe = pPdptTemp->a[iPdPt];
3406 if (pPdpe->n.u1Present)
3407 {
3408 PX86PDPAE pPD;
3409
3410 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3411 if (VBOX_FAILURE(rc))
3412 {
3413 AssertFailed();
3414 return 0ULL;
3415 }
3416 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3417 return pPD->a[iPD].u;
3418 }
3419 }
3420 return 0ULL;
3421}
3422
3423/**
3424 * Gets the page directory entry for the specified address.
3425 *
3426 * @returns The page directory entry in question.
3427 * @returns A non-present entry if the page directory is not present or on an invalid page.
3428 * @param pPGM Pointer to the PGM instance data.
3429 * @param GCPtr The address.
3430 */
3431DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr)
3432{
3433 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3434
3435 Assert(pPGM->pGstPaePML4HC);
3436 if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
3437 {
3438 PX86PDPT pPdptTemp;
3439 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
3440 if (VBOX_FAILURE(rc))
3441 {
3442 AssertFailed();
3443 return 0ULL;
3444 }
3445
3446 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3447 if (pPdptTemp->a[iPdPt].n.u1Present)
3448 {
3449 PX86PDPAE pPD;
3450
3451 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3452 if (VBOX_FAILURE(rc))
3453 {
3454 AssertFailed();
3455 return 0ULL;
3456 }
3457 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3458 return pPD->a[iPD].u;
3459 }
3460 }
3461 return 0ULL;
3462}
3463
3464/**
3465 * Gets the page directory entry for the specified address.
3466 *
3467 * @returns Pointer to the page directory entry in question.
3468 * @returns NULL if the page directory is not present or on an invalid page.
3469 * @param pPGM Pointer to the PGM instance data.
3470 * @param GCPtr The address.
3471 */
3472DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr)
3473{
3474 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3475
3476 Assert(pPGM->pGstPaePML4HC);
3477 if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
3478 {
3479 PX86PDPT pPdptTemp;
3480 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
3481 if (VBOX_FAILURE(rc))
3482 {
3483 AssertFailed();
3484 return NULL;
3485 }
3486
3487 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3488 if (pPdptTemp->a[iPdPt].n.u1Present)
3489 {
3490 PX86PDPAE pPD;
3491
3492 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3493 if (VBOX_FAILURE(rc))
3494 {
3495 AssertFailed();
3496 return NULL;
3497 }
3498 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3499 return &pPD->a[iPD];
3500 }
3501 }
3502 return NULL;
3503}
3504
3505
3506/**
3507 * Gets the GUEST page directory pointer for the specified address.
3508 *
3509 * @returns The page directory in question.
3510 * @returns NULL if the page directory is not present or on an invalid page.
3511 * @param pPGM Pointer to the PGM instance data.
3512 * @param GCPtr The address.
3513 * @param ppPml4e Page Map Level-4 Entry (out)
3514 * @param pPdpe Page directory pointer table entry (out)
3515 * @param piPD Receives the index into the returned page directory
3516 */
3517DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
3518{
3519 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3520
3521 Assert(pPGM->pGstPaePML4HC);
3522 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3523 if ((*ppPml4e)->n.u1Present)
3524 {
3525 PX86PDPT pPdptTemp;
3526 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
3527 if (VBOX_FAILURE(rc))
3528 {
3529 AssertFailed();
3530 return 0ULL;
3531 }
3532
3533 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3534 *pPdpe = pPdptTemp->a[iPdPt];
3535 if (pPdpe->n.u1Present)
3536 {
3537 PX86PDPAE pPD;
3538
3539 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3540 if (VBOX_FAILURE(rc))
3541 {
3542 AssertFailed();
3543 return 0ULL;
3544 }
3545 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3546 return pPD;
3547 }
3548 }
3549 return 0ULL;
3550}
3551
3552/**
3553 * Gets the GUEST page directory pointer for the specified address.
3554 *
3555 * @returns The page directory in question.
3556 * @returns NULL if the page directory is not present or on an invalid page.
3557 * @param pPGM Pointer to the PGM instance data.
3558 * @param GCPtr The address.
3559 * @param piPD Receives the index into the returned page directory
3560 */
3561DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, unsigned *piPD)
3562{
3563 PX86PML4E pPml4e;
3564 PX86PDPE pPdpe;
3565 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3566
3567 Assert(pPGM->pGstPaePML4HC);
3568 pPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3569 if (pPml4e->n.u1Present)
3570 {
3571 PX86PDPT pPdptTemp;
3572 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3573 if (VBOX_FAILURE(rc))
3574 {
3575 AssertFailed();
3576 return 0ULL;
3577 }
3578
3579 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3580 pPdpe = &pPdptTemp->a[iPdPt];
3581 if (pPdpe->n.u1Present)
3582 {
3583 PX86PDPAE pPD;
3584
3585 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3586 if (VBOX_FAILURE(rc))
3587 {
3588 AssertFailed();
3589 return 0ULL;
3590 }
3591 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3592 return pPD;
3593 }
3594 }
3595 return 0ULL;
3596}
3597
3598#endif /* !IN_GC */
3599
3600/**
3601 * Checks if any of the specified page flags are set for the given page.
3602 *
3603 * @returns true if any of the flags are set.
3604 * @returns false if all the flags are clear.
3605 * @param pPGM PGM handle.
3606 * @param GCPhys The GC physical address.
3607 * @param fFlags The flags to check for.
3608 */
3609DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
3610{
3611 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
3612 return pPage
3613 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
3614}
3615
3616
3617/**
3618 * Gets the page state for a physical handler.
3619 *
3620 * @returns The physical handler page state.
3621 * @param pCur The physical handler in question.
3622 */
3623DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
3624{
3625 switch (pCur->enmType)
3626 {
3627 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
3628 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
3629
3630 case PGMPHYSHANDLERTYPE_MMIO:
3631 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
3632 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
3633
3634 default:
3635 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3636 }
3637}
3638
3639
3640/**
3641 * Gets the page state for a virtual handler.
3642 *
3643 * @returns The virtual handler page state.
3644 * @param pCur The virtual handler in question.
3645 * @remarks This should never be used on a hypervisor access handler.
3646 */
3647DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
3648{
3649 switch (pCur->enmType)
3650 {
3651 case PGMVIRTHANDLERTYPE_WRITE:
3652 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
3653 case PGMVIRTHANDLERTYPE_ALL:
3654 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
3655 default:
3656 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3657 }
3658}
3659
3660
3661/**
3662 * Clears one physical page of a virtual handler
3663 *
3664 * @param pPGM Pointer to the PGM instance.
3665 * @param pCur Virtual handler structure
3666 * @param iPage Physical page index
3667 *
3668 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
3669 * need to care about other handlers in the same page.
3670 */
3671DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
3672{
3673 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
3674
3675 /*
3676 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
3677 */
3678#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3679 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3680 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3681 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3682#endif
3683 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
3684 {
3685 /* We're the head of the alias chain. */
3686 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
3687#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3688 AssertReleaseMsg(pRemove != NULL,
3689 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3690 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3691 AssertReleaseMsg(pRemove == pPhys2Virt,
3692 ("wanted: pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3693 " got: pRemove=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3694 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
3695 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
3696#endif
3697 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3698 {
3699 /* Insert the next list in the alias chain into the tree. */
3700 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3701#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3702 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3703 ("pNext=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3704 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
3705#endif
3706 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
3707 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
3708 AssertRelease(fRc);
3709 }
3710 }
3711 else
3712 {
3713 /* Locate the previous node in the alias chain. */
3714 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
3715#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3716 AssertReleaseMsg(pPrev != pPhys2Virt,
3717 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3718 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3719#endif
3720 for (;;)
3721 {
3722 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3723 if (pNext == pPhys2Virt)
3724 {
3725 /* unlink. */
3726 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%VGp-%VGp]\n",
3727 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
3728 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3729 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
3730 else
3731 {
3732 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3733 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
3734 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
3735 }
3736 break;
3737 }
3738
3739 /* next */
3740 if (pNext == pPrev)
3741 {
3742#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3743 AssertReleaseMsg(pNext != pPrev,
3744 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3745 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3746#endif
3747 break;
3748 }
3749 pPrev = pNext;
3750 }
3751 }
3752 Log2(("PHYS2VIRT: Removing %VGp-%VGp %#RX32 %s\n",
3753 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, HCSTRING(pCur->pszDesc)));
3754 pPhys2Virt->offNextAlias = 0;
3755 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
3756
3757 /*
3758 * Clear the ram flags for this page.
3759 */
3760 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
3761 AssertReturnVoid(pPage);
3762 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
3763}
3764
3765
3766/**
3767 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3768 *
3769 * @returns Pointer to the shadow page structure.
3770 * @param pPool The pool.
3771 * @param HCPhys The HC physical address of the shadow page.
3772 */
3773DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
3774{
3775 /*
3776 * Look up the page.
3777 */
3778 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
3779 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%VHp pPage=%p type=%d\n", HCPhys, pPage, (pPage) ? pPage->enmKind : 0));
3780 return pPage;
3781}
3782
3783
3784/**
3785 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3786 *
3787 * @returns Pointer to the shadow page structure.
3788 * @param pPool The pool.
3789 * @param idx The pool page index.
3790 */
3791DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
3792{
3793 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
3794 return &pPool->aPages[idx];
3795}
3796
3797
3798#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3799/**
3800 * Clear references to guest physical memory.
3801 *
3802 * @param pPool The pool.
3803 * @param pPoolPage The pool page.
3804 * @param pPhysPage The physical guest page tracking structure.
3805 */
3806DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
3807{
3808 /*
3809 * Just deal with the simple case here.
3810 */
3811#ifdef LOG_ENABLED
3812 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
3813#endif
3814 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
3815 if (cRefs == 1)
3816 {
3817 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
3818 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
3819 }
3820 else
3821 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
3822 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
3823}
3824#endif
3825
3826
3827#ifdef PGMPOOL_WITH_CACHE
3828/**
3829 * Moves the page to the head of the age list.
3830 *
3831 * This is done when the cached page is used in one way or another.
3832 *
3833 * @param pPool The pool.
3834 * @param pPage The cached page.
3835 * @todo inline in PGMInternal.h!
3836 */
3837DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3838{
3839 /*
3840 * Move to the head of the age list.
3841 */
3842 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
3843 {
3844 /* unlink */
3845 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
3846 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
3847 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
3848 else
3849 pPool->iAgeTail = pPage->iAgePrev;
3850
3851 /* insert at head */
3852 pPage->iAgePrev = NIL_PGMPOOL_IDX;
3853 pPage->iAgeNext = pPool->iAgeHead;
3854 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
3855 pPool->iAgeHead = pPage->idx;
3856 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
3857 }
3858}
3859#endif /* PGMPOOL_WITH_CACHE */
3860
3861/**
3862 * Tells if mappings are to be put into the shadow page table or not
3863 *
3864 * @returns boolean result
3865 * @param pVM VM handle.
3866 */
3867
3868DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
3869{
3870#ifdef IN_RING0
3871 /* There are no mappings in VT-x and AMD-V mode. */
3872 Assert(pPGM->fDisableMappings);
3873 return false;
3874#else
3875 return !pPGM->fDisableMappings;
3876#endif
3877}
3878
3879/** @} */
3880
3881#endif
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette