VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 14930

Last change on this file since 14930 was 14877, checked in by vboxsync, 16 years ago

PGMR0DynMap: bigger cache (4x), even fewer unrolled/inlined collision checks (3 pages now, was 5).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 181.0 KB
Line 
1/* $Id: PGMInternal.h 14877 2008-12-01 16:37:38Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43
44
45/** @defgroup grp_pgm_int Internals
46 * @ingroup grp_pgm
47 * @internal
48 * @{
49 */
50
51
52/** @name PGM Compile Time Config
53 * @{
54 */
55
56/**
57 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
58 * Comment it if it will break something.
59 */
60#define PGM_OUT_OF_SYNC_IN_GC
61
62/**
63 * Check and skip global PDEs for non-global flushes
64 */
65#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
66
67/**
68 * Sync N pages instead of a whole page table
69 */
70#define PGM_SYNC_N_PAGES
71
72/**
73 * Number of pages to sync during a page fault
74 *
75 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
76 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
77 */
78#define PGM_SYNC_NR_PAGES 8
79
80/**
81 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
82 */
83#define PGM_MAX_PHYSCACHE_ENTRIES 64
84#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
85
86/**
87 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
88 */
89#define PGM_PHYSMEMACCESS_CACHING
90
91/** @def PGMPOOL_WITH_CACHE
92 * Enable agressive caching using the page pool.
93 *
94 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
95 */
96#define PGMPOOL_WITH_CACHE
97
98/** @def PGMPOOL_WITH_MIXED_PT_CR3
99 * When defined, we'll deal with 'uncachable' pages.
100 */
101#ifdef PGMPOOL_WITH_CACHE
102# define PGMPOOL_WITH_MIXED_PT_CR3
103#endif
104
105/** @def PGMPOOL_WITH_MONITORING
106 * Monitor the guest pages which are shadowed.
107 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
108 * be enabled as well.
109 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
110 */
111#ifdef PGMPOOL_WITH_CACHE
112# define PGMPOOL_WITH_MONITORING
113#endif
114
115/** @def PGMPOOL_WITH_GCPHYS_TRACKING
116 * Tracking the of shadow pages mapping guest physical pages.
117 *
118 * This is very expensive, the current cache prototype is trying to figure out
119 * whether it will be acceptable with an agressive caching policy.
120 */
121#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
122# define PGMPOOL_WITH_GCPHYS_TRACKING
123#endif
124
125/** @def PGMPOOL_WITH_USER_TRACKING
126 * Tracking users of shadow pages. This is required for the linking of shadow page
127 * tables and physical guest addresses.
128 */
129#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
130# define PGMPOOL_WITH_USER_TRACKING
131#endif
132
133/** @def PGMPOOL_CFG_MAX_GROW
134 * The maximum number of pages to add to the pool in one go.
135 */
136#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
137
138/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
139 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
140 */
141#ifdef VBOX_STRICT
142# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
143#endif
144/** @} */
145
146
147/** @name PDPT and PML4 flags.
148 * These are placed in the three bits available for system programs in
149 * the PDPT and PML4 entries.
150 * @{ */
151/** The entry is a permanent one and it's must always be present.
152 * Never free such an entry. */
153#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
154/** Mapping (hypervisor allocated pagetable). */
155#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
156/** @} */
157
158/** @name Page directory flags.
159 * These are placed in the three bits available for system programs in
160 * the page directory entries.
161 * @{ */
162/** Mapping (hypervisor allocated pagetable). */
163#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
164/** Made read-only to facilitate dirty bit tracking. */
165#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
166/** @} */
167
168/** @name Page flags.
169 * These are placed in the three bits available for system programs in
170 * the page entries.
171 * @{ */
172/** Made read-only to facilitate dirty bit tracking. */
173#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
174
175#ifndef PGM_PTFLAGS_CSAM_VALIDATED
176/** Scanned and approved by CSAM (tm).
177 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
178 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
179#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
180#endif
181/** @} */
182
183/** @name Defines used to indicate the shadow and guest paging in the templates.
184 * @{ */
185#define PGM_TYPE_REAL 1
186#define PGM_TYPE_PROT 2
187#define PGM_TYPE_32BIT 3
188#define PGM_TYPE_PAE 4
189#define PGM_TYPE_AMD64 5
190#define PGM_TYPE_NESTED 6
191#define PGM_TYPE_EPT 7
192#define PGM_TYPE_MAX PGM_TYPE_EPT
193/** @} */
194
195/** Macro for checking if the guest is using paging.
196 * @param uGstType PGM_TYPE_*
197 * @param uShwType PGM_TYPE_*
198 * @remark ASSUMES certain order of the PGM_TYPE_* values.
199 */
200#define PGM_WITH_PAGING(uGstType, uShwType) \
201 ( (uGstType) >= PGM_TYPE_32BIT \
202 && (uShwType) != PGM_TYPE_NESTED \
203 && (uShwType) != PGM_TYPE_EPT)
204
205/** Macro for checking if the guest supports the NX bit.
206 * @param uGstType PGM_TYPE_*
207 * @param uShwType PGM_TYPE_*
208 * @remark ASSUMES certain order of the PGM_TYPE_* values.
209 */
210#define PGM_WITH_NX(uGstType, uShwType) \
211 ( (uGstType) >= PGM_TYPE_PAE \
212 && (uShwType) != PGM_TYPE_NESTED \
213 && (uShwType) != PGM_TYPE_EPT)
214
215
216/** @def PGM_HCPHYS_2_PTR
217 * Maps a HC physical page pool address to a virtual address.
218 *
219 * @returns VBox status code.
220 * @param pVM The VM handle.
221 * @param HCPhys The HC physical address to map to a virtual one.
222 * @param ppv Where to store the virtual address. No need to cast this.
223 *
224 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
225 * small page window employeed by that function. Be careful.
226 * @remark There is no need to assert on the result.
227 */
228#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
229# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
230 PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv))
231#else
232# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
233 MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
234#endif
235
236/** @def PGM_GCPHYS_2_PTR
237 * Maps a GC physical page address to a virtual address.
238 *
239 * @returns VBox status code.
240 * @param pVM The VM handle.
241 * @param GCPhys The GC physical address to map to a virtual one.
242 * @param ppv Where to store the virtual address. No need to cast this.
243 *
244 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
245 * small page window employeed by that function. Be careful.
246 * @remark There is no need to assert on the result.
247 */
248#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
249# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
250 PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv))
251#else
252# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
253 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
254#endif
255
256/** @def PGM_GCPHYS_2_PTR_EX
257 * Maps a unaligned GC physical page address to a virtual address.
258 *
259 * @returns VBox status code.
260 * @param pVM The VM handle.
261 * @param GCPhys The GC physical address to map to a virtual one.
262 * @param ppv Where to store the virtual address. No need to cast this.
263 *
264 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
265 * small page window employeed by that function. Be careful.
266 * @remark There is no need to assert on the result.
267 */
268#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
269# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
270 PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv))
271#else
272# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
273 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
274#endif
275
276/** @def PGM_INVL_PG
277 * Invalidates a page when in GC does nothing in HC.
278 *
279 * @param GCVirt The virtual address of the page to invalidate.
280 */
281#ifdef IN_RC
282# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
283#elif defined(IN_RING0)
284# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
285#else
286# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
287#endif
288
289/** @def PGM_INVL_BIG_PG
290 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
291 *
292 * @param GCVirt The virtual address within the page directory to invalidate.
293 */
294#ifdef IN_RC
295# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
296#elif defined(IN_RING0)
297# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
298#else
299# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
300#endif
301
302/** @def PGM_INVL_GUEST_TLBS()
303 * Invalidates all guest TLBs.
304 */
305#ifdef IN_RC
306# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
307#elif defined(IN_RING0)
308# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
309#else
310# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
311#endif
312
313
314/**
315 * Structure for tracking GC Mappings.
316 *
317 * This structure is used by linked list in both GC and HC.
318 */
319typedef struct PGMMAPPING
320{
321 /** Pointer to next entry. */
322 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
323 /** Pointer to next entry. */
324 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
325 /** Pointer to next entry. */
326 RCPTRTYPE(struct PGMMAPPING *) pNextRC;
327#if GC_ARCH_BITS == 64
328 RTRCPTR padding0;
329#endif
330 /** Start Virtual address. */
331 RTGCPTR GCPtr;
332 /** Last Virtual address (inclusive). */
333 RTGCPTR GCPtrLast;
334 /** Range size (bytes). */
335 RTGCPTR cb;
336 /** Pointer to relocation callback function. */
337 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
338 /** User argument to the callback. */
339 R3PTRTYPE(void *) pvUser;
340 /** Mapping description / name. For easing debugging. */
341 R3PTRTYPE(const char *) pszDesc;
342 /** Number of page tables. */
343 RTUINT cPTs;
344#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
345 RTUINT uPadding1; /**< Alignment padding. */
346#endif
347 /** Array of page table mapping data. Each entry
348 * describes one page table. The array can be longer
349 * than the declared length.
350 */
351 struct
352 {
353 /** The HC physical address of the page table. */
354 RTHCPHYS HCPhysPT;
355 /** The HC physical address of the first PAE page table. */
356 RTHCPHYS HCPhysPaePT0;
357 /** The HC physical address of the second PAE page table. */
358 RTHCPHYS HCPhysPaePT1;
359 /** The HC virtual address of the 32-bit page table. */
360 R3PTRTYPE(PX86PT) pPTR3;
361 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
362 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
363 /** The GC virtual address of the 32-bit page table. */
364 RCPTRTYPE(PX86PT) pPTRC;
365 /** The GC virtual address of the two PAE page table. */
366 RCPTRTYPE(PX86PTPAE) paPaePTsRC;
367 /** The GC virtual address of the 32-bit page table. */
368 R0PTRTYPE(PX86PT) pPTR0;
369 /** The GC virtual address of the two PAE page table. */
370 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
371 } aPTs[1];
372} PGMMAPPING;
373/** Pointer to structure for tracking GC Mappings. */
374typedef struct PGMMAPPING *PPGMMAPPING;
375
376
377/**
378 * Physical page access handler structure.
379 *
380 * This is used to keep track of physical address ranges
381 * which are being monitored in some kind of way.
382 */
383typedef struct PGMPHYSHANDLER
384{
385 AVLROGCPHYSNODECORE Core;
386 /** Access type. */
387 PGMPHYSHANDLERTYPE enmType;
388 /** Number of pages to update. */
389 uint32_t cPages;
390 /** Pointer to R3 callback function. */
391 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
392 /** User argument for R3 handlers. */
393 R3PTRTYPE(void *) pvUserR3;
394 /** Pointer to R0 callback function. */
395 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
396 /** User argument for R0 handlers. */
397 R0PTRTYPE(void *) pvUserR0;
398 /** Pointer to GC callback function. */
399 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
400 /** User argument for RC handlers. */
401 RCPTRTYPE(void *) pvUserRC;
402 /** Description / Name. For easing debugging. */
403 R3PTRTYPE(const char *) pszDesc;
404#ifdef VBOX_WITH_STATISTICS
405 /** Profiling of this handler. */
406 STAMPROFILE Stat;
407#endif
408} PGMPHYSHANDLER;
409/** Pointer to a physical page access handler structure. */
410typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
411
412
413/**
414 * Cache node for the physical addresses covered by a virtual handler.
415 */
416typedef struct PGMPHYS2VIRTHANDLER
417{
418 /** Core node for the tree based on physical ranges. */
419 AVLROGCPHYSNODECORE Core;
420 /** Offset from this struct to the PGMVIRTHANDLER structure. */
421 int32_t offVirtHandler;
422 /** Offset of the next alias relative to this one.
423 * Bit 0 is used for indicating whether we're in the tree.
424 * Bit 1 is used for indicating that we're the head node.
425 */
426 int32_t offNextAlias;
427} PGMPHYS2VIRTHANDLER;
428/** Pointer to a phys to virtual handler structure. */
429typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
430
431/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
432 * node is in the tree. */
433#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
434/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
435 * node is in the head of an alias chain.
436 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
437#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
438/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
439#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
440
441
442/**
443 * Virtual page access handler structure.
444 *
445 * This is used to keep track of virtual address ranges
446 * which are being monitored in some kind of way.
447 */
448typedef struct PGMVIRTHANDLER
449{
450 /** Core node for the tree based on virtual ranges. */
451 AVLROGCPTRNODECORE Core;
452 /** Size of the range (in bytes). */
453 RTGCPTR cb;
454 /** Number of cache pages. */
455 uint32_t cPages;
456 /** Access type. */
457 PGMVIRTHANDLERTYPE enmType;
458 /** Pointer to the RC callback function. */
459 RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
460#if HC_ARCH_BITS == 64
461 RTRCPTR padding;
462#endif
463 /** Pointer to the R3 callback function for invalidation. */
464 R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
465 /** Pointer to the R3 callback function. */
466 R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
467 /** Description / Name. For easing debugging. */
468 R3PTRTYPE(const char *) pszDesc;
469#ifdef VBOX_WITH_STATISTICS
470 /** Profiling of this handler. */
471 STAMPROFILE Stat;
472#endif
473 /** Array of cached physical addresses for the monitored ranged. */
474 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
475} PGMVIRTHANDLER;
476/** Pointer to a virtual page access handler structure. */
477typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
478
479
480/**
481 * Page type.
482 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
483 * @todo convert to \#defines.
484 */
485typedef enum PGMPAGETYPE
486{
487 /** The usual invalid zero entry. */
488 PGMPAGETYPE_INVALID = 0,
489 /** RAM page. (RWX) */
490 PGMPAGETYPE_RAM,
491 /** MMIO2 page. (RWX) */
492 PGMPAGETYPE_MMIO2,
493 /** Shadowed ROM. (RWX) */
494 PGMPAGETYPE_ROM_SHADOW,
495 /** ROM page. (R-X) */
496 PGMPAGETYPE_ROM,
497 /** MMIO page. (---) */
498 PGMPAGETYPE_MMIO,
499 /** End of valid entries. */
500 PGMPAGETYPE_END
501} PGMPAGETYPE;
502AssertCompile(PGMPAGETYPE_END < 7);
503
504/** @name Page type predicates.
505 * @{ */
506#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
507#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
508#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
509#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
510#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
511/** @} */
512
513
514/**
515 * A Physical Guest Page tracking structure.
516 *
517 * The format of this structure is complicated because we have to fit a lot
518 * of information into as few bits as possible. The format is also subject
519 * to change (there is one comming up soon). Which means that for we'll be
520 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
521 * accessess to the structure.
522 */
523typedef struct PGMPAGE
524{
525 /** The physical address and a whole lot of other stuff. All bits are used! */
526 RTHCPHYS HCPhys;
527 /** The page state. */
528 uint32_t u2StateX : 2;
529 /** Flag indicating that a write monitored page was written to when set. */
530 uint32_t fWrittenToX : 1;
531 /** For later. */
532 uint32_t fSomethingElse : 1;
533 /** The Page ID.
534 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
535 * The HCPhys will be 100% static. */
536 uint32_t idPageX : 28;
537 /** The page type (PGMPAGETYPE). */
538 uint32_t u3Type : 3;
539 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
540 uint32_t u2HandlerPhysStateX : 2;
541 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
542 uint32_t u2HandlerVirtStateX : 2;
543 uint32_t u29B : 25;
544} PGMPAGE;
545AssertCompileSize(PGMPAGE, 16);
546/** Pointer to a physical guest page. */
547typedef PGMPAGE *PPGMPAGE;
548/** Pointer to a const physical guest page. */
549typedef const PGMPAGE *PCPGMPAGE;
550/** Pointer to a physical guest page pointer. */
551typedef PPGMPAGE *PPPGMPAGE;
552
553
554/**
555 * Clears the page structure.
556 * @param pPage Pointer to the physical guest page tracking structure.
557 */
558#define PGM_PAGE_CLEAR(pPage) \
559 do { \
560 (pPage)->HCPhys = 0; \
561 (pPage)->u2StateX = 0; \
562 (pPage)->fWrittenToX = 0; \
563 (pPage)->fSomethingElse = 0; \
564 (pPage)->idPageX = 0; \
565 (pPage)->u3Type = 0; \
566 (pPage)->u29B = 0; \
567 } while (0)
568
569/**
570 * Initializes the page structure.
571 * @param pPage Pointer to the physical guest page tracking structure.
572 */
573#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
574 do { \
575 (pPage)->HCPhys = (_HCPhys); \
576 (pPage)->u2StateX = (_uState); \
577 (pPage)->fWrittenToX = 0; \
578 (pPage)->fSomethingElse = 0; \
579 (pPage)->idPageX = (_idPage); \
580 /*(pPage)->u3Type = (_uType); - later */ \
581 PGM_PAGE_SET_TYPE(pPage, _uType); \
582 (pPage)->u29B = 0; \
583 } while (0)
584
585/**
586 * Initializes the page structure of a ZERO page.
587 * @param pPage Pointer to the physical guest page tracking structure.
588 */
589#ifdef VBOX_WITH_NEW_PHYS_CODE
590# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
591 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
592#else
593# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
594 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
595#endif
596/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
597# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
598 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
599
600
601/** @name The Page state, PGMPAGE::u2StateX.
602 * @{ */
603/** The zero page.
604 * This is a per-VM page that's never ever mapped writable. */
605#define PGM_PAGE_STATE_ZERO 0
606/** A allocated page.
607 * This is a per-VM page allocated from the page pool (or wherever
608 * we get MMIO2 pages from if the type is MMIO2).
609 */
610#define PGM_PAGE_STATE_ALLOCATED 1
611/** A allocated page that's being monitored for writes.
612 * The shadow page table mappings are read-only. When a write occurs, the
613 * fWrittenTo member is set, the page remapped as read-write and the state
614 * moved back to allocated. */
615#define PGM_PAGE_STATE_WRITE_MONITORED 2
616/** The page is shared, aka. copy-on-write.
617 * This is a page that's shared with other VMs. */
618#define PGM_PAGE_STATE_SHARED 3
619/** @} */
620
621
622/**
623 * Gets the page state.
624 * @returns page state (PGM_PAGE_STATE_*).
625 * @param pPage Pointer to the physical guest page tracking structure.
626 */
627#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
628
629/**
630 * Sets the page state.
631 * @param pPage Pointer to the physical guest page tracking structure.
632 * @param _uState The new page state.
633 */
634#define PGM_PAGE_SET_STATE(pPage, _uState) \
635 do { (pPage)->u2StateX = (_uState); } while (0)
636
637
638/**
639 * Gets the host physical address of the guest page.
640 * @returns host physical address (RTHCPHYS).
641 * @param pPage Pointer to the physical guest page tracking structure.
642 */
643#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
644
645/**
646 * Sets the host physical address of the guest page.
647 * @param pPage Pointer to the physical guest page tracking structure.
648 * @param _HCPhys The new host physical address.
649 */
650#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
651 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
652 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
653
654/**
655 * Get the Page ID.
656 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
657 * @param pPage Pointer to the physical guest page tracking structure.
658 */
659#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
660/* later:
661#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
662 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
663*/
664/**
665 * Sets the Page ID.
666 * @param pPage Pointer to the physical guest page tracking structure.
667 */
668#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
669/* later:
670#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
671 | ((_idPage) & 0xfff) \
672 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
673*/
674
675/**
676 * Get the Chunk ID.
677 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
678 * @param pPage Pointer to the physical guest page tracking structure.
679 */
680#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
681/* later:
682#if GMM_CHUNKID_SHIFT == 12
683# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
684#elif GMM_CHUNKID_SHIFT > 12
685# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
686#elif GMM_CHUNKID_SHIFT < 12
687# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
688 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
689#else
690# error "GMM_CHUNKID_SHIFT isn't defined or something."
691#endif
692*/
693
694/**
695 * Get the index of the page within the allocaiton chunk.
696 * @returns The page index.
697 * @param pPage Pointer to the physical guest page tracking structure.
698 */
699#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
700/* later:
701#if GMM_CHUNKID_SHIFT <= 12
702# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
703#else
704# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
705 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
706#endif
707*/
708
709
710/**
711 * Gets the page type.
712 * @returns The page type.
713 * @param pPage Pointer to the physical guest page tracking structure.
714 */
715#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
716
717/**
718 * Sets the page type.
719 * @param pPage Pointer to the physical guest page tracking structure.
720 * @param _enmType The new page type (PGMPAGETYPE).
721 */
722#ifdef VBOX_WITH_NEW_PHYS_CODE
723#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
724 do { (pPage)->u3Type = (_enmType); } while (0)
725#else
726#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
727 do { \
728 (pPage)->u3Type = (_enmType); \
729 if ((_enmType) == PGMPAGETYPE_ROM) \
730 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
731 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
732 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
733 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
734 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
735 } while (0)
736#endif
737
738
739/**
740 * Checks if the page is 'reserved'.
741 * @returns true/false.
742 * @param pPage Pointer to the physical guest page tracking structure.
743 */
744#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
745
746/**
747 * Checks if the page is marked for MMIO.
748 * @returns true/false.
749 * @param pPage Pointer to the physical guest page tracking structure.
750 */
751#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
752
753/**
754 * Checks if the page is backed by the ZERO page.
755 * @returns true/false.
756 * @param pPage Pointer to the physical guest page tracking structure.
757 */
758#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
759
760/**
761 * Checks if the page is backed by a SHARED page.
762 * @returns true/false.
763 * @param pPage Pointer to the physical guest page tracking structure.
764 */
765#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
766
767
768/**
769 * Marks the paget as written to (for GMM change monitoring).
770 * @param pPage Pointer to the physical guest page tracking structure.
771 */
772#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
773
774/**
775 * Clears the written-to indicator.
776 * @param pPage Pointer to the physical guest page tracking structure.
777 */
778#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
779
780/**
781 * Checks if the page was marked as written-to.
782 * @returns true/false.
783 * @param pPage Pointer to the physical guest page tracking structure.
784 */
785#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
786
787
788/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
789 *
790 * @remarks The values are assigned in order of priority, so we can calculate
791 * the correct state for a page with different handlers installed.
792 * @{ */
793/** No handler installed. */
794#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
795/** Monitoring is temporarily disabled. */
796#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
797/** Write access is monitored. */
798#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
799/** All access is monitored. */
800#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
801/** @} */
802
803/**
804 * Gets the physical access handler state of a page.
805 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
806 * @param pPage Pointer to the physical guest page tracking structure.
807 */
808#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
809
810/**
811 * Sets the physical access handler state of a page.
812 * @param pPage Pointer to the physical guest page tracking structure.
813 * @param _uState The new state value.
814 */
815#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
816 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
817
818/**
819 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
820 * @returns true/false
821 * @param pPage Pointer to the physical guest page tracking structure.
822 */
823#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
824
825/**
826 * Checks if the page has any active physical access handlers.
827 * @returns true/false
828 * @param pPage Pointer to the physical guest page tracking structure.
829 */
830#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
831
832
833/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
834 *
835 * @remarks The values are assigned in order of priority, so we can calculate
836 * the correct state for a page with different handlers installed.
837 * @{ */
838/** No handler installed. */
839#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
840/* 1 is reserved so the lineup is identical with the physical ones. */
841/** Write access is monitored. */
842#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
843/** All access is monitored. */
844#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
845/** @} */
846
847/**
848 * Gets the virtual access handler state of a page.
849 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
850 * @param pPage Pointer to the physical guest page tracking structure.
851 */
852#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
853
854/**
855 * Sets the virtual access handler state of a page.
856 * @param pPage Pointer to the physical guest page tracking structure.
857 * @param _uState The new state value.
858 */
859#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
860 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
861
862/**
863 * Checks if the page has any virtual access handlers.
864 * @returns true/false
865 * @param pPage Pointer to the physical guest page tracking structure.
866 */
867#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
868
869/**
870 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
871 * virtual handlers.
872 * @returns true/false
873 * @param pPage Pointer to the physical guest page tracking structure.
874 */
875#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
876
877
878
879/**
880 * Checks if the page has any access handlers, including temporarily disabled ones.
881 * @returns true/false
882 * @param pPage Pointer to the physical guest page tracking structure.
883 */
884#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
885 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
886 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
887
888/**
889 * Checks if the page has any active access handlers.
890 * @returns true/false
891 * @param pPage Pointer to the physical guest page tracking structure.
892 */
893#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
894 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
895 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
896
897/**
898 * Checks if the page has any active access handlers catching all accesses.
899 * @returns true/false
900 * @param pPage Pointer to the physical guest page tracking structure.
901 */
902#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
903 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
904 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
905
906
907/**
908 * Ram range for GC Phys to HC Phys conversion.
909 *
910 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
911 * conversions too, but we'll let MM handle that for now.
912 *
913 * This structure is used by linked lists in both GC and HC.
914 */
915typedef struct PGMRAMRANGE
916{
917 /** Pointer to the next RAM range - for R3. */
918 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
919 /** Pointer to the next RAM range - for R0. */
920 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
921 /** Pointer to the next RAM range - for RC. */
922 RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
923 /** Pointer alignment. */
924 RTRCPTR RCPtrAlignment;
925 /** Start of the range. Page aligned. */
926 RTGCPHYS GCPhys;
927 /** Last address in the range (inclusive). Page aligned (-1). */
928 RTGCPHYS GCPhysLast;
929 /** Size of the range. (Page aligned of course). */
930 RTGCPHYS cb;
931 /** MM_RAM_* flags */
932 uint32_t fFlags;
933 uint32_t u32Alignment; /**< alignment. */
934#ifndef VBOX_WITH_NEW_PHYS_CODE
935 /** R3 virtual lookup ranges for chunks.
936 * Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges.
937 * @remarks This is occationally accessed from ring-0!! (not darwin) */
938# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
939 R3PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
940# else
941 R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
942# endif
943#endif
944 /** Start of the HC mapping of the range. This is only used for MMIO2. */
945 R3PTRTYPE(void *) pvR3;
946 /** The range description. */
947 R3PTRTYPE(const char *) pszDesc;
948
949 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
950#ifdef VBOX_WITH_NEW_PHYS_CODE
951 uint32_t au32Reserved[2];
952#elif HC_ARCH_BITS == 32
953 uint32_t au32Reserved[1];
954#endif
955
956 /** Array of physical guest page tracking structures. */
957 PGMPAGE aPages[1];
958} PGMRAMRANGE;
959/** Pointer to Ram range for GC Phys to HC Phys conversion. */
960typedef PGMRAMRANGE *PPGMRAMRANGE;
961
962/** Return hc ptr corresponding to the ram range and physical offset */
963#define PGMRAMRANGE_GETHCPTR(pRam, off) \
964 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
965 : (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
966
967/**
968 * Per page tracking structure for ROM image.
969 *
970 * A ROM image may have a shadow page, in which case we may have
971 * two pages backing it. This structure contains the PGMPAGE for
972 * both while PGMRAMRANGE have a copy of the active one. It is
973 * important that these aren't out of sync in any regard other
974 * than page pool tracking data.
975 */
976typedef struct PGMROMPAGE
977{
978 /** The page structure for the virgin ROM page. */
979 PGMPAGE Virgin;
980 /** The page structure for the shadow RAM page. */
981 PGMPAGE Shadow;
982 /** The current protection setting. */
983 PGMROMPROT enmProt;
984 /** Pad the structure size to a multiple of 8. */
985 uint32_t u32Padding;
986} PGMROMPAGE;
987/** Pointer to a ROM page tracking structure. */
988typedef PGMROMPAGE *PPGMROMPAGE;
989
990
991/**
992 * A registered ROM image.
993 *
994 * This is needed to keep track of ROM image since they generally
995 * intrude into a PGMRAMRANGE. It also keeps track of additional
996 * info like the two page sets (read-only virgin and read-write shadow),
997 * the current state of each page.
998 *
999 * Because access handlers cannot easily be executed in a different
1000 * context, the ROM ranges needs to be accessible and in all contexts.
1001 */
1002typedef struct PGMROMRANGE
1003{
1004 /** Pointer to the next range - R3. */
1005 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1006 /** Pointer to the next range - R0. */
1007 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1008 /** Pointer to the next range - RC. */
1009 RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
1010 /** Pointer alignment */
1011 RTRCPTR GCPtrAlignment;
1012 /** Address of the range. */
1013 RTGCPHYS GCPhys;
1014 /** Address of the last byte in the range. */
1015 RTGCPHYS GCPhysLast;
1016 /** Size of the range. */
1017 RTGCPHYS cb;
1018 /** The flags (PGMPHYS_ROM_FLAG_*). */
1019 uint32_t fFlags;
1020 /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1021 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1022 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1023 * This is used for strictness checks. */
1024 R3PTRTYPE(const void *) pvOriginal;
1025 /** The ROM description. */
1026 R3PTRTYPE(const char *) pszDesc;
1027 /** The per page tracking structures. */
1028 PGMROMPAGE aPages[1];
1029} PGMROMRANGE;
1030/** Pointer to a ROM range. */
1031typedef PGMROMRANGE *PPGMROMRANGE;
1032
1033
1034/**
1035 * A registered MMIO2 (= Device RAM) range.
1036 *
1037 * There are a few reason why we need to keep track of these
1038 * registrations. One of them is the deregistration & cleanup
1039 * stuff, while another is that the PGMRAMRANGE associated with
1040 * such a region may have to be removed from the ram range list.
1041 *
1042 * Overlapping with a RAM range has to be 100% or none at all. The
1043 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1044 * meditation will be raised if a partial overlap or an overlap of
1045 * ROM pages is encountered. On an overlap we will free all the
1046 * existing RAM pages and put in the ram range pages instead.
1047 */
1048typedef struct PGMMMIO2RANGE
1049{
1050 /** The owner of the range. (a device) */
1051 PPDMDEVINSR3 pDevInsR3;
1052 /** Pointer to the ring-3 mapping of the allocation. */
1053 RTR3PTR pvR3;
1054 /** Pointer to the next range - R3. */
1055 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1056 /** Whether it's mapped or not. */
1057 bool fMapped;
1058 /** Whether it's overlapping or not. */
1059 bool fOverlapping;
1060 /** The PCI region number.
1061 * @remarks This ASSUMES that nobody will ever really need to have multiple
1062 * PCI devices with matching MMIO region numbers on a single device. */
1063 uint8_t iRegion;
1064 /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1065 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1066 /** The associated RAM range. */
1067 PGMRAMRANGE RamRange;
1068} PGMMMIO2RANGE;
1069/** Pointer to a MMIO2 range. */
1070typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1071
1072
1073
1074
1075/**
1076 * PGMPhysRead/Write cache entry
1077 */
1078typedef struct PGMPHYSCACHEENTRY
1079{
1080 /** R3 pointer to physical page. */
1081 R3PTRTYPE(uint8_t *) pbR3;
1082 /** GC Physical address for cache entry */
1083 RTGCPHYS GCPhys;
1084#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1085 RTGCPHYS u32Padding0; /**< alignment padding. */
1086#endif
1087} PGMPHYSCACHEENTRY;
1088
1089/**
1090 * PGMPhysRead/Write cache to reduce REM memory access overhead
1091 */
1092typedef struct PGMPHYSCACHE
1093{
1094 /** Bitmap of valid cache entries */
1095 uint64_t aEntries;
1096 /** Cache entries */
1097 PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1098} PGMPHYSCACHE;
1099
1100
1101/** Pointer to an allocation chunk ring-3 mapping. */
1102typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1103/** Pointer to an allocation chunk ring-3 mapping pointer. */
1104typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1105
1106/**
1107 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1108 *
1109 * The primary tree (Core) uses the chunk id as key.
1110 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1111 */
1112typedef struct PGMCHUNKR3MAP
1113{
1114 /** The key is the chunk id. */
1115 AVLU32NODECORE Core;
1116 /** The key is the ageing sequence number. */
1117 AVLLU32NODECORE AgeCore;
1118 /** The current age thingy. */
1119 uint32_t iAge;
1120 /** The current reference count. */
1121 uint32_t volatile cRefs;
1122 /** The current permanent reference count. */
1123 uint32_t volatile cPermRefs;
1124 /** The mapping address. */
1125 void *pv;
1126} PGMCHUNKR3MAP;
1127
1128/**
1129 * Allocation chunk ring-3 mapping TLB entry.
1130 */
1131typedef struct PGMCHUNKR3MAPTLBE
1132{
1133 /** The chunk id. */
1134 uint32_t volatile idChunk;
1135#if HC_ARCH_BITS == 64
1136 uint32_t u32Padding; /**< alignment padding. */
1137#endif
1138 /** The chunk map. */
1139#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1140 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1141#else
1142 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1143#endif
1144} PGMCHUNKR3MAPTLBE;
1145/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1146typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1147
1148/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1149 * @remark Must be a power of two value. */
1150#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1151
1152/**
1153 * Allocation chunk ring-3 mapping TLB.
1154 *
1155 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1156 * At first glance this might look kinda odd since AVL trees are
1157 * supposed to give the most optimial lookup times of all trees
1158 * due to their balancing. However, take a tree with 1023 nodes
1159 * in it, that's 10 levels, meaning that most searches has to go
1160 * down 9 levels before they find what they want. This isn't fast
1161 * compared to a TLB hit. There is the factor of cache misses,
1162 * and of course the problem with trees and branch prediction.
1163 * This is why we use TLBs in front of most of the trees.
1164 *
1165 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1166 * difficult when we switch to the new inlined AVL trees (from kStuff).
1167 */
1168typedef struct PGMCHUNKR3MAPTLB
1169{
1170 /** The TLB entries. */
1171 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1172} PGMCHUNKR3MAPTLB;
1173
1174/**
1175 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1176 * @returns Chunk TLB index.
1177 * @param idChunk The Chunk ID.
1178 */
1179#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1180
1181
1182/**
1183 * Ring-3 guest page mapping TLB entry.
1184 * @remarks used in ring-0 as well at the moment.
1185 */
1186typedef struct PGMPAGER3MAPTLBE
1187{
1188 /** Address of the page. */
1189 RTGCPHYS volatile GCPhys;
1190 /** The guest page. */
1191#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1192 R3PTRTYPE(PPGMPAGE) volatile pPage;
1193#else
1194 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1195#endif
1196 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1197#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1198 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1199#else
1200 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1201#endif
1202 /** The address */
1203#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1204 R3PTRTYPE(void *) volatile pv;
1205#else
1206 R3R0PTRTYPE(void *) volatile pv;
1207#endif
1208#if HC_ARCH_BITS == 32
1209 uint32_t u32Padding; /**< alignment padding. */
1210#endif
1211} PGMPAGER3MAPTLBE;
1212/** Pointer to an entry in the HC physical TLB. */
1213typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1214
1215
1216/** The number of entries in the ring-3 guest page mapping TLB.
1217 * @remarks The value must be a power of two. */
1218#define PGM_PAGER3MAPTLB_ENTRIES 64
1219
1220/**
1221 * Ring-3 guest page mapping TLB.
1222 * @remarks used in ring-0 as well at the moment.
1223 */
1224typedef struct PGMPAGER3MAPTLB
1225{
1226 /** The TLB entries. */
1227 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1228} PGMPAGER3MAPTLB;
1229/** Pointer to the ring-3 guest page mapping TLB. */
1230typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1231
1232/**
1233 * Calculates the index of the TLB entry for the specified guest page.
1234 * @returns Physical TLB index.
1235 * @param GCPhys The guest physical address.
1236 */
1237#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1238
1239
1240/**
1241 * Mapping cache usage set entry.
1242 *
1243 * @remarks 16-bit ints was choosen as the set is not expected to be used beyond
1244 * the dynamic ring-0 and (to some extent) raw-mode context mapping
1245 * cache. If it's extended to include ring-3, well, then something will
1246 * have be changed here...
1247 */
1248typedef struct PGMMAPSETENTRY
1249{
1250 /** The mapping cache index. */
1251 uint16_t iPage;
1252 /** The number of references.
1253 * The max is UINT16_MAX - 1. */
1254 uint16_t cRefs;
1255} PGMMAPSETENTRY;
1256/** Pointer to a mapping cache usage set entry. */
1257typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
1258
1259/**
1260 * Mapping cache usage set.
1261 *
1262 * This is used in ring-0 and the raw-mode context to track dynamic mappings
1263 * done during exits / traps. The set is
1264 */
1265typedef struct PGMMAPSET
1266{
1267 /** The number of occupied.
1268 * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
1269 * dynamic mappings. */
1270 uint32_t cEntries;
1271 /** The entries. */
1272 PGMMAPSETENTRY aEntries[32];
1273} PGMMAPSET;
1274/** Pointer to the mapping cache set. */
1275typedef PGMMAPSET *PPGMMAPSET;
1276
1277/** PGMMAPSET::cEntries value for a closed set. */
1278#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
1279
1280
1281/** @name Context neutrual page mapper TLB.
1282 *
1283 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1284 * code is writting in a kind of context neutrual way. Time will show whether
1285 * this actually makes sense or not...
1286 *
1287 * @todo this needs to be reconsidered and dropped/redone since the ring-0
1288 * context ends up using a global mapping cache on some platforms
1289 * (darwin).
1290 *
1291 * @{ */
1292/** @typedef PPGMPAGEMAPTLB
1293 * The page mapper TLB pointer type for the current context. */
1294/** @typedef PPGMPAGEMAPTLB
1295 * The page mapper TLB entry pointer type for the current context. */
1296/** @typedef PPGMPAGEMAPTLB
1297 * The page mapper TLB entry pointer pointer type for the current context. */
1298/** @def PGM_PAGEMAPTLB_ENTRIES
1299 * The number of TLB entries in the page mapper TLB for the current context. */
1300/** @def PGM_PAGEMAPTLB_IDX
1301 * Calculate the TLB index for a guest physical address.
1302 * @returns The TLB index.
1303 * @param GCPhys The guest physical address. */
1304/** @typedef PPGMPAGEMAP
1305 * Pointer to a page mapper unit for current context. */
1306/** @typedef PPPGMPAGEMAP
1307 * Pointer to a page mapper unit pointer for current context. */
1308#ifdef IN_RC
1309// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1310// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1311// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1312# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1313# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1314 typedef void * PPGMPAGEMAP;
1315 typedef void ** PPPGMPAGEMAP;
1316//#elif IN_RING0
1317// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1318// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1319// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1320//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1321//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1322// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1323// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1324#else
1325 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1326 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1327 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1328# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1329# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1330 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1331 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1332#endif
1333/** @} */
1334
1335
1336/** @name PGM Pool Indexes.
1337 * Aka. the unique shadow page identifier.
1338 * @{ */
1339/** NIL page pool IDX. */
1340#define NIL_PGMPOOL_IDX 0
1341/** The first normal index. */
1342#define PGMPOOL_IDX_FIRST_SPECIAL 1
1343/** Page directory (32-bit root). */
1344#define PGMPOOL_IDX_PD 1
1345#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1346/** Page directory (32-bit root). */
1347#define PGMPOOL_IDX_PD 1
1348/** Page Directory Pointer Table (PAE root). */
1349#define PGMPOOL_IDX_PDPT 2
1350/** AMD64 CR3 level index.*/
1351#define PGMPOOL_IDX_AMD64_CR3 3
1352/** Nested paging root.*/
1353#define PGMPOOL_IDX_NESTED_ROOT 4
1354/** The first normal index. */
1355#define PGMPOOL_IDX_FIRST 5
1356#else
1357/** The extended PAE page directory (2048 entries, works as root currently). */
1358#define PGMPOOL_IDX_PAE_PD 2
1359/** PAE Page Directory Table 0. */
1360#define PGMPOOL_IDX_PAE_PD_0 3
1361/** PAE Page Directory Table 1. */
1362#define PGMPOOL_IDX_PAE_PD_1 4
1363/** PAE Page Directory Table 2. */
1364#define PGMPOOL_IDX_PAE_PD_2 5
1365/** PAE Page Directory Table 3. */
1366#define PGMPOOL_IDX_PAE_PD_3 6
1367/** Page Directory Pointer Table (PAE root, not currently used). */
1368#define PGMPOOL_IDX_PDPT 7
1369/** AMD64 CR3 level index.*/
1370#define PGMPOOL_IDX_AMD64_CR3 8
1371/** Nested paging root.*/
1372#define PGMPOOL_IDX_NESTED_ROOT 9
1373/** The first normal index. */
1374#define PGMPOOL_IDX_FIRST 10
1375#endif
1376/** The last valid index. (inclusive, 14 bits) */
1377#define PGMPOOL_IDX_LAST 0x3fff
1378/** @} */
1379
1380/** The NIL index for the parent chain. */
1381#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1382
1383/**
1384 * Node in the chain linking a shadowed page to it's parent (user).
1385 */
1386#pragma pack(1)
1387typedef struct PGMPOOLUSER
1388{
1389 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1390 uint16_t iNext;
1391 /** The user page index. */
1392 uint16_t iUser;
1393 /** Index into the user table. */
1394 uint32_t iUserTable;
1395} PGMPOOLUSER, *PPGMPOOLUSER;
1396typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1397#pragma pack()
1398
1399
1400/** The NIL index for the phys ext chain. */
1401#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1402
1403/**
1404 * Node in the chain of physical cross reference extents.
1405 */
1406#pragma pack(1)
1407typedef struct PGMPOOLPHYSEXT
1408{
1409 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1410 uint16_t iNext;
1411 /** The user page index. */
1412 uint16_t aidx[3];
1413} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1414typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1415#pragma pack()
1416
1417
1418/**
1419 * The kind of page that's being shadowed.
1420 */
1421typedef enum PGMPOOLKIND
1422{
1423 /** The virtual invalid 0 entry. */
1424 PGMPOOLKIND_INVALID = 0,
1425 /** The entry is free (=unused). */
1426 PGMPOOLKIND_FREE,
1427
1428 /** Shw: 32-bit page table; Gst: no paging */
1429 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1430 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1431 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1432 /** Shw: 32-bit page table; Gst: 4MB page. */
1433 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1434 /** Shw: PAE page table; Gst: no paging */
1435 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1436 /** Shw: PAE page table; Gst: 32-bit page table. */
1437 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1438 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1439 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1440 /** Shw: PAE page table; Gst: PAE page table. */
1441 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1442 /** Shw: PAE page table; Gst: 2MB page. */
1443 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1444
1445 /** Shw: 32-bit page directory. Gst: 32-bit page directory. */
1446 PGMPOOLKIND_32BIT_PD,
1447 /** Shw: 32-bit page directory. Gst: real mode. */
1448 PGMPOOLKIND_32BIT_PD_PHYS_REAL,
1449 /** Shw: 32-bit page directory. Gst: protected mode without paging. */
1450 PGMPOOLKIND_32BIT_PD_PHYS_PROT,
1451 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1452 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1453 /** Shw: PAE page directory; Gst: PAE page directory. */
1454 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1455 /** Shw: PAE page directory; Gst: real mode. */
1456 PGMPOOLKIND_PAE_PD_PHYS_REAL,
1457 /** Shw: PAE page directory; Gst: protected mode without paging. */
1458 PGMPOOLKIND_PAE_PD_PHYS_PROT,
1459
1460 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
1461 PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
1462 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
1463 PGMPOOLKIND_PAE_PDPT,
1464
1465 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1466 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1467 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1468 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1469 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1470 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1471 /** Shw: 64-bit page directory table; Gst: no paging */
1472 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1473
1474 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1475 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1476
1477 /** Shw: EPT page directory pointer table; Gst: no paging */
1478 PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
1479 /** Shw: EPT page directory table; Gst: no paging */
1480 PGMPOOLKIND_EPT_PD_FOR_PHYS,
1481 /** Shw: EPT page table; Gst: no paging */
1482 PGMPOOLKIND_EPT_PT_FOR_PHYS,
1483
1484#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1485 /** Shw: Root 32-bit page directory. */
1486 PGMPOOLKIND_ROOT_32BIT_PD,
1487 /** Shw: Root PAE page directory */
1488 PGMPOOLKIND_ROOT_PAE_PD,
1489 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1490 PGMPOOLKIND_ROOT_PDPT,
1491#endif
1492 /** Shw: Root Nested paging table. */
1493 PGMPOOLKIND_ROOT_NESTED,
1494
1495 /** The last valid entry. */
1496 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1497} PGMPOOLKIND;
1498
1499
1500/**
1501 * The tracking data for a page in the pool.
1502 */
1503typedef struct PGMPOOLPAGE
1504{
1505 /** AVL node code with the (R3) physical address of this page. */
1506 AVLOHCPHYSNODECORE Core;
1507 /** Pointer to the R3 mapping of the page. */
1508#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1509 R3PTRTYPE(void *) pvPageR3;
1510#else
1511 R3R0PTRTYPE(void *) pvPageR3;
1512#endif
1513 /** The guest physical address. */
1514#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1515 uint32_t Alignment0;
1516#endif
1517 RTGCPHYS GCPhys;
1518 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1519 uint8_t enmKind;
1520 uint8_t bPadding;
1521 /** The index of this page. */
1522 uint16_t idx;
1523 /** The next entry in the list this page currently resides in.
1524 * It's either in the free list or in the GCPhys hash. */
1525 uint16_t iNext;
1526#ifdef PGMPOOL_WITH_USER_TRACKING
1527 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1528 uint16_t iUserHead;
1529 /** The number of present entries. */
1530 uint16_t cPresent;
1531 /** The first entry in the table which is present. */
1532 uint16_t iFirstPresent;
1533#endif
1534#ifdef PGMPOOL_WITH_MONITORING
1535 /** The number of modifications to the monitored page. */
1536 uint16_t cModifications;
1537 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1538 uint16_t iModifiedNext;
1539 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1540 uint16_t iModifiedPrev;
1541 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1542 uint16_t iMonitoredNext;
1543 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1544 uint16_t iMonitoredPrev;
1545#endif
1546#ifdef PGMPOOL_WITH_CACHE
1547 /** The next page in the age list. */
1548 uint16_t iAgeNext;
1549 /** The previous page in the age list. */
1550 uint16_t iAgePrev;
1551#endif /* PGMPOOL_WITH_CACHE */
1552 /** Used to indicate that the page is zeroed. */
1553 bool fZeroed;
1554 /** Used to indicate that a PT has non-global entries. */
1555 bool fSeenNonGlobal;
1556 /** Used to indicate that we're monitoring writes to the guest page. */
1557 bool fMonitored;
1558 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1559 * (All pages are in the age list.) */
1560 bool fCached;
1561 /** This is used by the R3 access handlers when invoked by an async thread.
1562 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1563 bool volatile fReusedFlushPending;
1564 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1565 * In these cases the access handler acts differently and will check
1566 * for mapping conflicts like the normal CR3 handler.
1567 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1568 * replaced by a list of pages which share access handler.
1569 */
1570 bool fCR3Mix;
1571} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1572
1573
1574#ifdef PGMPOOL_WITH_CACHE
1575/** The hash table size. */
1576# define PGMPOOL_HASH_SIZE 0x40
1577/** The hash function. */
1578# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1579#endif
1580
1581
1582/**
1583 * The shadow page pool instance data.
1584 *
1585 * It's all one big allocation made at init time, except for the
1586 * pages that is. The user nodes follows immediatly after the
1587 * page structures.
1588 */
1589typedef struct PGMPOOL
1590{
1591 /** The VM handle - R3 Ptr. */
1592 PVMR3 pVMR3;
1593 /** The VM handle - R0 Ptr. */
1594 PVMR0 pVMR0;
1595 /** The VM handle - RC Ptr. */
1596 PVMRC pVMRC;
1597 /** The max pool size. This includes the special IDs. */
1598 uint16_t cMaxPages;
1599 /** The current pool size. */
1600 uint16_t cCurPages;
1601 /** The head of the free page list. */
1602 uint16_t iFreeHead;
1603 /* Padding. */
1604 uint16_t u16Padding;
1605#ifdef PGMPOOL_WITH_USER_TRACKING
1606 /** Head of the chain of free user nodes. */
1607 uint16_t iUserFreeHead;
1608 /** The number of user nodes we've allocated. */
1609 uint16_t cMaxUsers;
1610 /** The number of present page table entries in the entire pool. */
1611 uint32_t cPresent;
1612 /** Pointer to the array of user nodes - RC pointer. */
1613 RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
1614 /** Pointer to the array of user nodes - R3 pointer. */
1615 R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
1616 /** Pointer to the array of user nodes - R0 pointer. */
1617 R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
1618#endif /* PGMPOOL_WITH_USER_TRACKING */
1619#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1620 /** Head of the chain of free phys ext nodes. */
1621 uint16_t iPhysExtFreeHead;
1622 /** The number of user nodes we've allocated. */
1623 uint16_t cMaxPhysExts;
1624 /** Pointer to the array of physical xref extent - RC pointer. */
1625 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
1626 /** Pointer to the array of physical xref extent nodes - R3 pointer. */
1627 R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
1628 /** Pointer to the array of physical xref extent nodes - R0 pointer. */
1629 R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
1630#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1631#ifdef PGMPOOL_WITH_CACHE
1632 /** Hash table for GCPhys addresses. */
1633 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1634 /** The head of the age list. */
1635 uint16_t iAgeHead;
1636 /** The tail of the age list. */
1637 uint16_t iAgeTail;
1638 /** Set if the cache is enabled. */
1639 bool fCacheEnabled;
1640#endif /* PGMPOOL_WITH_CACHE */
1641#ifdef PGMPOOL_WITH_MONITORING
1642 /** Head of the list of modified pages. */
1643 uint16_t iModifiedHead;
1644 /** The current number of modified pages. */
1645 uint16_t cModifiedPages;
1646 /** Access handler, RC. */
1647 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
1648 /** Access handler, R0. */
1649 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1650 /** Access handler, R3. */
1651 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1652 /** The access handler description (HC ptr). */
1653 R3PTRTYPE(const char *) pszAccessHandler;
1654#endif /* PGMPOOL_WITH_MONITORING */
1655 /** The number of pages currently in use. */
1656 uint16_t cUsedPages;
1657#ifdef VBOX_WITH_STATISTICS
1658 /** The high wather mark for cUsedPages. */
1659 uint16_t cUsedPagesHigh;
1660 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1661 /** Profiling pgmPoolAlloc(). */
1662 STAMPROFILEADV StatAlloc;
1663 /** Profiling pgmPoolClearAll(). */
1664 STAMPROFILE StatClearAll;
1665 /** Profiling pgmPoolFlushAllInt(). */
1666 STAMPROFILE StatFlushAllInt;
1667 /** Profiling pgmPoolFlushPage(). */
1668 STAMPROFILE StatFlushPage;
1669 /** Profiling pgmPoolFree(). */
1670 STAMPROFILE StatFree;
1671 /** Profiling time spent zeroing pages. */
1672 STAMPROFILE StatZeroPage;
1673# ifdef PGMPOOL_WITH_USER_TRACKING
1674 /** Profiling of pgmPoolTrackDeref. */
1675 STAMPROFILE StatTrackDeref;
1676 /** Profiling pgmTrackFlushGCPhysPT. */
1677 STAMPROFILE StatTrackFlushGCPhysPT;
1678 /** Profiling pgmTrackFlushGCPhysPTs. */
1679 STAMPROFILE StatTrackFlushGCPhysPTs;
1680 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1681 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1682 /** Number of times we've been out of user records. */
1683 STAMCOUNTER StatTrackFreeUpOneUser;
1684# endif
1685# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1686 /** Profiling deref activity related tracking GC physical pages. */
1687 STAMPROFILE StatTrackDerefGCPhys;
1688 /** Number of linear searches for a HCPhys in the ram ranges. */
1689 STAMCOUNTER StatTrackLinearRamSearches;
1690 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1691 STAMCOUNTER StamTrackPhysExtAllocFailures;
1692# endif
1693# ifdef PGMPOOL_WITH_MONITORING
1694 /** Profiling the RC/R0 access handler. */
1695 STAMPROFILE StatMonitorRZ;
1696 /** Times we've failed interpreting the instruction. */
1697 STAMCOUNTER StatMonitorRZEmulateInstr;
1698 /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
1699 STAMPROFILE StatMonitorRZFlushPage;
1700 /** Times we've detected fork(). */
1701 STAMCOUNTER StatMonitorRZFork;
1702 /** Profiling the RC/R0 access we've handled (except REP STOSD). */
1703 STAMPROFILE StatMonitorRZHandled;
1704 /** Times we've failed interpreting a patch code instruction. */
1705 STAMCOUNTER StatMonitorRZIntrFailPatch1;
1706 /** Times we've failed interpreting a patch code instruction during flushing. */
1707 STAMCOUNTER StatMonitorRZIntrFailPatch2;
1708 /** The number of times we've seen rep prefixes we can't handle. */
1709 STAMCOUNTER StatMonitorRZRepPrefix;
1710 /** Profiling the REP STOSD cases we've handled. */
1711 STAMPROFILE StatMonitorRZRepStosd;
1712
1713 /** Profiling the R3 access handler. */
1714 STAMPROFILE StatMonitorR3;
1715 /** Times we've failed interpreting the instruction. */
1716 STAMCOUNTER StatMonitorR3EmulateInstr;
1717 /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
1718 STAMPROFILE StatMonitorR3FlushPage;
1719 /** Times we've detected fork(). */
1720 STAMCOUNTER StatMonitorR3Fork;
1721 /** Profiling the R3 access we've handled (except REP STOSD). */
1722 STAMPROFILE StatMonitorR3Handled;
1723 /** The number of times we've seen rep prefixes we can't handle. */
1724 STAMCOUNTER StatMonitorR3RepPrefix;
1725 /** Profiling the REP STOSD cases we've handled. */
1726 STAMPROFILE StatMonitorR3RepStosd;
1727 /** The number of times we're called in an async thread an need to flush. */
1728 STAMCOUNTER StatMonitorR3Async;
1729 /** The high wather mark for cModifiedPages. */
1730 uint16_t cModifiedPagesHigh;
1731 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1732# endif
1733# ifdef PGMPOOL_WITH_CACHE
1734 /** The number of cache hits. */
1735 STAMCOUNTER StatCacheHits;
1736 /** The number of cache misses. */
1737 STAMCOUNTER StatCacheMisses;
1738 /** The number of times we've got a conflict of 'kind' in the cache. */
1739 STAMCOUNTER StatCacheKindMismatches;
1740 /** Number of times we've been out of pages. */
1741 STAMCOUNTER StatCacheFreeUpOne;
1742 /** The number of cacheable allocations. */
1743 STAMCOUNTER StatCacheCacheable;
1744 /** The number of uncacheable allocations. */
1745 STAMCOUNTER StatCacheUncacheable;
1746# endif
1747#elif HC_ARCH_BITS == 64
1748 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1749#endif
1750 /** The AVL tree for looking up a page by its HC physical address. */
1751 AVLOHCPHYSTREE HCPhysTree;
1752 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1753 /** Array of pages. (cMaxPages in length)
1754 * The Id is the index into thist array.
1755 */
1756 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1757} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1758
1759
1760/** @def PGMPOOL_PAGE_2_PTR
1761 * Maps a pool page pool into the current context.
1762 *
1763 * @returns VBox status code.
1764 * @param pVM The VM handle.
1765 * @param pPage The pool page.
1766 *
1767 * @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the
1768 * small page window employeed by that function. Be careful.
1769 * @remark There is no need to assert on the result.
1770 */
1771#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1772# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPage((pVM), (pPage))
1773#else
1774 DECLINLINE(R3R0PTRTYPE(void *)) PGMPOOL_PAGE_2_PTR(PVM pVM, PPGMPOOLPAGE pPage)
1775 {
1776 Assert(pPage->pvPageR3);
1777 return pPage->pvPageR3;
1778 }
1779#endif
1780
1781
1782/**
1783 * Trees are using self relative offsets as pointers.
1784 * So, all its data, including the root pointer, must be in the heap for HC and GC
1785 * to have the same layout.
1786 */
1787typedef struct PGMTREES
1788{
1789 /** Physical access handlers (AVL range+offsetptr tree). */
1790 AVLROGCPHYSTREE PhysHandlers;
1791 /** Virtual access handlers (AVL range + GC ptr tree). */
1792 AVLROGCPTRTREE VirtHandlers;
1793 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1794 AVLROGCPHYSTREE PhysToVirtHandlers;
1795 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1796 AVLROGCPTRTREE HyperVirtHandlers;
1797} PGMTREES;
1798/** Pointer to PGM trees. */
1799typedef PGMTREES *PPGMTREES;
1800
1801
1802/** @name Paging mode macros
1803 * @{ */
1804#ifdef IN_RC
1805# define PGM_CTX(a,b) a##RC##b
1806# define PGM_CTX_STR(a,b) a "GC" b
1807# define PGM_CTX_DECL(type) VMMRCDECL(type)
1808#else
1809# ifdef IN_RING3
1810# define PGM_CTX(a,b) a##R3##b
1811# define PGM_CTX_STR(a,b) a "R3" b
1812# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1813# else
1814# define PGM_CTX(a,b) a##R0##b
1815# define PGM_CTX_STR(a,b) a "R0" b
1816# define PGM_CTX_DECL(type) VMMDECL(type)
1817# endif
1818#endif
1819
1820#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1821#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
1822#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1823#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1824#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
1825#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1826#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1827#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
1828#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1829#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1830#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
1831#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1832#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1833#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
1834#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1835#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1836#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1837
1838#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1839#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
1840#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1841#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1842#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
1843#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1844#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1845#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
1846#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1847#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1848#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
1849#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1850#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
1851#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
1852#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
1853#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1854#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1855
1856/* Shw_Gst */
1857#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1858#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1859#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1860#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1861#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1862#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1863#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1864#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1865#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1866#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1867#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1868#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1869#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1870#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1871#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
1872#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
1873#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
1874#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
1875#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
1876
1877#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
1878#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
1879#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
1880#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
1881#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
1882#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
1883#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
1884#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
1885#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
1886#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
1887#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
1888#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
1889#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
1890#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
1891#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
1892#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
1893#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
1894#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
1895#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1896#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1897#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1898#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1899#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1900#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1901#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1902#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1903#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1904#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1905#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
1906#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
1907#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
1908#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
1909#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
1910#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
1911#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
1912#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
1913#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
1914
1915#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
1916#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
1917/** @} */
1918
1919/**
1920 * Data for each paging mode.
1921 */
1922typedef struct PGMMODEDATA
1923{
1924 /** The guest mode type. */
1925 uint32_t uGstType;
1926 /** The shadow mode type. */
1927 uint32_t uShwType;
1928
1929 /** @name Function pointers for Shadow paging.
1930 * @{
1931 */
1932 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
1933 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
1934 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1935 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1936
1937 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1938 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1939
1940 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1941 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1942 /** @} */
1943
1944 /** @name Function pointers for Guest paging.
1945 * @{
1946 */
1947 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
1948 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
1949 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1950 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1951 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
1952#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1953 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1954 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
1955#endif
1956 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1957 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
1958#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1959 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
1960 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
1961 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
1962 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
1963#endif
1964 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1965 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1966 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
1967#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1968 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1969 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
1970#endif
1971 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1972 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
1973#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1974 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
1975 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
1976#endif
1977 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1978 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1979 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
1980#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1981 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1982 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
1983#endif
1984 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1985 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
1986#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1987 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
1988 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
1989#endif
1990 /** @} */
1991
1992 /** @name Function pointers for Both Shadow and Guest paging.
1993 * @{
1994 */
1995 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
1996 /* no pfnR3BthTrap0eHandler */
1997 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1998 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1999 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2000 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2001 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2002#ifdef VBOX_STRICT
2003 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2004#endif
2005
2006 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2007 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2008 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2009 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2010 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2011 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2012#ifdef VBOX_STRICT
2013 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2014#endif
2015
2016 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2017 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2018 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2019 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2020 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2021 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2022#ifdef VBOX_STRICT
2023 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2024#endif
2025 /** @} */
2026} PGMMODEDATA, *PPGMMODEDATA;
2027
2028
2029
2030/**
2031 * Converts a PGM pointer into a VM pointer.
2032 * @returns Pointer to the VM structure the PGM is part of.
2033 * @param pPGM Pointer to PGM instance data.
2034 */
2035#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
2036
2037/**
2038 * PGM Data (part of VM)
2039 */
2040typedef struct PGM
2041{
2042 /** Offset to the VM structure. */
2043 RTINT offVM;
2044
2045 /*
2046 * This will be redefined at least two more times before we're done, I'm sure.
2047 * The current code is only to get on with the coding.
2048 * - 2004-06-10: initial version, bird.
2049 * - 2004-07-02: 1st time, bird.
2050 * - 2004-10-18: 2nd time, bird.
2051 * - 2005-07-xx: 3rd time, bird.
2052 */
2053
2054 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2055 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
2056 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2057 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
2058
2059 /** The host paging mode. (This is what SUPLib reports.) */
2060 SUPPAGINGMODE enmHostMode;
2061 /** The shadow paging mode. */
2062 PGMMODE enmShadowMode;
2063 /** The guest paging mode. */
2064 PGMMODE enmGuestMode;
2065
2066 /** The current physical address representing in the guest CR3 register. */
2067 RTGCPHYS GCPhysCR3;
2068 /** Pointer to the 5 page CR3 content mapping.
2069 * The first page is always the CR3 (in some form) while the 4 other pages
2070 * are used of the PDs in PAE mode. */
2071 RTGCPTR GCPtrCR3Mapping;
2072#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2073 uint32_t u32Alignment;
2074#endif
2075 /** The physical address of the currently monitored guest CR3 page.
2076 * When this value is NIL_RTGCPHYS no page is being monitored. */
2077 RTGCPHYS GCPhysGstCR3Monitored;
2078
2079 /** @name 32-bit Guest Paging.
2080 * @{ */
2081 /** The guest's page directory, R3 pointer. */
2082 R3PTRTYPE(PX86PD) pGst32BitPdR3;
2083#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2084 /** The guest's page directory, R0 pointer. */
2085 R0PTRTYPE(PX86PD) pGst32BitPdR0;
2086#endif
2087 /** The guest's page directory, static RC mapping. */
2088 RCPTRTYPE(PX86PD) pGst32BitPdRC;
2089 /** @} */
2090
2091 /** @name PAE Guest Paging.
2092 * @{ */
2093 /** The guest's page directory pointer table, static RC mapping. */
2094 RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
2095 /** The guest's page directory pointer table, R3 pointer. */
2096 R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
2097#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2098 /** The guest's page directory pointer table, R0 pointer. */
2099 R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
2100#endif
2101
2102 /** The guest's page directories, R3 pointers.
2103 * These are individual pointers and don't have to be adjecent.
2104 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2105 R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
2106 /** The guest's page directories, R0 pointers.
2107 * Same restrictions as apGstPaePDsR3. */
2108#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2109 R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
2110#endif
2111 /** The guest's page directories, static GC mapping.
2112 * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
2113 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2114 RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
2115 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
2116 RTGCPHYS aGCPhysGstPaePDs[4];
2117 /** The physical addresses of the monitored guest page directories (PAE). */
2118 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
2119 /** @} */
2120
2121 /** @name AMD64 Guest Paging.
2122 * @{ */
2123 /** The guest's page directory pointer table, R3 pointer. */
2124 R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
2125#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2126 /** The guest's page directory pointer table, R0 pointer. */
2127 R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
2128#endif
2129 /** @} */
2130
2131 /** @name 32-bit Shadow Paging
2132 * @{ */
2133#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2134 /** The Physical Address (HC) of the current active shadow CR3. */
2135 RTHCPHYS HCPhysShwCR3;
2136 /** Pointer to the page of the current active CR3 - R3 Ptr. */
2137 R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
2138 /** Pointer to the page of the current active CR3 - R0 Ptr. */
2139 R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
2140 /** Pointer to the page of the current active CR3 - RC Ptr. */
2141 RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
2142# if HC_ARCH_BITS == 64
2143 RTRCPTR alignment6; /**< structure size alignment. */
2144# endif
2145#else
2146 /** The 32-Bit PD - R3 Ptr. */
2147 R3PTRTYPE(PX86PD) pShw32BitPdR3;
2148 /** The 32-Bit PD - R0 Ptr. */
2149 R0PTRTYPE(PX86PD) pShw32BitPdR0;
2150 /** The 32-Bit PD - RC Ptr. */
2151 RCPTRTYPE(PX86PD) pShw32BitPdRC;
2152# if HC_ARCH_BITS == 64
2153 uint32_t u32Padding1; /**< alignment padding. */
2154# endif
2155 /** The Physical Address (HC) of the 32-Bit PD. */
2156 RTHCPHYS HCPhysShw32BitPD;
2157 /** @} */
2158
2159 /** @name PAE Shadow Paging
2160 * @{ */
2161 /** The four PDs for the low 4GB - R3 Ptr.
2162 * Even though these are 4 pointers, what they point at is a single table.
2163 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2164 R3PTRTYPE(PX86PDPAE) apShwPaePDsR3[4];
2165# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2166 /** The four PDs for the low 4GB - R0 Ptr.
2167 * Same kind of mapping as apHCPaePDs. */
2168 R0PTRTYPE(PX86PDPAE) apShwPaePDsR0[4];
2169# endif
2170 /** The four PDs for the low 4GB - RC Ptr.
2171 * Same kind of mapping as apHCPaePDs. */
2172 RCPTRTYPE(PX86PDPAE) apShwPaePDsRC[4];
2173 /** The Physical Address (HC) of the four PDs for the low 4GB.
2174 * These are *NOT* 4 contiguous pages. */
2175 RTHCPHYS aHCPhysPaePDs[4];
2176 /** The Physical Address (HC) of the PAE PDPT. */
2177 RTHCPHYS HCPhysShwPaePdpt;
2178 /** The PAE PDPT - R3 Ptr. */
2179 R3PTRTYPE(PX86PDPT) pShwPaePdptR3;
2180 /** The PAE PDPT - R0 Ptr. */
2181 R0PTRTYPE(PX86PDPT) pShwPaePdptR0;
2182 /** The PAE PDPT - RC Ptr. */
2183 RCPTRTYPE(PX86PDPT) pShwPaePdptRC;
2184 /** @} */
2185# if HC_ARCH_BITS == 64
2186 RTRCPTR alignment5; /**< structure size alignment. */
2187# endif
2188
2189 /** @name AMD64 Shadow Paging
2190 * Extends PAE Paging.
2191 * @{ */
2192 /** The Page Map Level 4 table - R3 Ptr. */
2193 R3PTRTYPE(PX86PML4) pShwPaePml4R3;
2194# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2195 /** The Page Map Level 4 table - R0 Ptr. */
2196 R0PTRTYPE(PX86PML4) pShwPaePml4R0;
2197# endif
2198 /** The Physical Address (HC) of the Page Map Level 4 table. */
2199 RTHCPHYS HCPhysShwPaePml4;
2200 /** The pgm pool page descriptor for the current active CR3 - R3 Ptr. */
2201 R3PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R3;
2202 /** The pgm pool page descriptor for the current active CR3 - R0 Ptr. */
2203 R0PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R0;
2204 /** @}*/
2205
2206 /** @name Nested Shadow Paging
2207 * @{ */
2208 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R3 pointer. */
2209 RTR3PTR pShwNestedRootR3;
2210# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2211 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R0 pointer. */
2212 RTR0PTR pShwNestedRootR0;
2213# endif
2214 /** The Physical Address (HC) of the nested paging root. */
2215 RTHCPHYS HCPhysShwNestedRoot;
2216#endif
2217 /** @} */
2218
2219 /** @name Function pointers for Shadow paging.
2220 * @{
2221 */
2222 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2223 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2224 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2225 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2226
2227 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2228 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2229
2230 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2231 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2232
2233 /** @} */
2234
2235 /** @name Function pointers for Guest paging.
2236 * @{
2237 */
2238 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2239 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2240 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2241 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2242 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2243#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2244 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2245 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2246#endif
2247 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2248 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2249#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2250 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2251 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2252 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2253 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2254#endif
2255 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2256 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2257 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2258#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2259 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2260 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2261#endif
2262 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2263 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2264#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2265 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2266 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2267#endif
2268#if HC_ARCH_BITS == 64
2269 RTRCPTR alignment3; /**< structure size alignment. */
2270#endif
2271
2272 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2273 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2274 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2275#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2276 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2277 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2278#endif
2279 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2280 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2281#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2282 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2283 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2284#endif
2285 /** @} */
2286
2287 /** @name Function pointers for Both Shadow and Guest paging.
2288 * @{
2289 */
2290 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2291 /* no pfnR3BthTrap0eHandler */
2292 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2293 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2294 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2295 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2296 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2297 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2298
2299 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2300 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2301 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2302 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2303 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2304 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2305 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2306
2307 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2308 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2309 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2310 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2311 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2312 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2313 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2314#if HC_ARCH_BITS == 64
2315 RTRCPTR alignment2; /**< structure size alignment. */
2316#endif
2317 /** @} */
2318
2319 /** Pointer to SHW+GST mode data (function pointers).
2320 * The index into this table is made up from */
2321 R3PTRTYPE(PPGMMODEDATA) paModeData;
2322
2323 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2324 * This is sorted by physical address and contains no overlapping ranges. */
2325 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2326 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2327 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2328 /** RC pointer corresponding to PGM::pRamRangesR3. */
2329 RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
2330 /** The configured RAM size. */
2331 RTUINT cbRamSize;
2332
2333 /** Pointer to the list of ROM ranges - for R3.
2334 * This is sorted by physical address and contains no overlapping ranges. */
2335 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2336 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2337 R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
2338 /** RC pointer corresponding to PGM::pRomRangesR3. */
2339 RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
2340 /** Alignment padding. */
2341 RTRCPTR GCPtrPadding2;
2342
2343 /** Pointer to the list of MMIO2 ranges - for R3.
2344 * Registration order. */
2345 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2346
2347 /** PGM offset based trees - R3 Ptr. */
2348 R3PTRTYPE(PPGMTREES) pTreesR3;
2349 /** PGM offset based trees - R0 Ptr. */
2350 R0PTRTYPE(PPGMTREES) pTreesR0;
2351 /** PGM offset based trees - RC Ptr. */
2352 RCPTRTYPE(PPGMTREES) pTreesRC;
2353
2354 /** Linked list of GC mappings - for RC.
2355 * The list is sorted ascending on address.
2356 */
2357 RCPTRTYPE(PPGMMAPPING) pMappingsRC;
2358 /** Linked list of GC mappings - for HC.
2359 * The list is sorted ascending on address.
2360 */
2361 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2362 /** Linked list of GC mappings - for R0.
2363 * The list is sorted ascending on address.
2364 */
2365 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2366
2367 /** If set no conflict checks are required. (boolean) */
2368 bool fMappingsFixed;
2369 /** If set, then no mappings are put into the shadow page table. (boolean) */
2370 bool fDisableMappings;
2371 /** Size of fixed mapping */
2372 uint32_t cbMappingFixed;
2373 /** Base address (GC) of fixed mapping */
2374 RTGCPTR GCPtrMappingFixed;
2375#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2376 uint32_t u32Padding0; /**< alignment padding. */
2377#endif
2378
2379
2380 /** @name Intermediate Context
2381 * @{ */
2382 /** Pointer to the intermediate page directory - Normal. */
2383 R3PTRTYPE(PX86PD) pInterPD;
2384 /** Pointer to the intermedate page tables - Normal.
2385 * There are two page tables, one for the identity mapping and one for
2386 * the host context mapping (of the core code). */
2387 R3PTRTYPE(PX86PT) apInterPTs[2];
2388 /** Pointer to the intermedate page tables - PAE. */
2389 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2390 /** Pointer to the intermedate page directory - PAE. */
2391 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2392 /** Pointer to the intermedate page directory - PAE. */
2393 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2394 /** Pointer to the intermedate page-map level 4 - AMD64. */
2395 R3PTRTYPE(PX86PML4) pInterPaePML4;
2396 /** Pointer to the intermedate page directory - AMD64. */
2397 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2398 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2399 RTHCPHYS HCPhysInterPD;
2400 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2401 RTHCPHYS HCPhysInterPaePDPT;
2402 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2403 RTHCPHYS HCPhysInterPaePML4;
2404 /** @} */
2405
2406 /** Base address of the dynamic page mapping area.
2407 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2408 */
2409 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2410 /** The index of the last entry used in the dynamic page mapping area. */
2411 RTUINT iDynPageMapLast;
2412 /** Cache containing the last entries in the dynamic page mapping area.
2413 * The cache size is covering half of the mapping area. */
2414 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2415
2416 /** The address of the ring-0 mapping cache if we're making use of it. */
2417 RTR0PTR pvR0DynMapUsed;
2418#if HC_ARCH_BITS == 32
2419 RTR0PTR R0PtrPadding0; /**< Alignment. */
2420#endif
2421
2422
2423 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2424 RTGCPHYS GCPhys4MBPSEMask;
2425
2426 /** A20 gate mask.
2427 * Our current approach to A20 emulation is to let REM do it and don't bother
2428 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2429 * But whould need arrise, we'll subject physical addresses to this mask. */
2430 RTGCPHYS GCPhysA20Mask;
2431 /** A20 gate state - boolean! */
2432 RTUINT fA20Enabled;
2433
2434 /** What needs syncing (PGM_SYNC_*).
2435 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2436 * PGMFlushTLB, and PGMR3Load. */
2437 RTUINT fSyncFlags;
2438
2439 /** PGM critical section.
2440 * This protects the physical & virtual access handlers, ram ranges,
2441 * and the page flag updating (some of it anyway).
2442 */
2443 PDMCRITSECT CritSect;
2444
2445 /** Shadow Page Pool - R3 Ptr. */
2446 R3PTRTYPE(PPGMPOOL) pPoolR3;
2447 /** Shadow Page Pool - R0 Ptr. */
2448 R0PTRTYPE(PPGMPOOL) pPoolR0;
2449 /** Shadow Page Pool - RC Ptr. */
2450 RCPTRTYPE(PPGMPOOL) pPoolRC;
2451
2452 /** We're not in a state which permits writes to guest memory.
2453 * (Only used in strict builds.) */
2454 bool fNoMorePhysWrites;
2455
2456 /** Flush the cache on the next access. */
2457 bool fPhysCacheFlushPending;
2458/** @todo r=bird: Fix member names!*/
2459 /** PGMPhysRead cache */
2460 PGMPHYSCACHE pgmphysreadcache;
2461 /** PGMPhysWrite cache */
2462 PGMPHYSCACHE pgmphyswritecache;
2463
2464 /**
2465 * Data associated with managing the ring-3 mappings of the allocation chunks.
2466 */
2467 struct
2468 {
2469 /** The chunk tree, ordered by chunk id. */
2470#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2471 R3PTRTYPE(PAVLU32NODECORE) pTree;
2472#else
2473 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2474#endif
2475 /** The chunk mapping TLB. */
2476 PGMCHUNKR3MAPTLB Tlb;
2477 /** The number of mapped chunks. */
2478 uint32_t c;
2479 /** The maximum number of mapped chunks.
2480 * @cfgm PGM/MaxRing3Chunks */
2481 uint32_t cMax;
2482 /** The chunk age tree, ordered by ageing sequence number. */
2483 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2484 /** The current time. */
2485 uint32_t iNow;
2486 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2487 uint32_t AgeingCountdown;
2488 } ChunkR3Map;
2489
2490 /**
2491 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2492 */
2493 PGMPAGER3MAPTLB PhysTlbHC;
2494
2495 /** @name The zero page.
2496 * @{ */
2497 /** The host physical address of the zero page. */
2498 RTHCPHYS HCPhysZeroPg;
2499 /** The ring-3 mapping of the zero page. */
2500 RTR3PTR pvZeroPgR3;
2501 /** The ring-0 mapping of the zero page. */
2502 RTR0PTR pvZeroPgR0;
2503 /** The GC mapping of the zero page. */
2504 RTGCPTR pvZeroPgGC;
2505#if GC_ARCH_BITS != 32
2506 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2507#endif
2508 /** @}*/
2509
2510 /** The number of handy pages. */
2511 uint32_t cHandyPages;
2512 /**
2513 * Array of handy pages.
2514 *
2515 * This array is used in a two way communication between pgmPhysAllocPage
2516 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2517 * an intermediary.
2518 *
2519 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2520 * (The current size of 32 pages, means 128 KB of handy memory.)
2521 */
2522 GMMPAGEDESC aHandyPages[32];
2523
2524 /** @name Release Statistics
2525 * @{ */
2526 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2527 uint32_t cPrivatePages; /**< The number of private pages. */
2528 uint32_t cSharedPages; /**< The number of shared pages. */
2529 uint32_t cZeroPages; /**< The number of zero backed pages. */
2530 /** The number of times the guest has switched mode since last reset or statistics reset. */
2531 STAMCOUNTER cGuestModeChanges;
2532 /** @} */
2533
2534#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
2535 /** RC: Which statistic this \#PF should be attributed to. */
2536 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
2537 RTRCPTR padding0;
2538 /** R0: Which statistic this \#PF should be attributed to. */
2539 R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
2540 RTR0PTR padding1;
2541
2542 /* Common */
2543# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2544 STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
2545 STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2546 STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
2547 STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
2548 STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
2549 STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
2550# endif
2551 STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
2552 STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
2553
2554 /* R3 only: */
2555 STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
2556 STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
2557 STAMCOUNTER StatR3GuestPDWrite; /**< R3: The total number of times pgmHCGuestPDWriteHandler() was called. */
2558 STAMCOUNTER StatR3GuestPDWriteConflict; /**< R3: The number of times GuestPDWriteContlict() detected a conflict. */
2559 STAMCOUNTER StatR3DynRamTotal; /**< R3: Allocated MBs of guest ram */
2560 STAMCOUNTER StatR3DynRamGrow; /**< R3: Nr of pgmr3PhysGrowRange calls. */
2561
2562 /* R0 only: */
2563 STAMCOUNTER StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */
2564 STAMCOUNTER StatR0DynMapHCPageSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */
2565 STAMCOUNTER StatR0DynMapHCPageSetSearchHits; /**< R0: Set search hits. */
2566 STAMCOUNTER StatR0DynMapHCPageSetSearchMisses; /**< R0: Set search misses. */
2567 STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */
2568 STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */
2569 STAMCOUNTER StatR0DynMapPageHit0; /**< R0: Hit at iPage+0. */
2570 STAMCOUNTER StatR0DynMapPageHit1; /**< R0: Hit at iPage+1. */
2571 STAMCOUNTER StatR0DynMapPageHit2; /**< R0: Hit at iPage+2. */
2572 STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */
2573 STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */
2574 STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */
2575 STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */
2576 //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */
2577
2578 /* RC only: */
2579 STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache hits */
2580 STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache misses */
2581 STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
2582 STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
2583
2584 /* RZ only: */
2585 STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
2586 STAMPROFILE StatRZTrap0eTimeCheckPageFault;
2587 STAMPROFILE StatRZTrap0eTimeSyncPT;
2588 STAMPROFILE StatRZTrap0eTimeMapping;
2589 STAMPROFILE StatRZTrap0eTimeOutOfSync;
2590 STAMPROFILE StatRZTrap0eTimeHandlers;
2591 STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
2592 STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2593 STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
2594 STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
2595 STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2596 STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2597 STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
2598 STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2599 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2600 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2601 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2602 STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2603 STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
2604 STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
2605 STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
2606 STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */
2607 STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
2608 STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
2609 STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2610 STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
2611 STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
2612 STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */
2613 STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */
2614 STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */
2615 STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */
2616 STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */
2617 STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */
2618 STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */
2619 STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */
2620 STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */
2621 STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */
2622 STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */
2623 STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */
2624 STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */
2625 STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */
2626 STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
2627 STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
2628 STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */
2629 STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
2630 STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
2631 STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
2632 STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
2633 STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
2634
2635 /* HC - R3 and (maybe) R0: */
2636
2637 /* RZ & R3: */
2638 STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
2639 STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
2640 STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
2641 STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
2642 STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
2643 STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
2644 STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
2645 STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
2646 STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
2647 STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
2648 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
2649 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
2650 STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
2651 STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
2652 STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
2653 STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
2654 STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2655 STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
2656 STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
2657 STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
2658 STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2659 STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2660 STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
2661 STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
2662 STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
2663 STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
2664 STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
2665 STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
2666 STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
2667 STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
2668 STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
2669 STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2670 STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2671 STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
2672 STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2673 STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2674 STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2675 STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
2676 STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2677 STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2678 STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
2679 STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
2680 STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
2681 STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
2682 STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
2683 STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
2684 STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
2685/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
2686 STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
2687 STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2688 STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2689 STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2690 STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2691 STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
2692
2693 STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
2694 STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
2695 STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
2696 STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
2697 STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
2698 STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
2699 STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
2700 STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
2701 STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
2702 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
2703 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
2704 STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
2705 STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
2706 STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
2707 STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
2708 STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
2709 STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2710 STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
2711 STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
2712 STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
2713 STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2714 STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2715 STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
2716 STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
2717 STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
2718 STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
2719 STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
2720 STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
2721 STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
2722 STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
2723 STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
2724 STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2725 STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
2726 STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2727 STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2728 STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2729 STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2730 STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
2731 STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2732 STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2733 STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
2734 STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
2735 STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
2736 STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
2737 STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
2738 STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
2739 STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
2740/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
2741 STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
2742 STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2743 STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2744 STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2745 STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2746 STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
2747#endif /* VBOX_WITH_STATISTICS */
2748} PGM;
2749/** Pointer to the PGM instance data. */
2750typedef PGM *PPGM;
2751
2752
2753/**
2754 * PGMCPU Data (part of VMCPU).
2755 */
2756typedef struct PGMCPU
2757{
2758 /** Offset to the VMCPU structure. */
2759 RTINT offVMCPU;
2760 /** Automatically tracked physical memory mapping set.
2761 * Ring-0 and strict raw-mode builds. */
2762 PGMMAPSET AutoSet;
2763} PGMCPU;
2764/** Pointer to the per-cpu PGM data. */
2765typedef PGMCPU *PPGMCPU;
2766
2767
2768/** @name PGM::fSyncFlags Flags
2769 * @{
2770 */
2771/** Updates the virtual access handler state bit in PGMPAGE. */
2772#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2773/** Always sync CR3. */
2774#define PGM_SYNC_ALWAYS RT_BIT(1)
2775/** Check monitoring on next CR3 (re)load and invalidate page. */
2776#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2777/** Clear the page pool (a light weight flush). */
2778#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2779/** @} */
2780
2781
2782__BEGIN_DECLS
2783
2784int pgmLock(PVM pVM);
2785void pgmUnlock(PVM pVM);
2786
2787VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2788VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2789
2790int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2791int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2792PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2793void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2794DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2795
2796void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2797int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2798DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2799#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2800void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2801#else
2802# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2803#endif
2804DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2805
2806
2807void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2808int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2809int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2810int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2811#ifdef IN_RING3
2812int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2813int pgmR3PhysRamReset(PVM pVM);
2814int pgmR3PhysRomReset(PVM pVM);
2815#ifndef VBOX_WITH_NEW_PHYS_CODE
2816int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2817#endif
2818
2819int pgmR3PoolInit(PVM pVM);
2820void pgmR3PoolRelocate(PVM pVM);
2821void pgmR3PoolReset(PVM pVM);
2822
2823#endif /* IN_RING3 */
2824#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2825void *pgmPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage);
2826#endif
2827int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2828PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2829void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2830void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2831int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2832void pgmPoolFlushAll(PVM pVM);
2833void pgmPoolClearAll(PVM pVM);
2834int pgmPoolSyncCR3(PVM pVM);
2835void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2836void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2837int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2838PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2839void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2840void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2841uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2842void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2843#ifdef PGMPOOL_WITH_MONITORING
2844# ifdef IN_RING3
2845void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2846# else
2847void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2848# endif
2849int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2850void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2851void pgmPoolMonitorModifiedClearAll(PVM pVM);
2852int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2853int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2854#endif
2855
2856__END_DECLS
2857
2858
2859/**
2860 * Gets the PGMRAMRANGE structure for a guest page.
2861 *
2862 * @returns Pointer to the RAM range on success.
2863 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2864 *
2865 * @param pPGM PGM handle.
2866 * @param GCPhys The GC physical address.
2867 */
2868DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2869{
2870 /*
2871 * Optimize for the first range.
2872 */
2873 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2874 RTGCPHYS off = GCPhys - pRam->GCPhys;
2875 if (RT_UNLIKELY(off >= pRam->cb))
2876 {
2877 do
2878 {
2879 pRam = pRam->CTX_SUFF(pNext);
2880 if (RT_UNLIKELY(!pRam))
2881 break;
2882 off = GCPhys - pRam->GCPhys;
2883 } while (off >= pRam->cb);
2884 }
2885 return pRam;
2886}
2887
2888
2889/**
2890 * Gets the PGMPAGE structure for a guest page.
2891 *
2892 * @returns Pointer to the page on success.
2893 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2894 *
2895 * @param pPGM PGM handle.
2896 * @param GCPhys The GC physical address.
2897 */
2898DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
2899{
2900 /*
2901 * Optimize for the first range.
2902 */
2903 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2904 RTGCPHYS off = GCPhys - pRam->GCPhys;
2905 if (RT_UNLIKELY(off >= pRam->cb))
2906 {
2907 do
2908 {
2909 pRam = pRam->CTX_SUFF(pNext);
2910 if (RT_UNLIKELY(!pRam))
2911 return NULL;
2912 off = GCPhys - pRam->GCPhys;
2913 } while (off >= pRam->cb);
2914 }
2915 return &pRam->aPages[off >> PAGE_SHIFT];
2916}
2917
2918
2919/**
2920 * Gets the PGMPAGE structure for a guest page.
2921 *
2922 * Old Phys code: Will make sure the page is present.
2923 *
2924 * @returns VBox status code.
2925 * @retval VINF_SUCCESS and a valid *ppPage on success.
2926 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2927 *
2928 * @param pPGM PGM handle.
2929 * @param GCPhys The GC physical address.
2930 * @param ppPage Where to store the page poitner on success.
2931 */
2932DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
2933{
2934 /*
2935 * Optimize for the first range.
2936 */
2937 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2938 RTGCPHYS off = GCPhys - pRam->GCPhys;
2939 if (RT_UNLIKELY(off >= pRam->cb))
2940 {
2941 do
2942 {
2943 pRam = pRam->CTX_SUFF(pNext);
2944 if (RT_UNLIKELY(!pRam))
2945 {
2946 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2947 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2948 }
2949 off = GCPhys - pRam->GCPhys;
2950 } while (off >= pRam->cb);
2951 }
2952 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2953#ifndef VBOX_WITH_NEW_PHYS_CODE
2954
2955 /*
2956 * Make sure it's present.
2957 */
2958 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2959 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2960 {
2961#ifdef IN_RING3
2962 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2963#else
2964 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2965#endif
2966 if (RT_FAILURE(rc))
2967 {
2968 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2969 return rc;
2970 }
2971 Assert(rc == VINF_SUCCESS);
2972 }
2973#endif
2974 return VINF_SUCCESS;
2975}
2976
2977
2978
2979
2980/**
2981 * Gets the PGMPAGE structure for a guest page.
2982 *
2983 * Old Phys code: Will make sure the page is present.
2984 *
2985 * @returns VBox status code.
2986 * @retval VINF_SUCCESS and a valid *ppPage on success.
2987 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2988 *
2989 * @param pPGM PGM handle.
2990 * @param GCPhys The GC physical address.
2991 * @param ppPage Where to store the page poitner on success.
2992 * @param ppRamHint Where to read and store the ram list hint.
2993 * The caller initializes this to NULL before the call.
2994 */
2995DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
2996{
2997 RTGCPHYS off;
2998 PPGMRAMRANGE pRam = *ppRamHint;
2999 if ( !pRam
3000 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
3001 {
3002 pRam = pPGM->CTX_SUFF(pRamRanges);
3003 off = GCPhys - pRam->GCPhys;
3004 if (RT_UNLIKELY(off >= pRam->cb))
3005 {
3006 do
3007 {
3008 pRam = pRam->CTX_SUFF(pNext);
3009 if (RT_UNLIKELY(!pRam))
3010 {
3011 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
3012 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3013 }
3014 off = GCPhys - pRam->GCPhys;
3015 } while (off >= pRam->cb);
3016 }
3017 *ppRamHint = pRam;
3018 }
3019 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3020#ifndef VBOX_WITH_NEW_PHYS_CODE
3021
3022 /*
3023 * Make sure it's present.
3024 */
3025 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3026 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3027 {
3028#ifdef IN_RING3
3029 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3030#else
3031 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3032#endif
3033 if (RT_FAILURE(rc))
3034 {
3035 *ppPage = NULL; /* Shut up annoying smart ass. */
3036 return rc;
3037 }
3038 Assert(rc == VINF_SUCCESS);
3039 }
3040#endif
3041 return VINF_SUCCESS;
3042}
3043
3044
3045/**
3046 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3047 *
3048 * @returns Pointer to the page on success.
3049 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3050 *
3051 * @param pPGM PGM handle.
3052 * @param GCPhys The GC physical address.
3053 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
3054 */
3055DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
3056{
3057 /*
3058 * Optimize for the first range.
3059 */
3060 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3061 RTGCPHYS off = GCPhys - pRam->GCPhys;
3062 if (RT_UNLIKELY(off >= pRam->cb))
3063 {
3064 do
3065 {
3066 pRam = pRam->CTX_SUFF(pNext);
3067 if (RT_UNLIKELY(!pRam))
3068 return NULL;
3069 off = GCPhys - pRam->GCPhys;
3070 } while (off >= pRam->cb);
3071 }
3072 *ppRam = pRam;
3073 return &pRam->aPages[off >> PAGE_SHIFT];
3074}
3075
3076
3077/**
3078 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3079 *
3080 * @returns Pointer to the page on success.
3081 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3082 *
3083 * @param pPGM PGM handle.
3084 * @param GCPhys The GC physical address.
3085 * @param ppPage Where to store the pointer to the PGMPAGE structure.
3086 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
3087 */
3088DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
3089{
3090 /*
3091 * Optimize for the first range.
3092 */
3093 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3094 RTGCPHYS off = GCPhys - pRam->GCPhys;
3095 if (RT_UNLIKELY(off >= pRam->cb))
3096 {
3097 do
3098 {
3099 pRam = pRam->CTX_SUFF(pNext);
3100 if (RT_UNLIKELY(!pRam))
3101 {
3102 *ppRam = NULL; /* Shut up silly GCC warnings. */
3103 *ppPage = NULL; /* ditto */
3104 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3105 }
3106 off = GCPhys - pRam->GCPhys;
3107 } while (off >= pRam->cb);
3108 }
3109 *ppRam = pRam;
3110 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3111#ifndef VBOX_WITH_NEW_PHYS_CODE
3112
3113 /*
3114 * Make sure it's present.
3115 */
3116 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3117 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3118 {
3119#ifdef IN_RING3
3120 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3121#else
3122 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3123#endif
3124 if (RT_FAILURE(rc))
3125 {
3126 *ppPage = NULL; /* Shut up silly GCC warnings. */
3127 *ppPage = NULL; /* ditto */
3128 return rc;
3129 }
3130 Assert(rc == VINF_SUCCESS);
3131
3132 }
3133#endif
3134 return VINF_SUCCESS;
3135}
3136
3137
3138/**
3139 * Convert GC Phys to HC Phys.
3140 *
3141 * @returns VBox status.
3142 * @param pPGM PGM handle.
3143 * @param GCPhys The GC physical address.
3144 * @param pHCPhys Where to store the corresponding HC physical address.
3145 *
3146 * @deprecated Doesn't deal with zero, shared or write monitored pages.
3147 * Avoid when writing new code!
3148 */
3149DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3150{
3151 PPGMPAGE pPage;
3152 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3153 if (RT_FAILURE(rc))
3154 return rc;
3155 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3156 return VINF_SUCCESS;
3157}
3158
3159
3160#ifndef IN_RC
3161/**
3162 * Queries the Physical TLB entry for a physical guest page,
3163 * attemting to load the TLB entry if necessary.
3164 *
3165 * @returns VBox status code.
3166 * @retval VINF_SUCCESS on success
3167 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3168 * @param pPGM The PGM instance handle.
3169 * @param GCPhys The address of the guest page.
3170 * @param ppTlbe Where to store the pointer to the TLB entry.
3171 */
3172
3173DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3174{
3175 int rc;
3176 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3177 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3178 {
3179 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits));
3180 rc = VINF_SUCCESS;
3181 }
3182 else
3183 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3184 *ppTlbe = pTlbe;
3185 return rc;
3186}
3187#endif /* !IN_RC */
3188
3189#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3190
3191# ifndef VBOX_WITH_NEW_PHYS_CODE
3192/**
3193 * Convert GC Phys to HC Virt.
3194 *
3195 * @returns VBox status.
3196 * @param pPGM PGM handle.
3197 * @param GCPhys The GC physical address.
3198 * @param pHCPtr Where to store the corresponding HC virtual address.
3199 *
3200 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr. Only user is
3201 * pgmPoolMonitorGCPtr2CCPtr.
3202 */
3203DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3204{
3205 PPGMRAMRANGE pRam;
3206 PPGMPAGE pPage;
3207 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3208 if (RT_FAILURE(rc))
3209 {
3210 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3211 return rc;
3212 }
3213 RTGCPHYS off = GCPhys - pRam->GCPhys;
3214
3215 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3216 {
3217 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3218 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3219 return VINF_SUCCESS;
3220 }
3221 if (pRam->pvR3)
3222 {
3223 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3224 return VINF_SUCCESS;
3225 }
3226 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3227 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3228}
3229# endif /* !VBOX_WITH_NEW_PHYS_CODE */
3230#endif /* !IN_RC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
3231
3232/**
3233 * Convert GC Phys to HC Virt and HC Phys.
3234 *
3235 * @returns VBox status.
3236 * @param pPGM PGM handle.
3237 * @param GCPhys The GC physical address.
3238 * @param pHCPtr Where to store the corresponding HC virtual address.
3239 * @param pHCPhys Where to store the HC Physical address and its flags.
3240 *
3241 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3242 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3243 */
3244DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3245{
3246 PPGMRAMRANGE pRam;
3247 PPGMPAGE pPage;
3248 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3249 if (RT_FAILURE(rc))
3250 {
3251 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3252 *pHCPhys = 0; /* ditto */
3253 return rc;
3254 }
3255 RTGCPHYS off = GCPhys - pRam->GCPhys;
3256
3257 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3258 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3259 {
3260 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3261#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
3262 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
3263 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3264#else
3265 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3266#endif
3267 return VINF_SUCCESS;
3268 }
3269 if (pRam->pvR3)
3270 {
3271 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3272 return VINF_SUCCESS;
3273 }
3274 *pHCPtr = 0;
3275 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3276}
3277
3278
3279/**
3280 * Clears flags associated with a RAM address.
3281 *
3282 * @returns VBox status code.
3283 * @param pPGM PGM handle.
3284 * @param GCPhys Guest context physical address.
3285 * @param fFlags fFlags to clear. (Bits 0-11.)
3286 */
3287DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3288{
3289 PPGMPAGE pPage;
3290 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3291 if (RT_FAILURE(rc))
3292 return rc;
3293
3294 fFlags &= ~X86_PTE_PAE_PG_MASK;
3295 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3296 return VINF_SUCCESS;
3297}
3298
3299
3300/**
3301 * Clears flags associated with a RAM address.
3302 *
3303 * @returns VBox status code.
3304 * @param pPGM PGM handle.
3305 * @param GCPhys Guest context physical address.
3306 * @param fFlags fFlags to clear. (Bits 0-11.)
3307 * @param ppRamHint Where to read and store the ram list hint.
3308 * The caller initializes this to NULL before the call.
3309 */
3310DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3311{
3312 PPGMPAGE pPage;
3313 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3314 if (RT_FAILURE(rc))
3315 return rc;
3316
3317 fFlags &= ~X86_PTE_PAE_PG_MASK;
3318 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3319 return VINF_SUCCESS;
3320}
3321
3322
3323/**
3324 * Sets (bitwise OR) flags associated with a RAM address.
3325 *
3326 * @returns VBox status code.
3327 * @param pPGM PGM handle.
3328 * @param GCPhys Guest context physical address.
3329 * @param fFlags fFlags to set clear. (Bits 0-11.)
3330 */
3331DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3332{
3333 PPGMPAGE pPage;
3334 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3335 if (RT_FAILURE(rc))
3336 return rc;
3337
3338 fFlags &= ~X86_PTE_PAE_PG_MASK;
3339 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3340 return VINF_SUCCESS;
3341}
3342
3343
3344/**
3345 * Sets (bitwise OR) flags associated with a RAM address.
3346 *
3347 * @returns VBox status code.
3348 * @param pPGM PGM handle.
3349 * @param GCPhys Guest context physical address.
3350 * @param fFlags fFlags to set clear. (Bits 0-11.)
3351 * @param ppRamHint Where to read and store the ram list hint.
3352 * The caller initializes this to NULL before the call.
3353 */
3354DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3355{
3356 PPGMPAGE pPage;
3357 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3358 if (RT_FAILURE(rc))
3359 return rc;
3360
3361 fFlags &= ~X86_PTE_PAE_PG_MASK;
3362 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3363 return VINF_SUCCESS;
3364}
3365
3366
3367/**
3368 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3369 * Takes PSE-36 into account.
3370 *
3371 * @returns guest physical address
3372 * @param pPGM Pointer to the PGM instance data.
3373 * @param Pde Guest Pde
3374 */
3375DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3376{
3377 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3378 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3379
3380 return GCPhys & pPGM->GCPhys4MBPSEMask;
3381}
3382
3383
3384/**
3385 * Gets the page directory entry for the specified address (32-bit paging).
3386 *
3387 * @returns The page directory entry in question.
3388 * @param pPGM Pointer to the PGM instance data.
3389 * @param GCPtr The address.
3390 */
3391DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGM pPGM, RTGCPTR GCPtr)
3392{
3393#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3394 PCX86PD pGuestPD = 0;
3395 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPD);
3396 if (RT_FAILURE(rc))
3397 {
3398 X86PDE ZeroPde = {0};
3399 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde);
3400 }
3401 return pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3402#else
3403 return pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3404#endif
3405}
3406
3407
3408/**
3409 * Gets the address of a specific page directory entry (32-bit paging).
3410 *
3411 * @returns Pointer the page directory entry in question.
3412 * @param pPGM Pointer to the PGM instance data.
3413 * @param GCPtr The address.
3414 */
3415DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3416{
3417#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3418 PX86PD pGuestPD = 0;
3419 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPD);
3420 AssertRCReturn(rc, 0);
3421 return &pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3422#else
3423 return &pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3424#endif
3425}
3426
3427
3428/**
3429 * Gets the address the guest page directory (32-bit paging).
3430 *
3431 * @returns Pointer the page directory entry in question.
3432 * @param pPGM Pointer to the PGM instance data.
3433 */
3434DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGM pPGM)
3435{
3436#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3437 PX86PD pGuestPD = 0;
3438 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPD);
3439 AssertRCReturn(rc, 0);
3440 return pGuestPD;
3441#else
3442 return pPGM->CTX_SUFF(pGst32BitPd);
3443#endif
3444}
3445
3446
3447/**
3448 * Gets the guest page directory pointer table.
3449 *
3450 * @returns Pointer to the page directory in question.
3451 * @returns NULL if the page directory is not present or on an invalid page.
3452 * @param pPGM Pointer to the PGM instance data.
3453 */
3454DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGM pPGM)
3455{
3456#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3457 PX86PDPT pGuestPDPT = 0;
3458 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3459 AssertRCReturn(rc, 0);
3460 return pGuestPDPT;
3461#else
3462 return pPGM->CTX_SUFF(pGstPaePdpt);
3463#endif
3464}
3465
3466
3467/**
3468 * Gets the guest page directory pointer table entry for the specified address.
3469 *
3470 * @returns Pointer to the page directory in question.
3471 * @returns NULL if the page directory is not present or on an invalid page.
3472 * @param pPGM Pointer to the PGM instance data.
3473 * @param GCPtr The address.
3474 */
3475DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGM pPGM, RTGCPTR GCPtr)
3476{
3477 AssertGCPtr32(GCPtr);
3478
3479#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3480 PX86PDPT pGuestPDPT = 0;
3481 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3482 AssertRCReturn(rc, 0);
3483 return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3484#else
3485 return &pPGM->CTX_SUFF(pGstPaePdpt)->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3486#endif
3487}
3488
3489
3490/**
3491 * Gets the page directory for the specified address.
3492 *
3493 * @returns Pointer to the page directory in question.
3494 * @returns NULL if the page directory is not present or on an invalid page.
3495 * @param pPGM Pointer to the PGM instance data.
3496 * @param GCPtr The address.
3497 */
3498DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCPTR GCPtr)
3499{
3500 AssertGCPtr32(GCPtr);
3501
3502#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3503 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3504 AssertReturn(pGuestPDPT, 0);
3505#else
3506 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3507#endif
3508 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3509 if (pGuestPDPT->a[iPdPt].n.u1Present)
3510 {
3511#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3512 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3513 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3514#endif
3515
3516 /* cache is out-of-sync. */
3517 PX86PDPAE pPD;
3518 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3519 if (RT_SUCCESS(rc))
3520 return pPD;
3521 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3522 /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */
3523 }
3524 return NULL;
3525}
3526
3527
3528/**
3529 * Gets the page directory entry for the specified address.
3530 *
3531 * @returns Pointer to the page directory entry in question.
3532 * @returns NULL if the page directory is not present or on an invalid page.
3533 * @param pPGM Pointer to the PGM instance data.
3534 * @param GCPtr The address.
3535 */
3536DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3537{
3538 AssertGCPtr32(GCPtr);
3539
3540#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3541 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3542 AssertReturn(pGuestPDPT, 0);
3543#else
3544 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3545#endif
3546 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3547 if (pGuestPDPT->a[iPdPt].n.u1Present)
3548 {
3549 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3550#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3551 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3552 return &pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3553#endif
3554
3555 /* The cache is out-of-sync. */
3556 PX86PDPAE pPD;
3557 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3558 if (RT_SUCCESS(rc))
3559 return &pPD->a[iPD];
3560 AssertMsgFailed(("Impossible! rc=%Rrc PDPE=%RX64\n", rc, pGuestPDPT->a[iPdPt].u));
3561 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */
3562 }
3563 return NULL;
3564}
3565
3566
3567/**
3568 * Gets the page directory entry for the specified address.
3569 *
3570 * @returns The page directory entry in question.
3571 * @returns A non-present entry if the page directory is not present or on an invalid page.
3572 * @param pPGM Pointer to the PGM instance data.
3573 * @param GCPtr The address.
3574 */
3575DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
3576{
3577 AssertGCPtr32(GCPtr);
3578
3579#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3580 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3581 if (RT_LIKELY(pGuestPDPT))
3582#else
3583 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3584#endif
3585 {
3586 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3587 if (pGuestPDPT->a[iPdPt].n.u1Present)
3588 {
3589 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3590#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3591 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3592 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3593#endif
3594
3595 /* cache is out-of-sync. */
3596 PX86PDPAE pPD;
3597 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3598 if (RT_SUCCESS(rc))
3599 return pPD->a[iPD];
3600 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt]));
3601 }
3602 }
3603 X86PDEPAE ZeroPde = {0};
3604 return ZeroPde;
3605}
3606
3607
3608/**
3609 * Gets the page directory pointer table entry for the specified address
3610 * and returns the index into the page directory
3611 *
3612 * @returns Pointer to the page directory in question.
3613 * @returns NULL if the page directory is not present or on an invalid page.
3614 * @param pPGM Pointer to the PGM instance data.
3615 * @param GCPtr The address.
3616 * @param piPD Receives the index into the returned page directory
3617 * @param pPdpe Receives the page directory pointer entry. Optional.
3618 */
3619DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe)
3620{
3621 AssertGCPtr32(GCPtr);
3622
3623#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3624 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3625 AssertReturn(pGuestPDPT, 0);
3626#else
3627 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3628#endif
3629 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3630 if (pPdpe)
3631 *pPdpe = pGuestPDPT->a[iPdPt];
3632 if (pGuestPDPT->a[iPdPt].n.u1Present)
3633 {
3634 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3635#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3636 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3637 {
3638 *piPD = iPD;
3639 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3640 }
3641#endif
3642
3643 /* cache is out-of-sync. */
3644 PX86PDPAE pPD;
3645 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3646 if (RT_SUCCESS(rc))
3647 {
3648 *piPD = iPD;
3649 return pPD;
3650 }
3651 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3652 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3653 }
3654 return NULL;
3655}
3656
3657#ifndef IN_RC
3658
3659/**
3660 * Gets the page map level-4 pointer for the guest.
3661 *
3662 * @returns Pointer to the PML4 page.
3663 * @param pPGM Pointer to the PGM instance data.
3664 */
3665DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGM pPGM)
3666{
3667#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3668 PX86PML4 pGuestPml4;
3669 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPml4);
3670 AssertRCReturn(rc, NULL);
3671 return pGuestPml4;
3672#else
3673 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3674 return pPGM->CTX_SUFF(pGstAmd64Pml4);
3675#endif
3676}
3677
3678
3679/**
3680 * Gets the pointer to a page map level-4 entry.
3681 *
3682 * @returns Pointer to the PML4 entry.
3683 * @param pPGM Pointer to the PGM instance data.
3684 * @param iPml4 The index.
3685 */
3686DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
3687{
3688#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3689 PX86PML4 pGuestPml4;
3690 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPml4);
3691 AssertRCReturn(rc, NULL);
3692 return &pGuestPml4->a[iPml4];
3693#else
3694 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3695 return &pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3696#endif
3697}
3698
3699
3700/**
3701 * Gets a page map level-4 entry.
3702 *
3703 * @returns The PML4 entry.
3704 * @param pPGM Pointer to the PGM instance data.
3705 * @param iPml4 The index.
3706 */
3707DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGM pPGM, unsigned int iPml4)
3708{
3709#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3710 PX86PML4 pGuestPml4;
3711 int rc = PGMDynMapGCPage(PGM2VM(pPGM), pPGM->GCPhysCR3, (void **)&pGuestPml4);
3712 if (RT_FAILURE(rc))
3713 {
3714 X86PML4E ZeroPml4e = {0};
3715 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e);
3716 }
3717 return pGuestPml4->a[iPml4];
3718#else
3719 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3720 return pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3721#endif
3722}
3723
3724
3725/**
3726 * Gets the page directory pointer entry for the specified address.
3727 *
3728 * @returns Pointer to the page directory pointer entry in question.
3729 * @returns NULL if the page directory is not present or on an invalid page.
3730 * @param pPGM Pointer to the PGM instance data.
3731 * @param GCPtr The address.
3732 * @param ppPml4e Page Map Level-4 Entry (out)
3733 */
3734DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e)
3735{
3736 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3737 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3738 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3739 if (pPml4e->n.u1Present)
3740 {
3741 PX86PDPT pPdpt;
3742 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPml4e->u & X86_PML4E_PG_MASK, &pPdpt);
3743 AssertRCReturn(rc, NULL);
3744
3745 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3746 return &pPdpt->a[iPdPt];
3747 }
3748 return NULL;
3749}
3750
3751
3752/**
3753 * Gets the page directory entry for the specified address.
3754 *
3755 * @returns The page directory entry in question.
3756 * @returns A non-present entry if the page directory is not present or on an invalid page.
3757 * @param pPGM Pointer to the PGM instance data.
3758 * @param GCPtr The address.
3759 * @param ppPml4e Page Map Level-4 Entry (out)
3760 * @param pPdpe Page directory pointer table entry (out)
3761 */
3762DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3763{
3764 X86PDEPAE ZeroPde = {0};
3765 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3766 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3767 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3768 if (pPml4e->n.u1Present)
3769 {
3770 PCX86PDPT pPdptTemp;
3771 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3772 AssertRCReturn(rc, ZeroPde);
3773
3774 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3775 *pPdpe = pPdptTemp->a[iPdPt];
3776 if (pPdptTemp->a[iPdPt].n.u1Present)
3777 {
3778 PCX86PDPAE pPD;
3779 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3780 AssertRCReturn(rc, ZeroPde);
3781
3782 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3783 return pPD->a[iPD];
3784 }
3785 }
3786
3787 return ZeroPde;
3788}
3789
3790
3791/**
3792 * Gets the page directory entry for the specified address.
3793 *
3794 * @returns The page directory entry in question.
3795 * @returns A non-present entry if the page directory is not present or on an invalid page.
3796 * @param pPGM Pointer to the PGM instance data.
3797 * @param GCPtr The address.
3798 */
3799DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGM pPGM, RTGCPTR64 GCPtr)
3800{
3801 X86PDEPAE ZeroPde = {0};
3802 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3803 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3804 if (pGuestPml4->a[iPml4].n.u1Present)
3805 {
3806 PCX86PDPT pPdptTemp;
3807 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
3808 AssertRCReturn(rc, ZeroPde);
3809
3810 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3811 if (pPdptTemp->a[iPdPt].n.u1Present)
3812 {
3813 PCX86PDPAE pPD;
3814 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3815 AssertRCReturn(rc, ZeroPde);
3816
3817 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3818 return pPD->a[iPD];
3819 }
3820 }
3821 return ZeroPde;
3822}
3823
3824
3825/**
3826 * Gets the page directory entry for the specified address.
3827 *
3828 * @returns Pointer to the page directory entry in question.
3829 * @returns NULL if the page directory is not present or on an invalid page.
3830 * @param pPGM Pointer to the PGM instance data.
3831 * @param GCPtr The address.
3832 */
3833DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCPTR64 GCPtr)
3834{
3835 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3836 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3837 if (pGuestPml4->a[iPml4].n.u1Present)
3838 {
3839 PCX86PDPT pPdptTemp;
3840 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
3841 AssertRCReturn(rc, NULL);
3842
3843 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3844 if (pPdptTemp->a[iPdPt].n.u1Present)
3845 {
3846 PX86PDPAE pPD;
3847 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3848 AssertRCReturn(rc, NULL);
3849
3850 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3851 return &pPD->a[iPD];
3852 }
3853 }
3854 return NULL;
3855}
3856
3857
3858/**
3859 * Gets the GUEST page directory pointer for the specified address.
3860 *
3861 * @returns The page directory in question.
3862 * @returns NULL if the page directory is not present or on an invalid page.
3863 * @param pPGM Pointer to the PGM instance data.
3864 * @param GCPtr The address.
3865 * @param ppPml4e Page Map Level-4 Entry (out)
3866 * @param pPdpe Page directory pointer table entry (out)
3867 * @param piPD Receives the index into the returned page directory
3868 */
3869DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
3870{
3871 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3872 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3873 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3874 if (pPml4e->n.u1Present)
3875 {
3876 PCX86PDPT pPdptTemp;
3877 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3878 AssertRCReturn(rc, NULL);
3879
3880 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3881 *pPdpe = pPdptTemp->a[iPdPt];
3882 if (pPdptTemp->a[iPdPt].n.u1Present)
3883 {
3884 PX86PDPAE pPD;
3885 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3886 AssertRCReturn(rc, NULL);
3887
3888 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3889 return pPD;
3890 }
3891 }
3892 return 0;
3893}
3894
3895#endif /* !IN_RC */
3896
3897
3898/**
3899 * Gets the shadow page directory, 32-bit.
3900 *
3901 * @returns Pointer to the shadow 32-bit PD.
3902 * @param pPGM Pointer to the PGM instance data.
3903 */
3904DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGM pPGM)
3905{
3906#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3907 return (PX86PD)PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPGM->CTX_SUFF(pShwPageCR3));
3908#else
3909# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3910 PX86PD pShwPd;
3911 Assert(pPGM->HCPhysShw32BitPD != 0 && pPGM->HCPhysShw32BitPD != NIL_RTHCPHYS);
3912 int rc = PGM_HCPHYS_2_PTR(PGM2VM(pPGM), pPGM->HCPhysShw32BitPD, &pShwPd);
3913 AssertRCReturn(rc, NULL);
3914 return pShwPd;
3915# else
3916 return pPGM->CTX_SUFF(pShw32BitPd);
3917# endif
3918#endif
3919}
3920
3921
3922/**
3923 * Gets the shadow page directory entry for the specified address, 32-bit.
3924 *
3925 * @returns Shadow 32-bit PDE.
3926 * @param pPGM Pointer to the PGM instance data.
3927 * @param GCPtr The address.
3928 */
3929DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGM pPGM, RTGCPTR GCPtr)
3930{
3931 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
3932
3933 PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM);
3934 if (!pShwPde)
3935 {
3936 X86PDE ZeroPde = {0};
3937 return ZeroPde;
3938 }
3939 return pShwPde->a[iPd];
3940}
3941
3942
3943/**
3944 * Gets the pointer to the shadow page directory entry for the specified
3945 * address, 32-bit.
3946 *
3947 * @returns Pointer to the shadow 32-bit PDE.
3948 * @param pPGM Pointer to the PGM instance data.
3949 * @param GCPtr The address.
3950 */
3951DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3952{
3953 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
3954
3955 PX86PD pPde = pgmShwGet32BitPDPtr(pPGM);
3956 AssertReturn(pPde, NULL);
3957 return &pPde->a[iPd];
3958}
3959
3960
3961/**
3962 * Gets the shadow page pointer table, PAE.
3963 *
3964 * @returns Pointer to the shadow PAE PDPT.
3965 * @param pPGM Pointer to the PGM instance data.
3966 */
3967DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGM pPGM)
3968{
3969#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3970 return (PX86PDPT)PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPGM->CTX_SUFF(pShwPageCR3));
3971#else
3972# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3973 PX86PDPT pShwPdpt;
3974 Assert(pPGM->HCPhysShwPaePdpt != 0 && pPGM->HCPhysShwPaePdpt != NIL_RTHCPHYS);
3975 int rc = PGM_HCPHYS_2_PTR(PGM2VM(pPGM), pPGM->HCPhysShwPaePdpt, &pShwPdpt);
3976 AssertRCReturn(rc, 0);
3977 return pShwPdpt;
3978# else
3979 return pPGM->CTX_SUFF(pShwPaePdpt);
3980# endif
3981#endif
3982}
3983
3984
3985/**
3986 * Gets the shadow page directory for the specified address, PAE.
3987 *
3988 * @returns Pointer to the shadow PD.
3989 * @param pPGM Pointer to the PGM instance data.
3990 * @param GCPtr The address.
3991 */
3992DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr)
3993{
3994#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3995 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3996 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
3997
3998 /* Fetch the pgm pool shadow descriptor. */
3999 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4000 AssertReturn(pShwPde, NULL);
4001
4002 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pShwPde);
4003#else
4004 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4005# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4006 PX86PDPAE pPD;
4007 int rc = PGM_HCPHYS_2_PTR(PGM2VM(pPGM), pPGM->aHCPhysPaePDs[iPdpt], &pPD);
4008 AssertRCReturn(rc, 0);
4009 return pPD;
4010# else
4011 PX86PDPAE pPD = pPGM->CTX_SUFF(apShwPaePDs)[iPdpt];
4012 Assert(pPD);
4013 return pPD;
4014# endif
4015#endif
4016}
4017
4018
4019/**
4020 * Gets the shadow page directory entry, PAE.
4021 *
4022 * @returns PDE.
4023 * @param pPGM Pointer to the PGM instance data.
4024 * @param GCPtr The address.
4025 */
4026DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
4027{
4028 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4029
4030 PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4031 if (!pShwPde)
4032 {
4033 X86PDEPAE ZeroPde = {0};
4034 return ZeroPde;
4035 }
4036 return pShwPde->a[iPd];
4037}
4038
4039
4040/**
4041 * Gets the pointer to the shadow page directory entry for an address, PAE.
4042 *
4043 * @returns Pointer to the PDE.
4044 * @param pPGM Pointer to the PGM instance data.
4045 * @param GCPtr The address.
4046 */
4047DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4048{
4049 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4050
4051 PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4052 AssertReturn(pPde, NULL);
4053 return &pPde->a[iPd];
4054}
4055
4056#ifndef IN_RC
4057
4058/**
4059 * Gets the shadow page map level-4 pointer.
4060 *
4061 * @returns Pointer to the shadow PML4.
4062 * @param pPGM Pointer to the PGM instance data.
4063 */
4064DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGM pPGM)
4065{
4066#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4067 return (PX86PML4)PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPGM->CTX_SUFF(pShwPageCR3));
4068#else
4069# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4070 PX86PML4 pShwPml4;
4071 Assert(pPGM->HCPhysShwPaePml4 != 0 && pPGM->HCPhysShwPaePml4 != NIL_RTHCPHYS);
4072 int rc = PGM_HCPHYS_2_PTR(PGM2VM(pPGM), pPGM->HCPhysShwPaePml4, &pShwPml4);
4073 AssertRCReturn(rc, 0);
4074 return pShwPml4;
4075# else
4076 Assert(pPGM->CTX_SUFF(pShwPaePml4));
4077 return pPGM->CTX_SUFF(pShwPaePml4);
4078# endif
4079#endif
4080}
4081
4082
4083/**
4084 * Gets the shadow page map level-4 entry for the specified address.
4085 *
4086 * @returns The entry.
4087 * @param pPGM Pointer to the PGM instance data.
4088 * @param GCPtr The address.
4089 */
4090DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGM pPGM, RTGCPTR GCPtr)
4091{
4092 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4093 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4094
4095 if (!pShwPml4)
4096 {
4097 X86PML4E ZeroPml4e = {0};
4098 return ZeroPml4e;
4099 }
4100 return pShwPml4->a[iPml4];
4101}
4102
4103
4104/**
4105 * Gets the pointer to the specified shadow page map level-4 entry.
4106 *
4107 * @returns The entry.
4108 * @param pPGM Pointer to the PGM instance data.
4109 * @param iPml4 The PML4 index.
4110 */
4111DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4112{
4113 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4114
4115 if (!pShwPml4)
4116 return NULL;
4117
4118 return &pShwPml4->a[iPml4];
4119}
4120
4121
4122/**
4123 * Gets the GUEST page directory pointer for the specified address.
4124 *
4125 * @returns The page directory in question.
4126 * @returns NULL if the page directory is not present or on an invalid page.
4127 * @param pPGM Pointer to the PGM instance data.
4128 * @param GCPtr The address.
4129 * @param piPD Receives the index into the returned page directory
4130 */
4131DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, unsigned *piPD)
4132{
4133 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4134 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4135 if (pGuestPml4->a[iPml4].n.u1Present)
4136 {
4137 PCX86PDPT pPdptTemp;
4138 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4139 AssertRCReturn(rc, NULL);
4140
4141 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4142 if (pPdptTemp->a[iPdPt].n.u1Present)
4143 {
4144 PX86PDPAE pPD;
4145 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4146 AssertRCReturn(rc, NULL);
4147
4148 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4149 return pPD;
4150 }
4151 }
4152 return NULL;
4153}
4154
4155#endif /* !IN_RC */
4156
4157/**
4158 * Checks if any of the specified page flags are set for the given page.
4159 *
4160 * @returns true if any of the flags are set.
4161 * @returns false if all the flags are clear.
4162 * @param pPGM PGM handle.
4163 * @param GCPhys The GC physical address.
4164 * @param fFlags The flags to check for.
4165 */
4166DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
4167{
4168 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
4169 return pPage
4170 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
4171}
4172
4173
4174/**
4175 * Gets the page state for a physical handler.
4176 *
4177 * @returns The physical handler page state.
4178 * @param pCur The physical handler in question.
4179 */
4180DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
4181{
4182 switch (pCur->enmType)
4183 {
4184 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
4185 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
4186
4187 case PGMPHYSHANDLERTYPE_MMIO:
4188 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
4189 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
4190
4191 default:
4192 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4193 }
4194}
4195
4196
4197/**
4198 * Gets the page state for a virtual handler.
4199 *
4200 * @returns The virtual handler page state.
4201 * @param pCur The virtual handler in question.
4202 * @remarks This should never be used on a hypervisor access handler.
4203 */
4204DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
4205{
4206 switch (pCur->enmType)
4207 {
4208 case PGMVIRTHANDLERTYPE_WRITE:
4209 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
4210 case PGMVIRTHANDLERTYPE_ALL:
4211 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
4212 default:
4213 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4214 }
4215}
4216
4217
4218/**
4219 * Clears one physical page of a virtual handler
4220 *
4221 * @param pPGM Pointer to the PGM instance.
4222 * @param pCur Virtual handler structure
4223 * @param iPage Physical page index
4224 *
4225 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
4226 * need to care about other handlers in the same page.
4227 */
4228DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
4229{
4230 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
4231
4232 /*
4233 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
4234 */
4235#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4236 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4237 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4238 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4239#endif
4240 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
4241 {
4242 /* We're the head of the alias chain. */
4243 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
4244#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4245 AssertReleaseMsg(pRemove != NULL,
4246 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4247 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4248 AssertReleaseMsg(pRemove == pPhys2Virt,
4249 ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4250 " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4251 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
4252 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
4253#endif
4254 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4255 {
4256 /* Insert the next list in the alias chain into the tree. */
4257 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4258#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4259 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4260 ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4261 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
4262#endif
4263 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
4264 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
4265 AssertRelease(fRc);
4266 }
4267 }
4268 else
4269 {
4270 /* Locate the previous node in the alias chain. */
4271 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
4272#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4273 AssertReleaseMsg(pPrev != pPhys2Virt,
4274 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4275 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4276#endif
4277 for (;;)
4278 {
4279 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4280 if (pNext == pPhys2Virt)
4281 {
4282 /* unlink. */
4283 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n",
4284 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
4285 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4286 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
4287 else
4288 {
4289 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4290 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
4291 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
4292 }
4293 break;
4294 }
4295
4296 /* next */
4297 if (pNext == pPrev)
4298 {
4299#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4300 AssertReleaseMsg(pNext != pPrev,
4301 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4302 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4303#endif
4304 break;
4305 }
4306 pPrev = pNext;
4307 }
4308 }
4309 Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n",
4310 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
4311 pPhys2Virt->offNextAlias = 0;
4312 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
4313
4314 /*
4315 * Clear the ram flags for this page.
4316 */
4317 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
4318 AssertReturnVoid(pPage);
4319 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
4320}
4321
4322
4323/**
4324 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4325 *
4326 * @returns Pointer to the shadow page structure.
4327 * @param pPool The pool.
4328 * @param HCPhys The HC physical address of the shadow page.
4329 */
4330DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4331{
4332 /*
4333 * Look up the page.
4334 */
4335 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4336 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4337 return pPage;
4338}
4339
4340
4341/**
4342 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4343 *
4344 * @returns Pointer to the shadow page structure.
4345 * @param pPool The pool.
4346 * @param idx The pool page index.
4347 */
4348DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
4349{
4350 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
4351 return &pPool->aPages[idx];
4352}
4353
4354
4355#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4356/**
4357 * Clear references to guest physical memory.
4358 *
4359 * @param pPool The pool.
4360 * @param pPoolPage The pool page.
4361 * @param pPhysPage The physical guest page tracking structure.
4362 */
4363DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
4364{
4365 /*
4366 * Just deal with the simple case here.
4367 */
4368# ifdef LOG_ENABLED
4369 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
4370# endif
4371 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
4372 if (cRefs == 1)
4373 {
4374 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
4375 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
4376 }
4377 else
4378 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
4379 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
4380}
4381#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4382
4383
4384#ifdef PGMPOOL_WITH_CACHE
4385/**
4386 * Moves the page to the head of the age list.
4387 *
4388 * This is done when the cached page is used in one way or another.
4389 *
4390 * @param pPool The pool.
4391 * @param pPage The cached page.
4392 * @todo inline in PGMInternal.h!
4393 */
4394DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4395{
4396 /*
4397 * Move to the head of the age list.
4398 */
4399 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
4400 {
4401 /* unlink */
4402 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
4403 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
4404 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
4405 else
4406 pPool->iAgeTail = pPage->iAgePrev;
4407
4408 /* insert at head */
4409 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4410 pPage->iAgeNext = pPool->iAgeHead;
4411 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
4412 pPool->iAgeHead = pPage->idx;
4413 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
4414 }
4415}
4416#endif /* PGMPOOL_WITH_CACHE */
4417
4418/**
4419 * Tells if mappings are to be put into the shadow page table or not
4420 *
4421 * @returns boolean result
4422 * @param pVM VM handle.
4423 */
4424
4425DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
4426{
4427#ifdef IN_RING0
4428 /* There are no mappings in VT-x and AMD-V mode. */
4429 Assert(pPGM->fDisableMappings);
4430 return false;
4431#else
4432 return !pPGM->fDisableMappings;
4433#endif
4434}
4435
4436/** @} */
4437
4438#endif
4439
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette